Science.gov

Sample records for active androgen receptor

  1. Artificial masculinization in tilapia involves androgen receptor activation.

    PubMed

    Golan, Matan; Levavi-Sivan, Berta

    2014-10-01

    Estrogens have a pivotal role in natural female sexual differentiation of tilapia while lack of steroids results in testicular development. Despite the fact that androgens do not participate in natural sex differentiation, synthetic androgens, mainly 17-α-methyltestosterone (MT) are effective in the production of all-male fish in aquaculture. The sex inversion potency of synthetic androgens may arise from their androgenic activity or else as inhibitors of aromatase activity. The current study is an attempt to differentiate between the two alleged activities in order to evaluate their contribution to the sex inversion process and aid the search for novel sex inversion agents. In the present study, MT inhibited aromatase activity, when applied in vitro as did the non-aromatizable androgen dihydrotestosterone (DHT). In comparison, exposure to fadrozole, a specific aromatase inhibitor, was considerably more effective. Androgenic activity of MT was evaluated by exposure of Sciaenochromis fryeri fry to the substance and testing for the appearance of blue color. Flutamide, an androgen antagonist, administered concomitantly with MT, reduced the appearance of the blue color and the sex inversion potency of MT in a dose-dependent manner. In tilapia, administration of MT, fadrozole or DHT resulted in efficient sex inversion while flutamide reduced the sex inversion potency of all three compounds. In the case of MT and DHT the decrease in sex inversion efficiency caused by flutamide is most likely due to the direct blocking of the androgen binding to its cognate receptor. The negative effect of flutamide on the efficiency of the fadrozole treatment may indicate that the masculinizing activity of fadrozole may be attributed to excess, un-aromatized, androgens accumulated in the differentiating gonad. The present study shows that when androgen receptors are blocked, there is a reduction in the efficiency of sex inversion treatments. Our results suggest that in contrast to

  2. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure.

    PubMed

    Fragkaki, A G; Angelis, Y S; Koupparis, M; Tsantili-Kakoulidou, A; Kokotos, G; Georgakopoulos, C

    2009-02-01

    Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone introduced for therapeutic purposes providing enhanced anabolic potency with reduced androgenic effects. Androgens mediate their action through their binding to the androgen receptor (AR) which is mainly expressed in androgen target tissues, such as the prostate, skeletal muscle, liver and central nervous system. This paper reviews some of the wide spectrum of testosterone and synthetic AAS structure modifications related to the intended enhancement in anabolic activity. The structural features of steroids necessary for effective binding to the AR and those which contribute to the stipulation of the androgenic and anabolic activities are also presented.

  3. Inhibitors for Androgen Receptor Activation Surfaces

    DTIC Science & Technology

    2007-09-01

    new class of chemical therapeutics for treatment of prostate cancer. 15. SUBJECT TERMS X-ray crystallography, high throughput screening, medicinal... treatments because anti-androgen resis- tance usually develops. We conducted functional and x-ray screens to identify compounds that bind the AR surface and...possibility that such compounds could be used for prostate cancer treatment . It is unlikely that natural T3 or Triac concentrations approach levels required

  4. Androgen Activation of the Folate Receptor α Gene through Partial Tethering of the Androgen Receptor by C/EBPα○

    PubMed Central

    Sivakumaran, Suneethi; Zhang, Juan; Kelley, Karen M.M.; Gonit, Mesfin; Hao, Hong; Ratnam, Manohar

    2010-01-01

    The folate receptor α (FRα) is critical for normal embryonic and fetal development. The receptor has a relatively narrow tissue specificity which includes the visceral endoderm and the placenta and mediates delivery of folate, inadequacy of which results in termination of pregnancy or developmental defects. We have previously reported that the FRα gene is negatively and directly regulated by estrogen and positively but indirectly by progesterone and glucocorticoid. To further investigate hormonal control of this gene and in view of the growing evidence for the importance of the androgen receptor (AR) in endometrial and placental functions, we examined the response of the FRα gene to androgen. Here we demonstrate that the FRα gene is directly activated by androgen. The P4 promoter of the FRα gene is the target of hormone-dependent activation by the androgen receptor (AR) in a manner that is co-activator-dependent. The site of functional association of AR in the FRα gene maps to a 35bp region occurring ~1500bp upstream of the target promoter. The functional elements within this region are an androgen response element (ARE) half-site and a non-canonical C/EBP element that cooperate to recruit AR in a manner that is dependent on the DNA-bound C/EBPα. Since the placenta is rich in C/EBPα, the findings underscore the multiplicity of mechanisms by which the FRα gene is under the exquisite control of steroid hormones. PMID:20817090

  5. Androgen receptor serine 81 mediates Pin1 interaction and activity

    PubMed Central

    La Montagna, Raffaele; Caligiuri, Isabella; Maranta, Pasquale; Lucchetti, Chiara; Esposito, Luca; Paggi, Marco G.; Toffoli, Giuseppe; Rizzolio, Flavio; Giordano, Antonio

    2012-01-01

    Hormone-dependent tumors are characterized by deregulated activity of specific steroid receptors, allowing aberrant expression of many genes involved in cancer initiation, progression and metastasis. In prostate cancer, the androgen receptor (AR) protein has pivotal functions, and over the years it has been the target of different drugs. AR is a nuclear receptor whose activity is regulated by a phosphorylation mechanism controlled by hormone and growth factors. Following phosphorylation, AR interacts with many cofactors that closely control its function. Among such cofactors, Pin1 is a peptidyl-prolyl isomerase that is involved in the control of protein phosphorylation and has a prognostic value in prostate cancer. In the present study, we demonstrate that ARSer81 is involved in the interaction with Pin1, and that this interaction is important for the transcriptional activity of AR. Since Pin1 expression positively correlates with tumor grade, our results suggest that Pin1 can participate in this process by modulating AR function. PMID:22894932

  6. Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile.

    PubMed

    Hikichi, Yukiko; Yamaoka, Masuo; Kusaka, Masami; Hara, Takahito

    2015-10-15

    Selective androgen receptor modulators (SARMs) specifically bind to the androgen receptor and exert agonistic or antagonistic effects on target organs. In this study, we investigated the SARM activity of TSAA-291, previously known as a steroidal antiandrogen, in mice because TSAA-291 was found to possess partial androgen receptor agonist activity in reporter assays. In addition, to clarify the mechanism underlying its tissue selectivity, we performed comprehensive cofactor recruitment analysis of androgen receptor using TSAA-291 and dihydrotestosterone (DHT), an endogenous androgen. The androgen receptor agonistic activity of TSAA-291 was more obvious in reporter assays using skeletal muscle cells than in those using prostate cells. In castrated mice, TSAA-291 increased the weight of the levator ani muscle without increasing the weight of the prostate and seminal vesicle. Comprehensive cofactor recruitment analysis via mammalian two-hybrid methods revealed that among a total of 112 cofactors, 12 cofactors including the protein inhibitor of activated STAT 1 (PIAS1) were differently recruited to androgen receptor in the presence of TSAA-291 and DHT. Prostate displayed higher PIAS1 expression than skeletal muscle. Forced expression of the PIAS1 augmented the transcriptional activity of the androgen receptor, and silencing of PIAS1 by siRNAs suppressed the secretion of prostate-specific antigen, an androgen responsive marker. Our results demonstrate that TSAA-291 has SARM activity and suggest that TSAA-291 may induce different conformational changes of the androgen receptor and recruitment profiles of cofactors such as PIAS1, compared with DHT, to exert tissue-specific activity.

  7. Targeting the androgen receptor.

    PubMed

    Friedlander, Terence W; Ryan, Charles J

    2012-11-01

    Androgen receptor (AR)-mediated signaling is critical to the growth and survival of prostate cancer. Although medical castration and antiandrogen therapy can decrease AR activity and lower PSA, castration resistance eventually develops. Recent work exploring the molecular structure and evolution of AR in response to hormonal therapies has revealed novel mechanisms of progression of castration-resistant prostate cancer and yielded new targets for drug development. This review focuses on understanding the mechanisms of persistent AR signaling in the castrate environment, and highlights new therapies either currently available or in clinical trials, including androgen synthesis inhibitors and novel direct AR inhibitors.

  8. Obstructing Androgen Receptor Activation in Prostate Cancer Cells through Posttranslational Modification by NEDD8

    DTIC Science & Technology

    2012-05-01

    08-1-0143 TITLE: Obstructing Androgen Receptor Activation in Prostate Cancer Cells through Posttranslational modification by NEDD8...0143 Obstructing Androgen Receptor Activation in Prostate Cancer Cells through Posttranslational modification by NEDD8 Dr. Don Chen UMDNJ-Robert Wood...of prostate cancer. Post-translational modification has significant impacts on gene expression, but how it affects AR activity is largely unknown

  9. Promoter-dependent activity on androgen receptor N-terminal domain mutations in androgen insensitivity syndrome.

    PubMed

    Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A

    2014-01-01

    Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS.

  10. Substitution of synthetic chimpanzee androgen receptor for human androgen receptor in competitive binding and transcriptional activation assays for EDC screening

    EPA Science Inventory

    The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...

  11. Obstructing Androgen Receptor Activation in Prostate Cancer Cells Through Post-translational Modification by NEDD8

    DTIC Science & Technology

    2012-11-01

    Nonidet P - 40 ). Pre-cleared with 25 µl protein-A/G agarose beads, 700 µg lysate was subjected to immunoprecipitation with 20 µl anti-FLAG antibody...cell growth. REPORTABLE OUTCOMES: 1. Chang, K. H., Hsiao, P .-W. and Chen, J. D. Modulation of Androgen Receptor Activity by Reversible NEDD8...Hsiao, P .-W. and Chen, J. D. Modulation of Androgen Receptor Activity by Reversible NEDD8 Modification. (under revision) 1 Modulation of

  12. The PPAR{gamma} ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    SciTech Connect

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V.

    2010-12-10

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPAR{gamma} ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPAR{gamma} ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPAR{gamma} ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPAR{gamma}. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPAR{gamma} and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  13. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    DTIC Science & Technology

    2006-07-01

    Naruto, M., and Kishimoto, T. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91- related transcrip- tion factor involved in the gp130...independent tumor cells. The molecular mechanism characterizing prostate cancer progression from androgen-dependence to androgenindependence is incompletely...consequence of Stat3 activation in prostate cancer cell growth and to determine the molecular basis of Stat3 interactions with androgen receptor signaling

  14. Identification of an anabolic selective androgen receptor modulator that actively induces death of androgen-independent prostate cancer cells.

    PubMed

    Schmidt, Azriel; Meissner, Robert S; Gentile, Michael A; Chisamore, Michael J; Opas, Evan E; Scafonas, Angela; Cusick, Tara E; Gambone, Carlo; Pennypacker, Brenda; Hodor, Paul; Perkins, James J; Bai, Chang; Ferraro, Damien; Bettoun, David J; Wilkinson, Hilary A; Alves, Stephen E; Flores, Osvaldo; Ray, William J

    2014-09-01

    Prostate cancer (PCa) initially responds to inhibition of androgen receptor (AR) signaling, but inevitably progresses to hormone ablation-resistant disease. Much effort is focused on optimizing this androgen deprivation strategy by improving hormone depletion and AR antagonism. However we found that bicalutamide, a clinically used antiandrogen, actually resembles a selective AR modulator (SARM), as it partially regulates 24% of endogenously 5α-dihydrotestosterone (DHT)-responsive genes in AR(+) MDA-MB-453 breast cancer cells. These data suggested that passive blocking of all AR functions is not required for PCa therapy. Hence, we adopted an active strategy that calls for the development of novel SARMs, which induce a unique gene expression profile that is intolerable to PCa cells. Therefore, we screened 3000 SARMs for the ability to arrest the androgen-independent growth of AR(+) 22Rv1 and LNCaP PCa cells but not AR(-) PC3 or DU145 cells. We identified only one such compound; the 4-aza-steroid, MK-4541, a potent and selective SARM. MK-4541 induces caspase-3 activity and cell death in both androgen-independent, AR(+) PCa cell lines but spares AR(-) cells or AR(+) non-PCa cells. This activity correlates with its promoter context- and cell-type dependent transcriptional effects. In rats, MK-4541 inhibits the trophic effects of DHT on the prostate, but not the levator ani muscle, and triggers an anabolic response in the periosteal compartment of bone. Therefore, MK-4541 has the potential to effectively manage prostatic hypertrophic diseases owing to its antitumor SARM-like mechanism, while simultaneously maintaining the anabolic benefits of natural androgens.

  15. EPI-001, A Compound Active against Castration-Resistant Prostate Cancer, Targets Transactivation Unit 5 of the Androgen Receptor.

    PubMed

    De Mol, Eva; Fenwick, R Bryn; Phang, Christopher T W; Buzón, Victor; Szulc, Elzbieta; de la Fuente, Alex; Escobedo, Albert; García, Jesús; Bertoncini, Carlos W; Estébanez-Perpiñá, Eva; McEwan, Iain J; Riera, Antoni; Salvatella, Xavier

    2016-09-16

    Castration-resistant prostate cancer is the lethal condition suffered by prostate cancer patients that become refractory to androgen deprivation therapy. EPI-001 is a recently identified compound active against this condition that modulates the activity of the androgen receptor, a nuclear receptor that is essential for disease progression. The mechanism by which this compound exerts its inhibitory activity is however not yet fully understood. Here we show, by using high resolution solution nuclear magnetic resonance spectroscopy, that EPI-001 selectively interacts with a partially folded region of the transactivation domain of the androgen receptor, known as transactivation unit 5, that is key for the ability of prostate cells to proliferate in the absence of androgens, a distinctive feature of castration-resistant prostate cancer. Our results can contribute to the development of more potent and less toxic novel androgen receptor antagonists for treating this disease.

  16. EPI-001, a compound active against castration-resistant prostate cancer, targets transactivation unit 5 of the androgen receptor

    PubMed Central

    De Mol, Eva; Fenwick, R. Bryn; Phang, Christopher T. W.; Buzón, Victor; Szulc, Elzbieta; de la Fuente, Alex; Escobedo, Albert; García, Jesús; Bertoncini, Carlos W.; Estébanez-Perpiñá, Eva; McEwan, Iain J.; Riera, Antoni; Salvatella, Xavier

    2016-01-01

    Castration-resistant prostate cancer is the lethal condition suffered by prostate cancer patients that become refractory to androgen deprivation therapy. EPI-001 is a recently identified compound active against this condition that modulates the activity of the androgen receptor, a nuclear receptor that is essential for disease progression. The mechanism by which this compound exerts its inhibitory activity is however not yet fully understood. Here we show, by using high resolution solution nuclear magnetic resonance spectroscopy, that EPI-001 selectively interacts with a partially folded region of the transactivation domain of the androgen receptor, known as transactivation unit 5, that is key for the ability of prostate cells to proliferate in the absence of androgens, a distinctive feature of castration-resistant prostate cancer. Our results can contribute to the development of more potent and less toxic novel androgen receptor antagonists for treating this disease. PMID:27356095

  17. Identification of Anabolic Selective Androgen Receptor Modulators with Reduced Activities in Reproductive Tissues and Sebaceous Glands

    PubMed Central

    Schmidt, Azriel; Harada, Shun-Ichi; Kimmel, Donald B.; Bai, Chang; Chen, Fang; Rutledge, Su Jane; Vogel, Robert L.; Scafonas, Angela; Gentile, Michael A.; Nantermet, Pascale V.; McElwee-Witmer, Sheila; Pennypacker, Brenda; Masarachia, Patricia; Sahoo, Soumya P.; Kim, Yuntae; Meissner, Robert S.; Hartman, George D.; Duggan, Mark E.; Rodan, Gideon A.; Towler, Dwight A.; Ray, William J.

    2009-01-01

    Androgen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM. TFM-4AS-1 is a potent AR ligand (IC50, 38 nm) that partially activates an AR-dependent MMTV promoter (55% of maximal response) while antagonizing the N-terminal/C-terminal interaction within AR that is required for full receptor activation. Microarray analyses of MDA-MB-453 cells show that whereas Cl-4AS-1 behaves like 5α-dihydrotestosterone (DHT), TFM-4AS-1 acts as a gene-selective agonist, inducing some genes as effectively as DHT and others to a lesser extent or not at all. This gene-selective agonism manifests as tissue-selectivity: in ovariectomized rats, Cl-4AS-1 mimics DHT while TFM-4AS-1 promotes the accrual of bone and muscle mass while having reduced effects on reproductive organs and sebaceous glands. Moreover, TFM-4AS-1 does not promote prostate growth and antagonizes DHT in seminal vesicles. To confirm that the biochemical properties of TFM-4AS-1 confer tissue selectivity, we identified a structurally unrelated compound, FTBU-1, with partial agonist activity coupled with antagonism of the N-terminal/C-terminal interaction and found that it also behaves as a SARM. TFM-4AS-1 and FTBU-1 represent two new classes of SARMs and will allow for comparative studies aimed at understanding the biophysical and physiological basis of tissue-selective effects of nuclear receptor ligands. PMID:19846549

  18. Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene

    PubMed Central

    Känsäkoski, Johanna; Jääskeläinen, Jarmo; Jääskeläinen, Tiina; Tommiska, Johanna; Saarinen, Lilli; Lehtonen, Rainer; Hautaniemi, Sampsa; Frilander, Mikko J.; Palvimo, Jorma J.; Toppari, Jorma; Raivio, Taneli

    2016-01-01

    Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5′ splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation. PMID:27609317

  19. Hydrazinobenzoylcurcumin inhibits androgen receptor activity and growth of castration-resistant prostate cancer in mice

    PubMed Central

    Wu, Min; Kim, Sahn-Ho; Datta, Indrani; Levin, Albert; Dyson, Gregory; Li, Jing; Kaypee, Stephanie; Swamy, M. Mahadeva; Gupta, Nilesh; Kwon, Ho Jeong; Menon, Mani; Kundu, Tapas K.; Reddy, G. Prem-Veer

    2015-01-01

    There is a critical need for therapeutic agents that can target the amino-terminal domain (NTD) of androgen receptor (AR) for the treatment of castration-resistant prostate cancer (CRPC). Calmodulin (CaM) binds to the AR NTD and regulates AR activity. We discovered that Hydrazinobenzoylcurcumin (HBC), which binds exclusively to CaM, inhibited AR activity. HBC abrogated AR interaction with CaM, suppressed phosphorylation of AR Serine81, and blocked the binding of AR to androgen-response elements. RNA-Seq analysis identified 57 androgen-regulated genes whose expression was significantly (p ≤ 0.002) altered in HBC treated cells as compared to controls. Oncomine analysis revealed that genes repressed by HBC are those that are usually overexpressed in prostate cancer (PCa) and genes stimulated by HBC are those that are often down-regulated in PCa, suggesting a reversing effect of HBC on androgen-regulated gene expression associated with PCa. Ingenuity Pathway Analysis revealed a role of HBC affected genes in cellular functions associated with proliferation and survival. HBC was readily absorbed into the systemic circulation and inhibited the growth of xenografted CRPC tumors in nude mice. These observations demonstrate that HBC inhibits AR activity by targeting the AR NTD and suggest potential usefulness of HBC for effective treatment of CRPC. PMID:25704883

  20. Dynamic SUMOylation is linked to the activity cycles of androgen receptor in the cell nucleus.

    PubMed

    Rytinki, Miia; Kaikkonen, Sanna; Sutinen, Päivi; Paakinaho, Ville; Rahkama, Vesa; Palvimo, Jorma J

    2012-10-01

    Despite of the progress in the molecular etiology of prostate cancer, the androgen receptor (AR) remains the major druggable target for the advanced disease. In addition to hormonal ligands, AR activity is regulated by posttranslational modifications. Here, we show that androgen induces SUMO-2 and SUMO-3 (SUMO-2/3) modification (SUMOylation) of the endogenous AR in prostate cancer cells, which is also reflected in the chromatin-bound receptor. Although only a small percentage of AR is SUMOylated at the steady state, AR SUMOylation sites have an impact on the receptor's stability, intranuclear mobility, and chromatin interactions and on expression of its target genes. Interestingly, short-term proteotoxic and cell stress, such as hyperthermia, that detaches the AR from the chromatin triggers accumulation of the SUMO-2/3-modified AR pool which concentrates into the nuclear matrix compartment. Alleviation of the stress allows rapid reversal of the SUMO-2/3 modifications and the AR to return to the chromatin. In sum, these results suggest that the androgen-induced SUMOylation is linked to the activity cycles of the holo-AR in the nucleus and chromatin binding, whereas the stress-induced SUMO-2/3 modifications sustain the solubility of the AR and protect it from proteotoxic insults in the nucleus.

  1. Lysine Specific Demethylase 1 has Dual Functions as a Major Regulator of Androgen Receptor Transcriptional Activity

    PubMed Central

    Cai, Changmeng; He, Housheng Hansen; Gao, Shuai; Chen, Sen; Yu, Ziyang; Gao, Yanfei; Chen, Shaoyong; Chen, Mei Wei; Zhang, Jesse; Ahmed, Musaddeque; Wang, Yang; Metzger, Eric; Schüle, Roland; Liu, X. Shirley; Brown, Myles; Balk, Steven P.

    2014-01-01

    SUMMARY Lysine Specific Demethylase 1 (LSD1, KDM1A) functions as a transcriptional corepressor through demethylation of histone 3 lysine 4 (H3K4), but has coactivator function on some genes through unclear mechanisms. We show that LSD1, interacting with CoREST, associates with and coactivates androgen receptor (AR) on a large fraction of androgen-stimulated genes. A subset of these AR/LSD1-associated enhancer sites have histone 3 threonine 6 phosphorylation (H3T6ph), and these sites are further enriched for androgen-stimulated genes. Significantly, despite its coactivator activity, LSD1 still mediates H3K4me2 demethylation at these androgen-stimulated enhancers. FOXA1 is also associated with LSD1 at AR regulated enhancer sites, and a FOXA1 interaction with LSD1 enhances binding of both proteins at these sites. These findings show LSD1 functions broadly as a regulator of AR function, that it maintains a transcriptional repression function at AR-regulated enhancers through H3K4 demethylation, and has a distinct AR-linked coactivator function mediated by demethylation of other substrates. PMID:25482560

  2. N-Arylpiperazine-1-carboxamide derivatives: a novel series of orally active nonsteroidal androgen receptor antagonists.

    PubMed

    Kinoyama, Isao; Taniguchi, Nobuaki; Kawaminami, Eiji; Nozawa, Eisuke; Koutoku, Hiroshi; Furutani, Takashi; Kudoh, Masafumi; Okada, Minoru

    2005-04-01

    A novel series of N-arylpiperazine-1-carboxamide derivatives was synthesized and their androgen receptor (AR) antagonist activities and in vivo antiandrogenic properties were evaluated. Reporter assays indicated that trans-2,5-dimethylpiperazine derivatives are potent AR antagonists, and in this series trans-N-4-[4-cyano-3-(trifluoromethyl)phenyl]-N-(2,4-difluorophenyl)-2,5-dimethylpiperazine-1-carboxamide (18 g, YM-175735) exhibited the most potent antiandrogenic activity. Compared to bicalutamide, YM-175735 is an approximately 4-fold stronger AR antagonist and has slightly increased antiandrogenic activity, suggesting that YM-175735 may be useful in the treatment of prostate cancer.

  3. Cell Cycle Regulation of Estrogen and Androgen Receptor

    DTIC Science & Technology

    2002-07-01

    Estrogen and Androgen Receptor PRINCIPAL INVESTIGATOR: Elisabeth D. Martinez CONTRACTING ORGANIZATION: Georgetown University Medical Center...Cycle Regulation of Estrogen and Androgen DAMD17-99-1-9199 Receptor 6. AUTHOR(S) Elisabeth D. Martinez 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...with androgens. 14. SUBJECT TERMS 15. NUMBER OF PAGES breast cancer, cell cycle, androgen receptor, estrogen receptor, non- 66 steroidal activators, L

  4. Lyn tyrosine kinase regulates androgen receptor expression and activity in castrate-resistant prostate cancer

    PubMed Central

    Zardan, A; Nip, K M; Thaper, D; Toren, P; Vahid, S; Beraldi, E; Fazli, L; Lamoureux, F; Gust, K M; Cox, M E; Bishop, J L; Zoubeidi, A

    2014-01-01

    Castrate-resistant prostate cancer (CRPC) progression is a complex process by which prostate cells acquire the ability to survive and proliferate in the absence or under very low levels of androgens. Most CRPC tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes owing to reactivation of AR. Protein tyrosine kinases have been implicated in supporting AR activation under castrate conditions. Here we report that Lyn tyrosine kinase expression is upregulated in CRPC human specimens compared with hormone naive or normal tissue. Lyn overexpression enhanced AR transcriptional activity both in vitro and in vivo and accelerated CRPC. Reciprocally, specific targeting of Lyn resulted in a decrease of AR transcriptional activity in vitro and in vivo and prolonged time to castration. Mechanistically, we found that targeting Lyn kinase induces AR dissociation from the molecular chaperone Hsp90, leading to its ubiquitination and proteasomal degradation. This work indicates a novel mechanism of regulation of AR stability and transcriptional activity by Lyn and justifies further investigation of the Lyn tyrosine kinase as a therapeutic target for the treatment of CRPC. PMID:25133482

  5. G-protein alpha-s and -12 subunits are involved in androgen-stimulated PI3K activation and androgen receptor transactivation in prostate cancer cells

    PubMed Central

    Liu, Jianjun; Youn, Hyewon; Yang, Jun; Du, Ningchao; Liu, Jihong; Liu, Hongwei; Li, Benyi

    2011-01-01

    BACKGROUND The androgen receptor (AR) is a ligand-dependent transcription factor that mediates androgenic hormone action in cells. We recently demonstrated the involvement of phosphoinositide 3-OH kinase (PI3K) p110beta in AR transactivation and gene expression. In this study, we determined the upstream signals that lead to PI3K/p110beta activation and AR transactivation after androgen stimulation. METHODS Human prostate cancer LAPC-4 and 22Rv1 cell lines were used for the experiments. AR transactivation was assessed using an androgen responsive element-driven luciferase (ARE-LUC) assay. Cell proliferation was examined using BrdU incorporation and MTT assays. Target genes were silenced using small interfering RNA (siRNA) approach. Gene expression was evaluated at the mRNA level (real-time RT-PCR) and protein level (Western blot). PI3K kinase activities were measured using immunoprecipitation-based in vitro kinase assay. The AR-DNA binding activity was determined using Chromatin-immunoprecipitation (ChIP) assay. RESULTS First, at the cellular plasma membrane, disrupting the integrity of caveolae microdomain with methyl-β- cyclodextrin (M-β-CD) abolished androgen-induced AR transactivation and gene expression. Then, knocking down caveolae structural proteins caveolin-1 or -2 with the gene-specific siRNAs significantly reduced androgen-induced AR transactivation. Next, silencing Gαs and Gα12 genes but not other G-proteins blocked androgen-induced AR transactivation and cell proliferation. Consistently, overexpression of Gαs or Gα12 active mutants enhanced androgen-induced AR transactivation, of which Gαs active mutant sensitized the AR to castration-level of androgen (R1881). Most interestingly, knocking down Gαs but not Gα12 subunit significantly suppressed androgen-stimulated PI3K p110beta activation. However, chromatin-immunoprecipitation (ChIP) analysis revealed that both Gαs or Gα12 subunits are involved in androgen-induced AR interaction with the AR

  6. Bioluminescence Microscopy as a Method to Measure Single Cell Androgen Receptor Activity Heterogeneous Responses to Antiandrogens

    PubMed Central

    Jain, Pallavi; Neveu, Bertrand; Velot, Lauriane; Wu, Lily; Fradet, Yves; Pouliot, Frédéric

    2016-01-01

    Cancer cell heterogeneity is well-documented. Therefore, techniques to monitor single cell heterogeneous responses to treatment are needed. We developed a highly translational and quantitative bioluminescence microscopy method to measure single cell androgen receptor (AR) activity modulation by antiandrogens from fluid biopsies. We showed that this assay can detect heterogeneous cellular response to drug treatment and that the sum of single cell AR activity can mirror the response in the whole cell population. This method may thus be used to monitor heterogeneous dynamic treatment responses in cancer cells. PMID:27678181

  7. Metabolomics for informing adverse outcome pathways: Androgen receptor activation and the pharmaceutical spironolactone.

    PubMed

    Davis, J M; Ekman, D R; Skelton, D M; LaLone, C A; Ankley, G T; Cavallin, J E; Villeneuve, D L; Collette, T W

    2017-03-01

    One objective in developing adverse outcome pathways (AOPs) is to connect biological changes that are relevant to risk assessors (i.e., fecundity) to molecular and cellular-level alterations that might be detectable at earlier stages of a chemical exposure. Here, we examined biochemical responses of fathead minnows (Pimephales promelas) to inform an AOP relevant to spironolactone's activation of the androgen receptor, as well as explore other biological impacts possibly unrelated to this receptor. Liquid chromatography with high resolution mass spectrometry (LC-MS) was used to measure changes in endogenous polar metabolites in livers of male and female fish that were exposed to five water concentrations of spironolactone (0, 0.05, 0.5, 5, or 50μgL(-1)) for 21days. Metabolite profiles were affected at the two highest concentrations (5 and 50μgL(-1)), but not in the lower-level exposures, which agreed with earlier reported results of reduced female fecundity and plasma vitellogenin (VTG) levels. We then applied partial least squares regression to assess whether metabolite alterations covaried with changes in fecundity, VTG gene expression and protein concentrations, and plasma 17β-estradiol and testosterone concentrations. Metabolite profiles significantly covaried with all measured endpoints in females, but only with plasma testosterone in males. Fecundity reductions occurred in parallel with changes in metabolites important in osmoregulation (e.g., betaine), membrane transport (e.g., l-carnitine), and biosynthesis of carnitine (e.g., methionine) and VTG (e.g., glutamate). Based on a network analysis program (i.e., mummichog), spironolactone also affected amino acid, tryptophan, and fatty acid metabolism. Thus, by identifying possible key events related to changes in biochemical pathways, this approach built upon an established AOP describing spironolactone's androgenic properties and highlighted broader implications potentially unrelated to androgen receptor

  8. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes.

    PubMed

    Hartig, Sean M; He, Bin; Newberg, Justin Y; Ochsner, Scott A; Loose, David S; Lanz, Rainer B; McKenna, Neil J; Buehrer, Benjamin M; McGuire, Sean E; Marcelli, Marco; Mancini, Michael A

    2012-09-21

    We compared transcriptomes of terminally differentiated mouse 3T3-L1 and human adipocytes to identify cell-specific differences. Gene expression and high content analysis (HCA) data identified the androgen receptor (AR) as both expressed and functional, exclusively during early human adipocyte differentiation. The AR agonist dihydrotestosterone (DHT) inhibited human adipocyte maturation by downregulation of adipocyte marker genes, but not in 3T3-L1. It is interesting that AR induction corresponded with dexamethasone activation of the glucocorticoid receptor (GR); however, when exposed to the differentiation cocktail required for adipocyte maturation, AR adopted an antagonist conformation and was transcriptionally repressed. To further explore effectors within the cocktail, we applied an image-based support vector machine (SVM) classification scheme to show that adipocyte differentiation components inhibit AR action. The results demonstrate human adipocyte differentiation, via GR activation, upregulates AR but also inhibits AR transcriptional activity.

  9. FOXA1 regulates androgen receptor variant activity in models of castrate-resistant prostate cancer

    PubMed Central

    Nakjang, Sirintra; Chaytor, Lewis; Grey, James; Robson, Craig N.; Gaughan, Luke

    2015-01-01

    Retention of androgen receptor (AR) signalling in castrate-resistant prostate cancer (CRPC) highlights the requirement for the development of more effective AR targeting therapies. A key mechanism of resistance to anti-androgens is through expression of constitutively active AR variants (AR-Vs) that are refractory to next-generation therapies, including Enzalutamide and Abiraterone. By maintaining an androgenic gene signature, AR-Vs drive tumour survival and progression in castrate conditions. Critically, however, our understanding of the mechanics of AR-V-driven transcription is limited, particularly with respect to dependency on pioneer factor function. Here we show that depletion of FOXA1 in the CWR22Rv1 CRPC cell line abrogates the oncogenic potential of AR-Vs. Gene expression profiling reveals that approximately 41% of the AR-V transcriptome requires FOXA1 and that depletion of FOXA1 attenuates AR-V binding at a sub-set of analysed co-regulated genes. Interestingly, AR-V levels are elevated in cells depleted of FOXA1 as a consequence of attenuated negative feedback on the AR gene, but is insufficient to maintain cell growth as evidenced by marked anti-proliferative effects in FOXA1 knockdown cells. In all, our data suggests that AR-Vs are dependent on FOXA1 for sustaining a pro-proliferative gene signature and agents targeting FOXA1 may represent novel therapeutic options for CRPC patients. PMID:26336819

  10. FOXA1 regulates androgen receptor variant activity in models of castrate-resistant prostate cancer.

    PubMed

    Jones, Dominic; Wade, Mark; Nakjang, Sirintra; Chaytor, Lewis; Grey, James; Robson, Craig N; Gaughan, Luke

    2015-10-06

    Retention of androgen receptor (AR) signalling in castrate-resistant prostate cancer (CRPC) highlights the requirement for the development of more effective AR targeting therapies. A key mechanism of resistance to anti-androgens is through expression of constitutively active AR variants (AR-Vs) that are refractory to next-generation therapies, including Enzalutamide and Abiraterone. By maintaining an androgenic gene signature, AR-Vs drive tumour survival and progression in castrate conditions. Critically, however, our understanding of the mechanics of AR-V-driven transcription is limited, particularly with respect to dependency on pioneer factor function. Here we show that depletion of FOXA1 in the CWR22Rv1 CRPC cell line abrogates the oncogenic potential of AR-Vs. Gene expression profiling reveals that approximately 41% of the AR-V transcriptome requires FOXA1 and that depletion of FOXA1 attenuates AR-V binding at a sub-set of analysed co-regulated genes. Interestingly, AR-V levels are elevated in cells depleted of FOXA1 as a consequence of attenuated negative feedback on the AR gene, but is insufficient to maintain cell growth as evidenced by marked anti-proliferative effects in FOXA1 knockdown cells. In all, our data suggests that AR-Vs are dependent on FOXA1 for sustaining a pro-proliferative gene signature and agents targeting FOXA1 may represent novel therapeutic options for CRPC patients.

  11. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    SciTech Connect

    Zheng Yanyan; Chen Wenling; Ma, W.-L. Maverick; Chang Chawnshang; Ou, J.-H. James . E-mail: jamesou@hsc.usc.edu

    2007-07-05

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.

  12. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  13. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    SciTech Connect

    Hu, Xu-Dong; Meng, Qing-Hui; Xu, Jia-Ying; Jiao, Yang; Ge, Chun-Min; Jacob, Asha; Wang, Ping; Rosen, Eliot M; Fan, Saijun

    2011-01-28

    Research highlights: {yields} BTG2 associates with AR, androgen causes an increase of the interaction. {yields} BTG2 as a co-repressor inhibits the AR-mediated transcription activity. {yields} BTG2 inhibits the transcription activity and expression of PSA. {yields} An intact {sup 92}LxxLL{sup 96} motif is essential and necessary for these activities of BTG2, while the {sup 20}LxxLL{sup 24} motif is not required. {yields} Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ({sup 20}LxxLL{sup 24} and {sup 92}LxxLL{sup 96}), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5{alpha}-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant {sup 20}LxxLL{sup 24} motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant {sup 92}LxxLL{sup 96} motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact {sup 92}LxxLL{sup 96} motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  14. An imaging agent to detect androgen receptor and its active splice variants in prostate cancer

    PubMed Central

    Imamura, Yusuke; Tien, Amy H.; Pan, Jinhe; Leung, Jacky K.; Banuelos, Carmen A.; Jian, Kunzhong; Wang, Jun; Mawji, Nasrin R.; Fernandez, Javier Garcia; Lin, Kuo-Shyan; Andersen, Raymond J.; Sadar, Marianne D.

    2016-01-01

    Constitutively active splice variants of androgen receptor (AR-Vs) lacking ligand-binding domain (LBD) are a mechanism of resistance to androgen receptor LBD–targeted (AR LBD–targeted) therapies for metastatic castration-resistant prostate cancer (CRPC). There is a strong unmet clinical need to identify prostate cancer patients with AR-V–positive lesions to determine whether they will benefit from further AR LBD–targeting therapies or should receive taxanes or investigational drugs like EPI-506 or galeterone. Both EPI-506 (NCT02606123) and galeterone (NCT02438007) are in clinical trials and are proposed to have efficacy against lesions that are positive for AR-Vs. AR activation function-1 (AF-1) is common to the N-terminal domains of full-length AR and AR-Vs. Here, we provide proof of concept for developing imaging compounds that directly bind AR AF-1 to detect both AR-Vs and full-length AR. 123I-EPI-002 had specific binding to AR AF-1, which enabled direct visualization of CRPC xenografts that express full-length AR and AR-Vs. Our findings highlight the potential of 123I-EPI-002 as an imaging agent for the detection of full-length AR and AR-Vs in CRPC. PMID:27525313

  15. The Interplay of AMP-activated Protein Kinase and Androgen Receptor in Prostate Cancer Cells†

    PubMed Central

    Shen, Min; Zhang, Zhen; Ratnam, Manohar; Dou, Q. Ping

    2013-01-01

    AMP-activated protein kinase (AMPK) has recently emerged as a potential target for cancer therapy due to the observation that activation of AMPK inhibits tumor cell growth. It is well-known that androgen receptor (AR) signaling is a major driver for the development and progression of prostate cancer and that downregulation of AR is a critical step in the induction of apoptosis in prostate cancer cells. However, little is known about the potential interaction between AMPK and AR signaling pathways. In the current study, we showed that activation of AMPK by metformin caused decrease of AR protein level through suppression of AR mRNA expression and promotion of AR protein degradation, demonstrating that AMPK activation is upstream of AR downregulation. We also showed that inhibition of AR function by an anti-androgen or its siRNA enhanced AMPK activation and growth inhibition whereas overexpression of AR delayed AMPK activation and increased prostate cancer cellular resistance to metformin treatment, suggesting that AR suppresses AMPK signaling-mediated growth inhibition in a feedback mechanism. Our findings thus reveal a novel AMPK-AR regulatory loop in prostate cancer cells and should have a potential clinical significance. PMID:24129850

  16. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R-3327G and anabolic activity on skeletal muscle mass & function in castrated mice.

    PubMed

    Chisamore, Michael J; Gentile, Michael A; Dillon, Gregory Michael; Baran, Matthew; Gambone, Carlo; Riley, Sean; Schmidt, Azriel; Flores, Osvaldo; Wilkinson, Hilary; Alves, Stephen E

    2016-10-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor super family of transcription factors. Androgens play an essential role in the development, growth, and maintenance of male sex organs, as well as the musculoskeletal and central nervous systems. Yet with advancing age, androgens can drive the onset of prostate cancer, the second leading cause of cancer death in males within the United States. Androgen deprivation therapy (ADT) by pharmacologic and/or surgical castration induces apoptosis of prostate cells and subsequent shrinkage of the prostate and prostate tumors. However, ADT is associated with significant musculoskeletal and behavioral adverse effects. The unique pharmacological activity of selective androgen receptor modulator (SARM) MK-4541 recently has been reported as an AR antagonist with 5α-reductase inhibitor function. The molecule inhibits proliferation and induces apoptosis in AR positive, androgen dependent prostate cancer cells. Importantly, MK-4541 inhibited androgen-dependent prostate growth in male rats yet maintained lean body mass and bone formation following ovariectomy in female rats. In the present study, we evaluated the effects of SARM MK-4541 in the androgen-dependent Dunning R3327-G prostate carcinoma xenograft mouse model as well as on skeletal muscle mass and function, and AR-regulated behavior in mice. MK-4541 significantly inhibited the growth of R3327-G prostate tumors, exhibited anti-androgen effects on the seminal vesicles, reduced plasma testosterone concentrations in intact males, and inhibited Ki67 expression. MK-4541 treated xenografts appeared similar to xenografts in castrated mice. Importantly, we demonstrate that MK-4541 exhibited anabolic activity in androgen deficient conditions, increasing lean body mass and muscle function in adult castrated mice. Moreover, MK-4541 treatment restored general activity levels in castrated mice. Thus, MK-4541 exhibits an optimum profile as an adjuvant therapy to ADT

  17. Screening of bisphenol A, triclosan and paraben analogues as modulators of the glucocorticoid and androgen receptor activities.

    PubMed

    Kolšek, Katra; Gobec, Martina; Mlinarič Raščan, Irena; Sollner Dolenc, Marija

    2015-02-01

    A homeostasis of the glucocorticoid and androgen endocrine system is essential to human health. Their disturbance can lead to various diseases, for example cardiovascular, inflammatory and autoimmune diseases, infertility, cancer. Fifteen widely used industrial chemicals that disrupt endocrine activity were selected for evaluation of potential (anti)glucocorticoid and (anti)androgenic activities. The human breast carcinoma MDA-kb2 cell line was utilized for reporter gene assays, since it expresses both the androgen and the glucocorticoid-responsive reporter. Two new antiandrogens, 4,4'-sulfonylbis(2-methylphenol) (dBPS) and 4,4'-thiodiphenol (THIO), and two new antiglucocorticoids, bisphenol Z and its analog bis[4-(2-hydroxyethoxy)phenyl] sulfone (BHEPS) were identified. Moreover, four new glucocorticoid agonists (methyl paraben, ethyl paraben, propyl paraben and bisphenol F) were found. To elucidate the structure-activity relationship of bisphenols, we performed molecular docking experiments with androgen and glucocorticoid receptor. These docking experiments had shown that bulky structures such as BHEPS and bisphenol Z act as antiglucocorticoid, because they are positioned toward helix H12 in the antagonist conformation and could therefore be responsible for H12 conformational change and the switch between agonistic and antagonistic conformation of receptor. On the other hand smaller structures cannot interact with H12. The results of in vitro screening of fifteen industrial chemicals as modulators of the glucocorticoid and androgen receptor activities demand additional in vivo testing of these chemicals for formulating any relevant hazard identification to human health.

  18. Transcriptional network of androgen receptor in prostate cancer progression.

    PubMed

    Takayama, Ken-ichi; Inoue, Satoshi

    2013-08-01

    The androgen receptor belongs to the nuclear receptor superfamily and functions as a ligand-dependent transcription factor. It binds to the androgen responsive element and recruits coregulatory factors to modulate gene transcription. In addition, the androgen receptor interacts with other transcription factors, such as forkhead box A1, and other oncogenic signaling pathway molecules that bind deoxyribonucleic acid and regulate transcription. Androgen receptor signaling plays an important role in the development of prostate cancer. Prostate cancer cells proliferate in an androgen-dependent manner, and androgen receptor blockade is effective in prostate cancer therapy. However, patients often progress to castration-resistant prostate cancer with elevated androgen receptor expression and hypersensitivity to androgen. Recently, comprehensive analysis tools, such as complementary DNA microarray, chromatin immunoprecipitation-on-chip and chromatin immunoprecipitation-sequence, have described the androgen-mediated diverse transcriptional program and gene networks in prostate cancer. Furthermore, functional and clinical studies have shown that some of the androgen receptor-regulated genes could be prognostic markers and potential therapeutic targets for the treatment of prostate cancer, particularly castration-resistant prostate cancer. Thus, identifying androgen receptor downstream signaling events and investigating the regulation of androgen receptor activity is critical for understanding the mechanism of carcinogenesis and progression to castration-resistant prostate cancer.

  19. Targeting prostate cancer with compounds possessing dual activity as androgen receptor antagonists and HDAC6 inhibitors.

    PubMed

    Jadhavar, Pradeep S; Ramachandran, Sreekanth A; Riquelme, Eduardo; Gupta, Ashu; Quinn, Kevin P; Shivakumar, Devleena; Ray, Soumya; Zende, Dnyaneshwar; Nayak, Anjan K; Miglani, Sandeep K; Sathe, Balaji D; Raja, Mohd; Farias, Olivia; Alfaro, Ivan; Belmar, Sebastián; Guerrero, Javier; Bernales, Sebastián; Chakravarty, Sarvajit; Hung, David T; Lindquist, Jeffrey N; Rai, Roopa

    2016-11-01

    While enzalutamide and abiraterone are approved for treatment of metastatic castration-resistant prostate cancer (mCRPC), approximately 20-40% of patients have no response to these agents. It has been stipulated that the lack of response and the development of secondary resistance to these drugs may be due to the presence of AR splice variants. HDAC6 has a role in regulating the androgen receptor (AR) by modulating heat shock protein 90 (Hsp90) acetylation, which controls the nuclear localization and activation of the AR in androgen-dependent and independent scenarios. With dual-acting AR-HDAC6 inhibitors it should be possible to target patients who don't respond to enzalutamide. Herein, we describe the design, synthesis and biological evaluation of dual-acting compounds which target AR and are also specific towards HDAC6. Our efforts led to compound 10 which was found to have potent dual activity (HDAC6 IC50=0.0356μM and AR binding IC50=<0.03μM). Compound 10 was further evaluated for antagonist and other cell-based activities, in vitro stability and pharmacokinetics.

  20. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets

    PubMed Central

    Toropainen, Sari; Niskanen, Einari A.; Malinen, Marjo; Sutinen, Päivi; Kaikkonen, Minna U.; Palvimo, Jorma J.

    2016-01-01

    Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells. PMID:27641228

  1. KLF4 functions as an activator of the androgen receptor through reciprocal feedback

    PubMed Central

    Siu, M-K; Suau, F; Chen, W-Y; Tsai, Y-C; Tsai, H-Y; Yeh, H-L; Liu, Y-N

    2016-01-01

    In prostate cancer, Krüppel-like factor 4 (KLF4) depletion occurs frequently, suggesting a role as suppressor tumor. KLF4 is a transcription factor associated with androgen receptor (AR) expression; however, its cellular functions and signaling regulation mechanism remain largely unknown. In this study, we demonstrated that activated AR binds to the KLF4 promoter and enhances KLF4 expression, which reciprocally targets the AR promoter, thus sustaining KLF4 activity. Ectopic KLF4 expression in androgen-independent prostate cancer cells induced AR expression and decreased cell proliferation, invasion and bone metastasis. We previously showed that increased microRNA (miR)-1 expression is associated with reduced bone metastasis of prostate cancer cells. Here we observed that KLF4 targets the primary miR-1-2 stem-loop promoter and stimulates miR-1 expression. In clinical prostate cancer specimens, KLF4 levels were positively correlated with miR-1 and AR levels. These data suggest that the loss of KLF4 expression is one mechanistic link between aggressive prostate cancer progression and low canonical AR output through miR-1 inactivation. PMID:27991915

  2. Aberrant E2F activation by polyglutamine expansion of androgen receptor in SBMA neurotoxicity

    PubMed Central

    Suzuki, Eriko; Zhao, Yue; Ito, Saya; Sawatsubashi, Shun; Murata, Takuya; Furutani, Takashi; Shirode, Yuko; Yamagata, Kaoru; Tanabe, Masahiko; Kimura, Shuhei; Ueda, Takashi; Fujiyama, Sally; Lim, Jinseon; Matsukawa, Hiroyuki; Kouzmenko, Alexander P.; Aigaki, Toshiro; Tabata, Tetsuya; Takeyama, Ken-ichi; Kato, Shigeaki

    2009-01-01

    Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by a polyglutamine repeat (polyQ) expansion within the human androgen receptor (AR). Unlike other neurodegenerative diseases caused by abnormal polyQ expansion, the onset of SBMA depends on androgen binding to mutant human polyQ-AR proteins. This is also observed in Drosophila eyes ectopically expressing the polyQ-AR mutants. We have genetically screened mediators of androgen-induced neurodegeneration caused by polyQ-AR mutants in Drosophila eyes. We identified Rbf (Retinoblastoma-family protein), the Drosophila homologue of human Rb (Retinoblastoma protein), as a neuroprotective factor. Androgen-dependent association of Rbf or Rb with AR was remarkably potentiated by aberrant polyQ expansion. Such potentiated Rb association appeared to attenuate recruitment of histone deacetyltransferase 1 (HDAC1), a corepressor of E2F function. Either overexpression of Rbf or E2F deficiency in fly eyes reduced the neurotoxicity of the polyQ-AR mutants. Induction of E2F function by polyQ-AR-bound androgen was suppressed by Rb in human neuroblastoma cells. We conclude that abnormal expansion of polyQ may potentiate innate androgen-dependent association of AR with Rb. This appears to lead to androgen-dependent onset of SBMA through aberrant E2F transactivation caused by suppressed histone deacetylation. PMID:19237573

  3. Aberrant E2F activation by polyglutamine expansion of androgen receptor in SBMA neurotoxicity.

    PubMed

    Suzuki, Eriko; Zhao, Yue; Ito, Saya; Sawatsubashi, Shun; Murata, Takuya; Furutani, Takashi; Shirode, Yuko; Yamagata, Kaoru; Tanabe, Masahiko; Kimura, Shuhei; Ueda, Takashi; Fujiyama, Sally; Lim, Jinseon; Matsukawa, Hiroyuki; Kouzmenko, Alexander P; Aigaki, Toshiro; Tabata, Tetsuya; Takeyama, Ken-ichi; Kato, Shigeaki

    2009-03-10

    Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by a polyglutamine repeat (polyQ) expansion within the human androgen receptor (AR). Unlike other neurodegenerative diseases caused by abnormal polyQ expansion, the onset of SBMA depends on androgen binding to mutant human polyQ-AR proteins. This is also observed in Drosophila eyes ectopically expressing the polyQ-AR mutants. We have genetically screened mediators of androgen-induced neurodegeneration caused by polyQ-AR mutants in Drosophila eyes. We identified Rbf (Retinoblastoma-family protein), the Drosophila homologue of human Rb (Retinoblastoma protein), as a neuroprotective factor. Androgen-dependent association of Rbf or Rb with AR was remarkably potentiated by aberrant polyQ expansion. Such potentiated Rb association appeared to attenuate recruitment of histone deacetyltransferase 1 (HDAC1), a corepressor of E2F function. Either overexpression of Rbf or E2F deficiency in fly eyes reduced the neurotoxicity of the polyQ-AR mutants. Induction of E2F function by polyQ-AR-bound androgen was suppressed by Rb in human neuroblastoma cells. We conclude that abnormal expansion of polyQ may potentiate innate androgen-dependent association of AR with Rb. This appears to lead to androgen-dependent onset of SBMA through aberrant E2F transactivation caused by suppressed histone deacetylation.

  4. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    PubMed Central

    Ghotbaddini, Maryam; Powell, Joann B.

    2015-01-01

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models. PMID:26154658

  5. Identification of SRC3/AIB1 as a Preferred Coactivator for Hormone-activated Androgen Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Li, Jun; He, Yuanzheng; MacKeigan, Jeffrey P.; Melcher, Karsten; Yong, Eu-Leong; Xu, H.Eric

    2010-09-17

    Transcription activation by androgen receptor (AR), which depends on recruitment of coactivators, is required for the initiation and progression of prostate cancer, yet the mechanisms of how hormone-activated AR interacts with coactivators remain unclear. This is because AR, unlike any other nuclear receptor, prefers its own N-terminal FXXLF motif to the canonical LXXLL motifs of coactivators. Through biochemical and crystallographic studies, we identify that steroid receptor coactivator-3 (SRC3) (also named as amplified in breast cancer-1 or AIB1) interacts strongly with AR via synergistic binding of its first and third LXXLL motifs. Mutagenesis and functional studies confirm that SRC3 is a preferred coactivator for hormone-activated AR. Importantly, AR mutations found in prostate cancer patients correlate with their binding potency to SRC3, corroborating with the emerging role of SRC3 as a prostate cancer oncogene. These results provide a molecular mechanism for the selective utilization of SRC3 by hormone-activated AR, and they link the functional relationship between AR and SRC3 to the development and growth of prostate cancer.

  6. Deubiquitinating Enzyme Usp12 Is a Novel Co-activator of the Androgen Receptor*

    PubMed Central

    Burska, Urszula L.; Harle, Victoria J.; Coffey, Kelly; Darby, Steven; Ramsey, Hollie; O'Neill, Daniel; Logan, Ian R.; Gaughan, Luke; Robson, Craig N.

    2013-01-01

    The androgen receptor (AR), a member of the nuclear receptor family, is a transcription factor involved in prostate cell growth, homeostasis, and transformation. AR is a key protein in growth and development of both normal and malignant prostate, making it a common therapeutic target in prostate cancer. AR is regulated by an interplay of multiple post-translational modifications including ubiquitination. We and others have shown that the AR is ubiquitinated by a number of E3 ubiquitin ligases, including MDM2, CHIP, and NEDD4, which can result in its proteosomal degradation or enhanced transcriptional activity. As ubiquitination of AR causes a change in AR activity or stability and impacts both survival and growth of prostate cancer cells, deubiquitination of these sites has an equally important role. Hence, deubiquitinating enzymes could offer novel therapeutic targets. We performed an siRNA screen to identify deubiquitinating enzymes that regulate AR; in that screen ubiquitin-specific protease 12 (Usp12) was identified as a novel positive regulator of AR. Usp12 is a poorly characterized protein with few known functions and requires the interaction with two cofactors, Uaf-1 and WDR20, for its enzymatic activity. In this report we demonstrate that Usp12, in complex with Uaf-1 and WDR20, deubiquitinates the AR to enhance receptor stability and transcriptional activity. Our data show that Usp12 acts in a pro-proliferative manner by stabilizing AR and enhancing its cellular function. PMID:24056413

  7. Complete androgen insensitivity syndrome caused by a novel splice donor site mutation and activation of a cryptic splice donor site in the androgen receptor gene.

    PubMed

    Infante, Joana B; Alvelos, Maria I; Bastos, Margarida; Carrilho, Francisco; Lemos, Manuel C

    2016-01-01

    The androgen insensitivity syndrome is an X-linked recessive genetic disorder characterized by resistance to the actions of androgens in an individual with a male karyotype. We evaluated a 34-year-old female with primary amenorrhea and a 46,XY karyotype, with normal secondary sex characteristics, absence of uterus and ovaries, intra-abdominal testis, and elevated testosterone levels. Sequence analysis of the androgen receptor (AR) gene revealed a novel splice donor site mutation in intron 4 (c.2173+2T>C). RT-PCR analysis showed that this mutation resulted in the activation of a cryptic splice donor site located in the second half of exon 4 and in the synthesis of a shorter mRNA transcript and an in-frame deletion of 41 amino acids. This novel mutation associated with a rare mechanism of abnormal splicing further expands the spectrum of mutations associated with the androgen insensitivity syndrome and may contribute to the understanding of the molecular mechanisms involved in splicing defects.

  8. Direct regulation of androgen receptor activity by potent CYP17 inhibitors in prostate cancer cells.

    PubMed

    Soifer, Harris S; Souleimanian, Naira; Wu, Sijian; Voskresenskiy, Anatoliy M; Collak, Filiz Kisaayak; Cinar, Bekir; Stein, Cy A

    2012-02-03

    TOK-001 and abiraterone are potent 17-heteroarylsteroid (17-HAS) inhibitors of Cyp17, one of the rate-limiting enzymes in the biosynthesis of testosterone from cholesterol in prostate cancer cells. Nevertheless, the molecular mechanism underlying the prevention of prostate cell growth by 17-HASs still remains elusive. Here, we assess the effects of 17-HASs on androgen receptor (AR) activity in LNCaP and LAPC-4 cells. We demonstrate that both TOK-001 and abiraterone reduced AR protein and mRNA expression, and antagonized AR-dependent promoter activation induced by androgen. TOK-001, but not abiraterone, is an effective apparent competitor of the radioligand [(3)H]R1881 for binding to the wild type and various mutant AR (W741C, W741L) proteins. In agreement with these data, TOK-001 is a consistently superior inhibitor than abiraterone of R1881-induced transcriptional activity of both wild type and mutant AR. However, neither agent was able to trans-activate the AR in the absence of R1881. Our data demonstrate that phospho-4EBP1 levels are significantly reduced by TOK-001 and to a lesser extent by abiraterone alcohol, and suggest a mechanism by which cap-dependent translation is suppressed by blocking assembly of the eIF4F and eIF4G complex to the mRNA 5' cap. Thus, the effects of these 17-HASs on AR signaling are complex, ranging from a decrease in testosterone production through the inhibition of Cyp17 as previously described, to directly reducing both AR protein expression and R1881-induced AR trans-activation.

  9. Inhibition of Androgen Receptor Transcriptional Activity as a Novel Mechanism of Action of Arsenic

    PubMed Central

    Rosenblatt, Adena E.; Burnstein, Kerry L.

    2009-01-01

    Environmental sodium arsenite is a toxin that is associated with male infertility due to decreased and abnormal sperm production. Arsenic trioxide (ATO), another inorganic trivalent semimetal, is an effective therapy for acute promyelocytic leukemia, and there is investigation of its possible efficacy in prostate cancer. However, the mechanism of arsenic action in male urogenital tract tissues is not clear. Because the androgen receptor (AR) plays an important role in spermatogenesis and prostate cancer, we explored the possibility that trivalent arsenic regulates AR function. We found that arsenic inhibited AR transcriptional activity in prostate cancer and Sertoli cells using reporter gene assays testing several androgen response element-containing regions and by assessing native target gene expression. Arsenic inhibition of AR activity was not due to down-regulation of AR protein levels, decreased hormone binding to AR, disruption of AR nuclear translocation, or interference with AR-DNA binding in vitro. However, chromatin immunoprecipitation studies revealed that arsenic inhibited AR recruitment to an AR target gene enhancer in vivo. Consistent with a deficiency in AR-chromatin binding, arsenic disrupted AR amino and carboxyl termini interaction. Furthermore, ATO caused a significant decrease in prostate cancer cell proliferation that was more pronounced in cells expressing AR compared with cells depleted of AR. In addition, inhibition of AR activity by ATO and by the AR antagonist, bicalutamide, was additive. Thus, arsenic-induced male infertility may be due to inhibition of AR activity. Further, because AR is an important target in prostate cancer therapy, arsenic may serve as an effective therapeutic option. PMID:19131511

  10. Comparative study on transcriptional activity of 17 parabens mediated by estrogen receptor α and β and androgen receptor.

    PubMed

    Watanabe, Yoko; Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Ohta, Shigeru; Kitamura, Shigeyuki

    2013-07-01

    The structure-activity relationships of parabens which are widely used as preservatives for transcriptional activities mediated by human estrogen receptor α (hERα), hERβ and androgen receptor (hAR) were investigated. Fourteen of 17 parabens exhibited hERα and/or hERβ agonistic activity at concentrations of ≤ 1 × 10(-5)M, whereas none of the 17 parabens showed AR agonistic or antagonistic activity. Among 12 parabens with linear alkyl chains ranging in length from C₁ to C₁₂, heptylparaben (C₇) and pentylparaben (C₅) showed the most potent ERα and ERβ agonistic activity in the order of 10(-7)M and 10(-8)M, respectively, and the activities decreased in a stepwise manner as the alkyl chain was shortened to C₁ or lengthened to C₁₂. Most parabens showing estrogenic activity exhibited ERβ-agonistic activity at lower concentrations than those inducing ERα-agonistic activity. The estrogenic activity of butylparaben was markedly decreased by incubation with rat liver microsomes, and the decrease of activity was blocked by a carboxylesterase inhibitor. These results indicate that parabens are selective agonists for ERβ over ERα; their interactions with ERα/β are dependent on the size and bulkiness of the alkyl groups; and they are metabolized by carboxylesterases, leading to attenuation of their estrogenic activity.

  11. Androgen receptor modulators: a marriage of chemistry and biology.

    PubMed

    McEwan, Iain J

    2013-06-01

    Androgenic steroids are important for male development in utero and secondary sexual characteristics at puberty. In addition, androgens play a role in non-reproductive tissues, such as bone and muscle in both sexes. The actions of the androgens testosterone and dihydrotestosterone are mediated by a single receptor protein, the androgen receptor. Over the last 60-70 years there has been considerable research interest in the development of inhibitors of androgen receptor for the management of diseases such as prostate cancer. However, more recently, there is also a growing appreciation of the need for selective androgen modulators that would demonstrate tissue-selective agonist or antagonist activity. The chemistry and biology of selective agonists, antagonists and selective androgen receptor modulators will be discussed in this review.

  12. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  13. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region.

    PubMed

    Kassotis, Christopher D; Tillitt, Donald E; Davis, J Wade; Hormann, Annette M; Nagel, Susan C

    2014-03-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized that a selected subset of chemicals used in natural gas drilling operations and also surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas-related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operations may result in elevated endocrine-disrupting chemical activity in surface and ground water.

  14. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells.

    PubMed

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-03-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  15. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    PubMed Central

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  16. Partial androgen insensitivity syndrome with thermolability in the androgen receptor.

    PubMed

    Hiraoka, Kenji; Kawauchi, Akihiro; Soh, Jintetsu; Ohe, Hiroshi; Shima, Hiroki; Miki, Tsuneharu

    2006-01-01

    We report case of partial androgen insensitivity syndrome in a 12-year-old boy referred to our clinic complaining of bilateral gynecomastia and left undescended testicle. Laparoscopy for undescended testicle and bilateral mastectomy were performed, and the left testicle was absent. When skin fibroblasts of the scrotum obtained during surgery were cultured to analyse the androgen receptors, a slight thermolability was observed. Genomic examination of the androgen receptor gene could not detect any mutations.

  17. A Combined Quantitative Structure-Activity Relationship Research of Quinolinone Derivatives as Androgen Receptor Antagonists.

    PubMed

    Wang, Yuwei; Bai, Fang; Cao, Hong; Li, Jiazhong; Liu, Huanxiang; Gramatica, Paola

    2015-01-01

    Antiandrogens bicalutamide, flutamide and enzalutamide etc. have been used in clinical trials to treat prostate cancer by binding to and antagonizing androgen receptor (AR). Although initially effective, the drug resistance problem will emerge eventually, which results in a high medical need for novel AR antagonist exploitation. Here in this work, to facilitate the rational design of novel AR antagonists, we studied the structure-activity relationships of a series of 2-quinolinone derivatives and investigated the structural requirements for their antiandrogenic activities. Different modeling methods, including 2D MLR, 3D CoMFA and CoMSIA, were implemented to evolve QSAR models. All these models, thoroughly validated, demonstrated satisfactory results especially for the good predictive abilities. The contour maps from 3D CoMFA and CoMSIA models provide visualized explanation of key structural characteristics relevant to the antiandrogenic activities, which is summarized to a position-specific conclusion at the end. The obtained results from this research are practically useful for rational design and screening of promising chemicals with high antiandrogenic activities.

  18. The Androgen Receptor Regulates PPARγ Expression and Activity in Human Prostate Cancer Cells

    PubMed Central

    Olokpa, Emuejevoke; Bolden, Adrienne

    2016-01-01

    The peroxisome proliferator activated receptor gamma (PPARγ) is a ligand‐activated transcription factor that regulates growth and differentiation within normal prostate and prostate cancers. However the factors that control PPARγ within the prostate cancers have not been characterized. The goal of this study was to examine whether the androgen receptor (AR) regulates PPARγ expression and function within human prostate cancer cells. qRT‐PCR and Western blot analyses revealed nanomolar concentrations of the AR agonist dihydrotestosterone (DHT) decrease PPARγ mRNA and protein within the castration‐resistant, AR‐positive C4‐2 and VCaP human prostate cancer cell lines. The AR antagonists bicalutamide and enzalutamide blocked the ability of DHT to reduce PPARγ levels. In addition, siRNA mediated knockdown of AR increased PPARγ protein levels and ligand‐induced PPARγ transcriptional activity within the C4‐2 cell line. Furthermore, proteasome inhibitors that interfere with AR function increased the level of basal PPARγ and prevented the DHT‐mediated suppression of PPARγ. These data suggest that AR normally functions to suppress PPARγ expression within AR‐positive prostate cancer cells. To determine whether increases in AR protein would influence PPARγ expression and activity, we used lipofectamine‐based transfections to overexpress AR within the AR‐null PC‐3 cells. The addition of AR to PC‐3 cells did not significantly alter PPARγ protein levels. However, the ability of the PPARγ ligand rosiglitazone to induce activation of a PPARγ‐driven luciferase reporter and induce expression of FABP4 was suppressed in AR‐positive PC‐3 cells. Together, these data indicate AR serves as a key modulator of PPARγ expression and function within prostate tumors. J. Cell. Physiol. 231: 2664–2672, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:26945682

  19. Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer.

    PubMed

    Henzler, Christine; Li, Yingming; Yang, Rendong; McBride, Terri; Ho, Yeung; Sprenger, Cynthia; Liu, Gang; Coleman, Ilsa; Lakely, Bryce; Li, Rui; Ma, Shihong; Landman, Sean R; Kumar, Vipin; Hwang, Tae Hyun; Raj, Ganesh V; Higano, Celestia S; Morrissey, Colm; Nelson, Peter S; Plymate, Stephen R; Dehm, Scott M

    2016-11-29

    Molecularly targeted therapies for advanced prostate cancer include castration modalities that suppress ligand-dependent transcriptional activity of the androgen receptor (AR). However, persistent AR signalling undermines therapeutic efficacy and promotes progression to lethal castration-resistant prostate cancer (CRPC), even when patients are treated with potent second-generation AR-targeted therapies abiraterone and enzalutamide. Here we define diverse AR genomic structural rearrangements (AR-GSRs) as a class of molecular alterations occurring in one third of CRPC-stage tumours. AR-GSRs occur in the context of copy-neutral and amplified AR and display heterogeneity in breakpoint location, rearrangement class and sub-clonal enrichment in tumours within and between patients. Despite this heterogeneity, one common outcome in tumours with high sub-clonal enrichment of AR-GSRs is outlier expression of diverse AR variant species lacking the ligand-binding domain and possessing ligand-independent transcriptional activity. Collectively, these findings reveal AR-GSRs as important drivers of persistent AR signalling in CRPC.

  20. Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer

    PubMed Central

    Henzler, Christine; Li, Yingming; Yang, Rendong; McBride, Terri; Ho, Yeung; Sprenger, Cynthia; Liu, Gang; Coleman, Ilsa; Lakely, Bryce; Li, Rui; Ma, Shihong; Landman, Sean R.; Kumar, Vipin; Hwang, Tae Hyun; Raj, Ganesh V.; Higano, Celestia S.; Morrissey, Colm; Nelson, Peter S.; Plymate, Stephen R.; Dehm, Scott M.

    2016-01-01

    Molecularly targeted therapies for advanced prostate cancer include castration modalities that suppress ligand-dependent transcriptional activity of the androgen receptor (AR). However, persistent AR signalling undermines therapeutic efficacy and promotes progression to lethal castration-resistant prostate cancer (CRPC), even when patients are treated with potent second-generation AR-targeted therapies abiraterone and enzalutamide. Here we define diverse AR genomic structural rearrangements (AR-GSRs) as a class of molecular alterations occurring in one third of CRPC-stage tumours. AR-GSRs occur in the context of copy-neutral and amplified AR and display heterogeneity in breakpoint location, rearrangement class and sub-clonal enrichment in tumours within and between patients. Despite this heterogeneity, one common outcome in tumours with high sub-clonal enrichment of AR-GSRs is outlier expression of diverse AR variant species lacking the ligand-binding domain and possessing ligand-independent transcriptional activity. Collectively, these findings reveal AR-GSRs as important drivers of persistent AR signalling in CRPC. PMID:27897170

  1. Identification of a novel K311 ubiquitination site critical for androgen receptor transcriptional activity.

    PubMed

    McClurg, Urszula L; Cork, David M W; Darby, Steven; Ryan-Munden, Claudia A; Nakjang, Sirintra; Mendes Côrtes, Leticia; Treumann, Achim; Gaughan, Luke; Robson, Craig N

    2016-11-29

    The androgen receptor (AR) is the main driver of prostate cancer (PC) development and progression, and the primary therapeutic target in PC. To date, two functional ubiquitination sites have been identified on AR, both located in its C-terminal ligand binding domain (LBD). Recent reports highlight the emergence of AR splice variants lacking the LBD that can arise during disease progression and contribute to castrate resistance. Here, we report a novel N-terminal ubiquitination site at lysine 311. Ubiquitination of this site plays a role in AR stability and is critical for its transcriptional activity. Inactivation of this site causes AR to accumulate on chromatin and inactivates its transcriptional function as a consequence of inability to bind to p300. Additionally, mutation at lysine 311 affects cellular transcriptome altering the expression of genes involved in chromatin organization, signaling, adhesion, motility, development and metabolism. Even though this site is present in clinically relevant AR-variants it can only be ubiquitinated in cells when AR retains LBD suggesting a role for AR C-terminus in E2/E3 substrate recognition. We report that as a consequence AR variants lacking the LBD cannot be ubiquitinated in the cellular environment and their protein turnover must be regulated via an alternate pathway.

  2. PC-1 works in conjunction with E3 ligase CHIP to regulate androgen receptor stability and activity

    PubMed Central

    Zhang, Xiaoqing; Wang, Peng; Wang, Hongtao; Huang, Fang; Zhou, Chenyan; Zhou, Jianguang; Li, Shanhu

    2016-01-01

    The androgen receptor (AR) is not only a ligand-dependent transcription factor, but also functions as a licensing factor, a component of DNA replication, which is degraded during mitosis. Furthermore, the deregulation of AR activity is involved in the initiation of prostate cancer and contributes to castration resistant prostate cancer (CRPC). While AR degradation is known to occur primarily through a proteasome-mediated pathway, very little is known about how this process is regulated, especially in M phase. PC-1 is an androgen-responsive factor and expresses specificity in prostate cancer, with higher expression noted at G2/M. In this study, PC-1 was shown to interact with AR and E3 ligase CHIP (Carboxy-terminus of Hsc70 Interacting Protein) and to enhance AR/CHIP interactions, thereby decreasing AR stability. Moreover, PC-1 was found to act in conjunction with CHIP in the decreasing of AR via ubiquitination, with the subsequent degradation predominantly occurring during M phase. PC-1 was also found to repress AR transcriptional activity in androgen-dependent and androgen-independent prostate cancer cells and attenuate the growth inhibition of AR. In conclusion, these findings should provide new clues regarding the modulation of AR turnover and activity via PC-1 and reveals an essential role of PC-1 in AR signaling. PMID:27835608

  3. Partial androgen insensitivity with phenotypic variation caused by androgen receptor mutations that disrupt activation function 2 and the NH(2)- and carboxyl-terminal interaction.

    PubMed

    Quigley, Charmian A; Tan, Jiann-an; He, Bin; Zhou, Zhong-xun; Mebarki, Farida; Morel, Yves; Forest, Maguelone G; Chatelain, Pierre; Ritzén, E Martin; French, Frank S; Wilson, Elizabeth M

    2004-01-01

    Partial androgen insensitivity with sex phenotype variation in two unrelated families was associated with missense mutations in the androgen receptor (AR) gene that disrupted the AR NH(2)-terminal/carboxy terminal interaction. Each mutation caused a single amino acid change within the region of the ligand-binding domain that forms activation function 2 (AF2). In one family, the mutation I737T was in alpha helix 4 and in the other F725L was between helices 3 and 4. Neither mutation altered androgen binding as determined by assays of mutant AR in the patient's cultured genital skin fibroblasts or of recombinant mutant receptors transfected into COS cells. In transient cotransfection assays in CV1 cells, transactivation with the AR mutants at low concentrations of DHT was reduced several fold compared with wild-type AR but increased at higher concentrations. Defects in NH(2)-terminal/carboxy terminal interactions were identified in mammalian two hybrid assays. In similar assays, there was reduced binding of the p160 coactivators TIF2/SRC2 and SRC1 to the mutant AR ligand binding domains (LBD). In the family with AR I737T, sex phenotype varied from severely defective masculinization in the proband to a maternal great uncle whose only manifestation of AIS was severe gynecomastia. He was fertile and passed the mutation to two daughters. The proband of the F725L family was also incompletely masculinized but was raised as a male while his half-sibling by a different father was affected more severely and reared as a female. These studies indicate that the function of an AR AF2 mutant in male development can vary greatly depending on the genetic background.

  4. A yeast screen system for aromatase inhibitors and ligands for androgen receptor: yeast cells transformed with aromatase and androgen receptor.

    PubMed

    Mak, P; Cruz, F D; Chen, S

    1999-11-01

    Endocrine disruptors are hormone mimics that modify hormonal action in humans and animals. It is thought that some endocrine disruptors modify estrogen and androgen action in humans and animals by suppressing aromatase activity. Aromatase cytochrome P450 is the key enzyme that converts C19 androgens to aromatic C18 estrogenic steroids. We have developed a novel aromatase inhibitor screening method that allows us to identify antiaromatase activity of various environmental chemicals. The screen was developed by coexpressing the human aromatase and the mouse androgen receptor in yeast cells, which carry the androgen-responsive ss-galactosidase reporter plasmid. Functional expression of aromatase in yeast has been demonstrated using the [3H]-water release assay with intact cells as well as with yeast microsomes. The aromatase activity could be blocked by known aromatase inhibitors such as aminoglutethimide (AG). Yeast-produced androgen receptors were able to transactivate a yeast basal promoter linked to an androgen-responsive element in response to androgens. The resultant triple yeast transformant responded to the treatment of testosterone, androstenedione, or 5 alpha-dihydrotestosterone (5 alpha-DHT). In the absence of the aromatase inhibitor AG, transcriptional activation was observed only for the nonaromatizable androgen 5 alpha-DHT. However, the two aromatizable androgens (testosterone and androstenedione) induced the reporter activity in the presence of AG. Using this yeast-based assay, we confirmed that two flavones, chrysin and alpha-naphtholflavone, are inhibitors of aromatase. Thus, this yeast system allows us to develop a high-throughput screening method, without using radioactive substrate, to identify aromatase inhibitors as well as new ligands (nonaromatizable androgen mimics) for the androgen receptors. In addition, this screening method also allows us to distinguish nonandrogenic aromatase inhibitors from inhibitors with androgenic activity. This yeast

  5. Androgen receptor (AR) in cardiovascular diseases.

    PubMed

    Huang, Chiung-Kuei; Lee, Soo Ok; Chang, Eugene; Pang, Haiyan; Chang, Chawnshang

    2016-04-01

    Cardiovascular diseases (CVDs) are still the highest leading cause of death worldwide. Several risk factors have been linked to CVDs, including smoking, diabetes, hyperlipidemia, and gender among others. Sex hormones, especially the androgen and its receptor, androgen receptor (AR), have been linked to many diseases with a clear gender difference. Here, we summarize the effects of androgen/AR on CVDs, including hypertension, stroke, atherosclerosis, abdominal aortic aneurysm (AAA), myocardial hypertrophy, and heart failure, as well as the metabolic syndrome/diabetes and their impacts on CVDs. Androgen/AR signaling exacerbates hypertension, and anti-androgens may suppress hypertension. Androgen/AR signaling plays dual roles in strokes, depending on different kinds of factors; however, generally males have a higher incidence of strokes than females. Androgen and AR differentially modulate atherosclerosis. Androgen deficiency causes elevated lipid accumulation to enhance atherosclerosis; however, targeting AR in selective cells without altering serum androgen levels would suppress atherosclerosis progression. Androgen/AR signaling is crucial in AAA development and progression, and targeting androgen/AR profoundly restricts AAA progression. Men have increased cardiac hypertrophy compared with age-matched women that may be due to androgens. Finally, androgen/AR plays important roles in contributing to obesity and insulin/leptin resistance to increase the metabolic syndrome.

  6. Androgen Receptor Activation in Castration-Recurrent Prostate Cancer: The Role of Src-Family and Ack1 Tyrosine Kinases

    PubMed Central

    Gelman, Irwin H.

    2014-01-01

    There is growing appreciation that castration-recurrent prostate cancer (CR-CaP) is driven by the continued expression of androgen receptor (AR). AR activation in CR-CaP through various mechanisms, including AR overexpression, expression of AR splice variants or mutants, increased expression of co-regulator proteins, and by post-translational modification, allows for the induction of AR-regulated genes in response to very low levels of tissue-expressed, so-called intracrine androgens, resulting in pathways that mediate CaP proliferation, anti-apoptosis and oncogenic aggressiveness. The current review focuses on the role played by Src-family (SFK) and Ack1 non-receptor tyrosine kinases in activating AR through direct phosphorylation, respectively, on tyrosines 534 or 267, and how these modifications facilitate progression to CR-CaP. The fact that SFK and Ack1 are central mediators for multiple growth factor receptor signaling pathways that become activated in CR-CaP, especially in the context of metastatic growth in the bone, has contributed to recent therapeutic trials using SFK/Ack1 inhibitors in monotherapy or in combination with antagonists of the AR activation axis. PMID:24948875

  7. Androgen Receptor Signaling in Bladder Cancer

    PubMed Central

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer. PMID:28241422

  8. Cell Cycle Regulation of Estrogen and Androgen Receptor

    DTIC Science & Technology

    2001-07-01

    EC50 . "* It has been established that the estrogen receptor shows highest activity when the cells are treated by serum starvation and are mainly in GO...of Estrogen and Androgen Receptor PRINCIPAL INVESTIGATOR: Elisabeth D. Martinez CONTRACTING ORGANIZATION: Georgetown University Medical Center... Estrogen and Androgen Receptor DAMD 17-99-1- 9199 6. AUTHOR(S) Elisabeth D. Martinez 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

  9. EPI-001 is a selective peroxisome proliferator-activated receptor-gamma modulator with inhibitory effects on androgen receptor expression and activity in prostate cancer

    PubMed Central

    Brand, Lucas J.; Olson, Margaret E.; Ravindranathan, Preethi; Guo, Hong; Kempema, Aaron M.; Andrews, Timothy E.; Chen, Xiaoli; Raj, Ganesh V.; Harki, Daniel A.; Dehm, Scott M.

    2015-01-01

    The androgen receptor (AR) is a driver of prostate cancer (PCa) cell growth and disease progression. Therapies for advanced PCa exploit AR dependence by blocking the production or action of androgens, but these interventions inevitably fail via multiple mechanisms including mutation or deletion of the AR ligand binding domain (LBD). Thus, the development of new inhibitors which act through non-LBD interfaces is an unmet clinical need. EPI-001 is a bisphenol A-derived compound shown to bind covalently and inhibit the AR NH2-terminal domain (NTD). Here, we demonstrate that EPI-001 has general thiol alkylating activity, resulting in multilevel inhibitory effects on AR in PCa cell lines and tissues. At least one secondary mechanism of action associated with AR inhibition was found to be selective modulation of peroxisome proliferator activated receptor-gamma (PPARγ). These multi-level effects of EPI-001 resulted in inhibition of transcriptional activation units (TAUs) 1 and 5 of the AR NTD, and reduced AR expression. EPI-001 inhibited growth of AR-positive and AR-negative PCa cell lines, with the highest sensitivity observed in LNCaP cells. Overall, this study provides new mechanistic insights to the chemical biology of EPI-001, and raises key issues regarding the use of covalent inhibitors of the intrinsically unstructured AR NTD. PMID:25669987

  10. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression.

    PubMed

    Li, Y; Hwang, T H; Oseth, L A; Hauge, A; Vessella, R L; Schmechel, S C; Hirsch, B; Beckman, K B; Silverstein, K A; Dehm, S M

    2012-11-08

    Reactivation of the androgen receptor (AR) during androgen depletion therapy (ADT) underlies castration-resistant prostate cancer (CRPCa). Alternative splicing of the AR gene and synthesis of constitutively active COOH-terminally truncated AR variants lacking the AR ligand-binding domain has emerged as an important mechanism of ADT resistance in CRPCa. In a previous study, we demonstrated that altered AR splicing in CRPCa 22Rv1 cells was linked to a 35-kb intragenic tandem duplication of AR exon 3 and flanking sequences. In this study, we demonstrate that complex patterns of AR gene copy number imbalances occur in PCa cell lines, xenografts and clinical specimens. To investigate whether these copy number imbalances reflect AR gene rearrangements that could be linked to splicing disruptions, we carried out a detailed analysis of AR gene structure in the LuCaP 86.2 and CWR-R1 models of CRPCa. By deletion-spanning PCR, we discovered a 8579-bp deletion of AR exons 5, 6 and 7 in the LuCaP 86.2 xenograft, which provides a rational explanation for synthesis of the truncated AR v567es AR variant in this model. Similarly, targeted resequencing of the AR gene in CWR-R1 cells led to the discovery of a 48-kb deletion in AR intron 1. This intragenic deletion marked a specific CWR-R1 cell population with enhanced expression of the truncated AR-V7/AR3 variant, a high level of androgen-independent AR transcriptional activity and rapid androgen independent growth. Together, these data demonstrate that structural alterations in the AR gene are linked to stable gain-of-function splicing alterations in CRPCa.

  11. NF-kB2/p52 Activation and Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2010-08-01

    characterize the role of NF-B2/p52 in the aberrant activation of AR signaling in castration-resistant prostate cancer. The growth of prostate cancer...androgen insensitive C4-2 and LNCaP- IL6+ cells can block tumor growth ). Downregulation of p52 inhibits prostate cancer cell proliferation We obtained...which express higher levels of p52 compared to LNCaP, were transfected with plasmids encoding p52 shRNA and growth was monitored in FBS and CS-FBS

  12. Androgen receptor and prostate cancer invasion.

    PubMed

    Bonaccorsi, Lorella; Muratori, Monica; Carloni, Vinicio; Zecchi, Sandra; Formigli, Lucia; Forti, Gianni; Baldi, Elisabetta

    2003-02-01

    Evidence indicates that androgen-sensitive prostate cancer cells have a lower malignant potential. We previously demonstrated that expression of androgen receptor (AR) by transfection of the androgen-independent prostate cancer cell line PC3 decreases invasion and adhesion of these cells through modulation of alpha6beta4 expression. Treatment with the androgen further reduced adhesion and invasion of the cells without, however, modifying alpha6beta4. Here we investigated whether the androgen has a direct effect on alpha6beta4-EGF receptor (EGFR) interaction and signalling leading to invasion of these cells. Immunoconfocal microscopy demonstrated that in control cells (PC3-Neo), alpha6beta4 and EGFR colocalize and redistribute in response to epidermal growth factor (EGF). In PC3-AR cells colocalization and redistribution between the two molecules was reduced and abolished by pre-treatment with R1881. Co-immunoprecipitation studies demonstrated that tyrosine phosphorylation of beta4 in response to EGF was reduced in PC3-AR cells compared to PC3-Neo. Immunoconfocal and co-immunoprecipitation studies demonstrated colocalization at membrane level and co-immunoprecipitation of EGFR and AR, indicating an interaction between the two proteins. PI3K activity, a key signalling pathway for invasion of these cells, was decreased in PC3-AR cells in response to EGF and further reduced by treatment with R1881. EGFR internalization was strongly reduced in PC3-AR compared with PC3-Neo cells and was reduced by treatment with R1881. In conclusion, the expression of AR by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR--alpha6beta4 interaction and signalling leading to invasion through a mechanism involving an interaction between the classic AR and EGFR.

  13. Nuclear exclusion of the androgen receptor by melatonin.

    PubMed

    Rimler, Avi; Culig, Zoran; Lupowitz, Zippora; Zisapel, Nava

    2002-05-01

    Androgen receptors (AR) play a crucial role in androgen-mediated processes and prostate cancer progression. The pineal hormone melatonin attenuates the androgen-dependent growth of benign and cancer prostate epithelial cells in vitro and may reverse clinical resistance to androgen ablation therapy in patients progressing on gonadotropin releasing hormone (GnRH) analogue. Where along the AR cascade does melatonin act remains to be determined. The effects of melatonin on AR localization, level and activity were assessed using androgen-insensitive prostate carcinoma PC3 cells stably transfected with a wild-type AR-expressing vector (PC3-AR).AR was localized to the PC3-AR cell nucleus in the absence of dihydrotestosterone (DHT). Melatonin caused a robust exclusion of the AR from the cell nucleus to the cytoplasm. The nuclear export inhibitor, leptomycin B prevented this process. The exclusion was selective since melatonin had no such effect on the nuclear localization of estrogen receptors alpha (ERalpha) in these cells. Melatonin also caused nuclear exclusion of the AR in the presence of DHT. In addition, it attenuated androgen induced reporter gene activity in PC3 cells co-transfected with the human AR and AR reporter plasmids. Elevated androgen concentrations counteracted melatonin's effects. Melatonin did not decrease AR level or androgen binding in the cells. The nuclear localization of the AR is a hallmark of its cellular activity. These data point to AR nuclear exclusion as a possible mechanism to attenuate androgen responses in target tissues.

  14. Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression

    PubMed Central

    Komura, Kazumasa; Jeong, Seong Ho; Hinohara, Kunihiko; Qu, Fangfang; Wang, Xiaodong; Hiraki, Masayuki; Azuma, Haruhito; Lee, Gwo-Shu Mary; Kantoff, Philip W.; Sweeney, Christopher J.

    2016-01-01

    The androgen receptor (AR) plays an essential role in prostate cancer, and suppression of its signaling with androgen deprivation therapy (ADT) has been the mainstay of treatment for metastatic hormone-sensitive prostate cancer for more than 70 y. Chemotherapy has been reserved for metastatic castration-resistant prostate cancer (mCRPC). The Eastern Cooperative Oncology Group-led trial E3805: ChemoHormonal Therapy Versus Androgen Ablation Randomized Trial for Extensive Disease in Prostate Cancer (CHAARTED) showed that the addition of docetaxel to ADT prolonged overall survival compared with ADT alone in patients with metastatic hormone-sensitive prostate cancer. This finding suggests that there is an interaction between AR signaling activity and docetaxel sensitivity. Here we demonstrate that the prostate cancer cell lines LNCaP and LAPC4 display markedly different sensitivity to docetaxel with AR activation, and RNA-seq analysis of these cell lines identified KDM5D (lysine-specific demethylase 5D) encoded on the Y chromosome as a potential mediator of this sensitivity. Knocking down KDM5D expression in LNCaP leads to docetaxel resistance in the presence of dihydrotestosterone. KDM5D physically interacts with AR in the nucleus, and regulates its transcriptional activity by demethylating H3K4me3 active transcriptional marks. Attenuating KDM5D expression dysregulates AR signaling, resulting in docetaxel insensitivity. KDM5D deletion was also observed in the LNCaP-derived CRPC cell line 104R2, which displayed docetaxel insensitivity with AR activation, unlike parental LNCaP. Dataset analysis from the Oncomine database revealed significantly decreased KDM5D expression in CRPC and poorer prognosis with low KDM5D expression. Taking these data together, this work indicates that KDM5D modulates the AR axis and that this is associated with altered docetaxel sensitivity. PMID:27185910

  15. Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression.

    PubMed

    Komura, Kazumasa; Jeong, Seong Ho; Hinohara, Kunihiko; Qu, Fangfang; Wang, Xiaodong; Hiraki, Masayuki; Azuma, Haruhito; Lee, Gwo-Shu Mary; Kantoff, Philip W; Sweeney, Christopher J

    2016-05-31

    The androgen receptor (AR) plays an essential role in prostate cancer, and suppression of its signaling with androgen deprivation therapy (ADT) has been the mainstay of treatment for metastatic hormone-sensitive prostate cancer for more than 70 y. Chemotherapy has been reserved for metastatic castration-resistant prostate cancer (mCRPC). The Eastern Cooperative Oncology Group-led trial E3805: ChemoHormonal Therapy Versus Androgen Ablation Randomized Trial for Extensive Disease in Prostate Cancer (CHAARTED) showed that the addition of docetaxel to ADT prolonged overall survival compared with ADT alone in patients with metastatic hormone-sensitive prostate cancer. This finding suggests that there is an interaction between AR signaling activity and docetaxel sensitivity. Here we demonstrate that the prostate cancer cell lines LNCaP and LAPC4 display markedly different sensitivity to docetaxel with AR activation, and RNA-seq analysis of these cell lines identified KDM5D (lysine-specific demethylase 5D) encoded on the Y chromosome as a potential mediator of this sensitivity. Knocking down KDM5D expression in LNCaP leads to docetaxel resistance in the presence of dihydrotestosterone. KDM5D physically interacts with AR in the nucleus, and regulates its transcriptional activity by demethylating H3K4me3 active transcriptional marks. Attenuating KDM5D expression dysregulates AR signaling, resulting in docetaxel insensitivity. KDM5D deletion was also observed in the LNCaP-derived CRPC cell line 104R2, which displayed docetaxel insensitivity with AR activation, unlike parental LNCaP. Dataset analysis from the Oncomine database revealed significantly decreased KDM5D expression in CRPC and poorer prognosis with low KDM5D expression. Taking these data together, this work indicates that KDM5D modulates the AR axis and that this is associated with altered docetaxel sensitivity.

  16. Selective Androgen Receptor Downregulators (SARDs): A New Prostate Cancer Therapy

    DTIC Science & Technology

    2006-10-01

    used to down-regulate the AR include antisense oligonucleotides (9, 10), ribozyme treatments (11, 12), AR dominant negatives (13) and small...findings suggest that ICI may present a useful treatment option for patients with AR-dependent PCa. Unlike the ribozyme , antisense, siRNA, or dominant...of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme . Mol Endocrinol, 12: 1558

  17. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    PubMed

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells.

  18. NF-KappaB2/p52 Activation and Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2011-08-01

    Sacramento, CA INTRODUCTION AND OBJECTIVES: Benign prostatic hyperplasia and the initial stages of prostate cancer (CaP) exhibit androgen dependence... prostatic hyperplasia and the initial stages of prostate cancer (CaP) exhibit androgen dependence, but androgen ablation results only in temporary...Nagalakshmi Nadiminty, Ramakumar Tummala, Jae Yeon Chun, Christopher P. Evans, Allen C. Gao. UC Davis, Sacramento, CA Abstract Body: Introduction: Benign

  19. The androgen derivative 5alpha-androstane-3beta,17beta-diol inhibits prostate cancer cell migration through activation of the estrogen receptor beta subtype.

    PubMed

    Guerini, Vittoria; Sau, Daniela; Scaccianoce, Eugenia; Rusmini, Paola; Ciana, Paolo; Maggi, Adriana; Martini, Paolo G V; Katzenellenbogen, Benita S; Martini, Luciano; Motta, Marcella; Poletti, Angelo

    2005-06-15

    Prostate cancer growth depends, in its earlier stages, on androgens and is usually pharmacologically modulated with androgen blockade. However, androgen-ablation therapy may generate androgen-independent prostate cancer, often characterized by an increased invasiveness. We have found that the 5alpha-reduced testosterone derivative, dihydrotestosterone (the most potent natural androgen) inhibits cell migration with an androgen receptor-independent mechanism. We have shown that the dihydrotestosterone metabolite 5alpha-androstane-3beta,17beta-diol (3beta-Adiol), a steroid which does not bind androgen receptors, but efficiently binds the estrogen receptor beta (ERbeta), exerts a potent inhibition of prostate cancer cell migration through the activation of the ERbeta signaling. Very surprisingly, estradiol is not active, suggesting the existence of different pathways for ERbeta activation in prostate cancer cells. Moreover, 3beta-Adiol, through ERbeta, induces the expression of E-cadherin, a protein known to be capable of blocking metastasis formation in breast and prostate cancer cells. The inhibitory effects of 3beta-Adiol on prostate cancer cell migration is counteracted by short interfering RNA against E-cadherin. Altogether, the data showed that (a) circulating testosterone may act with estrogenic effects downstream in the catabolic process present in the prostate, and (b) that the estrogenic effect of testosterone derivatives (ERbeta-dependent) results in the inhibition of cell migration, although it is apparently different from that linked to estradiol on the same receptor and may be protective against prostate cancer invasion and metastasis. These results also shed some light on clinical observations suggesting that alterations in genes coding for 3beta-hydroxysteroid dehydrogenases (the enzymes responsible for 3beta-Adiol formation) are strongly correlated with hereditary prostate cancer.

  20. Novel Stably Transfected Human Reporter Cell Line AIZ-AR as a Tool for an Assessment of Human Androgen Receptor Transcriptional Activity

    PubMed Central

    Bartonkova, Iveta; Novotna, Aneta; Dvorak, Zdenek

    2015-01-01

    Androgen receptor plays multiple physiological and pathological roles in human organism. In the current paper, we describe construction and characterization of a novel stably transfected human reporter cell line AIZ-AR for assessment of transcriptional activity of human androgen receptor. Cell line AIZ-AR is derived from human prostate carcinoma epithelial cell line 22Rv1 that was transfected with reporter plasmid containing 3 copies of androgen response regions (ARRs) followed by a single copy of androgen response element (ARE) from the promoter region of human prostate specific antigen (PSA) gene. AIZ-AR cells remained fully functional for more than 60 days and over 25 passages in the culture and even after cryopreservation. Time-course analyses showed that AIZ-AR cells allow detection of AR ligands as soon as after 8 hours of the treatment. We performed dose-response analyses with 23 steroids in 96-well plate format. We observed activation of AR by androgens, but not by estrogens and mineralocorticoids. Some glucocorticoids and progesterone also induced luciferase, but their potencies were 2-3 orders of magnitude weaker as compared to androgens. Taken together, we have developed a rapid, sensitive, selective, high-throughput and reproducible tool for detection of human AR ligands, with potential use in pharmacological and environmental applications. PMID:25811655

  1. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth

    PubMed Central

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-01-01

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression. PMID:27546619

  2. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.

    PubMed

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-03-02

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

  3. Androgen receptor exon 1 mutation causes androgen insensitivity by creating phosphorylation site and inhibiting melanoma antigen-A11 activation of NH2- and carboxyl-terminal interaction-dependent transactivation.

    PubMed

    Lagarde, William H; Blackwelder, Amanda J; Minges, John T; Hnat, Andrew T; French, Frank S; Wilson, Elizabeth M

    2012-03-30

    Naturally occurring germ line mutations in the X-linked human androgen receptor (AR) gene cause incomplete masculinization of the external genitalia by disrupting AR function in males with androgen insensitivity syndrome. Almost all AR missense mutations that cause androgen insensitivity syndrome are located in the highly structured DNA and ligand binding domains. In this report we investigate the functional defect associated with an AR exon 1 missense mutation, R405S, that caused partial androgen insensitivity. The 46,XX heterozygous maternal carrier had a wild-type Arg-405 CGC allele but transmitted an AGC mutant allele coding for Ser-405. At birth, the 46,XY proband had a bifid scrotum, hypospadias, and micropenis consistent with clinical stage 3 partial androgen insensitivity. Androgen-dependent transcriptional activity of AR-R405S expressed in CV1 cells was less than wild-type AR and refractory in androgen-dependent AR NH(2)- and carboxyl interaction transcription assays that depend on the coregulator effects of melanoma antigen-A11. This mutation created a Ser-405 phosphorylation site evident by the gel migration of an AR-R405S NH(2)-terminal fragment as a double band that converted to the wild-type single band after treatment with λ-phosphatase. Detrimental effects of the R405S mutation were related to the proximity of the AR WXXLF motif (433)WHTLF(437) required for melanoma antigen-A11 and p300 to stimulate transcriptional activity associated with the AR NH(2)- and carboxyl-terminal interaction. We conclude that the coregulator effects of melanoma antigen-A11 on the AR NH(2)- and carboxyl-terminal interaction amplify the androgen-dependent transcriptional response to p300 required for normal human male sex development in utero.

  4. Androgen receptor promotes sex-independent angiogenesis in response to ischemia and is required for activation of vascular endothelial cell growth factor receptor signaling

    PubMed Central

    Yoshida, Sumiko; Aihara, Ken-ichi; Ikeda, Yasumasa; Sumitomo-Ueda, Yuka; Uemoto, Ryoko; Ishikawa, Kazue; Ise, Takayuki; Yagi, Shusuke; Iwase, Takashi; Mouri, Yasuhiro; Sakari, Matomo; Matsumoto, Takahiro; Takeyama, Ken-ichi; Akaike, Masashi; Matsumoto, Mitsuru; Sata, Masataka; Walsh, Kenneth; Kato, Shigeaki; Matsumoto, Toshio

    2014-01-01

    Background Hypoandrogenemia is associated with an increased risk of ischemic diseases. Since actions of androgens are exerted through androgen receptor (AR) activation, we studied hind limb ischemia in AR knockout (KO) mice to elucidate the role of AR in response to ischemia. Methods and Results Both male and female ARKO mice exhibited impaired blood flow recovery, more cellular apoptosis and a higher incidence of autoamputation after ischemia. In ex vivo and in vivo angiogenesis studies, AR-deficient vascular endothelial cells showed reduced angiogenic capability. In ischemic limbs of ARKO mice, reductions in the phosphorylation of the Akt protein kinase and endothelial nitric oxide synthase (eNOS) were observed despite a robust increase in hypoxia-inducible factor 1α and vascular endothelial cell growth factor (VEGF) gene expression. In in vitro studies, siRNA-mediated ablation of AR in vascular endothelial cells blunted VEGF-stimulated phosphorylation of Akt and eNOS. Immunoprecipitation experiments documented an association between AR and kinase insert domain protein receptor (KDR) that promoted the recruitment of downstream signaling components. Conclusion These results document a physiological role of AR in gender-independent angiogenic potency and provide evidence for a novel cross-talk between androgen/AR signaling and VEGF/KDR signaling pathways. PMID:23723256

  5. Histone H4 Lys 20 methyltransferase SET8 promotes androgen receptor-mediated transcription activation in prostate cancer

    SciTech Connect

    Yao, Lushuai; Li, Yanyan; Du, Fengxia; Han, Xiao; Li, Xiaohua; Niu, Yuanjie; Ren, Shancheng; Sun, Yingli

    2014-07-18

    Highlights: • Dihydrotestosterone stimulates H4K20me1 enrichment at the PSA promoter. • SET8 promotes AR-mediated transcription activation. • SET8 interacts with AR and promotes cell proliferation. - Abstract: Histone methylation status in different lysine residues has an important role in transcription regulation. The effect of H4K20 monomethylation (H4K20me1) on androgen receptor (AR)-mediated gene transcription remains unclear. Here we show that AR agonist stimulates the enrichment of H4K20me1 and SET8 at the promoter of AR target gene PSA in an AR dependent manner. Furthermore, SET8 is crucial for the transcription activation of PSA. Co-immunoprecipitation analyses demonstrate that SET8 interacts with AR. Therefore, we conclude that SET8 is involved in AR-mediated transcription activation, possibly through its interaction with AR and H4K20me1 modification.

  6. [Bone and Men's Health. Bone selective androgen receptor modulators].

    PubMed

    Furuya, Kazuyuki

    2010-02-01

    Androgen, one of the sex steroid hormones shows various biological activities on the corresponding various tissues. Many efforts to produce novel drug materials maintaining a desired biological activity with an adequate tissue selectivity, which is so-called selective androgen receptor modulators (SARMs) , are being performed. As one of such efforts, studies on SARMs against bone tissues which possess a significant potential to stimulate a bone formation with reducing undesirable androgenic virilizing activities are in progress all over the world. This review focuses on the research and development activities of such SARMs and discuses their usefulness for the treatment of osteoporosis.

  7. Adult body size and physical activity in relation to risk of breast cancer according to tumor androgen receptor status

    PubMed Central

    Zhang, Xuehong; Eliassen, A. Heather; Tamimi, Rulla M.; Hazra, Aditi; Beck, Andrew H.; Brown, Myles; Collins, Laura C.; Rosner, Bernard; Hankinson, Susan E.

    2015-01-01

    Background Obesity and physical activity have been hypothesized to affect breast cancer risk partly via the androgen signaling pathway. We conducted the first study to evaluate these associations by tumor androgen receptor (AR) status. Methods Height, weight, and physical activity were assessed using questionnaires in the Nurses’ Health Study. AR, estrogen receptor (ER) and progesterone receptor (PR) status were determined using immunohistochemistry on tumor tissue and medical/pathology reports. Results 1,701 AR+ and 497 AR- cases were documented during 26 years of follow-up of 103,577 women. After adjusting for ER/PR status and other risk factors, the relative risks (RRs) and 95% confidence intervals (95%CIs) for every 5 kg/m2 increase in body mass index (BMI) were 1.07(1.01–1.13) for AR+ and 1.16(1.05–1.29) for AR- tumors (p-heterogeneity=0.17). The RRs(95%CIs) per 5 hours of brisk walking/week were 0.87(0.73–1.04) for AR+ and 0.67(0.45–0.99) for AR- tumors (p-heterogeneity=0.22). Further, BMI, but not physical activity, associations differed significantly across ER/PR/AR subtypes (p-heterogeneity=0.04 and 0.63, respectively). The RRs(95%CIs) for 5 kg/m2 increase in BMI were 1.23(1.04–1.45) for ER+PR+AR−, 1.19(1.01–1.39) for ER−PR−AR−, 1.15(1.08–1.23) for ER+PR+AR+, 0.88(0.75–1.03) for ER+PR−AR+ tumors. Conclusions Higher BMI was associated with an increased risk of both AR+ and AR− breast tumors in postmenopausal women, while physical activity, including brisk walking, was associated with a reduced risk of both subtypes. Additionally, a significant positive association was observed between higher BMI and ER−PR−AR− tumors. Impact The similar associations observed by AR status suggest that mechanisms other than androgen signaling underlie these two breast cancer risk factors. PMID:25855627

  8. Identification of SRC3/AIB1 as a Preferred Coactivator for Hormone-activated Androgen Receptor*♦

    PubMed Central

    Zhou, X. Edward; Suino-Powell, Kelly M.; Li, Jun; He, Yuanzheng; MacKeigan, Jeffrey P.; Melcher, Karsten; Yong, Eu-Leong; Xu, H. Eric

    2010-01-01

    Transcription activation by androgen receptor (AR), which depends on recruitment of coactivators, is required for the initiation and progression of prostate cancer, yet the mechanisms of how hormone-activated AR interacts with coactivators remain unclear. This is because AR, unlike any other nuclear receptor, prefers its own N-terminal FXXLF motif to the canonical LXXLL motifs of coactivators. Through biochemical and crystallographic studies, we identify that steroid receptor coactivator-3 (SRC3) (also named as amplified in breast cancer-1 or AIB1) interacts strongly with AR via synergistic binding of its first and third LXXLL motifs. Mutagenesis and functional studies confirm that SRC3 is a preferred coactivator for hormone-activated AR. Importantly, AR mutations found in prostate cancer patients correlate with their binding potency to SRC3, corroborating with the emerging role of SRC3 as a prostate cancer oncogene. These results provide a molecular mechanism for the selective utilization of SRC3 by hormone-activated AR, and they link the functional relationship between AR and SRC3 to the development and growth of prostate cancer. PMID:20086010

  9. Androgen receptor gene mutation, rearrangement, polymorphism

    PubMed Central

    Eisermann, Kurtis; Wang, Dan; Jing, Yifeng; Pascal, Laura E.

    2013-01-01

    Genetic aberrations of the androgen receptor (AR) caused by mutations, rearrangements, and polymorphisms result in a mutant receptor that has varied functions compared to wild type AR. To date, over 1,000 mutations have been reported in the AR with most of these being associated with androgen insensitivity syndrome (AIS). While mutations of AR associated with prostate cancer occur less often in early stage localized disease, mutations in castration-resistant prostate cancer (CRPC) patients treated with anti-androgens occur more frequently with 10-30% of these patients having some form of mutation in the AR. Resistance to anti-androgen therapy usually results from gain-of-function mutations in the LBD such as is seen with bicalutamide and more recently with enzalutamide (MDV3100). Thus, it is crucial to investigate these new AR mutations arising from drug resistance to anti-androgens and other small molecule pharmacological agents. PMID:25045626

  10. Nortestosterone-derived synthetic progestogens do not activate the progestogen receptor of Murray-Darling rainbowfish (Melanotaenia fluviatilis) but are potent agonists of androgen receptors alpha and beta.

    PubMed

    Bain, Peter A; Kumar, Anu; Ogino, Yukiko; Iguchi, Taisen

    2015-06-01

    Synthetic progestogens derived from 19-nortestosterone can elicit a number of adverse effects in fish including decreased fecundity, altered hormone levels, disruption of normal breeding cycles, expression in females of male-specific biomarkers, development of male secondary sexual characteristics in females, and changes in the expression of steroidogenic genes. A recent in vitro study showed that a number of representatives from this class of progestins were potent agonists of fathead minnow androgen receptor (AR) and only weak agonists of progesterone receptor (PR) from the same species. This confirms that synthetic progestogens derived from 19-nortestosterone function as AR agonists in otomorphs, which express a single AR subtype. However, numerous perciformes are known to express two AR subtypes. We have recently shown that ARα and ARβ from Murray-Darling rainbowfish (Melanotaenia fluviatilis) respond differently to certain androgens and anti-androgens. The goal of the present study was to determine concentration-response profiles for selected progestins in transactivation assays driven by rainbowfish ARα, ARβ and PR in order to ascertain the relative potency of progestins against these receptors. As a means of confirming the expected activity of the progestins and reference compounds used in the study against human-derived receptors, we also established concentration-response relationships using transactivation assays driven by human PR and AR. We found that all five 19-nortestosterone-derived progestins tested were highly potent agonists of rainbowfish ARα, but that only four of the five progestins were potent agonists of rainbowfish ARβ, with norgestimate exhibiting only weak activity against rainbowfish ARβ. The spironolactone-derived progestin, drospirenone, was not an agonist of rainbowfish ARα or ARβ but was a weak agonist of rainbowfish PR. None of the 19-nortestosterone-progestins activated rainbowfish PR. These findings confirm that the

  11. Androgens, androgen receptors, and male gender role behavior.

    PubMed

    Wilson, J D

    2001-09-01

    Studies of genetic males with single gene mutations that impair testosterone formation or action and consequently prevent development of the normal male phenotype provide unique insight into the control of gender role behavior. 46,XY individuals with either of two autosomal recessive mutations [17 beta-hydroxysteroid dehydrogenase 3 (17 beta-HSD3) deficiency or steroid 5 alpha-reductase 2 (5 alpha-R2) deficiency] have a female phenotype at birth and are raised as females but frequently change gender role behavior to male after the expected time of puberty. In contrast, genetic males with mutations that impair profoundly the function of the androgen receptor are also raised as females and have consistent female behavior as adults. Furthermore, the rare men with mutations that impair estrogen synthesis or the estrogen receptor have male gender role behavior. These findings indicate that androgens are important determinants of gender role behavior (and probably of gender identity) and that this action is mediated by the androgen receptor and not the result of conversion of androgen to estrogen. The fact that all genetic males with 17 beta-HSD3 or 5 alpha-R2 deficiency do not change gender role behavior indicates that other factors are also important determinants of this process.

  12. A yeast screen system for aromatase inhibitors and ligands for androgen receptor: yeast cells transformed with aromatase and androgen receptor.

    PubMed Central

    Mak, P; Cruz, F D; Chen, S

    1999-01-01

    Endocrine disruptors are hormone mimics that modify hormonal action in humans and animals. It is thought that some endocrine disruptors modify estrogen and androgen action in humans and animals by suppressing aromatase activity. Aromatase cytochrome P450 is the key enzyme that converts C19 androgens to aromatic C18 estrogenic steroids. We have developed a novel aromatase inhibitor screening method that allows us to identify antiaromatase activity of various environmental chemicals. The screen was developed by coexpressing the human aromatase and the mouse androgen receptor in yeast cells, which carry the androgen-responsive ss-galactosidase reporter plasmid. Functional expression of aromatase in yeast has been demonstrated using the [3H]-water release assay with intact cells as well as with yeast microsomes. The aromatase activity could be blocked by known aromatase inhibitors such as aminoglutethimide (AG). Yeast-produced androgen receptors were able to transactivate a yeast basal promoter linked to an androgen-responsive element in response to androgens. The resultant triple yeast transformant responded to the treatment of testosterone, androstenedione, or 5 alpha-dihydrotestosterone (5 alpha-DHT). In the absence of the aromatase inhibitor AG, transcriptional activation was observed only for the nonaromatizable androgen 5 alpha-DHT. However, the two aromatizable androgens (testosterone and androstenedione) induced the reporter activity in the presence of AG. Using this yeast-based assay, we confirmed that two flavones, chrysin and alpha-naphtholflavone, are inhibitors of aromatase. Thus, this yeast system allows us to develop a high-throughput screening method, without using radioactive substrate, to identify aromatase inhibitors as well as new ligands (nonaromatizable androgen mimics) for the androgen receptors. In addition, this screening method also allows us to distinguish nonandrogenic aromatase inhibitors from inhibitors with androgenic activity. This yeast

  13. Dynein axonemal heavy chain 8 promotes androgen receptor activity and associates with prostate cancer progression

    PubMed Central

    Wang, Yu; Ledet, Russell J.; Imberg-Kazdan, Keren; Logan, Susan K.; Garabedian, Michael J.

    2016-01-01

    To gain insight into cellular factors regulating AR action that could promote castration resistant prostate cancer (CRPC), we performed a genome-wide RNAi screen for factors that promote ligand-independent AR transcriptional activity and integrated clinical databases for candidate genes that are positively associated with prostate cancer metastasis and recurrence. From this analysis, we identified Dynein Axonemal Heavy Chain 8 (DNAH8) as an AR regulator that displayed higher mRNA expression in metastatic than in primary tumors, and showed high expression in patients with poor prognosis. Axonemal dyneins function in cellular motility, but the function of DNAH8 in prostate cancer or other cell types has not been reported. DNAH8 is on chromosome 6q21.2, a cancer-associated amplicon, and is primarily expressed in prostate and testis. Its expression is higher in primary tumors compared to normal prostate, and is further increased in metastatic prostate cancers. Patients expressing high levels of DNAH8 have a greater risk of relapse and a poor prognosis after prostatectomy. Depletion of DNAH8 in prostate cancer cells suppressed AR transcriptional activity and proliferation. Androgen treatment increased DNAH8 mRNA expression, and AR bound the DNAH8 promoter sequence indicating DNAH8 is an AR target gene. Thus, DNAH8 is a new regulator of AR associated with metastatic tumors and poor prognosis. PMID:27363033

  14. Androgen Receptor Signaling in Salivary Gland Cancer

    PubMed Central

    Dalin, Martin G.; Watson, Philip A.; Ho, Alan L.; Morris, Luc G. T.

    2017-01-01

    Salivary gland cancers comprise a small subset of human malignancies, and are classified into multiple subtypes that exhibit diverse histology, molecular biology and clinical presentation. Local disease is potentially curable with surgery, which may be combined with adjuvant radiotherapy. However, metastatic or unresectable tumors rarely respond to chemotherapy and carry a poorer prognosis. Recent molecular studies have shown evidence of androgen receptor signaling in several types of salivary gland cancer, mainly salivary duct carcinoma. Successful treatment with anti-androgen therapy in other androgen receptor-positive malignancies such as prostate and breast cancer has inspired researchers to investigate this treatment in salivary gland cancer as well. In this review, we describe the prevalence, biology, and therapeutic implications of androgen receptor signaling in salivary gland cancer. PMID:28208703

  15. Down, But Not Out: Partial Elimination of Androgen Receptors in the Male Mouse Brain Does Not Affect Androgenic Regulation of Anxiety or HPA Activity.

    PubMed

    Chen, Chieh V; Brummet, Jennifer L; Jordan, Cynthia L; Breedlove, S Marc

    2016-02-01

    We previously found that androgen receptor (AR) activity mediates two effects of T in adult male mice: reduction of anxiety-like behaviors and dampening of the hypothalamic-pituitary-adrenal response to stress. To determine whether brain ARs mediate these effects, we used the Cre/loxP technology seeking to disable AR throughout the central nervous system (CNS). Female mice carrying the floxed AR allele (ARlox) were crossed with males carrying cre recombinase transgene controlled by the nestin promoter (NesCre), producing cre in developing neurons and glia. Among male offspring, four genotypes resulted: males carrying ARlox and NesCre (NesARko), and three control groups (wild types, NesCre, and ARlox). Reporter mice indicated ubiquitous Cre expression throughout the CNS. Nevertheless, AR immunocytochemistry in NesARko mice revealed efficient knockout (KO) of AR in some brain regions (hippocampus and medial prefrontal cortex [mPFC]), but not others. Substantial AR protein was seen in the amygdala and hypothalamus among other regions, whereas negligible AR remained in others like the bed nucleus of the stria terminalis and dorsal periaqueductal gray. This selective KO allowed for testing the role of AR in hippocampus and mPFC. Males were castrated and implanted with T at postnatal day 60 before testing on postnatal day 90-100. In contrast with males with global KO of AR, T still modulated anxiety-related behavior and hypothalamic-pituitary-adrenal activity in NesARko males. These results leave open the possibility that AR acting in the CNS mediates these effects of T, but demonstrate that AR is not required in the hippocampus or mPFC for T's anxiolytic effects.

  16. In Vitro and in Vivo Structure-Activity Relationships of Novel Androgen Receptor Ligands with Multiple Substituents in the B-Ring

    PubMed Central

    Chen, Jiyun; Hwang, Dong Jin; Chung, Kiwon; Bohl, Casey E.; Fisher, Scott J.; Miller, Duane D.; Dalton, James T.

    2007-01-01

    We recently reported two nonsteroidal androgen receptor (AR) ligands that demonstrate tissue-selective pharmacological activity, identifying these S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide analogs as the first members of a new class of drugs known as selective androgen receptor modulators. The purpose of these studies was to explore additional structure-activity relationships of selective androgen receptor modulators to enhance their AR binding affinity, AR-mediated transcriptional activation, and in vivo pharmacological activity. The AR binding affinity (Ki) of 29 novel synthetic AR ligands was determined by a radioligand competitive binding assay and ranged from 1.0–51 nm. Compounds with electron-withdrawing substituents at the para- and meta-positions of the B-ring demonstrated the highest AR binding affinity. The AR-mediated transcriptional activation was determined using a cotransfection assay in CV-1 cells. Most compounds with two substituents in the B-ring maintained or improved their functional activity in vitro. However, compounds with three halogen substituents exhibited significant regioselectivity. Fifteen compounds were selected to examine their pharmacological activity in castrated rats. In vivo pharmacological activity and selectivity were significantly changed by structural modification in the B-ring. Compounds with halogen groups at the para- and meta-positions of the B-ring displayed the highest pharmacological activity. Incorporating substituents at the ortho-position of the B-ring resulted in poor pharmacological activity. In vitro and in vivo agonist activities were partially correlated. In conclusion, novel selective androgen receptor modulators with improved in vivo pharmacological activity can be designed and synthesized based on the structure-activity relationship identified in these studies. PMID:16166218

  17. Androgen receptor: structure, role in prostate cancer and drug discovery.

    PubMed

    Tan, M H Eileen; Li, Jun; Xu, H Eric; Melcher, Karsten; Yong, Eu-leong

    2015-01-01

    Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2-3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein.

  18. Anti-histone acetyltransferase activity from allspice extracts inhibits androgen receptor-dependent prostate cancer cell growth.

    PubMed

    Lee, Yoo-Hyun; Hong, Soon Won; Jun, Woojin; Cho, Hong Yon; Kim, Han-Cheon; Jung, Myung Gu; Wong, Jiemin; Kim, Ha-Il; Kim, Chang-Hoon; Yoon, Ho-Geun

    2007-11-01

    Histone acetylation depends on the activity of two enzyme families, histone acetyltransferase (HAT) and deacetylase (HDAC). In this study, we screened various plant extracts to find potent HAT inhibitors. Hot water extracts of allspice inhibited HAT activity, especially p300 and CBP (40% at 100 microg/ml). The mRNA levels of two androgen receptor (AR) regulated genes, PSA and TSC22, decreased with allspice treatment (100 microg/ml). Importantly, in IP western analysis, AR acetylation was dramatically decreased by allspice treatment.Furthermore, chromatin immunoprecipitation indicated that the acetylation of histone H3 in the PSA and B2M promoter regions was also repressed. Finally, allspice treatment reduced the growth of human prostate cancer cells, LNCaP (50% growth inhibition at 200 microg/ml). Taken together, our data indicate that the potent HAT inhibitory activity of allspice reduced AR and histone acetylation and led to decreased transcription of AR target genes, resulting in inhibition of prostate cancer cell growth.

  19. Androgen receptor roles in spermatogenesis and infertility.

    PubMed

    O'Hara, Laura; Smith, Lee B

    2015-08-01

    Androgens such as testosterone are steroid hormones essential for normal male reproductive development and function. Mutations of androgen receptors (AR) are often found in patients with disorders of male reproductive development, and milder mutations may be responsible for some cases of male infertility. Androgens exert their action through AR and its signalling in the testis is essential for spermatogenesis. AR is not expressed in the developing germ cell lineage so is thought to exert its effects through testicular Sertoli and peri-tubular myoid (PTM) cells. AR signalling in spermatogenesis has been investigated in rodent models where testosterone levels are chemically supressed or models with transgenic disruption of AR. These models have pinpointed the steps of spermatogenesis that require AR signalling, specifically maintenance of spermatogonial numbers, blood-testis barrier integrity, completion of meiosis, adhesion of spermatids and spermiation, together these studies detail the essential nature of androgens in the promotion of male fertility.

  20. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  1. Nonsteroidal Androgen Receptor Ligands: Versatile Syntheses and Biological Data

    PubMed Central

    2012-01-01

    We report herein a stereoselective and straightforward methodology for the synthesis of new androgen receptor ligands with (anti)-agonistic activities. Oxygen–nitrogen replacement in bicalutamide-like structures paves the way to the disclosure of a new class of analogues, including cyclized/nitrogen-substituted derivatives, with promising antiandrogen (or anabolic) activity. PMID:24900495

  2. Androgen Receptor Antagonists and Anti-Prostate Cancer Activities of Some Newly Synthesized Substituted Fused Pyrazolo-, Triazolo- and Thiazolo-Pyrimidine Derivatives

    PubMed Central

    Bahashwan, Saleh A.; Fayed, Ahmed A.; Ramadan, Mohamed A.; Amr, Abd El-Galil E.; Al-Harbi, Naif O.

    2014-01-01

    A series of substituted pyrazole, triazole and thiazole derivatives (2–13) were synthesized from 1-(naphtho[1,2-d]thiazol-2-yl)hydrazine as starting material and evaluated as androgen receptor antagonists and anti-prostate cancer agents. The newly synthesized compounds showed potent androgen receptor antagonists and anti-prostate cancer activities with low toxicity (lethal dose 50 (LD50)) comparable to Bicalutamide as reference drug. The structures of newly synthesized compounds were confirmed by IR, 1H-NMR, 13C-NMR, and MS spectral data and elemental analysis. The detailed synthesis, spectroscopic data, LD50 values and pharmacological activities of the synthesized compounds are reported. PMID:25421248

  3. Activation of P-TEFb by Androgen Receptor-Regulated Enhancer RNAs in Castration-Resistant Prostate Cancer.

    PubMed

    Zhao, Yu; Wang, Liguo; Ren, Shancheng; Wang, Lan; Blackburn, Patrick R; McNulty, Melissa S; Gao, Xu; Qiao, Meng; Vessella, Robert L; Kohli, Manish; Zhang, Jun; Karnes, R Jeffrey; Tindall, Donald J; Kim, Youngsoo; MacLeod, Robert; Ekker, Stephen C; Kang, Tiebang; Sun, Yinghao; Huang, Haojie

    2016-04-19

    The androgen receptor (AR) is required for castration-resistant prostate cancer (CRPC) progression, but the function and disease relevance of AR-bound enhancers remain unclear. Here, we identify a group of AR-regulated enhancer RNAs (e.g., PSA eRNA) that are upregulated in CRPC cells, patient-derived xenografts (PDXs), and patient tissues. PSA eRNA binds to CYCLIN T1, activates P-TEFb, and promotes cis and trans target gene transcription by increasing serine-2 phosphorylation of RNA polymerase II (Pol II-Ser2p). We define an HIV-1 TAR RNA-like (TAR-L) motif in PSA eRNA that is required for CYCLIN T1 binding. Using TALEN-mediated gene editing we further demonstrate that this motif is essential for increased Pol II-Ser2p occupancy levels and CRPC cell growth. We have uncovered a P-TEFb activation mechanism and reveal altered eRNA expression that is related to abnormal AR function and may potentially be a therapeutic target in CRPC.

  4. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy.

    PubMed

    Polanco, Maria Josè; Parodi, Sara; Piol, Diana; Stack, Conor; Chivet, Mathilde; Contestabile, Andrea; Miranda, Helen C; Lievens, Patricia M-J; Espinoza, Stefano; Jochum, Tobias; Rocchi, Anna; Grunseich, Christopher; Gainetdinov, Raul R; Cato, Andrew C B; Lieberman, Andrew P; La Spada, Albert R; Sambataro, Fabio; Fischbeck, Kenneth H; Gozes, Illana; Pennuto, Maria

    2016-12-21

    Spinobulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. SBMA belongs to the family of polyQ diseases, which are fatal neurodegenerative disorders mainly caused by protein-mediated toxic gain-of-function mechanisms and characterized by deposition of misfolded proteins in the form of aggregates. The neurotoxicity of the polyQ proteins can be modified by phosphorylation at specific sites, thereby providing the rationale for the development of disease-specific treatments. We sought to identify signaling pathways that modulate polyQ-AR phosphorylation for therapy development. We report that cyclin-dependent kinase 2 (CDK2) phosphorylates polyQ-AR specifically at Ser(96) Phosphorylation of polyQ-AR by CDK2 increased protein stabilization and toxicity and is negatively regulated by the adenylyl cyclase (AC)/protein kinase A (PKA) signaling pathway. To translate these findings into therapy, we developed an analog of pituitary adenylyl cyclase activating polypeptide (PACAP), a potent activator of the AC/PKA pathway. Chronic intranasal administration of the PACAP analog to knock-in SBMA mice reduced Ser(96) phosphorylation, promoted polyQ-AR degradation, and ameliorated disease outcome. These results provide proof of principle that noninvasive therapy based on the use of PACAP analogs is a therapeutic option for SBMA.

  5. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs).

    PubMed

    Handlon, Anthony L; Schaller, Lee T; Leesnitzer, Lisa M; Merrihew, Raymond V; Poole, Chuck; Ulrich, John C; Wilson, Joseph W; Cadilla, Rodolfo; Turnbull, Philip

    2016-01-14

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%).

  6. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs)

    PubMed Central

    2015-01-01

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%). PMID:26819671

  7. Androgens induce sebaceous differentiation in sebocyte cells expressing a stable functional androgen receptor.

    PubMed

    Barrault, Christine; Garnier, Julien; Pedretti, Nathalie; Cordier-Dirikoc, Sevda; Ratineau, Emeline; Deguercy, Alain; Bernard, François-Xavier

    2015-08-01

    Androgens act through non-genomic and androgen receptor (AR)-dependent genomic mechanisms. AR is expressed in the sebaceous gland and the importance of androgens in the sebaceous function is well established. However, the in vitro models used to date have failed to evidence a clear genomic effect (e.g., modification of gene expression profile) of androgens on human sebocyte cells. In order to study the impact of active androgens in sebocytes, we constructed a stable human sebocyte cell line derived from SEBO662 [17] constitutively expressing a fully functional AR. In these SEBO662 AR+ cells, dihydrotestosterone (DHT) induced AR nuclear translocation and the strong modulation of a set of transcripts (RASD1, GREB1...) known to be androgen-sensitive in other androgenic cells and tissues. Moreover, we observed that DHT precociously down-regulated markers for immature follicular cells (KRT15, TNC) and for hair lineage (KRT75, FST) and up-regulated the expression of genes potentially related to sebocyte differentiation (MUC1/EMA, AQP3, FADS2). These effects were fully confirmed at the protein level. In addition, DHT-stimulated SEBO662 AR+, cultured in a low-calcium defined keratinocyte medium without serum or any complement, neosynthesize lipids, including sebum lipids, and store increased amounts of triglycerides in lipid droplets. DHT also induces morphological changes, increases cell size, and treatments over 7 days lead to a time-dependent increase in the population of apoptotic DNA-fragmented cells. Taken together, these results show for the first time that active androgens alone can engage immature sebocytes in a clear lipogenic differentiation process (Graphical abstract). These effects depend on the expression of a functional AR in these cells. This model should be of interest for revisiting the mechanisms of the sebaceous function in vitro and for the design of relevant pharmacological models for drug or compound testing.

  8. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  9. Lipocalin 2 over-expression facilitates progress of castration-resistant prostate cancer via improving androgen receptor transcriptional activity

    PubMed Central

    Feng, Chenchen; Jiang, Haowen; Xu, Jianfeng; Ding, Qiang

    2016-01-01

    Background Castration-resistant prostate cancer (CRPC) is the lethal phenotype of prostate cancer. Lipocalin 2 (LCN2) is aberrantly expressed in many cancers including primary prostate cancer (PCa), but its role in CRPC has not been reported. Results LCN2 expression was upregulated in human primary PCa and CRPC tissues. Overexpression of LCN2 promoted C4-2B and 22RV1 cell proliferation while knockdown of LCN2 markedly inhibited C4-2B and 22RV1 cell growth. LCN2 overexpression led to increased AR downstream gene SLC45A3 without upregulating AR expression. In the xenograft model, overexpression of LCN2 significantly promoted tumor growth. Methods LCN2 expression was detected in primary PCa and CRPC tissues and cell lines C4-2B and 22RV1 using immunohistochemistry and western blotting, respectively. Serum LCN2 level was detected vi ELISA. Lentiviruses-mediated over-expression of LCN2 and LCN2 knockdown were performed in CRPC cell lines. Expressions of androgen receptor (AR) downstream genes was examined in cell lines, in CRPC tissues, and in animal models. Conclusion LCN2 could facilitate cell proliferation of CRPC via AR transcriptional activity. LCN2 could be a novel target in CRPC. PMID:27602760

  10. Synergic prodegradative activity of Bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy.

    PubMed

    Giorgetti, Elisa; Rusmini, Paola; Crippa, Valeria; Cristofani, Riccardo; Boncoraglio, Alessandra; Cicardi, Maria E; Galbiati, Mariarita; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease due to a CAG triplet-repeat expansion in the androgen receptor (AR) gene, which is translated into an elongated polyglutamine (polyQ) tract in AR protein (ARpolyQ). ARpolyQ toxicity is activated by the AR ligand testosterone (or dihydrotestosterone), and the polyQ triggers ARpolyQ misfolding and aggregation in spinal cord motoneurons and muscle cells. In motoneurons, testosterone triggers nuclear toxicity by inducing AR nuclear translocation. Thus, (i) prevention of ARpolyQ nuclear localization, combined with (ii) an increased ARpolyQ cytoplasmic clearance, should reduce its detrimental activity. Using the antiandrogen Bicalutamide (Casodex(®)), which slows down AR activation and nuclear translocation, and the disaccharide trehalose, an autophagy activator, we found that, in motoneurons, the two compounds together reduced ARpolyQ insoluble forms with higher efficiency than that obtained with single treatments. The ARpolyQ clearance was mediated by trehalose-induced autophagy combined with the longer cytoplasmic retention of ARpolyQ bound to Bicalutamide. This allows an increased recognition of misfolded species by the autophagic system prior to their migration into the nucleus. Interestingly, the combinatory use of trehalose and Bicalutamide was also efficient in the removal of insoluble species of AR with a very long polyQ (Q112) tract, which typically aggregates into the cell nuclei. Collectively, these data suggest that the combinatory use of Bicalutamide and trehalose is a novel approach to facilitate ARpolyQ clearance that has to be tested in other cell types target of SBMA (i.e. muscle cells) and in vivo in animal models of SBMA.

  11. Niphatenones, glycerol ethers from the sponge Niphates digitalis block androgen receptor transcriptional activity in prostate cancer cells: structure elucidation, synthesis, and biological activity.

    PubMed

    Meimetis, Labros G; Williams, David E; Mawji, Nasrin R; Banuelos, Carmen A; Lal, Aaron A; Park, Jacob J; Tien, Amy H; Fernandez, Javier Garcia; de Voogd, Nicole J; Sadar, Marianne D; Andersen, Raymond J

    2012-01-12

    Extracts of the marine sponge Niphates digitalis collected in Dominica showed strong activity in a cell-based assay designed to detect antagonists of the androgen receptor (AR) that could act as lead compounds for the development of a new class of drugs to treat castration recurrent prostate cancer (CRPC). Assay-guided fractionation showed that niphatenones A (3) and B (4), two new glycerol ether lipids, were the active components of the extracts. The structures of 3 and 4 were elucidated by analysis of NMR and MS data and confimed via total synthesis. Biological evaluation of synthetic analogues of the niphatenones has shown that the enantiomers 7 and 8 are more potent than the natural products in the screening assay and defined preliminary SAR for the new AR antagonist pharmacophore, including the finding that the Michael acceptor enone functionality is not required for activity. Niphatenone B (4) and its enantiomer 8 blocked androgen-induced proliferation of LNCaP prostate cancer cells but had no effect on the proliferation of PC3 prostate cancer cells that do not express functional AR, consistent with activity as AR antagonists. Use of the propargyl ether 44 and Click chemistry showed that niphatenone B binds covalently to the activation function-1 (AF1) region of the AR N-terminus domain (NTD).

  12. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca)

  13. The Stress Response Mediator ATF3 Represses Androgen Signaling by Binding the Androgen Receptor

    PubMed Central

    Wang, Hongbo; Jiang, Ming; Cui, Hongmei; Chen, Mengqian; Buttyan, Ralph; Hayward, Simon W.; Hai, Tsonwin; Wang, Zhengxin

    2012-01-01

    Activating transcription factor 3 (ATF3) is a common mediator of cellular stress response signaling and is often aberrantly expressed in prostate cancer. We report here that ATF3 can directly bind the androgen receptor (AR) and consequently repress AR-mediated gene expression. The ATF3-AR interaction requires the leucine zipper domain of ATF3 that independently binds the DNA-binding and ligand-binding domains of AR, and the interaction prevents AR from binding to cis-acting elements required for expression of androgen-dependent genes while inhibiting the AR N- and C-terminal interaction. The functional consequences of the loss of ATF3 expression include increased transcription of androgen-dependent genes in prostate cancer cells that correlates with increased ability to grow in low-androgen-containing medium and increased proliferative activity of the prostate epithelium in ATF3 knockout mice that is associated with prostatic hyperplasia. Our results thus demonstrate that ATF3 is a novel repressor of androgen signaling that can inhibit AR functions, allowing prostate cells to restore homeostasis and maintain integrity in the face of a broad spectrum of intrinsic and environmental insults. PMID:22665497

  14. Discovery AND Therapeutic Promise OF Selective Androgen Receptor Modulators

    PubMed Central

    Chen, Jiyun; Kim, Juhyun; Dalton, James T.

    2007-01-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects. PMID:15994457

  15. Environmental gestagens activate fathead minnow (Pimephales promelas) nuclear progesterone and androgen receptors in vitro

    EPA Science Inventory

    Gestagen is a collective term for endogenous and synthetic progesterone receptor (PR) ligands. In teleost fishes, 17á,20â-dihydroxy-4-pregnen-3-one (DHP) and17á,20â,21- trihydroxy-4-pregnen-3-one (20â-S) are the predominant progestogens, whereas in other vertebrates the major pro...

  16. Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor

    PubMed Central

    Coleman, Daniel J.; Van Hook, Kathryn; King, Carly J.; Schwartzman, Jacob; Lisac, Robert; Urrutia, Joshua; Sehrawat, Archana; Woodward, Josha; Wang, Nicholas J.; Gulati, Roman; Thomas, George V.; Beer, Tomasz M.; Gleave, Martin; Korkola, James E.; Gao, Lina; Heiser, Laura M.; Alumkal, Joshi J.

    2016-01-01

    Prostate cancer is the most commonly diagnosed and second-most lethal cancer among men in the United States. The vast majority of prostate cancer deaths are due to castration-resistant prostate cancer (CRPC) – the lethal form of the disease that has progressed despite therapies that interfere with activation of androgen receptor (AR) signaling. One emergent resistance mechanism to medical castration is synthesis of intratumoral androgens that activate the AR. This insight led to the development of the AR antagonist enzalutamide. However, resistance to enzalutamide invariably develops, and disease progression is nearly universal. One mechanism of resistance to enzalutamide is an F877L mutation in the AR ligand-binding domain that can convert enzalutamide to an agonist of AR activity. However, mechanisms that contribute to the agonist switch had not been fully clarified, and there were no therapies to block AR F877L. Using cell line models of castration-resistant prostate cancer (CRPC), we determined that cellular androgen content influences enzalutamide agonism of mutant F877L AR. Further, enzalutamide treatment of AR F877L-expressing cell lines recapitulated the effects of androgen activation of F877L AR or wild-type AR. Because the BET bromodomain inhibitor JQ-1 was previously shown to block androgen activation of wild-type AR, we tested JQ-1 in AR F877L-expressing CRPC models. We determined that JQ-1 suppressed androgen or enzalutamide activation of mutant F877L AR and suppressed growth of mutant F877L AR CRPC tumors in vivo, demonstrating a new strategy to treat tumors harboring this mutation. PMID:27276681

  17. Inflammation, Prostate Cancer and Negative Regulation of Androgen Receptor Expression

    DTIC Science & Technology

    2009-05-01

    activity, 2) microRNA -mediated regulation of prostate cancer cell proliferation. My data establish that the human AR level is negatively regulated by... cancer , scanning of the cancer microRNA array shows that miR-454 is up regulated in androgen-independent C4-2 cells and overexpression of miR-454...TERMS Androgen receptor, prostate cancer , TNF-α, NF-κB, microRNA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF

  18. Human α(2)β(1)(HI) CD133(+VE) epithelial prostate stem cells express low levels of active androgen receptor.

    PubMed

    Williamson, Stuart C; Hepburn, Anastasia C; Wilson, Laura; Coffey, Kelly; Ryan-Munden, Claudia A; Pal, Deepali; Leung, Hing Y; Robson, Craig N; Heer, Rakesh

    2012-01-01

    Stem cells are thought to be the cell of origin in malignant transformation in many tissues, but their role in human prostate carcinogenesis continues to be debated. One of the conflicts with this model is that cancer stem cells have been described to lack androgen receptor (AR) expression, which is of established importance in prostate cancer initiation and progression. We re-examined the expression patterns of AR within adult prostate epithelial differentiation using an optimised sensitive and specific approach examining transcript, protein and AR regulated gene expression. Highly enriched populations were isolated consisting of stem (α(2)β(1)(HI) CD133(+VE)), transiently amplifying (α(2)β(1)(HI) CD133(-VE)) and terminally differentiated (α(2)β(1)(LOW) CD133(-VE)) cells. AR transcript and protein expression was confirmed in α(2)β(1)(HI) CD133(+VE) and CD133(-VE) progenitor cells. Flow cytometry confirmed that median (±SD) fraction of cells expressing AR were 77% (±6%) in α(2)β(1)(HI) CD133(+VE) stem cells and 68% (±12%) in α(2)β(1)(HI) CD133(-VE) transiently amplifying cells. However, 3-fold lower levels of total AR protein expression (peak and median immunofluorescence) were present in α(2)β(1)(HI) CD133(+VE) stem cells compared with differentiated cells. This finding was confirmed with dual immunostaining of prostate sections for AR and CD133, which again demonstrated low levels of AR within basal CD133(+VE) cells. Activity of the AR was confirmed in prostate progenitor cells by the expression of low levels of the AR regulated genes PSA, KLK2 and TMPRSS2. The confirmation of AR expression in prostate progenitor cells allows integration of the cancer stem cell theory with the established models of prostate cancer initiation based on a functional AR. Further study of specific AR functions in prostate stem and differentiated cells may highlight novel mechanisms of prostate homeostasis and insights into tumourigenesis.

  19. Androgen receptor in human health: a potential therapeutic target.

    PubMed

    Siddique, Hifzur Rahman; Nanda, Sanjeev; Parray, Aijaz; Saleem, Mohammad

    2012-12-01

    Androgen is a key for the activation of Androgen Receptor (AR) in most of the disease conditions, however androgen-independent activation of AR is also found in aggressive type human malignancies. An intense search for the inhibitors of AR is underway to cure AR-dependent diseases. In addition to targeting various components of AR signaling pathway, compounds which directly target AR are under preclinical and clinical investigation. Various In vitro and preclinical animal studies suggest that different natural compounds have potential to act against AR. Some natural compounds have been found to be pharmacologically effective against AR irrespective of varying routs of administration viz; oral, intra-peritoneal and intravenous. This mini-review summarizes the studies conducted with different natural agents in determining their pharmacological utility against AR signaling.

  20. The E3 Ubiquitin Ligase Siah2 Contributes to Castration-Resistant Prostate Cancer by Regulation of Androgen Receptor Transcriptional Activity

    PubMed Central

    Qi, Jianfei; Tripathi, Manisha; Mishra, Rajeev; Sahgal, Natasha; Fazil, Ladan; Ettinger, Susan; Placzek, William J.; Claps, Giuseppina; Chung, Leland W.K.; Bowtell, David; Gleave, Martin; Bhowmick, Neil; Ronai, Ze'ev A.

    2013-01-01

    SUMMARY Understanding the mechanism underlying the regulation of the androgen receptor (AR), a central player in the development of castration-resistant prostate cancer (CRPC), holds promise for overcoming the challenge of treating CRPC. We demonstrate that the ubiquitin ligase Siah2 targets a select pool of NCOR1-bound, transcriptionally-inactive AR for ubiquitin-dependent degradation, thereby promoting expression of select AR target genes implicated in lipid metabolism, cell motility, and proliferation. Siah2 is required for prostate cancer cell growth under androgen-deprivation conditions in vitro and in vivo, and Siah2 inhibition promotes prostate cancer regression upon castration. Notably, Siah2 expression is markedly increased in human CRPCs. Collectively, we find that selective regulation of AR transcriptional activity by the ubiquitin ligase Siah2 is important for CRPC development. PMID:23518348

  1. The E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity.

    PubMed

    Qi, Jianfei; Tripathi, Manisha; Mishra, Rajeev; Sahgal, Natasha; Fazli, Ladan; Fazil, Ladan; Ettinger, Susan; Placzek, William J; Claps, Giuseppina; Chung, Leland W K; Bowtell, David; Gleave, Martin; Bhowmick, Neil; Ronai, Ze'ev A

    2013-03-18

    Understanding the mechanism underlying the regulation of the androgen receptor (AR), a central player in the development of castration-resistant prostate cancer (CRPC), holds promise for overcoming the challenge of treating CRPC. We demonstrate that the ubiquitin ligase Siah2 targets a select pool of NCOR1-bound, transcriptionally-inactive AR for ubiquitin-dependent degradation, thereby promoting expression of select AR target genes implicated in lipid metabolism, cell motility, and proliferation. Siah2 is required for prostate cancer cell growth under androgen-deprivation conditions in vitro and in vivo, and Siah2 inhibition promotes prostate cancer regression upon castration. Notably, Siah2 expression is markedly increased in human CRPCs. Collectively, we find that selective regulation of AR transcriptional activity by the ubiquitin ligase Siah2 is important for CRPC development.

  2. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators.

    PubMed

    Thevis, Mario; Schänzer, Wilhelm

    2010-01-01

    The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.

  3. Male genital leiomyomas showing androgen receptor expression.

    PubMed

    Suárez-Peñaranda, José Manuel; Vieites, Begoña; Evgenyeva, Elena; Vázquez-Veiga, Hugo; Forteza, Jeronimo

    2007-12-01

    Genital leiomyoma in men include those superficial leiomyomas arising in the scrotum and the areola. They are unusual neoplasms: few cases have been reported in the literature and they usually escape clinical diagnosis. Three cases of male genital leiomyomas are reported: two in the scrotum and one in the areola. They were all conservatively excised and the behaviour was completely benign in all cases. Histopathological examination showed the typical findings of superficial leiomyomas, with some minor differences between cases arising in the scrotum and those from the areola. Immunohistochemical findings not only confirmed the smooth muscle nature of all cases but also showed unequivocal immunostaining for androgen receptors in the leiomyomas from the scrotum. Immunostaining for androgen receptors in scrotal leiomyomas is, as far as we are aware, a previously unknown characteristic of male genital leiomyomas. This finding supports the role of steroid hormones in the growth of genital leiomyomas, similar to leiomyomas found in other locations.

  4. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells.

    PubMed

    Shafi, Ayesha A; Putluri, Vasanta; Arnold, James M; Tsouko, Efrosini; Maity, Suman; Roberts, Justin M; Coarfa, Cristian; Frigo, Daniel E; Putluri, Nagireddy; Sreekumar, Arun; Weigel, Nancy L

    2015-10-13

    Metastatic prostate cancer (PCa) is primarily an androgen-dependent disease, which is treated with androgen deprivation therapy (ADT). Tumors usually develop resistance (castration-resistant PCa [CRPC]), but remain androgen receptor (AR) dependent. Numerous mechanisms for AR-dependent resistance have been identified including expression of constitutively active AR splice variants lacking the hormone-binding domain. Recent clinical studies show that expression of the best-characterized AR variant, AR-V7, correlates with resistance to ADT and poor outcome. Whether AR-V7 is simply a constitutively active substitute for AR or has novel gene targets that cause unique downstream changes is unresolved. Several studies have shown that AR activation alters cell metabolism. Using LNCaP cells with inducible expression of AR-V7 as a model system, we found that AR-V7 stimulated growth, migration, and glycolysis measured by ECAR (extracellular acidification rate) similar to AR. However, further analyses using metabolomics and metabolic flux assays revealed several differences. Whereas AR increased citrate levels, AR-V7 reduced citrate mirroring metabolic shifts observed in CRPC patients. Flux analyses indicate that the low citrate is a result of enhanced utilization rather than a failure to synthesize citrate. Moreover, flux assays suggested that compared to AR, AR-V7 exhibits increased dependence on glutaminolysis and reductive carboxylation to produce some of the TCA (tricarboxylic acid cycle) metabolites. These findings suggest that these unique actions represent potential therapeutic targets.

  5. Fatostatin Displays High Anti-Tumor Activity in Prostate Cancer by Blocking SREBP-Regulated Metabolic Pathways and Androgen Receptor Signaling

    PubMed Central

    Li, Xiangyan; Chen, Yi-Ting; Hu, Peizhen; Huang, Wen-Chin

    2014-01-01

    Current research links aberrant lipogenesis and cholesterogenesis with prostate cancer development and progression. Sterol regulatory element-binding proteins (SREBPs; SREBP-1 and SREBP-2) are key transcription factors controlling lipogenesis and cholesterogenesis via the regulation of genes related to fatty acid and cholesterol biosynthesis. Overexpression of SREBPs has been reported to be significantly associated with aggressive pathologic features in human prostate cancer. Our previous results showed that SREBP-1 promoted prostate cancer growth and castration resistance through induction of lipogenesis and androgen receptor (AR) activity. In the present study, we evaluated the anti-prostate tumor activity of a novel SREBP inhibitor, fatostatin. We found that fatostatin suppressed cell proliferation and anchorage-independent colony formation in both androgen-responsive LNCaP and androgen-insensitive C4-2B prostate cancer cells. Fatostatin also reduced in vitro invasion and migration in both cell lines. Further, fatostatin caused G2/M cell cycle arrest and induced apoptosis by increasing caspase-3/7 activity and the cleavages of caspase-3 and PARP. The in vivo animal results demonstrated that fatostatin significantly inhibited subcutaneous C4-2B tumor growth and markedly decreased serum PSA level compared to the control group. The in vitro and in vivo effects of fatostatin treatment were due to blockade of SREBP regulated metabolic pathways and the AR signaling network. Our findings identify SREBP inhibition as a potential new therapeutic approach for the treatment of prostate cancer. PMID:24493696

  6. Androgen receptor profiling predicts prostate cancer outcome

    PubMed Central

    Stelloo, Suzan; Nevedomskaya, Ekaterina; van der Poel, Henk G; de Jong, Jeroen; van Leenders, Geert JLH; Jenster, Guido; Wessels, Lodewyk FA; Bergman, Andries M; Zwart, Wilbert

    2015-01-01

    Prostate cancer is the second most prevalent malignancy in men. Biomarkers for outcome prediction are urgently needed, so that high-risk patients could be monitored more closely postoperatively. To identify prognostic markers and to determine causal players in prostate cancer progression, we assessed changes in chromatin state during tumor development and progression. Based on this, we assessed genomewide androgen receptor/chromatin binding and identified a distinct androgen receptor/chromatin binding profile between primary prostate cancers and tumors with an acquired resistance to therapy. These differential androgen receptor/chromatin interactions dictated expression of a distinct gene signature with strong prognostic potential. Further refinement of the signature provided us with a concise list of nine genes that hallmark prostate cancer outcome in multiple independent validation series. In this report, we identified a novel gene expression signature for prostate cancer outcome through generation of multilevel genomic data on chromatin accessibility and transcriptional regulation and integration with publically available transcriptomic and clinical datastreams. By combining existing technologies, we propose a novel pipeline for biomarker discovery that is easily implementable in other fields of oncology. PMID:26412853

  7. Mechanism and Regulation of Gene Expression by Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2004-07-01

    Molenaar, J. Peterson, J. Hurenkamp, H. Brantjes, P. Moerer, ceptors and diverse mammalian activators. Mol. Cell 3:361-370. M. van de Wetering, 0. Destree ...served, there is much less homology among steroid hormone ability in vitro and increased AR trans-activation in re r ther N-termi l arts . Th er haalong...interactions may be linked to androgen insensitivity syndrome (13, 14). The con- The androgen receptor (AR)’ mediates androgen functions in served

  8. Novel androgen receptor gene mutation in patient with complete androgen insensitivity syndrome.

    PubMed

    Ning, Ye; Zhang, Feng; Zhu, Yong; Chen, Huixing; Lu, Jianqi; Li, Zheng

    2012-07-01

    To present a rare case of a patient probably with complete androgen insensitivity syndrome (CAIS) and studied its potential genetic cause. A 24-year-old woman with a normal-appearing vulva and vagina presented to us because of primary amenorrhea. Imaging studies showed no uterus or ovary development but inguinal cryptorchism. Histopathologic examination revealed normal testicular structures. Sequencing the CAIS-associated androgen receptor gene revealed a novel missense mutation of T to G (F698L). A novel androgen receptor gene mutation in the ligand binding domain was detected in the present patient with CAIS, supporting the important role of an androgen receptor defect in the etiology of CAIS.

  9. Posttranslational modification of the androgen receptor in prostate cancer.

    PubMed

    van der Steen, Travis; Tindall, Donald J; Huang, Haojie

    2013-07-16

    The androgen receptor (AR) is important in the development of the prostate by regulating transcription, cellular proliferation, and apoptosis. AR undergoes posttranslational modifications that alter its transcription activity, translocation to the nucleus and stability. The posttranslational modifications that regulate these events are of utmost importance to understand the functional role of AR and its activity. The majority of these modifications occur in the activation function-1 (AF1) region of the AR, which contains the transcriptional activation unit 1 (TAU1) and 5 (TAU5). Identification of the modifications that occur to these regions may increase our understanding of AR activation in prostate cancer and the role of AR in the progression from androgen-dependent to castration-resistant prostate cancer (CRPC). Most of the posttranslational modifications identified to date have been determined using the full-length AR in androgen dependent cells. Further investigations into the role of posttranslational modifications in androgen-independent activation of full-length AR and constitutively active splicing variants are warranted, findings from which may provide new therapeutic options for CRPC.

  10. Interaction Between a Novel p21 Activated Kinase (PAK6) and Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    not altered by . 2o treatment with DHT (data not shown). Overexpressed 3-cate- nin protein with AR vector, in the absence of DHT, showed the same...Taken together, we due primarily to loss or decreased expression E-cadherin, is conclude that overexpression of E-cadherin in TSU.pr-1 in- frequently...such as glycogen synthase of AR activity by LY294002 is mediated through phos- kinase (GSK3), Bad, and caspase9 and the forkhead transcrip

  11. Cell-based assays for screening androgen receptor ligands

    PubMed Central

    Campana, Carmela; Pezzi, Vincenzo; Rainey, William E

    2015-01-01

    The androgen receptor (AR, NR3C4), mediates the majority of androgen effects on target cells. The AR is activated following ligand binding that result in activation of target gene transcription. Several cell based model systems have been developed that allow sensitive detection and monitoring of steroids or other compounds with AR bioactivity. Most cell based AR reporter models use transgenic gene constructs that include an androgen response element (ARE) that controls reporter gene expression. The DNA cis-regulatory elements that respond to AR share sequence similarity with cis-regulatory elements for glucocorticoid (GR, NR3C1), mineralocorticoid (MR, NR3C2) and progesterone (PGR, NR3C3) receptors, which has compromised AR selectivity for some models. In recent years, the sensitivity and selectivity of AR bioassays have been significantly improved through careful selection of cell models, utilization of improved reporter genes and the use of yeast two hybrid AR systems. This review summarizes and compares the currently available androgen-responsive cell model systems. PMID:26036905

  12. The Androgen Receptor Gene Mutations Database.

    PubMed

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  13. A novel prostate cancer therapeutic strategy using icaritin-activated arylhydrocarbon-receptor to co-target androgen receptor and its splice variants

    PubMed Central

    Sun, Feng; Indran, Inthrani R.; Zhang, Zhi Wei; Tan, M.H.Eileen; Li, Yu; Lim, Z.L.Ryan; Hua, Rui; Yang, Chong; Soon, Fen-Fen; Li, Jun; Xu, H.Eric; Cheung, Edwin; Yong, Eu-Leong

    2015-01-01

    Persistent androgen receptor (AR) signaling is the key driving force behind progression and development of castration-resistant prostate cancer (CRPC). In many patients, AR COOH-terminal truncated splice variants (ARvs) play a critical role in contributing to the resistance against androgen depletion therapy. Unfortunately, clinically used antiandrogens like bicalutamide (BIC) and enzalutamide (MDV), which target the ligand binding domain, have failed to suppress these AR variants. Here, we report for the first time that a natural prenylflavonoid, icaritin (ICT), can co-target both persistent AR and ARvs. ICT was found to inhibit transcription of key AR-regulated genes, such as KLK3 [prostate-specific antigen (PSA)] and ARvs-regulated genes, such as UBE2C and induce apoptosis in AR-positive prostate cancer (PC) cells. Mechanistically, ICT promoted the degradation of both AR and ARvs by binding to arylhydrocarbon-receptor (AhR) to mediate ubiquitin-proteasomal degradation. Therefore, ICT impaired AR transactivation in PC cells. Knockdown of AhR gene restored AR stability and partially prevented ICT-induced growth suppression. In clinically relevant murine models orthotopically implanted with androgen-sensitive and CRPC cells, ICT was able to target AR and ARvs, to inhibit AR signaling and tumor growth with no apparent toxicity. Our results provide a mechanistic framework for the development of ICT, as a novel lead compound for AR-positive PC therapeutics, especially for those bearing AR splice variants. PMID:25908644

  14. Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model

    PubMed Central

    Schauwaers, Kris; De Gendt, Karel; Saunders, Philippa T. K.; Atanassova, Nina; Haelens, Annemie; Callewaert, Leen; Moehren, Udo; Swinnen, Johannes V.; Verhoeven, Guido; Verrijdt, Guy; Claessens, Frank

    2007-01-01

    Androgens influence transcription of their target genes through the activation of the androgen receptor (AR) that subsequently interacts with specific DNA motifs in these genes. These DNA motifs, called androgen response elements (AREs), can be classified in two classes: the classical AREs, which are also recognized by the other steroid hormone receptors; and the AR-selective AREs, which display selectivity for the AR. For in vitro interaction with the selective AREs, the androgen receptor DNA-binding domain is dependent on specific residues in its second zinc-finger. To evaluate the physiological relevance of these selective elements, we generated a germ-line knockin mouse model, termed SPARKI (SPecificity-affecting AR KnockIn), in which the second zinc-finger of the AR was replaced with that of the glucocorticoid receptor, resulting in a chimeric protein that retains its ability to bind classical AREs but is unable to bind selective AREs. The reproductive organs of SPARKI males are smaller compared with wild-type animals, and they are also subfertile. Intriguingly, however, they do not display any anabolic phenotype. The expression of two testis-specific, androgen-responsive genes is differentially affected by the SPARKI mutation, which is correlated with the involvement of different types of response elements in their androgen responsiveness. In this report, we present the first in vivo evidence of the existence of two functionally different types of AREs and demonstrate that AR-regulated gene expression can be targeted based on this distinction. PMID:17360365

  15. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

    PubMed

    Dubois, Vanessa; Laurent, Michaël R; Sinnesael, Mieke; Cielen, Nele; Helsen, Christine; Clinckemalie, Liesbeth; Spans, Lien; Gayan-Ramirez, Ghislaine; Deldicque, Louise; Hespel, Peter; Carmeliet, Geert; Vanderschueren, Dirk; Claessens, Frank

    2014-07-01

    Androgens have well-established anabolic actions on skeletal muscle, although the direct effects of the androgen receptor (AR) in muscle remain unclear. We generated satellite cell-specific AR-knockout (satARKO) mice in which the AR is selectively ablated in satellite cells, the muscle precursor cells. Total-limb maximal grip strength is decreased by 7% in satARKO mice, with soleus muscles containing ∼10% more type I fibers and 10% less type IIa fibers than the corresponding control littermates. The weight of the perineal levator ani muscle is markedly reduced (-52%). Thus, muscle AR is involved in fiber-type distribution and force production of the limb muscles, while it is a major determinant of the perineal muscle mass. Surprisingly, myostatin (Mstn), a strong inhibitor of skeletal muscle growth, is one of the most androgen-responsive genes (6-fold reduction in satARKO) through direct transcription activation by the AR. Consequently, muscle hypertrophy in response to androgens is augmented in Mstn-knockout mice. Our finding that androgens induce Mstn signaling to restrain their own anabolic actions has implications for the treatment of muscle wasting disorders.-Dubois, V., Laurent, M. R., Sinnesael, M., Cielen, N., Helsen, C., Clinckemalie, L., Spans, L., Gayan-Ramirez, G., Deldicque, L., Hespel, P., Carmeliet, G., Vanderschueren, D., and Claessens, F. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

  16. Androgen receptor stimulates bone sialoprotein (BSP) gene transcription via cAMP response element and activator protein 1/glucocorticoid response elements.

    PubMed

    Takai, Hideki; Nakayama, Youhei; Kim, Dong-Soon; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Nakajima, Yu; Kato, Naoko; Masunaga, Hiroshi; Ogata, Yorimasa

    2007-09-01

    Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. Androgens are steroid hormones that are essential for skeletal development. The androgen receptor (AR) is a transcription factor and a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. To determine the molecular mechanism involved in the stimulation of bone formation, we have analyzed the effects of androgens and AR effects on BSP gene transcription. AR protein levels were increased after AR overexpression in ROS17/2.8 cells. BSP mRNA levels were increased by AR overexpression. However, the endogenous and overexpressed BSP mRNA levels were not changed by DHT (10(-8) M, 24 h). Whereas luciferase (LUC) activities in all constructs, including a short construct (nts -116 to +60), were increased by AR overexpression, the basal and LUC activities enhanced by AR overexpression were not induced by DHT (10(-8)M, 24 h). The effect of AR overexpression was abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that AR overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were supershifted by phospho-CREB antibody, and CREB, c-Fos, c-Jun, and AR antibodies disrupted the complexes formation. The AP1/GRE-protein complexes were supershifted by c-Fos antibody and c-Jun, and AR antibodies disrupted the complexes formation. These studies demonstrate that AR stimulates BSP gene transcription by targeting the CRE and AP1/GRE elements in the promoter of the rat BSP gene.

  17. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs.

    PubMed

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete's urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as 'T-equivalent' concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact.

  18. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs

    PubMed Central

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete’s urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as ‘T-equivalent’ concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact. PMID:26998755

  19. Endothelin-1 enhances the expression of the androgen receptor via activation of the c-Myc pathway in prostate cancer cells

    PubMed Central

    Lee, June G; Zheng, Rong; McCafferty-Cepero, Jennifer M; Burnstein, Kerry L; Nanus, David M; Shen, Ruoqian

    2008-01-01

    Increasing evidence suggests that androgen independent prostate cancer maintains a functional androgen receptor (AR) pathway despite the low levels of circulating androgen following androgen withdrawal, the molecular mechanisms of which are not well defined yet. To address this question, we investigated the effects of ET-1 on AR expression. Western analysis and RT-PCR revealed that in the presence of ET-1, levels of AR significantly increased in a time- and dose- dependent manner in LNCaP cells. Pre-treatments with inhibitors of Src and Phosphoinositide Kinase 3 (PI-3K) suppressed ET-1-induced AR expression. As ET-1 was reported to cause a transient increase in c-Myc mRNA levels, we examined the involvement of c-Myc in ET-1-mediated AR expression. Transient transfection of c-Myc siRNA neutralized ET-1-induced AR expression, suggesting that AR induction by ET-1 is c-Myc dependent. AR can regulate the transcription of its own gene via a mechanism in which c-Myc plays a crucial role. Therefore, we assessed if ET-1-induced-c-Myc leads to the enhancement of AR transcription. Reporter gene assays using the previously identified AR gene enhancer containing a c-Myc binding site were conducted in LNCaP cells. We found that ET-1 induced reporter gene activity from the construct containing the wild type but not mutant c-Myc binding site. Chromatin immunoprecipitation assays confirmed that ET-1 increased interaction between c-Myc and c-Myc binding sites in AR enhancer, suggesting that ET-1-induced AR transcription occurs via c-Myc-mediated AR transcription. Together, these data support the notion that ET-1, via Src/PI-3K signaling, augments c-Myc expression leading to enhanced AR expression in prostate cancer. PMID:18623111

  20. The role of androgen and androgen receptor in skin-related disorders.

    PubMed

    Lai, Jiann-Jyh; Chang, Philip; Lai, Kuo-Pao; Chen, Lumin; Chang, Chawnshang

    2012-09-01

    Androgen and androgen receptor (AR) may play important roles in several skin-related diseases, such as androgenetic alopecia and acne vulgaris. Current treatments for these androgen/AR-involved diseases, which target the synthesis of androgens or prevent its binding to AR, can cause significant adverse side effects. Based on the recent studies using AR knockout mice, it has been suggested that AR and androgens play distinct roles in the skin pathogenesis, and AR seems to be a better target than androgens for the treatment of these skin diseases. Here, we review recent studies of androgen/AR roles in several skin-related disorders, including acne vulgaris, androgenetic alopecia and hirsutism, as well as cutaneous wound healing.

  1. Novel Chemical Strategies for Labeling Small Molecule Ligands for Androgen, Progestin, and Peroxisome Proliferator-Activated Receptors for Imaging Prostate and Breast Cancer and the Heart

    SciTech Connect

    Katzenellenbogen, John, A.

    2007-04-19

    Summary of Progress The specific aims of this project can be summarized as follows: • Aim 1: Prepare and evaluate radiolabeled ligands for the peroxisome proliferator-activated receptor (PPAR), a new nuclear hormone receptor target for tumor imaging and hormone therapy. • Aim 2: Prepare steroids labeled with a cyclopentadienyl tricarbonyl technetium or rhenium unit. • Aim 3: Prepare and evaluate other organometallic systems of novel design as ligand mimics and halogenated ligands for nuclear hormone receptor-based tumor imaging. As is described in detail below, we made excellent progress on all three of these aims; the highlights of our progress are the following: • we have prepared the first fluorine-18 labeled analogs of ligands for the PPAR receptor and used these in tissue distribution studies in rats • we have developed three new methods for the synthesis of cyclopentadienyltricarbonyl rhenium and technetium (CpRe(CO)3 and CpTc(CO)3) systems and we have adapted these to the synthesis of steroids labeled with these metals, as well as ligands for other receptor systems • we have prepared a number of fluorine-18 labeled steroidal and non-steroidal androgens and measured their tissue distribution in rats • we have prepared iodine and bromine-labeled progestins with high progesterone receptor binding affinity • we have prepared inorganic metal tricarbonyl complexes and steroid receptor ligands in which the metal tricarbonyl unit is an integral part off the ligand core.

  2. Discordant measures of androgen-binding kinetics in two mutant androgen receptors causing mild or partial androgen insensitivity, respectively.

    PubMed

    Shkolny, D L; Beitel, L K; Ginsberg, J; Pekeles, G; Arbour, L; Pinsky, L; Trifiro, M A

    1999-02-01

    We have characterized two different mutations of the human androgen receptor (hAR) found in two unrelated subjects with androgen insensitivity syndrome (AIS): in one, the external genitalia were ambiguous (partial, PAIS); in the other, they were male, but small (mild, MAIS). Single base substitutions have been found in both individuals: E772A in the PAIS subject, and R871G in the MAIS patient. In COS-1 cells transfected with the E772A and R871G hARs, the apparent equilibrium dissociation constants (Kd) for mibolerone (MB) and methyltrienolone are normal. Nonetheless, the mutant hAR from the PAIS subject (E772A) has elevated nonequilibrium dissociation rate constants (k(diss)) for both androgens. In contrast, the MAIS subject's hAR (R871G) has k(diss) values that are apparently normal for MB and methyltrienolone; in addition, the R871G hAR's ability to bind MB resists thermal stress better than the hAR from the PAIS subject. The E772A and R871G hARs, therefore, confer the same pattern of discordant androgen-binding parameters in transfected COS-1 cells as observed previously in the subjects' genital skin fibroblasts. This proves their pathogenicity and correlates with the relative severity of the clinical phenotype. In COS-1 cells transfected with an androgen-responsive reporter gene, trans-activation was 50% of normal in cells containing either mutant hAR. However, mutant hAR-MB binding is unstable during prolonged incubation with MB, whereas normal hAR-MB binding increases. Thus, normal equilibrium dissociation constants alone, as determined by Scatchard analysis, may not be indicative of normal hAR function. An increased k(diss) despite a normal Kd for a given androgen suggests that it not only has increased egress from a mutant ligand-binding pocket, but also increased access to it. This hypothesis has certain implications in terms of the three-dimensional model of the ligand-binding domain of the nuclear receptor superfamily.

  3. Selective androgen receptor modulators in preclinical and clinical development

    PubMed Central

    Narayanan, Ramesh; Mohler, Michael L.; Bohl, Casey E.; Miller, Duane D.; Dalton, James T.

    2008-01-01

    Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs. PMID:19079612

  4. Pyridine analogues of curcumin exhibit high activity for inhibiting CWR-22Rv1 human prostate cancer cell growth and androgen receptor activation

    PubMed Central

    ZHOU, DAI-YING; ZHAO, SU-QING; DU, ZHI-YUN; ZHENG, XI; ZHANG, KUN

    2016-01-01

    The concentrations required for curcumin to exert its anticancer activity (IC50, 20 µM) are difficult to achieve in the blood plasma of patients, due to the low bioavailability of the compound. Therefore, much effort has been devoted to the development of curcumin analogues that exhibit stronger anticancer activity and a lower IC50 than curcumin. The present study investigated twelve pyridine analogues of curcumin, labeled as groups AN, BN, EN and FN, to determine their effects in CWR-22Rv1 human prostate cancer cells. The inhibitory effects of these compounds on testosterone (TT)-induced androgen receptor (AR) activity was determined by performing an AR-linked luciferase assay and by TT-induced expression of prostate-specific antigen. The results of the current study suggested that the FN group of analogues had the strongest inhibitory effect of growth on CWR-22Rv1 cultured cells, and were the most potent inhibitor of AR activity compared with curcumin, and the AN, BN and EN analogues. Thus, the results of the present study indicate the inhibition of the AR pathways as a potential mechanism for the anticancer effect of curcumin analogues in human prostate cancer cells. Furthermore, curcumin analogues with pyridine as a distal ring and tetrahydrothiopyran-4-one as a linker may be good candidates for the development of novel drugs for the treatment of prostate cancer, by targeting the AR signaling pathway. PMID:27313760

  5. Repression of Androgen Receptor Activity by HEYL, a Third Member of the Hairy/Enhancer-of-split-related Family of Notch Effectors*

    PubMed Central

    Lavery, Derek N.; Villaronga, M. Angeles; Walker, Marjorie M.; Patel, Anup; Belandia, Borja; Bevan, Charlotte L.

    2011-01-01

    The Hairy/Enhancer-of-split-related with YRPW-like motif (HEY) family of proteins are transcriptional repressors and downstream effectors of Notch signaling. We previously reported that HEY1 and HEY2 selectively repress androgen receptor (AR) signaling in mammalian cell lines and have shown that in human tissue HEY1 is excluded from the nuclei in prostate cancer but not benign prostatic hyperplasia. We have now characterized a third member of this family, HEYL, which is a more potent repressor of AR activity. HEYL interacted with and repressed AR activation function-1 domain and competitively inhibited SRC1e activation of AR transcriptional activity. Using a cell line inducibly expressing exogenous HEYL, we showed that HEYL represses endogenous AR-regulated genes and reduces androgen-dependent prostate cancer cell growth. Using a trans-repression assay, we identified both trichostatin-sensitive and -insensitive domains within HEYL; however, analysis of endogenous AR target genes suggested that HEYL represses AR activity through histone deacetylase I/II-independent mechanisms. Immunohistochemical analyses of tissue indicated that, in a fashion similar to that previously reported for HEY1, HEYL is excluded from the nuclei in prostate cancer but not adjacent benign tissue. This suggests that nuclear exclusion of HEY proteins may be an important step in the progression of prostate cancer. PMID:21454491

  6. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells.

    PubMed Central

    Kojima, Hiroyuki; Katsura, Eiji; Takeuchi, Shinji; Niiyama, Kazuhito; Kobayashi, Kunihiko

    2004-01-01

    We tested 200 pesticides, including some of their isomers and metabolites, for agonism and antagonism to two human estrogen receptor (hER) subtypes, hERalpha and hERbeta, and a human androgen receptor (hAR) by highly sensitive transactivation assays using Chinese hamster ovary cells. The test compounds were classified into nine groups: organochlorines, diphenyl ethers, organophosphorus pesticides, pyrethroids, carbamates, acid amides, triazines, ureas, and others. These pesticides were tested at concentrations < 10-5 M. Of the 200 pesticides tested, 47 and 33 showed hER- and hERbeta-mediated estrogenic activities, respectively. Among them, 29 pesticides had both hERalpha and hERbeta agonistic activities, and the effects of the organochlorine insecticides beta-benzene hexachloride (BHC) and delta-BHC and the carbamate insecticide methiocarb were predominantly hERbeta rather than hERalpha agonistic. Weak antagonistic effects toward hERalpha and hERbeta were shown in five and two pesticides, respectively. On the other hand, none of tested pesticides showed hAR-mediated androgenic activity, but 66 of 200 pesticides exhibited inhibitory activity against the transcriptional activity induced by 5alpha-dihydrotestosterone. In particular, the antiandrogenic activities of two diphenyl ether herbicides, chlornitrofen and chlomethoxyfen, were higher than those of vinclozolin and p,p -dichlorodiphenyl dichloroethylene, known AR antagonists. The results of our ER and AR assays show that 34 pesticides possessed both estrogenic and antiandrogenic activities, indicating pleiotropic effects on hER and hAR. We also discussed chemical structures related to these activities. Taken together, our findings suggest that a variety of pesticides have estrogenic and/or antiandrogenic potential via ER and/or AR, and that numerous other manmade chemicals may also possess such estrogenic and antiandrogenic activities. PMID:15064155

  7. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY.
    MC Cardon, PC Hartig,LE Gray, Jr. and VS Wilson.
    U.S. EPA, ORD, NHEERL, RTD, Research Triangle Park, NC, USA.
    Typically, in vitro hazard assessments for ...

  8. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay
    Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  9. Polyester monomers lack ability to bind and activate both androgenic and estrogenic receptors as determined by in vitro and in silico methods.

    PubMed

    Osimitz, Thomas G; Welsh, William J; Ai, Ni; Toole, Colleen

    2015-01-01

    The paper presents results from the screening of seven monomers used by Eastman Chemical to make various polymers. Ethylene glycol, diethylene glycol, polytetramethylene glycol, isophthalic acid, monosodium-5-sulfoisophthalic acid, 1,4-cyclohexanedicarboxylic acid, and dimethylcyclohexanedicarboxylate were screened for potential androgenicity or estrogenicity. The following studies were conducted: QSAR for binding to the AR and ER, in vitro Androgen Receptor Binding Assay, in vitro Estrogen Receptor Binding Assays (alpha and beta isoforms), in vitro Androgen Receptor Transactivation Assay in human cells, and in vitro Estrogen Receptor Transactivation Assay in human cells. None of the QSAR models predicted that any of the monomers possessed appreciable binding affinity for either AR or ER. Binding assays showed no evidence of interaction with either the AR or the alpha or beta ER receptors. Similarly, the AR and ER transactivation assays were negative. Moreover, six of the seven monomers have been subjected to 13-week and developmental toxicity studies in rats with no androgen- or estrogen-related effects being noted. Given the negative results of the in vitro screening assays (except PMG which demonstrated cytotoxicity) as well as available repeated dose and developmental and reproductive studies, the data suggest that none of the monomers tested exhibit androgenic or estrogenic hazards.

  10. Expression of androgen receptor target genes in skeletal muscle.

    PubMed

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  11. CUDC-101, a Novel Inhibitor of Full-Length Androgen Receptor (flAR) and Androgen Receptor Variant 7 (AR-V7) Activity: Mechanism of Action and In Vivo Efficacy.

    PubMed

    Sun, Huiying; Mediwala, Sanjay N; Szafran, Adam T; Mancini, Michael A; Marcelli, Marco

    2016-06-01

    Castration-resistant prostate cancer (CRPC) is an androgen receptor (AR)-dependent disease expected to cause the death of more than 27,000 Americans in 2015. There are only a few available treatments for CRPC, making the discovery of new drugs an urgent need. We report that CUDC-101 (an inhibitor od HER2/NEU, EGFR and HDAC) inhibits both the full length AR (flAR) and the AR variant AR-V7. This observation prompted experiments to discover which of the known activities of CUDC-101 is responsible for the inhibition of flAR/AR-V7 signaling. We used pharmacologic and genetic approaches, and found that the effect of CUDC-101 on flAR and AR-V7 was duplicated only by other HDAC inhibitors, or by silencing the HDAC isoforms HDAC5 and HDAC10. We observed that CUDC-101 treatment or AR-V7 silencing by RNAi equally reduced transcription of the AR-V7 target gene, PSA, without affecting viability of 22Rv1 cells. However, when cellular proliferation was used as an end point, CUDC-101 was more effective than AR-V7 silencing, raising the prospect that CUDC-101 has additional targets beside AR-V7. In support of this, we found that CUDC-101 increased the expression of the cyclin-dependent kinase inhibitor p21, and decreased that of the oncogene HER2/NEU. To determine if CUDC-101 reduces growth in a xenograft model of prostate cancer, this drug was given for 14 days to castrated male SCID mice inoculated with 22Rv1 cells. Compared to vehicle, CUDC-101 reduced xenograft growth in a statistically significant way, and without macroscopic side effects. These studies demonstrate that CUDC-101 inhibits wtAR and AR-V7 activity and growth of 22Rv1 cells in vitro and in vivo. These effects result from the ability of CUDC-101 to target not only HDAC signaling, which was associated with decreased flAR and AR-V7 activity, but multiple additional oncogenic pathways. These observations raise the possibility that treatment of CRPC may be achieved by using similarly multi-targeted approaches.

  12. A novel mutation F826L in the human androgen receptor in partial androgen insensitivity syndrome; increased NH2-/COOH-terminal domain interaction and TIF2 co-activation.

    PubMed

    Wong, Hao Yun; Hoogerbrugge, Jos W; Pang, Kar Lok; van Leeuwen, Marije; van Royen, Martin E; Molier, Michel; Berrevoets, Cor A; Dooijes, Dennis; Dubbink, Hendrikus Jan; van de Wijngaart, Dennis J; Wolffenbuttel, Katja P; Trapman, Jan; Kleijer, Wim J; Drop, Stenvert L S; Grootegoed, J Anton; Brinkmann, Albert O

    2008-09-24

    A novel mutation F826L located within the ligand binding domain (LBD) of the human androgen receptor (AR) was investigated. This mutation was found in a boy with severe penoscrotal hypospadias (classified as 46,XY DSD). The AR mutant F826L appeared to be indistinguishable from the wild-type AR, with respect to ligand binding affinity, transcriptional activation of MMTV-luciferase and ARE2-TATA-luciferase reporter genes, protein level in genital skin fibroblasts (GSFs), and sub-cellular distribution in transfected cells. However, an at least two-fold higher NH2-/COOH-terminal domain interaction was found in luciferase and GST pull-down assays. A two-fold increase was also observed for TIF2 (transcription intermediary factor 2) co-activation of the AR F826L COOH-terminal domain. This increase could not be explained by a higher stability of the mutant protein, which was within wild-type range. Repression of transactivation by the nuclear receptor co-repressor (N-CoR) was not affected by the AR F826L mutation. The observed properties of AR F826L would be in agreement with an increased activity rather than with a partial defective AR transcriptional activation. It is concluded that the penoscrotal hypospadias in the present case is caused by an as yet unknown mechanism, which still may involve the mutant AR.

  13. Androgen receptor, androgen-producing enzymes and their transcription factors in extramammary Paget disease.

    PubMed

    Azmahani, Abdullah; Nakamura, Yasuhiro; Ozawa, Yohei; McNamara, Keely M; Fujimura, Taku; Haga, Takahiro; Hashimoto, Akira; Aiba, Setsuya; Sasano, Hironobu

    2015-11-01

    Extramammary Paget disease (EMPD) has been known to frequently express androgen receptor (AR). Therefore, androgens could play roles in the biological behavior of Paget cells. 5α-Reductase (5α-red) types 1 and 2 and 17β-hydroxysteroid dehydrogenase type 5 (17β-HSD5) are pivotal in situ regulators of androgen production in androgen-responsive tissues including androgen-dependent neoplasms. Therefore, in this study, we immunolocalized AR, androgen-producing enzymes, and their transcription factors to assess the state of in situ androgen production and actions and its correlation of invasiveness in EMPD. We studied 51 cases of EMPD with known clinicopathological status. AR, 5α-red1, 17β-HSD5, and β-catenin immunoreactivity was evaluated by using the modified H-score method while cyclin D1, p53, forkhead box protein P1, and a proliferation marker, Ki-67, were quantified using labeling index. The mean scores of AR, 5α-red1, and 17β-HSD5 in invasive EMPD were all significantly higher than noninvasive EMPD (P < .0001). Ki-67 labeling index as well as the cyclin D1 score was also significantly higher in invasive than noninvasive lesions of EMPD. These results demonstrated that androgen receptor and androgen-producing enzymes were both associated with cell cycle regulation and subsequently the invasiveness of EMPD lesions and could also indicate those above as potential markers of invasive potentials in EMPD.

  14. Lin28A activates androgen receptor via regulation of c-myc and promotes malignancy of ER−/Her2+ breast cancer

    PubMed Central

    Shen, Honghong; Zhao, Lin; Feng, Xiaolong; Xu, Cong; Li, Congying; Niu, Yun

    2016-01-01

    Having previously demonstrated the co-expression status of the Lin28A and androgen receptor (AR) in ER−/Her2+ breast cancer, we tested the hypothesis that Lin28A can activate AR and promotes growth of ER−/Her2+ breast cancer. The expression of Lin28A and AR were examined after Lin28A siRNA and Lin28A plasmid were transfected into ER−/Her2+ breast cancer cells. Chromatin immune-precipitation (ChIP) analysis and Luciferase Assays were used to evaluate the effect of Lin28A and c-myc on AR promoter activity. MTT assays, Boyden chamber invasion assays, colony formation assays and flow cytometry analysis were performed. ER−/Her2+ breast cancer cells which transfected with Lin28A siRNAs and Lin28A plasmid were injected into nude mice, and tumorigenesis was monitored. Our data showed that Lin28A can induced AR expression in ER−/Her2+ breast cancer cells. ChIP analysis showed that Lin28A stimulates the recruitment of c-Myc to the promoter of the AR gene. Lin28A enhanced growth ability, colonies ability, cells proliferation activities, invasive ability and inhibited cells apoptosis of ER−/Her2+ breast cancer cells. Lin28A high expression cells exhibited significantly higher tumorigenic ability in vivo. Our study demonstrates that Lin28A can activates androgen receptor via regulation of c-myc and promotes malignancy of ER−/Her2+ breast cancer. Our findings underline a novel role for Lin28A in breast cancer development and activation of the AR axis. PMID:27494865

  15. Disruption of Androgen Receptor Signaling in Males by Environmental Chemicals

    PubMed Central

    Luccio-Camelo, Doug C.; Prins, Gail S

    2011-01-01

    Androgen-disruptors are environmental chemicals in that interfere with the biosynthesis, metabolism or action of endogenous androgens resulting in a deflection from normal male developmental programming and reproductive tract growth and function. Since male sexual differentiation is entirely androgen-dependent, it is highly susceptible to androgen-disruptors. Animal models and epidemiological evidence link exposure to androgen disrupting chemicals with reduced sperm counts, increased infertility, testicular dysgenesis syndrome, and testicular and prostate cancers. Further, there appears to be increased sensitivity to these agents during critical developmental windows when male differentiation is at its peak. A variety of in vitro and in silico approaches have been used to identify broad classes of androgen disrupting molecules that include organochlorinated pesticides, industrial chemicals, and plasticizers with capacity to ligand the androgen receptor. The vast majority of these synthetic molecules act as anti-androgens. This review will highlight the evidence for androgen disrupting chemicals that act through interference with the androgen receptor, discussing specific compounds for which there is documented in vivo evidence for male reproductive tract perturbations. PMID:21515368

  16. The androgen receptor associates with the epidermal growth factor receptor in androgen-sensitive prostate cancer cells.

    PubMed

    Bonaccorsi, L; Muratori, M; Carloni, V; Marchiani, S; Formigli, L; Forti, G; Baldi, E

    2004-08-01

    Many recent evidences indicate that androgen-sensitive prostate cancer cells have a lower malignant phenotype that is in particular characterized by a reduced migration and invasion. We previously demonstrated that expression of androgen receptor (AR) by transfection of the androgen-independent prostate cancer cell line PC3 decreases invasion and adhesion of these cells (PC3-AR) through modulation of alpha6beta4 integrin expression. The treatment with the synthetic androgen R1881 further reduced invasion of the cells without, however, modifying alpha6beta4 expression on the cell surface, suggesting an interference with the invasion process in response to EGF. We investigated whether the presence of the AR could affect EGF receptor (EGFR)-mediated signaling in response to EGF by evaluating autotransphosphorylation of the receptor as well as activation of downstream signalling pathways. Immunoprecipitation studies demonstrated a reduction of EGF-induced tyrosine phosphorylation of EGFR in PC3-AR cells. In addition, EGF-stimulated PI3K activity, a key signalling pathway for invasion of these cells, was decreased in PC3-AR cells and further reduced by treatment with R1881, indicating decreased functionality of EGFR. An interaction between EGFR and AR has been demonstrated by immunoconfocal and co-immunoprecipitation analysis in PC3-AR cells, suggesting a possible interference of AR on EGFR signalling by interaction of the two proteins. In conclusion, our results suggest that the expression of AR by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR autophosphorylation and signalling in response to EGF leading to invasion through a mechanism involving an interaction between AR and EGFR.

  17. TAF1, From a General Transcription Factor to Modulator of Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2010-02-01

    A., Cheng H., Zoubeidi A., Fazli L., Gleave M., Snoek R., Rennie P. S., TAF1 Differentially Enhances Androgen Receptor Transcriptional Activity via...11:2341-2346 31. Ray MR, Wafa LA, Cheng H, Snoek R, Fazli L, Gleave M, Rennie PS 2006 Cyclin G-associated kinase: a novel androgen receptor... Fazli L, Hurtado-Coll A, Bell RH, Nelson CC, Gleave ME, Cox ME, Rennie PS 2007 Comprehensive expression analysis of L-dopa decarboxylase and established

  18. Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

    DTIC Science & Technology

    2007-10-01

    PCa (9). Thus far, the techniques that have been used to down-regulate the AR include antisense oligonucleotides (10, 11), ribozyme treatments (12...Our findings suggest that ICI may present a useful treatment option for patients with AR-dependent PCa. Unlike the ribozyme , antisense, siRNA, or...Catalytic cleavage of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme . Mol Endocrinol

  19. Crosstalk between RON and androgen receptor signaling in the development of castration resistant prostate cancer

    PubMed Central

    Batth, Izhar; Yun, Huiyoung; Hussain, Suleman; Meng, Peng; Osumulski, Powel; Huang, Tim Hui-Ming; Bedolla, Roble; Profit, Amanda; Reddick, Robert; Kumar, Addanki

    2016-01-01

    Castrate-resistant prostate cancer (CRPC) is the fatal form of prostate cancer. Although reactivation of androgen receptor (AR) occurs following androgen deprivation, the precise mechanism involved is unclear. Here we show that the receptor tyrosine kinase, RON alters mechanical properties of cells to influence epithelial to mesenchymal transition and functions as a transcription factor to differentially regulate AR signaling. RON inhibits AR activation and subset of AR-regulated transcripts in androgen responsive LNCaP cells. However in C4-2B, a castrate-resistant sub-line of LNCaP and AR-negative androgen independent DU145 cells, RON activates subset of AR-regulated transcripts. Expression of AR in PC-3 cells leads to activation of RON under androgen deprivation but not under androgen proficient conditions implicating a role for RON in androgen independence. Consistently, RON expression is significantly elevated in castrate resistant prostate tumors. Taken together our results suggest that RON activation could aid in promoting androgen independence and that inhibition of RON in combination with AR antagonist(s) merits serious consideration as a therapeutic option during hormone deprivation therapy. PMID:26872377

  20. Prostate cancer stem cells: the role of androgen and estrogen receptors

    PubMed Central

    Di Zazzo, Erika; Galasso, Giovanni; Giovannelli, Pia; Di Donato, Marzia; Di Santi, Annalisa; Cernera, Gustavo; Rossi, Valentina; Abbondanza, Ciro; Moncharmont, Bruno; Sinisi, Antonio Agostino; Castoria, Gabriella; Migliaccio, Antimo

    2016-01-01

    Prostate cancer is one of the most commonly diagnosed cancers in men, and androgen deprivation therapy still represents the primary treatment for prostate cancer patients. This approach, however, frequently fails and patients develop castration-resistant prostate cancer, which is almost untreatable. Cancer cells are characterized by a hierarchical organization, and stem/progenitor cells are endowed with tumor-initiating activity. Accumulating evidence indicates that prostate cancer stem cells lack the androgen receptor and are, indeed, resistant to androgen deprivation therapy. In contrast, these cells express classical (α and/or β) and novel (GPR30) estrogen receptors, which may represent new putative targets in prostate cancer treatment. In the present review, we discuss the still-debated mechanisms, both genomic and non-genomic, by which androgen and estradiol receptors (classical and novel) mediate the hormonal control of prostate cell stemness, transformation, and the continued growth of prostate cancer. Recent preclinical and clinical findings obtained using new androgen receptor antagonists, anti-estrogens, or compounds such as enhancers of androgen receptor degradation and peptides inhibiting non-genomic androgen functions are also presented. These new drugs will likely lead to significant advances in prostate cancer therapy. PMID:26506594

  1. Regulation of the androgen receptor by SET9-mediated methylation.

    PubMed

    Gaughan, Luke; Stockley, Jacqueline; Wang, Nan; McCracken, Stuart R C; Treumann, Achim; Armstrong, Kelly; Shaheen, Fadhel; Watt, Kate; McEwan, Iain J; Wang, Chenguang; Pestell, Richard G; Robson, Craig N

    2011-03-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors that plays a critical role in regulating expression of genes involved in prostate development and transformation. Upon hormone binding, the AR associates with numerous co-regulator proteins that regulate the activation status of target genes via flux to the post-translational modification status of histones and the receptor. Here we show that the AR interacts with and is directly methylated by the histone methyltransferase enzyme SET9. Methylation of the AR on lysine 632 is necessary for enhancing transcriptional activity of the receptor by facilitating both inter-domain communication between the N- and C-termini and recruitment to androgen-target genes. We also show that SET9 is pro-proliferative and anti-apoptotic in prostate cancer cells and demonstrates up-regulated nuclear expression in prostate cancer tissue. In all, our date indicate a new mechanism of AR regulation that may be therapeutically exploitable for prostate cancer treatment.

  2. Sequencing the transcriptional network of androgen receptor in prostate cancer.

    PubMed

    Chng, Kern Rei; Cheung, Edwin

    2013-11-01

    The progression of prostate cancer is largely dependent on the activity of the androgen receptor (AR), which in turn, correlates with the net output of the AR transcriptional regulatory network. A detailed and thorough understanding of the AR transcriptional regulatory network is therefore critical in the strategic manipulation of AR activity for the targeted eradication of prostate cancer cells. In this mini-review, we highlight some of the novel and unexpected mechanistic and functional insights of the AR transcriptional network derived from recent targeted sequencing (ChIP-Seq) studies of AR and its coregulatory factors in prostate cancer cells.

  3. Identification of Androgen Receptor-Specific Enhancer RNAs

    DTIC Science & Technology

    2016-06-01

    AND SUBTITLE Identification of Androgen Receptor-Specific Enhancer RNAs 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0120 5c. PROGRAM ELEMENT...enhancer RNAs in response to androgen treatment such that these enhancer RNAs may serve as novel biomarkers for prostate cancer diagnosis and prognosis

  4. Targeting the Androgen Receptor with Steroid Conjugates

    PubMed Central

    2015-01-01

    The androgen receptor (AR) is a major therapeutic target in prostate cancer pharmacology. Progression of prostate cancer has been linked to elevated expression of AR in malignant tissue, suggesting that AR plays a central role in prostate cancer cell biology. Potent therapeutic agents can be precisely crafted to specifically target AR, potentially averting systemic toxicities associated with nonspecific chemotherapies. In this review, we describe various strategies to generate steroid conjugates that can selectively engage AR with high potency. Analogies to recent developments in nonsteroidal conjugates targeting AR are also evaluated. Particular focus is placed on potential applications in AR pharmacology. The review culminates with a description of future prospects for targeting AR. PMID:24936953

  5. Targeting the androgen receptor in triple-negative breast cancer.

    PubMed

    Gucalp, Ayca; Traina, Tiffany A

    Triple-negative breast cancer represents approximately 15%-20% of all newly diagnosed breast cancers, but it accounts for a disproportionate number of breast cancer-related deaths each year. Owing to the lack of estrogen, progesterone, and human epidermal growth factor receptor 2 expression, patients with triple-negative breast cancer do not benefit from generally well-tolerated and effective therapies targeting the estrogen and human epidermal growth factor receptor 2 signaling pathways and are faced with an increased risk of disease progression and poorer overall survival. The heterogeneity of triple-negative breast cancer has been increasingly recognized and this may lead to therapeutic opportunities because of newly defined oncogenic drivers and targets. A subset of triple-negative breast tumors expresses the androgen receptor (AR) and this may benefit from treatments that inhibit the AR-signaling pathway. The first proof-of-concept trial established activity of the AR antagonist, bicalutamide, in patients with advanced AR+ triple-negative breast cancer. Since that time, evidence further supports the activity of other next-generation AR-targeted agents such as enzalutamide. Not unlike in estrogen receptor-positive breast cancer, mechanisms of resistance are being investigated and rationale exists for thoughtful, well-designed combination regimens such as AR antagonism with CDK4/6 pathway inhibitors or PI3K inhibitors. Furthermore, novel agents developed for the treatment of prostate cancer, which reduce androgen production such as abiraterone acetate and seviteronel, are being tested as well. This review summarizes the underlying biology of AR signaling in breast cancer development and the available clinical trial data for the use of anti-androgen therapy in the treatment of AR+ triple-negative breast cancer.

  6. Novel Role for p110β PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells

    PubMed Central

    Guillermet-Guibert, Julie; Smith, Lee B.; Halet, Guillaume; Whitehead, Maria A.; Pearce, Wayne; Rebourcet, Diane; León, Kelly; Crépieux, Pascale; Nock, Gemma; Strömstedt, Maria; Enerback, Malin; Chelala, Claude; Graupera, Mariona; Carroll, John; Cosulich, Sabina; Saunders, Philippa T. K.; Huhtaniemi, Ilpo; Vanhaesebroeck, Bart

    2015-01-01

    The organismal roles of the ubiquitously expressed class I PI3K isoform p110β remain largely unknown. Using a new kinase-dead knockin mouse model that mimics constitutive pharmacological inactivation of p110β, we document that full inactivation of p110β leads to embryonic lethality in a substantial fraction of mice. Interestingly, the homozygous p110β kinase-dead mice that survive into adulthood (maximum ~26% on a mixed genetic background) have no apparent phenotypes, other than subfertility in females and complete infertility in males. Systemic inhibition of p110β results in a highly specific blockade in the maturation of spermatogonia to spermatocytes. p110β was previously suggested to signal downstream of the c-kit tyrosine kinase receptor in germ cells to regulate their proliferation and survival. We now report that p110β also plays a germ cell-extrinsic role in the Sertoli cells (SCs) that support the developing sperm, with p110β inactivation dampening expression of the SC-specific Androgen Receptor (AR) target gene Rhox5, a homeobox gene critical for spermatogenesis. All extragonadal androgen-dependent functions remain unaffected by global p110β inactivation. In line with a crucial role for p110β in SCs, selective inactivation of p110β in these cells results in male infertility. Our study is the first documentation of the involvement of a signalling enzyme, PI3K, in the regulation of AR activity during spermatogenesis. This developmental pathway may become active in prostate cancer where p110β and AR have previously been reported to functionally interact. PMID:26132308

  7. Apolipoprotein D (APOD) is a putative biomarker of androgen receptor function in androgen insensitivity syndrome.

    PubMed

    Appari, Mahesh; Werner, Ralf; Wünsch, Lutz; Cario, Gunnar; Demeter, Janos; Hiort, Olaf; Riepe, Felix; Brooks, James D; Holterhus, Paul-Martin

    2009-06-01

    Androgen insensitivity syndrome (AIS) is the most common cause of disorders of sex development usually caused by mutations in the androgen receptor (AR) gene. AIS is characterized by a poor genotype-phenotype correlation, and many patients with clinically presumed AIS do not seem to have mutations in the AR gene. We therefore aimed at identifying a biomarker enabling the assessment of the cellular function of the AR as a transcriptional activator. In the first step, we used complementary DNA (cDNA) microarrays for a genome-wide screen for androgen-regulated genes in two normal male primary scrotal skin fibroblast strains compared to two labia majora fibroblast strains from 46,XY females with complete AIS (CAIS). Apolipoprotein D (APOD) and two further transcripts were significantly upregulated by dihydrotestosterone (DHT) in scrotum fibroblasts, while CAIS labia majora cells were unresponsive. Microarray data were well correlated with quantitative real-time polymerase chain reaction (qRT-PCR; R = 0.93). Subsequently, we used qRT-PCR in independent new cell cultures and confirmed the significant DHT-dependent upregulation of APOD in five normal scrotum strains [13.5 +/- 8.2 (SD)-fold] compared with three CAIS strains (1.2 +/- 0.7-fold, p = 0.028; t test) and six partial androgen insensitivity syndrome strains (2 +/- 1.3-fold, p = 0.034; t test). Moreover, two different 17ss-hydroxysteroid dehydrogenase III deficiency labia majora strains showed APOD induction in the range of normal scrotum (9.96 +/- 1.4-fold), supporting AR specificity. Therefore, qRT-PCR of APOD messenger RNA transcription in primary cultures of labioscrotal skin fibroblasts is a promising tool for assessing AR function, potentially allowing a function-based diagnostic evaluation of AIS in the future.

  8. Racial differences in the androgen/androgen receptor pathway in prostate cancer.

    PubMed Central

    Pettaway, C. A.

    1999-01-01

    Pathologic and epidemiologic data suggest that while little racial variation exists in prostate cancer prevalence ("autopsy cancer"), striking racial variation exists for the clinically diagnosed form of the disease. A review of the available literature was performed to define whether racial differences in serum androgen levels or qualitative or quantitative differences in the androgen receptor were correlated with prostate cancer incidence or severity. Black men were found to be exposed to higher circulating testosterone levels from birth to about age 35 years. Such differences were not consistently noted among older men. Significant differences also were found for dihydrotestosterone metabolites among black, white, and Asian men. Unique racial genetic polymorphisms were noted for the gene for 5 alpha-reductase type 2 among black and Asian men. Novel androgen receptor mutations recently have been described among Japanese, but not white, men with latent prostate cancer. Finally, androgen receptor gene polymorphisms leading to shorter or longer glutamine and glycine residues in the receptor protein are correlated with racial variation in the incidence and severity of prostate cancer. This same polymorphism also could explain racial variation in serum prostate-specific antigen levels. Collectively, these data strongly suggest racial differences within the androgen/androgen receptor pathway not only exist but could be one cause of clinically observed differences in the biology of prostate cancer among racial groups. Images Figure 1 PMID:10628124

  9. Development of β-amino-carbonyl compounds as androgen receptor antagonists

    PubMed Central

    Zhang, Zhi-yun; Zhu, Yan-hui; Zhou, Cai-hong; Liu, Qing; Lu, Hui-li; Ge, Yun-jun; Wang, Ming-wei

    2014-01-01

    Aim: Androgen receptor (AR) antagonists have proven to be useful in the early control of prostate cancer. The aim of this study was to identify and characterize a novel β-amino-carbonyl-based androgen receptor antagonist. Methods: Different isomers of the β-amino-carbonyl compounds were obtained by chiral separation. The bioactivities of the isomers were evaluated by AR nuclear translocation, mammalian two-hybrid, competitive receptor binding and cell proliferation assays. The expression of genes downstream of AR was analyzed with real-time PCR. The therapeutic effects on tumor growth in vivo were observed in male SCID mice bearing LNCaP xenografts. Results: Compound 21 was previously identified as an AR modulator by the high-throughput screening of a diverse compound library. In the present study, the two isomers of compound 21, termed compounds 21-1 and 21-2, were characterized as partial AR agonists in terms of androgen-induced AR nuclear translocation, prostate-specific antigen expression and cell proliferation. Further structural modifications led to the discovery of a androgen receptor antagonist (compound 6012), which blocked androgen receptor nuclear translocation, androgen-responsive gene expression and androgen-dependent LNCaP cell proliferation. Four stereoisomers of compound 6012 were isolated, and their bioactivities were assessed. The pharmacological effects of 6012, including AR binding, androgen-induced AR translocation, NH2- and COOH-terminal interaction, growth inhibition of LNCaP cells in vitro and LNCaP xenograft growth in nude mice, were mainly restricted to isomer 6012-4 (1R, 3S). Conclusion: Compound 6012-4 was determined to be a novel androgen receptor antagonist with prostate cancer inhibitory activities comparable to bicalutamide both in vitro and in vivo. PMID:24786235

  10. Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters.

    PubMed

    Jálová, V; Jarošová, B; Bláha, L; Giesy, J P; Ocelka, T; Grabic, R; Jurčíková, J; Vrana, B; Hilscherová, K

    2013-09-01

    Passive and composite sampling in combination with in vitro bioassays and identification and quantification of individual chemicals were applied to characterize pollution by compounds with several specific modes of action in urban area in the basin of two rivers, with 400,000 inhabitants and a variety of industrial activities. Two types of passive samplers, semipermeable membrane devices (SPMD) for hydrophobic contaminants and polar organic chemical integrative samplers (POCIS) for polar compounds such as pesticides and pharmaceuticals, were used to sample wastewater treatment plant (WWTP) influent and effluent as well as rivers upstream and downstream of the urban complex and the WWTP. Compounds with endocrine disruptive potency were detected in river water and WWTP influent and effluent. Year-round, monthly assessment of waste waters by bioassays documented estrogenic, androgenic and dioxin-like potency as well as cytotoxicity in influent waters of the WWTP and allowed characterization of seasonal variability of these biological potentials in waste waters. The WWTP effectively removed cytotoxic compounds, xenoestrogens and xenoandrogens. There was significant variability in treatment efficiency of dioxin-like potency. The study indicates that the WWTP, despite its up-to-date technology, can contribute endocrine disrupting compounds to the river. Riverine samples exhibited dioxin-like, antiestrogenic and antiandrogenic potencies. The study design enabled characterization of effects of the urban complex and the WWTP on the river. Concentrations of PAHs and contaminants and specific biological potencies sampled by POCIS decreased as a function of distance from the city.

  11. Minoxidil may suppress androgen receptor-related functions

    PubMed Central

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-01-01

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a Kd value of 2.6 μM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases. PMID:24742982

  12. Autoimmune anti-androgen-receptor antibodies in human serum.

    PubMed Central

    Liao, S; Witte, D

    1985-01-01

    Circulating autoantibodies to human and rat androgen receptors are present at high titers in the blood sera of some patients with prostate diseases. The antibodies from some serum samples were associated with a purified IgG fraction and interacted with the 3.8S cytosolic androgen-receptor complexes of rat ventral prostate to form 9- to 12S units. Other serum samples, however, formed 14- to 19S units, suggesting that other immunoglobulins might be involved. In the presence of an anti-human immunoglobulin as a second antibody, the androgen-receptor-antibody complexes could be immunoprecipitated. The antibodies interacted with the nuclear and the cytosolic androgen-receptor complexes, either the DNA-binding or the nonbinding form, but not with receptors for estradiol, progestin, or dexamethasone from a variety of sources. Human testosterone/estradiol-binding globulin, rat epididymal androgen-binding protein, or rat prostate alpha-protein (a nonreceptor steroid-binding protein) also did not interact with the antibodies to form immunoprecipitates. About 37% of male and 3% of female serum samples screened had significant antibody titer. The chance of finding serum with a high titer is much better in males older than 66 years than in the younger males or females at all ages. The presence of the high-titer antibodies may make it possible to prepare monoclonal antibodies to androgen receptors without purification of the receptors for immunization. PMID:3866227

  13. Testosterone-mediated increase in 5 alpha-dihydrotestosterone content, nuclear androgen receptor levels, and cell division in an androgen-independent prostate carcinoma of Noble rats.

    PubMed

    Ho, S M; Leav, I; Damassa, D; Kwan, P W; Merk, F B; Seto, H S

    1988-02-01

    An androgen-independent, transplantable prostate carcinoma line (AIT), originally derived from the dorsolateral prostate (DLP) of Noble rat, was implanted into orchiectomized Noble rats and its response to androgen stimulation was studied and compared to that of the regenerating DLP tissue in sexually ablated rats. AIT tumors carried in castrated hosts displayed a high basal level of proliferative activity (mitotic index (MI), 15.0 +/- 0.5) while DLP tissue in untreated castrates exhibited no proliferative activity. Following androgen stimulation by testosterone capsule implantation into host rats, the AIT responded with a marked increase in cell proliferation; MI values doubled to 30.0 +/- 2.9 on Day 5 following androgen stimulation. This androgen-induced increase in MI values was coincident with elevations in nuclear androgen receptor (20-fold increase) and 5 alpha-dihydrotestosterone content (3-fold increase) in the tumor. However, by Day 10 following androgen treatment, indices of cell proliferation in the AIT declined to pre-androgen-stimulated levels (MI, 14.8 +/- 1.9) despite the continued elevations in nuclear androgen receptor and tissue 5 alpha-dihydrotestosterone contents. Parallel changes in MI were also observed in the normal regenerating DLP following androgen stimulation. MI values in this tissue increased from nondetectable levels to 38.1 +/- 4.7 on Day 5 but declined to relatively low levels (4.5 +/- 0.9) by Day 10 following androgen replacement. Taken together these findings led us to conclude that the AIT carried in castrates is capable of responding to testosterone in a manner similar to that observed for androgen-stimulated DLP of sexually ablated rats. Thus, in both the neoplastic and regenerating tissues, the initial response to androgen is characterized by a marked enhancement of cell proliferation which was correlated with an increase in androgen receptor and 5 alpha-dihydrotestosterone content. However, like its tissue of origin, the AIT

  14. MASCULINIZATION OF FEMALE MOSQUITO FISH IN KRAFT MILL EFFLUENT -CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY.

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp-mill effluent (PME) from the Fen...

  15. MASCULINIZATION OF FEMALE MOSQUITOFISH IN KRAFT MILL EFFLUENT-CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp mill effluent (PME) from the Fe...

  16. 7alpha-methyl-19-nortestosterone, a synthetic androgen with high potency: structure-activity comparisons with other androgens.

    PubMed

    Kumar, N; Crozat, A; Li, F; Catterall, J F; Bardin, C W; Sundaram, K

    1999-12-31

    CNNT. There was a good correlation between bioactivity and binding affinity to AR for the 7alpha-substituted androgens compared to T. In contrast, relative to their binding affinity to AR, the androgenic potency of DHT and 19-NT was lower compared to T. The reason for the lower in vivo androgenic activity of 19-NT is attributable to its enzymatic conversion to 5alpha-reduced-19-NT in the prostate. In the case of DHT, the lower bioactivity could be attributed to its faster metabolic clearance rate relative to T. The correlation was further investigated in vitro by co-transfection of rat ARcDNA expression plasmid and a reporter plasmid encoding the chloramphenicol acetyl transferase (CAT) gene driven by an androgen inducible promoter into CV-1 cells. All the androgens led to a dose-dependent increase in the CAT activity. MENT was found to be the most potent followed by DHT, 19-NT, T, and CNNT. The specificity of the androgenic response was confirmed by its inhibition with hydroxyflutamide, an antiandrogen. Thus, there was a good correlation between binding affinity and in vitro bioactivity in the transient transfection assay for the androgens. This suggests that the in vivo bioactivity of androgens could be influenced not only by binding affinity to receptors but also by factors such as absorption, binding to serum proteins and metabolism. However, the high potency of MENT is primarily related to its higher affinity to AR.

  17. Toxic Identification and Evaluation of Androgen Receptor Antagonistic Activities in Acid-Treated Liver Extracts of High-Trophic Level Wild Animals from Japan.

    PubMed

    Misaki, Kentaro; Suzuki, Go; Tue, Nguyen Minh; Takahashi, Shin; Someya, Masayuki; Takigami, Hidetaka; Tajima, Yuko; Yamada, Tadasu K; Amano, Masao; Isobe, Tomohiko; Tanabe, Shinsuke

    2015-10-06

    Sulfuric acid-treated liver extracts of representative high-trophic level Japanese animals were analyzed by toxic identification and evaluation (TIE) with chemically activated luciferase expression (CALUX) and chemical analysis to elucidate androgen receptor (AR) antagonistic activities and potential contributions of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The activities were detected in striped dolphins (n = 5), Stejneger's beaked whales (n = 6), golden eagle (n = 1), and Steller's sea eagle (n = 1) with CALUX-flutamide equivalents (FluEQs) as follow: 38 (20-52), 47 (21-96), 5.0, and 80 μg FluEQ/g-lipid, respectively. The AR antagonism was detected in limited number of specimens at lower levels for finless porpoise, raccoon dog, and common cormorant. Theoretical activities (Theo-FluEQs) were calculated using the concentration of OCPs and PCBs and their IC25-based relative potency (REP) values. These total contribution to CALUX-FluEQ was 126%, 84%, 53%, 55%, and 44% for striped dolphin, Steller's sea eagle, Stejneger's beaked whale, finless porpoise, and golden eagle, respectively, and the main contributor was p,p'-DDE. However, most of the activities for raccoon dog (7.6%) and common cormorant (17%) could not be explained by OCPs and PCBs. This suggests other unknown compounds could function as AR antagonists in these terrestrial species.

  18. Prevalent flucocorticoid and androgen activity in US water sources

    USGS Publications Warehouse

    Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki; Iwanowiczl, Luke R.; Hager, Gordon L.

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  19. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells.

    PubMed

    Fang, Fang; Qin, Yingxin; Hao, Feng; Li, Qiang; Zhang, Wei; Zhao, Chen; Chen, Shuang; Zhao, Liangzhong; Wang, Liguo; Cai, Jianhui

    2016-08-01

    The androgen signaling pathway serves an important role in the development of prostate cancer. β-Catenin is an androgen receptor (AR) cofactor and augments AR signaling. Glycogen synthase kinase-3β (GSK-3β), a target of phosphorylated serine/threonine protein kinase B (p-Akt), regulates β-catenin stability. In addition, β-catenin, a coregulator of AR, physically interacts with AR and enhances AR-mediated target gene transcription. The multifunctional glycoprotein cluster of differentiation (CD) 147 is highly expressed on the cell surface of the majority of cancer cells, and it promotes tumor invasion, metastasis and growth. In the present study, the molecular effects of CD147 on the Akt/GSK-3β/β-catenin/AR signaling network were investigated in LNCaP cells. Using short hairpin-mediated RNA knockdown of CD147 in LNCaP cells, it was demonstrated that downregulation of CD147 resulted in inhibitory phosphorylation of GSK-3β, and then promoted degeneration of β-catenin and reduced nuclear accumulation of β-catenin. In addition, immunoprecipitation studies demonstrated that CD147 downregulation decreased the formation of a complex between β-catenin and AR. It was shown that CD147 knockdown suppressed the expression of the AR target gene prostate-specific antigen and the growth of AR-positive LNCaP cells. Furthermore, inhibition of PI3K/Akt with LY294002 augmented CD147-mediated function. The present study indicates that the PI3K/Akt pathway may facilitate CD147-mediated activation of the AR pathway.

  20. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells

    PubMed Central

    Fang, Fang; Qin, Yingxin; Hao, Feng; Li, Qiang; Zhang, Wei; Zhao, Chen; Chen, Shuang; Zhao, Liangzhong; Wang, Liguo; Cai, Jianhui

    2016-01-01

    The androgen signaling pathway serves an important role in the development of prostate cancer. β-Catenin is an androgen receptor (AR) cofactor and augments AR signaling. Glycogen synthase kinase-3β (GSK-3β), a target of phosphorylated serine/threonine protein kinase B (p-Akt), regulates β-catenin stability. In addition, β-catenin, a coregulator of AR, physically interacts with AR and enhances AR-mediated target gene transcription. The multifunctional glycoprotein cluster of differentiation (CD) 147 is highly expressed on the cell surface of the majority of cancer cells, and it promotes tumor invasion, metastasis and growth. In the present study, the molecular effects of CD147 on the Akt/GSK-3β/β-catenin/AR signaling network were investigated in LNCaP cells. Using short hairpin-mediated RNA knockdown of CD147 in LNCaP cells, it was demonstrated that downregulation of CD147 resulted in inhibitory phosphorylation of GSK-3β, and then promoted degeneration of β-catenin and reduced nuclear accumulation of β-catenin. In addition, immunoprecipitation studies demonstrated that CD147 downregulation decreased the formation of a complex between β-catenin and AR. It was shown that CD147 knockdown suppressed the expression of the AR target gene prostate-specific antigen and the growth of AR-positive LNCaP cells. Furthermore, inhibition of PI3K/Akt with LY294002 augmented CD147-mediated function. The present study indicates that the PI3K/Akt pathway may facilitate CD147-mediated activation of the AR pathway. PMID:27446405

  1. REPEATED ANABOLIC/ANDROGENIC STEROID EXPOSURE DURING ADOLESCENCE ALTERS PHOSPHATE-ACTIVATED GLUTAMINASE AND GLUTAMATE RECEPTOR 1 SUBUNIT IMMUNOREACTIVITY IN HAMSTER BRAIN: CORRELATION WITH OFFENSIVE AGGRESSION

    PubMed Central

    Fischer, Shannon G.; Ricci, Lesley A.; Melloni, Richard H.

    2007-01-01

    Male Syrian hamsters (Mesocricetus auratus) treated with moderately high doses (5.0mg/kg/day) of anabolic/androgenic steroids (AAS) during adolescence (P27–P56) display highly escalated offensive aggression. The current study examined whether adolescent AAS-exposure influenced the immunohistochemical localization of phosphate-activated glutaminase (PAG), the rate-limiting enzyme in the synthesis of glutamate, a fast-acting neurotransmitter implicated in the modulation of aggression in various species and models of aggression, as well as glutamate receptor 1 subunit (GluR1). Hamsters were administered AAS during adolescence, scored for offensive aggression using the resident-intruder paradigm, and then examined for changes in PAG and GluR1 immunoreactivity in areas of the brain implicated in aggression control. When compared with sesame oil-treated control animals, aggressive AAS-treated hamsters displayed a significant increase in the number of PAG- and area density of GluR1- containing neurons in several notable aggression regions, although the differential pattern of expression did not appear to overlap across brain regions. Together, these results suggest that altered glutamate synthesis and GluR1 receptor expression in specific aggression areas may be involved in adolescent AAS-induced offensive aggression. PMID:17418431

  2. Inhibition of the Androgen Receptor by Antiandrogens in Spinobulbar Muscle Atrophy.

    PubMed

    Baniahmad, Aria

    2016-03-01

    Spinal-bulbar muscle atrophy (SBMA) or also named Kennedy's Disease is caused by a polyglutamine expansion (PolyQ) of the coding region of the androgen receptor (AR). The AR is a ligand-controlled transcription factor and member of the nuclear hormone receptor superfamily. The central characteristics of the SBMA pathogenicity are muscle weakness, the loss of motoneurons and the occurrence of AR-containing protein aggregates that are observed in spinal cord motoneurons and skeletal muscles induced by the AR-PolyQ expansion in the presence of androgens. The PolyQ triggers a misfolding in the AR-PolyQ and leads to protein aggregation in spinal cord motoneurons and muscle cells. The AR-PolyQ toxicity is activated by the AR ligand testosterone and dihydrotestosterone that activate the receptor and triggers nuclear toxicity by inducing AR nuclear translocation. In line with this, androgen treatment of SBMA patients worsened the SBMA symptoms. SBMA has been modeled in AR-overexpressing and AR-PolyQ-knock-in animals, but precisely how the PolyQ expansion leads to neurodegeneration is unclear. The androgen-induced toxicity and androgen-dependent nuclear accumulation of AR-PolyQ protein seems to be central to the pathogenesis. Therefore, the inhibition of the androgen-activated AR-PolyQ might be a therapeutic option. Here the use of AR antagonists for treatment option of SBMA will be reviewed and discussed.

  3. Lack of binding to isolated estrogen or androgen receptors, and inactivity in the immature rat uterotrophic assay, of the ultraviolet sunscreen filters Tinosorb M-active and Tinosorb S.

    PubMed

    Ashby, J; Tinwell, H; Plautz, J; Twomey, K; Lefevre, P A

    2001-12-01

    The presence of structurally diverse chemicals as contaminants in the environment has led to concerns regarding their possible endocrine disturbing effects. Recently, some ultraviolet absorbing components of sunscreen preparations have given positive responses in assays monitoring estrogen-like activity both in vitro and in vivo. Consequently, two recently developed sunscreen components, Tinosorb M-active and Tinosorb S, were evaluated using the in vitro estrogen and androgen receptor competitive binding assays. Neither compound gave a positive response in either of the assays, consistent with the large molecular dimensions of each chemical disfavoring binding to the hormone receptors. Both of the chemicals were inactive in immature rat uterotrophic assays conducted using the subcutaneous route of administration. It is concluded that neither of these agents possess intrinsic estrogenic/antiestrogenic or androgenic/antiandrogenic activity. The several positive control chemicals evaluated gave the expected positive responses in the assays used.

  4. Id4 deficiency attenuates prostate development and promotes PIN-like lesions by regulating androgen receptor activity and expression of NKX3.1 and PTEN

    PubMed Central

    2013-01-01

    Background Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. Id4 is expressed in the normal prostate where its expression is also regulated by androgens. In this study we investigated the effect of loss of Id4 (Id4-/-) on adult prostate morphology. Methods Histological analysis was performed on prostates from 6-8 weeks old Id4-/-, Id4+/- and Id4+/+ mice. Expression of Id1, Sox9, Myc, androgen receptor, Akt, p-Akt, Pten and Nkx3.1 was investigated by immunohistochemistry. Androgen receptor binding on NKX3.1 promoter was studied by chromatin immuno-precipitation. Id4 was either over-expressed or silenced in prostate cancer cell lines DU145 and LNCaP respectively followed by analysis of PTEN, NKX3.1 and Sox9 expression. Results Id4-/- mice had smaller prostates with fewer tubules, smaller tubule diameters and subtle mPIN like lesions. Levels of androgen receptor were similar between wild type and Id4-/- prostate. Decreased NKX3.1 expression was in part due to decreased androgen receptor binding on NKX3.1 promoter in Id4-/- mice. The increase in the expression of Myc, Sox9, Id1, Ki67 and decrease in the expression of PTEN, Akt and phospho-AKT was associated with subtle mPIN like lesions in Id4-/- prostates. Finally, prostate cancer cell line models in which Id4 was either silenced or over-expressed confirmed that Id4 regulates NKX3.1, Sox9 and PTEN. Conclusions Our results suggest that loss of Id4 attenuates normal prostate development and promotes hyperplasia/dysplasia with subtle mPIN like lesions characterized by gain of Myc and Id1 and loss of Nkx3.1 and Pten expression. One of the mechanisms by which Id4 may regulate normal prostate development is through regulating androgen receptor binding to respective response elements such as those on NKX3.1 promoter. In spite of these complex alterations, large neoplastic lesions in Id4-/- prostates were not

  5. Androgens downregulate miR-21 expression in breast cancer cells underlining the protective role of androgen receptor.

    PubMed

    Casaburi, Ivan; Cesario, Maria Grazia; Donà, Ada; Rizza, Pietro; Aquila, Saveria; Avena, Paola; Lanzino, Marilena; Pellegrino, Michele; Vivacqua, Adele; Tucci, Paola; Morelli, Catia; Andò, Sebastiano; Sisci, Diego

    2016-03-15

    Although the protective role of androgen receptor (AR) in breast cancer (BC) is well established, the mechanisms involved remains largely unexplored. MicroRNAs play fundamental roles in many biological processes, including tumor cell development and metastasis. Herein, we report that androgens reduce BC cells proliferation acting as a negative modulator of the onco-miRNA-21.The synthetic androgen miboleron (Mib) decreases BC cell proliferation induced by miR-21 over-expression and AR knockdown evidenced the requirement of AR in the down-regulation of miR-21 expression. These effects seem to be a general mechanism occurring in BC tissues.Chromatin immune-precipitation (ChIP) analysis disclosed the binding of AR to a specific ARE sequence in miR-21 proximal promoter and recognizes the recruitment of HDAC3 as component for AR-mediated transcriptional repression. Such event is associated to a significantly reduced PolII binding in Mib treated extracts confirming that activated AR is a transcriptional repressor of miR-21 expression, providing further insight into the protective role of androgens in breast cancer cells.Collectively, our data and the widespread AR expression in primary and metastatic breast tumours, suggest a careful examination of the therapeutic potential of androgens also in potentiating the effectiveness of anti-oestrogen adjuvant therapies.

  6. Androgens downregulate miR-21 expression in breast cancer cells underlining the protective role of androgen receptor

    PubMed Central

    Donà, Ada; Rizza, Pietro; Aquila, Saveria; Avena, Paola; Lanzino, Marilena; Pellegrino, Michele; Vivacqua, Adele; Tucci, Paola; Morelli, Catia; Andò, Sebastiano; Sisci, Diego

    2016-01-01

    Although the protective role of androgen receptor (AR) in breast cancer (BC) is well established, the mechanisms involved remains largely unexplored. MicroRNAs play fundamental roles in many biological processes, including tumor cell development and metastasis. Herein, we report that androgens reduce BC cells proliferation acting as a negative modulator of the onco-miRNA-21. The synthetic androgen miboleron (Mib) decreases BC cell proliferation induced by miR-21 over-expression and AR knockdown evidenced the requirement of AR in the down-regulation of miR-21 expression. These effects seem to be a general mechanism occurring in BC tissues. Chromatin immune-precipitation (ChIP) analysis disclosed the binding of AR to a specific ARE sequence in miR-21 proximal promoter and recognizes the recruitment of HDAC3 as component for AR-mediated transcriptional repression. Such event is associated to a significantly reduced PolII binding in Mib treated extracts confirming that activated AR is a transcriptional repressor of miR-21 expression, providing further insight into the protective role of androgens in breast cancer cells. Collectively, our data and the widespread AR expression in primary and metastatic breast tumours, suggest a careful examination of the therapeutic potential of androgens also in potentiating the effectiveness of anti-oestrogen adjuvant therapies. PMID:26862856

  7. Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant Prostate Cancers

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBERS: W81XWH-14-1-0518 TITLE: Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant...COVERED 30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of a New Class of Drugs to Inhibit All Forms of Androgen...designed to block AR activity that re- emerges during castration. However, despite a growing armamentarium of drugs targeting the androgen/AR signaling

  8. Suppression of Androgen Receptor Transactivation by Akt Kinase

    DTIC Science & Technology

    2005-01-01

    sufficient for the survival of nerve growth factor-dependent sympathetic neurons . J Neurosci. 18:2933-2943. 10 Principal Investigator: Chang...dominant inherited cancer syndromes Abbreviations: aa, Amino acid; AR, androgen receptor; such as Cowden’s disease , which is associated with CDK...Endocrine mechanisms of disease , an inherited breast and thyroid cancer syn- disease : expression and degradation of androgen drome. Nat Genet 16:64-67

  9. Myocyte androgen receptors increase metabolic rate and improve body composition by reducing fat mass.

    PubMed

    Fernando, Shannon M; Rao, Pengcheng; Niel, Lee; Chatterjee, Diptendu; Stagljar, Marijana; Monks, D Ashley

    2010-07-01

    Testosterone and other androgens are thought to increase lean body mass and reduce fat body mass in men by activating the androgen receptor. However, the clinical potential of androgens for improving body composition is hampered by our limited understanding of the tissues and cells that promote such changes. Here we show that selective overexpression of androgen receptor in muscle cells (myocytes) of transgenic male rats both increases lean mass percentage and reduces fat mass. Similar changes in body composition are observed in human skeletal actin promoter driving expression of androgen receptor (HSA-AR) transgenic mice and result from acute testosterone treatment of transgenic female HSA-AR rats. These shifts in body composition in HSA-AR transgenic male rats are associated with hypertrophy of type IIb myofibers and decreased size of adipocytes. Metabolic analyses of transgenic males show higher activity of mitochondrial enzymes in skeletal muscle and increased O(2) consumption by the rats. These results indicate that androgen signaling in myocytes not only increases muscle mass but also reduces fat body mass, likely via increases in oxidative metabolism.

  10. Regulators of Androgen Action Resource: a one-stop shop for the comprehensive study of androgen receptor action.

    PubMed

    DePriest, Adam D; Fiandalo, Michael V; Schlanger, Simon; Heemers, Frederike; Mohler, James L; Liu, Song; Heemers, Hannelore V

    2016-01-01

    Androgen receptor (AR) is a ligand-activated transcription factor that is the main target for treatment of non-organ-confined prostate cancer (CaP). Failure of life-prolonging AR-targeting androgen deprivation therapy is due to flexibility in steroidogenic pathways that control intracrine androgen levels and variability in the AR transcriptional output. Androgen biosynthesis enzymes, androgen transporters and AR-associated coregulators are attractive novel CaP treatment targets. These proteins, however, are characterized by multiple transcript variants and isoforms, are subject to genomic alterations, and are differentially expressed among CaPs. Determining their therapeutic potential requires evaluation of extensive, diverse datasets that are dispersed over multiple databases, websites and literature reports. Mining and integrating these datasets are cumbersome, time-consuming tasks and provide only snapshots of relevant information. To overcome this impediment to effective, efficient study of AR and potential drug targets, we developed the Regulators of Androgen Action Resource (RAAR), a non-redundant, curated and user-friendly searchable web interface. RAAR centralizes information on gene function, clinical relevance, and resources for 55 genes that encode proteins involved in biosynthesis, metabolism and transport of androgens and for 274 AR-associated coregulator genes. Data in RAAR are organized in two levels: (i) Information pertaining to production of androgens is contained in a 'pre-receptor level' database, and coregulator gene information is provided in a 'post-receptor level' database, and (ii) an 'other resources' database contains links to additional databases that are complementary to and useful to pursue further the information provided in RAAR. For each of its 329 entries, RAAR provides access to more than 20 well-curated publicly available databases, and thus, access to thousands of data points. Hyperlinks provide direct access to gene

  11. Dihydrotestosterone differentially modulates the mitogen-activated protein kinase and the phosphoinositide 3-kinase/Akt pathways through the nuclear and novel membrane androgen receptor in C6 cells.

    PubMed

    Gatson, Joshua W; Kaur, Paramjit; Singh, Meharvan

    2006-04-01

    Androgens such as dihydrotestosterone (DHT) are known to exert their effects through the activation of intracellular receptors that regulate the transcription of target genes. Alternatively, nongenomic mechanisms, including the activation of such signaling pathways as the MAPK pathways, have been described. It is unclear, however, whether this latter mechanism of action is mediated by the classical androgen receptor (AR) or some alternative mechanism. In this study, using a glial cell model (C6 cells) that we found to express the AR, we identified that DHT increased the phosphorylation of both ERK and Akt, key effectors of the neuroprotection-associated MAPK and phosphoinositide 3-kinase signaling pathways, respectively, and ERK phosphorylation was blocked by the AR antagonist, flutamide. In contrast, the membrane-impermeable, BSA-conjugated androgen (DHT-BSA) caused a dose-dependent suppression of ERK and Akt phosphorylation, suggesting the existence of a novel membrane-associated AR that mediates this opposite effect on neuroprotective signaling. This is also supported by the observation of DHT-displaceable binding sites on the cell surface of live C6 cells. Collectively, these data support the existence of a novel membrane-associated AR in glial cells and argue for the existence of two, potentially competing, pathways in a given cell or tissue. This mutual antagonism was supported by the ability of DHT-BSA to attenuate DHT-induced ERK phosphorylation. Thus, depending on the predominance of one receptor mechanism over another, the outcome of androgen treatment may be very different and, as such, could help explain existing discrepancies as to whether androgens are protective or damage inducing.

  12. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary.

    PubMed

    Yang, Mei; Li, Jianhua; An, Yulin; Zhang, Shuiwen

    2015-10-01

    Androgens have essential roles in the regulation of follicular development and female fertility. Androgen excess is the leading defect in polycystic ovary syndrome (PCOS) patients and involved in the ovarian dysfunction. The aim of this study was to elucidate the regarding regulatory role of androgen in the follicular development of female mouse. Immunohistochemical staining and Western blot analyses were performed to detect androgen receptor (AR) and Connexin 43 (Cx43) expression in ovaries from both control and testosterone-treated group mice. In this study, localizations of AR and Cx43 were dramatically altered in testosterone-treated mouse ovaries. In addition, AR expression was significantly increased, whereas Cx43 expression was markedly decreased after testosterone treatment. Alterations of AR and Cx43 expression by testosterone with concomitant reduction of MII oocytes. Overall, these results suggest the involvement of androgen in the regulation of AR and Cx43 localizations in mouse ovary. Alterations of AR and Cx43 expression by testosterone may affect normal folliculogenesis. Together these findings will enable us to begin understanding the important roles of AR and Cx43 actions in the regulation of follicular development, as well as providing insights into the role of AR and Cx43 actions in the androgen-associated reproductive diseases such as PCOS.

  13. Sintokamide A Is a Novel Antagonist of Androgen Receptor That Uniquely Binds Activation Function-1 in Its Amino-terminal Domain*

    PubMed Central

    Banuelos, Carmen A.; Tavakoli, Iran; Tien, Amy H.; Caley, Daniel P.; Mawji, Nasrin R.; Li, Zhenzhen; Wang, Jun; Yang, Yu Chi; Imamura, Yusuke; Yan, Luping; Wen, Jian Guo; Andersen, Raymond J.; Sadar, Marianne D.

    2016-01-01

    Androgen receptor (AR) is a validated drug target for all stages of prostate cancer including metastatic castration-resistant prostate cancer (CRPC). All current hormone therapies for CRPC target the C-terminal ligand-binding domain of AR and ultimately all fail with resumed AR transcriptional activity. Within the AR N-terminal domain (NTD) is activation function-1 (AF-1) that is essential for AR transcriptional activity. Inhibitors of AR AF-1 would potentially block most AR mechanisms of resistance including constitutively active AR splice variants that lack the ligand-binding domain. Here we provide evidence that sintokamide A (SINT1) binds AR AF-1 region to specifically inhibit transactivation of AR NTD. Consistent with SINT1 targeting AR AF-1, it attenuated transcriptional activities of both full-length AR and constitutively active AR splice variants, which correlated with inhibition of growth of enzalutamide-resistant prostate cancer cells expressing AR splice variants. In vivo, SINT1 caused regression of CRPC xenografts and reduced expression of prostate-specific antigen, a gene transcriptionally regulated by AR. Inhibition of AR activity by SINT1 was additive to EPI-002, a known AR AF-1 inhibitor that is in clinical trials (NCT02606123). This implies that SINT1 binds to a site on AF-1 that is unique from EPI. Consistent with this suggestion, these two compounds showed differences in blocking AR interaction with STAT3. This work provides evidence that the intrinsically disordered NTD of AR is druggable and that SINT1 analogs may provide a novel scaffold for drug development for the treatment of prostate cancer or other diseases of the AR axis. PMID:27576691

  14. Androgen Receptor Signalling in Prostate Cancer: The Functional Consequences of Acetylation

    PubMed Central

    Lavery, Derek N.; Bevan, Charlotte L.

    2011-01-01

    The androgen receptor (AR) is a ligand activated transcription factor and member of the steroid hormone receptor (SHR) subfamily of nuclear receptors. In the early stages of prostate carcinogenesis, tumour growth is dependent on androgens, and AR directly mediates these effects by modulating gene expression. During transcriptional regulation, the AR recruits numerous cofactors with acetylation-modifying enzymatic activity, the best studied include p300/CBP and the p160/SRC family of coactivators. It is known that recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) is key in fine-tuning responses to androgens and is thus likely to play a role in prostate cancer progression. Further, these proteins can also modify the AR itself. The functional consequences of AR acetylation, the role of modifying enzymes in relation to AR transcriptional response, and prostate cancer will be discussed. PMID:21274273

  15. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles.

    PubMed

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid

    2017-01-01

    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  16. DETECTION OF ANDROGENIC ACTIVITY IN EMISSIONS FROM DIESEL FUEL AND BIOMASS COMBUSTION

    EPA Science Inventory

    The present study evaluated both diesel fuel exhaust and biomass (wood) burn extracts for androgen receptor¿mediated activity using MDA-kb2 cells, which contain an androgen-responsive promoter-luciferase reporter gene construct. This assay and analytical fractionization of the sa...

  17. Role of androgen receptor splice variants in prostate cancer metastasis

    PubMed Central

    Xu, Jin; Qiu, Yun

    2017-01-01

    Prostate cancer (PCa) is one of the most lethal cancers in western countries. Androgen receptor (AR) signaling pathway plays a key role in PCa progression. Despite the initial effectiveness of androgen deprivation therapy (ADT) for treatment of patients with advanced PCa, most of them will develop resistance to ADT and progress to metastatic castration resistant prostate cancer (mCRPC). Constitutively transcriptional activated AR splice variants (AR-Vs) have emerged as critical players in the development and progression of mCRPC. Among AR-Vs identified to date, AR-V7 (a.k.a. AR3) is one of the most abundant and frequently found in both PCa cell lines and in human prostate tissues. Most of functional studies have been focused on AR-V7/AR3 and revealed its role in regulation of survival, growth, differentiation and migration in prostate cells. In this review, we will summarize our current understanding of regulation of expression and activity of AR-Vs in mCRPC. PMID:28239558

  18. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination.

    PubMed

    Hussain, Rashad; Ghoumari, Abdel M; Bielecki, Bartosz; Steibel, Jérôme; Boehm, Nelly; Liere, Philippe; Macklin, Wendy B; Kumar, Narender; Habert, René; Mhaouty-Kodja, Sakina; Tronche, François; Sitruk-Ware, Regine; Schumacher, Michael; Ghandour, M Said

    2013-01-01

    Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic

  19. Humanized Androgen Receptor Mice: A Genetic Model for Differential Response to Prostate Cancer Therapy

    DTIC Science & Technology

    2011-06-01

    the androgen axis, including those encoding enzymes of testosterone synthesis ( cytochrome P450c17) and conversion (steroid-5--reductase type 2...J., Gronberg, H., 2006. Germ- line genetic variation in the key androgen-regulating genes androgen receptor, cytochrome P450 , and steroid-5-alpha...4 Humanized Androgen Receptor Mice: A Genetic Model for Differential Response to Prostate Cancer Therapy INTRODUCTION Androgen

  20. Identification of a novel androgen receptor agonist (or “androgen mimic”) of environmental concern: spironolactone

    EPA Science Inventory

    Spironolactone is a pharmaceutical that acts as an androgen receptor (AR) antagonist in humans to treat certain conditions such as hirsutism, various dermatologic afflictions, and female pattern hair loss. The drug is also used to treat hypertension as a diuretic. With this commo...

  1. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.

  2. PSPC1, NONO, and SFPQ are expressed in mouse Sertoli cells and may function as coregulators of androgen receptor-mediated transcription.

    PubMed

    Kuwahara, Sho; Ikei, Asako; Taguchi, Yusuke; Tabuchi, Yoshiaki; Fujimoto, Nariaki; Obinata, Masuo; Uesugi, Seiichi; Kurihara, Yasuyuki

    2006-09-01

    In Sertoli cells of testis, androgen receptor-regulated gene transcription plays an indispensable role in maintaining spermatogenesis. Androgen receptor activity is modulated by a number of coregulators which are associated with the androgen receptor. Non-POU-domain-containing, octamer binding protein (NONO), a member of the DBHS-containing proteins, complexes with androgen receptor and functions as a coactivator for the receptor. Paraspeckle protein 1 alpha isoform (PSPC1, previously known as PSP1) and Splicing factor, proline- and glutamine-rich (SFPQ, previously known as PSF), other members of the DBHS-containing proteins, are also found in androgen receptor complexes, suggesting that these DBHS-containing proteins may cooperatively regulate androgen receptor-mediated gene transcription. We demonstrated that PSPC1, NONO, and SFPQ are coexpressed in Sertoli cell line TTE3 and interact reciprocally. The effect of the DBHS-containing proteins on the transcriptional activity was assessed using the construct containing androgen-responsive elements followed by a luciferase gene. The results showed that all the DBHS-containing proteins activate androgen receptor-mediated transcription, and PSPC1 is the most effective coactivator among them. Furthermore, we confirmed the presence of PSPC1, NONO, and SFPQ proteins in Sertoli cells of adult mouse testis sections. These observations suggest that PSPC1, NONO, and SFPQ form complexes with each other in Sertoli cells and may regulate androgen receptor-mediated transcriptional activity.

  3. Androgen receptor signaling regulates growth of glioblastoma multiforme in men.

    PubMed

    Yu, Xiaoming; Jiang, Yuhua; Wei, Wei; Cong, Ping; Ding, Yinlu; Xiang, Lei; Wu, Kang

    2015-02-01

    Although glioblastoma multiforme (GBM) is the most malignant primary human brain cancer with surprisingly high incidence rate in adult men than in women, the exact mechanism underlying this pronounced epidemiology is unclear. Here, we showed significant upregulated androgen receptor (AR) expression in the GBM tissue compared to the periphery normal brain tissue in patients. An expression of AR was further detected in all eight examined human GBM cell lines. To figure out whether AR signaling may play a role in GBM, we used high AR-expressing U87-MG GBM line for further study. We found that activation of transforming growth factor β (TGFβ) receptor signaling by TGFβ1 in GBM significantly inhibited cell growth and increased apoptosis. Moreover, application of active AR ligand 5α-dihydrotestosterone (DHT) significantly decreased the effect of TGFβ1 on GBM growth and apoptosis, suggesting that AR signaling pathway may contradict the effect of TGFβ receptor signaling in GBM. However, neither total protein nor the phosphorylated protein of SMAD3, a major TGFβ receptor signaling downstream effector in GBM, was affected by DHT, suggesting that AR activation may not affect the SMAD3 protein production or phosphorylation of TGFβ receptor and SMAD3. Finally, immunoprecipitation followed by immunoblot confirmed binding of pAR to pSMAD3, which may prevent the DNA binding of pSMAD3 and subsequently prevent its effect on cell growth in GBM. Taken together, our study suggests that AR signaling may promote tumorigenesis of GBM in adult men by inhibiting TGFβ receptor signaling.

  4. A novel point mutation (R840S) in the androgen receptor in a Brazilian family with partial androgen insensitivity syndrome.

    PubMed

    Melo, K F; Latronico, A C; Costa, E M; Billerbeck, A E; Mendonca, B B; Arnhold, I J

    1999-10-01

    Mutations of the androgen receptor gene causing androgen insensitivity syndrome in 46, XY individuals, result in phenotypes ranging from complete female to ambiguous genitalia to males with minor degrees of undervirilization. We studied two Brazilian brothers with partial androgen insensitivity syndrome. They were born with perineal hypospadias, bifid scrotum, small penis and cryptorchidism, and developed gynecomastia at puberty. Genomic DNA was extracted and denaturinggradient gel electrophoresis of exon 7 of the androgen receptor gene followed by sequence analysis revealed a new mutation, a C A transversion, altering codon 840 from arginine (CGT) to serine (AGT). R840 is located in the androgen binding domain, in a "hot spot" region, important for the formation and function of the hormone receptor-complex and within the region that is involved in androgen receptor dimerization. Replacement of arginine (basic) by serine (neutral and polar) is a nonconservative substitution. Three mutations in this residue (R840C, R840G nonconservative and R840H, conservative) were previously reported in patients with partial androgen insensitivity syndrome and when expressed "in vitro" lead to a subnormal transactivation of a reporter gene. We conclude that the novel R840 mutation in the androgen receptor is the cause of partial androgen insensitivity syndrome in this Brazilian family.

  5. Partial androgen insensitivity syndrome with R840H mutation in androgen receptor: report of one case.

    PubMed

    Yen, Jui-Lung; Chang, Kuang-Huey; Sheu, Jin-Cherng; Lee, Yann-Jinn; Tsai, Li-Ping

    2005-01-01

    Androgen insensitivity syndrome (AIS) is the major cause of male pseudohermaphroditism. The severity of the disorders varies widely, ranging from the phenotypic women with female external genitalia in cases of complete AIS to the phenotype of ambiguous genitalia in partial androgen insensitivity syndrome (PAIS) and a rare group of phenotypic normal males with azoospermia. Here, we report an infant of PAIS with a missense mutation at position 2881 (G-->A) in exon 7, encoding substitution of histidine for arginine at codon 840 of the androgen receptor (AR) gene. Both the biochemical and molecular studies are presented. Establishing the diagnosis of PAIS is very important for gender assignment to an infant of ambiguous genitalia. The molecular analysis will facilitate genetic counselling to the maternal side relatives for carrier detection and prenatal diagnosis.

  6. C601S mutation in the androgen receptor results in partial loss of androgen function.

    PubMed

    Singh, Rajender; Singh, Pooja; Gupta, Nalini J; Chakrabarty, Baidyanath; Singh, Lalji; Thangaraj, Kumarasamy

    2010-11-01

    The present study was undertaken on a case of partial androgen insensitivity syndrome to look at the etiology of the disorder. The patient exhibited a female phenotype despite 46,XY chromosome complement. Direct DNA sequencing of coding region of the androgen receptor gene in this case revealed a 2329G>C substitution (cDNA sequence reference) in exon 3 of the gene. The substitution resulted in replacement of Cys with Ser at codon 601 of the ligand-binding domain of the protein. Analyses on 200 control samples revealed absence of this substitution(s). In vitro assays were done using COS-1 cells. The mutation resulted in partial (∼40%) loss of ligand-binding and significant (∼70%) loss of downstream transactivation function. The mutation was absent in the controls. The findings are particularly interesting since another substitution at the same codon (TGC-TTC) has been reported in association with complete androgen insensitivity syndrome.

  7. A case of complete androgen insensitivity syndrome with a novel androgen receptor mutation.

    PubMed

    Chin, Vivian L; Sheffer-Babila, Sharone; Lee, Ting A; Tanaka, Kathryn; Zhou, Ping

    2012-01-01

    We report a case of a 14-year-old girl with primary amenorrhea and phenotypic as well as hormonal features of complete androgen insensitivity syndrome (CAIS), who tested positive for a novel missense androgen receptor gene mutation resulting in serine-to-isoleucine change at position 703 in exon 4 in the ligand-binding domain. The interesting features of this case include a persistence of Müllerian derivatives, Sertoli cell adenoma, Tanner III pubic hair, and a normal bone mineral density. These features are not typically described in CAIS. This novel mutation associated with a unique clinical presentation serves to significantly enrich the literature on this rare and fascinating disorder of androgen insensitivity syndrome.

  8. High abundance androgen receptor in goldfish brain: characteristics and seasonal changes

    SciTech Connect

    Pasmanik, M.; Callard, G.V.

    1988-08-01

    Testosterone (T) exerts its actions in brain directly via androgen receptors or, after aromatization to estradiol, via estrogen receptors. Brain aromatase activity in teleost fish is 100-1000 times greater than in mammals and would be expected to significantly reduce the quantity of androgen available for receptor binding. Experiments were carried out on the goldfish Carassius auratus to determine if androgen receptors are present in teleost brain and whether their physicochemical properties reflect elevated aromatase. Cytosolic and nuclear extracts were assayed with the use of (/sup 3/H)T and charcoal, Sephadex LH-20, or DNA-cellulose chromatography to separate bound and free steroids. Binding activity was saturable and had an equally high affinity for T and 5 alpha-dihydrotestosterone. Although mibolerone was a relatively weak competitor, the putative teleost androgen 11-ketotestosterone, methyltrienolone (R1881), estradiol, progesterone, and cortisol were poor ligands. Characteristics that distinguish this receptor from a steroid-binding protein in goldfish serum are the presence of binding activity in both nuclear and cytosolic extracts, a low rate of ligand-receptor dissociation, electrophoretic mobility, sedimentation properties in low vs. high salt, and tissue distribution. DNA cellulose-adhering and nonadhering forms were detected, but these did not differ in other variables measured. Although goldfish androgen receptors resembled those of mammals in all important physicochemical characteristics, they were unusually abundant compared to levels in rat brain, but comparable to levels in prostate and other male sex hormone target organs. Moreover, there were seasonal variations in total receptors, with a peak at spawning (April) 4- to 5-fold higher than values in reproductively inactive fish.

  9. Androgen receptor action in osteoblasts in male mice is dependent on their stage of maturation.

    PubMed

    Russell, Patricia K; Clarke, Michele V; Cheong, Karey; Anderson, Paul H; Morris, Howard A; Wiren, Kristine M; Zajac, Jeffrey D; Davey, Rachel A

    2015-05-01

    Androgen action via the androgen receptor (AR) is essential for normal skeletal growth and bone maintenance post-puberty in males; however, the molecular and cellular mechanisms by which androgens exert their actions in osteoblasts remains relatively unexplored in vivo. To identify autonomous AR actions in osteoblasts independent of AR signaling in other tissues, we compared the extent to which the bone phenotype of the Global-ARKO mouse was restored by replacing the AR in osteoblasts commencing at either the (1) proliferative or (2) mineralization stage of their maturation. In trabecular bone, androgens stimulated trabecular bone accrual during growth via the AR in proliferating osteoblasts and maintained trabecular bone post-puberty via the AR in mineralizing osteoblasts, with its predominant action being to inhibit bone resorption by decreasing the ratio of receptor activator of NF-κB ligand (RANKL) to osteoprotegerin (OPG) gene expression. During growth, replacement of the AR in proliferating but not mineralizing osteoblasts of Global-ARKOs was able to partially restore periosteal circumference, supporting the concept that androgen action in cortical bone to increase bone size during growth is mediated via the AR in proliferating osteoblasts. This study provides further significant insight into the mechanism of androgen action via the AR in osteoblasts, demonstrating that it is dependent on the stage of osteoblast maturation.

  10. Topoisomerase 2 Alpha Cooperates with Androgen Receptor to Contribute to Prostate Cancer Progression

    PubMed Central

    Schaefer-Klein, J. L.; Murphy, Stephen J.; Johnson, Sarah H.; Vasmatzis, George; Kovtun, Irina V.

    2015-01-01

    Overexpression of TOP2A is associated with risk of systemic progression in prostate cancer patients, and higher levels of TOP2A were found in hormone-resistant cases. To elucidate the mechanism by which high levels of TOP2A contribute to tumor progression we generated TOP2A overexpressing prostate cancer cell lines. We show that TOP2A promotes tumor aggressiveness by inducing chromosomal rearrangements of genes that contribute to a more invasive phenotype. Anti-androgen treatment alone was ineffective in killing TOP2A overexpressing cells due to activation of an androgen receptor network. TOP2A poisons killed tumor cells more efficiently early in the progression course, while at later stages they provided greater benefit when combined with anti-androgen therapy. Mechanistically, we find that TOP2A enhances androgen signaling by facilitating transcription of androgen responsive genes, thereby promoting tumor cell growth. These studies revealed a relationship between TOP2A and androgen receptor signaling pathway that contributes to prostate cancer progression and confers sensitivity to treatments. PMID:26560244

  11. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome.

    PubMed

    Wang, Song; Xu, Haikun; An, Wei; Zhu, Dechun; Li, Dejun

    2016-06-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling.

  12. Dual-color bioluminescent bioreporter for forensic analysis: evidence of androgenic and anti-androgenic activity of illicit drugs.

    PubMed

    Cevenini, Luca; Michelini, Elisa; D'Elia, Marcello; Guardigli, Massimo; Roda, Aldo

    2013-01-01

    Bioassays represent promising complementary techniques to conventional analytical approaches used in doping analysis to detect illicit drugs like anabolic-androgenic steroids (AAS). The fact that all AAS share a common mechanism of action via the human androgen receptor (hAR) enables the use of bioassays, relying on the activation of hAR as antidoping screening tools. Previously, we developed a dual-color bioreporter based on yeast cells engineered to express hAR and androgen response elements driving the expression of the bioluminescent (BL) reporter protein Photinus pyralis luciferase. A second reporter protein, the red-emitting luciferase PpyRE8, was introduced in the bioreporter as internal viability control. Here, we report the first forensic application of a straightforward, accurate, and cost-effective bioassay, relying on spectral resolution of the two BL signals, in 96-microwell format. The bioreporter responds to dihydrotestosterone as reference androgen in a concentration-dependent manner from 0.08 to 1,000 nM with intra- and inter-assay variation coefficients of 11.4 % and 13.1 %, respectively. We also demonstrated the suitability of this dual-color bioreporter to assess (anti)-androgenic activity of pure AAS, mixtures of AAS, and other illicit drugs provided by the Scientific Police. Significant anti-androgenic activity was observed in samples labeled as marijuana and hashish, containing Δ(9)-tetrahydrocannabinol as major constituent.

  13. Differential Mechanisms of Androgen Resistance

    DTIC Science & Technology

    2007-12-01

    Tincello, DG, Shalet, SM and Wu FC. Point mutatons detected in the androgen receptor gene of three men with partial androgen insensitivity syndrome . Clin...with androgen insensitivity syndrome (Turek-Plewa et al, 2006, Kohler, et al, 2005, Komori et al, 1997, Brown et al 1992, Saunders et al 1992... Androgen insensitivity syndrome is often associated with the decreased androgen receptor activity. The identification mutations in our xenografted

  14. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  15. Selective Gene Regulation by Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    androgen receptor pathway in prostate cancer. Curr Opin Pharmacol, 2008. 8(4): p. 440-8. 6. Claessens, F., P. Alen , A. Devos, B. Peeters, G...Chem, 1996. 271(32): p. 19013-6. 7. Schoenmakers, E., P. Alen , G. Verrijdt, B. Peeters, G. Verhoeven, W. Rombauts, and F. Claessens, Differential DNA

  16. Cross-species sensitivity to a novel androgen receptor agonist of potential environmental concern, spironolactone.

    PubMed

    LaLone, Carlie A; Villeneuve, Daniel L; Cavallin, Jenna E; Kahl, Michael D; Durhan, Elizabeth J; Makynen, Elizabeth A; Jensen, Kathleen M; Stevens, Kyle E; Severson, Megan N; Blanksma, Chad A; Flynn, Kevin M; Hartig, Philip C; Woodard, Jonne S; Berninger, Jason P; Norberg-King, Teresa J; Johnson, Rodney D; Ankley, Gerald T

    2013-11-01

    Spironolactone is a pharmaceutical that in humans is used to treat conditions like hirsutism, various dermatologic afflictions, and female-pattern hair loss through antagonism of the androgen receptor. Although not routinely monitored in the environment, spironolactone has been detected downstream of a pharmaceutical manufacturer, indicating a potential for exposure of aquatic species. Furthermore, spironolactone has been reported to cause masculinization of female western mosquitofish, a response indicative of androgen receptor activation. Predictive methods to identify homologous proteins to the human and western mosquitofish androgen receptor suggest that vertebrates would be more susceptible to adverse effects mediated by chemicals like spironolactone that target the androgen receptor compared with invertebrate species that lack a relevant homolog. In addition, an adverse outcome pathway previously developed for activation of the androgen receptor suggests that androgen mimics can lead to reproductive toxicity in fish. To assess this, 21-d reproduction studies were conducted with 2 fish species, fathead minnow and Japanese medaka, and the invertebrate Daphnia magna. Spironolactone significantly reduced the fecundity of medaka and fathead minnows at 50 μg/L, whereas daphnia reproduction was not affected by concentrations as large as 500 μg/L. Phenotypic masculinization of females of both fish species was observed at 5 μg/L as evidenced by formation of tubercles in fathead minnows and papillary processes in Japanese medaka. Effects in fish occurred at concentrations below those reported in the environment. These results demonstrate how a priori knowledge of an adverse outcome pathway and the conservation of a key molecular target across vertebrates can be utilized to identify potential chemicals of concern in terms of monitoring and highlight potentially sensitive species and endpoints for testing.

  17. A novel androgen receptor mutation resulting in complete androgen insensitivity syndrome and bilateral Leydig cell hyperplasia.

    PubMed

    Singh, Rajender; Shastry, Prabhakar K; Rasalkar, Avinash A; Singh, Lalji; Thangaraj, K

    2006-01-01

    Androgens drive male secondary sexual differentiation and maturation. Mutations in the androgen receptor (AR) gene cause a broad spectrum of abnormal phenotypes in humans, ranging from mild through partial to complete androgen insensitivity. We have analyzed the AR gene by using denaturing high-performance liquid chromatography (DHPLC) and direct sequencing and have studied gonads histologically in a familial case of complete androgen insensitivity syndrome. Sequence analysis of the AR gene showed a novel C2578T missense mutation, resulting in the replacement of a highly conserved leucine residue with phenylalanine (L859F) in ligand-binding domain of the receptor. The residue L859, located in helix 10 of the androgen receptor, plays a significant role in overall architecture of ligand-binding pocket. The mutation was absent from the father, normal brother of the patients, and 100 normal males recruited in this study as controls. The inheritance of the mutation in the family clearly shows that C2578T is the underlying mutation for the eventual phenotype in the patients. Histology of patient's gonads showed Leydig cell hyperplasia, with a few or no spermatogonium. It is thought that AR gene mutations result in hormonal imbalance, resulting in the high levels of luteinizing hormone (LH) and ultimately Leydig cell hyperplasia or tumor formation. In the present study, we have reported a rare familial case of Leydig cell hyperplasia despite consistently normal LH levels. The finding will help in giving counseling to this family and prevent the transmission of the mutated X chromosome to the coming generations.

  18. Androgen insensitivity syndrome.

    PubMed

    Hughes, Ieuan A; Davies, John D; Bunch, Trevor I; Pasterski, Vickie; Mastroyannopoulou, Kiki; MacDougall, Jane

    2012-10-20

    Androgen insensitivity syndrome in its complete form is a disorder of hormone resistance characterised by a female phenotype in an individual with an XY karyotype and testes producing age-appropriate normal concentrations of androgens. Pathogenesis is the result of mutations in the X-linked androgen receptor gene, which encodes for the ligand-activated androgen receptor--a transcription factor and member of the nuclear receptor superfamily. This Seminar describes the clinical manifestations of androgen insensitivity syndrome from infancy to adulthood, reviews the mechanism of androgen action, and shows examples of how mutations of the androgen receptor gene cause the syndrome. Management of androgen insensitivity syndrome should be undertaken by a multidisciplinary team and include gonadectomy to avoid gonad tumours in later life, appropriate sex-hormone replacement at puberty and beyond, and an emphasis on openness in disclosure.

  19. Metabolite Profiling and a Transcriptional Activation Assay Provide Direct Evidence of Androgen Receptor Antagonism by Bisphenol A in Fish.

    EPA Science Inventory

    Widespread environmental contamination by bisphenol A (BPA) has created the need to fully define its potential toxic mechanisms of action (MOA) to properly assess human health and ecological risks from exposure. Although long recognized as an estrogen receptor (ER) agonist, some ...

  20. AOP description: Androgen receptor agonism leading to reproductive dysfunction (in fish)

    EPA Science Inventory

    This adverse outcome pathway details the linkage between binding and activation of androgen receptor as a nuclear transcription factor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoi...

  1. Stilbenes inhibit androgen receptor expression in 22Rv1 castrate-resistant prostate cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Androgen receptor (AR) signaling plays an important role in the development and progression of prostate cancer (PCa). Importantly, AR continues to be expressed in advanced stages of castrate-resistant PCa (CRPC), where it can have ligand- independent activity. Identification of naturally occurring s...

  2. A Novel Androgen Receptor Splice Variant Is Upregulated during Prostate Cancer Progression and Promotes Androgen-depletion-resistant Growth

    PubMed Central

    Guo, Zhiyong; Yang, Xi; Sun, Feng; Jiang, Richeng; Linn, Douglas E.; Chen, Hege; Chen, Hegang; Kong, Xiangtian; Melamed, Jonathan; Tepper, Clifford G.; Kung, Hsing-Jien; Brodie, Angela M. H.; Edwards, Joanne; Qiu, Yun

    2009-01-01

    The androgen receptor (AR) plays a key role in progression to incurable androgen-ablation resistant prostate cancer (PCA). We have identified three novel AR splice variants lacking the ligand binding domain (designated as AR3, AR4 and AR5) in hormone insensitive PCA cells. AR3, one of the major splice variants expressed in human prostate tissues, is constitutively active and its transcriptional activity is not regulated by androgens or antiandrogens. Immunohistochemistry analysis on tissue microarrays containing 429 human prostate tissue samples shows that AR3 is significantly upregulated during PCA progression and AR3 expression level is correlated with the risk of tumor recurrence after radical prostatectomy. Overexpression of AR3 confers ablation-independent growth of PCA cells while specific knock-down of AR3 expression (without altering AR level) in hormone resistant PCA cells attenuates their growth under androgen-depleted conditions in both cell culture and xenograft models, suggesting an indispensable role of AR3 in ablation-independent growth of PCA cells. Furthermore, AR3 may play a distinct yet essential role in ablation-independent growth through regulating a unique set of genes including AKT1, which are not regulated by the prototype AR. Our data suggest that aberrant expression of AR splice variants may be a novel mechanism underlying ablation-independence during PCA progression and AR3 may serve as a prognostic marker to predict patient outcome in response to hormonal therapy. Given that these novel AR splice variants are not inhibited by currently available anti-androgen drugs, development of new drugs targeting these AR isoforms may potentially be effective for treatment of ablation-resistant PCA. PMID:19244107

  3. A novel selective androgen receptor modulator, NEP28, is efficacious in muscle and brain without serious side effects on prostate.

    PubMed

    Akita, Kazumasa; Harada, Koichiro; Ichihara, Junji; Takata, Naoko; Takahashi, Yasuhiko; Saito, Koichi

    2013-11-15

    Age-related androgen depletion is known to be a risk factor for various diseases, such as osteoporosis and sarcopenia. Furthermore, recent studies have demonstrated that age-related androgen depletion results in accumulation of β-amyloid protein and thereby acts as a risk factor for the development of Alzheimer's disease. Supplemental androgen therapy has been shown to be efficacious in treating osteoporosis and sarcopenia. In addition, studies in animals have demonstrated that androgens can play a protective role against Alzheimer's disease. However, androgen therapy is not used routinely for these indications, because of side effects. Selective androgen receptor modulators (SARMs) are a new class of compounds. SARMs maintain the beneficial effects of androgens on bone and muscle while reducing unwanted side effects. NEP28 is a new SARM exhibiting high selectivity for androgen receptor. To investigate the pharmacological effects of NEP28, we compared the effects on muscle, prostate, and brain with mice that were androgen depleted by orchidectomy and then treated with either placebo, NEP28, dihydrotestosterone, or methyltestosterone. We demonstrated that NEP28 showed tissue-selective effect equivalent to or higher than existing SARMs. In addition, the administration of NEP28 increased the activity of neprilysin, a known Aβ-degrading enzyme. These results indicate that SARM is efficacious for the treatment of not only osteoporosis and sarcopenia, but also Alzheimer's disease.

  4. EGF receptor (EGFR) signaling promoting invasion is disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR).

    PubMed

    Bonaccorsi, Lorella; Carloni, Vinicio; Muratori, Monica; Formigli, Lucia; Zecchi, Sandra; Forti, Gianni; Baldi, Elisabetta

    2004-10-20

    We previously demonstrated that expression of androgen receptor (AR) by transfection of the androgen-independent prostate cancer cell line PC3 decreases invasion and adhesion of these cells (PC3-AR) through modulation of alpha6beta4 integrin expression. The treatment with androgens further reduced invasion of the cells without modifying alpha6beta4 expression, suggesting an interference with the invasion process by androgens. Here, we investigated EGF-mediated signal transduction processes that lead to invasion in PC3-AR cells. We show that EGF-induced EGFR autotransphosphorylation is reduced in PC3-AR cells compared to PC3 cells transfected only with the vector (PC3-Neo). EGF-stimulated PI3K activity, a key signaling pathway for invasion of these cells, and EGF-PI3K interaction are also decreased in PC3-AR cells and further reduced by treatment with androgen. Finally, we show that EGFR internalization process was reduced in PC3-AR and LNCaP cells compared to PC3-Neo. Investigations on the location of AR in PC3-AR transfected cells were also conducted. Immunoconfocal microscopy and coimminoprecipitation studies demonstrated the presence of an interaction between EGFR and AR at membrane level in PC3-AR and LNCaP cells. In conclusion, our results suggest that the expression of AR by transfection in PC3 cells confers a less-malignant phenotype by interfering with EGFR signaling leading to invasion through a mechanism involving an interaction between AR and EGFR.

  5. Drug Insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging

    PubMed Central

    Bhasin, Shalender; Calof, Olga M; Storer, Thomas W; Lee, Martin L; Mazer, Norman A; Jasuja, Ravi; Montori, Victor M; Gao, Wenqing; Dalton, James T

    2007-01-01

    SUMMARY Several regulatory concerns have hindered development of androgens as anabolic therapies, despite unequivocal evidence that testosterone supplementation increases muscle mass and strength in men; it induces hypertrophy of type I and II muscle fibers, and increases myonuclear and satellite cell number. Androgens promote differentiation of mesenchymal multipotent cells into the myogenic lineage and inhibit their adipogenic differentiation, by facilitating association of androgen receptors with β-catenin and activating T-cell factor 4. Meta-analyses indicate that testosterone supplementation increases fat-free mass and muscle strength in HIV-positive men with weight loss, glucocorticoid-treated men, and older men with low or low-normal testosterone levels. The effects of testosterone on physical function and outcomes important to patients have not, however, been studied. In older men, increased hematocrit and increased risk of prostate biopsy and detection of prostate events are the most frequent, testosterone-related adverse events. Concerns about long-term risks have restrained enthusiasm for testosterone use as anabolic therapy. Selective androgen-receptor modulators that are preferentially anabolic and that spare the prostate hold promise as anabolic therapies. We need more studies to determine whether testosterone or selective androgen-receptor modulators can induce meaningful improvements in physical function and patient-important outcomes in patients with physical dysfunction associated with chronic illness or aging. PMID:16932274

  6. Inhibition of NF-kappa B signaling restores responsiveness of castrate resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor variants expression

    PubMed Central

    Jin, Renjie; Yamashita, Hironobu; Yu, Xiuping; Wang, Jingbin; Franco, Omar E.; Wang, Yufen; Hayward, Simon W.; Matusik, Robert J.

    2014-01-01

    Androgen receptor splicing variants (ARVs) which lack the ligand-binding domain (LBD) are associated with the development of castration-resistant prostate cancer (CRPC), including resistance to the new generation of high affinity anti-androgens. However, the mechanism by which ARVs expression is regulated is not fully understood. In this study, we show that activation of classical NF-κB signaling increases the expression of ARVs in prostate cancer (PCa) cells and converts androgen sensitive PCa cells to become androgen insensitive; while, downregulation of NF-κB signaling inhibits ARVs expression and restores responsiveness of CRPC to anti-androgen therapy. In addition, we demonstrated that combination of anti-androgen with NF-κB targeted therapy inhibits efficiently tumor growth of human CRPC xenografts. These results indicate that induction ARVs by activated NF-κB signaling in PCa cells is a critical mechanism by which the PCa progresses to CRPC. This has important implications since it can prolong the survival of CRPC patients by restoring the tumors to once again respond to conventional androgen-deprivation therapy (ADT). PMID:25220414

  7. Discovery of potent and muscle selective androgen receptor modulators through scaffold modifications.

    PubMed

    Li, James J; Sutton, James C; Nirschl, Alexandra; Zou, Yan; Wang, Haixia; Sun, Chongqing; Pi, Zulan; Johnson, Rebecca; Krystek, Stanley R; Seethala, Ramakrishna; Golla, Rajasree; Sleph, Paul G; Beehler, Blake C; Grover, Gary J; Fura, Aberra; Vyas, Viral P; Li, Cindy Y; Gougoutas, Jack Z; Galella, Michael A; Zahler, Robert; Ostrowski, Jacek; Hamann, Lawrence G

    2007-06-28

    A novel series of imidazolin-2-ones were designed and synthesized as highly potent, orally active and muscle selective androgen receptor modulators (SARMs), with most of the compounds exhibiting low nM in vitro potency in androgen receptor (AR) binding and functional assays. Once daily oral treatment with the lead compound 11a (AR Ki = 0.9 nM, EC50 = 1.8 nM) for 14 days induced muscle growth with an ED50 of 0.09 mg/kg, providing approximately 50-fold selectivity over prostate growth in an orchidectomized rat model. Pharmacokinetic studies in rats demonstrated that the lead compound 11a had oral bioavailability of 65% and a plasma half-life of 5.5 h. On the basis of their preclinical profiles, the SARMs in this series are expected to provide beneficial anabolic effects on muscle with minimal androgenic effects on prostate tissue.

  8. A new mutation of the androgen receptor, P817A, causing partial androgen insensitivity syndrome: in vitro and structural analysis.

    PubMed

    Lumbroso, S; Wagschal, A; Bourguet, W; Georget, V; Mazen, I; Servant, N; Audran, F; Sultan, C; Auzou, G

    2004-06-01

    Androgen insensitivity syndrome (AIS) is an X-linked disease caused by mutations in the androgen receptor (AR) resulting in various degrees of defective masculinization in 46,XY individuals. In the present study, we describe a novel mutation in exon 7 of the AR gene in an Egyptian patient with partial AIS (PAIS). Sequencing analysis of the AR gene revealed a novel missense mutation, P817A, within the ligand-binding domain (LBD). This is the first report of a mutation within the short amino acid motif (codons 815-817) of the beta-strand lying between helices H8 and H9 of the AR LBD. The functional defects of the mutated protein were characterized by in vitro study and included significantly decreased ligand-binding affinity and impaired transactivation potential. Limited proteolysis assays performed with the wild-type and mutant AR receptors incubated with the synthetic agonist R1881 revealed that the P817A mutation resulted in a reduced stabilization of the AR active conformation. Structural analyses showed that this mutation is likely to perturb the beta-sheet interaction between residues 815-817 and 911-913. This structural alteration destabilizes the position of the C-terminal extension, which contains residues critical for androgen function.

  9. Androgen receptor and antiandrogen therapy in male breast cancer.

    PubMed

    Di Lauro, Luigi; Barba, Maddalena; Pizzuti, Laura; Vici, Patrizia; Sergi, Domenico; Di Benedetto, Anna; Mottolese, Marcella; Speirs, Valerie; Santini, Daniele; De Maria, Ruggero; Maugeri-Saccà, Marcello

    2015-11-01

    Cancers arising in the male breast are uncommon. Male breast cancer is a hormone-driven disease that often expresses the estrogen receptor, and antiestrogen therapy represents the mainstay of treatment. Paradoxically, the advent of a wave of antiestrogens eclipsed the therapeutic potential of alternative therapeutic options. At the beginning of the hormonal therapy era the administration of antiandrogens to metastatic male breast cancer patients was proposed. Ever since the use of these compounds has largely been neglected. A therapeutic role for antiandrogens has been envisioned again in recent years. First, molecular characterization efforts pointed to the androgen receptor as a potential therapeutic target. Second, the development of aromatase inhibitors unexpectedly raised the need for neutralizing androgens in order to tackle endocrine feedback mechanisms responsible for acquired resistance. We herein provide an overview of molecular studies where the androgen receptor was investigated at the genomic, transcriptomic or phenotypic level. We then discuss androgens in the context of the endocrine networks nourishing male breast cancer. Finally, clinical evidence on antiandrogens is summarized along with strategies should be implemented to improve the medical management of these patients.

  10. Stromal Androgen Receptor in Prostate Cancer Development and Progression

    PubMed Central

    Leach, Damien A.; Buchanan, Grant

    2017-01-01

    Prostate cancer development and progression is the result of complex interactions between epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected in the consistent finding of a strong association between stromal AR expression and patient outcomes. In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in stroma dramatically influences disease progression. PMID:28117763

  11. Alternative splicing of the androgen receptor in polycystic ovary syndrome

    PubMed Central

    Wang, Fangfang; Pan, Jiexue; Liu, Ye; Meng, Qing; Lv, Pingping; Qu, Fan; Ding, Guo-Lian; Klausen, Christian; Leung, Peter C. K.; Chan, Hsiao Chang; Yao, Weimiao; Zhou, Cai-Yun; Shi, Biwei; Zhang, Junyu; Sheng, Jianzhong; Huang, Hefeng

    2015-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders and a leading cause of female subfertility. The mechanism underlying the pathophysiology of PCOS remains to be illustrated. Here, we identify two alternative splice variants (ASVs) of the androgen receptor (AR), insertion and deletion isoforms, in granulosa cells (GCs) in ∼62% of patients with PCOS. AR ASVs are strongly associated with remarkable hyperandrogenism and abnormalities in folliculogenesis, and are absent from all control subjects without PCOS. Alternative splicing dramatically alters genome-wide AR recruitment and androgen-induced expression of genes related to androgen metabolism and folliculogenesis in human GCs. These findings establish alternative splicing of AR in GCs as the major pathogenic mechanism for hyperandrogenism and abnormal folliculogenesis in PCOS. PMID:25825716

  12. Design, Synthesis, and Preclinical Characterization of the Selective Androgen Receptor Modulator (SARM) RAD140.

    PubMed

    Miller, Chris P; Shomali, Maysoun; Lyttle, C Richard; O'Dea, Louis St L; Herendeen, Hillary; Gallacher, Kyla; Paquin, Dottie; Compton, Dennis R; Sahoo, Bishwabhusan; Kerrigan, Sean A; Burge, Matthew S; Nickels, Michael; Green, Jennifer L; Katzenellenbogen, John A; Tchesnokov, Alexei; Hattersley, Gary

    2011-02-10

    This report describes the discovery of RAD140, a potent, orally bioavailable, nonsteroidal selective androgen receptor modulator (SARM). The characterization of RAD140 in several preclinical models of anabolic androgen action is also described.

  13. Androgen receptor transactivation assay using green fluorescent protein as a reporter.

    PubMed

    Beck, Verena; Reiter, Evelyne; Jungbauer, Alois

    2008-02-15

    For screening of a large number of samples for androgenic activity, a robust system with minimal handling is required. The coding sequence for human androgen receptor (AR) was inserted into expression plasmid YEpBUbi-FLAG1, resulting in the plasmid YEpBUbiFLAG-AR, and the estrogen response element (ERE) on the reporter vector YRpE2 was replaced by an androgen response element (ARE), resulting in the plasmid YRpE2-ARE. Thus, a fully functional transactivation assay system with beta-galactosidase as a reporter gene could be created. Furthermore, green fluorescent protein (GFP) was introduced as an alternative reporter gene that resulted in a simplification of the whole assay procedure. For evaluation of both reporter systems, seven steroidal compounds with known AR agonistic properties (5 alpha-dihydrotestosterone, testosterone, androstenedione, 17 alpha-methyltestosterone, progesterone, epitestosterone, and d-norgestrel) were tested, and their potencies obtained in the different assays were compared. Furthermore, potencies from the transactivation assays were compared with IC(50) values obtained in radioligand binding assays. The newly developed androgen receptor transactivation assay is a useful tool for characterizing compounds with androgenic activity.

  14. The effect of Permixon on androgen receptors.

    PubMed

    el-Sheikh, M M; Dakkak, M R; Saddique, A

    1988-01-01

    Permixon, the liposterolic extract of the plant Serenoa Repens is a recently introduced drug for the treatment of benign prostatic hyperplasia. The effect of Permixon on dihydrotestosterone and testosterone binding by eleven different tissue specimens was tested. The drug reduced the mean uptake of both hormones by 40.9% and 41.9% respectively in all tissue specimens. Since hirsutism and virilism are among other gynecological problems caused either by excessive androgen stimulation or excess endorgan response, we suggest that Permixon could be a useful treatment in such conditions and recommend further investigations of the possible therapeutic values of the drug in gynecological practice.

  15. Effect of nonpersistent pesticides on estrogen receptor, androgen receptor, and aryl hydrocarbon receptor.

    PubMed

    Medjakovic, Svjetlana; Zoechling, Alfred; Gerster, Petra; Ivanova, Margarita M; Teng, Yun; Klinge, Carolyn M; Schildberger, Barbara; Gartner, Michael; Jungbauer, Alois

    2014-10-01

    Nonpersistent pesticides are considered less harmful for the environment, but their impact as endocrine disruptors has not been fully explored. The pesticide Switch was applied to grape vines, and the maximum residue concentration of its active ingredients was quantified. The transactivation potential of the pesticides Acorit, Frupica, Steward, Reldan, Switch, Cantus, Teldor, and Scala and their active compounds (hexythiazox, mepanipyrim, indoxacarb, chlorpyrifos-methyl, cyprodinil, fludioxonil, boscalid, fenhexamid, and pyrimethanil) were tested on human estrogen receptor α (ERα), androgen receptor (AR) and arylhydrocarbon receptor (AhR) in vitro. Relative binding affinities of the pure pesticide constituents for AR and their effect on human breast cancer and prostate cancer cell lines were evaluated. Residue concentrations of Switch's ingredients were below maximum residue limits. Fludioxonil and fenhexamid were ERα agonists (EC50 -values of 3.7 and 9.0 μM, respectively) and had time-dependent effects on endogenous ERα-target gene expression (cyclin D1, progesterone receptor, and nuclear respiratory factor 1) in MCF-7 human breast cancer cells. Fludioxonil, mepanipyrim, cyprodinil, pyrimethanil, and chlorpyrifos-methyl were AhR-agonists (EC50 s of 0.42, 0.77, 1.4, 4.6, and 5.1 μM, respectively). Weak AR binding was shown for chlorpyrifos-methyl, cyprodinil, fenhexamid, and fludioxonil. Assuming a total uptake which does not take metabolism and clearance rates into account, our in vitro evidence suggests that pesticides could activate pathways affecting hormonal balance, even within permitted limits, thus potentially acting as endocrine disruptors.

  16. Functional analysis of a novel androgen receptor mutation, Q902K, in an individual with partial androgen insensitivity.

    PubMed

    Umar, Arzu; Berrevoets, Cor A; Van, N Mai; van Leeuwen, Marije; Verbiest, Michael; Kleijer, Wim J; Dooijes, Dennis; Grootegoed, J Anton; Drop, Stenvert L S; Brinkmann, Albert O

    2005-01-01

    Androgen insensitivity syndrome (AIS) is caused by defects in the androgen receptor (AR) that render the AR partially or completely inactive. As a result, embryonic sex differentiation is impaired. Here, we describe a novel mutation in the AR found in a patient with partial AIS. The mutation results in a substitution of a glutamine (Q) by a lysine (K) residue at position 902, Q902K. The AR Q902K mutation was investigated in vitro with respect to its functional properties. The equilibrium dissociation constants (K(d)s) of AR Q902K in the presence of either the synthetic androgen R1881 or the natural ligand DHT were slightly elevated. The R1881 dissociation rate (t(1/2)) was increased 3-fold for AR Q902K compared with wild type. Transcriptional activity was decreased to 85% of wild type, and the dose-response curve revealed that the sensitivity to hormone was decreased due to the mutation. Furthermore, the 114-kDa androgen-induced phosphorylated AR protein band was not detectable in genital skin fibroblasts. However, it could be detected in transfected CHO cells expressing the mutant receptor in the presence of 10 and 100 nm R1881. Functional interaction assays and a GST pull-down assay showed that the interaction between the NH2 and COOH terminus of AR Q902K was reduced to 50% of wild type. Furthermore, the transactivation by the coactivator TIF2 (transcriptional intermediary factor 2) was decreased 2- to 3-fold. The half-maximal response in both assays was shifted to a higher hormone concentration compared with wild type. These results indicate that residue Q902 is involved in TIF2 and NH2/COOH interaction and that the Q to K mutation results in a mild impairment of AR function, which can explain the partial AIS phenotype of the patient.

  17. Trafficking of androgen receptor mutants fused to green fluorescent protein: a new investigation of partial androgen insensitivity syndrome.

    PubMed

    Georget, V; Térouanne, B; Lumbroso, S; Nicolas, J C; Sultan, C

    1998-10-01

    The naturally occurring mutations of the androgen receptor (AR), detected in patients with androgen insensitivity syndrome (AIS), are currently analyzed by in vitro assays. Unfortunately, these assays do not always permit the demonstration of a direct relationship between the in vitro activity of the receptor and the severity of the phenotype (in particular, for mutations detected in patients with partial AIS). We recently studied the trafficking of wild-type AR, fused to the green fluorescent protein (GFP) in living cells. In the present study, we applied this method for the analysis of AR mutants to find out whether it could be a complementary method of investigation of AIS. After construction of the GFP-AR mutant fusion proteins, the androgen-binding characteristics, nuclear transfer capacities, and transcriptional activities were evaluated. The nuclear transfer was quantified in the presence of various concentrations of dihydrotestosterone (DHT). We studied two mutants associated with partial AIS: G743V and R840C. The androgen-binding characteristics of both mutants were affected, in comparison with normal AR. Although the affinities were similar, the dissociation rate of GFP-AR-G743V was twice that of GFP-AR-R840C. In transcriptional assay, both mutants were active only at high concentrations of androgen. The nuclear trafficking of the mutants was evaluated by two parameters: 1) the rate of nuclear transfer; and 2) the maximal amount of receptors imported into the nucleus. At 10(-6) mol/L DHT, the GFP-AR mutants entered into the nucleus in a fashion similar to that of GFP-AR-wt. At 10(-7) mol/L DHT, the rate and maximal degree of nuclear import were both reduced, even more, for GFP-AR-G743V. The difference between mutants was more pronounced at 10(-9) mol/L DHT, because GFP-AR-G743V entered into the nucleus with even slower kinetics. Though the androgen-binding affinity and transcriptional activity assays did not reveal major differences between mutants, the

  18. Androgen Receptor Regulates the Growth of Neuroblastoma Cells in vitro and in vivo

    PubMed Central

    Sun, Junyan; Wang, Dongmei; Guo, Lianying; Fang, Shengyun; Wang, Yang; Xing, Rong

    2017-01-01

    Background: Neuroblastoma is the most common extracranial tumors in children. At present about the true etiology of neuroblastoma is unclear and many studies have tried to find effective treatments for these primary malignant tumors. Although it has been illustrated that androgen receptor (AR) was expressed in neuroblastoma cells in some former reports, the biological role of androgen receptor in the development of neuroblastoma is not fully understood. Methods: Androgen (R1881) and the antagonists of androgen receptor (MDV3100 and ARN509) were used to study the role of the androgen receptor signaling pathway in vitro and in vivo on SH-SY5Y and Neuro-2a (N2a) cell lines. Results: We found that AR expression showed an R1881 dose-dependent manner in neuroblastoma cells in vitro and R1881was able to increase, while both antagonists of androgen receptor (MDV3100 and ARN509) significantly decrease, the proliferation, migration, invasion and sphere formation of SH-SY5Y and N2a cells. Moreover, androgen promoted the growth of N2a tumor in vivo. However, when androgen receptor (AR) was effectively knocked down in the two cell lines by siRNA, either promoting or inhibiting effect of the androgen or androgen receptor antagonists, respectively, was attenuated. Conclusion: Our results suggested that androgen receptor may involve in the progression of neuroblastoma as well as provided insight into a new target for the diagnosis and treatment of neuroblastoma patients. PMID:28326012

  19. Androgen Receptor Regulates the Growth of Neuroblastoma Cells in vitro and in vivo.

    PubMed

    Sun, Junyan; Wang, Dongmei; Guo, Lianying; Fang, Shengyun; Wang, Yang; Xing, Rong

    2017-01-01

    Background: Neuroblastoma is the most common extracranial tumors in children. At present about the true etiology of neuroblastoma is unclear and many studies have tried to find effective treatments for these primary malignant tumors. Although it has been illustrated that androgen receptor (AR) was expressed in neuroblastoma cells in some former reports, the biological role of androgen receptor in the development of neuroblastoma is not fully understood. Methods: Androgen (R1881) and the antagonists of androgen receptor (MDV3100 and ARN509) were used to study the role of the androgen receptor signaling pathway in vitro and in vivo on SH-SY5Y and Neuro-2a (N2a) cell lines. Results: We found that AR expression showed an R1881 dose-dependent manner in neuroblastoma cells in vitro and R1881was able to increase, while both antagonists of androgen receptor (MDV3100 and ARN509) significantly decrease, the proliferation, migration, invasion and sphere formation of SH-SY5Y and N2a cells. Moreover, androgen promoted the growth of N2a tumor in vivo. However, when androgen receptor (AR) was effectively knocked down in the two cell lines by siRNA, either promoting or inhibiting effect of the androgen or androgen receptor antagonists, respectively, was attenuated. Conclusion: Our results suggested that androgen receptor may involve in the progression of neuroblastoma as well as provided insight into a new target for the diagnosis and treatment of neuroblastoma patients.

  20. Androgen Receptor Structure, Function and Biology: From Bench to Bedside

    PubMed Central

    Davey, Rachel A; Grossmann, Mathis

    2016-01-01

    The actions of androgens such as testosterone and dihydrotestosterone are mediated via the androgen receptor (AR), a ligand-dependent nuclear transcription factor and member of the steroid hormone nuclear receptor family. Given its widespread expression in many cells and tissues, the AR has a diverse range of biological actions including important roles in the development and maintenance of the reproductive, musculoskeletal, cardiovascular, immune, neural and haemopoietic systems. AR signalling may also be involved in the development of tumours in the prostate, bladder, liver, kidney and lung. Androgens can exert their actions via the AR in a DNA binding-dependent manner to regulate target gene transcription, or in a non-DNA binding-dependent manner to initiate rapid, cellular events such as the phosphorylation of 2nd messenger signalling cascades. More recently, ligand-independent actions of the AR have also been identified. Given the large volume of studies relating to androgens and the AR, this review is not intended as an extensive review of all studies investigating the AR, but rather as an overview of the structure, function, signalling pathways and biology of the AR as well as its important role in clinical medicine, with emphasis on recent developments in this field. PMID:27057074

  1. Andrographolide Targets Androgen Receptor Pathway in Castration-Resistant Prostate Cancer

    PubMed Central

    Liu, Chengfei; Nadiminty, Nagalakshmi; Tummala, Ramakumar; Chun, Jae Yeon; Lou, Wei; Zhu, Yezi; Sun, Meng; Evans, Christopher P.; Zhou, Qinghua; Gao, Allen C.

    2011-01-01

    Androgen receptor (AR) signaling not only plays a pivotal role in the development of androgen-dependent prostate cancer but is also important in the growth and survival of castration-resistant prostate cancer (CRPC). The first line of treatment of androgen-dependent prostate cancer is the use of androgen deprivation therapy. However, most patients will eventually relapse due to development of CRPC. Thus, development of a strategy to target AR for treatment of CRPC is urgently needed. The authors have previously identified andrographolide as an inhibitor of interleukin-6, which can suppress tumor growth of prostate cancer cells by screening compounds from the Prestwick Natural compound library. In this study, they identified that andrographolide can inhibit AR expression and prostate cancer cell growth and induce apoptosis. Andrographolide is able to down-regulate AR expression at both mRNA and protein levels, prevents its nuclear translocation, and inhibits transactivation of its target genes. Andrographolide prevents the binding of Hsp90 to AR, resulting in proteasome-mediated AR degradation. Furthermore, andrographolide inhibits castration-resistant C4-2 cell growth by reducing AR expression and activity. Thus, andrographolide can be developed as a potential therapeutic agent for prostate cancer by inhibition of androgen receptor signaling. PMID:21779488

  2. Testosterone and Androgen Receptor Sensitivity in Relation to Hyperactivity Symptoms in Boys with Autism Spectrum Disorders

    PubMed Central

    2016-01-01

    Introduction Autism spectrum disorders (ASD) and hyperactivity symptoms exhibit an incidence that is male-biased. Thus androgen activity can be considered a plausible biological risk factor for these disorders. However, there is insufficient information about the association between increased androgen activity and hyperactivity symptoms in children with ASD. Methods In the present study, the relationship between parameters of androgenicity (plasmatic testosterone levels and androgen receptor sensitivity) and hyperactivity in 60 boys (age 3–15) with ASD is investigated. Given well documented differences in parent and trained examiners ratings of symptom severity, we employed a standardized parent`s questionnaire (Nisonger Child Behavior Rating Form) as well as a direct examiner`s rating (Autism diagnostic observation schedule) for assessment of hyperactivity symptoms. Results Although it was found there was no significant association between actual plasmatic testosterone levels and hyperactivity symptoms, the number of CAG triplets was significantly negatively correlated with hyperactivity symptoms (R2 = 0.118, p = 0.007) in the sample, indicating increased androgen receptor sensitivity in association with hyperactivity symptoms. Direct trained examiner´s assessment appeared to be a relevant method for evaluating of behavioral problems in the investigation of biological underpinnings of these problems in our study. Conclusions A potential ASD subtype characterized by increased rates of hyperactivity symptoms might have distinct etiopathogenesis and require a specific behavioral and pharmacological approach. We propose an increase of androgen receptor sensitivity as a biomarker for a specific ASD subtype accompanied with hyperactivity symptoms. Findings are discussed in terms of their implications for practice and future research. PMID:26910733

  3. Diastereomers of the Brominated Flame Retardant 1,2-Dibromo-4-(1,2 dibromoethyl)cyclohexane Induce Androgen Receptor Activation in the HepG2 Hepatocellular Carcinoma Cell Line and the LNCaP Prostate Cancer Cell Line

    PubMed Central

    Khalaf, Hazem; Larsson, Anders; Berg, Håkan; McCrindle, Robert; Arsenault, Gilles; Olsson, Per-Erik

    2009-01-01

    Background Reported incidences of prostate cancer and masculinization of animals indicate a release of compounds with androgenic properties into the environment. Large numbers of environmental pollutants have been screened to identify such compounds; however, not until recently was 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH) identified as the first potent activator of the human androgen receptor (hAR). TBECH has been found in beluga whales and bird eggs and has also been found to be maternally transferred in zebrafish. Objectives In the present study we investigated interaction energies between TBECH diastereomers (α, β, γ, and δ) and the hAR, and their ability to activate the receptor and induce prostate-specific antigen (PSA) expression in vitro. Methods We performed computational modeling to determine interaction energies between the ligand and the AR ligand-binding site, and measured in vitro competitive binding assays for AR by polarization fluorometry analysis. We used enzyme-linked immunosorbent assays to determine PSA activity in LNCaP and HepG2 cells. Results We found the γ and δ diastereomers to be more potent activators of hAR than the α and β diastereomers, which was confirmed in receptor binding studies. All TBECH diastereomers induced PSA expression in LNCaP cells even though the AR present in these cells is mutated (T877A). Modeling studies of LNCaP AR revealed that TBECH diastereomers bound to the receptor with a closer distance to the key amino acids in the ligand-binding domain, indicating stronger binding to the mutated receptor. Conclusions The present study demonstrates the ability of TBECH to activate the hAR, indicating that it is a potential endocrine disruptor. PMID:20049203

  4. Androgen receptor regulates SRC expression through microRNA-203

    PubMed Central

    Tsai, Hong-Yuan; Yeh, Hsiu-Lien; Yin, Juan Juan; Liu, Shih-Yang; Liu, Yen-Nien

    2016-01-01

    The SRC kinase has pivotal roles in multiple developmental processes and in tumor progression. An inverse relationship has been observed between androgen receptor (AR) activity and SRC signaling in advanced prostate cancer (PCa); however, the modulation of AR/SRC crosstalk that leads to metastatic PCa is unclear. Here, we showed that patients with high SRC levels displayed correspondingly low canonical AR gene signatures. Our results demonstrated that activated AR induced miR-203 and reduced SRC levels in PCa model systems. miR-203 directly binds to the 3′ UTR of SRC and regulates the stability of SRC mRNA upon AR activation. Moreover, we found that progressive PCa cell migration and growth were associated with a decrease in AR-regulated miR-203 and an increase in SRC. Relationships among AR, miR-203, and SRC were also confirmed in clinical datasets and specimens. We suggest that the induction of SRC results in increased PCa metastasis that is linked to the dysregulation of the AR signaling pathway through the inactivation of miR-203. PMID:27028864

  5. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands.

    PubMed

    Gao, Wenqing; Kim, Juhyun; Dalton, James T

    2006-08-01

    Testosterone and structurally related anabolic steroids have been used to treat hypogonadism, muscle wasting, osteoporosis, male contraception, cancer cachexia, anemia, and hormone replacement therapy in aging men or age-related frailty; while antiandrogens may be useful for treatment of conditions like acne, alopecia (male-pattern baldness), hirsutism, benign prostatic hyperplasia (BPH) and prostate cancer. However, the undesirable physicochemical and pharmacokinetic properties of steroidal androgen receptor (AR) ligands limited their clinical use. Nonsteroidal AR ligands with improved pharmacological and pharmacokinetic properties have been developed to overcome these problems. This review focuses on the pharmacokinetics, metabolism, and pharmacology of clinically used and emerging nonsteroidal AR ligands, including antagonists, agonists, and selective androgen receptor modulators.

  6. Nonsteroidal selective androgen receptor modulator Ostarine in cancer cachexia.

    PubMed

    Zilbermint, Mihail F; Dobs, Adrian S

    2009-10-01

    Cancer cachexia is a complex syndrome, affecting up to 60% of the approximately 1.4 million patients diagnosed with cancer each year in the USA. This condition is characterized by progressive deterioration of a patient's nutritional status, weight loss, anorexia, diminished quality of life and increased mortality and morbidity. Current therapy with progestational, anti-inflammatory and anabolic agents is often ineffective and has a large number of undesirable effects. The newly developed nonsteroidal selective androgen receptor modulator Ostarine has demonstrated promising results in Phase I and II clinical trials, increasing total lean body mass, enhancing functional performance and decreasing total tissue percent fat. This selective androgen receptor modulator may have the ability to perform as a potent anabolic agent with minimal side effects on other organs (prostate and hair follicles), thus presenting a new strategy in managing cancer cachexia. However, more extensive data is required before its efficacy is confirmed.

  7. Pharmacological characterization of an imidazolopyrazole as novel selective androgen receptor modulator.

    PubMed

    Zhang, Xuqing; Allan, George F; Tannenbaum, Pamela; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Lundeen, Scott G; Sui, Zhihua

    2013-03-01

    Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders.

  8. Multiplexed Promoter-dependent Screen for Selective Androgen Receptor Modulators

    DTIC Science & Technology

    2012-03-01

    the compounds in the Spectrum library have been used in human therapy, another third are natural products and derivatives with undetermined...not sAREs are several flavonoids and anthracyclines, some of which are known to inhibit AR. Promising compounds will be re-screened, and dose...O’Mahony OA, Steinkamp MP, Albertelli MA, Brogley M, Rehman H, Robins DM. Profiling human androgen receptor mutations reveals treatment effects in a mouse

  9. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    DTIC Science & Technology

    2015-06-01

    o chromatin- modifying enzymes and/or complexes . In this way , genes that are typically regulated by androgen receptor and g l ucocort i coid...inhibition may be observed due to steric blockade at some genes . of molecules that recmit transcriptionally repressing complexes to AR, a predicted...I). However, in cellular models of prostate cancer, no significant gene -specific or phenotypic effects were observed. We thus implemented the

  10. Targeting Androgen Receptor Aberrations in Castration-Resistant Prostate Cancer.

    PubMed

    Sharp, Adam; Welti, Jonathan; Blagg, Julian; de Bono, Johann S

    2016-09-01

    Androgen receptor (AR) splice variants (SV) have been implicated in the development of metastatic castration-resistant prostate cancer and resistance to AR targeting therapies, including abiraterone and enzalutamide. Agents targeting AR-SV are urgently needed to test this hypothesis and further improve the outcome of patients suffering from this lethal disease. Clin Cancer Res; 22(17); 4280-2. ©2016 AACRSee related article by Yang et al., p. 4466.

  11. Androgen Suppresses the Proliferation of Androgen Receptor-Positive Castration-Resistant Prostate Cancer Cells via Inhibition of Cdk2, CyclinA, and Skp2

    PubMed Central

    Jiang, Shih Sheng; Lin, Ching-Yu; Fukuchi, Junichi; Hiipakka, Richard A.; Chung, Chi-Jung; Chan, Tzu-Min; Liao, Shutsung; Chang, Chung-Ho; Chuu, Chih-Pin

    2014-01-01

    The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2. PMID:25271736

  12. PMA induces androgen receptor downregulation and cellular apoptosis in prostate cancer cells.

    PubMed

    Itsumi, Momoe; Shiota, Masaki; Yokomizo, Akira; Takeuchi, Ario; Kashiwagi, Eiji; Dejima, Takashi; Inokuchi, Junichi; Tatsugami, Katsunori; Uchiumi, Takeshi; Naito, Seiji

    2014-08-01

    Phorbol 12-myristate 13-acetate (PMA) induces cellular apoptosis in prostate cancer cells, the growth of which is governed by androgen/androgen receptor (AR) signaling, but the mechanism by which PMA exerts this effect remains unknown. Therefore, in this study, we investigated the mechanistic action of PMA in prostate cancer cells with regard to AR. We showed that PMA decreased E2F1 as well as AR expression in androgen-dependent prostate cancer LNCaP cells. Furthermore, PMA activated JNK and p53 signaling, resulting in the induction of cellular apoptosis. In LNCaP cells, androgen deprivation and a novel anti-androgen enzalutamide (MDV3100) augmented cellular apoptosis induced by PMA. Moreover, castration-resistant prostate cancer (CRPC) C4-2 cells were more sensitive to PMA compared with LNCaP cells and were sensitized to PMA by enzalutamide. Finally, the expression of PKC, E2F1, and AR was diminished in PMA-resistant cells, indicating that the gain of independence from PKC, E2F1, and AR functions leads to PMA resistance. In conclusion, PMA exerted its anti-cancer effects via the activation of pro-apoptotic JNK/p53 and inhibition of pro-proliferative E2F1/AR in prostate cancer cells including CRPC cells. The therapeutic effects of PMA were augmented by androgen deletion and enzalutamide in androgen-dependent prostate cancer cells, as well as by enzalutamide in castration-resistant cells. Taken together, PMA derivatives may be promising therapeutic agents for treating prostate cancer patients including CRPC patients.

  13. Non-Genomic Actions of the Androgen Receptor in Prostate Cancer

    PubMed Central

    Leung, Jacky K.; Sadar, Marianne D.

    2017-01-01

    Androgen receptor (AR) is a validated drug target for prostate cancer based on its role in proliferation, survival, and metastases of prostate cancer cells. Unfortunately, despite recent improvements to androgen deprivation therapy and the advent of better antiandrogens with a superior affinity for the AR ligand-binding domain (LBD), most patients with recurrent disease will eventually develop lethal metastatic castration-resistant prostate cancer (CRPC). Expression of constitutively active AR splice variants that lack the LBD contribute toward therapeutic resistance by bypassing androgen blockade and antiandrogens. In the canonical pathway, binding of androgen to AR LBD triggers the release of AR from molecular chaperones which enable conformational changes and protein–protein interactions to facilitate its nuclear translocation where it regulates the expression of target genes. However, preceding AR function in the nucleus, initial binding of androgen to AR LBD in the cytoplasm may already initiate signal transduction pathways to modulate cellular proliferation and migration. In this article, we review the significance of signal transduction pathways activated by rapid, non-genomic signaling of the AR during the progression to metastatic CRPC and put into perspective the implications for current and novel therapies that target different domains of AR. PMID:28144231

  14. Classification and virtual screening of androgen receptor antagonists.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  15. Androgen receptor roles in the development of benign prostate hyperplasia.

    PubMed

    Izumi, Kouji; Mizokami, Atsushi; Lin, Wen-Jye; Lai, Kuo-Pao; Chang, Chawnshang

    2013-06-01

    Benign prostate hyperplasia (BPH) is a major cause of lower urinary tract symptoms, with an increased volume of transitional zone and associated with increased stromal cells. It is known that androgen/androgen receptor (AR) signaling plays a key role in development of BPH, and that blockade of this signaling decreases BPH volume and can relieve lower urinary tract symptoms, but the mechanisms of androgen/AR signaling in BPH development remain unclear, and the effectiveness of current drugs for treating BPH is still limited. The detailed mechanisms of androgen/AR signaling need to be clarified, and new therapies are needed for better treatment of BPH patients. This review focuses on roles of AR in epithelial and stromal cells in BPH development. In epithelial cells, AR may contribute to BPH development via epithelial cell-stromal cell interaction with alterations of epithelial-mesenchymal transition, leading to proliferation of stromal cells. Data from several mouse models with selective knockout of AR in stromal smooth-muscle cells and/or fibroblasts indicate that the AR in stromal cells can also promote BPH development. In prostatic inflammation, AR roles in infiltrating macrophages and epithelial and stromal cells have been linked to BPH development, which has led to discovery of new therapeutic targets. For example, targeting AR with the novel AR degradation enhancer, ASC-J9 offers a potential therapeutic approach against BPH development.

  16. New Strategy for Prostate Cancer Prevention Based on Selenium Suppression of Androgen Receptor Signaling

    DTIC Science & Technology

    2010-04-01

    Prostate Cancer Prevention Based on Selenium Suppression of Androgen Receptor Signaling PRINCIPAL...in suppressing androgen signaling in prostate cancer cells. We next examined the efficacy of emodin and finasteride in growth arrest in LNCaP...phosphorylated and suppressed by AKT [32,33], which is an important survival molecule for prostate cancer . In prostate cancer cells, androgen

  17. Detection of androgenic activity in emissions from diesel fuel and biomass combustion.

    PubMed

    Owens, Clyde V; Lambright, Christy; Cardon, Mary; Gray, L Earl; Gullett, Brian K; Wilson, Vickie S

    2006-08-01

    The present study evaluated both diesel fuel exhaust and biomass (wood) burn extracts for androgen receptor-mediated activity using MDA-kb2 cells, which contain an androgen-responsive promoter-luciferase reporter gene construct. This assay and analytical fractionization of the samples were used as tools to separate active from inactive fractions, with the goal of identifying the specific compounds responsible for the activity. A significant androgenic response was detected from the diesel emission. High-performance liquid chromatographic fractionation of the sample indicated that significant androgenic activity was retained in three fractions. 4-Hydroxybiphenyl was identified from the most active fraction using gas chromatography/mass spectroscopy. This purified compound was then tested at doses from 1 nM to 100 microM. 4-Hydroxybiphenol exhibited antagonist activity at low concentrations and agonist activity at high concentrations. A competitive-binding assay confirmed binding to the androgen receptor, with a median inhibitory concentration for radioligand binding of approximately 370 nM. Significant androgenic activity also was detected in the wood burn samples, but we were unable to identify the specific chemicals responsible for this endocrine activity. The present study demonstrates that in vitro bioassays can serve as sensitive bioanalytical tools to aid in characterization of complex environmental mixtures.

  18. Mutational analysis of the androgen receptor gene in two Indian families with partial androgen insensitivity syndrome.

    PubMed

    Nagaraja, M R; Rastogi, Amit; Raman, Rajiva; Gupta, Dinesh K; Singh, S K

    2009-12-01

    Mutation in the androgen receptor gene (AR) is known to cause androgen insensitivity syndrome (AIS). In an X-linked recessive manner, an AR mutation gets transmitted to the offspring through carrier mothers in 70% of cases, the other 30% arising de novo. However, reports on AR mutations amongst Indian patients with AIS are scarce in the literature. This study reports mutations in AR from two Indian families, each having a proband with partial androgen insensitivity syndrome (PAIS) phenotype. Clinical, endocrine and cytogenetic evaluation of these affected children was performed. Mutational analysis was carried out by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis followed by sequencing. The two point mutations were in exon 5: p.M742I, familial in patient 1 and p.V746M de novo in patient 2. These are hitherto unrecognized mutations in our population. Similar mutational studies are suggested in patients with AIS, in order to identify their frequency and clinical severity in our population.

  19. Inhibition of cyclin D1 expression by androgen receptor in breast cancer cells--identification of a novel androgen response element.

    PubMed

    Lanzino, Marilena; Sisci, Diego; Morelli, Catia; Garofalo, Cecilia; Catalano, Stefania; Casaburi, Ivan; Capparelli, Claudia; Giordano, Cinzia; Giordano, Francesca; Maggiolini, Marcello; Andò, Sebastiano

    2010-09-01

    Cyclin D1 gene (CCND1) is a critical mitogen-regulated cell-cycle control element whose transcriptional modulation plays a crucial role in breast cancer growth and progression. Here we demonstrate that the non-aromatizable androgen 5-α-dihydrotestosterone (DHT) inhibits endogenous cyclin D1 expression, as evidenced by reduction of cyclin D1 mRNA and protein levels, and decrease of CCND1-promoter activity, in MCF-7 cells. The DHT-dependent inhibition of CCND1 gene activity requires the involvement and the integrity of the androgen receptor (AR) DNA-binding domain. Site directed mutagenesis, DNA affinity precipitation assay, electrophoretic mobility shift assay and chromatin immunoprecipitation analyses indicate that this inhibitory effect is ligand dependent and it is mediated by direct binding of AR to an androgen response element (CCND1-ARE) located at -570 to -556-bp upstream of the transcription start site, in the cyclin D1 proximal promoter. Moreover, AR-mediated repression of the CCND1 involves the recruitment of the atypical orphan nuclear receptor DAX1 as a component of a multiprotein repressor complex also embracing the participation of Histone Deacetylase 1. In conclusion, identification of the CCND1-ARE allows defining cyclin D1 as a specific androgen target gene in breast and might contribute to explain the molecular basis of the inhibitory role of androgens on breast cancer cells proliferation.

  20. Immunohistochemical analysis of androgen effects on androgen receptor expression in developing Leydig and Sertoli cells.

    PubMed

    Shan, L X; Bardin, C W; Hardy, M P

    1997-03-01

    Leydig and Sertoli cells are both targets of androgen action in the testis. Androgen exerts contrasting effects on the two cell types partially inhibiting steroidogenesis in adult Leydig cell and stimulating adult Sertoli cell functions required to support spermatogenesis. The developmental changes in the messenger RNA (mRNA) levels of androgen receptor (AR) also differ between Leydig and Sertoli cells, with Leydig cell AR mRNA being highest on day 35 postpartum, whereas Sertoli cell AR mRNA levels are highest on day 90. The purpose of the present study was to determine if the concentrations of AR in Leydig and Sertoli cells are differentially regulated during development using quantitative immunostaining. AR protein levels were measured in rat testes after hormonal treatments at three developmental stages: on days 21, 35, and 90 postpartum. At each age, five groups of animals were treated for 4 days with: 1) vehicle; 2) LHRH antagonist (NalGlu, 0.3 mg/kg BW.day) to suppress endogenous levels of androgen that accompany inhibition of LH and FSH secretion; 3) NalGlu + LH (0.2 mg/kg BW.day); 4) NalGlu + testosterone (T, at 7.5 mg/kg BW.day); and 5) NalGlu + MENT (a potent synthetic androgen, 7 alpha-methyl-19-nortestosterone, 0.7 mg/kg BW.day). AR protein was visualized by immunohistochemistry and measured by computer-assisted image analysis in Leydig and Sertoli cells using frozen sections of tests. After NalGlu treatment, AR levels in Leydig cells declined sharply to 42% and 31% of vehicle control (P < 0.01) in the 21 and 35 days postpartum age groups, respectively, but in 90-day-old rats there was no change. AR levels were partially maintained by exogenous LH, and completely maintained by exogenous androgen treatments in Leydig cells from 21- and 35-day-old rats, whereas in Leydig cells from 90-day-old rats, AR levels were unaffected in all treatment groups. In contrast, after NalGlu treatment, the AR concentration in Sertoli cells from 90-day-old rats were reduced

  1. Calpain-Dependent Proteolysis of the Androgen Receptor

    DTIC Science & Technology

    2009-11-01

    fetal bovine serum, 2 mmol/L L-glutamine, 100 units/mL penicillin , and 100 Ag/mL streptomycin (Invitrogen) at 37jC and 5% CO2. Western immunoblot...mutations Mutation of the AR gene to either a hypersensitive receptor or a receptor with expanded ligand specificity would confer androgen...PC3, DU145 and R1 cells were propagated in RPMI 1640 supplemented with 5% fetal bovine serum, 2 mmol/L L- glutamine, 100 units/mL penicillin , and

  2. Single amino acid substitutions at 2 of 14 positions in an ultra-conserved region of the androgen receptor yield an androgen-binding domain that is reversibly thermolabile

    SciTech Connect

    Vasiliou, M.; Lumbroso, R.; Alvarado, C.

    1994-09-01

    The stereochemistry of the androgen receptor (AR) that is responsible for androgen-specific binding and for its contribution to the transregulatory attributes of an androgen-receptor complex are unknown. Our objective is to define structure-function relations of the human AR by correlating germline missense mutations at its X-linked locus with its resultant misbehavior. Subjects with Arg773Cys have complete androgen insensitivity. We and several other laboratories have reported that their genital skin fibroblasts (GSF) have negligible androgen-binding activity at 37{degrees}. We have found that Phe763Leu also causes CAI, but with approximately 10 fmol/mg protein androgen-binding activity at 37{degrees} (R-deficient). Within COS-1 cells transfected with each mutant AR cDNA, Phe763Leu and Arg773Cys androgen-binding activities are reversibly thermolabile, by a factor of 2, at 37{degrees} versus 22{degrees}, only in the presence of androgen; in the absence of androgen they are thermostable at 37{degrees}. We have discovered that (for a reason yet unknown) the GSF from a third family with Arg773Cys (and no other coding sequence mutation) have 20-40 mol/mg protein of androgen-binding activity at 37{degrees} when measured with 3-6 nFM androgen. This activity reversibly doubles at 22{degrees}. The reversible thermolability of an AR with Arg773Cys (and probably with Phe763Leu) is demonstrable within GSF. Ligand-dependence of this thermolability implies that ligand induces these mutant AR to undergo a deviant conformational change in, or near, a 14-aa region that shares 90% identity/similarity with its closest receptor relatives.

  3. Differential Effects of Genistein on Prostate Cancer Cells Depend on Mutational Status of the Androgen Receptor

    PubMed Central

    Mahmoud, Abeer M.; Zhu, Tian; Parray, Aijaz; Siddique, Hifzur R.; Yang, Wancai; Saleem, Mohammad; Bosland, Maarten C.

    2013-01-01

    Blocking the androgen receptor (AR) activity is the main goal of therapies for advanced prostate cancer (PCa). However, relapse with a more aggressive, hormone refractory PCa arises, which harbors restored AR activity. One mechanism of such reactivation occurs through acquisition of AR mutations that enable its activation by various steroidal and non-steroidal structures. Thus, natural and chemical compounds that contribute to inappropriate (androgen-independent) activation of the AR become an area of intensive research. Here, we demonstrate that genistein, a soy phytoestrogen binds to both the wild and the Thr877Ala (T877A) mutant types of AR competitively with androgen, nevertheless, it exerts a pleiotropic effect on PCa cell proliferation and AR activity depending on the mutational status of the AR. Genistein inhibited, in a dose-dependent way, cell proliferation and AR nuclear localization and expression in LAPC-4 cells that have wild AR. However, in LNCaP cells that express the T877A mutant AR, genistein induced a biphasic effect where physiological doses (0.5-5 µmol/L) stimulated cell growth and increased AR expression and transcriptional activity, and higher doses induced inhibitory effects. Similar biphasic results were achieved in PC-3 cells transfected with AR mutants; T877A, W741C and H874Y. These findings suggest that genistein, at physiological concentrations, potentially act as an agonist and activate the mutant AR that can be present in advanced PCa after androgen ablation therapy. PMID:24167630

  4. Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor.

    PubMed

    Mahmoud, Abeer M; Zhu, Tian; Parray, Aijaz; Siddique, Hifzur R; Yang, Wancai; Saleem, Mohammad; Bosland, Maarten C

    2013-01-01

    Blocking the androgen receptor (AR) activity is the main goal of therapies for advanced prostate cancer (PCa). However, relapse with a more aggressive, hormone refractory PCa arises, which harbors restored AR activity. One mechanism of such reactivation occurs through acquisition of AR mutations that enable its activation by various steroidal and non-steroidal structures. Thus, natural and chemical compounds that contribute to inappropriate (androgen-independent) activation of the AR become an area of intensive research. Here, we demonstrate that genistein, a soy phytoestrogen binds to both the wild and the Thr877Ala (T877A) mutant types of AR competitively with androgen, nevertheless, it exerts a pleiotropic effect on PCa cell proliferation and AR activity depending on the mutational status of the AR. Genistein inhibited, in a dose-dependent way, cell proliferation and AR nuclear localization and expression in LAPC-4 cells that have wild AR. However, in LNCaP cells that express the T877A mutant AR, genistein induced a biphasic effect where physiological doses (0.5-5 µmol/L) stimulated cell growth and increased AR expression and transcriptional activity, and higher doses induced inhibitory effects. Similar biphasic results were achieved in PC-3 cells transfected with AR mutants; T877A, W741C and H874Y. These findings suggest that genistein, at physiological concentrations, potentially act as an agonist and activate the mutant AR that can be present in advanced PCa after androgen ablation therapy.

  5. Androgen metabolite-dependent growth of hormone receptor-positive breast cancer as a possible aromatase inhibitor-resistance mechanism.

    PubMed

    Hanamura, Toru; Niwa, Toshifumi; Nishikawa, Sayo; Konno, Hiromi; Gohno, Tatsuyuki; Tazawa, Chika; Kobayashi, Yasuhito; Kurosumi, Masafumi; Takei, Hiroyuki; Yamaguchi, Yuri; Ito, Ken-Ichi; Hayashi, Shin-Ichi

    2013-06-01

    Aromatase inhibitors (AIs) have been reported to exert their antiproliferative effects in postmenopausal women with hormone receptor-positive breast cancer not only by reducing estrogen production but also by unmasking the inhibitory effects of androgens such as testosterone (TS) and dihydrotestosterone (DHT). However, the role of androgens in AI-resistance mechanisms is not sufficiently understood. 5α-Androstane-3β,17β-diol (3β-diol) generated from DHT by 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) shows androgenic and substantial estrogenic activities, representing a potential mechanism of AI resistance. Estrogen response element (ERE)-green fluorescent protein (GFP)-transfected MCF-7 breast cancer cells (E10 cells) were cultured for 3 months under steroid-depleted, TS-supplemented conditions. Among the surviving cells, two stable variants showing androgen metabolite-dependent ER activity were selected by monitoring GFP expression. We investigated the process of adaptation to androgen-abundant conditions and the role of androgens in AI-resistance mechanisms in these variant cell lines. The variant cell lines showed increased growth and induction of estrogen-responsive genes rather than androgen-responsive genes after stimulation with androgens or 3β-diol. Further analysis suggested that increased expression of HSD3B1 and reduced expression of androgen receptor (AR) promoted adaptation to androgen-abundant conditions, as indicated by the increased conversion of DHT into 3β-diol by HSD3B1 and AR signal reduction. Furthermore, in parental E10 cells, ectopic expression of HSD3B1 or inhibition of AR resulted in adaptation to androgen-abundant conditions. Coculture with stromal cells to mimic local estrogen production from androgens reduced cell sensitivity to AIs compared with parental E10 cells. These results suggest that increased expression of HSD3B1 and reduced expression of AR might reduce the sensitivity to AIs as demonstrated by enhanced androgen

  6. Novel mutation in the ligand-binding domain of the androgen receptor gene (l790p) associated with complete androgen insensitivity syndrome.

    PubMed

    Raicu, Florina; Giuliani, Rossella; Gatta, Valentina; Palka, Chiara; Franchi, Paolo Guanciali; Lelli-Chiesa, Pierluigi; Tumini, Stefano; Stuppia, Liborio

    2008-07-01

    Mutations in the X-linked androgen receptor (AR) gene cause androgen insensitivity syndrome (AIS), resulting in an impaired embryonic sex differentiation in 46,XY genetic men. Complete androgen insensitivity (CAIS) produces a female external phenotype, whereas cases with partial androgen insensitivity (PAIS) have various ambiguities of the genitalia. Mild androgen insensitivity (MAIS) is characterized by undermasculinization and gynecomastia. Here we describe a 2-month-old 46,XY female patient, with all of the characteristics of CAIS. Defects in testosterone (T) and dihydrotestosterone (DHT) synthesis were excluded. Sequencing of the AR gene showed the presence in exon 6 of a T to C transition in the second base of codon 790, nucleotide position 2369, causing a novel missense Leu790Pro mutation in the ligand-binding domain of the AR protein. The identification of a novel AR mutation in a girl with CAIS provides significant information due to the importance of missense mutations in the ligand-binding domain of the AR, which are able to induce functional abnormalities in the androgen binding capability, stabilization of active conformation, or interaction with coactivators.

  7. A comparison of progestin and androgen receptor binding using the CoMFA technique

    NASA Astrophysics Data System (ADS)

    Loughney, Deborah A.; Schwender, Charles F.

    1992-12-01

    A series of 48 steroids has been studied with the SYBYL QSAR module using Relative Binding Affinities (RBAs) to progesterone and androgen receptors obtained from the literature. Models for the progesterone and androgen data were developed. Both models show regions where sterics and electrostatics correlate to binding affinity but are different for androgen and progesterone which suggests differences possibly important for receptor selectivity. The progesterone model is more predictive than the androgen (predictive r2 of 0.725 vs. 0.545 for progesterone and androgen, respectively).

  8. Lepidium meyenii (Maca) does not exert direct androgenic activities.

    PubMed

    Bogani, P; Simonini, F; Iriti, M; Rossoni, M; Faoro, F; Poletti, A; Visioli, F

    2006-04-06

    Maca is the edible root of the Peruvian plant Lepidum meyenii, traditionally employed for its purported aphrodisiac and fertility-enhancing properties. This study aimed at testing the hypothesis that Maca contains testosterone-like compounds, able to bind the human androgen receptor and promote transcription pathways regulated by steroid hormone signaling. Maca extracts (obtained with different solvents: methanol, ethanol, hexane and chloroform) are not able to regulate GRE (glucocorticoid response element) activation. Further experiments are needed to assess which compound, of the several Maca's components, is responsible of the observed in vivo effects.

  9. AZD3514: a small molecule that modulates androgen receptor signaling and function in vitro and in vivo.

    PubMed

    Loddick, Sarah A; Ross, Sarah J; Thomason, Andrew G; Robinson, David M; Walker, Graeme E; Dunkley, Tom P J; Brave, Sandra R; Broadbent, Nicola; Stratton, Natalie C; Trueman, Dawn; Mouchet, Elizabeth; Shaheen, Fadhel S; Jacobs, Vivien N; Cumberbatch, Marie; Wilson, Joanne; Jones, Rhys D O; Bradbury, Robert H; Rabow, Alfred; Gaughan, Luke; Womack, Chris; Barry, Simon T; Robson, Craig N; Critchlow, Susan E; Wedge, Stephen R; Brooks, A Nigel

    2013-09-01

    Continued androgen receptor (AR) expression and signaling is a key driver in castration-resistant prostate cancer (CRPC) after classical androgen ablation therapies have failed, and therefore remains a target for the treatment of progressive disease. Here, we describe the biological characterization of AZD3514, an orally bioavailable drug that inhibits androgen-dependent and -independent AR signaling. AZD3514 modulates AR signaling through two distinct mechanisms, an inhibition of ligand-driven nuclear translocation of AR and a downregulation of receptor levels, both of which were observed in vitro and in vivo. AZD3514 inhibited testosterone-driven seminal vesicle development in juvenile male rats and the growth of androgen-dependent Dunning R3327H prostate tumors in adult rats. Furthermore, this class of compound showed antitumor activity in the HID28 mouse model of CRPC in vivo. AZD3514 is currently in phase I clinical evaluation.

  10. AZD3514: a small molecule that modulates androgen receptor signaling and function in vitro and in vivo

    PubMed Central

    Loddick, Sarah A; Ross, Sarah J; Thomason, Andrew G; Robinson, David M; Walker, Graeme E; Dunkley, Tom PJ; Brave, Sandra R; Broadbent, Nicola; Stratton, Natalie C; Trueman, Dawn; Mouchet, Elizabeth; Shaheen, Fadhel S; Jacobs, Vivien N; Cumberbatch, Marie; Wilson, Joanne; Jones, Rhys D O; Bradbury, Robert H; Rabow, Alfred; Gaughan, Luke; Womack, Chris; Barry, Simon T; Robson, Craig N; Critchlow, Susan E; Wedge, Stephen R; Brooks, Nigel A

    2013-01-01

    Continued androgen receptor (AR) expression and signaling is a key driver in castration resistant prostate cancer (CRPC) after classical androgen ablation therapies have failed, and therefore remains a target for the treatment of progressive disease. Here we describe the biological characterization of AZD3514, an orally bioavailable drug that inhibits androgen-dependent and–independent AR signaling. AZD3514 modulates AR signaling through two distinct mechanisms, an inhibition of ligand driven nuclear translocation of AR and a down-regulation of receptor levels, both of which were observed in vitro and in vivo. AZD3514 inhibited testosterone-driven seminal vesicle development in juvenile male rats and the growth of androgen-dependent Dunning R3327H prostate tumors in adult rats. Furthermore, this class of compound demonstrated anti-tumor activity in the HID28 mouse model of CRPC in vivo. AZD3514 is currently in Phase I clinical evaluation. PMID:23861347

  11. Update of the androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  12. Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains.

    PubMed Central

    Schoenmakers, E; Alen, P; Verrijdt, G; Peeters, B; Verhoeven, G; Rombauts, W; Claessens, F

    1999-01-01

    The androgen and glucocorticoid hormones evoke specific in vivo responses by activating different sets of responsive genes. Although the consensus sequences of the glucocorticoid and androgen response elements are very similar, this in vivo specificity can in some cases be explained by differences in DNA recognition between both receptors. This has clearly been demonstrated for the androgen response element PB-ARE-2 described in the promoter of the rat probasin gene. Swapping of different fragments between the androgen- and glucocorticoid-receptor DNA-binding domains demonstrates that (i) the first Zn-finger module is not involved in this sequence selectivity and (ii) that residues in the second Zn-finger as well as a C-terminal extension of the DNA-binding domain from the androgen receptor are required. For specific and high-affinity binding to response elements, the DNA-binding domains of the androgen and glucocorticoid receptors need a different C-terminal extension. The glucocorticoid receptor requires 12 C-terminal amino acids for high affinity DNA binding, while the androgen receptor only involves four residues. However, for specific recognition of the PB-ARE-2, the androgen receptor also requires 12 C-terminal residues. Our data demonstrate that the mechanism by which the androgen receptor binds selectively to the PB-ARE-2 is different from that used by the glucocorticoid receptor to bind a consensus response element. We would like to suggest that the androgen receptor recognizes response elements as a direct repeat rather than the classical inverted repeat. PMID:10417312

  13. An examination of how different mutations at arginine 855 of the androgen receptor result in different androgen insensitivity phenotypes.

    PubMed

    Elhaji, Youssef A; Wu, Jian Hui; Gottlieb, Bruce; Beitel, Lenore K; Alvarado, Carlos; Batist, Gerald; Trifiro, Mark A

    2004-08-01

    Two substitutions at an identical location in the ligand-binding domain (LBD) of the human androgen receptor (AR), R855C and R855H, are associated with complete androgen insensitivity syndrome (AIS) and partial AIS, respectively. Kinetic analysis of the mutant receptors in genital skin fibroblasts and in transfected cells revealed very low total binding (Bmax) and increased rate constants of dissociation (k) for the R855C mutant; and normal Bmax and k, with slightly elevated equilibrium affinity constants (Kd), but decreased transactivational capacity for the R855H mutant. Further analysis of the R855H mutant revealed both thermolability and decreased N/C-terminal inter-actions in the presence and absence of the co-activator transcriptional intermediary factor 2. To establish the nature of these functional differences we have used molecular dynamic modeling to create four-dimensional models of each of the mutant receptors. Molecular dynamic modeling produced profoundly different models for each of the mutants: in modeling of R855C a surprisingly significant distant alteration in the position of helix 12 of the helix 12 positioning of the AR ligand binding domain (AR-LBD) occurs, which would predict severe ligand binding abnormalities and complete AIS; in modeling of R855H, no dramatic effect on the position of helix 12 was seen; thus, binding properties of the receptor are not compromised. Molecular dynamics four-dimensional modeling clearly supports the biochemical and kinetic studies of both mutants. Such novel computational modeling may lead to a better understanding of the structure-function relationships and the molecular mechanics of ligand binding not only of the AR-LBD but also of other nuclear receptors.

  14. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation.

    PubMed

    Gaughan, Luke; Logan, Ian R; Neal, David E; Robson, Craig N

    2005-01-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.

  15. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer.

    PubMed

    Gregory, Christopher W; Fei, Xiaoyin; Ponguta, Liliana A; He, Bin; Bill, Heather M; French, Frank S; Wilson, Elizabeth M

    2004-02-20

    Growth of normal and neoplastic prostate is mediated by the androgen receptor (AR), a ligand-dependent transcription factor activated by high affinity androgen binding. The AR is highly expressed in recurrent prostate cancer cells that proliferate despite reduced circulating androgen. In this report, we show that epidermal growth factor (EGF) increases androgen-dependent AR transactivation in the recurrent prostate cancer cell line CWR-R1 through a mechanism that involves a post-transcriptional increase in the p160 coactivator transcriptional intermediary factor 2/glucocorticoid receptor interacting protein 1 (TIF2/GRIP1). Site-specific mutagenesis and selective MAPK inhibitors linked the EGF-induced increase in AR transactivation to phosphorylation of TIF2/GRIP1. EGF signaling increased the coimmunoprecipitation of TIF2 and AR. AR transactivation and its stimulation by EGF were reduced by small interfering RNA inhibition of TIF2/GRIP1 expression. The data indicate that EGF signaling through MAPK increases TIF2/GRIP1 coactivation of AR transactivation in recurrent prostate cancer.

  16. Critical role of androgen receptor in the postnatal period in male sexual behavior in rats.

    PubMed

    Yamada, Shunji; Ohoya, Miku; Takanami, Keiko; Matsuda, Ken Ichi; Kawata, Mitsuhiro

    2015-11-16

    Gonadal hormones have a developmental role in organization of the nervous system that regulates sexually dimorphic behavior. It is well known that androgen secreted from testes in the perinatal period is converted to estrogen by aromatase in rodent brain, and that estrogen and its receptor play a pivotal role in masculinization of brain structure and function. Treatment with flutamide, an androgen receptor (AR) antagonist, during the perinatal period inhibits development of malespecific brain structure and function, suggesting that androgen signaling via AR also influences brain masculinization. In this study, we investigated which stage during the postnatal period is critical for androgen signaling in brain masculinization. The postnatal period was designated as postnatal days (PD) 0-22, and divided into stages I (PD 0-7), II (PD 8-14), and III (PD 15-22). Newborn male rats were given flutamide subcutaneously in each stage. After adulthood, the effects of postnatal flutamide treatment on brain masculinization were evaluated byanalysis of male sexual behavior. Continuous inhibition of AR throughout stages I and II caused a robust reduction of the intromission ratio and ejaculation frequency compared with other groups. AR inhibition in stage I, II, or III did not cause any change. AR inhibition had no effect onmount behavior. These results show that stage-specific AR activation in the first two postnatal weeks may contribute to brain masculinization mediating male sexual behavior in adulthood.

  17. N-Aryl-oxazolidin-2-imine Muscle Selective Androgen Receptor Modulators Enhance Potency through Pharmacophore Reorientation

    SciTech Connect

    Nirschl, Alexandra A.; Zou, Yan; Krystek, Jr., Stanley R.; Sutton, James C.; Simpkins, Ligaya M.; Lupisella, John A.; Kuhns, Joyce E.; Seethala, Ramakrishna; Golla, Rajasree; Sleph, Paul G.; Beehler, Blake C.; Grover, Gary J.; Egan, Donald; Fura, Aberra; Vyas, Viral P.; Li, Yi-Xin; Sack, John S.; Kish, Kevin F.; An, Yongmi; Bryson, James A.; Gougoutas, Jack Z.; DiMarco, John; Zahler, Robert; Ostrowski, Jacek; Hamann, Lawrence G.

    2010-11-09

    A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.

  18. Discovery of non-LBD inhibitor for androgen receptor by structure-guide design.

    PubMed

    Ryu, Byung Jun; Kim, Nakjeong; Kim, Jun Tae; Koo, Tae-Sung; Yoo, Sung-Eun; Jeong, Seo Hee; Kim, Seong Hwan; Kang, Nam Sook

    2013-07-01

    In this study, we synthesized the BF-3 binding small molecules, a series of pyridazinone-based compounds, as a novel class of non-LBP antiandrogens for treating prostate cancer by inhibiting androgen receptor. The new class compound was discovered to inhibitor the viability of AR-dependent human prostate LNCap cells and AR activity combining with the computational method. It showed a good physicochemical and PK property.

  19. Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals.

    PubMed Central

    Körner, Wolfgang; Vinggaard, Anne Marie; Térouanne, Béatrice; Ma, Risheng; Wieloch, Carise; Schlumpf, Margret; Sultan, Charles; Soto, Ana M

    2004-01-01

    We evaluated and compared four in vitro assays to detect androgen agonists and antagonists in an international interlaboratory study. Laboratory 1 used a cell proliferation assay (assay 1) with human mammary carcinoma cells stably transfected with human androgen receptor. The other laboratories used reporter gene assays, two based on stably transfected human prostate carcinoma cells (assay 2) or human mammary carcinoma cells (assay 4), and the third based on transient transfection of Chinese hamster ovary cells (assay 3). Four laboratories received four coded compounds and two controls: two steroidal androgens, two antiandrogens, an androgenic control, 5alpha-dihydrotestosterone (DHT), and an antiandrogenic control, bicalutamide (ICI 176,334). All laboratories correctly detected the androgenic activity of 4-androsten-3,17-dione and 17alpha-methyltestosterone. For both compounds, the calculated androgenic potencies relative to the positive control (RAPs) remained within one order of magnitude. However, laboratory 3 calculated a 50-fold higher RAP for 4-androsten-3,17-dione. All assays detected and quantified the antiandrogenic effect of vinclozolin [median inhibitory concentration (IC50) values ranging from 1.1 times symbol 10(-7) M to 4.7 times symbol 10(-7) M]. In assays 2 and 3, vinclozolin showed partial androgenic activity at the highest concentrations tested. For vinclozolin, calculated antiandrogenic potencies relative to bicalutamide (RAAPs) differed no more than a factor of 10, and IC50 values matched those of bicalutamide. Similarly, we found antiandrogenic activity for tris-(4-chlorophenyl)methanol. RAAP values were between 0.086 and 0.37. Three assays showed cytotoxicity for this compound at or above 1 times symbol 10(-5) M. In summary, all assays proved sensitive screening tools to detect and quantify androgen receptor-mediated androgenic and antiandrogenic effects of these chemicals accurately, with coefficients of variation between 8 and 90%. PMID

  20. Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1.

    PubMed

    Ou, Xiao-Ming; Chen, Kevin; Shih, Jean C

    2006-07-28

    Monoamine oxidase (MAO) A is a key enzyme for the degradation of neurotransmitters serotonin, norepinephrine, and dopamine. There are three consensus glucocorticoid/androgen response elements and four Sp1-binding sites in the human monoamine oxidase A 2-kb promoter. A novel transcription factor R1 (RAM2/CDCA7L) interacts with Sp1-binding sites and represses MAO A gene expression. Luciferase assays show that glucocorticoid (dexamethasone) and androgen (R1881) increase MAO A promoter and catalytic activities in human neuroblastoma and glioblastoma cells. Gel-shift analysis demonstrates that glucocorticoid/androgen receptors interact directly with the third glucocorticoid/androgen response element. Glucocorticoid/androgen receptors also interact with Sp1-binding sites indirectly via transcription factor Sp1. In addition, dexamethasone induces R1 translocation from the cytosol to the nucleus in a time-dependent manner in both the neuroblastoma and wild-type UW228 cell lines but not in R1 knock-down UW228 cells. In summary, this study shows that glucocorticoid enhances monoamine oxidase A gene expression by 1) regulation of R1 translocation; 2) direct interaction of the glucocorticoid receptor with the third glucocorticoid/androgen response element; and 3) indirect interaction of glucocorticoid receptor with the Sp1 or R1 transcription factor on Sp1-binding sites of the MAO A promoter. Androgen also up-regulates MAO A gene expression by direct interaction of androgen receptor with the third glucocorticoid/androgen response element. Androgen receptor indirectly interacts with the Sp1, but not R1 transcription factor, on Sp1-binding sites. This study provides new insights on the differential regulation of MAO A by glucocorticoid and androgen.

  1. The Amino-terminal Domain of the Androgen Receptor Co-opts Extracellular Signal-regulated Kinase (ERK) Docking Sites in ELK1 Protein to Induce Sustained Gene Activation That Supports Prostate Cancer Cell Growth*

    PubMed Central

    Rosati, Rayna; Patki, Mugdha; Chari, Venkatesh; Dakshnamurthy, Selvakumar; McFall, Thomas; Saxton, Janice; Kidder, Benjamin L.; Shaw, Peter E.; Ratnam, Manohar

    2016-01-01

    The ETS domain transcription factor ELK1 is in a repressive association with growth genes and is transiently activated through phosphorylation by ERK1/2. In prostate cancer (PCa) cells the androgen receptor (AR) is recruited by ELK1, via its amino-terminal domain (A/B), as a transcriptional co-activator, without ELK1 hyper-phosphorylation. Here we elucidate the structural basis of the interaction of AR with ELK1. The ELK1 polypeptide motifs required for co-activation by AR versus those required for activation of ELK1 by ERK were systematically mapped using a mammalian two-hybrid system and confirmed using a co-immunoprecipitation assay. The mapping precisely identified the two ERK-docking sites in ELK1, the D-box and the DEF (docking site for ERK, FXFP) motif, as the essential motifs for its cooperation with AR(A/B) or WTAR. In contrast, the transactivation domain in ELK1 was only required for activation by ERK. ELK1-mediated transcriptional activity of AR(A/B) was optimal in the absence of ELK1 binding partners, ERK1/2 and serum-response factor. Purified ELK1 and AR bound with a dissociation constant of 1.9 × 10−8 m. A purified mutant ELK1 in which the D-box and DEF motifs were disrupted did not bind AR. An ELK1 mutant with deletion of the D-box region had a dominant-negative effect on androgen-dependent growth of PCa cells that were insensitive to MEK inhibition. This novel mechanism in which a nuclear receptor impinges on a signaling pathway by co-opting protein kinase docking sites to constitutively activate growth genes could enable rational design of a new class of targeted drug interventions. PMID:27793987

  2. Mechanisms of acquired resistance to androgen receptor targeting drugs in castration resistant prostate cancer

    PubMed Central

    Chism, David D.; De Silva, Dinuka; Whang, Young E.

    2014-01-01

    After initial response to androgen receptor targeting drugs abiraterone or enzalutamide, most patients develop progressive disease and therefore, castration resistant prostate cancer (CRPC) remains a terminal disease. Multiple mechanisms underlying acquired resistance have been postulated. Intratumoral androgen synthesis may resume after abiraterone treatment. A point mutation in the ligand binding domain of androgen receptor may confer resistance to enzalutamide. Emergence of androgen receptor splice variants lacking the ligand binding domain may mediate resistance to abiraterone and enzalutamide. Steroid receptors such as glucocorticoid receptor may substitute for androgen receptor. Drugs with novel mechanisms of action or combination therapy, along with biomarkers for patient selection, may be needed to improve the therapy of CRPC. PMID:24927631

  3. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer.

    PubMed

    Narayanan, Ramesh; Dalton, James T

    2016-12-02

    Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR's therapeutic role in breast cancer.

  4. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    PubMed Central

    Narayanan, Ramesh; Dalton, James T.

    2016-01-01

    Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. PMID:27918430

  5. Stress and Androgen Activity During Fetal Development

    PubMed Central

    Swan, Shanna H.

    2015-01-01

    Prenatal stress is known to alter hypothalamic-pituitary-adrenal axis activity, and more recent evidence suggests that it may also affect androgen activity. In animal models, prenatal stress disrupts the normal surge of testosterone in the developing male, whereas in females, associations differ by species. In humans, studies show that (1) associations between prenatal stress and child outcomes are often sex-dependent, (2) prenatal stress predicts several disorders with notable sex differences in prevalence, and (3) prenatal exposure to stressful life events may be associated with masculinized reproductive tract development and play behavior in girls. In this minireview, we examine the existing literature on prenatal stress and androgenic activity and present new, preliminary data indicating that prenatal stress may also modify associations between prenatal exposure to diethylhexyl phthalate, (a synthetic, antiandrogenic chemical) and reproductive development in infant boys. Taken together, these data support the hypothesis that prenatal exposure to both chemical and nonchemical stressors may alter sex steroid pathways in the maternal-placental-fetal unit and ultimately alter hormone-dependent developmental endpoints. PMID:26241065

  6. Structure of the homodimeric androgen receptor ligand-binding domain

    PubMed Central

    Nadal, Marta; Prekovic, Stefan; Gallastegui, Nerea; Helsen, Christine; Abella, Montserrat; Zielinska, Karolina; Gay, Marina; Vilaseca, Marta; Taulès, Marta; Houtsmuller, Adriaan B.; van Royen, Martin E.; Claessens, Frank; Fuentes-Prior, Pablo; Estébanez-Perpiñá, Eva

    2017-01-01

    The androgen receptor (AR) plays a crucial role in normal physiology, development and metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not by antagonists. The 2.15-Å crystal structure of homodimeric, agonist- and coactivator peptide-bound AR-LBD unveils a 1,000-Å2 large dimerization surface, which harbours over 40 previously unexplained AIS- and PCa-associated point mutations. An AIS mutation in the self-association interface (P767A) disrupts dimer formation in vivo, and has a detrimental effect on the transactivating properties of full-length AR, despite retained hormone-binding capacity. The conservation of essential residues suggests that the unveiled dimerization mechanism might be shared by other nuclear receptors. Our work defines AR-LBD homodimerization as an essential step in the proper functioning of this important transcription factor. PMID:28165461

  7. The role of the androgen receptor in the development and progression of bladder cancer.

    PubMed

    Li, Yi; Izumi, Koji; Miyamoto, Hiroshi

    2012-07-01

    Men are at a higher risk of developing bladder cancer than women. Since bladder cancer cell lines and tissues were found to express the androgen receptor, efforts have been made to inspect whether androgen-mediated androgen receptor signals are implicated in bladder carcinogenesis as well as cancer progression. Mounting evidence supports the view that bladder cancer is a member of the endocrine-related tumors and may clearly explain the gender-specific difference in the incidence. However, the underlying mechanisms of how androgen receptor signals regulate bladder cancer growth are still far from fully characterized. Moreover, it remains controversial whether the androgen receptor pathway always plays a dominant role in bladder cancer progression. In this review, we summarize the available data on the involvement of androgen receptor signaling in bladder cancer. In particular, current evidence demonstrating the stimulatory effects of androgens on tumor progression or, more convincingly, tumorigenesis via the androgen receptor pathway may offer great potential for androgen deprivation as a therapeutic or chemopreventive option in patients with bladder cancer.

  8. The transcriptional programme of the androgen receptor (AR) in prostate cancer.

    PubMed

    Lamb, Alastair D; Massie, Charlie E; Neal, David E

    2014-03-01

    The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors.

  9. ASSESSMENT OF IN VITRO ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT

    EPA Science Inventory

    Detection of In Vitro Androgenic Activity in Feedlot Effluent. Lambright, CS 1 , Guillette, LJ, Jr.2, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville FL

    Recent studies have shown the presence of androgenic activity in water...

  10. L712V mutation in the androgen receptor gene causes complete androgen insensitivity syndrome due to severe loss of androgen function.

    PubMed

    Rajender, Singh; Gupta, Nalini J; Chakrabarty, Baidyanath; Singh, Lalji; Thangaraj, Kumarasamy

    2013-12-11

    Inability to respond to the circulating androgens is named as androgen insensitivity syndrome (AIS). Mutations in the androgen receptor (AR) gene are the most common cause of AIS. A cause and effect relationship between some of these mutations and the AIS phenotype has been proven by in vitro studies. Several other mutations have been identified, but need to be functionally validated for pathogenicity. Screening of the AR mutations upon presumptive diagnosis of AIS is recommended. We analyzed a case of complete androgen insensitivity syndrome (CAIS) for mutations in the AR gene. Sequencing of the entire coding region revealed C>G mutation (CTT-GTT) at codon 712 (position according to the NCBI database) in exon 4 of the gene, resulting in replacement of leucine with valine in the ligand-binding domain of the AR protein. No incidence of this mutation was observed in 230 normal male individuals analyzed for comparison. In vitro androgen binding and transactivation assays using mutant clone showed approximately 71% loss of ligand binding and about 76% loss of transactivation function. We conclude that CAIS in this individual was due to L712V substitution in the androgen receptor protein.

  11. In-vitro characterization of androgen receptor mutations associated with complete androgen insensitivity syndrome reveals distinct functional deficits.

    PubMed

    Werner, R; Zhan, J; Gesing, J; Struve, D; Hiort, O

    2008-01-01

    Adequate androgen receptor (AR) function is crucial for male sex development and maintenance of secondary male characteristics. Mutations in the AR lead to androgen insensitivity syndrome (AIS) characterized by an end-organ resistance to androgens. The clinical appearance of individuals with 46,XY karyotype and an AR mutation varies widely from normal male to the ultimate completely female phenotype of complete androgen insensitivity syndrome (CAIS). We have analyzed the androgen receptor missense mutations P723S, P904S, and H917R, clinically associated with CAIS, which were described to have a normal maximum androgen binding (Bmax) but elevated equilibrium dissociation constants (Kd's) and compared their properties with the F916X deletion mutant, leading to the loss of the last four amino acids of the AR. Functional analysis allowed a quantitative and qualitative discrimination of these mutants in transactivation, amino-terminal/carboxy-terminal (N/C)-interaction, and coactivation capacity, varying widely with each distinct mutation. We conclude that mutations in the AR have to be characterized meticulously, not only to prove any quantitative functional deficit as a proof of consequence, but also to gain knowledge on qualitative functional properties. This is necessary as a possible link to genotype-phenotype correlation in AIS, but also with respect to medical decision making in CAIS.

  12. Different types of androgen receptor mutations in patients with complete androgen insensitivity syndrome.

    PubMed

    Shao, Jialiang; Hou, Jiangang; Li, Bingkun; Li, Dongyang; Zhang, Ning; Wang, Xiang

    2015-02-01

    Mutations of androgen receptor (AR) are the most frequent cause of 46, XY disorders of sex development and associated with a variety of phenotypes, ranging from phenotypic women (complete androgen insensitivity syndrome (CAIS)) to milder degrees of undervirilization (partial form or PAIS) or men with only infertility (mild form or MAIS). From 2009 to 2012, two young Chinese female individuals with CAIS from two families were referred to our hospital due to primary amenorrhea. Defects in testosterone (T) and dihydrotestosterone (DHT) synthesis were excluded. Physical examination revealed that the patients have normal female external genitalia, normal breast development, vellus hair in the axilla and on the arms and legs, but absence of pubic hair, and a blind-ending vagina. Two different types of AR mutations have been detected by sequencing of genomic DNA: Family A showed deletion of exon 2 in AR gene; Family B showed a single nucleotide C-to-T transition in exon 8 of AR gene resulting in a proline 893-to-leucine substitution (Pro893Leu). Testicular histology showed developmental immaturity of seminiferous tubules with the absence of spermatogenic cells or spermatozoa. No AR immunoreactivity was observed in either case. Three adult patients recovered well from bilateral orchiectomy. The juvenile patient of family B was followed up. Our present study on these two families revealed two different types of AR mutation. The definitive diagnosis of AIS was based on clinical examination and genetic investigations. Our findings verified the mechanism of CAIS and also enriched AR Gene Mutation Database.

  13. Identification of novel androgen receptor target genes in prostate cancer

    PubMed Central

    Jariwala, Unnati; Prescott, Jennifer; Jia, Li; Barski, Artem; Pregizer, Steve; Cogan, Jon P; Arasheben, Armin; Tilley, Wayne D; Scher, Howard I; Gerald, William L; Buchanan, Grant; Coetzee, Gerhard A; Frenkel, Baruch

    2007-01-01

    Background The androgen receptor (AR) plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa). However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP) Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant) and LNCaP (androgen-dependent) PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT), Protein kinase C delta (PRKCD), Glutathione S- transferase theta 2 (GSTT2), Transient receptor potential cation channel subfamily V member 3 (TRPV3), and Pyrroline-5-carboxylate reductase 1 (PYCR1) – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT), was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are repressed. In general

  14. The use of androgen receptor amino/carboxyl-terminal interaction assays to investigate androgen receptor gene mutations in subjects with varying degrees of androgen insensitivity.

    PubMed

    Ghali, Shereen A; Gottlieb, Bruce; Lumbroso, Rose; Beitel, Lenore K; Elhaji, Youssef; Wu, Jian; Pinsky, Leonard; Trifiro, Mark A

    2003-05-01

    Five mutations in the ligand-binding domain (LBD) of the human androgen receptor (hAR) found in patients with varying degrees of androgen insensitivity syndrome (AIS) were investigated for their effects on receptor dynamics. These were Arg(871)Gly (mild), Ser(814)Asn (partial), Glu(772)Ala (partial), Val(866)Met (complete), and Arg(774)Cys (complete). Previous analysis showed that the mutant receptors exhibited near-normal kinetics, except Arg(774)Cys, which had severely reduced androgen binding, and Val(866)Met, which showed increased equilibrium dissociation constant (K(d)) and elevated dissociation rate (k) values. Ser(814)Asn exhibited ligand-selective k values, i.e. increased for dihydrotestosterone and mibolerone, but normal for methyltrenolene. Using mammalian two-hybrid assays, hAR amino/carboxyl (N/C)-terminal interactions of the mutant receptors were analyzed in the presence and absence of the hAR coactivator transcription intermediary factor 2 (TIF2). The mutations conferred decreased hAR N/C-terminal interaction, i.e. mild (approximately 1.5-fold), partial (2-fold), and complete (10-fold), that mirrored the degree of AIS. All mutant LBDs showed a 2- to 3-fold increase in N/C-terminal interactions when TIF2 was cotransfected, although of a magnitude still less than that of wild-type LBD with TIF2. The ligand-selective properties of the Ser(814)Asn mutant were also clearly reflected by the N/C-terminal interactions. Thus, measurement of N/C-terminal interactions may assist in the molecular analysis of mutant hARs associated with AIS.

  15. Relationship between sexual satiety and motivation, brain androgen receptors and testosterone in male mandarin voles.

    PubMed

    He, Fengqin; Yu, Peng; Wu, Ruiyong

    2013-08-01

    Androgen receptors participate in the neuroendocrine regulation of male sexual behavior, primarily in brain areas located in the limbic system. Males of many species present a long-term inhibition of sexual behavior after several ejaculations, known as sexual satiety. It has been shown in rats that androgen receptor expression is reduced 24h after a single ejaculation, or mating to satiety, in the medial preoptic area, nucleus accumbens and ventromedial hypothalamus. The aim of this study was to analyze these processes in another animal, the mandarin vole (Microtus mandarinus). We compared differences in androgen receptor (AR) and testosterone (T) expression in various brain areas between male mandarin voles sexually satiated and those exposed to receptive females but not allowed to mate. Sexual satiety was associated with decreased AR and T expression in the lateral septal nucleus (LS), medial amygdala (MeA), medial preoptic area (mPOA) and ventromedial hypothalamic nucleus (VMH). Males exposed to receptive females showed an increase in AR and T expression in the bed nucleus of the stria terminalis (BNST), LS, MeA and VMH. Serum testosterone levels remained unchanged after 24h in males exposed to receptive females or males mated to satiety. These data suggest a relationship between sexual activity and a decrease in AR and T expression in specific brain areas, and a relationship between sexual motivation and increased AR and T expression in other brain areas, independently of testosterone levels.

  16. Trinucleotide repeats and protein folding and disease: the perspective from studies with the androgen receptor

    PubMed Central

    Orafidiya, Folake A; McEwan, Iain J

    2015-01-01

    The androgen receptor (AR), a ligand activated transcription factor plays a number of roles in reproduction, homeostasis and pathogenesis of disease. It has two major polymorphic sequences; a polyglutamine and a polyglycine repeat that determine the length of the protein and influence receptor folding, structure and function. Here, we review the role the folding of the AR plays in the pathogenesis of spinal-bulbar muscular atrophy (SBMA), a neuromuscular degenerative disease arising from expansion of the polyglutamine repeat. We discuss current management for SBMA patients and how research on AR structure function may lead to future drug treatments. PMID:28031874

  17. Androgens act synergistically to enhance estrogen-induced upregulation of human tissue kallikreins 10, 11, and 14 in breast cancer cells via a membrane bound androgen receptor.

    PubMed

    Paliouras, Miltiadis; Diamandis, Eleftherios P

    2008-04-01

    The regulation of gene expression by steroid hormones plays an important role in the normal development and function of many organs, as well as in the pathogenesis of endocrine-related cancers, especially breast cancer. However, clinical data suggest that combined testosterone and estrogen treatments on post-menopausal women increase the risk of breast cancer. Experiments have shown that many, if not all kallikreins are under steroid hormone regulation in breast cancer cell lines. Their implication as prognostic and diagnostic markers has also been well-documented. Thus, we investigated the effect of combined hormone stimulation with androgens and 17beta-estradiol on the ductal caricinoma cell line BT474. This cell line has been shown to be sensitive to both, androgens (secreting PSA) and estrogens (secreting a number of kallikreins including KLK10, 11, and KLK14). We found that PSA expression was downregulated upon combined hormone stimulation, confirming reports that estrogen can antagonize and block the activity of the androgen receptor. Upon analysis of estrogen-sensitive kallikreins 10, 11, and 14, all showed to be synergistically enhanced in their expression three- to fourfold, upon joint hormone treatment versus individual hormone stimulation. The enhancement is dependent upon the action of androgens as treatment with the androgen receptor antagonist cyproterone actetate normalized the expression of KLK10, 11, and KLK14 to estrogen-stimulation levels. The synergistic effects between estrogens and androgens on estrogen-sensitive genes may have implications on the role of the kallikreins in associated risk of breast cancer and progression.

  18. [Changes in the expression of receptors of steroid hormones in the development of partial androgen deficiency of aging men (PADAM)].

    PubMed

    Pecherskiĭ, A V; Semiglazov, V F; Komiakov, B K; Guliev, B G; Gorelov, A I; Novikov, A I; Pecherskiĭ, V I; Simonov, N N; Guliaev, A V; Samusenko, I A; Vonskiĭ, M S; Muttenberg, A G; Loran, O B

    2005-01-01

    This work is devoted to the vital topic of the influence of partial androgen deficiency of aging men (PADAM) on the development of cells with androgen receptors. The results obtained in this study suggest a conclusion that the production of testosterone by some tumors and tissues of the peritumorous zone, which is accompanied by increased proliferative activity and disturbance of the regulation of the cell cycle, is caused by PADAM. The given changes are directed at compensating for testicular deficiency (in particular at overcoming the androgen-dependent stage of development of androgen-sensitive cells). These changes are a partial manifestation of metabolic syndrome (X-syndrome). The atypical cells, which unavoidably develop during metabolic syndrome, are dealt with by means of the immune system, whose capabilities become less and less adequate in the given circumstances.

  19. Nrdp1-mediated regulation of ErbB3 expression by the androgen receptor in androgen-dependent but not castrate-resistant prostate cancer cells.

    PubMed

    Chen, Liqun; Siddiqui, Salma; Bose, Swagata; Mooso, Benjamin; Asuncion, Alfredo; Bedolla, Roble G; Vinall, Ruth; Tepper, Clifford G; Gandour-Edwards, Regina; Shi, Xubao; Lu, Xiao-Hua; Siddiqui, Javed; Chinnaiyan, Arul M; Mehra, Rohit; Devere White, Ralph W; Carraway, Kermit L; Ghosh, Paramita M

    2010-07-15

    Patients with advanced prostate cancer (PCa) are initially susceptible to androgen withdrawal (AW), but ultimately develop resistance to this therapy (castration-resistant PCa, CRPC). Here, we show that AW can promote CRPC development by increasing the levels of the receptor tyrosine kinase ErbB3 in androgen-dependent PCa, resulting in AW-resistant cell cycle progression and increased androgen receptor (AR) transcriptional activity. CRPC cell lines and human PCa tissue overexpressed ErbB3, whereas downregulation of ErbB3 prevented CRPC cell growth. Investigation of the mechanism by which AW augments ErbB3, using normal prostate-derived pRNS-1-1 cells, and androgen-dependent PCa lines LNCaP, PC346C, and CWR22 mouse xenografts, revealed that the AR suppresses ErbB3 protein levels, whereas AW relieves this suppression, showing for the first time the negative regulation of ErbB3 by AR. We show that AR activation promotes ErbB3 degradation in androgen-dependent cells, and that this effect is mediated by AR-dependent transcriptional upregulation of neuregulin receptor degradation protein-1 (Nrdp1), an E3 ubiquitin ligase that targets ErbB3 for degradation but whose role in PCa has not been previously examined. Therefore, AW decreases Nrdp1 expression, promoting ErbB3 protein accumulation, and leading to AR-independent proliferation. However, in CRPC sublines of LNCaP and CWR22, which strongly overexpress the AR, ErbB3 levels remain elevated due to constitutive suppression of Nrdp1, which prevents AR regulation of Nrdp1. Our observations point to a model of CRPC development in which progression of PCa to castration resistance is associated with the inability of AR to transcriptionally regulate Nrdp1, and predict that inhibition of ErbB3 during AW may impair CRPC development.

  20. Modulation of the cytosolic androgen receptor in striated muscle by sex steroids

    NASA Technical Reports Server (NTRS)

    Rance, N. E.; Max, S. E.

    1982-01-01

    The influence of orchiectomy (GDX) and steroid administration on the level of the cytosolic androgen receptor in the rat levator ani muscle and in rat skeletal muscles (tibialis anterior and extensor digitorum longus) was studied. Androgen receptor binding to muscle cytosol was measured using H-3 methyltrienolone (R1881) as ligand, 100 fold molar excess unlabeled R1881 to assess nonspecific binding, and 500 fold molar excess of triamcinolone acetonide to prevent binding to glucocorticoid and progestin receptors. Results demonstrate that modification of the levels of sex steroids can alter the content of androgen receptors of rat striated muscle. Data suggest that: (1) cytosolic androgen receptor levels increase after orchiectomy in both levator ani muscle and skeletal muscle; (2) the acute increase in receptor levels is blocked by an inhibitor of protein synthesis; and (3) administration of estradiol-17 beta to castrated animals increases receptor binding in levator ani muscle but not in skeletal muscle.

  1. Biological implications of estrogen and androgen effects on androgen receptor and its mRNA levels in human uterine endometrium.

    PubMed

    Fujimoto, J; Nishigaki, M; Hori, M; Ichigo, S; Itoh, T; Tamaya, T

    1995-06-01

    It has been shown that some effects of testosterone are different from those of its 5 alpha-reduced metabolite, dihydrotestosterone. Briefly, activities of testosterone might be related to cellular differentiation, whereas dihydrotestosterone acts on cellular proliferation. The number of testosterone binding sites in the uterine endometrium was increased by estradiol dipropionate, and this increase was down-regulated by testosterone cypionate. Dihydrotestosterone-specific binding sites in the endometrium were not modulated by estradiol dipropionate and testosterone cypionate. The dissociation constants of the binding sites for testosterone and dihydrotestosterone were not altered by these steroids. Estradiol dipropionate with or without testosterone cypionate induced androgen receptor mRNA expression in the endometrium. In conclusion, testosterone might predominantly affect cellular differentiation in the endometrium.

  2. Development and exploitation of a novel mutant androgen receptor modelling strategy to identify new targets for advanced prostate cancer therapy.

    PubMed

    O'Neill, Daniel; Jones, Dominic; Wade, Mark; Grey, James; Nakjang, Sirintra; Guo, Wenrui; Cork, David; Davies, Barry R; Wedge, Steve R; Robson, Craig N; Gaughan, Luke

    2015-09-22

    The persistence of androgen receptor (AR) signalling in castrate-resistant prostate cancer (CRPC) highlights the unmet clinical need for the development of more effective AR targeting therapies. A key mechanism of therapy-resistance is by selection of AR mutations that convert anti-androgens to agonists enabling the retention of androgenic signalling in CRPC. To improve our understanding of these receptors in advanced disease we developed a physiologically-relevant model to analyse the global functionality of AR mutants in CRPC. Using the bicalutamide-activated AR(W741L/C) mutation as proof of concept, we demonstrate that this mutant confers an androgenic-like signalling programme and growth promoting phenotype in the presence of bicalutamide. Transcriptomic profiling of AR(W741L) highlighted key genes markedly up-regulated by the mutant receptor, including TIPARP, RASD1 and SGK1. Importantly, SGK1 expression was found to be highly expressed in the KUCaP xenograft model and a CRPC patient biopsy sample both of which express the bicalutamide-activated receptor mutant. Using an SGK1 inhibitor, AR(W741L) transcriptional and growth promoting activity was reduced indicating that exploiting functional distinctions between receptor isoforms in our model may provide new and effective therapies for CRPC patients.

  3. Development and exploitation of a novel mutant androgen receptor modelling strategy to identify new targets for advanced prostate cancer therapy

    PubMed Central

    O'Neill, Daniel; Jones, Dominic; Wade, Mark; Grey, James; Nakjang, Sirintra; Guo, Wenrui; Cork, David; Davies, Barry R.; Wedge, Steve R.; Robson, Craig N.; Gaughan, Luke

    2015-01-01

    The persistence of androgen receptor (AR) signalling in castrate-resistant prostate cancer (CRPC) highlights the unmet clinical need for the development of more effective AR targeting therapies. A key mechanism of therapy-resistance is by selection of AR mutations that convert anti-androgens to agonists enabling the retention of androgenic signalling in CRPC. To improve our understanding of these receptors in advanced disease we developed a physiologically-relevant model to analyse the global functionality of AR mutants in CRPC. Using the bicalutamide-activated ARW741L/C mutation as proof of concept, we demonstrate that this mutant confers an androgenic-like signalling programme and growth promoting phenotype in the presence of bicalutamide. Transcriptomic profiling of ARW741L highlighted key genes markedly up-regulated by the mutant receptor, including TIPARP, RASD1 and SGK1. Importantly, SGK1 expression was found to be highly expressed in the KUCaP xenograft model and a CRPC patient biopsy sample both of which express the bicalutamide-activated receptor mutant. Using an SGK1 inhibitor, ARW741L transcriptional and growth promoting activity was reduced indicating that exploiting functional distinctions between receptor isoforms in our model may provide new and effective therapies for CRPC patients. PMID:26267320

  4. Both Estrogen and Androgen Modify the Response to Activation of Neurokinin-3 and κ-Opioid Receptors in Arcuate Kisspeptin Neurons From Male Mice

    PubMed Central

    Ruka, Kristen A.; Burger, Laura L.

    2016-01-01

    Gonadal steroids regulate the pattern of GnRH secretion. Arcuate kisspeptin (kisspeptin, neurokinin B, and dynorphin [KNDy]) neurons may convey steroid feedback to GnRH neurons. KNDy neurons increase action potential firing upon the activation of neurokinin B receptors (neurokinin-3 receptor [NK3R]) and decrease firing upon the activation of dynorphin receptors (κ-opioid receptor [KOR]). In KNDy neurons from intact vs castrated male mice, NK3R-mediated stimulation is attenuated and KOR-mediated inhibition enhanced, suggesting gonadal secretions are involved. Estradiol suppresses spontaneous GnRH neuron firing in male mice, but the mediators of the effects on firing in KNDy neurons are unknown. We hypothesized the same gonadal steroids affecting GnRH firing pattern would regulate KNDy neuron response to NK3R and KOR agonists. To test this possibility, extracellular recordings were made from KNDy neurons in brain slices from intact, untreated castrated or castrated adult male mice treated in vivo with steroid receptor agonists. As observed previously, the stimulation of KNDy neurons by the NK3R agonist senktide was attenuated in intact vs castrated mice and suppression by dynorphin was enhanced. In contrast to observations of steroid effects on the GnRH neuron firing pattern, both estradiol and DHT suppressed senktide-induced KNDy neuron firing and enhanced the inhibition caused by dynorphin. An estrogen receptor-α agonist but not an estrogen receptor-β agonist mimicked the effects of estradiol on NK3R activation. These observations suggest the steroid modulation of responses to activation of NK3R and KOR as mechanisms for negative feedback in KNDy neurons and support the contribution of these neurons to steroid-sensitive elements of a GnRH pulse generator. PMID:26562263

  5. Immunocytochemical demonstration of androgen receptors in Leydig cells of the bank vole (Clethrionomys glareolus, Schreber): an in vitro study.

    PubMed

    Bilińska, B; Słomczyńska, M; Kmicikiewicz, I

    1996-04-01

    Androgen receptors of the bank vole Leydig cells in vitro were immunostained using a polyclonal antibody against androgen receptors followed by streptavidine-peroxidase complex or rhodamine-labelled goat anti-rabbit IgG visualization. The immunocytochemical studies revealed localization of androgen receptors in the whole cytoplasm or in the perinuclear area of the cells. Addition of dehydroepiandrosterone into the culture medium resulted in nuclear localization of the androgen receptors. Long (18L : 6D) and short (6L : 18D) photoperiods as well as the age of animals were taken into account. The concentration of androgen receptors was changed dependent on age and status of reproduction.

  6. Association of androgen receptor GGN repeat length polymorphism and male infertility in Khuzestan, Iran

    PubMed Central

    Moghadam, Mohamad; Khatami, Saied Reza; Galehdari, Hamid

    2015-01-01

    Background: Androgens play critical role in secondary sexual and male gonads differentiations such as spermatogenesis, via androgen receptor. The human androgen receptor (AR) encoding gene contains two regions with three nucleotide polymorphic repeats (CAG and GGN) in the first exon. Unlike the CAG repeats, the GGN has been less studied because of technical difficulties, so the functional role of these polymorphic repeats is still unclear. Objective: The goal of this study was to investigate any relationship between GGN repeat length in the first exon of AR gene and idiopathic male infertility in southwest of Iran. Materials and Methods: This is the first study on GGN repeat of AR gene in infertile male in Khuzestan, Iran. We used polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis to categorize GGN repeat lengths in 72 infertile and 72 fertile men. Afterwards we sequenced the PCR products to determine the exact length of GGN repeat in each category. Our samples included 36 azoospermic and 36 oligozoospermic men as cases and 72 fertile men as control group. Results: We found that the numbers of repeats in the cases range from 18 to 25, while in the controls this range is from 20 to 28. The results showed a significant relation between the length of GGN repeat and fertility (p=0.015). The most frequent alleles were alleles with 24 and 25 repeats respectively in case and control groups. On the other hand no significant differences were found between Arab and non-Arab cases by considering GGN repeat lengths (p=0.234). Conclusion: Due to our results, there is a significant association between the presence of allele with 24 repeats and susceptibility to male infertility. Therefore this polymorphism should be considered in future studies to clarify etiology of disorders related to androgen receptor activity. PMID:26221130

  7. New Strategy for Prostate Cancer Prevention Based on Selenium Suppression of Androgen Receptor Signaling

    DTIC Science & Technology

    2007-10-01

    regulates androgen receptor, and finasteride, a 5α-reductase inhibitor, has a synerigistic effect in inhibiting the growth of prostate cancer cells...Liu, Y., Ling, Y. Z., and Brodie, A. M. Antiandrogenic effects of novel androgen synthesis inhibitors on hormone-dependent prostate cancer . Cancer ...reductase inhibitor, inhibits androgen action and promotes cell death in the LNCaP prostate cancer cell line. Prostate , 58: 130-144, 2004. 14

  8. Progestin, estrogen and androgen G-protein coupled receptors in fish gonads.

    PubMed

    Thomas, Peter; Dressing, Gwen; Pang, Yefei; Berg, Hakan; Tubbs, Christopher; Benninghoff, Abby; Doughty, Kelly

    2006-04-01

    The identities of the membrane receptors mediating the majority of rapid, cell surface-initiated, nongenomic (i.e. nonclassical) steroid actions described to date are unclear. Two novel 7-transmembrane spanning proteins, representing two distinct classes of steroid membrane receptors, membrane progestin receptor alpha (mPRalpha) and a membrane estrogen receptor (mER), GPR30, have recently been identified in several vertebrate species. Evidence that both receptors activate G-proteins and function as G-protein coupled receptors (GPCRs) is briefly reviewed. New data on progestin actions on fish gametes suggest a widespread involvement of mPRalpha in oocyte maturation and sperm hyperactivity in this vertebrate group. Information on the second messenger pathways activated upon estrogen binding to a membrane estrogen receptor in croaker gonads and preliminary evidence for the presence of a GPR30-like protein in fish gonads are discussed. Finally, initial characterization of the ligand binding, G-protein activation and molecular size of a membrane androgen receptor (mAR) in croaker ovaries suggests the presence of a third unique steroid receptor in fish gonads that also may function as a GPCR.

  9. Polymorphism of CAG repeats in androgen receptor of carnivores.

    PubMed

    Wang, Qin; Zhang, Xiuyue; Wang, Xiaofang; Zeng, Bo; Jia, Xiaodong; Hou, Rong; Yue, Bisong

    2012-03-01

    Androgen effect is mediated by the androgen receptor (AR). The polymorphism of CAG triplet repeat (polyCAG), in the N-terminal transactivation domain of the AR protein, has been involved either in endocrine or neurological disorders in human. We obtained partial sequence of AR exon 1 in 10 carnivore species. In most carnivore species, polyglutamine length polymorphism presented in all three CAG repeat regions of AR, in contrast, only CAG-I site polymorphism presented in primate species, and CAG-I and CAG-III sites polymorphism presented in Canidae. Therefore, studies focusing on disease-associated polymorphism of poly(CAG) in carnivore species AR should investigate all three CAG repeats sites, and should not only consider CAG-I sites as the human disease studies. The trinucleotide repeat length in carnivore AR exon 1 had undergone from expansions to contractions during carnivores evolution, unlike a linear increase in primate species. Furthermore, the polymorphisms of the triplet-repeats in the same tissue (somatic mosaicism) were demonstrated in Moutain weasel, Eurasian lynx, Clouded leopard, Chinese tiger, Black leopard and Leopard AR. And, the abnormal stop codon was found in the exon 1 of three carnivore species AR (Moutain weasel, Eurasian lynx and Black leopard). It seemed to have a high frequency presence of tissue-specific somatic in carnivores AR genes. Thus the in vivo mechanism leading to such highly variable phenotypes of the described mutations, and their impact on these animals, are worthwhile to be further elucidated.

  10. The role of the androgen receptor in CNS masculinization.

    PubMed

    Garcia-Falgueras, Alicia; Pinos, Helena; Collado, Paloma; Pasaro, Eduardo; Fernandez, Rosa; Jordan, Cynthia L; Segovia, Santiago; Guillamon, Antonio

    2005-02-21

    The medial posterior region of the bed nucleus of the stria terminalis (BSTMP) and the locus coeruleus (LC) show opposite patterns of sexual dimorphism. The BSTMP in males is greater in volume and number of neurons than in females (male > female) while in the LC, the opposite is true (female > male). To investigate the possible role of the androgen receptor (AR) in the masculinization of these two structures, males with the testicular feminization mutation (Tfm) were compared to their control littermate males. No differences were seen in the number of neurons of the BSTMP between Tfm and their control littermate males, while in the LC, Tfm males have a greater number of neurons than their control littermate males. These results show that the AR is involved in the control of neuron number in the LC but not in the BSTMP. Results based on the LC suggest that when females have a larger brain area than males, masculinization in males may be achieved through the AR, with androgens perhaps decreasing cell survival.

  11. BAY 1024767 blocks androgen receptor mutants found in castration-resistant prostate cancer patients

    PubMed Central

    Sugawara, Tatsuo; Lejeune, Pascale; Köhr, Silke; Neuhaus, Roland; Faus, Hortensia; Gelato, Kathy A.; Busemann, Matthias; Cleve, Arwed; Lücking, Ulrich; von Nussbaum, Franz; Brands, Michael; Mumberg, Dominik; Jung, Klaus; Stephan, Carsten; Haendler, Bernard

    2016-01-01

    Androgen receptor (AR) mutations arise in patients developing resistance to hormone deprivation therapies. Here we describe BAY 1024767, a thiohydantoin derivative with strong antagonistic activity against nine AR variants with mutations located in the AR ligand-binding domain (LBD), and against wild-type AR. Antagonism was maintained, though reduced, at increased androgen levels. Anti-tumor efficacy was evidenced in vivo in the KuCaP-1 prostate cancer model which bears the W741C bicalutamide resistance mutation and in the syngeneic prostate cancer rat model Dunning R3327-G. The prevalence of six selected AR mutations was determined in plasma DNA originating from 100 resistant patients and found to be at least 12%. Altogether the results show BAY 1024767 to be a strong antagonist for several AR mutants linked to therapy resistance, which opens the door for next-generation compounds that can benefit patients based on their mutation profile. PMID:26760770

  12. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer

    PubMed Central

    Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H. L.; Wang, Jun; Mawji, Nasrin R.; Sadar, Marianne D.

    2017-01-01

    Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD. PMID:28306720

  13. The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling.

    PubMed

    Dirac, Annette M G; Bernards, René

    2010-06-01

    The androgen receptor (AR) is a member of the nuclear receptor superfamily and is essential for male sexual development and maturation, as well as prostate cancer development. Regulation of AR signaling activity depends on several posttranslational modifications, one of these being ubiquitination. We screened a short hairpin library targeting members of the deubiquitination enzyme family and identified the X-linked deubiquitination enzyme USP26 as a novel regulator of AR signaling. USP26 is a nuclear protein that binds to AR via three important nuclear receptor interaction motifs, and modulates AR ubiquitination, consequently influencing AR activity and stability. Our data suggest that USP26 assembles with AR and other cofactors in subnuclear foci, and serves to counteract hormone-induced AR ubiquitination, thereby contributing to the regulation of AR transcriptional activity.

  14. Nrdp1-mediated regulation of ErbB3 expression by the androgen receptor in androgen-dependent but not castrate-resistant prostate cancer cells

    PubMed Central

    Chen, Liqun; Siddiqui, Salma; Bose, Swagata; Mooso, Benjamin; Asuncion, Alfredo; Bedolla, Roble G.; Vinall, Ruth; Tepper, Clifford G.; Gandour-Edwards, Regina; Shi, XuBao; Lu, Xiao-Hua; Siddiqui, Javed; Chinnaiyan, Arul M.; Mehra, Rohit; deVere White, Ralph W.; Carraway, Kermit L.; Ghosh, Paramita M.

    2010-01-01

    Patients with advanced prostate cancer (PCa) are initially susceptible to androgen withdrawal (AW), but ultimately develop resistance to this therapy (castration-resistant PCa, CRPC). Here we show that AW can promote CRPC development by increasing the levels of the receptor tyrosine kinase (RTK) ErbB3 in androgen-dependent PCa, resulting in AW-resistant cell cycle progression and increased androgen receptor (AR) transcriptional activity. CRPC cell lines and human prostate cancer tissue overexpressed ErbB3, whereas downregulation of ErbB3 prevented CRPC cell growth. Investigation of the mechanism by which AW augments ErbB3, using normal prostate derived pRNS-1-1 cells, and androgen-dependent PCa lines LNCaP, PC346C and CWR22 mouse xenografts, revealed that the AR suppresses ErbB3 protein levels, while AW relieves this suppression, demonstrating for the first time negative regulation of ErbB3 by AR. We show that AR activation promotes ErbB3 degradation in androgen-dependent cells, and that this effect is mediated by AR-dependent transcriptional upregulation of Nrdp1, an E3 ubiquitin ligase that targets ErbB3 for degradation but whose role in PCa has not been previously examined. Therefore, AW decreases Nrdp1 expression, promoting ErbB3 protein accumulation, and leading to AR-independent proliferation. However, in CRPC sublines of LNCaP and CWR22 which strongly overexpress the AR, ErbB3 levels remain elevated due to constitutive suppression of Nrdp1, which prevents AR regulation of Nrdp1. Our observations point to a model of CRPC development where progression of PCa to castration-resistance is associated with the inability of AR to transcriptionally regulate Nrdp1, and predict that inhibition of ErbB3 during AW may impair CRPC development. PMID:20587519

  15. Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth.

    PubMed

    Obinata, D; Takayama, K; Fujiwara, K; Suzuki, T; Tsutsumi, S; Fukuda, N; Nagase, H; Fujimura, T; Urano, T; Homma, Y; Aburatani, H; Takahashi, S; Inoue, S

    2016-12-08

    Androgen receptor (AR) functions as a ligand-dependent transcription factor to regulate its downstream signaling for prostate cancer progression. AR complex formation by multiple transcription factors is important for enhancer activity and transcriptional regulation. However, the significance of such collaborative transcription factors has not been fully understood. In this study, we show that Oct1, an AR collaborative factor, coordinates genome-wide AR signaling for prostate cancer growth. Using global analysis by chromatin immunoprecipitation sequencing (ChIP-seq), we found that Oct1 is recruited to AR-binding enhancer/promoter regions and facilitates androgen signaling. Moreover, a major target of AR/Oct1 complex, acyl-CoA synthetase 3 (ACSL3), contributes to tumor growth in nude mice, and its high expression is associated with poor prognosis in prostate cancer patients. Next, we examined the therapeutic effects of pyrrole-imidazole polyamides that target the Oct1-binding sequence identified in the center of the ACSL3 AR-binding site. We observed that treatment with Oct1 polyamide severely blocked the Oct1 binding at the ACSL3 enhancer responsible for its transcriptional activity and ACSL3 induction. In addition, Oct1 polyamides suppressed castration-resistant tumor growth and specifically repressed global Oct1 chromatin association and androgen signaling in prostate cancer cells, with few nonspecific effects on basal promoter activity. Thus, targeting Oct1 binding could be a novel therapeutic strategy for AR-activated castration-resistant prostate cancer.

  16. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses' Health Study.

    PubMed

    Collins, Laura C; Cole, Kimberly S; Marotti, Jonathan D; Hu, Rong; Schnitt, Stuart J; Tamimi, Rulla M

    2011-07-01

    Previous studies have demonstrated that androgen receptor is expressed in many breast cancers, but its expression in relation to the various breast cancer subtypes as defined by molecular profiling has not been studied in detail. We constructed tissue microarrays from 3093 breast cancers that developed in women enrolled in the Nurses' Health Study. Tissue microarray sections were immunostained for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6, epidermal growth factor receptor (EGFR) and androgen receptor (ER). Immunostain results were used to categorize each cancer as luminal A or B, HER2 and basal like. The relationships between androgen receptor expression and molecular subtype were analyzed. Overall, 77% of the invasive breast carcinomas were androgen receptor positive. Among 2171 invasive cancers, 64% were luminal A, 15% luminal B, 6% HER2 and 11% basal like. The frequency of androgen receptor expression varied significantly across the molecular phenotypes (P<0.0001). In particular, androgen receptor expression was commonly observed in luminal A (91%) and B (68%) cancers, but was less frequently seen in HER2 cancers (59%). Despite being defined by the absence of ER and PR expression and being considered hormonally unresponsive, 32% of basal-like cancers expressed androgen receptor. Among 246 cases of ductal carcinoma in situ, 86% were androgen receptor positive, but the frequency of androgen receptor expression differed significantly across the molecular phenotypes (P=0.001), and high nuclear grade lesions were less likely to be androgen receptor positive compared with lower-grade lesions. Androgen receptor expression is most commonly seen in luminal A and B invasive breast cancers. However, expression of androgen receptor is also seen in approximately one-third of basal-like cancers, providing further evidence that basal-like cancers represent a heterogeneous group. Our findings raise the

  17. A naturally occurring mutation in the human androgen receptor of a subject with complete androgen insensitivity confers binding and transactivation by estradiol.

    PubMed

    Bonagura, Thomas W; Deng, Min; Brown, Terry R

    2007-01-15

    The clinical phenotype of complete androgen insensitivity (CAIS) was associated with a mutation in the human androgen receptor (hAR) gene encoding the amino acid substitution, M745I, in the hAR protein. Transcriptional activation of hAR(M745I) by the synthetic androgen, methyltrienolone (R1881), was reduced compared to wild-type (wt) hAR. The transcriptional co-activator, androgen receptor associated protein 70 (ARA70), failed to enhance transactivation of hAR(M745I) at lower concentrations of R1881 (0.01-0.1 nM), whereas the p160 co-activators, SRC-1 and TIF2, stimulated activity. Transcriptional activity of hAR(M745I) was stimulated by 1 or 10 nM R1881 and activity was further enhanced by co-expression of ARA70 similar to that of the hAR(wt). Transcriptional activity of hAR(wt) was minimally stimulated by estradiol (E2) without or with co-expression of ARA70, whereas 10 or 100 nM E2 increased transactivation by hAR(M745I) of the androgen-responsive MMTV-luciferase reporter gene by 10-fold and activity was further enhanced by ARA70. Increasing concentrations of E2 competed more effectively for binding of R1881 to hAR(M745I) than to hAR(wt), indicative of the preferential binding of E2 to the mutant hAR. Partial tryptic digestion of hAR wt and M745I revealed that activation of the mutant protein was reduced in the presence of R1881. By contrast, tryptic digestion showed that the mutant hAR was activated by the binding of E2. In conclusion, the clinical phenotype of CAIS resulted from a hAR gene mutation encoding hAR(M745I) with reduced binding and transactivation by androgens, but the novel properties of enhanced affinity for and increased transactivation by estradiol.

  18. Quantitative Proteomic Profiles of Androgen Receptor Signaling in the Liver of Fathead Minnows Pimephalus promelas

    EPA Science Inventory

    Androgenic chemicals are present in the environment at concentrations that impair reproductive processes in fish. The objective of this experiment was to identify proteins altered by an androgen receptor agonist (17â-trenbolone) and antagonist (flutamide) in the liver. Female fa...

  19. Steroid Sulfatase Deficiency and Androgen Activation Before and After Puberty

    PubMed Central

    Idkowiak, Jan; Taylor, Angela E.; Subtil, Sandra; O'Neil, Donna M.; Vijzelaar, Raymon; Dias, Renuka P.; Amin, Rakesh; Barrett, Timothy G.; Shackleton, Cedric H. L.; Kirk, Jeremy M. W.; Moss, Celia

    2016-01-01

    Context: Steroid sulfatase (STS) cleaves the sulfate moiety off steroid sulfates, including dehydroepiandrosterone (DHEA) sulfate (DHEAS), the inactive sulfate ester of the adrenal androgen precursor DHEA. Deficient DHEA sulfation, the opposite enzymatic reaction to that catalyzed by STS, results in androgen excess by increased conversion of DHEA to active androgens. STS deficiency (STSD) due to deletions or inactivating mutations in the X-linked STS gene manifests with ichthyosis, but androgen synthesis and metabolism in STSD have not been studied in detail yet. Patients and Methods: We carried out a cross-sectional study in 30 males with STSD (age 6–27 y; 13 prepubertal, 5 peripubertal, and 12 postpubertal) and 38 age-, sex-, and Tanner stage-matched healthy controls. Serum and 24-hour urine steroid metabolome analysis was performed by mass spectrometry and genetic analysis of the STS gene by multiplex ligation-dependent probe amplification and Sanger sequencing. Results: Genetic analysis showed STS mutations in all patients, comprising 27 complete gene deletions, 1 intragenic deletion and 2 missense mutations. STSD patients had apparently normal pubertal development. Serum and 24-hour urinary DHEAS were increased in STSD, whereas serum DHEA and testosterone were decreased. However, total 24-hour urinary androgen excretion was similar to controls, with evidence of increased 5α-reductase activity in STSD. Prepubertal healthy controls showed a marked increase in the serum DHEA to DHEAS ratio that was absent in postpubertal controls and in STSD patients of any pubertal stage. Conclusions: In STSD patients, an increased 5α-reductase activity appears to compensate for a reduced rate of androgen generation by enhancing peripheral androgen activation in affected patients. In healthy controls, we discovered a prepubertal surge in the serum DHEA to DHEAS ratio that was absent in STSD, indicative of physiologically up-regulated STS activity before puberty. This may

  20. The emerging role of the androgen receptor in bladder cancer.

    PubMed

    Lombard, Alan P; Mudryj, Maria

    2015-10-01

    Men are three to four times more likely to get bladder cancer than women. The gender disparity characterizing bladder cancer diagnoses has been investigated. One hypothesis is that androgen receptor (AR) signaling is involved in the etiology and progression of this disease. Although bladder cancer is not typically described as an endocrine-related malignancy, it has become increasingly clear that AR signaling plays a role in bladder tumors. This review summarizes current findings regarding the role of the AR in bladder cancer. We discuss work demonstrating AR expression in bladder cancer and its role in promoting formation and progression of tumors. Additionally, we discuss the therapeutic potential of targeting the AR in this disease.

  1. NF-κB Regulates Androgen Receptor Expression and Prostate Cancer Growth

    PubMed Central

    Zhang, Liying; Altuwaijri, Saleh; Deng, Fangming; Chen, Lishi; Lal, Priti; Bhanot, Umeshkumar K.; Korets, Ruslan; Wenske, Sven; Lilja, Hans G.; Chang, Chawnshang; Scher, Howard I.; Gerald, William L.

    2009-01-01

    Prostate cancers that progress during androgen-deprivation therapy often overexpress the androgen receptor (AR) and depend on AR signaling for growth. In most cases, increased AR expression occurs without gene amplification and may be due to altered transcriptional regulation. The transcription factor nuclear factor (NF)-κB, which is implicated in tumorigenesis, functions as an important downstream substrate of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, AKT, and protein kinase C and plays a role in other cancer-associated signaling pathways. NF-κB is an important determinant of prostate cancer clinical biology, and therefore we investigated its role in the regulation of AR expression. We found that NF-κB expression in prostate cancer cells significantly increased AR mRNA and protein levels, AR transactivation activity, serum prostate-specific antigen levels, and cell proliferation. NF-κB inhibitors decrease AR expression levels, prostate-specific antigen secretion, and proliferation of prostate cancer cells in vitro. Furthermore, inhibitors of NF-κB demonstrated anti-tumor activity in androgen deprivation-resistant prostate cancer xenografts. In addition, levels of both NF-κB and AR were strongly correlated in human prostate cancer. Our data suggest that NF-κB can regulate AR expression in prostate cancer and that NF-κB inhibitors may have therapeutic potential. PMID:19628766

  2. The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor.

    PubMed

    DaSilva, John; Gioeli, Daniel; Weber, Michael J; Parsons, Sarah J

    2009-09-15

    During progression to an androgen-independent state following androgen ablation therapy, prostate cancer cells continue to express the androgen receptor (AR) and androgen-regulated genes, indicating that AR is critical for the proliferation of hormone-refractory prostate cancer cells. Multiple mechanisms have been proposed for the development of AR-dependent hormone-refractory disease, including changes in expression of AR coregulatory proteins, AR mutation, growth factor-mediated activation of AR, and AR protein up-regulation. The most prominent of these progressive changes is the up-regulation of AR that occurs in >90% of prostate cancers. A common feature of the most aggressive hormone-refractory prostate cancers is the accumulation of cells with neuroendocrine characteristics that produce paracrine factors and may provide a novel mechanism for the regulation of AR during advanced stages of the disease. In this study, we show that neuroendocrine-derived parathyroid hormone-related protein (PTHrP)-mediated signaling through the epidermal growth factor receptor (EGFR) and Src pathways contributes to the phenotype of advanced prostate cancer by reducing AR protein turnover. PTHrP-induced accumulation of AR depended on the activity of Src and EGFR and consequent phosphorylation of the AR on Tyr(534). PTHrP-induced tyrosine phosphorylation of AR resulted in reduced AR ubiquitination and interaction with the ubiquitin ligase COOH terminus of Hsp70-interacting protein. These events result in increased accumulation of AR and thus enhanced growth of prostate cancer cells at low levels of androgen.

  3. Selective androgen receptor modulators: comparative excretion study of bicalutamide in bovine urine and faeces.

    PubMed

    Rojas, Dante; Dervilly-Pinel, Gaud; Cesbron, Nora; Penot, Mylène; Sydor, Alexandre; Prévost, Stéphanie; Le Bizec, Bruno

    2016-10-11

    Besides their development for therapeutic purposes, non-steroidal selective androgen receptor modulators (non-steroidal SARMs) are also known to impact growth-associated pathways as ligands of androgenic receptors (AR). They present a potential for abuse in sports and food-producing animals as an interesting alternative to anabolic androgenic steroids (AAS). These compounds are easily available and could therefore be (mis)used in livestock production as growth promoters. To prevent such practices, dedicated analytical strategies should be developed for specific and sensitive detection of these compounds in biological matrices. The present study focused on Bicalutamide, a non-steroidal SARM used in human treatment of non-metastatic prostate cancer because of its anti-androgenic activity exhibiting no anti-anabolic effects. To select the most appropriate matrix to be used for control purposes, different animal matrices (urine and faeces) have been investigated and SARM metabolism studied to highlight relevant metabolites of such treatments and establish associated detection time windows. The aim of this work was thus to compare the urinary and faecal eliminations of bicalutamide in a calf, and investigate phase I and II metabolites. The results in both matrices showed that bicalutamide was very rapidly and mainly excreted under its free form. The concentration levels were observed as higher in faeces (ppm) than urine (ppb); although both matrices were assessed as suitable for residue control. The metabolites found were consistent with hydroxylation (phase I reaction) combined or not with glucuronidation and sulfation (phase II reactions). Copyright © 2016 John Wiley & Sons, Ltd.

  4. Identification and Characterization of the Androgen Receptor From the American Alligator, Alligator mississippiensis

    PubMed Central

    Miyagawa, Shinichi; Yatsu, Ryohei; Kohno, Satomi; Doheny, Brenna M.; Ogino, Yukiko; Ishibashi, Hiroshi; Katsu, Yoshinao; Ohta, Yasuhiko; Guillette, Louis J.

    2015-01-01

    Androgens are essential for the development, reproduction, and health throughout the life span of vertebrates, particularly during the initiation and maintenance of male sexual characteristics. Androgen signaling is mediated by the androgen receptor (AR), a member of the steroid nuclear receptor superfamily. Mounting evidence suggests that environmental factors, such as exogenous hormones or contaminants that mimic hormones, can disrupt endocrine signaling and function. The American alligator (Alligator mississippiensis), a unique model for ecological research in that it exhibits environment-dependent sex determination, is oviparous and long lived. Alligators from a contaminated environment exhibit low reproductive success and morphological disorders of the testis and phallus in neonates and juveniles, both associated with androgen signaling; thus, the alterations are hypothesized to be related to disrupted androgen signaling. However, this line of research has been limited because of a lack of information on the alligator AR gene. Here, we isolated A mississippiensis AR homologs (AmAR) and evaluated receptor-hormone/chemical interactions using a transactivation assay. We showed that AmAR responded to all natural androgens and their effects were inhibited by cotreatment with antiandrogens, such as flutamide, p,p′-dichlorodiphenyldichloroethylene, and vinclozolin. Intriguingly, we found a spliced form of the AR from alligator cDNA, which lacks seven amino acids within the ligand-binding domain that shows no response to androgens. Finally, we have initial data on a possible dominant-negative function of the spliced form of the AR against androgen-induced AmAR. PMID:25974402

  5. Identification and Characterization of the Androgen Receptor From the American Alligator, Alligator mississippiensis.

    PubMed

    Miyagawa, Shinichi; Yatsu, Ryohei; Kohno, Satomi; Doheny, Brenna M; Ogino, Yukiko; Ishibashi, Hiroshi; Katsu, Yoshinao; Ohta, Yasuhiko; Guillette, Louis J; Iguchi, Taisen

    2015-08-01

    Androgens are essential for the development, reproduction, and health throughout the life span of vertebrates, particularly during the initiation and maintenance of male sexual characteristics. Androgen signaling is mediated by the androgen receptor (AR), a member of the steroid nuclear receptor superfamily. Mounting evidence suggests that environmental factors, such as exogenous hormones or contaminants that mimic hormones, can disrupt endocrine signaling and function. The American alligator (Alligator mississippiensis), a unique model for ecological research in that it exhibits environment-dependent sex determination, is oviparous and long lived. Alligators from a contaminated environment exhibit low reproductive success and morphological disorders of the testis and phallus in neonates and juveniles, both associated with androgen signaling; thus, the alterations are hypothesized to be related to disrupted androgen signaling. However, this line of research has been limited because of a lack of information on the alligator AR gene. Here, we isolated A mississippiensis AR homologs (AmAR) and evaluated receptor-hormone/chemical interactions using a transactivation assay. We showed that AmAR responded to all natural androgens and their effects were inhibited by cotreatment with antiandrogens, such as flutamide, p,p'-dichlorodiphenyldichloroethylene, and vinclozolin. Intriguingly, we found a spliced form of the AR from alligator cDNA, which lacks seven amino acids within the ligand-binding domain that shows no response to androgens. Finally, we have initial data on a possible dominant-negative function of the spliced form of the AR against androgen-induced AmAR.

  6. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    SciTech Connect

    Macke, J.P.; Nathans, J.; King, V.L. ); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. ); Brown, T. )

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  7. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: Application for diagnosis, genetic counseling, and therapy

    SciTech Connect

    Hiort, O. Tufts-New England Medical Center, Boston, MA ); Huang, Q. ); Sinnecker, G.H.G.; Kruse, K. ); Sadeghi-Nejad, A.; Wolfe, H.J. ); Yandell, D.W. ) Harvard School of Public Health, Boston, MA )

    1993-07-01

    Recent studies indicate that mutations in the androgen receptor gene are associated with androgen insensitivity syndromes, a heterogeneous group of related disorders involving defective sexual differentiation in karyotypic males. In this report, the authors address the possibility of rapid mutational analysis of the androgen receptor gene for initial diagnosis, genetic counseling, and molecular subclassification of affected patients and their families. DNA from peripheral blood leukocytes of six patients from five families with various degrees of androgen insensitivity was studied. Exons 2 to 8 of the androgen receptor gene were analyzed using a combination of single strand conformation polymorphism analysis and direct DNA sequencing. Female family members were also studied to identify heterozygote carriers. Point mutations in the AR gene were identified in all six patients, and all mutations caused amino acid substitutions. One patient with incomplete androgen insensitivity was a mosaic for the mutation. Four of the five mothers, as well as a young sister of one patient, were carriers of the mutation present in the affected child. The data show that new mutations may occur in the androgen receptor gene leading to sporadic androgen insensitivity syndrome. Molecular genetic characterization of the variant allele can serve as a primary tool for diagnosis and subsequent therapy, and can provide a basis for distinguishing heterozygous carriers in familial androgen resistance. The identification of carriers is of substantial clinical importance for genetic counseling. 29 refs., 2 figs., 1 tab.

  8. INTERACTION OF ORGANOPHOSPHATE PESTICIDES AND RELATED COMPOUNDS WITH THE ANDROGEN RECEPTOR

    EPA Science Inventory

    Identification of several environmental chemicals capable of binding to the androgen receptor (AR) and interfering with its normal function has heightened concern for adverse effects across a broad spectrum of environmental chemicals. We previously demonstrated AR antagonist act...

  9. Deubiquitinating enzyme Usp12 regulates the interaction between the androgen receptor and the Akt pathway

    PubMed Central

    McClurg, Urszula L.; Summerscales, Emma E.; Harle, Victoria J.; Gaughan, Luke; Robson, Craig N.

    2014-01-01

    The androgen receptor (AR) is a transcription factor involved in prostate cell growth, homeostasis and transformation regulated by post-translational modifications, including ubiquitination. We have recently reported that AR is deubiquitinated and stabilised by Usp12 resulting in increased transcriptional activity. In this study we have investigated the relationship between Usp12, PHLPP and PHLPPL tumour suppressors in the regulation of AR transcriptional activity in prostate cancer (PC). PHLPP and PHLPPL are pro-apoptotic phosphatases that dephosphorylate and subsequently deactivate Akt. Phosphorylated Akt is reported to deactivate AR in PC by phosphorylation at Ser213 and Ser791 leading to ligand dissociation and AR degradation. In contrast, PHLPP- and PHLPPL-mediated dephosphorylation and inactivation of Akt elevates the levels of active AR. In this report we demonstrate that Usp12, in complex with Uaf-1 and WDR20, directly deubiquitinates and stabilises the Akt phosphatases PHLPP and PHLPPL resulting in decreased levels of active pAkt. Decreased pAkt in turn down-regulates AR Ser213 phosphorylation resulting in enhanced receptor stability and transcriptional activity. Additionally, we observe that depleting Usp12 sensitises PC cells to therapies aimed at Akt inhibition irrespectively of their sensitivity to androgen ablation therapy. We propose that Usp12 inhibition could offer a therapeutic alternative for castration resistant prostate cancer. PMID:25216524

  10. Repeated anabolic/androgenic steroid exposure during adolescence alters phosphate-activated glutaminase and glutamate receptor 1 (GluR1) subunit immunoreactivity in Hamster brain: correlation with offensive aggression.

    PubMed

    Fischer, Shannon G; Ricci, Lesley A; Melloni, Richard H

    2007-06-04

    Male Syrian hamsters (Mesocricetus auratus) treated with moderately high doses (5.0mg/kg/day) of anabolic/androgenic steroids (AAS) during adolescence (P27-P56) display highly escalated offensive aggression. The current study examined whether adolescent AAS-exposure influenced the immunohistochemical localization of phosphate-activated glutaminase (PAG), the rate-limiting enzyme in the synthesis of glutamate, a fast-acting neurotransmitter implicated in the modulation of aggression in various species and models of aggression, as well as glutamate receptor 1 subunit (GluR1). Hamsters were administered AAS during adolescence, scored for offensive aggression using the resident-intruder paradigm, and then examined for changes in PAG and GluR1 immunoreactivity in areas of the brain implicated in aggression control. When compared with sesame oil-treated control animals, aggressive AAS-treated hamsters displayed a significant increase in the number of PAG- and area density of GluR1-containing neurons in several notable aggression regions, although the differential pattern of expression did not appear to overlap across brain regions. Together, these results suggest that altered glutamate synthesis and GluR1 receptor expression in specific aggression areas may be involved in adolescent AAS-induced offensive aggression.

  11. Ligand-independent and tissue-selective androgen receptor inhibition by pyrvinium

    PubMed Central

    Lim, Minyoung; Otto-Duessel, Maya; He, Miaoling; Su, Leila; Nguyen, Dan; Chin, Emily; Alliston, Tamara; Jones, Jeremy O.

    2014-01-01

    Pyrvinium pamoate (PP) is a potent non-competitive inhibitor of the androgen receptor (AR). Using a novel method of target identification, we demonstrate that AR is a direct target of PP in prostate cancer cells. We demonstrate that PP inhibits AR activity via the highly conserved DNA binding domain (DBD), the only AR inhibitor that functions via this domain. Furthermore, computational modeling predicts that pyrvinium binds at the interface of the DBD dimer and the minor groove of the AR response element. Because PP acts through the DBD, PP is able to inhibit the constitutive activity of AR splice variants, which are thought to contribute to the growth of castration resistant prostate cancer (CRPC). PP also inhibits androgen-independent AR activation by HER2 kinase. The anti-androgen activity of pyrvinium manifests in the ability to inhibit the in vivo growth of CRPC xenografts that express AR splice variants. Interestingly, PP was most potent in cells with endogenous AR expression derived from prostate or bone. PP was able to inhibit several other hormone nuclear receptors (NRs), but not structurally unrelated transcription factors. PP inhibition of other NRs was similarly cell-type selective. Using dual-energy X-ray absorptiometry, we demonstrate that the cell-type specificity of PP manifests in tissue-selective inhibition of AR activity in mice, as PP decreases prostate weight and bone mineral density, but does not affect lean body mass. Our results suggest that the non-competitive AR inhibitor pyrvinium has significant potential to treat CRPC, including cancers driven by ligand-independent AR signaling. PMID:24354286

  12. Androgen resistance.

    PubMed

    Hughes, Ieuan A; Deeb, Asma

    2006-12-01

    Androgen resistance causes the androgen insensitivity syndrome in its variant forms and is a paradigm of clinical syndromes associated with hormone resistance. In its complete form, the syndrome causes XY sex reversal and a female phenotype. Partial resistance to androgens is a common cause of ambiguous genitalia of the newborn, but a similar phenotype may result from several other conditions, including defects in testis determination and androgen biosynthesis. The biological actions of androgens are mediated by a single intracellular androgen receptor encoded by a gene on the long arm of the X chromosome. Mutations in this gene result in varying degrees of androgen receptor dysfunction and phenotypes that often show poor concordance with the genotype. Functional characterization and three-dimensional modelling of novel mutant receptors has been informative in understanding the mechanism of androgen action. Management issues in syndromes of androgen insensitivity include decisions on sex assignment, timing of gonadectomy in relation to tumour risk, and genetic and psychological counselling.

  13. Involvement of the Androgen and Glucocorticoid Receptors in Bladder Cancer

    PubMed Central

    McBeth, Lucien; Grabnar, Maria; Selman, Steven; Hinds, Terry D.

    2015-01-01

    Bladder cancer is encountered worldwide having been associated with a host of environmental and lifestyle risk factors. The disease has a male to female prevalence of 3 : 1. This disparity has raised the possibility of the androgen receptor (AR) pathway being involved in the genesis of the disease; indeed, research has shown that AR is involved in and is likely a driver of bladder cancer. Similarly, an inflammatory response has been implicated as a major player in bladder carcinogenesis. Consistent with this concept, recent work on anti-inflammatory glucocorticoid signaling points to a pathway that may impact bladder cancer. The glucocorticoid receptor- (GR-) α isoform has an important role in suppressing inflammatory processes, which may be attenuated by AR in the development of bladder cancer. In addition, a GR isoform that is inhibitory to GRα, GRβ, is proinflammatory and has been shown to induce cancer growth. In this paper, we review the evidence of inflammatory mediators and the relationship of AR and GR isoforms as they relate to the propensity for bladder cancer. PMID:26347776

  14. Comparison of 7α-methyl-19-nortestosterone effectiveness alone or combined with progestins on androgen receptor mediated-transactivation.

    PubMed

    García-Becerra, Rocío; Ordaz-Rosado, David; Noé, Gabriela; Chávez, Bertha; Cooney, Austin J; Larrea, Fernando

    2012-02-01

    7α-methyl-19-nortestosterone (MENT) is an androgen with potent gonadotropin inhibitory activity and prostate-sparing effects. These attributes give MENT advantages over testosterone as a male contraceptive, but, as in the case of testosterone, a partial dose-dependent suppression of spermatogenesis has been observed. Combination of testosterone or MENT with synthetic progestins improves the rate of azoospermia; however, it is unknown whether these combinations affect hormone androgenicity or exert synergistic effects via progestational or androgenic interaction. Herein, using transactivation assays, we examined the ability of MENT alone or combined with several 19-nor-derived synthetic progestins to activate androgen receptor (AR)-dependent gene transcription. In addition, the capability of 7α-methyl-estradiol (7α-methyl-E(2)), an aromatized metabolite of MENT, to transactivate gene transcription via estrogen receptor α (ERα; ESR1) or ERβ (ESR2) was also investigated. As expected, MENT induced gene transactivation through either the progesterone receptor (PGR) or the AR. MENT was as efficient as progesterone in activating PGR-mediated reporter gene expression, but it was ten times more potent than testosterone and dihydrotestoterone in activating of AR-driven gene expression. The addition of increasing concentrations of other 19-nortestosterone derivatives (norethisterone or levonorgestrel) did not affect, in a significant manner, the ability of MENT to activate AR-dependent reporter gene transcription. The same results were obtained with different cell lines. 7α-Methyl-E(2) resulted in potent estrogen activity via both ER subtypes with efficiency similar to natural E(2). These results suggest that the addition of 19-nortestosterone-derived progestins, as a hormonal adjuvant in male fertility strategies for effective spermatogenic suppression, does not display any detrimental effect that would interfere with MENT androgenic transcriptional activity.

  15. Peripheral androgen receptors sustain the acrobatics and fine motor skill of elaborate male courtship.

    PubMed

    Fuxjager, Matthew J; Longpre, Kristy M; Chew, Jennifer G; Fusani, Leonida; Schlinger, Barney A

    2013-09-01

    Androgenic hormones regulate many aspects of animal social behavior, including the elaborate display routines on which many species rely for advertisement and competition. One way that this might occur is through peripheral effects of androgens, particularly on skeletal muscles that control complex movements and postures of the body and its limbs. However, the specific contribution of peripheral androgen-muscle interactions to the performance of elaborate behavioral displays in the natural world has never been examined. We study this issue in one of the only natural physiological models of animal acrobatics: the golden-collared manakin (Manacus vitellinus). In this tropical bird, males compete with each other and court females by producing firecracker-like wing- snaps and by rapidly dancing among saplings over the forest floor. To test how activation of peripheral androgen receptors (AR) influences this display, we treat reproductively active adult male birds with the peripherally selective antiandrogen bicalutamide (BICAL) and observe the effects of this manipulation on male display performance. We not only validate the peripheral specificity of BICAL in this species, but we also show that BICAL treatment reduces the frequency with which adult male birds perform their acrobatic display maneuvers and disrupts the overall structure and fine-scale patterning of these birds' main complex wing-snap sonation. In addition, this manipulation has no effect on the behavioral metrics associated with male motivation to display. Together, our findings help differentiate the various effects of peripheral and central AR on the performance of a complex sociosexual behavioral phenotype by indicating that peripheral AR can optimize the motor skills necessary for the production of an elaborate animal display.

  16. Partial androgen insensitivity and correlations with the predicted three dimensional structure of the androgen receptor ligand-binding domain.

    PubMed

    Yong, E L; Tut, T G; Ghadessy, F J; Prins, G; Ratnam, S S

    1998-02-01

    Genetic defects of the human androgen receptor (AR) can cause a wide spectrum of androgen insensitivity syndromes (AIS) ranging from phenotypic females in those with complete AIS; ambiguous genitalia in partial AIS; to male infertility in minimal AIS. The majority of these defects are due to point mutations resulting in amino acid substitutions. It is however unclear why certain mutations result in partial AIS, whereas others in the same exon cause the complete syndrome. We present a case of partial AIS due to a point mutation affecting codon 758 of the AR ligand-binding domain (LBD) that changed the sense of the codon from asparagine to threonine (N758T). The mutant receptor displayed normal binding affinity to DHT but abnormal dissociation kinetics in both patient's fibroblasts and transfected COS-7 cells. The mutant AR was thermolabile, and resulted in approximately 50% reduction in receptor transactivation capacity when examined with a reporter gene incorporating an androgen-response-element. Although the 3-D structure of AR LBD is not known, the homologous region in a member of the steroid receptor superfamily, retinoid-X receptor (RXR-alpha), has been crystallized, allowing comparison of aligned amino-acid sequences of RXR-alpha and AR. The mutation, N758T, lies in a predicted linker region between the fifth alpha-helix (H5) and the first beta-strand (S1). Generally, mutations leading to partial AIS tend to cluster in the predicted linker regions located between the structural helices of the AR LBD. Most strikingly, the predicted linker regions contain over 70% of the mutant ARs associated with prostate cancer in the LBD. The occurrence of mutations associated with both partial AIS and prostate cancer in the same predicted linker regions, suggest that this clustering is not coincidental and that the predicted linker regions are likely to have important, but subtle, roles in defining androgen binding and ligand specificity.

  17. Non-competitive androgen receptor inhibition in vitro and in vivo.

    PubMed

    Jones, Jeremy O; Bolton, Eric C; Huang, Yong; Feau, Clementine; Guy, R Kiplin; Yamamoto, Keith R; Hann, Byron; Diamond, Marc I

    2009-04-28

    Androgen receptor (AR) inhibitors are used to treat multiple human diseases, including hirsutism, benign prostatic hypertrophy, and prostate cancer, but all available anti-androgens target only ligand binding, either by reduction of available hormone or by competitive antagonism. New strategies are needed, and could have an important impact on therapy. One approach could be to target other cellular mechanisms required for receptor activation. In prior work, we used a cell-based assay of AR conformation change to identify non-ligand inhibitors of AR activity. Here, we characterize 2 compounds identified in this screen: pyrvinium pamoate, a Food and Drug Administration-approved drug, and harmol hydrochloride, a natural product. Each compound functions by a unique, non-competitive mechanism and synergizes with competitive antagonists to disrupt AR activity. Harmol blocks DNA occupancy by AR, whereas pyrvinium does not. Pyrvinium inhibits AR-dependent gene expression in the prostate gland in vivo, and induces prostate atrophy. These results highlight new therapeutic strategies to inhibit AR activity.

  18. Expression of androgen receptor and cyclooxygenase-2 in the vesicular glands of castrated and intact goat.

    PubMed

    Emam, Mahmoud Abdelghaffar

    2016-03-01

    This study was conducted to demonstrate the effect of castration on the structure of vesicular glands of the Egyptian Nubian (Zaraibi) goat. Vesicular glands of castrated (n=4) and intact (n=6) goat were used for histological and immunohistochemical evaluations. In this study, we report the difference in cell specific expression of androgen receptor (AR) and cyclooxygenase-2 (COX-2) in the vesicular glands of castrated and intact goats. In both castrated and intact goats, the present study revealed no immunopositive cells for AR or COX-2 in the fibromuscular stroma meanwhile, AR and COX-2 containing immunoreactive cells were restricted only to the epithelium of the secretory acini of the vesicular gland. Such finding suggests androgen and COX-2 as important regulators for the growth and secretory activity of epithelial cells in the vesicular gland of goats. Overall, the vesicular gland of castrated goats showed significantly (P<0.05) lower AR and COX-2 immuno-expression than intact goats indicating that both AR and COX-2 are androgen dependent.

  19. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells

    PubMed Central

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    Background: The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. Objective: We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Materials and Methods: Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. Results: TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Conclusion: Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. SUMMARY Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American

  20. Production of recombinant insulin-like androgenic gland hormones from three decapod species: In vitro testicular phosphorylation and activation of a newly identified tyrosine kinase receptor from the Eastern spiny lobster, Sagmariasus verreauxi.

    PubMed

    Aizen, Joseph; Chandler, Jennifer C; Fitzgibbon, Quinn P; Sagi, Amir; Battaglene, Stephen C; Elizur, Abigail; Ventura, Tomer

    2016-04-01

    In crustaceans the insulin-like androgenic gland hormone (IAG) is responsible for male sexual differentiation. To date, the biochemical pathways through which IAG exerts its effects are poorly understood and could be elucidated through the production of a functional recombinant IAG (rIAG). We have successfully expressed glycosylated, biologically active IAG using the Pichia pastoris yeast expression system. We co-expressed recombinant single-chain precursor molecules consisting of the B and A chains (the mature hormone) tethered by a flexible linker, producing rIAGs of the following commercially important species: Eastern spiny lobster Sagmariasus verreauxi (Sv), redclaw crayfish Cherax quadricarinatus (Cq) and giant freshwater prawn Macrobrachium rosenbergii (Mr). We then tested the biological activity of each, through the ability to increase phosphorylation in the testis; both Sv and Cq rIAGs significantly elevated phosphorylation specific to their species, and in a dose-dependent manner. Mr rIAG was tested on Macrobrachium australiense (Ma), eliciting a similar response. Moreover, using bioinformatics analyses of the de novo assembled spiny lobster transcriptome, we identified a spiny lobster tyrosine kinase insulin receptor (Sv-TKIR). We validated this discovery with a receptor activation assay in COS-7 cells expressing Sv-TKIR, using a reporter SRE-LUC system designed for RTKs, with each of the rIAG proteins acting as the activation ligand. Using recombinant proteins, we aim to develop specific tools to control sexual development through the administration of IAG within the critical sexual differentiation time window. The biologically active rIAGs generated might facilitate commercially feasible solutions for the long sought techniques for sex-change induction and monosex population culture in crustaceans and shed new light on the physiological mode of action of IAG in crustaceans.

  1. The Cochaperone SGTA (Small Glutamine-rich Tetratricopeptide Repeat-containing Protein Alpha) Demonstrates Regulatory Specificity for the Androgen, Glucocorticoid, and Progesterone Receptors*

    PubMed Central

    Paul, Atanu; Garcia, Yenni A.; Zierer, Bettina; Patwardhan, Chaitanya; Gutierrez, Omar; Hildenbrand, Zacariah; Harris, Diondra C.; Balsiger, Heather A.; Sivils, Jeffrey C.; Johnson, Jill L.; Buchner, Johannes; Chadli, Ahmed; Cox, Marc B.

    2014-01-01

    Steroid hormone receptors are ligand-dependent transcription factors that require the ordered assembly of multichaperone complexes for transcriptional activity. Although heat shock protein (Hsp) 90 and Hsp70 are key players in this process, multiple Hsp70- and Hsp90-associated cochaperones associate with receptor-chaperone complexes to regulate receptor folding and activation. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was recently characterized as an Hsp70 and Hsp90-associated cochaperone that specifically regulates androgen receptor activity. However, the specificity of SGTA for additional members of the steroid hormone receptor superfamily and the mechanism by which SGTA regulates receptor activity remain unclear. Here we report that SGTA associates with and specifically regulates the androgen, glucocorticoid, and progesterone receptors and has no effect on the mineralocorticoid and estrogen receptors in both yeast and mammalian cell-based reporter assays. In both systems, SGTA knockdown/deletion enhances receptor activity, whereas SGTA overexpression suppresses receptor activity. We demonstrate that SGTA binds directly to Hsp70 and Hsp90 in vitro with similar affinities yet predominately precipitates with Hsp70 from cell lysates, suggesting a role for SGTA in early, Hsp70-mediated folding. Furthermore, SGTA expression completely abrogates the regulation of receptor function by FKBP52 (52-kDa FK506-binding protein), which acts at a later stage of the chaperone cycle. Taken together, our data suggest a role for SGTA at distinct steps in the chaperone-dependent modulation of androgen, glucocorticoid, and progesterone receptor activity. PMID:24753260

  2. The cochaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) demonstrates regulatory specificity for the androgen, glucocorticoid, and progesterone receptors.

    PubMed

    Paul, Atanu; Garcia, Yenni A; Zierer, Bettina; Patwardhan, Chaitanya; Gutierrez, Omar; Hildenbrand, Zacariah; Harris, Diondra C; Balsiger, Heather A; Sivils, Jeffrey C; Johnson, Jill L; Buchner, Johannes; Chadli, Ahmed; Cox, Marc B

    2014-05-30

    Steroid hormone receptors are ligand-dependent transcription factors that require the ordered assembly of multichaperone complexes for transcriptional activity. Although heat shock protein (Hsp) 90 and Hsp70 are key players in this process, multiple Hsp70- and Hsp90-associated cochaperones associate with receptor-chaperone complexes to regulate receptor folding and activation. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was recently characterized as an Hsp70 and Hsp90-associated cochaperone that specifically regulates androgen receptor activity. However, the specificity of SGTA for additional members of the steroid hormone receptor superfamily and the mechanism by which SGTA regulates receptor activity remain unclear. Here we report that SGTA associates with and specifically regulates the androgen, glucocorticoid, and progesterone receptors and has no effect on the mineralocorticoid and estrogen receptors in both yeast and mammalian cell-based reporter assays. In both systems, SGTA knockdown/deletion enhances receptor activity, whereas SGTA overexpression suppresses receptor activity. We demonstrate that SGTA binds directly to Hsp70 and Hsp90 in vitro with similar affinities yet predominately precipitates with Hsp70 from cell lysates, suggesting a role for SGTA in early, Hsp70-mediated folding. Furthermore, SGTA expression completely abrogates the regulation of receptor function by FKBP52 (52-kDa FK506-binding protein), which acts at a later stage of the chaperone cycle. Taken together, our data suggest a role for SGTA at distinct steps in the chaperone-dependent modulation of androgen, glucocorticoid, and progesterone receptor activity.

  3. Automated microscopy and image analysis for androgen receptor function.

    PubMed

    Hartig, Sean M; Newberg, Justin Y; Bolt, Michael J; Szafran, Adam T; Marcelli, Marco; Mancini, Michael A

    2011-01-01

    Systems-level approaches have emerged that rely on analytical, microscopy-based technology for the discovery of novel drug targets and the mechanisms driving AR signaling, transcriptional activity, and ligand independence. Single cell behavior can be quantified by high-throughput microscopy methods through analysis of endogenous protein levels and localization or creation of biosensor cell lines that can simultaneously detect both acute and latent responses to known and unknown androgenic stimuli. The cell imaging and analytical protocols can be automated to discover agonist/antagonist response windows for nuclear translocation, reporter gene activity, nuclear export, and subnuclear transcription events, facilitating access to a multiplex model system that is inherently unavailable through classic biochemical approaches. In this chapter, we highlight the key steps needed for developing, conducting, and analyzing high-throughput screens to identify effectors of AR signaling.

  4. Identification of androgen receptor variants in testis from humans and other vertebrates.

    PubMed

    Laurentino, S S; Pinto, P I S; Tomás, J; Cavaco, J E; Sousa, M; Barros, A; Power, D M; Canário, A V M; Socorro, S

    2013-06-01

    The androgen receptor (AR) is a ligand-activated transcription factor member of the nuclear receptor superfamily. The existence of alternatively spliced variants is well recognised for several members of this superfamily, most of them having functional importance. For example, several testicular oestrogen receptor variants have been suggested to play a role in the regulation of spermatogenesis. However, information on AR variants is mostly related to cancer and androgen insensitivity syndrome (AIS) cases. The objective of this study was to investigate the expression of AR variants in the testis from humans and other vertebrates. Four AR variants [ARΔ2(Stop) , ARΔ2(23Stop) , ARΔ3 and ARΔ4(120)] were identified in human testis. ARΔ2(Stop) and ARΔ3, with exon 2 or 3 deleted, respectively, were also expressed in human liver, lung, kidney and heart. In addition, ARΔ2(Stop) was expressed in rat and gilthead seabream testis, while an ARΔ3 was detected in African clawed frog testis. This is the first report revealing the existence of AR variants in the testis of evolutionarily distant vertebrate species and in nonpathological tissues. These data suggest the functional importance of these novel AR forms and demonstrate a complexity in AR signalling that is not exclusive of pathological conditions.

  5. Identification of the functional domains of ANT-1, a novel coactivator of the androgen receptor

    SciTech Connect

    Fan Shuli; Goto, Kiminobu; Chen Guangchun; Morinaga, Hidetaka; Nomura, Masatoshi; Okabe, Taijiro; Nawata, Hajime; Yanase, Toshihiko . E-mail: yanase@intmed3.med.kyushu-u.ac.jp

    2006-03-03

    Previously, we identified a transcriptional coactivator for the activation function-1 (AF-1) domain of the human androgen receptor (AR) and designated it androgen receptor N-terminal domain transactivating protein-1 (ANT-1). This coactivator, which contains multiple tetratricopeptide repeat (TPR) motifs from amino acid (aa) 294, is identical to a component of U5 small nuclear ribonucleoprotein particles and binds specifically to the AR or glucocorticoid receptor. Here, we identified four distinct functional domains. The AR-AF-1-binding domain, which bound to either aa 180-360 or 360-532 in AR-AF-1, clearly overlapped with TAU-1 and TAU-5. This domain and the subnuclear speckle formation domain in ANT-1 were assigned within the TPR motifs, while the transactivating and nuclear localization signal domains resided within the N-terminal sequence. The existence of these functional domains may further support the idea that ANT-1 can function as an AR-AF-1-specific coactivator while mediating a transcription-splicing coupling.

  6. RECOMBINANT ANDROGEN RECEPTOR (AR) BINDING ACROSS VERTEBRATE SPECIES: COMPARISON OF BINDING OF ENVIRONMENTAL COMPOUNDS TO HUMAN, RAINBOW TROUT AND FATHEAD MINNOW AR.

    EPA Science Inventory

    In vitro screening assays designed to identify androgen mimics or antagonists typically use mammalian (rat, human) androgen receptors (AR). Although the amino acid sequences of receptors from nonmammalian vertebrates are not identical to the mammalian receptors, it is uncertain ...

  7. Identification of androgen receptor protein and 5α-reductase mRNA in human ocular tissues

    PubMed Central

    Rocha, E.; Wickham, L; da Silveira, L. A; Krenzer, K.; Yu, F.; Toda, I.; Sullivan, B.; Sullivan, D.

    2000-01-01

    BACKGROUND/AIMS—Androgens have been reported to influence the structural organisation, functional activity, and/or pathological features of many ocular tissues. In addition, these hormones have been proposed as a topical therapy for such conditions as dry eye syndromes, corneal wound healing, and high intraocular pressure. To advance our understanding of androgen action in the eye, the purpose of the present study was twofold: firstly, to determine whether tissues of the anterior and posterior segments contain androgen receptor protein, which might make them susceptible to hormone effects following topical application; and, secondly, to examine whether these tissues contain the mRNA for types 1 and/or 2 5α-reductase, an enzyme that converts testosterone to the very potent metabolite, dihydrotestosterone.
METHODS—Human ocular tissues and cells were obtained and processed for histochemical and molecular biological procedures. Androgen receptor protein was identified by utilising specific immunoperoxidase techniques. The analysis of type 1 and type 2 5α-reductase mRNAs was performed by the use of RT-PCR, agarose gel electrophoresis, and DNA sequence analysis. All immunohistochemical evaluations and PCR amplifications included positive and negative controls.
RESULTS—These findings show that androgen receptor protein exists in the human lacrimal gland, meibomian gland, cornea, bulbar and forniceal conjunctivae, lens epithelial cells, and retinal pigment epithelial cells. In addition, our results demonstrate that the mRNAs for types 1 and 2 5α-reductase occur in the human lacrimal gland, meibomian gland, bulbar conjunctiva, cornea, and RPE cells.
CONCLUSION—These combined results indicate that multiple ocular tissues may be target sites for androgen action.

 PMID:10611104

  8. Pembrolizumab and Enobosarm in Treating Patients With Androgen Receptor Positive Metastatic Triple Negative Breast Cancer

    ClinicalTrials.gov

    2017-04-04

    Androgen Receptor Positive; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma

  9. Androgen receptor expression predicts different clinical outcomes for breast cancer patients stratified by hormone receptor status

    PubMed Central

    Xu, Yan; Zheng, Yi-Zi; Liu, Yi-Rong; Lang, Guan-Tian; Qiao, Feng; Hu, Xin; Shao, Zhi-Ming

    2016-01-01

    In this study we sought to correlate androgen receptor (AR) expression with tumor progression and disease-free survival (DFS) in breast cancer patients. We investigated AR expression in 450 breast cancer patients. We found that breast cancers expressing the estrogen receptor (ER) are more likely to co-express AR compared to ER-negative cancers (56.0% versus 28.1%, P < 0.001). In addition, we found that AR expression is correlated with increased DFS in patients with luminal breast cancer (P < 0.001), and decreased DFS in TNBC (triple negative breast cancer, P = 0.014). In addition, patients with HR+ tumors (Hormone receptor positive tumors) expressing low levels of AR have the lowest DFS among all receptor combinations. We also propose a novel prognostic model using AR receptor status, BRCA1, and present data showing that our model is more predictive of disease free survival compared to the traditional TMN staging system. PMID:27285752

  10. Poly (A) Binding Protein Cytoplasmic 1 Is a Novel Co-Regulator of the Androgen Receptor

    PubMed Central

    Eisermann, Kurtis; Dar, Javid A.; Dong, Jun; Wang, Dan; Masoodi, Khalid Z.; Wang, Zhou

    2015-01-01

    The androgen receptor (AR) is a member of the steroid receptor superfamily that regulates gene expression in a ligand-dependent manner. The NTD of the AR plays a key role in AR transactivation including androgen-independent activation of the AR in castration-resistant prostate cancer (CRPC) cells. We recently reported that amino acids (a.a.) 50-250 of the NTD are capable of modulating AR nucleocytoplasmic trafficking. To further explore the mechanism associated with a.a. 50-250, GFP pull-down assays were performed in C4-2 CRPC cells transfected with GFP tagged a.a. 50-250 of the AR. Mass spectrometry analysis of the pulled down proteins identified poly (A) binding protein cytoplasmic 1 (PABPC1) interaction with this region of the AR. In silico analysis of gene expression data revealed PABPC1 up-regulation in prostate cancer tissue specimens and this up-regulation correlates to increased disease recurrence. Co-immunoprecipitation assays confirmed the association of PABPC1 with a.a. 50-250 of the NTD of the AR. Knockdown of PABPC1 decreased nuclear AR protein levels and inhibited androgen activation of the AR target PSA in LNCaP and C4-2 cells. Additionally, knockdown of PABPC1 inhibited transactivation of the PSA promoter by NAR (AR lacking the LBD) and attenuated proliferation of AR-positive prostate cancer cells. These findings suggest that PABPC1 is a novel co-regulator of the AR and may be a potential target for blocking activation of the AR in CRPC. PMID:26176602

  11. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    PubMed Central

    2012-01-01

    Background Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. Methods First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Results Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Conclusions Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer. PMID:23231703

  12. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity.

    PubMed

    Lv, Xuan; Pan, Liumeng; Wang, Jiaying; Lu, Liping; Yan, Weilin; Zhu, Yanye; Xu, Yiwen; Guo, Ming; Zhuang, Shulin

    2017-03-01

    Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R(2) between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s.

  13. Dihydrotestosterone and estrogen regulation of rat brain androgen-receptor immunoreactivity.

    PubMed

    Lynch, C S; Story, A J

    Androgen-receptor upregulation that occurs with androgenic-anabolic steroid (AAS) administration may be mediated by AAS metabolites, dihydrotestosterone (DHT), and estrogen. Castrated and intact male rats received 14 s.c. daily injections of AAS (2 mg/kg testosterone cypionate, 2 mg/kg nandrolone decanoate, and 1 mg/kg boldenone undecylenate in sesame oil vehicle), DHT (5 mg/kg dihydrotestosterone), EB (5 mg/kg estradiol benzoate), or sesame oil vehicle. Approximately 18-24 h after the fourteenth injection, brain tissues were removed and processed immunocytochemically using the PG-21 androgen-receptor antibody. As reported before, castration eliminated AR-ir (androgen-receptor immunoreactivity) and AAS upregulated AR-ir in the ventromedial hypothalamus (VMHVL), medial amygdala (MePV), and medial preoptic area (MPOM). When compared to AAS, DHT fully upregulated AR-ir in the VM VL and MPOM and partially upregulated AR-ir in the MePV. EB treatment partially upregulated AR-ir in the VMHVL and MePV, but not in the MPOM of castrated rats. Because AR-ir in the MPOM was consistently upregulated by DHT or AAS, and not EB, androgen-receptor availability in this region may be mediated specifically via androgen receptors.

  14. Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms.

    PubMed

    Tollefsen, Knut-Erik; Harman, Christopher; Smith, Andy; Thomas, Kevin V

    2007-03-01

    The in vitro estrogen receptor (ER) agonist and androgen receptor (AR) antagonist potencies of offshore produced water effluents collected from the Norwegian Sector were determined using recombinant yeast estrogen and androgen screens. Solid phase extraction (SPE) concentrates of the effluents showed E2 agonist activities similar to those previously reported for the United Kingdom (UK) Continental Shelf (<0.1-4 ng E2 L(-1)). No activity was detected in the filtered oil droplets suggesting that produced water ER activity is primarily associated with the dissolved phase. Targeted analysis for methyl- to nonyl-substituted alkylphenol isomers show the occurrence of known ER agonists in the analysed samples. For the first time, AR antagonists were detected in both the dissolved and oil associated phase at concentrations of between 20 and 8000 microg of flutamide equivalents L(-1). The identity of the AR antagonists is unknown, however this represents a significant input into the marine environment of unknown compounds that exert a known biological effect. It is recommended that further analysis using techniques such as bioassay-directed analysis is performed to identify the compounds/groups of compounds that are responsible in order to improve the assessment of the risk posed by produced water discharges to the marine environment.

  15. Prenatal testosterone exposure induces hypertension in adult females via androgen receptor-dependent protein kinase Cδ-mediated mechanism.

    PubMed

    Blesson, Chellakkan S; Chinnathambi, Vijayakumar; Hankins, Gary D; Yallampalli, Chandra; Sathishkumar, Kunju

    2015-03-01

    Prenatal exposure to excess testosterone induces hyperandrogenism in adult females and predisposes them to hypertension. We tested whether androgens induce hypertension through transcriptional regulation and signaling of protein kinase C (PKC) in the mesenteric arteries. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate (0.5 mg/kg per day from gestation days 15 to 19, SC) and their 6-month-old adult female offspring were examined. Plasma testosterone levels (0.84±0.04 versus 0.42±0.09 ng/mL) and blood pressures (111.6±1.3 versus 104.5±2.4 mm Hg) were significantly higher in prenatal testosterone-exposed rats compared with controls. This was accompanied with enhanced expression of PKCδ mRNA (1.5-fold) and protein (1.7-fold) in the mesenteric arteries of prenatal testosterone-exposed rats. In addition, mesenteric artery contractile responses to PKC activator, phorbol-12,13-dibutyrate, was significantly greater in prenatal testosterone-exposed rats. Treatment with androgen receptor antagonist flutamide (10 mg/kg, SC, BID for 10 days) significantly attenuated hypertension, PKCδ expression, and the exaggerated vasoconstriction in prenatal testosterone-exposed rats. In vitro exposure of testosterone to cultured mesenteric artery smooth muscle cells dose dependently upregulated PKCδ expression. Analysis of PKCδ gene revealed a putative androgen responsive element in the promoter upstream to the transcription start site and an enhancer element in intron-1. Chromatin immunoprecipitation assays showed that androgen receptors bind to these elements in response to testosterone stimulation. Furthermore, luciferase reporter assays showed that the enhancer element is highly responsive to androgens and treatment with flutamide reverses reporter activity. Our studies identified a novel androgen-mediated mechanism for the control of PKCδ expression via transcriptional regulation that controls vasoconstriction and blood pressure.

  16. Androgen receptor roles in insulin resistance and obesity in males: the linkage of androgen-deprivation therapy to metabolic syndrome.

    PubMed

    Yu, I-Chen; Lin, Hung-Yun; Sparks, Janet D; Yeh, Shuyuan; Chang, Chawnshang

    2014-10-01

    Prostate cancer (PCa) is one of the most frequently diagnosed malignancies in men. Androgen-deprivation therapy (ADT) is the first-line treatment and fundamental management for men with advanced PCa to suppress functions of androgen/androgen receptor (AR) signaling. ADT is effective at improving cancer symptoms and prolonging survival. However, epidemiological and clinical studies support the notion that testosterone deficiency in men leads to the development of metabolic syndrome that increases cardiovascular disease risk. The underlying mechanisms by which androgen/AR signaling regulates metabolic homeostasis in men are complex, and in this review, we discuss molecular mechanisms mediated by AR signaling that link ADT to metabolic syndrome. Results derived from various AR knockout mouse models reveal tissue-specific AR signaling that is involved in regulation of metabolism. These data suggest that steps be taken early to manage metabolic complications associated with PCa patients receiving ADT, which could be accomplished using tissue-selective modulation of AR signaling and by treatment with insulin-sensitizing agents.

  17. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor.

    PubMed

    Fang, Hong; Tong, Weida; Branham, William S; Moland, Carrie L; Dial, Stacy L; Hong, Huixiao; Xie, Qian; Perkins, Roger; Owens, William; Sheehan, Daniel M

    2003-10-01

    A number of environmental and industrial chemicals are reported to possess androgenic or antiandrogenic activities. These androgenic endocrine disrupting chemicals may disrupt the endocrine system of humans and wildlife by mimicking or antagonizing the functions of natural hormones. The present study developed a low cost recombinant androgen receptor (AR) competitive binding assay that uses no animals. We validated the assay by comparing the protocols and results from other similar assays, such as the binding assay using prostate cytosol. We tested 202 natural, synthetic, and environmental chemicals that encompass a broad range of structural classes, including steroids, diethylstilbestrol and related chemicals, antiestrogens, flutamide derivatives, bisphenol A derivatives, alkylphenols, parabens, alkyloxyphenols, phthalates, siloxanes, phytoestrogens, DDTs, PCBs, pesticides, organophosphate insecticides, and other chemicals. Some of these chemicals are environmentally persistent and/or commercially important, but their AR binding affinities have not been previously reported. To the best of our knowledge, these results represent the largest and most diverse data set publicly available for chemical binding to the AR. Through a careful structure-activity relationship (SAR) examination of the data set in conjunction with knowledge of the recently reported ligand-AR crystal structures, we are able to define the general structural requirements for chemical binding to AR. Hydrophobic interactions are important for AR binding. The interaction between ligand and AR at the 3- and 17-positions of testosterone and R1881 found in other chemical classes are discussed in depth. The SAR studies of ligand binding characteristics for AR are compared to our previously reported results for estrogen receptor binding.

  18. ARA24/Ran enhances the androgen-dependent NH{sub 2}- and COOH-terminal interaction of the androgen receptor

    SciTech Connect

    Harada, Naoki; Ohmori, Yuji; Yamaji, Ryoichi Higashimura, Yasuki; Okamoto, Kazuki; Isohashi, Fumihide; Nakano, Yoshihisa; Inui, Hiroshi

    2008-08-29

    The androgen receptor (AR) acts as an androgen-dependent transcription factor controlling the development of prostate tissue. Upon binding to androgen, AR undergoes a dynamic structural change leading to interaction between the NH{sub 2}- and COOH-terminal regions of AR (N-C interaction). ARA24/Ran, which is a small GTPase, functions as an AR coactivator. Here, we report that ARA24/Ran enhances the N-C interaction of AR. The constitutively GTP- or GDP-bound form of ARA24/Ran repressed the AR N-C interaction. ARA24/Ran did not enhance the transcriptional activities of AR mutants that disrupt the N-C interaction. ARA24/Ran formed an endogenous protein complex with nuclear AR, but not cytoplasmic AR. Unlike SRC-1 with the positive activity for AR N-C interaction, ARA24/Ran did not enhance the transcriptional activity of the COOH-terminal domain-deleted AR mutant that is constitutively localized in the nucleus. These data demonstrate that ARA24/Ran increases AR transactivation by enhancing the AR N-C interaction in the nucleus.

  19. Preclinical pharmacology of FL442, a novel nonsteroidal androgen receptor modulator.

    PubMed

    Poutiainen, Pekka K; Huhtala, Tuulia; Jääskeläinen, Tiina; Petsalo, Aleksanteri; Küblbeck, Jenni; Kaikkonen, Sanna; Palvimo, Jorma J; Raunio, Hannu; Närvänen, Ale; Peräkylä, Mikael; Juvonen, Risto O; Honkakoski, Paavo; Laatikainen, Reino; Pulkkinen, Juha T

    2014-04-25

    The preclinical profiles of two most potent compounds of our recently published cycloalkane[d]isoxazole pharmacophore-based androgen receptor (AR) modulators, FL442 (4-(3a,4,5,6,7,7a-hexahydro-benzo[d]isoxazol-3-yl)-2-(trifluoromethyl)benzonitrile) and its nitro analog FL425 (3-(4-nitro-3-(trifluoromethyl)phenyl)-3a,4,5,6,7,7a-hexahydrobenzo[d]isoxazole), were explored to evaluate their druggability for the treatment of AR dependent prostate cancer. The studies revealed that both compounds are selective to AR over other closely related steroid hormone receptors and that FL442 exhibits equal inhibition efficiency towards the androgen-responsive LNCaP prostate cancer cell line as the most widely used antiandrogen bicalutamide and the more recently discovered enzalutamide. Notably, FL442 maintains antiandrogenic activity with enzalutamide-activated AR mutant F876L. In contrast to bicalutamide, FL442 does not stimulate the VCaP prostate cancer cells which express elevated levels of the AR. Distribution analyses showed that [(14)CN]FL442 accumulates strongly in the mouse prostate. In spite of its low plasma concentration obtained by intraperitoneal administration, FL442 significantly inhibited LNCaP xenograft tumor growth. These findings provide a preclinical proof for FL442 as a promising AR targeted candidate for a further optimization.

  20. Androgen Receptor Coactivator ARID4B Is Required for the Function of Sertoli Cells in Spermatogenesis.

    PubMed

    Wu, Ray-Chang; Zeng, Yang; Pan, I-Wen; Wu, Mei-Yi

    2015-09-01

    Defects in spermatogenesis, a process that produces spermatozoa inside seminiferous tubules of the testis, result in male infertility. Spermatogenic progression is highly dependent on a microenvironment provided by Sertoli cells, the only somatic cells and epithelium of seminiferous tubules. However, genes that regulate such an important activity of Sertoli cells are poorly understood. Here, we found that AT-rich interactive domain 4B (ARID4B), is essential for the function of Sertoli cells to regulate spermatogenesis. Specifically, we generated Sertoli cell-specific Arid4b knockout (Arid4bSCKO) mice, and showed that the Arid4bSCKO male mice were completely infertile with impaired testis development and significantly reduced testis size. Importantly, severe structural defects accompanied by loss of germ cells and Sertoli cell-only phenotype were found in many seminiferous tubules of the Arid4bSCKO testes. In addition, maturation of Sertoli cells was significantly delayed in the Arid4bSCKO mice, associated with delayed onset of spermatogenesis. Spermatogenic progression was also defective, showing an arrest at the round spermatid stage in the Arid4bSCKO testes. Interestingly, we showed that ARID4B functions as a "coactivator" of androgen receptor and is required for optimal transcriptional activation of reproductive homeobox 5, an androgen receptor target gene specifically expressed in Sertoli cells and critical for spermatogenesis. Together, our study identified ARID4B to be a key regulator of Sertoli cell function important for male germ cell development.

  1. The androgenic anabolic steroid tetrahydrogestrinone produces dioxin-like effects via the aryl hydrocarbon receptor.

    PubMed

    Moon, Hyo Youl; Kim, Sun-Hee; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-10-01

    For a long time, athletes have used androgenic anabolic steroids (AASs) in an inappropriate and veiled manner with the aim of improving exercise performance or for cosmetic purposes. Abuse of AASs triggers adverse effects such as hepatocarcinogenesis, heart attacks, and aggressive behavior. However, AAS-induced toxicity is not completely understood at the molecular level. In the present study, we showed, by performing a dioxin response element (DRE)-luciferase reporter gene assay, that tetrahydrogestrinone (THG), a popular and potent androgen receptor agonist, has dioxin-like effects. In addition, we showed that THG increased cytochrome P-450 1A1 (CYP1A1) mRNA and protein levels, and enzyme activity. The gene encoding CYP1A1 is involved in phase 1 xenobiotic metabolism and a target gene of the aryl hydrocarbon receptor (AhR). Using the AhR antagonist CH-223191, we also examined whether the effects of THG on DRE activation depended on AhR. Our results suggest that synthetic anabolic steroids may have dioxin-like side effects that can disturb endocrine systems and may cause other side effects including cancer through AhR.

  2. A NOVEL CELL LINE, MDA-KB2, THAT STABLY EXPRESSES AN ANDROGEN AND GLUCOCORTICOID RESPONSIVE REPORTER FOR THE DETECTION OF HORMONE RECEPTOR AGONISTS AND ANTAGONISTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency has proposed that in vitro assays for estrogen receptor (ER) and androgen receptor (AR) mediated actions be included in a Tier I screening battery to detect hormonally active chemicals. Herein we describe the development of a novel stab...

  3. Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies

    PubMed Central

    Bhasin, Shalender; Jasuja, Ravi

    2010-01-01

    Purpose of review The last decade has witnessed unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Recent Findings While steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5α-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with AR contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. Summary SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis. PMID:19357508

  4. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling.

    PubMed

    Schroeder, Anne; Herrmann, Andreas; Cherryholmes, Gregory; Kowolik, Claudia; Buettner, Ralf; Pal, Sumanta; Yu, Hua; Müller-Newen, Gerhard; Jove, Richard

    2014-02-15

    Androgen receptor (AR) signaling is important for prostate cancer progression. However, androgen-deprivation and/or AR targeting-based therapies often lead to resistance. Here, we demonstrate that loss of AR expression results in STAT3 activation in prostate cancer cells. AR downregulation further leads to development of prostate cancer stem-like cells (CSC), which requires STAT3. In human prostate tumor tissues, elevated cancer stem-like cell markers coincide with those cells exhibiting high STAT3 activity and low AR expression. AR downregulation-induced STAT3 activation is mediated through increased interleukin (IL)-6 expression. Treating mice with soluble IL-6 receptor fusion protein or silencing STAT3 in tumor cells significantly reduced prostate tumor growth and CSCs. Together, these findings indicate an opposing role of AR and STAT3 in prostate CSC development.

  5. Selective androgen receptor modulator RAD140 is neuroprotective in cultured neurons and kainate-lesioned male rats.

    PubMed

    Jayaraman, Anusha; Christensen, Amy; Moser, V Alexandra; Vest, Rebekah S; Miller, Chris P; Hattersley, Gary; Pike, Christian J

    2014-04-01

    The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed "selective androgen receptor modulators" (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases.

  6. Selective Androgen Receptor Modulator RAD140 Is Neuroprotective in Cultured Neurons and Kainate-Lesioned Male Rats

    PubMed Central

    Jayaraman, Anusha; Christensen, Amy; Moser, V. Alexandra; Vest, Rebekah S.; Miller, Chris P.; Hattersley, Gary

    2014-01-01

    The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed “selective androgen receptor modulators” (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases. PMID:24428527

  7. Rapid increase of spines by dihydrotestosterone and testosterone in hippocampal neurons: Dependence on synaptic androgen receptor and kinase networks.

    PubMed

    Hatanaka, Yusuke; Hojo, Yasushi; Mukai, Hideo; Murakami, Gen; Komatsuzaki, Yoshimasa; Kim, Jonghyuk; Ikeda, Muneki; Hiragushi, Ayako; Kimoto, Tetsuya; Kawato, Suguru

    2015-09-24

    Rapid modulation of hippocampal synaptic plasticity by locally synthesized androgen is important in addition to circulating androgen. Here, we investigated the rapid changes of dendritic spines in response to the elevation of dihydrotestosterone (DHT) and testosterone (T), by using hippocampal slices from adult male rats, in order to clarify whether these signaling processes include synaptic/extranuclear androgen receptor (AR) and activation of kinases. We found that the application of 10nM DHT and 10nM T increased the total density of spines by approximately 1.3-fold within 2h, by imaging Lucifer Yellow-injected CA1 pyramidal neurons. Interestingly, DHT and T increased different head-sized spines. While DHT increased middle- and large-head spines, T increased small-head spines. Androgen-induced spinogenesis was suppressed by individually blocking Erk MAPK, PKA, PKC, p38 MAPK, LIMK or calcineurin. On the other hand, blocking CaMKII did not inhibit spinogenesis. Blocking PI3K altered the spine head diameter distribution, but did not change the total spine density. Blocking mRNA and protein synthesis did not suppress the enhancing effects induced by DHT or T. The enhanced spinogenesis by androgens was blocked by AR antagonist, which AR was localized postsynaptically. Taken together, these results imply that enhanced spinogenesis by DHT and T is mediated by synaptic/extranuclear AR which rapidly drives the kinase networks. This article is part of a Special Issue entitled SI: Brain and Memory.

  8. Alpha-adrenergic regulation of androgen receptor concentration in the preoptic area of the rat.

    PubMed

    Handa, R J; Resko, J A

    1989-04-03

    We examined the effect of the pharmacological disruption of the catecholaminergic system on the concentration of nuclear androgen receptor, as measured by the in vitro binding of methyltrienolone ([3H]R1881) to salt extracts of anterior pituitary (AP), preoptic area (POA) and medial basal hypothalamus (MBH). Treatment of gonadectomized male and female rats with the dopamine-beta-hydroxylase inhibitor, diethyldithiocarbamate (400 mg/kg b. wt.), 30 min before treatment with dihydrotestosterone (1 mg/animal) produced a decrease in the number of nuclear androgen receptor compared with saline-treated controls (P less than 0.05). This effect was specific for the POA and was not present 15 h after DHT treatment. There was no effect on cytosolic androgen receptor nor was there a drug effect on the apparent dissociation constant (Kd) of [3H]R1881 binding to hypothalamus-preoptic area cytosols. Treatment of intact males and castrated, testosterone-treated males with the alpha 1- and alpha 2-adrenergic antagonists, prazosin (5 mg/kg b. wt.) and yohimbine (2 mg/kg b. wt.), respectively, resulted in a significant decrease in the number of nuclear AR 2 h following drug treatment (P less than 0.05). There was no effect of the beta-adrenergic receptor antagonist propranolol (10 mg/kg b. wt.) when given to intact animals, nor was there an effect of idazoxan (5 mg/kg) when given to testosterone-treated animals. The effects of yohimbine and prazosin were restricted to the POA. None of the drugs competed with the binding of [3H]R1881 for the androgen receptor nor did they alter the Kd of cytosol or nuclear androgen receptor. These data provide evidence for an adrenergic interaction with the POA androgen receptor and suggest a role for catecholamines in modulating androgen sensitivity in the rat brain.

  9. Identification of an AR Mutation-Negative Class of Androgen Insensitivity by Determining Endogenous AR Activity

    PubMed Central

    Ukat, M.; Schweikert, H. U.; Hiort, O.; Werner, R.; Drop, S. L. S.; Cools, M.; Hughes, I. A.; Audi, L.; Ahmed, S. F.; Demiri, J.; Rodens, P.; Worch, L.; Wehner, G.; Kulle, A. E.; Dunstheimer, D.; Müller-Roßberg, E.; Reinehr, T.; Hadidi, A. T.; Eckstein, A. K.; van der Horst, C.; Seif, C.; Siebert, R.; Ammerpohl, O.; Holterhus, P.-M.

    2016-01-01

    Context: Only approximately 85% of patients with a clinical diagnosis complete androgen insensitivity syndrome and less than 30% with partial androgen insensitivity syndrome can be explained by inactivating mutations in the androgen receptor (AR) gene. Objective: The objective of the study was to clarify this discrepancy by in vitro determination of AR transcriptional activity in individuals with disorders of sex development (DSD) and male controls. Design: Quantification of DHT-dependent transcriptional induction of the AR target gene apolipoprotein D (APOD) in cultured genital fibroblasts (GFs) (APOD assay) and next-generation sequencing of the complete coding and noncoding AR locus. Setting: The study was conducted at a university hospital endocrine research laboratory. Patients: GFs from 169 individuals were studied encompassing control males (n = 68), molecular defined DSD other than androgen insensitivity syndrome (AIS; n = 18), AR mutation-positive AIS (n = 37), and previously undiagnosed DSD including patients with a clinical suspicion of AIS (n = 46). Intervention(s): There were no interventions. Main Outcome Measure(s): DHT-dependent APOD expression in cultured GF and AR mutation status in 169 individuals was measured. Results: The APOD assay clearly separated control individuals (healthy males and molecular defined DSD patients other than AIS) from genetically proven AIS (cutoff < 2.3-fold APOD-induction; 100% sensitivity, 93.3% specificity, P < .0001). Of 46 DSD individuals with no AR mutation, 17 (37%) fell below the cutoff, indicating disrupted androgen signaling. Conclusions: AR mutation-positive AIS can be reliably identified by the APOD assay. Its combination with next-generation sequencing of the AR locus uncovered an AR mutation-negative, new class of androgen resistance, which we propose to name AIS type II. Our data support the existence of cellular components outside the AR affecting androgen signaling during sexual differentiation with high

  10. Clinical, cytogenetic and molecular analysis of androgen insensitivity syndromes from south Indian cohort and detection and in-silico characterization of androgen receptor gene mutations.

    PubMed

    V G, Abilash; S, Radha; K M, Marimuthu; K, Thangaraj; S, Arun; S, Nishu; A, Mohana Priya; J, Meena; D, Anuradha

    2016-01-30

    Rare cases of 9 complete androgen insensitivity syndromes, 9 cases of partial androgen insensitivity syndromes and equal number of male control samples were selected for this study. Few strong variations in clinical features were noticed; Giemsa banded metaphase revealed a 46,XY karyotype and the frequency of chromosome aberrations were significantly higher when compared with control samples. DNA sequence analysis of the androgen receptor gene of androgen insensitivity syndromes revealed three missense mutations - c.C1713>G resulting in the replacement of a highly conserved histidine residue with glutamine p.(His571Glu) in DNA-binding domain, c.A1715>G resulting in the replacement of a highly conserved tyrosine residue with cysteine p.(Tyr572Cys) in DNA-binding domain and c.G2599>A resulting in the replacement of a highly conserved valine residue with methionine p.(Val867Met) in ligand-binding domain of androgen receptor gene respectively. The heterozygous type of mutations c.C1713>G and c.G2599>A observed in mothers of the patients for familial cases concluding that the mutation was inherited from the mother. The novel mutation c.C1713>G is reported first time in androgen insensitivity syndrome. In-silico analysis of mutations observed in androgen receptor gene of androgen insensitivity syndrome predicted that the substitution at Y572C and V867M could probably disrupt the protein structure and function.

  11. Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer

    PubMed Central

    Pollock, Julie A.; Wardell, Suzanne E.; Parent, Alexander A.; Stagg, David B.; Ellison, Stephanie J.; Alley, Holly M.; Chao, Christina A.; Lawrence, Scott A.; Stice, James P.; Spasojevic, Ivan; Baker, Jennifer G.; Kim, Sung Hoon; McDonnell, Donald P.; Katzenellenbogen, John A.; Norris, John D.

    2016-01-01

    Clinical resistance to the second-generation antiandrogen enzalutamide in castration resistant prostate cancer (CRPC), despite persistent androgen receptor (AR) activity in tumors, highlights the unmet medical need for next generation antagonists. We have identified and characterized tetra-aryl cyclobutanes (CBs) as a new class of competitive AR antagonists that exhibit a unique mechanism of action. These CBs are structurally distinct from current antiandrogens (hydroxyflutamide, bicalutamide, and enzalutamide), and inhibit AR-mediated gene expression, cell proliferation, and tumor growth in several models of CRPC. Conformational profiling revealed that CBs stabilize an AR conformation resembling an unliganded receptor. Using a variety of techniques, it was determined that the AR:CB complex was not recruited to AR-regulated promoters and, like apo AR, remains sequestered in the cytoplasm bound to heat shock proteins. Thus, we have identified third generation AR antagonists whose unique mechanism of action suggests that they may have therapeutic potential in CRPC. PMID:27501397

  12. Inhibition of androgen receptor binding by natural and synthetic steroids in cultured human genital skin fibroblasts.

    PubMed

    Breiner, M; Romalo, G; Schweikert, H U

    1986-08-15

    The ability of various natural and synthetic steroids (some of which are widely used in clinical practice) to compete with dihydrotestosterone receptor binding in human genital skin fibroblasts was studied. Binding was assessed in fibroblast monolayers after incubation for 1 h at 37 degrees C with 2 nM 3H-dihydrotestosterone in the presence or absence of increasing concentrations of the steroid to be tested. Inhibition constants (Ki) were determined as the concentration of competitor-required for 50% inhibition of 3H-dihydrotestosterone binding. In addition, relative binding activity (RBA) of each test compound was calculated. Each competitor was tested in at least two different cell strains. The concentrations of unlabeled methyltrienolone (a synthetic nonmetabolizable androgen) and dihydrotestosterone for 50% inhibition of 3H-dihydrotestosterone binding were in the same order of magnitude, namely, 2 nM (2.2 respectively, 2.4 nM), whereas the affinity of testosterone was approximately one-fifth that of dihydrotestosterone. Other potent competitors for dihydrotestosterone binding were three progestins (norgestrel, gestoden, and medroxyprogesterone acetate) which have Ki values similar to testosterone. An order of magnitude lower Ki values (around 10(-7) M) were found for the androgen 17 alpha-propylmesterolone, the antiandrogen cyproterone acetate, and the progestin norethisterone acetate. Binding affinities of all other steroids to the androgen receptor were markedly lower and showed the following order of potency: estrogens (estradiol, ethinyl estradiol, diethylstilbestrol) greater than glucocorticoids as well as aromatase inhibitors and potassium canrenoate.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Identification of androgen receptors in normal human osteoblast-like cells

    SciTech Connect

    Colvard, D.S.; Eriksen, E.F.; Keeting, P.E.; Riggs, B.L.; Spelsberg, T.C. ); Wilson, E.M.; Lubahn, D.B.; French, F.S. )

    1989-02-01

    The sex steroids, androgens and estrogens, are major regulators of bone metabolism. However, whether these hormones act on bone cells through direct or indirect mechanisms has remained unclear. A nuclear binding assay recently used to demonstrate estrogen receptors in bone was used to identify specific nuclear binding of a tritiated synthetic androgen, ({sup 3}H)R1881 (methyltrienolone), in 21 of 25 (84%) human osteoblast-like cell strains and a concentration of bound steroid receptors of 821 {plus minus} 140 molecules per cell nucleus. Binding was saturable and steroid-specific. Androgen receptor gene expression in osteoblasts was confirmed by RNA blot analysis. Relative concentrations of androgen and estrogen receptors were compared by measuring specific nuclear estrogen binding. Nuclear binding of ({sup 3}H)estradiol was observed in 27 of 30 (90%) cell strains; the concentration of bound estradiol receptor was 1537 {plus minus} 221 molecules per cell nucleus. The concentrations of nuclear binding sites were similar in males and females for both ({sup 3}H)R1881 and ({sup 3}H)estradiol. The authors conclude that both androgens and estrogens act directly on human bone cells through their respective receptor-mediated mechanisms.

  14. Molecular Cloning and Characterization of Estrogen, Androgen, and Progesterone Nuclear Receptors from a Freshwater Turtle (Pseudemys nelsoni)

    PubMed Central

    Katsu, Yoshinao; Ichikawa, Rie; Ikeuchi, Toshitaka; Kohno, Satomi; Guillette, Louis J.; Iguchi, Taisen

    2008-01-01

    Steroid hormones are essential for the normal function of many organ systems in vertebrates. Reproductive activity in females and males, such as the differentiation, growth, and maintenance of the reproductive system, requires signaling by the sex steroids. Although extensively studied in mammals and a few fish, amphibians, and bird species, the molecular mechanisms of sex steroid hormone (estrogens, androgens, and progestins) action are poorly understood in reptiles. Here we evaluate hormone receptor ligand interactions in a freshwater turtle, the red-belly slider (Pseudemys nelsoni), after the isolation of cDNAs encoding an estrogen receptor alpha (ERα), an androgen receptor (AR), and a progesterone receptor (PR). The full-length red-belly slider turtle (t)ERα, tAR, and tPR cDNAs were obtained using 5′ and 3′ rapid amplification cDNA ends. The deduced amino acid sequences showed high identity to the chicken orthologs (tERα, 90%; tAR, 71%; tPR, 71%). Using transient transfection assays of mammalian cells, tERα protein displayed estrogen-dependent activation of transcription from an estrogen-responsive element-containing promoter. The other receptor proteins, tAR and tPR, also displayed androgen- or progestin-dependent activation of transcription from androgen- and progestin-responsive murine mammary tumor virus promoters. We further examined the transactivation of tERα, tAR and tPR by ligands using a modified GAL4-transactivation system. We found that the GAL4-transactivation system was not suitable for the measurement of tAR and tPR transactivations. This is the first report of the full coding regions of a reptilian AR and PR and the examination of their transactivation by steroid hormones. PMID:17916628

  15. The Androgen Receptor Antagonizes Wnt/β-Catenin Signaling in Epidermal Stem Cells

    PubMed Central

    Kretzschmar, Kai; Cottle, Denny L; Schweiger, Pawel J; Watt, Fiona M

    2015-01-01

    Activation of Wnt/β-catenin signaling in adult mouse epidermis leads to expansion of the stem cell compartment and redirects keratinocytes in the interfollicular epidermis and sebaceous glands (SGs) to differentiate along the hair follicle (HF) lineages. Here we demonstrate that during epidermal development and homeostasis there is reciprocal activation of the androgen receptor (AR) and β-catenin in cells of the HF bulb. AR activation reduced β-catenin-dependent transcription, blocked β-catenin-induced induction of HF growth, and prevented β-catenin-mediated conversion of SGs into HFs. Conversely, AR inhibition enhanced the effects of β-catenin activation, promoting HF proliferation and differentiation, culminating in the formation of benign HF tumors and a complete loss of SG identity. We conclude that AR signaling has a key role in epidermal stem cell fate selection by modulating responses to β-catenin in adult mouse skin. PMID:26121213

  16. Genome-wide impact of Androgen Receptor Trapped Clone-27 Loss on Androgen-regulated Transcription in Prostate Cancer Cells

    PubMed Central

    Nwachukwu, Jerome C.; Mita, Paolo; Ruoff, Rachel; Ha, Susan; Wang, Qianben; Huang, S. Joseph; Taneja, Samir S.; Brown, Myles; Gerald, William L.; Garabedian, Michael J.; Logan, Susan K.

    2009-01-01

    The Androgen Receptor (AR) directs diverse biological processes through interaction with coregulators such as Androgen Receptor Trapped clone-27 (ART-27). Our results demonstrate that ART-27 is recruited to AR-binding sites by ChIP analysis. In addition, the impact of ART-27 on genome wide transcription was examined. The studies indicate that loss of ART-27 enhances expression of many androgen-regulated genes, suggesting that ART-27 inhibits gene expression. Surprisingly, classes of genes that are upregulated upon ART-27 depletion include regulators of DNA damage checkpoint and cell cycle progression, suggesting that ART-27 functions to keep expression levels of these genes low. Consistent with this idea, stable reduction of ART-27 by shRNA enhances LNCaP cell proliferation compared to control cells. The impact of ART-27 loss was also examined in response to the antiandrogen, bicalutamide. Unexpectedly, cells treated with ART-27 siRNA no longer exhibited gene repression in response to bicalutamide. To examine ART-27 loss in prostate cancer progression, immunohistochemistry was conducted on a tissue array containing samples from primary tumors of individuals who were clinically followed and later shown to have either recurrent or non-recurrent disease. Comparison of ART-27 and AR staining indicated that nuclear ART-27 expression was lost in the majority of AR-positive recurrent prostate cancers. Our studies demonstrate that reduction of ART-27 protein levels in prostate cancer may facilitate antiandrogen resistant disease. PMID:19318562

  17. The FKBP52 Cochaperone Acts in Synergy with β-Catenin to Potentiate Androgen Receptor Signaling

    PubMed Central

    Chattopadhyay, Arundhati; Olivares, Karen; Guy, Naihsuan; Sivils, Jeffrey C.; Dey, Prasenjit; Yumoto, Fumiaki; Fletterick, Robert J.; Strom, Anders M.; Gustafsson, Jan-Åke; Webb, Paul; Cox, Marc B.

    2015-01-01

    FKBP52 and β-catenin have emerged in recent years as attractive targets for prostate cancer treatment. β-catenin interacts directly with the androgen receptor (AR) and has been characterized as a co-activator of AR-mediated transcription. FKBP52 is a positive regulator of AR in cellular and whole animal models and is required for the development of androgen-dependent tissues. We previously characterized an AR inhibitor termed MJC13 that putatively targets the AR BF3 surface to specifically inhibit FKBP52-regulated AR signaling. Predictive modeling suggests that β-catenin interacts with the AR hormone binding domain on a surface that overlaps with BF3. Here we demonstrate that FKBP52 and β-catenin interact directly in vitro and act in concert to promote a synergistic up-regulation of both hormone-independent and -dependent AR signaling. Our data demonstrate that FKBP52 promotes β-catenin interaction with AR and is required for β-catenin co-activation of AR activity in prostate cancer cells. MJC13 effectively blocks β-catenin interaction with the AR LBD and the synergistic up-regulation of AR by FKBP52 and β-catenin. Our data suggest that co-regulation of AR by FKBP52 and β-catenin does not require FKBP52 PPIase catalytic activity, nor FKBP52 binding to Hsp90. However, the FKBP52 proline-rich loop that overhangs the PPIase pocket is critical for synergy. PMID:26207810

  18. ATM Inhibition Potentiates Death of Androgen Receptor-inactivated Prostate Cancer Cells with Telomere Dysfunction

    PubMed Central

    Reddy, Vidyavathi; Wu, Min; Ciavattone, Nicholas; McKenty, Nathan; Menon, Mani; Barrack, Evelyn R.; Reddy, G. Prem-Veer; Kim, Sahn-Ho

    2015-01-01

    Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer. PMID:26336104

  19. ATM Inhibition Potentiates Death of Androgen Receptor-inactivated Prostate Cancer Cells with Telomere Dysfunction.

    PubMed

    Reddy, Vidyavathi; Wu, Min; Ciavattone, Nicholas; McKenty, Nathan; Menon, Mani; Barrack, Evelyn R; Reddy, G Prem-Veer; Kim, Sahn-Ho

    2015-10-16

    Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer.

  20. Synthesis and antibacterial activity evaluation of two androgen derivatives.

    PubMed

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Maria, López-Ramos; Marcela, Rosas-Nexticapa; Lenin, Hau-Heredia; Bety, Sarabia-Alcocer

    2015-01-01

    In this study two androgen derivatives were synthesized using several strategies; the first stage an aza-steroid derivative (3) was developed by the reaction of a testosterone derivative (1) with thiourea (2) in presence of hydrogen chloride. The second step, involves the synthesis of an amino-steroid derivative (4) by the reaction of 1 with 2 using boric acid as catalyst. The third stage was achieved by the preparation of an aminoaza-androgen derivative (6) by the reaction of 3 with ethylenediamine using boric acid as catalyst. In addition, the compound 6 was made reacting with dihydrotestosterone to form a new androgen derivative (7) in presence of boric acid. The following step was achieved by the reaction of 7 with chloroacetyl chloride to synthesize an azetidinone-androgen derivative (8) using triethylamine as catalyst. Additionally, a thiourea-androgen derivative (9) was synthetized by the reaction of 4 with dihydrotestosterone using boric acid as catalyst. Finally, the compound 9 was made reacting with chloroacetyl chloride in presence of triethylamine to synthesize a new azetidinone-androgen derivative (10). On the other hand, antibacterial activity of compounds synthesized was evaluated on Gram negative (Escherichia coli and Vibrio cholerae) and Gram positive (Staphylococos aureus) bacteria. The results indicate that only the compound 3 and 8 decrease the growth bacterial of E. coli and V. cholerae. Nevertheless, growth bacterial of S. aureus was not inhibited by these compounds. These data indicate that antibacterial activity exerted by the compounds 3 and 8 depend of their structure chemical in comparison with the controls and other androgen derivatives that are involved in this study.

  1. Targeting Androgen Receptor Function by MicroRNA in Prostate Cancer

    DTIC Science & Technology

    2008-07-01

    MicroRNA in Prostate Cancer PRINCIPAL INVESTIGATOR: Girish C. Shukla, Ph.D. CONTRACTING ORGANIZATION: Cleveland Clinic Foundation...Targeting Androgen Receptor Function by MicroRNA in Prostate Cancer 5b. GRANT NUMBER W81XWH-06-1-0191 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...antagonists results in higher levels of AR which is one of the causative factors of the development of androgen-independent prostate cancer . We proposed

  2. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    PubMed

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  3. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer

    PubMed Central

    Jiang, Shoulei; Cropper, Jodie; Werner, Sherry L.; Song, Chung S.; Chatterjee, Bandana

    2016-01-01

    Androgen receptor (AR) and PI3K/AKT/mTORC1 are major survival signals that drive prostate cancer to a lethal disease. Reciprocal activation of these oncogenic pathways from negative cross talks contributes to low/limited success of pathway-selective inhibitors in curbing prostate cancer progression. We report that the antibiotic salinomycin, a cancer stem cell blocker, is a dual-acting AR and mTORC1 inhibitor, inhibiting PTEN-deficient castration-sensitive and castration-resistant prostate cancer in culture and xenograft tumors. AR expression, its transcriptional activity, and androgen biosynthesis regulating enzymes CYP17A1, HSD3β1 were reduced by sub-micro molar salinomycin. Estrogen receptor-α expression was unchanged. Loss of phosphorylated AR at serine-81, which is an index for nuclear AR activity, preceded total AR reduction. Rapamycin enhanced the AR protein level without altering phosphoAR-Ser81 and CYP17A1. Inactivation of mTORC1, evident from reduced phosphorylation of mTOR and downstream effectors, as well as AMPK activation led to robust autophagy induction. Apoptosis increased modestly, albeit significantly, by sub-micro molar salinomycin. Enhanced stimulatory TSC2 phosphorylation at Ser-1387 by AMPK, and reduced inhibitory TSC2 phosphorylation at Ser-939/Thr-1462 catalyzed by AKT augmented TSC2/TSC1 activity, which led to mTORC1 inhibition. AMPK-mediated raptor phosphorylation further reduced mTOR's kinase function and mTORC1 activity. Our novel finding on dual inhibition of AR and mTORC1 suggests that salinomycin is potentially active as monotherapy against advanced prostate cancer. PMID:27557496

  4. Optical biosensor analysis in studying new synthesized bicalutamide analogs binding to androgen receptor.

    PubMed

    Fortugno, Cecilia; Varchi, Greta; Guerrini, Andrea; Carrupt, Pierre-Alain; Bertucci, Carlo

    2014-07-01

    Bicalutamide (Casodex®) is a non-steroidal anti-androgen drug used in the treatment of prostate cancer, which represents the second most common malignancy diagnosed in men worldwide. In this work, we analyze the ability of some novel bicalutamide analogs to bind the androgen receptor, by using an optical biosensor. Androgen receptor was covalently immobilized on a carboxy methyl dextran matrix. The immobilized receptor chip was then used for the binding experiments of the bicalutamide analogs. The (R)-bicalutamide dissociation constant was in good agreement to the value reported in literature obtained by using radiolabeled targets. Most of the new synthesized compounds showed higher androgen receptor binding level, when compared to the reference. Our results clearly indicate that the surface plasmon resonance (SPR) technique offers many advantages with respect to other available technologies in terms of studying biomolecular interactions. Moreover, this study provides an effective methodology for determining the binding affinity of novel chemical entities for the isolated androgen receptor, thus excluding possible off-target interactions occurring in conventional cell-based techniques.

  5. TAF1, From a General Transcription Factor to Modulator of Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2008-02-01

    Factor to Modulator of Androgen Receptor in Prostate Cancer PRINCIPAL INVESTIGATOR: Peyman Tavassoli M.D...Receptor in Prostate Cancer 5b. GRANT NUMBER W81XWH-07-1-0131 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Peyman Tavassoli M.D., Paul Rennie...9 Tavassoli Peyman , Annual Summary Page - 3 - Feb 2008 Tavassoli Peyman , Annual Summary

  6. Characterizing and Targeting Androgen Receptor Pathway-Independent Prostate Cancer

    DTIC Science & Technology

    2012-09-01

    AD_________________ Award Number: W81XWH- 10 -1-0771 TITLE: Characterizing and Targeting Androgen...NUMBER Seattle, WA 98109-1024 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 . SPONSOR/MONITOR’S ACRONYM(S) U.S...pros- tate cancer cells in the absence of exogenous AR ligands, we performed a high-throughput RNAi screen ( HTRS ) using two androgen-sensitive prostate

  7. Controlling Androgen receptor nuclear localization by dendrimer conjugates

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu

    Androgen Receptor (AR) antagonists, such as bicalutamide and flutamide have been used widely in the treatment of prostate cancer. Although initial treatment is effective, prostate cancer cells often acquire antiandrogen resistance with prolonged treatment. AR over-expression and AR mutations contribute to the development of antiandrogen resistant cancer. Second generation antiandrogens such as enzalutamide are more effective and show reduced AR nuclear localization. In this study, derivatives of PAN52, a small molecule antiandrogen previously developed in our lab, were conjugated to the surface of generation 4 and generation 6 PAMAM dendrimers to obtain antiandrogen PAMAM dendrimer conjugates (APDC). APDCs readily enter cells and associate with AR in the cytoplasm. Due to their large size and positive charge, they can not enter the nucleus, thus retaining AR in the cytoplasm. In addition, APDCs are effective in decreasing AR mediated transcription and cell proliferation. APDC is the first AR antagonists that inhibit DHT-induced nuclear localization of AR. By inhibiting AR nuclear localization, APDC represents a new class of antiandrogens that offer an alternative approach to addressing antiandrogen-resistant prostate cancer. Lysine post-translational modification of AR Nuclear Localization Sequence (NLS) has great impact on AR cellular localization. It is of interest to understand which modifications modulate AR translocation into the nucleus. In this study, we prepared dendrimer-based acetyltransferase mimetic (DATM), DATM is able to catalytically acetylate AR in CWR22Rv1 cells, which will be a useful tool for studying AR modification effect on AR cellular localization. Derivatives of DATM, which transfer other chemical groups to AR, can be prepared similarly, and with more dendrimer based AR modification tools prepared in future, we will be able to understand and control AR cellular localization through AR modification.

  8. Homology-modeled ligand-binding domains of medaka estrogen receptors and androgen receptors: A model system for the study of reproduction

    SciTech Connect

    Cui Jianzhou Shen Xueyan; Yan Zuowei; Zhao Haobin; Nagahama, Yoshitaka

    2009-02-27

    Estrogen and androgen and their receptors play critical roles in physiological processes such as sexual differentiation and development. Using the available structural models for the human estrogen receptors alpha and beta and androgen receptor as templates, we designed in silico agonist and antagonist models of medaka estrogen receptor (meER) alpha, beta-1, and beta-2, and androgen receptor (meAR) alpha and beta. Using these models, we studied (1) the structural relationship between the ligand-binding domains (LBDs) of ERs and ARs of human and medaka, and (2) whether medaka ER and AR can be potential models for studying the ligand-binding activities of various agonists and antagonists of these receptors by docking analysis. A high level of conservation was observed between the sequences of the ligand-binding domains of meER{alpha} and huER{alpha}, meER{beta}1 and huER{beta}, meER{beta}2, and huER{beta} with 62.8%, 66.4%, and 65.1% identity, respectively. The sequence conservation between meAR{alpha} and huAR, meAR{beta}, and huAR was found with 70.1% and 61.0% of identity, respectively. Thirty-three selected endocrine disrupting chemicals (EDCs), including both agonists and antagonists, were docked into the LBD of ER and AR, and the corresponding docking score for medaka models and human templates were calculated. In order to confirm the conservation of the overall geometry and the binding pocket, the backbone root mean square deviation (RMSD) for C{alpha} atoms was derived from the structure superposition of all 10 medaka homology models to the six human templates. Our results suggested conformational conservation between the ERs and ARs of medaka and human, Thus, medaka could be highly useful as a model system for studies involving estrogen and androgen interaction with their receptors.

  9. Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant Prostate Cancers

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBERS: W81XWH-14-1-0519 TITLE: Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant...of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant Prostate Cancers 5b. GRANT NUMBER W81XWH-14- 1-0519 5c. PROGRAM...castration. However, despite a growing armamentarium of drugs targeting the androgen/AR signaling axis, progression of castration-resistant prostate

  10. 20-Aminosteroids as a novel class of selective and complete androgen receptor antagonists and inhibitors of prostate cancer cell growth.

    PubMed

    Fousteris, Manolis A; Schubert, Undine; Roell, Daniela; Roediger, Julia; Bailis, Nikolaos; Nikolaropoulos, Sotiris S; Baniahmad, Aria; Giannis, Athanassios

    2010-10-01

    Here, the synthesis and the evaluation of novel 20-aminosteroids on androgen receptor (AR) activity is reported. Compounds 11 and 18 of the series inhibit both the wild type and the T877A mutant AR-mediated transactivation indicating AR antagonistic function. Interestingly, minor structural changes such as stereoisomers of the amino lactame moiety exhibit preferences for antagonism among wild type and mutant AR. Other tested nuclear receptors are only weakly or not affected. In line with this, the prostate cancer cell growth of androgen-dependent but not of cancer cells lacking expression of the AR is inhibited. Further, the expression of the prostate specific antigen used as a diagnostic marker is also repressed. Finally steroid 18 enhances cellular senescence that might explain in part the growth inhibition mediated by this derivative. Steroids 11 and 18 are the first steroids that act as complete AR antagonists and exhibit AR specificity.

  11. Reduced CAG repeats length in androgen receptor gene is associated with violent criminal behavior.

    PubMed

    Rajender, Singh; Pandu, Guguluth; Sharma, J D; Gandhi, K P C; Singh, Lalji; Thangaraj, Kumarasamy

    2008-09-01

    Androgens mediate their functions through androgen receptors (AR). The two triplet repeats in the AR gene (CAG and GGN) are highly polymorphic among various populations and have been extensively studied in diverse clinical conditions and antisocial personality disorders. Several studies have reported either higher levels of testosterone among rapists or the correlation of shorter CAG repeats with criminal activities. However, to date, no study has analyzed AR gene in rapists worldwide, and no study has been conducted on criminals from Indian subcontinent. Therefore, we have analyzed the AR-CAG repeat length in 645 men, of which 241 were convicted for rape, 107 for murder, 26 for both murder and rape, and 271 were control males. The aim was to explore if there was any correlation between CAG repeat length and criminal behavior. The study revealed significantly shorter CAG repeats in the rapists (mean 18.44 repeats) and murderers (mean 17.59 repeats) compared to the control men (mean 21.19 repeats). The criminals who committed murder after rape had a far shorter mean repeat length (mean 17.31 repeats) in comparison to the controls or those convicted of rape or murder alone. In short, our study suggests that the reduced CAG repeats in the AR gene are associated with criminal behavior. This, along with other studies, would help in understanding the biological factors associated with the antisocial or criminal activities.

  12. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered.

  13. Nuclear Export Signal of Androgen Receptor (NESAR) Regulation of Androgen Receptor Level in Human Prostate Cell Lines via Ubiquitination and Proteasome-Dependent Degradation

    PubMed Central

    Gong, Yanqing; Wang, Dan; Dar, Javid A.; Singh, Prabhpreet; Graham, Lara; Liu, Weijun; Ai, Junkui; Xin, Zhongcheng

    2012-01-01

    Androgen receptor (AR) plays a key role in prostate development and carcinogenesis. Increased expression and/or stability of AR is associated with sensitization of prostate cancer cells to low levels of androgens, leading to castration resistance. Hence, understanding the mechanisms regulating AR protein stability is clinically relevant and may lead to new approaches to prevent and/or treat prostate cancer. Using fluorescence microscopy, Western blot, and pulse chase assay, we showed that nuclear export signal (NES)AR, a nuclear export signal in the ligand binding domain (LBD) of AR, can significantly enhance the degradation of fusion protein constructs in PC3 prostate cancer cells. The half-life of GFP-NESAR was less than 3 h, which was 10 times shorter than that of green fluorescent protein (GFP) control. Further analysis showed that NESAR can signal for polyubiquitination and that degradation of NESAR-containing fusion proteins can be blocked by proteasome inhibitor MG132. Ubiquitination of GFP-AR or GFP-LBD was suppressed in the presence of dihydrotestosterone, which is known to suppress NESAR while inducing nuclear localization signal 2 in AR or LBD, suggesting that the export activity of NESAR is required for NESAR-mediated polyubiquitination. Treatment with MG132 also induced aggresome formation of NESAR-containing fusion proteins in perinuclear regions of the transfected PC3 cells, indicating a role for NESAR in inducing unfolded protein responses. The above observations suggest that NESAR plays a key role in AR ubiquitination and proteasome-dependent degradation in prostate cancer cells. PMID:23041672

  14. Novel missense mutation in the P-box of androgen receptor in a patient with androgen insensitivity syndrome.

    PubMed

    Katsumata, Noriyuki; Horikawa, Reiko; Tanaka, Toshiaki

    2008-03-01

    Mutations in the X-linked AR gene cause androgen insensitivity syndrome (AIS) by impairing androgen-dependent male sex differentiation to various degree. Here we describe a partial AIS patient with confliction with the assigned female sex. Although the patient was noticed to have ambiguous genitalia at birth, the patient was reared as a female with no medical intervention. At the age of 31 years, the patient visited us because the patient was dissatisfied with the assigned female sex. The patient was treated with systemic testosterone and topical dihydrotestosterone, but the external genitalia responded only minimally to the treatment. The genetic analysis revealed a novel missense K580R mutation in the P-box of the DNA-binding domain of androgen receptor, which was the first missense mutation shared by AIS and prostate cancer. Although the best predictor of the adult gender identity is documented to be the initial gender assignment in patients with partial AIS as well as those with complete AIS, deciding gender assignment for infants with partial AIS is still challenging.

  15. Androgen receptor regulation of the seladin-1/DHCR24 gene: altered expression in prostate cancer.

    PubMed

    Bonaccorsi, Lorella; Luciani, Paola; Nesi, Gabriella; Mannucci, Edoardo; Deledda, Cristiana; Dichiara, Francesca; Paglierani, Milena; Rosati, Fabiana; Masieri, Lorenzo; Serni, Sergio; Carini, Marco; Proietti-Pannunzi, Laura; Monti, Salvatore; Forti, Gianni; Danza, Giovanna; Serio, Mario; Peri, Alessandro

    2008-10-01

    Prostate cancer (CaP) represents a major leading cause of morbidity and mortality in the Western world. Elevated cholesterol levels, resulting from altered cholesterol metabolism, have been found in CaP cells. Seladin-1 (SELective Alzheimer Disease INdicator-1)/DHCR24 is a recently described gene involved in cholesterol biosynthesis. Here, we demonstrated the androgen regulation of seladin-1/DHCR24 expression, due to the presence of androgen responsive element sequences in its promoter region. In metastatic androgen receptor-negative CaP cells seladin-1/DHCR24 expression and cholesterol amount were reduced compared to androgen receptor-positive cells. In tumor samples from 61 patients who underwent radical prostatectomy the expression of seladin-1/DHCR24 was significantly higher with respect to normal tissues. In addition, in cancer tissues mRNA levels were positively related to T stage. In tumor specimens from 23 patients who received androgen ablation treatment for 3 months before surgery seladin-1/DHCR24 expression was significantly lower with respect to patients treated by surgery only. In conclusion, our study demonstrated for the first time the androgen regulation of the seladin-1/DHCR24 gene and the presence of a higher level of expression in CaP tissues, compared to the normal prostate. These findings, together with the results previously obtained in metastatic disease, suggest an involvement of this gene in CaP.

  16. Sigma1 Targeting to Suppress Aberrant Androgen Receptor Signaling in Prostate Cancer.

    PubMed

    Thomas, Jeffrey D; Longen, Charles G; Oyer, Halley M; Chen, Nan; Maher, Christina M; Salvino, Joseph M; Kania, Blase; Anderson, Kelsey N; Ostrander, William F; Knudsen, Karen E; Kim, Felix J

    2017-02-24

    Suppression of androgen receptor (AR) activity in prostate cancer by androgen depletion or direct AR antagonist treatment, although initially effective, leads to incurable castration resistant prostate cancer (CRPC) via compensatory mechanisms including resurgence of AR and AR splice variant (ARV) signaling. Emerging evidence suggests that Sigma1 (also known as sigma-1 receptor) is a unique chaperone or scaffolding protein that contributes to cellular protein homeostasis. We reported previously that some Sigma1-selective small molecules can be used to pharmacologically modulate protein homeostasis pathways. We hypothesized that these Sigma1 mediated responses could be exploited to suppress AR protein levels and activity. Here we demonstrate that treatment with a small molecule Sigma1 inhibitor prevented 5α- dihydrotestosterone (DHT)-mediated nuclear translocation of AR and induced proteasomal degradation of AR and ARV, suppressing the transcriptional activity and protein levels of both full-length and splice-variant AR. Consistent with these data, RNAi knockdown of Sigma1 resulted in decreased AR levels and transcriptional activity. Furthermore, Sigma1 physically associated with ARV7 and ARv567es as well as full-length AR. Treatment of mice xenografted with ARV-driven CPRC tumors with a drug-like small molecule Sigma1 inhibitor significantly inhibited tumor growth associated with elimination of AR and ARV7 in responsive tumors. Together, our data show that Sigma1 modulators can be used to suppress AR/ARV-driven prostate cancer cells via regulation of pharmacologically responsive Sigma1-AR/ARV interactions both in vitro and in vivo.

  17. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    SciTech Connect

    Adegbola, Onikepe; Pasternack, Gary R. . E-mail: gpastern@jhmi.edu

    2005-08-26

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing.

  18. A novel nonsense mutation in androgen receptor confers resistance to CYP17 inhibitor treatment in prostate cancer

    PubMed Central

    Han, Dong; Gao, Shuai; Valencia, Kevin; Owiredu, Jude; Han, Wanting; de Waal, Eric; Macoska, Jill A; Cai, Changmeng

    2017-01-01

    The standard treatment for prostate cancer (PCa) is androgen deprivation therapy (ADT) that blocks transcriptional activity of androgen receptor (AR). However, ADT invariably leads to the development of castration-resistant PCa (CRPC) with restored activity of AR. CRPC can be further treated with CYP17 inhibitors to block androgen synthesis pathways, but most patients still relapse after a year of such treatment. The mechanisms that drive this progression are not fully understood, but AR activity, at least in a subset of cancers, appears to be restored again. Importantly, AR mutations are more frequently detected in this type of cancer. By analyzing tumor biopsy mRNA from CRPC patients who had developed resistance to CYP17 inhibitor treatment, we have identified a novel nonsense mutation (Q784*) at the ligand binding domain (LBD) of AR, which produces a C-terminal truncated AR protein that lacks intact LBD. This AR-Q784* mutant is transcriptionally inactive, but it is constitutively expressed in the nucleus and can bind to DNA in the absence of androgen. Significantly, our results show that AR-Q784* can heterodimerize with, and enhance the transcriptional activity of, full-length AR. Moreover, expressing AR-Q784* in an AR positive PCa cell line enhances the chromatin binding of endogenous AR and the recruitment of p300 coactivator under the low androgen condition, leading to increased cell growth. This activity of AR-Q784* mimics the function of some AR splice variants, indicating that CYP17 inhibitor treatment in CRPC may select for LBD-truncated forms of AR to restore AR signaling. PMID:28036278

  19. Targeting Androgen Receptor Function by MicroRNA in Prostate Cancer

    DTIC Science & Technology

    2007-07-01

    MicroRNA in Prostate Cancer PRINCIPAL INVESTIGATOR: Girish C. Shukla, Ph.D. CONTRACTING ORGANIZATION: Cleveland Clinic Foundation...Androgen Receptor Function by MicroRNA in Prostate Cancer 5b. GRANT NUMBER W81XWH-06-1-0191 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...examine if androgen receptor (AR) translation is modulated by a naturally occurring hsa-mir- 183 microRNA ( miRNA ) and to validate that the 3’UTR of AR

  20. Targeting Androgen Receptor Function by MicroRNA in Prostate Cancer

    DTIC Science & Technology

    2009-07-01

    0191 TITLE: Targeting Androgen Receptor Function by MicroRNA in Prostate Cancer PRINCIPAL INVESTIGATOR: Girish C. Shukla, Ph.D...W81XWH-06-1-0191 Targeting androgen receptor function by miRNA in prostate cancer 5b. GRANT NUMBER PC050287 5c. PROGRAM ELEMENT NUMBER 6...translation is modulated by a naturally occurring hsa-mir- 183 microRNA ( miRNA ) and to validate that the 3’UTR of AR is a bona fide target of miRNA using

  1. MED1 mediates androgen receptor splice variant induced gene expression in the absence of ligand

    PubMed Central

    Liu, Gang; Sprenger, Cynthia; Wu, Pin-Jou; Sun, Shihua; Uo, Takuma; Haugk, Kathleen; Epilepsia, Kathryn Soriano; Plymate, Stephen

    2015-01-01

    The appearance of constitutively active androgen receptor splice variants (AR-Vs) has been proposed as one of the causes of castration-resistant prostate cancer (CRPC). However, the underlying mechanism of AR-Vs in CRPC transcriptional regulation has not been defined. A distinct transcriptome enriched with cell cycle genes, e.g. UBE2C, has been associated with AR-Vs, which indicates the possibility of an altered transcriptional mechanism when compared to full-length wild-type AR (ARfl). Importantly, a recent study reported the critical role of p-MED1 in enhancing UBE2C expression through a locus looping pattern, which only occurs in CRPC but not in androgen-dependent prostate cancer (ADPC). To investigate the potential correlation between AR-V and MED1, in the present study we performed protein co-immunoprecipitation, chromatin immunoprecipitation, and cell proliferation assays and found that MED1 is necessary for ARv567es induced UBE2C up-regulation and subsequent prostate cancer cell growth. Furthermore, p-MED1 is bound to ARv567es independent of full-length AR; p-MED1 has higher recruitment to UBE2C promoter and enhancer regions in the presence of ARv567es. Our data indicate that p-MED1 serves as a key mediator in ARv567es induced gene expression and suggests a mechanism by which AR-Vs promote the development and progression of CRPC. PMID:25481872

  2. Critical role of androgen receptor level in prostate cancer cell resistance to new generation antiandrogen enzalutamide

    PubMed Central

    Hoefer, Julia; Akbor, Mohammady; Handle, Florian; Ofer, Philipp; Puhr, Martin; Parson, Walther; Culig, Zoran; Klocker, Helmut; Heidegger, Isabel

    2016-01-01

    Enzalutamide is an androgen receptor (AR) inhibitor approved for therapy of metastatic castration resistant prostate cancer. However, clinical application revealed that 30 to 40% of patients acquire resistance after a short period of treatment. Currently, the molecular mechanisms underlying such resistances are not completely understood, partly due to a lack of model systems. In the present study we established three different cellular models of enzalutamide resistance including a cell line with wild type AR (LAPC4), DuCaP cells which overexpress wild-type AR, as well as a cell which has been adapted to long term androgen ablation (LNCaP Abl) and harbors the AR T878A mutation. After 10 months of cultivation, sustained growth in the presence of enzalutamide was achieved. When compared to controls, resistant cells exhibit significantly decreased sensitivity to enzalutamide as measured with 3[H]thymidine incorporation and WST assay. Moreover, these cell models exhibit partly re-activated AR signaling despite presence of enzalutamide. In addition, we show that enzalutamide resistant cells are insensitive to bicalutamide but retain considerable sensitivity to abiraterone. Mechanistically, enzalutamide resistance was accompanied by increased AR and AR-V7 mRNA and protein expression as well as AR gene amplification, while no additional AR mutations have been identified. PMID:27486973

  3. Critical role of androgen receptor level in prostate cancer cell resistance to new generation antiandrogen enzalutamide.

    PubMed

    Hoefer, Julia; Akbor, Mohammady; Handle, Florian; Ofer, Philipp; Puhr, Martin; Parson, Walther; Culig, Zoran; Klocker, Helmut; Heidegger, Isabel

    2016-09-13

    Enzalutamide is an androgen receptor (AR) inhibitor approved for therapy of metastatic castration resistant prostate cancer. However, clinical application revealed that 30 to 40% of patients acquire resistance after a short period of treatment. Currently, the molecular mechanisms underlying such resistances are not completely understood, partly due to a lack of model systems. In the present study we established three different cellular models of enzalutamide resistance including a cell line with wild type AR (LAPC4), DuCaP cells which overexpress wild-type AR, as well as a cell which has been adapted to long term androgen ablation (LNCaP Abl) and harbors the AR T878A mutation. After 10 months of cultivation, sustained growth in the presence of enzalutamide was achieved. When compared to controls, resistant cells exhibit significantly decreased sensitivity to enzalutamide as measured with 3[H]thymidine incorporation and WST assay. Moreover, these cell models exhibit partly re-activated AR signaling despite presence of enzalutamide. In addition, we show that enzalutamide resistant cells are insensitive to bicalutamide but retain considerable sensitivity to abiraterone. Mechanistically, enzalutamide resistance was accompanied by increased AR and AR-V7 mRNA and protein expression as well as AR gene amplification, while no additional AR mutations have been identified.

  4. Androgen receptor gene polymorphisms lean mass and performance in young men.

    PubMed

    Guadalupe-Grau, Amelia; Rodríguez-González, F Germán; Dorado, Cecilia; Olmedillas, Hugo; Fuentes, Teresa; Pérez-Gómez, Jorge; Delgado-Guerra, Safira; Vicente-Rodríguez, Germán; Ara, Ignacio; Guerra, Borja; Arteaga-Ortiz, Rafael; Calbet, José A L; Díaz-Chico, B Nicolás

    2011-02-01

    The exon-1 of the androgen receptor (AR) gene contains two repeat length polymorphisms which modify either the amount of AR protein inside the cell (GGN(n), polyglycine) or its transcriptional activity (CAG(n), polyglutamine). Shorter CAG and/or GGN repeats provide stronger androgen signalling and vice versa. To test the hypothesis that CAG and GGN repeat AR polymorphisms affect muscle mass and various variables of muscular strength phenotype traits, the length of CAG and GGN repeats was determined by PCR and fragment analysis and confirmed by DNA sequencing of selected samples in 282 men (28.6 ± 7.6 years). Individuals were grouped as CAG short (CAG(S)) if harbouring repeat lengths of ≤ 21 and CAG long (CAG(L)) if CAG >21. GGN was considered short (GGN(S)) or long (GGN(L)) if GGN ≤ 23 or >23, respectively. No significant differences in lean body mass or fitness were observed between the CAG(S) and CAG(L) groups, or between GGN(S) and GGN(L) groups, but a trend for a correlation was found for the GGN repeat and lean mass of the extremities (r=-0.11, p=0.06). In summary, the lengths of CAG and GGN repeat of the AR gene do not appear to influence lean mass or fitness in young men.

  5. Immunohistochemical localization of androgen and progesterone receptors in the uterus of the camel (Camelus dromedarius).

    PubMed

    Emam, Mahmoud Abdelghaffar

    2014-10-01

    Ten adult, cyclic female camels (Camelus dromedarius) were used to describe the distribution of androgen (AR) and progesterone (PR) receptors in the uterus using immunohistochemistry. Both AR and PR were distributed throughout the different compartments of the uterus with nuclear staining for AR and PR seen in the cells of epithelia (luminal and glandular), stroma and myometrial smooth muscles. AR immunostaining was not uniform in distribution and intensity; the surface epithelium and the glandular epithelium in the adluminal region of the endometrium showed lower AR immunoreactivity than other compartments of the uterus. PR immunostaining showed uniformity in both distribution and intensity strong PR immunostaining intensity in almost all cells of the different uterine compartments. The intensity and distribution of PR immunostaining in epithelia of lumen and glands in the adluminal regions of endometrium was higher (P<0.05) than that of AR. In conclusion, immunohistochemical localization of AR and PR in the uterus of the cyclic dromedary camel indicates the important roles of androgen and progesterone in controlling the uterine activity during the follicular phase.

  6. Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements

    PubMed Central

    Dhiman, Vineet K.; Attwood, Kristopher; Campbell, Moray J.; Smiraglia, Dominic J.

    2015-01-01

    DNA methylation is an epigenetic modification that contributes to stable gene silencing by interfering with the ability of transcriptional regulators to bind to DNA. Recent findings have revealed that hormone stimulation of certain nuclear receptors induces rapid, dynamic changes in DNA methylation patterns alongside transcriptional responses at a subset of target loci, over time. However, the ability of androgen receptor (AR) to dynamically regulate gene transcription is relatively under-studied and its role in the regulation of DNA methylation patterns remains to be elucidated. Here we demonstrate in normal prostate cells that hormone stimulated AR activity results in dynamic changes in the transcription rate and DNA methylation patterns at the AR target genes, TIPARP and SGK1. Time-resolved chromatin immunoprecipitation experiments on the SGK1 locus reveals dynamic recruitment of AR and RNA Polymerase II, as well as the recruitment of proteins involved in the DNA demethylation process, TET1 and TDG. Furthermore, the presence of DNA methylation at dynamic regions inhibits protein binding and transcriptional activity of SGK1. These findings establish AR activity as a contributing factor to the dynamic regulation of DNA methylation patterns at target genes in prostate biology and infer further complexity involved in nuclear receptor mediation of transcriptional regulation. PMID:26646795

  7. Androgen receptor status is a prognostic marker in non-basal triple negative breast cancers and determines novel therapeutic options.

    PubMed

    Gasparini, Pierluigi; Fassan, Matteo; Cascione, Luciano; Guler, Gulnur; Balci, Serdar; Irkkan, Cigdem; Paisie, Carolyn; Lovat, Francesca; Morrison, Carl; Zhang, Jianying; Scarpa, Aldo; Croce, Carlo M; Shapiro, Charles L; Huebner, Kay

    2014-01-01

    Triple negative breast cancers are a heterogeneous group of tumors characterized by poor patient survival and lack of targeted therapeutics. Androgen receptor has been associated with triple negative breast cancer pathogenesis, but its role in the different subtypes has not been clearly defined. We examined androgen receptor protein expression by immunohistochemical analysis in 678 breast cancers, including 396 triple negative cancers. Fifty matched lymph node metastases were also examined. Association of expression status with clinical (race, survival) and pathological (basal, non-basal subtype, stage, grade) features was also evaluated. In 160 triple negative breast cancers, mRNA microarray expression profiling was performed, and differences according to androgen receptor status were analyzed. In triple negative cancers the percentage of androgen receptor positive cases was lower (24.8% vs 81.6% of non-triple negative cases), especially in African American women (16.7% vs 25.5% of cancers of white women). No significant difference in androgen receptor expression was observed in primary tumors vs matched metastatic lesions. Positive androgen receptor immunoreactivity was inversely correlated with tumor grade (p<0.01) and associated with better overall patient survival (p = 0.032) in the non-basal triple negative cancer group. In the microarray study, expression of three genes (HER4, TNFSF10, CDK6) showed significant deregulation in association with androgen receptor status; eg CDK6, a novel therapeutic target in triple negative cancers, showed significantly higher expression level in androgen receptor negative cases (p<0.01). These findings confirm the prognostic impact of androgen receptor expression in non-basal triple negative breast cancers, and suggest targeting of new androgen receptor-related molecular pathways in patients with these cancers.

  8. Differential expression of androgen, estrogen, and progesterone receptors in benign prostatic hyperplasia

    PubMed Central

    Song, Lingmin; Shen, Wenhao; Zhang, Heng; Wang, Qiwu; Wang, Yongquan; Zhou, Zhansong

    2016-01-01

    This study aimed to identify the differential expression levels of androgen receptor (AR), estrogen receptors (ERα, ERβ), and progesterone receptor (PGR) between normal prostate and benign prostatic hyperplasia (BPH). The combination of immunohistochemistry, quantitative real-time reverse transcription polymerase chain reaction, and Western blotting assay was used to identify the distribution and differential expression of these receptors at the immunoactive biomarker, transcriptional, and protein levels between 5 normal human prostate tissues and 40 BPH tissues. The results were then validated in a rat model of BPH induced by testosterone propionate and estradiol benzoate. In both human and rat prostate tissues, AR was localized mainly to epithelial and stromal cell nuclei; ERα was distributed mainly to stromal cells, but not exclusively; ERβ was interspersed in the basal layer of epithelium, but sporadically in epithelial and stromal cells; PGR was expressed abundantly in cytoplasm of epithelial and stromal cells. There were decreased expression of ERα and increased expression of PGR, but no difference in the expression of ERβ in the BPH compared to the normal prostate of both human and rat. Increased expression of AR in the BPH compared to the normal prostate of human was observed, however, the expression of AR in the rat prostate tissue was decreased. This study identified the activation of AR and PGR and repression of ERα in BPH, which indicate a promoting role of AR and PGR and an inhibitory role of ERα in the pathogenesis of BPH. PMID:27294569

  9. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  10. Enzalutamide: a new prostate cancer targeted therapy against the androgen receptor.

    PubMed

    Quintela, Martín Lázaro; Mateos, Luis León; Estévez, Sergio Vázquez; Calvo, Ovidio Fernández; Herranz, Urbano Anido; Afonso, Francisco Javier Afonso; Santomé, Lucía; Aparicio, Luis Antón

    2015-03-01

    Enzalutamide (MDV3100), an androgen receptor-signalling inhibitor, represents the most recent compound added to the therapeutic armamentarium for the treatment of metastatic castration-resistant prostate cancer (mCRPC) who progressed to docetaxel. The anti-tumour activity and safety of enzalutamide has been demonstrated in a phase III clinical trial, showing a benefit in overall survival, which was the primary endpoint. There are no head-to-head studies comparing the different treatment options in this subset of patients. In this article, most relevant data published in the literature have been reviewed, with special attention to the therapeutic alternatives currently available for postdocexatel mCRPC patients, emphasising the mechanisms of action of the different drugs, efficacy and quality of life-related aspects.

  11. Identification of a Novel Coregulator, SH3YL1, That Interacts With the Androgen Receptor N-Terminus

    PubMed Central

    Blessing, Alicia M.; Ganesan, Sathya; Rajapakshe, Kimal; Ying Sung, Ying; Reddy Bollu, Lakshmi; Shi, Yan; Cheung, Edwin; Coarfa, Cristian; Chang, Jeffrey T.; McDonnell, Donald P.

    2015-01-01

    Nuclear receptor (NR)-mediated transcriptional activity is a dynamic process that is regulated by the binding of ligands that induce distinct conformational changes in the NR. These structural alterations lead to the differential recruitment of coregulators (coactivators or corepressors) that control the expression of NR-regulated genes. Here, we show that a stretch of proline residues located within the N-terminus of androgen receptor (AR) is a bona fide coregulator binding surface, the disruption of which reduces the androgen-dependent proliferation and migration of prostate cancer (PCa) cells. Using T7 phage display, we identified a novel AR-interacting protein, Src homology 3 (SH3)-domain containing, Ysc84-like 1 (SH3YL1), whose interaction with the receptor is dependent upon this polyproline domain. As with mutations within the AR polyproline domain, knockdown of SH3YL1 attenuated androgen-mediated cell growth and migration. RNA expression analysis revealed that SH3YL1 was required for the induction of a subset of AR-modulated genes. Notable was the observation that ubinuclein 1 (UBN1), a key member of a histone H3.3 chaperone complex, was a transcriptional target of the AR/SH3YL1 complex, correlated with aggressive PCa in patients, and was necessary for the maximal androgen-mediated proliferation and migration of PCa cells. Collectively, these data highlight the importance of an amino-terminal activation domain, its associated coregulator, and downstream transcriptional targets in regulating cellular processes of pathological importance in PCa. PMID:26305679

  12. Small-Molecule-Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging.

    PubMed

    Gustafson, Jeffrey L; Neklesa, Taavi K; Cox, Carly S; Roth, Anke G; Buckley, Dennis L; Tae, Hyun Seop; Sundberg, Thomas B; Stagg, D Blake; Hines, John; McDonnell, Donald P; Norris, John D; Crews, Craig M

    2015-08-10

    Androgen receptor (AR)-dependent transcription is a major driver of prostate tumor cell proliferation. Consequently, it is the target of several antitumor chemotherapeutic agents, including the AR antagonist MDV3100/enzalutamide. Recent studies have shown that a single AR mutation (F876L) converts MDV3100 action from an antagonist to an agonist. Here we describe the generation of a novel class of selective androgen receptor degraders (SARDs) to address this resistance mechanism. Molecules containing hydrophobic degrons linked to small-molecule AR ligands induce AR degradation, reduce expression of AR target genes and inhibit proliferation in androgen-dependent prostate cancer cell lines. These results suggest that selective AR degradation may be an effective therapeutic prostate tumor strategy in the context of AR mutations that confer resistance to second-generation AR antagonists.

  13. A splicing variant of the androgen receptor detected in a metastatic prostate cancer exhibits exclusively cytoplasmic actions.

    PubMed

    Jagla, Monika; Fève, Marie; Kessler, Pascal; Lapouge, Gaëlle; Erdmann, Eva; Serra, Sebastian; Bergerat, Jean-Pierre; Céraline, Jocelyn

    2007-09-01

    The androgen receptor (AR) is a ligand-activated transcription factor that displays genomic actions characterized by binding to androgen-response elements in the promoter of target genes as well as nongenomic actions that do not require nuclear translocation and DNA binding. In this study, we report exclusive cytoplasmic actions of a splicing variant of the AR detected in a metastatic prostate cancer. This AR variant, named AR23, results from an aberrant splicing of intron 2, wherein the last 69 nucleotides of the intronic sequence are retained, leading to the insertion of 23 amino acids between the two zinc fingers in the DNA-binding domain. We show that the nuclear entry of AR23 upon dihydrotestosterone (DHT) stimulation is impaired. Alternatively, DHT-activated AR23 forms cytoplasmic and perinuclear aggregates that partially colocalize with the endoplasmic reticulum and are devoid of genomic actions. However, in LNCaP cells, this cytoplasmic DHT-activated AR23 remains partially active as evidenced by the activation of transcription from androgen-responsive promoters, the stimulation of NF-kappaB transcriptional activity and by the decrease of AP-1 transcriptional activity. Our data reveal novel cytoplasmic actions for this splicing AR variant, suggesting a contribution in prostate cancer progression.

  14. Development and Characterization of Uterine Glandular Epithelium Specific Androgen Receptor Knockout Mouse Model.

    PubMed

    Choi, Jaesung Peter; Zheng, Yu; Skulte, Katherine A; Handelsman, David J; Simanainen, Ulla

    2015-11-01

    While estrogen action is the major driver of uterine development, androgens acting via the androgen receptor (AR) may also promote uterine growth as suggested by uterine phenotypes in global AR knockout (ARKO) female mice. Because AR is expressed in uterine endometrial glands, we generated (Cre/loxP) uterine gland epithelium-specific ARKO (ugeARKO) to determine the role of endometrial gland-specific androgen actions. However, AR in uterine gland epithelium may not be required for normal uterine development and function because ugeARKO females had normal uterine development and fertility. To determine if exogenous androgens acting via AR can fully support uterine growth in the absence of estrogens, the ARKO and ugeARKO females were ovariectomized and treated with supraphysiological doses of testosterone or dihydrotestosterone (nonaromatizable androgen). Both dihydrotestosterone and testosterone supported full uterine regrowth in wild-type females while ARKO females had no regrowth (comparable to ovariectomized only). These findings suggest that androgens acting via AR can promote full uterine regrowth in the absence of estrogens. The ugeARKO had 50% regrowth when compared to intact uterine glands, and histomorphologically, both the endometrial and myometrial areas were significantly (P < 0.05) reduced, suggesting glandular epithelial AR located in the endometrium may indirectly modify myometrial development. Additionally, to confirm Cre function in endometrial glands, we generated uge-specific PTEN knockout mouse model. The ugePTEN knockout females developed severe endometrial hyperplasia and therefore present a novel model for future research.

  15. Estrogenic and progestational activity of 7alpha-methyl-19-nortestosterone, a synthetic androgen.

    PubMed

    Beri, R; Kumar, N; Savage, T; Benalcazar, L; Sundaram, K

    1998-11-01

    Synthetic androgens exhibit estrogenic/antiestrogenic and progestational activities in addition to their androgenic effects. To investigate the pharmacological action of the synthetic androgen, 7alpha-methyl-19-nortestosterone (MENT), we examined its action in female rodents. The criteria employed for estrogenic/antiestrogenic effects were, uterine weight increase, vaginal cornification, induction of progesterone receptors (PR) synthesis and stimulation of peroxidase activity in the uteri of ovariectomized rats and mice. MENT increased uterine weight in a dose dependent manner, but did not cause vaginal cornification or stimulate PR synthesis in the uterus. The uterotropic activity of MENT was 200-fold lower than that of estradiol. Estrogen receptor (ER) bound [3H]-E2 was displaced by E2 and MENT with ED50 values of 70 pg and 250 ng, respectively, a 3,500 fold difference in their binding affinity. The low binding of MENT to ER, in contrast to its relatively high uterotropic action, suggested that receptors other than ER may be involved in its action on the uterus. The progestational activity of MENT in immature rabbits using the McPhail index assay was comparable to that of progesterone. Binding affinities of MENT and progesterone to PR were also comparable. However, the action of MENT on the uterus does not seem to be a progestational effect since mifepristone, an antiprogestin, had no effect on MENT-induced uterine growth. Specific androgen receptors (AR) in uterine cytosol were demonstrated. The involvement of AR in MENT action was confirmed by using an antiandrogen (flutamide) and an antiestrogen (ICI-182) in ovariectomized mice. Although MENT did not block the uterotropic effect of E2, it inhibited the E2-induced cornification of vaginal epithelium, induction of uterine PR synthesis and increase in uterine peroxidase activity in ovariectomized rats. The antiestrogenic effect of MENT was also blocked by flutamide. These results suggest that the uterotropic and

  16. Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats.

    PubMed

    delBarco-Trillo, Javier; Greene, Lydia K; Goncalves, Ines Braga; Fenkes, Miriam; Wisse, Jillian H; Drewe, Julian A; Manser, Marta B; Clutton-Brock, Tim; Drea, Christine M

    2016-02-01

    In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a 'dominant' role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems.

  17. Antagonizing effects of membrane-acting androgens on the eicosanoid receptor OXER1 in prostate cancer

    PubMed Central

    Kalyvianaki, Konstantina; Gebhart, Veronika; Peroulis, Nikolaos; Panagiotopoulou, Christina; Kiagiadaki, Fotini; Pediaditakis, Iosif; Aivaliotis, Michalis; Moustou, Eleni; Tzardi, Maria; Notas, George; Castanas, Elias; Kampa, Marilena

    2017-01-01

    Accumulating evidence during the last decades revealed that androgen can exert membrane initiated actions that involve signaling via specific kinases and the modulation of significant cellular processes, important for prostate cancer cell growth and metastasis. Results of the present work clearly show that androgens can specifically act at the membrane level via the GPCR oxoeicosanoid receptor 1 (OXER1) in prostate cancer cells. In fact, OXER1 expression parallels that of membrane androgen binding in prostate cancer cell lines and tumor specimens, while in silico docking simulation of OXER1 showed that testosterone could bind to OXER1 within the same grove as 5-OxoETE, the natural ligand of OXER1. Interestingly, testosterone antagonizes the effects of 5-oxoETE on specific signaling pathways and rapid effects such as actin cytoskeleton reorganization that ultimately can modulate cell migration and metastasis. These findings verify that membrane-acting androgens exert specific effects through an antagonistic interaction with OXER1. Additionally, this interaction between androgen and OXER1, which is an arachidonic acid metabolite receptor expressed in prostate cancer, provides a novel link between steroid and lipid actions and renders OXER1 as new player in the disease. These findings should be taken into account in the design of novel therapeutic approaches in prostate cancer. PMID:28290516

  18. Parallel evolution between aromatase and androgen receptor in the animal kingdom.

    PubMed

    Tiwary, Basant; Tiwary, Besant K; Li, Wen-Hsiung

    2009-01-01

    There are now many known cases of orthologous or unrelated proteins in different species that have undergone parallel evolution to satisfy a similar function. However, there are no reported cases of parallel evolution for proteins that bind a common ligand but have different functions. We focused on two proteins that have different functions in steroid hormone biosynthesis and action but bind a common ligand, androgen. The first protein, androgen receptor (AR), is a nuclear hormone receptor and the second one, aromatase (cytochrome P450 19 [CYP19]), converts androgen to estrogen. We hypothesized that binding of the androgen ligand has exerted common selective pressure on both AR and CYP19, resulting in a signature of parallel evolution between these two proteins, though they perform different functions. Consistent with this hypothesis, we found that rates of amino acid change in AR and CYP19 are strongly correlated across the metazoan phylogeny, whereas no significant correlation was found in the control set of proteins. Moreover, we inferred that genomic toolkits required for steroid biosynthesis and action were present in a basal metazoan, cnidarians. The close similarities between vertebrate and sea anemone AR and CYP19 suggest a very ancient origin of their endocrine functions at the base of metazoan evolution. Finally, we found evidence supporting the hypothesis that the androgen-to-estrogen ratio determines the gonadal sex in all metazoans.

  19. Heterogeneous Nuclear Ribonucleoprotein K is a Novel Regulator of Androgen Receptor Translation

    PubMed Central

    Mukhopadhyay, Nishit K; Kim, Jayoung; Cinar, Bekir; Ramachandran, Aruna; Hager, Martin H; Di Vizio, Dolores; Adam, Rosalyn M; Rubin, Mark A; Raychaudhuri, Pradip; De Benedetti, Arrigo; Freeman, Michael R

    2009-01-01

    Regulation of androgen receptor (AR) expression in prostate cancer (PCa) is still poorly understood. Activation of the epidermal growth factor receptor (EGFR) in PCa cells was previously shown to lower AR expression by a rapamycin-sensitive, post-transcriptional mechanism involving the AR mRNA 5′-untranslated region (5′-UTR). In a search for an intermediate within the EGFR/PI3-kinase/Akt/mTOR pathway that regulates AR at this site, we identified the nucleic acid binding protein, heterogeneous nuclear ribonucleoprotein K (hnRNP-K), by mass spectrometric analysis of Akt immune complexes from lipid raft-enriched subcellular fractions. We show here that hnRNP-K is a novel inhibitor of AR mRNA translation that regulates androgen-responsive gene expression and PCa cell proliferation. A functional hnRNP-K binding site involved in down-regulating AR protein levels was identified in the AR mRNA 5′-UTR. Further analysis revealed that hnRNP-K is also able to inhibit AR translation in the absence of the 5′-UTR, consistent with the presence of additional predicted hnRNP-K binding sites within the AR open reading frame and in the 3′-UTR. Immunohistochemical analysis of a human PCa tissue microarray revealed an inverse correlation between hnRNP-K expression and AR protein levels in organ-confined PCa tumors and a substantial decline in cytoplasmic hnRNP-K in metastases, despite an overall increase in hnRNP-K levels in metastatic tumors. These data suggest that translational inhibition of AR by hnRNP-K may occur in organ-confined tumors but possibly at a reduced level in metastases. HnRNP-K is the first protein identified that directly interacts with and regulates the AR translational apparatus. PMID:19258514

  20. Tissue Selective Androgen Receptor Modulators (SARMs) Increase Pelvic Floor Muscle Mass in Ovariectomized Mice.

    PubMed

    Ponnusamy, Suriyan; Sullivan, Ryan D; Thiyagarajan, Thirumagal; Tillmann, Heather; Getzenberg, Robert H; Narayanan, Ramesh

    2017-03-01

    Stress urinary incontinence (SUI), a prevalent condition, is represented by an involuntary leakage of urine that results, at least in part, from weakened or damaged pelvic floor muscles and is triggered by physical stress. Current treatment options are limited with no oral therapies available. The pelvic floor is rich in androgen receptor and molecules with anabolic activity including selective androgen receptor modulators (SARMs) may serve as therapeutic options for individuals with SUI. In this study, two SARMs (GTx-024 and GTx-027) were evaluated in a post-menopausal animal model in order to determine their effect on pelvic floor muscles. Female C57BL/6 mice were ovariectomized and their pelvic muscles allowed to regress. The animals were then treated with vehicle or doses of GTx-024 or GTx-027. Animal total body weight, lean body mass, and pelvic floor muscle weights were measured along with the expression of genes associated with muscle catabolism. Treatment with the SARMs resulted in a restoration of the pelvic muscles to the sham-operated weight. Coordinately, the induction of genes associated with muscle catabolism was inhibited. Although a trend was observed towards an increase in total lean body mass in the SARM-treated groups, no significant differences were detected. Treatment of an ovariectomized mouse model with SARMs resulted in an increase in pelvic floor muscles, which may translate to an improvement of symptoms associated with SUI and serves as the basis for evaluating their clinical use. J. Cell. Biochem. 118: 640-646, 2017. © 2016 Wiley Periodicals, Inc.

  1. Species comparisons in molecular and functional attributes of the androgen and estrogen receptor

    EPA Science Inventory

    While endocrine disrupting compounds (EDCs) have the potential to act via several mechanisms of action, one of the most widely studied is the ability of environmental chemicals to interact directly with either the estrogen (ER) or androgen receptor (AR). In vitro screening assay...

  2. Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    Transdisciplinary Research in Epigenetics and Cancer Journal Clubs and Transdisciplinary Science Meetings, biweekly and monthly 3. To gain expertise...Target Genes in Prostate and Prostate Cancer PRINCIPAL INVESTIGATOR: Laura Lamb CONTRACTING ORGANIZATION: Washington University...TITLE AND SUBTITLE Identification of Androgen Receptor and Beta-Catenin Target Genes in Prostate and Prostate Cancer 5a. CONTRACT NUMBER Genes in

  3. 68Ga-PSMA-11 PET Imaging of Response to Androgen Receptor Inhibition: First Human Experience.

    PubMed

    Hope, Thomas A; Truillet, Charles; Ehman, Eric C; Afshar-Oromieh, Ali; Aggarwal, Rahul; Ryan, Charles J; Carroll, Peter R; Small, Eric J; Evans, Michael J

    2017-01-01

    The purpose of this work was to evaluate the effect of androgen receptor (AR) inhibition on prostate-specific membrane antigen (PSMA) uptake imaged using (68)Ga-PSMA-11 PET in a mouse xenograft model and in a patient with castration-sensitive prostate cancer.

  4. A Time-course Study with the Androgen Receptor Antagonist Flutamide in Fish

    EPA Science Inventory

    Flutamide, a drug registered to treat some types of prostate cancer in humans, has been used for many years as a model androgen receptor (AR) antagonist in studies aimed at characterizing disruption of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis. Various studies hav...

  5. Cross species sensitivity to a novel androgen receptor agonist of potential environmental concern, spironolactone

    EPA Science Inventory

    Spironolactone (SPL) is a pharmaceutical that is used in humans as an androgen receptor (AR) antagonist to treat conditions like hirsutism, various dermatologic afflictions, and female pattern hair loss, in addition to its common usage as a diuretic to treat hypertension. Althoug...

  6. Androgen and estrogen receptors are present in primary cultures of human synovial macrophages.

    PubMed

    Cutolo, M; Accardo, S; Villaggio, B; Barone, A; Sulli, A; Coviello, D A; Carabbio, C; Felli, L; Miceli, D; Farruggio, R; Carruba, G; Castagnetta, L

    1996-02-01

    Macrophages, as antigen-processing and -presenting cells to T lymphocytes, play a key role in the immune system and are suspected to be target cells of the sex hormone-related dimorphism in the immune response peculiar to rheumatoid arthritis (RA) pathology. In the present study, the use of specific monoclonal antibodies revealed immunostaining for androgen and estrogen receptors in primary cultures of macrophages obtained from synovial tissues of patients affected by RA and controls without RA disease. Soluble and nuclear type I (high affinity, low capacity) and type II (lower affinity, greater capacity) sites of androgen or estrogen binding were detected in primary cultures of RA macrophages using radioligand binding assay. Higher levels of type I and type II estrogen receptor compared to those of androgen receptor were found, particularly in the soluble fraction; however, contrary to what was observed in whole synovial tissues, higher steroid receptor concentrations were found in the soluble than in the nuclear fraction of RA synovial macrophages. Binding affinities and receptor contents of cultured synovial macrophages were comparable to those previously reported in other well established sex hormone-responsive cells and tissues. Further, specific messenger ribonucleic acids for sex hormone receptors, encoding for a sequence of the DNA-binding domain of the receptor proteins were revealed by RT-PCR.

  7. DEVELOPMENT OF TWO ANDROGEN RECEPTOR ASSAYS USING ADENOVIRAL TRANSDUCTION OF MMTV-LUC REPORTER AND/OR HAR FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Abstract
    The discovery of xenobiotics which interfere with androgen activity has highlighted the need to assess chemicals for their ability to modulate dihydrotestosterone (DHT)-receptor binding. Previous test systems have used cells transfected with plasmid containing a rep...

  8. 20(S)-Protopanaxadiol-aglycone Downregulation of the Full-length and Splice Variants of Androgen Receptor

    PubMed Central

    Cao, Bo; Liu, Xichun; Li, Jing; Liu, Shuang; Qi, Yanfeng; Xiong, Zhenggang; Zhang, Allen; Wiese, Thomas; Fu, Xueqi; Gu, Jingkai; Rennie, Paul S.; Sartor, Oliver; Lee, Benjamin R.; Ip, Clement; Zhao, Lijuan; Zhang, Haitao; Dong, Yan

    2012-01-01

    As a public health problem, prostate cancer engenders huge economic and life-quality burden. Developing effective chemopreventive regimens to alleviate the burden remains a major challenge. Androgen signaling is vital to the development and progression of prostate cancer. Targeting androgen signaling via blocking the production of the potent ligand dihydrotestosterone has been shown to decrease prostate cancer incidence. However, the potential of increasing the incidence of high-grade prostate cancers has been a concern. Mechanisms of disease progression after the intervention may include increased expression of androgen receptor (AR) in prostate tissue and expression of the constitutively-active AR splice variants (AR-Vs) lacking the ligand-binding domain. Thus, novel agents targeting the receptor, preferentially both the full-length and AR-Vs, are urgently needed. In the present study, we show that ginsenoside 20(S)-protopanaxadiol-aglycone (PPD) effectively downregulates the expression and activity of both the full-length AR and AR-Vs. The effects of PPD on AR and AR-Vs are manifested by an immediate drop in proteins followed by a reduction in transcripts, attributed to PPD induction of proteasome-mediated degradation and inhibition of the transcription of the AR gene. We further show that although PPD inhibits the growth as well as AR expression and activity in LNCaP xenograft tumors, the morphology and AR expression in normal prostates are not affected. This study is the first to show that PPD suppresses androgen signaling through downregulating both the full-length AR and AR-Vs, and provides strong rationale for further developing PPD as a promising agent for the prevention and/or treatment of prostate cancer. PMID:22907191

  9. Elevated LIM kinase 1 in nonmetastatic prostate cancer reflects its role in facilitating androgen receptor nuclear translocation.

    PubMed

    Mardilovich, Katerina; Gabrielsen, Mads; McGarry, Lynn; Orange, Clare; Patel, Rachana; Shanks, Emma; Edwards, Joanne; Olson, Michael F

    2015-01-01

    Prostate cancer affects a large proportion of the male population, and is primarily driven by androgen receptor (AR) activity. First-line treatment typically consists of reducing AR signaling by hormone depletion, but resistance inevitably develops over time. One way to overcome this issue is to block AR function via alternative means, preferably by inhibiting protein targets that are more active in tumors than in normal tissue. By staining prostate cancer tumor sections, elevated LIM kinase 1 (LIMK1) expression and increased phosphorylation of its substrate Cofilin were found to be associated with poor outcome and reduced survival in patients with nonmetastatic prostate cancer. A LIMK-selective small molecule inhibitor (LIMKi) was used to determine whether targeted LIMK inhibition was a potential prostate cancer therapy. LIMKi reduced prostate cancer cell motility, as well as inhibiting proliferation and increasing apoptosis in androgen-dependent prostate cancer cells more effectively than in androgen-independent prostate cancer cells. LIMK inhibition blocked ligand-induced AR nuclear translocation, reduced AR protein stability and transcriptional activity, consistent with its effects on proliferation and survival acting via inhibition of AR activity. Furthermore, inhibition of LIMK activity increased αTubulin acetylation and decreased AR interactions with αTubulin, indicating that the role of LIMK in regulating microtubule dynamics contributes to AR function. These results indicate that LIMK inhibitors could be beneficial for the treatment of prostate cancer both by reducing nuclear AR translocation, leading to reduced proliferation and survival, and by inhibiting prostate cancer cell dissemination.

  10. Androgen receptor expression in male breast carcinoma: lack of clinicopathological association

    PubMed Central

    Pich, A; Margaria, E; Chiusa, L; Candelaresi, G; Canton, O Dal

    1999-01-01

    Androgen receptor (AR) expression was retrospectively analysed in 47 primary male breast carcinomas (MBCs) using a monoclonal antibody on formalin-fixed, paraffin-embedded tissues. AR immunopositivity was detected in 16 out of 47 (34%) cases. No association was found with patient age, tumour stage, progesterone receptor (PGR) or p53 protein expression. Well-differentiated MBCs tended to be AR positive more often than poorly differentiated ones (P= 0.08). A negative association was found between ARs and cell proliferative activity: MIB-1 scores were higher (25.4%) in AR-negative than in AR-positive cases (21.11%; P= 0.04). A strong positive association (P= 0.0001) was found between ARs and oestrogen receptors (ERs). In univariate analysis, ARs (as well as ERs and PGRs) were not correlated with overall survival; tumour histological grade (P= 0.02), size (P= 0.01), p53 expression (P= 0.0008) and MIB-1 scores (P= 0.0003) had strong prognostic value. In multivariate survival analysis, only p53 expression (P= 0.002) and histological grade (P= 0.02) retained independent prognostic significance. In conclusion, the lack of association between AR and most clinicopathological features and survival, together with the absence of prognostic value for ER/PGR status, suggest that MBCs are biologically different from female breast carcinomas and make it questionable to use antihormonal therapy for patients with MBC. © 1999 Cancer Research Campaign PMID:10070897

  11. Effects of Androgen and Estrogen Receptor Signaling Pathways on Bladder Cancer Initiation and Progression

    PubMed Central

    Godoy, Guilherme; Gakis, Georgios; Smith, Carolyn L.; Fahmy, Omar

    2016-01-01

    Epidemiologic studies have long demonstrated clear differences in incidence and progression of bladder cancer between genders suggesting that the mechanisms of development and progression in these tumors have a strong association with steroid hormonal pathways. Such observations led to preclinical studies investigating the role of androgen and estrogen receptors, as well as their cognate hormones in bladder cancer initiation and progression. Using various in vitro cell line assays and in vivo mouse models, studies have elucidated different mechanisms and signaling pathways through which these steroid receptors may participate in this disease. More recently, RNA expression data from multiple studies revealed a luminal subtype of bladder cancer that exhibited an estrogen receptor signaling pathway, making it a strong candidate for further consideration of targeted therapies in the future. Despite the promising preclinical data demonstrating potential roles for both antiandrogen and antiestrogen strategies targeting these pathways in different stages of bladder cancer, only two clinical trials are currently active and accruing patients for such clinical studies. Targeted therapies in bladder cancer are a large unmet need and have the potential to change treatment paradigms and improve oncological outcomes of patients with bladder cancer. PMID:27376135

  12. Regulation of uterine progesterone receptors by the nonsteroidal anti-androgen hydroxyflutamide

    SciTech Connect

    Chandrasekhar, Y.; Armstrong, D.T. )

    1991-07-01

    The authors have recently reported that the anti-androgen hydroxyflutamide causes delayed implantation and exhibits antideciduogenic activity in the rat. The present experiments were conducted to examine whether hydroxyflutamide binds to the uterine progesterone receptors and/or alters the progesterone binding sites in the uterus. Cytosol and nuclear fractions from decidualized rat uterus were incubated with (3H)-R5020 without or with increasing concentrations of radioinert R5020, RU486, dihydrotestosterone, or hydroxyflutamide. From the log-dose inhibition curves, the relative binding affinity of both hydroxyflutamide and dihydrotestosterone was less than 0.1% and 2%, compared with R5020 (100%) for displacing (3H)-R5020 bound to uterine cytosol and nuclear fractions, respectively. Injection of estradiol-17 beta (1 microgram/rat) to ovariectomized prepubertal rats induced a 1.85-fold increase in uterine weight by 24 h. Hydroxyflutamide at 2.5 or 5.0 mg did not significantly alter the estrogen-induced increase in uterine weight. Compared to vehicle alone, estrogen induced an approximately 5-fold increase in uterine cytosolic progesterone binding sites. Hydroxyflutamide at both 2.5- and 5.0-mg doses significantly attenuated the estrogen-induced elevation in uterine progesterone binding sites. These studies demonstrate that hydroxyflutamide does not bind with high affinity to progesterone receptors, but suppresses the estrogen-induced elevation in progesterone receptor levels in the uterus.

  13. MicroRNA Targets of Human Androgen Receptor

    DTIC Science & Technology

    2013-05-01

    A large number of genetic, epigenetic and environmental factors contribute to the risk of prostate cancer . Among them are androgens, dietary factors ...our understanding with respect to molecular mechanisms, signaling pathways and intrinsic factors which contribute to the development of prostate cancer ...ribonuclease which function to process precursor- microRNAs (pre- miRNAs ) to mature miRNA (Denli et al. 2004; Sohn et al. 2007; Mueller et al. 2010). miRNAs are

  14. URI Regulation of Androgen Receptor-Mediated Cell Growth

    DTIC Science & Technology

    2013-07-01

    2001). The development of androgen-independent prostate cancer. Nat Rev Cancer 1, 34-45. Li, B., Carey, M., and Workman , J.L. (2007). The role of...transcription in prostate cancer cells. Cancer Res 69, 3140-3147. Rowe, H.M., Jakobsson, J ., Mesnard, D., Rougemont, J ., Reynard, S., Aktas, T...Maillard, P.V., Layard-Liesching, H., Verp, S., Marquis, J ., et al. (2010). KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463

  15. Characterizing and Targeting Androgen Receptor Pathway-Independent Prostate Cancer

    DTIC Science & Technology

    2013-11-01

    single or multiple metastasis from the same patient. During the course of the study, we expanded this aim to include 196 prostate cancer metastasis...of figure the full human genome ordered by chromosome (1-X,Y). The Y-Axis (Rows) are individual patients with multiple tumors per patient. Note...specific demethylase 1 (LSD1) and H3K4me1,2 demethylation. AR similarly represses expression of multiple genes mediating androgen synthesis, DNA synthesis

  16. Oxandrolone blocks glucocorticoid signaling in an androgen receptor-dependent manner.

    PubMed

    Zhao, Jingbo; Bauman, William A; Huang, Ruojun; Caplan, Avrom J; Cardozo, Christopher

    2004-05-01

    The anabolic steroid oxandrolone is increasingly used to preserve or restore muscle mass in those with HIV infection or serious burns. These effects are mediated, in part, by the androgen receptor (AR). Anti-glucocorticoid effects have also been reported for some anabolic steroids, and the goal of our studies was to determine whether oxandrolone had a similar mechanism of action. Studies with in vitro translated glucocorticoid receptor (GR), however, showed no inhibition of cortisol binding by oxandrolone. Conversely, experiments in cell culture systems demonstrated significant antagonism of cortisol-induced transcriptional activation by oxandrolone in cells expressing both the AR and GR. Inhibition was not overcome by increased cortisol concentration, and no inhibition by oxandrolone was observed in cells expressing GR alone, confirming that non-competitive mechanisms were involved. AR-dependent repression of transcriptional activation by oxandrolone was also observed with the synthetic glucocorticoids dexamethasone and methylprednisolone. Furthermore, the AR antagonists 2-hydroxyflutamide and DDE also repressed GR transactivation in an AR-dependent manner. A mutant AR lacking a functional nuclear localization signal (AR(4RKM)) was active in oxandrolone-mediated repression of GR even though oxandrolone-bound AR(4RKM) failed to enter the nucleus and did not affect nuclear import of GR. These data indicate a novel action of oxandrolone to suppress glucocorticoid action via crosstalk between AR and GR.

  17. CLONING, EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR ALPHA FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    In vitro screening assays designed to identify hormone mimics or antagonists, including those recommended for use in the EPA's Tier 1 screening battery, typically use mammalian estrogen (ER) and androgen receptors (AR) such as rat or human. Although we know that the amino acid s...

  18. Androgen receptor blockade using flutamide skewed sex ratio of litters in mice

    PubMed Central

    Gharagozlou, Faramarz; Youssefi, Reza; Vojgani, Mehdi; Akbarinejad, Vahid; Rafiee, Ghazaleh

    2016-01-01

    Maternal testosterone has been indicated to affect sex ratio of offspring. The present study was conducted to elucidate the role of androgen receptor in this regard by blockade of androgen receptor using flutamide in female mice. Mice were randomly assigned to two experimental groups. Mice in the control (n = 20) and treatment (n = 20) groups received 8 IU equine chorionic gonadotropin (eCG) followed by human chorionic gonadotropin (hCG) injection (8 IU) 47 hr later. In addition, mice in the control and treatment groups received four injections of ethanol-saline vehicle and flutamide solution (2.50 mg), respectively, started from 1 hr before eCG injection until hCG injection at 12-hr intervals. Conception rate was not different between the treatment (18/20: 90.00%) and control (19/20: 95.00%) groups (p > 0.05). Litter size was higher in the treatment (8.22 ± 0.26) than control (7.21 ± 0.28) group (p < 0.05). Male sex ratio was lower in the flutamide-treated mice (67/148: 45.30%) as compared with the untreated ones (80/137: 58.40%; odds ratio = 1.69; p < 0.05). In conclusion, the results showed that androgen receptor blockade could skew sex ratio of offspring toward females implying that the effect of testosterone on sex ratio might be through binding to androgen receptor. In addition, the blockade of androgen receptor using flutamide appeared to enhance litter size. PMID:27482363

  19. Androgen receptors beyond prostate cancer: an old marker as a new target

    PubMed Central

    Kurzrock, Razelle

    2015-01-01

    Androgen receptors (ARs) play a critical role in the development of prostate cancer. Targeting ARs results in important salutary effects in this malignancy. Despite mounting evidence that ARs also participate in the pathogenesis and/or progression of diverse tumors, exploring the impact of hormonal manipulation of these receptors has not been widely pursued beyond prostate cancer. This review describes patterns of AR expression in a spectrum of cancers, and the potential to exploit this knowledge in the clinical therapeutic setting. PMID:25595907

  20. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    SciTech Connect

    Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.

    1988-09-01

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel and gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors.

  1. Expression of androgen receptor in breast cancer & its correlation with other steroid receptors & growth factors

    PubMed Central

    Mishra, Ashwani K.; Agrawal, Usha; Negi, Shivani; Bansal, Anju; Mohil, R.; Chintamani, Chintamani; Bhat