Science.gov

Sample records for active angiotensin ii

  1. Intracellular angiotensin II activates rat myometrium.

    PubMed

    Deliu, Elena; Tica, Andrei A; Motoc, Dana; Brailoiu, G Cristina; Brailoiu, Eugen

    2011-09-01

    Angiotensin II is a modulator of myometrial activity; both AT(1) and AT(2) receptors are expressed in myometrium. Since in other tissues angiotensin II has been reported to activate intracellular receptors, we assessed the effects of intracellular administration of angiotensin II via microinjection on myometrium, using calcium imaging. Intracellular injection of angiotensin II increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in myometrial cells in a dose-dependent manner. The effect was abolished by the AT(1) receptor antagonist losartan but not by the AT(2) receptor antagonist PD-123319. Disruption of the endo-lysosomal system, but not that of Golgi apparatus, prevented the angiotensin II-induced increase in [Ca(2+)](i). Blockade of AT(1) receptor internalization had no effect, whereas blockade of microautophagy abolished the increase in [Ca(2+)](i) produced by intracellular injection of angiotensin II; this indicates that microautophagy is a critical step in transporting the peptide into the endo-lysosomes lumenum. The response to angiotensin II was slightly reduced in Ca(2+)-free saline, indicating a major involvement of Ca(2+) release from internal stores. Blockade of inositol 1,4,5-trisphosphate (IP(3)) receptors with heparin and xestospongin C or inhibition of phospholipase C (PLC) with U-73122 abolished the response to angiotensin II, supporting the involvement of PLC-IP(3) pathway. Angiotensin II-induced increase in [Ca(2+)](i) was slightly reduced by antagonism of ryanodine receptors. Taken together, our results indicate for the first time that in myometrial cells, intracellular angiotensin II activates AT(1)-like receptors on lysosomes and activates PLC-IP(3)-dependent Ca(2+) release from endoplasmic reticulum; the response is further augmented by a Ca(2+)-induced Ca(2+) release mechanism via ryanodine receptors activation.

  2. N- and C-terminal structure-activity study of angiotensin II on the angiotensin AT2 receptor.

    PubMed

    Bouley, R; Pérodin, J; Plante, H; Rihakova, L; Bernier, S G; Maletínská, L; Guillemette, G; Escher, E

    1998-02-19

    The predominant angiotensin II receptor expressed in the human myometrium is the angiotensin AT2 receptor. This preparation was used for a structure-activity relationship study on angiotensin II analogues modified in positions 1 and 8. The angiotensin AT2 receptor present on human myometrium membranes displayed a high affinity (pKd = 9.18) and was relatively abundant (53-253 fmol/mg of protein). The pharmacological profile was typical of an angiotensin AT2 receptor with the following order of affinities: (angiotensin III > or = angiotensin II > angiotensin I > PD123319 > angiotensin-(1-7) > angiotensin-(1-6) approximately angiotensin IV > Losartan). Modifications of the N-terminal side chain and of the primary amine of angiotensin II were evaluated. Neutralisation of the methylcarboxylate (Asp) to a methylcarboxamide (Asn) or to a hydroxymethyl (Ser) or substitution for a methylsulfonate group (cysteic acid) improved the affinity. Extension from methylcarboxylate (Asp) to ethylcarboxylate (Glu) did not affect the affinity. Introduction of larger side chains such as the bulky p-benzoylphenylalanine (p-Bpa) or the positively charged Lys did not substantially affect the affinity. Complete removal of the side chain (angiotensin III), however, resulted in a significant affinity increase. Removal or acetylation of the primary amine of angiotensin II did not noticeably influence the affinity. Progressive alkylation of the primary amine significantly increased the affinity, betain structures being the most potent. It appears that quite important differences exist between the angiotensin AT1 and AT2 receptors concerning their pharmacological profile towards analogues of angiotensin II modified in position 1. On position 8 of angiotensin II, a structure-activity relationship on the angiotensin AT2 receptor was quite similar to that observed with angiotensin AT1 receptor. Bulky, hydrophobic aromatic residues displayed affinities similar to or even better than [Sarcosine1

  3. Central Renin-Angiotensin System Activation and Inflammation Induced by High-Fat Diet Sensitize Angiotensin II-Elicited Hypertension.

    PubMed

    Xue, Baojian; Thunhorst, Robert L; Yu, Yang; Guo, Fang; Beltz, Terry G; Felder, Robert B; Johnson, Alan Kim

    2016-01-01

    Obesity has been shown to promote renin-angiotensin system activity and inflammation in the brain and to be accompanied by increased sympathetic activity and blood pressure. Our previous studies demonstrated that administration of a subpressor dose of angiotensin (Ang) II sensitizes subsequent Ang II-elicited hypertension. The present study tested whether high-fat diet (HFD) feeding also sensitizes the Ang II-elicited hypertensive response and whether HFD-induced sensitization is mediated by an increase in renin-angiotensin system activity and inflammatory mechanisms in the brain. HFD did not increase baseline blood pressure, but enhanced the hypertensive response to Ang II compared with a normal-fat diet. The sensitization produced by the HFD was abolished by concomitant central infusions of either a tumor necrosis factor-α synthesis inhibitor, pentoxifylline, an Ang II type 1 receptor blocker, irbesartan, or an inhibitor of microglial activation, minocycline. Furthermore, central pretreatment with tumor necrosis factor-α mimicked the sensitizing action of a central subpressor dose of Ang II, whereas central pentoxifylline or minocycline abolished this Ang II-induced sensitization. Real-time quantitative reverse transcription-polymerase chain reaction analysis of lamina terminalis tissue indicated that HFD feeding, central tumor necrosis factor-α, or a central subpressor dose of Ang II upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines, whereas inhibition of Ang II type 1 receptor and of inflammation reversed these changes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by upregulation of the brain renin-angiotensin system and of central proinflammatory cytokines.

  4. Activation of central PPAR-γ attenuates angiotensin II-induced hypertension.

    PubMed

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-08-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that the activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg per minute) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA-binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and angiotensin II type 1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA-binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension.

  5. Activation of Central PPAR-γ Attenuates Angiotensin II-Induced Hypertension

    PubMed Central

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-01-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg/min) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2 and angiotensin II type-1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension. PMID:26101342

  6. Angiotensin II receptor signalling.

    PubMed

    Daniels, Derek; Yee, Daniel K; Fluharty, Steven J

    2007-05-01

    Angiotensin II plays a key role in the regulation of body fluid homeostasis. To correct body fluid deficits that occur during hypovolaemia, an animal needs to ingest both water and electrolytes. Thus, it is not surprising that angiotensin II, which is synthesized in response to hypovolaemia, acts centrally to increase both water and NaCl intake. Here, we review findings relating to the properties of angiotensin II receptors that give rise to changes in behaviour. Data are described to suggest that divergent signal transduction pathways are responsible for separable behavioural responses to angiotensin II, and a hypothesis is proposed to explain how this divergence may map onto neural circuits in the brain.

  7. The Role of Angiotensin II and Cyclic AMP in Alveolar Active Sodium Transport

    PubMed Central

    Ismael-Badarneh, Reem; Guetta, Julia; Klorin, Geula; Berger, Gidon; Abu-saleh, Niroz; Abassi, Zaid; Azzam, Zaher S.

    2015-01-01

    Active alveolar fluid clearance is important in keeping airspaces free of edema. Angiotensin II plays a role in the pathogenesis of hypertension, heart failure and others. However, little is known about its contribution to alveolar fluid clearance. Angiotensin II effects are mediated by two specific receptors; AT1 and AT2. The localization of these two receptors in the lung, specifically in alveolar epithelial cells type II, was recently reported. We hypothesize that Angiotensin II may have a role in the regulation of alveolar fluid clearance. We investigated the effect of Angiotensin II on alveolar fluid clearance in rats using the isolated perfused lung model and isolated rat alveolar epithelial cells. The rate of alveolar fluid clearance in control rats was 8.6% ± 0.1 clearance of the initial volume and decreased by 22.5%, 28.6%, 41.6%, 48.7% and 39% in rats treated with 10-10 M, 10-9 M, 10-8 M, 10-7 M or 10-6 M of Ang II respectively (P < 0.003). The inhibitory effect of Angiotensin II was restored in losartan, an AT1 specific antagonist, pretreated rats, indicating an AT1 mediated effect of Ang II on alveolar fluid clearance. The expression of Na,K-ATPase proteins and cAMP levels in alveolar epithelial cells were down-regulated following the administration of Angiotensin II; suggesting that cAMP may be involved in AngII-induced reduced Na,K-ATPase expression, though the contribution of additional factors could not be excluded. We herein suggest a novel mechanism of clinical relevance by which angiotensin adversely impairs the ability of the lungs to clear edema. PMID:26230832

  8. New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) II: Albumin Suppresses Angiotensin Converting Enzyme (ACE) Activity in Human

    PubMed Central

    Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Fülöp, Gábor Á.; Csató, Viktória; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Szentkirályi, István Elek; Maros, Tamás Miklós; Szerafin, Tamás; Édes, István; Papp, Zoltán; Tóth, Attila

    2014-01-01

    About 8% of the adult population is taking angiotensin-converting enzyme (ACE) inhibitors to treat cardiovascular disease including hypertension, myocardial infarction and heart failure. These drugs decrease mortality by up to one-fifth in these patients. We and others have reported previously that endogenous inhibitory substances suppress serum ACE activity, in vivo, similarly to the ACE inhibitor drugs. Here we have made an effort to identify this endogenous ACE inhibitor substance. ACE was crosslinked with interacting proteins in human sera. The crosslinked products were immunoprecipitated and subjected to Western blot. One of the crosslinked products was recognized by both anti-ACE and anti-HSA (human serum albumin) antibodies. Direct ACE-HSA interaction was confirmed by binding assays using purified ACE and HSA. HSA inhibited human purified (circulating) and human recombinant ACE with potencies (IC50) of 5.7±0.7 and 9.5±1.1 mg/mL, respectively. Effects of HSA on the tissue bound native ACE were tested on human saphenous vein samples. Angiotensin I evoked vasoconstriction was inhibited by HSA in this vascular tissue (maximal force with HSA: 6.14±1.34 mN, without HSA: 13.54±2.63 mN), while HSA was without effects on angiotensin II mediated constrictions (maximal force with HSA: 18.73±2.17 mN, without HSA: 19.22±3.50 mN). The main finding of this study is that HSA was identified as a potent physiological inhibitor of the ACE. The enzymatic activity of ACE appears to be almost completely suppressed by HSA when it is present in its physiological concentration. These data suggest that angiotensin I conversion is limited by low physiological ACE activities, in vivo. PMID:24691203

  9. Activation of calcineurin in human failing heart ventricle by endothelin-1, angiotensin II and urotensin II.

    PubMed

    Li, Joan; Wang, Jianchun; Russell, Fraser D; Molenaar, Peter

    2005-06-01

    1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human (14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1 Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P<0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P>0.1). FK506 had no effect on contractile force (P=0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P=0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC(epsilon) compared to samples incubated without PKC(epsilon). 6 Endogenous cardiostimulants which activate G(alpha)q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.

  10. Angiotensin II and norepinephrine activate specific calcineurin-dependent NFAT transcription factor isoforms in cardiomyocytes.

    PubMed

    Lunde, Ida G; Kvaløy, Heidi; Austbø, Bjørg; Christensen, Geir; Carlson, Cathrine R

    2011-11-01

    Norepinephrine (NE) and angiotensin II (ANG II) are primary effectors of the sympathetic adrenergic and the renin-angiotensin-aldosterone systems, mediating hypertrophic, apoptotic, and fibrotic events in the myocardium. As NE and ANG II have been shown to affect intracellular calcium in cardiomyocytes, we hypothesized that they activate the calcium-sensitive, prohypertrophic calcineurin-nuclear factor of activated T-cell (NFATc) signaling pathway. More specifically, we have investigated isoform-specific activation of NFAT in NE- and ANG II-stimulated cardiomyocytes, as it is likely that each of the four calcineurin-dependent isoforms, c1-c4, play specific roles. We have stimulated neonatal ventriculocytes from C57/B6 and NFAT-luciferase reporter mice with ANG II or NE and quantified NFAT activity by luciferase activity and phospho-immunoblotting. ANG II and NE increased calcineurin-dependent NFAT activity 2.4- and 1.9-fold, measured as luciferase activity after 24 h of stimulation, and induced protein synthesis, measured by radioactive leucine incorporation after 24 and 72 h. To optimize measurements of NFAT isoforms, we examined the specificity of NFAT antibodies on peptide arrays and by immunoblotting with designed blocking peptides. Western analyses showed that both effectors activate NFATc1 and c4, while NFATc2 activity was regulated by NE only, as measured by phospho-NFAT levels. Neither ANG II nor NE activated NFATc3. As today's main therapies for heart failure aim at antagonizing the adrenergic and renin-angiotensin-aldosterone systems, understanding their intracellular actions is of importance, and our data, through validating a method for measuring myocardial NFATs, indicate that ANG II and NE activate specific NFATc isoforms in cardiomyocytes.

  11. Behavioural activity of angiotensin II (3-7)4Phe--analogue of natural fragment 3-7 of angiotensin II.

    PubMed

    Hoły, Z; Wiśniewski, K; Jachimowicz, A; Braszko, J

    1996-01-01

    A study was made of the influence of pentapeptide 3-7 angiotensin II [AII(3-7)], its analogue 3-7(4)Phe [AII(3-7)4Phe] and angiotensin II (AII) on the behaviour of adult male rats. The motility, stereotypy, spatial performance, learning of conditioned and passive avoidance responses allowing to avoid aversive stimulation were estimated. Examined peptides at the dose 1 nmol injected intracerebroventricularly 15 min before the experiment did not produce specific changes in psychomotor activity in the "open field" test and in retention of the spatial task in the Morris water maze. The rate of acquisition of conditioned avoidance responses was stimulated by AII(3-7)4Phe, AII(3-7) and AII administration. In the passive avoidance situation AII improved retention of the responses whereas analogue AII(3-7)4Phe and fragment 3-7 caused similar though less pronounced effect. All the peptides applied immediately before the experiment intensified stereotypy, a behaviour evoked by of apomorphine-1 mg/kg and amphetamine-7.5 mg/kg intraperitonealy injection. These results show similar psychotropic activity of analogue AII(3-7)4Phe, comparable with the activity of natural fragment 3-7 of angiotensin II.

  12. Improving vagal activity ameliorates cardiac fibrosis induced by angiotensin II: in vivo and in vitro

    PubMed Central

    Liu, Jin-Jun; Huang, Ning; Lu, Yi; Zhao, Mei; Yu, Xiao-Jiang; Yang, Yang; Yang, Yong-hua; Zang, Wei-Jin

    2015-01-01

    Cardiac remodeling is characterized by overactivity of the renin–angiotensin system (RAS) and withdrawal of vagal activity. We hypothesized that improving vagal activity could attenuate cardiac fibrosis induced by angiotensin II (Ang II) in vivo and in vitro. Rats were subjected to abdominal aorta constriction (AAC) with or without pyridostigmine (PYR) (31 mg/kg/d). After 8 weeks, PYR significantly decreased Ang II level, AT1 protein expression, and collagen deposition in cardiac tissue and improved heart rate variability, baroreflex sensitivity and cardiac function, which were abolished by atropine. In vitro, treatment of cardiac fibroblasts (CFs) with Ang II (10−7 M) increased cell proliferation, migration, transformation, and secretory properties, which were significantly diminished by acetylcholine (ACh, 10−6 M). Subsequently, Ang II significantly increased collagen type I expression as well as metalloproteinase (MMP)-2 expression and activity. Transforming growth factor (TGF)-β1 expression and Smad3 phosphorylation presented a similar trend. Notably, the knockdown of the acetylcholine M2 receptor by siRNA could abolish ACh anti-fibrotic action. These data implicated cholinesterase inhibitor can increase vagal activity and reduce local Ang II level, and ACh inhibit Ang II pro-fibrotic effects. Our findings suggested that the parasympathetic nervous system can serve as a promising target for cardiac remodeling treatment. PMID:26596640

  13. Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor

    PubMed Central

    Shinohara, Keisuke; Kishi, Takuya; Hirooka, Yoshitaka; Sunagawa, Kenji

    2015-01-01

    Sympathoexcitation contributes to the progression of heart failure. Activation of brain angiotensin II type 1 receptors (AT1R) causes central sympathoexcitation. Thus, we assessed the hypothesis that the increase in circulating angiotensin II comparable to that reported in heart failure model affects cardiac function through the central sympathoexcitation via activating AT1R in the brain. In Sprague-Dawley rats, the subcutaneous infusion of angiotensin II for 14 days increased the circulating angiotensin II level comparable to that reported in heart failure model rats after myocardial infarction. In comparison with the control, angiotensin II infusion increased 24 hours urinary norepinephrine excretion, and systolic blood pressure. Angiotensin II infusion hypertrophied left ventricular (LV) without changing chamber dimensions while increased end-diastolic pressure. The LV pressure–volume relationship indicated that angiotensin II did not impact on the end-systolic elastance, whereas significantly increased end-diastolic elastance. Chronic intracerebroventricular infusion of AT1R blocker, losartan, attenuated these angiotensin II-induced changes. In conclusion, circulating angiotensin II in heart failure is capable of inducing sympathoexcitation via in part AT1R in the brain, subsequently leading to LV diastolic dysfunction. PMID:26290529

  14. Angiotensin II and renal tubular ion transport.

    PubMed

    Valles, Patricia; Wysocki, Jan; Batlle, Daniel

    2005-08-29

    Angiotensin II, a potent vasoconstrictor, also participates in the regulation of renal sodium and water excretion, not only via a myriad of effects on renal hemodynamics, glomerular filtration rate, and regulation of aldosterone secretion, but also via direct effects on renal tubule transport. In addition, angiotensin II stimulates H+ secretion and HCO3- reabsorption in both proximal and distal tubules and regulates H+-ATPase activity in intercalated cells of the collecting tubule. Different results regarding the effect of angiotensin II on bicarbonate reabsorption and proton secretion have been reported at the functional level, depending on the angiotensin II concentration and tubule segment studied. It is likely that interstitial angiotensin II is more important in regulating hemodynamic and transport functions than circulating angiotensin II. In proximal tubules, stimulation of bicarbonate reabsorption, Na+/H+-exchange, and Na+/HCO3- cotransport has been found using low concentrations (<10(-9) M), while inhibition of bicarbonate reabsorption has been documented using concentrations higher than 10(-8) M. Evidence for the regulation of H+-ATPase activity in vivo and in vitro by trafficking/exocytosis has been provided. An additional level of H+-ATPase regulation via protein synthesis may be important as well. Recently, we have shown that both aldosterone and angiotensin II provide such a mechanism of regulation in vivo at the level of the medullary collecting tubule. Interestingly, in this part of the nephron, the effects of aldosterone and angiotensin II are not sodium dependent, whereas in the cortical collecting duct, both aldosterone and angiotensin II, by contrast, affect H+ secretion by sodium-dependent mechanisms.

  15. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  16. Angiotensin II Stimulation of DPP4 Activity Regulates Megalin in the Proximal Tubules

    PubMed Central

    Aroor, Annayya; Zuberek, Marcin; Duta, Cornel; Meuth, Alex; Sowers, James R.; Whaley-Connell, Adam; Nistala, Ravi

    2016-01-01

    Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT1R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10−8 M) treatment of T35OK-AT1R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT1R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression. PMID:27213360

  17. Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II

    PubMed Central

    Qi, Zhonghua; Hao, Chuan-Ming; Langenbach, Robert I.; Breyer, Richard M.; Redha, Reyadh; Morrow, Jason D.; Breyer, Matthew D.

    2002-01-01

    Therapeutic use of cyclooxygenase-inhibiting (COX-inhibiting) nonsteroidal antiinflammatory drugs (NSAIDs) is often complicated by renal side effects including hypertension and edema. The present studies were undertaken to elucidate the roles of COX1 and COX2 in regulating blood pressure and renal function. COX2 inhibitors or gene knockout dramatically augment the pressor effect of angiotensin II (Ang II). Unexpectedly, after a brief increase, the pressor effect of Ang II was abolished by COX1 deficiency (either inhibitor or knockout). Ang II infusion also reduced medullary blood flow in COX2-deficient but not in control or COX1-deficient animals, suggesting synthesis of COX2-dependent vasodilators in the renal medulla. Consistent with this, Ang II failed to stimulate renal medullary prostaglandin E2 and prostaglandin I2 production in COX2-deficient animals. Ang II infusion normally promotes natriuresis and diuresis, but COX2 deficiency blocked this effect. Thus, COX1 and COX2 exert opposite effects on systemic blood pressure and renal function. COX2 inhibitors reduce renal medullary blood flow, decrease urine flow, and enhance the pressor effect of Ang II. In contrast, the pressor effect of Ang II is blunted by COX1 inhibition. These results suggest that, rather than having similar cardiovascular effects, the activities of COX1 and COX2 are functionally antagonistic. PMID:12093889

  18. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    PubMed

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  19. Angiotensin II AT1 receptor constitutive activation: from molecular mechanisms to pathophysiology.

    PubMed

    Petrel, Christophe; Clauser, Eric

    2009-04-29

    Mutations activating the angiotensin II AT(1) receptor are important to identify and characterize because they give access to the activation mechanisms of this G protein coupled receptor and help to characterize the signaling pathways and the potential pathophysiology of this receptor. The different constitutively activated mutations of the AT(1) receptor are mostly localized in transmembrane domains (TM) and their characterization demonstrated that release of intramolecular constraints and movements among these TM are a necessary step for receptor activation. These mutations constitutively activate Gq linked signaling pathways, receptor internalization and maybe the G protein-independent signaling pathways. Expression of such mutations in mice is linked to hypertension and cardiovascular diseases, but such natural mutations have not been identified in human pathology. PMID:19061936

  20. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels

    PubMed Central

    Ilatovskaya, Daria V.; Levchenko, Vladislav; Lowing, Andrea; Shuyskiy, Leonid S.; Palygin, Oleg; Staruschenko, Alexander

    2015-01-01

    Injury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats, and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation. PMID:26656101

  1. Mitogen-activated protein kinase is required for the behavioural desensitization that occurs after repeated injections of angiotensin II.

    PubMed

    Vento, Peter J; Daniels, Derek

    2012-12-01

    Angiotensin II (Ang II) acts on central angiotensin type 1 (AT(1)) receptors to increase water and saline intake. Prolonged exposure to Ang II in cell culture models results in a desensitization of the AT(1) receptor that is thought to involve receptor internalization, and a behavioural correlate of this desensitization has been shown in rats after repeated central injections of Ang II. Specifically, rats given repeated injections of Ang II drink less water than control animals after a subsequent test injection of Ang II. In the same conditions, however, repeated injections of Ang II have no effect on Ang II-induced saline intake. Given earlier studies indicating that separate intracellular signalling pathways mediate Ang II-induced water and saline intake, we hypothesized that the desensitization observed in rats may be incomplete, leaving the receptor able to activate mitogen-activated protein (MAP) kinases (ERK1/2), which play a role in Ang II-induced saline intake without affecting water intake. In support of this hypothesis, we found no difference in MAP kinase phosphorylation after an Ang II test injection in rats given prior treatment with repeated injections of vehicle, Ang II or Sar(1),Ile(4),Ile(8)-Ang II (SII), an Ang II analogue that activates MAP kinase without G protein coupling. In addition, we found that pretreatment with the MAP kinase inhibitor U0126 completely blocked the desensitizing effect of repeated Ang II injections on water intake. Furthermore, Ang II-induced water intake was reduced to a similar extent by repeated injections of Ang II or SII. The results suggest that G protein-independent signalling is sufficient to produce behavioural desensitization of the angiotensin system and that the desensitization requires MAP kinase activation.

  2. Angiotensin II disrupts inhibitory avoidance memory retrieval.

    PubMed

    Bonini, Juliana S; Bevilaqua, Lia R; Zinn, Carolina G; Kerr, Daniel S; Medina, Jorge H; Izquierdo, Iván; Cammarota, Martín

    2006-08-01

    The brain renin-angiotensin system (RAS) is involved in learning and memory, but the actual role of angiotensin II (A(II)) and its metabolites in this process has been difficult to comprehend. This has been so mainly due to procedural issues, especially the use of multi-trial learning paradigms and the utilization of pre-training intracerebroventricular infusion of RAS-acting compounds. Here, we specifically analyzed the action of A(II) in aversive memory retrieval using a hippocampal-dependent, one-trial, step-down inhibitory avoidance task (IA) in combination with stereotaxically localized intrahippocampal infusion of drugs. Rats bilaterally implanted with infusion cannulae aimed to the CA1 region of the dorsal hippocampus were trained in IA and tested for memory retention 24 h later. We found that when given into CA1 15 min before IA memory retention test, A(II), but not angiotensin IV or angiotensin(1-7) induced a dose-dependent and reversible amnesia without altering locomotor activity, exploratory behavior or anxiety state. The effect of A(II) was blocked in a dose-dependent manner by the A(II)-type 2 receptor (AT(2)) antagonist PD123319 but not by the A(II)-type 1 receptor (AT(1)) antagonist losartan. By themselves, neither PD123319 nor losartan had any effect on memory expression. Our data indicate that intra-CA1 A(II) hinders retrieval of avoidance memory through a process that involves activation of AT(2) receptors.

  3. Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart.

    PubMed

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki; Levi, Roberto

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H₃) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na⁺/H⁺ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT₁) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H₃ receptors and AT₁ receptors. The purpose of this investigation was therefore to elucidate the H₃/AT₁ receptor interaction in myocardial ischemia/reperfusion. We found that H₃ receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT₁ receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT₁ receptor expression. Moreover, norepinephrine release and AT₁ receptor expression were increased by the nitric oxide (NO) synthase inhibitor N(G)-methyl-L-arginine and the protein kinase C activator phorbol myristate acetate. H₃ receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H₃ receptor cDNA caused a decrease in protein kinase C activity and AT₁ receptor protein abundance. Collectively, our findings suggest that neuronal H₃ receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT₁ receptor expression. Thus, H₃ receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT₁ receptor expression. Cardioprotection ultimately results from the combined

  4. Histamine 3 Receptor Activation Reduces the Expression of Neuronal Angiotensin II Type 1 Receptors in the Heart

    PubMed Central

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H3) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na+/H+ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT1) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H3 receptors and AT1 receptors. The purpose of this investigation was therefore to elucidate the H3/AT1 receptor interaction in myocardial ischemia/reperfusion. We found that H3 receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT1 receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT1 receptor expression. Moreover, norepinephrine release and AT1 receptor expression were increased by the nitric oxide (NO) synthase inhibitor NG-methyl-l-arginine and the protein kinase C activator phorbol myristate acetate. H3 receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H3 receptor cDNA caused a decrease in protein kinase C activity and AT1 receptor protein abundance. Collectively, our findings suggest that neuronal H3 receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT1 receptor expression. Thus, H3 receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT1 receptor expression. Cardioprotection ultimately results from the combined attenuation of angiotensin II and

  5. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  6. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor

    PubMed Central

    Unal, Hamiyet; Karnik, Sadashiva S.; Node, Koichi

    2015-01-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109TM3, Phe182ECL2, Gln257TM6, Tyr292TM7, and Asn295TM7) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108TM3, Ser109TM3, Ala163TM4, Phe182ECL2, Lys199TM5, Tyr292TM7, and Asn295TM7), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  7. Angiotensin II activates the calcineurin/NFAT signaling pathway and induces cyclooxygenase-2 expression in rat endometrial stromal cells.

    PubMed

    Abraham, Florencia; Sacerdoti, Flavia; De León, Romina; Gentile, Teresa; Canellada, Andrea

    2012-01-01

    Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca(2+) concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca(2+) signals is the activity of the Ca(2+)- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression--both mRNA and protein--was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression--both mRNA and protein--was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal

  8. Angiotensin II Activates the Calcineurin/NFAT Signaling Pathway and Induces Cyclooxygenase-2 Expression in Rat Endometrial Stromal Cells

    PubMed Central

    Abraham, Florencia; Sacerdoti, Flavia; De León, Romina; Gentile, Teresa; Canellada, Andrea

    2012-01-01

    Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca2+ concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca2+ signals is the activity of the Ca2+- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression -both mRNA and protein- was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression -both mRNA and protein- was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal cells of

  9. Diminazene aceturate, an angiotensin-converting enzyme II activator, prevents gastric mucosal damage in mice: Role of the angiotensin-(1-7)/Mas receptor axis.

    PubMed

    Souza, Luan Kelves M; Nicolau, Lucas A D; Sousa, Nayara A; Araújo, Thiago S L; Sousa, Francisca Beatriz M; Costa, Douglas S; Souza, Fabiana M; Pacífico, Dvison M; Martins, Conceição S; Silva, Renan O; Souza, Marcellus H L P; Cerqueira, Gilberto S; Medeiros, Jand Venes R

    2016-07-15

    The angiotensin (Ang) II converting enzyme (ACE II) pathway has recently been shown to be associated with several beneficial effects in various organisms, including gastroprotection. ACE II is responsible for converting Ang II into an active peptide, Ang-(1-7), which in turn binds the Mas receptor. Recent studies have shown that diminazene aceturate (Dize) a trypanocidal used in animals, activates ACE II. Thus, in this study, we aimed to evaluate the gastroprotective effects of Dize via the ACE II/Ang-(1-7)/Mas receptor pathway against gastric lesions induced by ethanol and acetic acid in mice. The results showed that Dize could promote gastric protection via several mechanisms, including increased levels of antioxidants and anti-inflammatory factors (e.g., decreasing tumor necrosis factor and interleukin-6 expression and reducing myeloperoxidase activity), maturation of collagen fibers, and promotion of re-epithelialization and regeneration of gastric tissue in different injury models. Thus, Dize represents a novel potential gastroprotective agent. PMID:27241079

  10. Angiotensin-(1-7) enhances the effects of angiotensin II on the cardiac sympathetic afferent reflex and sympathetic activity in rostral ventrolateral medulla in renovascular hypertensive rats.

    PubMed

    Li, Peng; Zhang, Feng; Sun, Hai-Jian; Zhang, Feng; Han, Ying

    2015-11-01

    Excessive sympathetic activity propels the pathogenesis and progression of organ damage in hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR) is involved in sympathetic activation in hypertension. Given the important role of the renin-angiotensin (Ang) system in regulating sympathetic outflow and cardiovascular activity, the present study aimed to investigate the roles of Ang-(1-7) in Ang II-induced CSAR and the sympathetic activation responses in the rostral ventrolateral medulla (RVLM) of hypertensive rats. The two-kidney one-clip (2K1C) method was used to induce renovascular hypertension. Responses of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) to epicardial application of capsaicin were used to evaluate the CSAR in sinoaortic-denervated and cervical-vagotomized rats with anesthesia. Both Ang II and Ang-(1-7) in the RVLM caused greater increases in RSNA and MAP in 2K1C rats than in sham-operated (sham) rats and enhanced CSAR independently. RVLM pretreatment with Ang-(1-7) dose dependently augmented the effects of Ang II on RSNA, MAP, and CSAR in 2K1C rats. Mas receptor antagonist A-779 in the RVLM exhibited more powerful inhibitory effects on RSNA, MAP, and CSAR than the Ang II type 1 (AT1) receptor antagonist losartan. The expression of both the AT1 receptor and Mas receptor proteins in the RVLM increased, but neither the Ang II nor Ang-(1-7) levels in the RVLM changed significantly in the 2K1C rats compared with the sham rats. These results indicate that Ang-(1-7) in the RVLM enhances the CSAR and sympathetic output not only by itself but also through enhancing the effects of Ang II in renovascular hypertensive rats. Both endogenous Ang-(1-7) and Ang II in the RVLM contribute to the enhanced CSAR and sympathetic activation in renovascular hypertension.

  11. Quinoxaline N-oxide containing potent angiotensin II receptor antagonists: synthesis, biological properties, and structure-activity relationships.

    PubMed

    Kim, K S; Qian, L; Bird, J E; Dickinson, K E; Moreland, S; Schaeffer, T R; Waldron, T L; Delaney, C L; Weller, H N; Miller, A V

    1993-08-01

    A series of novel quinoxaline heterocycle containing angiotensin II receptor antagonist analogs were prepared. This heterocycle was coupled to the biphenyl moiety via an oxygen atom linker instead of a carbon atom. Many of these analogs exhibit very potent activity and long duration of effect. Interestingly, the N-oxide quinoxaline analog was more potent than the nonoxidized quinoxaline as in the comparison of compounds 5 vs 30. In order to improve oral activity, the carboxylic acid function of these compounds was converted to the double ester. This change did result in an improvement in oral activity as represented by compound 44.

  12. ERK1/2 activation by angiotensin II inhibits insulin-induced glucose uptake in vascular smooth muscle cells.

    PubMed

    Izawa, Yuki; Yoshizumi, Masanori; Fujita, Yoshiko; Ali, Nermin; Kanematsu, Yasuhisa; Ishizawa, Keisuke; Tsuchiya, Koichiro; Obata, Toshiyuki; Ebina, Yousuke; Tomita, Shuhei; Tamaki, Toshiaki

    2005-08-15

    Clinical evidence suggests a relationship between hypertension and insulin resistance, and cross-talk between angiotensin II (Ang II) and insulin signaling pathways may take place. We now report the effect of Ang II on insulin-induced glucose uptake and its intracellular mechanisms in vascular smooth muscle cells (VSMC). We examined the translocation of glucose transporter-4 (GLUT-4) and glucose uptake in rat aortic smooth muscle cells (RASMC). Mitogen-activated protein (MAP) kinases and Akt activities, and phosphorylation of insulin receptor substrate-1 (IRS-1) at the serine and tyrosine residues were measured by immunoprecipitation and immunoblotting. As a result, Ang II inhibited insulin-induced GLUT-4 translocation from cytoplasm to the plasma membrane in RASMC. Ang II induced extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) activation and IRS-1 phosphorylation at Ser307 and Ser616. Ang II-induced Ser307 and Ser616 phophorylation of IRS-1 was inhibited by a MEK inhibitor, PD98059, and a JNK inhibitor, SP600125. Ang II inhibition of insulin-stimulated IRS-1 tyrosyl phophorylation and Akt activation were reversed by PD98059 but not by SP600125. Ang II inhibited insulin-induced glucose uptake, which was also reversed by PD98059 but not by SP600125. It is shown that Ang II-induced ERK1/2 activation inhibits insulin-dependent glucose uptake through serine phophorylation of IRS-1 in RASMC.

  13. Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat.

    PubMed

    Osborn, John W; Fink, Gregory D

    2010-01-01

    It is now well accepted that many forms of experimental hypertension and human essential hypertension are caused by increased activity of the sympathetic nervous system. However, the role of region-specific changes in sympathetic nerve activity (SNA) in the pathogenesis of hypertension has been difficult to determine because methods for chronic measurement of SNA in conscious animals have not been available. We have recently combined indirect, and continuous and chronic direct, assessment of region-specific SNA to characterize hypertension produced by administration of angiotensin II (Ang II) to rats consuming a high-salt diet (Ang II-salt hypertension). Angiotensin II increases whole-body noradrenaline (NA) spillover and depressor responses to ganglionic blockade in rats consuming a high-salt diet, but not in rats on a normal-salt diet. Despite this evidence for increased 'whole-body SNA' in Ang II-salt hypertensive rats, renal SNA is decreased in this model and renal denervation does not attenuate the steady-state level of arterial pressure. In addition, neither lumbar SNA, which largely targets skeletal muscle, nor hindlimb NA spillover is changed from control levels in Ang II-salt hypertensive rats. However, surgical denervation of the splanchnic vascular bed attenuates/abolishes the increase in arterial pressure and total peripheral resistance, as well as the decrease in vascular capacitance, observed in Ang II-salt hypertensive rats. We hypothesize that the 'sympathetic signature' of Ang II-salt hypertension is characterized by increased splanchnic SNA, no change in skeletal muscle SNA and decreased renal SNA, and this sympathetic signature creates unique haemodynamic changes capable of producing sustained hypertension. PMID:19717492

  14. Angiotensin II: role in skeletal muscle atrophy.

    PubMed

    Cabello-Verrugio, Claudio; Córdova, Gonzalo; Salas, José Diego

    2012-09-01

    Skeletal muscle, the main protein reservoir in the body, is a tissue that exhibits high plasticity when exposed to changes. Muscle proteins can be mobilized into free amino acids when skeletal muscle wasting occurs, a process called skeletal muscle atrophy. This wasting is an important systemic or local manifestation under disuse conditions (e.g., bed rest or immobilization), in starvation, in older adults, and in several diseases. The molecular mechanisms involved in muscle wasting imply the activation of specific signaling pathways which ultimately manage muscle responses to modulate biological events such as increases in protein catabolism, oxidative stress, and cell death by apoptosis. Many factors have been involved in the generation and maintenance of atrophy in skeletal muscle, among them angiotensin II (Ang-II), the main peptide of renin-angiotensin system (RAS). Together with Ang-II, the angiotensin-converting enzyme (ACE) and the Ang-II receptor type 1 (AT-1 receptor) are expressed in skeletal muscle, forming an important local axis that can regulate its function. In many of the conditions that lead to muscle wasting, there is an impairment of RAS in a global or local fashion. At this point, there are several pieces of evidence that suggest the participation of Ang-II, ACE, and AT-1 receptor in the generation of skeletal muscle atrophy. Interestingly, the Ang-II participation in muscle atrophy is strongly ligated to the regulation of hypertrophic activity of factors such as insulin-like growth factor 1 (IGF-1). In this article, we reviewed the current state of Ang-II and RAS function on skeletal muscle wasting and its possible use as a therapeutic target to improve skeletal muscle function under atrophic conditions.

  15. Angiotensin II stimulates superoxide production in the thick ascending limb by activating NOX4

    PubMed Central

    Hong, Nancy J.; Garvin, Jeffrey L.

    2012-01-01

    Angiotensin II (ANG II) stimulates production of superoxide (O2−) by NADPH oxidase (NOX) in medullary thick ascending limbs (TALs). There are three isoforms of the catalytic subunit (NOX1, 2, and 4) known to be expressed in the kidney. We hypothesized that NOX2 mediates ANG II-induced O2− production by TALs. To test this, we measured NOX1, 2, and 4 mRNA and protein by RT-PCR and Western blot in TAL suspensions from rats and found three catalytic subunits expressed in the TAL. We measured O2− production using a lucigenin-based assay. To assess the contribution of NOX2, we measured ANG II-induced O2− production in wild-type and NOX2 knockout mice (KO). ANG II increased O2− production by 346 relative light units (RLU)/mg protein in the wild-type mice (n = 9; P < 0.0007 vs. control). In the knockout mice, ANG II increased O2− production by 290 RLU/mg protein (n = 9; P < 0.007 vs. control). This suggests that NOX2 does not contribute to ANG II-induced O2− production (P < 0.6 WT vs. KO). To test whether NOX4 mediates the effect of ANG II, we selectively decreased NOX4 expression in rats using an adenovirus that expresses NOX4 short hairpin (sh)RNA. Six to seven days after in vivo transduction of the kidney outer medulla, NOX4 mRNA was reduced by 77%, while NOX1 and NOX2 mRNA was unaffected. In control TALs, ANG II stimulated O2− production by 96%. In TALs transduced with NOX4 shRNA, ANG II-stimulated O2− production was not significantly different from the baseline. We concluded that NOX4 is the main catalytic isoform of NADPH oxidase that contributes to ANG II-stimulated O2− production by TALs. PMID:22875785

  16. Preparation and Biological Activity of the Monoclonal Antibody against the Second Extracellular Loop of the Angiotensin II Type 1 Receptor

    PubMed Central

    Wei, Mingming; Zhao, Chengrui; Zhang, Suli; Wang, Li; Liu, Huirong; Ma, Xinliang

    2016-01-01

    The current study was to prepare a mouse-derived antibody against the angiotensin II type 1 receptor (AT1-mAb) based on monoclonal antibody technology, to provide a foundation for research on AT1-AA-positive diseases. Balb/C mice were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII). Then, mouse spleen lymphocytes were fused with myeloma cells and monoclonal hybridomas that secreted AT1-mAb were generated and cultured, after which those in logarithmic-phase were injected into the abdominal cavity of mice to retrieve the ascites. Highly purified AT1-mAb was isolated from mouse ascites after injection with 1 × 107 hybridomas. A greater amount of AT1-mAb was purified from mouse ascites compared to the cell supernatant of hybridomas. AT1-mAb purified from mouse ascites constricted the thoracic aorta of mice and increased the beat frequency of neonatal rat myocardial cells via the AT1R, identical to the effects of AT1-AA extracted from patients' sera. Murine blood pressure increased after intravenous injection of AT1-mAb via the tail vein. High purity and good biological activity of AT1-mAb can be obtained from mouse ascites after intraperitoneal injection of monoclonal hybridomas that secrete AT1-mAb. These data provide a simple tool for studying AT1-AA-positive diseases. PMID:27057554

  17. Notch activation mediates angiotensin II-induced vascular remodeling by promoting the proliferation and migration of vascular smooth muscle cells.

    PubMed

    Ozasa, Yukako; Akazawa, Hiroshi; Qin, Yingjie; Tateno, Kaoru; Ito, Kaoru; Kudo-Sakamoto, Yoko; Yano, Masamichi; Yabumoto, Chizuru; Naito, Atsuhiko T; Oka, Toru; Lee, Jong-Kook; Minamino, Tohru; Nagai, Toshio; Kobayashi, Yoshio; Komuro, Issei

    2013-10-01

    Notch signaling is involved in an intercellular communication mechanism that is essential for coordinated cell fate determination and tissue morphogenesis. The biological effects of Notch signaling are context-dependent. We investigated the functional and hierarchical relationship between angiotensin (Ang) II receptor signaling and Notch signaling in vascular smooth muscle cells (VSMCs). A fluorogenic substrate assay revealed directly that the enzymatic activity of γ-secretase was enhanced after 10 min of Ang II stimulation in HEK293 cells expressing Ang II type 1 receptor. Notch cleavage by γ-secretase was consistently induced and peaked at 10 min after Ang II stimulation, and the Ang II-stimulated increase in Notch intracellular domain production was significantly suppressed by treatment with the γ-secretase inhibitor DAPT. Treatment with DAPT also significantly reduced the Ang II-stimulated proliferation and migration of human aortic VSMCs, as revealed by BrdU incorporation and the Boyden chamber assay, respectively. Systemic administration of the γ-secretase inhibitor dibenzazepine reduced Ang II-induced medial thickening and perivascular fibrosis in the aortas of wild-type mice. These findings suggest that the hierarchical Ang II receptor-Notch signaling pathway promotes the proliferation and migration of VSMCs, and thereby contributes to the progression of vascular remodeling. PMID:23719127

  18. Binding, degradation and pressor activity of angiotensins II and III after aminopeptidase inhibition with amastatin and bestatin

    SciTech Connect

    Abhold, R.H.; Sullivan, M.J.; Wright, J.W.; Harding, J.W.

    1987-09-01

    In the metabolism of angiotensin peptides by tissue angiotensinases, aminopeptidases A, B, M and leucine aminopeptidase have been identified as being particularly effective. Because the inhibitory actions of amastatin (AM) and bestatin (BE) are relatively specific for these aminopeptidases, we have examined the effects of these inhibitors on the binding, degradation and pressor activity of angiotensin II (AII) and angiotensin III (AIII). Within 30 min at 37 degrees C, significant metabolism of /sup 125/I-AII and /sup 125/I-AIII by homogenates of a block of tissue containing hypothalamus, thalamus, septum and anteroventral third ventricle regions of the brain was observed. A majority of /sup 125/I-AIII metabolism was due to soluble peptidases, whereas that of /sup 125/I-AII primarily resulted from membrane-bound peptidases. AM, BE and reduced incubation temperatures significantly decreased the metabolism of /sup 125/I-AII and /sup 125/I-AIII. After appropriate adjustments to reflect the proportion of intact radioligand bound, temperature- or inhibitor-induced decreases in metabolism were matched by corresponding increases in specific binding. Heat-treated bovine serum albumin, as a nonspecific peptidase inhibitor, had no effect on either the metabolism or binding of the ligands used. In accordance with their actions in vitro, i.c.v. administration of AM and BE prolonged the pressor activity of subsequently applied AII and AIII. Unexpectedly, the amplitude of the pressor response to AIII was increased by BE, whereas that to AII was decreased by AM. The results of this study indicate that the metabolism of AII and AIII by aminopeptidases is relatively specific and acts to modulate the actions of these peptides.

  19. Inhibition of PTEN expression and activity by angiotensin II induces proliferation and migration of vascular smooth muscle cells.

    PubMed

    Dong, Xue; Yu, Lu-Gang; Sun, Rong; Cheng, Yan-Na; Cao, Hua; Yang, Kang-Min; Dong, Yi-Ning; Wu, Yan; Guo, Xiu-Li

    2013-01-01

    PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tumor suppressor and has been suggested recently to be involved in the regulation of cardiovascular diseases. The molecular mechanisms of this regulation are however poorly understood. This study shows that down regulation of PTEN expression and activity by angiotensin II (Ang II) increased proliferation and migration of vascular smooth muscle cells (VSMCs). The presence of Ang II induced rapid PTEN phosphorylation and oxidation in accordance with increased AKT and FAK phosphorylation. The Ang II-mediated VSMC proliferation and migration was inhibited when cellular PTEN expression was increased by AT1 inhibitor losartan, PPARγ agonist rosiglitazone, NF-κB inhibitor BAY 11-7082. Over expression of PTEN in VSMCs by adenovirus transduction also resulted in inhibition of cell proliferation and migration in response to Ang II. These results suggest that PTEN down-regulation is involved in proliferation and migration of VSMCs induced by Ang II. This provides insight into the molecular regulation of PTEN in vascular smooth muscle cells and suggests that targeting the action of PTEN may represent an effective therapeutic approach for the treatment of cardiovascular diseases.

  20. Angiotensin II receptors in testes

    SciTech Connect

    Millan, M.A.; Aguilera, G.

    1988-05-01

    Receptors for angiotensin II (AII) were identified and characterized in testes of rats and several primate species. Autoradiographic analysis of the binding of 125I-labeled (Sar1,Ile8)AII to rat, rhesus monkey, cebus monkey, and human testicular slide-mounted frozen sections indicated specific binding to Leydig cells in the interstitium. In rat collagenase-dispersed interstitial cells fractionated by Percoll gradient, AII receptor content was parallel to that of hCG receptors, confirming that the AII receptors are in the Leydig cells. In rat dispersed Leydig cells, binding was specific for AII and its analogs and of high affinity (Kd, 4.8 nM), with a receptor concentration of 15 fmol/10(6) cells. Studies of AII receptors in rat testes during development reveals the presence of high receptor density in newborn rats which decreases toward the adult age (4934 +/- 309, 1460 +/- 228, 772 +/- 169, and 82 +/- 12 fmol/mg protein at 5, 15, 20, and 30 days of age, respectively) with no change in affinity. At all ages receptors were located in the interstitium, and the decrease in binding was parallel to the decrease in the interstitial to tubular ratio observed with age. AII receptor properties in membrane-rich fractions from prepuberal testes were similar in the rat and rhesus monkey. Binding was time and temperature dependent, reaching a plateau at 60 min at 37 C, and was increased by divalent cations, EGTA, and dithiothreitol up to 0.5 mM. In membranes from prepuberal monkey testes, AII receptors were specific for AII analogs and of high affinity (Kd, 4.2 nM) with a receptor concentration of 7599 +/- 1342 fmol/mg protein. The presence of AII receptors in Leydig cells in rat and primate testes in conjunction with reports of the presence of other components of the renin-angiotensin system in the testes suggests that the peptide has a physiological role in testicular function.

  1. Significant role of female sex hormones in cardiac myofilament activation in angiotensin II-mediated hypertensive rats.

    PubMed

    Pandit, Sulaksana; Woranush, Warunya; Wattanapermpool, Jonggonnee; Bupha-Intr, Tepmanas

    2014-07-01

    Ovariectomy leads to suppression of cardiac myofilament activation in healthy rats implicating the physiological essence of female sex hormones on myocardial contraction. However, the possible function of these hormones during pathologically induced myofilament adaptation is not known. In this study, sham-operated and ovariectomized female rats were chronically exposed to angiotensin II (AII), which has been shown to cause myocardial adaptation. In the shams, AII induced cardiac adaptation by increasing myofilament Ca(2+) sensitivity. Interestingly, this hypersensitivity was further enhanced in AII-infused ovariectomized rats. Ovariectomy increased the phosphorylation levels of cardiac tropomyosin, which may underlie the mechanism of hypersensitivity. On the other hand, AII infusion did not alter maximal tension that was suppressed after ovariectomy. This finding coincided with a comparable increase in β-isoform of myosin heavy chains in both ovariectomized groups. Together, it is conceivable that female sex hormones serve as predominant factors that regulate cardiac myofilament activation. Furthermore, they may prevent stress-induced myofilament maladaptation.

  2. High-salt intake induces cardiomyocyte hypertrophy in rats in response to local angiotensin II type 1 receptor activation.

    PubMed

    Katayama, Isis A; Pereira, Rafael C; Dopona, Ellen P B; Shimizu, Maria H M; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2014-10-01

    Many studies have shown that risk factors that are independent of blood pressure (BP) can contribute to the development of cardiac hypertrophy (CH). Among these factors, high-salt (HS) intake was prominent. Although some studies have attempted to elucidate the role of salt in the development of this disease, the mechanisms by which salt acts are not yet fully understood. Thus, the aim of this study was to better understand the mechanisms of CH and interstitial fibrosis (IF) caused by HS intake. Male Wistar rats were divided into 5 groups according to diet [normal salt (NS; 1.27% NaCl) or HS (8% NaCl)] and treatment [losartan (LOS) (HS+LOS group), hydralazine (HZ) (HS+HZ group), or N-acetylcysteine (NAC) (HS+NAC group)], which was given in the drinking water. Tail-cuff BP, transverse diameter of the cardiomyocyte, IF, angiotensin II type 1 receptor (AT1) gene and protein expression, serum aldosterone, cardiac angiotensin II, cardiac thiobarbituric acid-reactive substances, and binding of conformation-specific anti-AT1 and anti-angiotensin II type 2 receptor (AT2) antibodies in the 2 ventricles were measured. Based on the left ventricle transverse diameter data, the primary finding was the occurrence of significant BP-independent CH in the HS+HZ group (96% of the HS group) and a partial or total prevention of such hypertrophy via treatment with NAC or LOS (81% and 67% of the HS group, respectively). The significant total or partial prevention of IF using all 3 treatments (HS+HZ, 27%; HS+LOS, 27%; and HS+NAC, 58% of the HS group, respectively), and an increase in the AT1 gene and protein expression and activity in groups that developed CH, confirmed that CH occurred via the AT1 in this experimental model. Thus, this study unveiled some relevant previously unknown mechanisms of CH induced by chronic HS intake in Wistar rats. The link of oxidative stress with CH in our experimental model is very interesting and stimulates further evaluation for its full comprehension.

  3. Proximal tubule NHE3 activity is inhibited by beta-arrestin-biased angiotensin II type 1 receptor signaling.

    PubMed

    Carneiro de Morais, Carla P; Polidoro, Juliano Z; Ralph, Donna L; Pessoa, Thaissa D; Oliveira-Souza, Maria; Barauna, Valério G; Rebouças, Nancy A; Malnic, Gerhard; McDonough, Alicia A; Girardi, Adriana C C

    2015-10-15

    Physiological concentrations of angiotensin II (ANG II) upregulate the activity of Na(+)/H(+) exchanger isoform 3 (NHE3) in the renal proximal tubule through activation of the ANG II type I (AT1) receptor/G protein-coupled signaling. This effect is key for maintenance of extracellular fluid volume homeostasis and blood pressure. Recent findings have shown that selective activation of the beta-arrestin-biased AT1 receptor signaling pathway induces diuresis and natriuresis independent of G protein-mediated signaling. This study tested the hypothesis that activation of this AT1 receptor/beta-arrestin signaling inhibits NHE3 activity in proximal tubule. To this end, we determined the effects of the compound TRV120023, which binds to the AT1R, blocks G-protein coupling, and stimulates beta-arrestin signaling on NHE3 function in vivo and in vitro. NHE3 activity was measured in both native proximal tubules, by stationary microperfusion, and in opossum proximal tubule (OKP) cells, by Na(+)-dependent intracellular pH recovery. We found that 10(-7) M TRV120023 remarkably inhibited proximal tubule NHE3 activity both in vivo and in vitro. Additionally, stimulation of NHE3 by ANG II was completely suppressed by TRV120023 both in vivo as well as in vitro. Inhibition of NHE3 activity by TRV120023 was associated with a decrease in NHE3 surface expression in OKP cells and with a redistribution from the body to the base of the microvilli in the rat proximal tubule. These findings indicate that biased signaling of the beta-arrestin pathway through the AT1 receptor inhibits NHE3 activity in the proximal tubule at least in part due to changes in NHE3 subcellular localization. PMID:26246427

  4. Angiotensin II formation in the intact human heart. Predominance of the angiotensin-converting enzyme pathway.

    PubMed Central

    Zisman, L S; Abraham, W T; Meixell, G E; Vamvakias, B N; Quaife, R A; Lowes, B D; Roden, R L; Peacock, S J; Groves, B M; Raynolds, M V

    1995-01-01

    It has been proposed that the contribution of myocardial tissue angiotensin converting enzyme (ACE) to angiotensin II (Ang II) formation in the human heart is low compared with non-ACE pathways. However, little is known about the actual in vivo contribution of these pathways to Ang II formation in the human heart. To examine angiotensin II formation in the intact human heart, we administered intracoronary 123I-labeled angiotensin I (Ang I) with and without intracoronary enalaprilat to orthotopic heart transplant recipients. The fractional conversion of Ang I to Ang II, calculated after separation of angiotensin peptides by HPLC, was 0.415 +/- 0.104 (n = 5, mean +/- SD). Enalaprilat reduced fractional conversion by 89%, to a value of 0.044 +/- 0.053 (n = 4, P = 0.002). In a separate study of explanted hearts, a newly developed in vitro Ang II-forming assay was used to examine cardiac tissue ACE activity independent of circulating components. ACE activity in solubilized left ventricular membrane preparations from failing hearts was 49.6 +/- 5.3 fmol 125I-Ang II formed per minute per milligram of protein (n = 8, +/- SE), and 35.9 +/- 4.8 fmol/min/mg from nonfailing human hearts (n = 7, P = 0.08). In the presence of 1 microM enalaprilat, ACE activity was reduced by 85%, to 7.3 +/- 1.4 fmol/min/mg in the failing group and to 4.6 +/- 1.3 fmol/min/mg in the nonfailing group (P < 0.001). We conclude that the predominant pathway for angiotensin II formation in the human heart is through ACE. Images PMID:7657820

  5. Angiotensin II: Immunohistochemical Study in Sardinian Pterygium

    PubMed Central

    Demurtas, P.; Corrias, M.; Zucca, I.; Piras, F.; Sirigu, P.; Perra, M.T.

    2014-01-01

    The Angiotensin II (Ang II) is the principal effector peptide of the RAS system. It has a pleiotropic effect and, beside its physiological role, it has the property to stimulate angiogenesis and activate multiple signalling pathways related to cell proliferation. The purpose of the study was to determinate the Ang II expression and localization in Sardinian pterygium and normal conjunctiva by immunohistochemistry, and its possible involvement in the development and progression of the disease. Twenty-three pterygiums and eleven normal conjunctiva specimens obtained from Sardinian patients, were processed for paraffin embedding and assessed for the immunohistochemi-cal revelation of Ang II. Significant Ang II expression was identified in pterygium and conjunctiva. Particularly, thirteen pterygium specimens (n=13) displayed exclusively moderate to strong nuclear staining; some specimens (n=5) showed exclusively a moderate cytoplasmic immunoreactivity, and few specimens (n=2) displayed moderate to strong immunoreactivity in both cytoplasm and nucleus. Only 3 specimens were negative. Statistical significance difference in respect of nuclear and cytoplasmic localization was observed between normal conjunctiva and pterygium (P=0.020). The results showed a predominant intranuclear localization of Ang II in pterygium epithelial cells, in spite of conjunctiva that mainly showed cytoplasmic localization. These findings suggest a possible role for Ang II in the development and/or progression of pterygium mediated by the activation of local RAS system. PMID:25308851

  6. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice.

    PubMed

    Kamat, Nikhil V; Thabet, Salim R; Xiao, Liang; Saleh, Mohamed A; Kirabo, Annet; Madhur, Meena S; Delpire, Eric; Harrison, David G; McDonough, Alicia A

    2015-03-01

    Ample genetic and physiological evidence establishes that renal salt handling is a critical regulator of blood pressure. Studies also establish a role for the immune system, T-cell infiltration, and immune cytokines in hypertension. This study aimed to connect immune cytokines, specifically interferon-γ (IFN-γ) and interleukin-17A (IL-17A), to sodium transporter regulation in the kidney during angiotensin-II (Ang-II) hypertension. C57BL/6J (wild-type) mice responded to Ang-II infusion (490 ng/kg per minute, 2 weeks) with a rise in blood pressure (170 mm Hg) and a significant decrease in the rate of excretion of a saline challenge. In comparison, mice that lacked the ability to produce either IFN-γ (IFN-γ(-/-)) or IL-17A (IL-17A(-/-)) exhibited a blunted rise in blood pressure (<150 mm Hg), and both the genotypes maintained baseline diuretic and natriuretic responses to a saline challenge. Along the distal nephron, Ang-II infusion increased abundance of the phosphorylated forms of the Na-K-2Cl cotransporter, Na-Cl cotransporter, and Ste20/SPS-1-related proline-alanine-rich kinase, in both the wild-type and the IL-17A(-/-) but not in IFN-γ(-/-) mice; epithelial Na channel abundance increased similarly in all the 3 genotypes. In the proximal nephron, Ang-II infusion significantly decreased abundance of Na/H-exchanger isoform 3 and the motor myosin VI in IL-17A(-/-) and IFN-γ(-/-), but not in wild-type; the Na-phosphate cotransporter decreased in all the 3 genotypes. Our results suggest that during Ang-II hypertension both IFN-γ and IL-17A production interfere with the pressure natriuretic decrease in proximal tubule sodium transport and that IFN-γ production is necessary to activate distal sodium reabsorption. PMID:25601932

  7. Glial high-affinity binding site with specificity for angiotensin II not angiotensin III: a possible N-terminal-specific converting enzyme

    SciTech Connect

    Printz, M.P.; Jennings, C.; Healy, D.P.; Kalter, V.

    1986-01-01

    Anomalous binding properties of angiotensin II to fetal rat brain primary cultures suggested a possible contribution from contaminating glia. To investigate this possibility, cultures of C6 glioma, a clonal rat cell line, were examined for the presence of angiotensin II receptors. A specific high-affinity site for (/sup 125/I)angiotensin II was measured both by traditional methodology using whole cells and by autoradiography. This site shared properties similar to that found with the brain cells, namely low ligand internalization and markedly decreased affinity for N-terminal sarcosine or arginine-angiotensin analogs. The competition rank order was angiotensin II much greater than (Sar1,Ile8)angiotensin II greater than or equal to des(Asp1,Arg2)angiotensin II. Angiotensin III did not compete for binding to the site. High-pressure liquid chromatography analysis indicated that the ligand either in the incubation or bound to the site was stable at 15 degrees C, but there was very rapid and extensive degradation by the C6 glioma cells at 37 degrees C. It is concluded that the site exhibits unusual N-terminal specificity for angiotensin with nanomolar affinity for angiotensin II. If angiotensin III is an active ligand in the brain, the site may have a converting enzyme function. Alternatively, it may form the des-Asp derivatives of angiotensin for subsequent degradation by other enzymatic pathways. Either way, it is proposed that the site may modulate the brain-angiotensin system.

  8. SREBP-1 Mediates Angiotensin II-Induced TGF-β1 Upregulation and Glomerular Fibrosis

    PubMed Central

    Wang, Tony N.; Chen, Xing; Li, Renzhong; Gao, Bo; Mohammed-Ali, Zahraa; Lu, Chao; Yum, Victoria; Dickhout, Jeffrey G.

    2015-01-01

    Angiotensin II is an important mediator of CKD of diverse etiology. A common pathologic feature of CKD is glomerular fibrosis, a central mediator of which is the profibrotic cytokine TGF-β. The mechanisms underlying the induction of TGF-β and matrix by angiotensin II are not completely understood. Recent studies showed that overexpression of the transcription factor SREBP-1 induces glomerular sclerosis and that angiotensin II can activate SREBP-1 in tubular cells. We thus studied whether SREBP-1 is activated by angiotensin II and mediates angiotensin II–induced profibrogenic responses in primary rat mesangial cells. Treatment of cells with angiotensin II induced the upregulation and activation of SREBP-1. Angiotensin II–induced activation of SREBP-1 required signaling through the angiotensin II type I receptor and activation of PI3K/Akt in addition to the chaperone SCAP and protease S1P. Notably, angiotensin II-induced endoplasmic reticulum stress was identified as a key mediator of Akt-SREBP-1 activation, and inhibition of endoplasmic reticulum stress or SREBP-1 prevented angiotensin II–induced SREBP-1 binding to the TGF-β promoter, TGF-β upregulation, and downstream fibronectin upregulation. Endoplasmic reticulum stress alone, however, did not induce TGF-β upregulation despite activating SREBP-1. Although not required for SREBP-1 activation by angiotensin II, EGF receptor signaling was necessary for activation of the SREBP-1 cotranscription factor Sp1, which provided a required second signal for TGF-β upregulation. In vivo, endoplasmic reticulum stress and SREBP-1-dependent effects were induced in glomeruli of angiotensin II-infused mice, and administration of the SREBP inhibitor fatostatin prevented angiotensin II–induced TGF-β upregulation and matrix accumulation. SREBP-1 and endoplasmic reticulum stress thus provide potential novel therapeutic targets for the treatment of CKD. PMID:25398788

  9. Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells.

    PubMed

    Gendron, L; Laflamme, L; Rivard, N; Asselin, C; Payet, M D; Gallo-Payet, N

    1999-09-01

    In a previous study, we had shown that activation of the AT2 (angiotensin type 2) receptor of angiotensin II (Ang II) induced morphological differentiation of the neuronal cell line NG108-15. In the present study, we investigated the nature of the possible intracellular mediators involved in the AT2 effect. We found that stimulation of AT2 receptors in NG108-15 cells resulted in time-dependent modulation of tyrosine phosphorylation of a number of cytoplasmic proteins. Stimulation of NG108-15 cells with Ang II induced a decrease in GTP-bound p21ras but a sustained increase in the activity of p42mapk and p44mapk as well as neurite outgrowth. Similarly, neurite elongation, increased polymerized tubulin levels, and increased mitogen-activated protein kinase (MAPK) activity were also observed in a stably transfected NG108-15 cell line expressing the dominant-negative mutant of p21ras, RasN17. These results support the observation that inhibition of p21ras did not impair the effect of Ang II on its ability to stimulate MAPK activity. While 10 microM of the MEK inhibitor, PD98059, only moderately affected elongation, 50 microM PD98059 completely blocked the Ang II- and the RasN17-mediated induction of neurite outgrowth. These results demonstrate that some of the events associated with the AT2 receptor-induced neuronal morphological differentiation of NG108-15 cells not only include inhibition of p21ras but an increase in MAPK activity as well, which is essential for neurite outgrowth.

  10. Comparative effects of contraction and angiotensin II on growth of adult feline cardiocytes in primary culture

    NASA Technical Reports Server (NTRS)

    Wada, H.; Zile, M. R.; Ivester, C. T.; Cooper, G. 4th; McDermott, P. J.

    1996-01-01

    The purposes of this study were 1) to determine whether angiotensin II causes growth of adult feline cardiocytes in long-term culture, 2) to compare the growth effects of angiotensin II with those resulting from electrically stimulated contraction, and 3) to determine whether the anabolic effects of contraction are exerted via the angiotensin type 1 receptor. Adult feline cardiocytes were cultured on laminin-coated trays in a serum-free medium. Cardiocytes were either electrically stimulated to contract (1 Hz, 5-ms pulse duration, alternating polarity) or were nonstimulated and quiescent. Quiescent cells were studied as controls and after treatment with angiotensin II (10(-8) M), losartan (10(-6) M; an angiotensin type 1-receptor antagonist), or angiotensin II plus losartan. Contracting cells were studied in the presence and absence of angiotensin II or losartan. In quiescent cardiocytes, angiotensin II treatment on day 7 significantly increased protein synthesis rates by 22% and protein content per cell by 17%. The effects of angiotensin II were completely blocked by losartan. Electrically stimulated contraction on days 4 and 7 in culture significantly increased protein synthesis rate by 18 and 38% and protein content per cell by 19 and 46%, respectively. Angiotensin II treatment did not further increase protein synthesis rate or protein content in contracting cardiocytes. Furthermore, losartan did not block the anabolic effects of contraction on protein synthesis rates or protein content. In conclusion, angiotensin II can exert a modest anabolic effect on adult feline cardiocytes in culture. In contracting feline cardiocytes, angiotensin II has no effect on growth. Growth caused by electrically stimulated contraction occurs more rapidly and is greater in magnitude than that caused by angiotensin II. Growth of contracting adult feline cardiocytes is not dependent on activation of the angiotensin receptor.

  11. Angiotensin II during Experimentally Simulated Central Hypovolemia

    PubMed Central

    Jensen, Theo Walther; Olsen, Niels Vidiendal

    2016-01-01

    Central hypovolemia, defined as diminished blood volume in the heart and pulmonary vascular bed, is still an unresolved problem from a therapeutic point of view. The development of pharmaceutical agents targeted at specific angiotensin II receptors, such as the non-peptidergic AT2-receptor agonist compound 21, is yielding many opportunities to uncover more knowledge about angiotensin II receptor profiles and possible therapeutic use. Cardiovascular, anti-inflammatory, and neuroprotective therapeutic use of compound 21 have been suggested. However, there has not yet been a focus on the use of these agents in a hypovolemic setting. We argue that the latest debates on the effect of angiotensin II during hypovolemia might guide for future studies, investigating the effect of such agents during experimentally simulated central hypovolemia. The purpose of this review is to examine the role of angiotensin II during episodes of central hypovolemia. To examine this, we reviewed results from studies with three experimental models of simulated hypovolemia: head up tilt table test, lower body negative pressure, and hemorrhage of animals. A systemic literature search was made with the use of PubMed/MEDLINE for studies that measured variables of the renin–angiotensin system or its effect during simulated hypovolemia. Twelve articles, using one of the three models, were included and showed a possible organ-protective effect and an effect on the sympathetic system of angiotensin II during hypovolemia. The results support the possible organ-protective vasodilatory role for the AT2-receptor during hypovolemia on both the kidney and the splanchnic tissue. PMID:26973842

  12. Angiotensin II increases diacylglycerol in calf adrenal glomerulosa cells by activating de novo phospholipid synthesis

    SciTech Connect

    Foster, R.H.; Farese, R.V. )

    1989-01-01

    Effects of angiotension II (AII) on diacylglycerol (DAG) synthesis were examined in calf adrenal glomerulosa cells. AII provoked rapid increases in ({sup 3}H) glycerol-labeling and content of DAG. Effects on ({sup 3}H) glycerol-labeling of DAG were observed both in cells prelabeled with ({sup 3}H) glycerol for 60 minutes, and when AII and ({sup 3}H) glycerol were added simultaneously. Increases in ({sup 3}H) DAG labeling were associated with increases in total glycerolipid labeling, and in simultaneous addition experiments, were preceded by increased ({sup 3}H) phosphatidic acid (PA) labeling. Labeling of glycerol-3-PO{sub 4}, on the other hand, was not increased by AII, suggesting that increases in lipid labeling were not due to prior increases in precursor specific activity. ACTH, which were not increase precursor specific activity. ACTH, which does not increase the hydrolysis of inositol-phospholipids appreciably in this tissue, provoked increases in content and ({sup 3}H) glycerol-labeling of DAG, which were only slightly less than those provoked by AII. Thus, part of the AII-induced increase in DAG may also be derived from sources other than inositol-phospholipids. Moreover, AII-induced increase in DAG appear to be at least partly derived from increased de novo synthesis of PA.

  13. Synthesis and structure-activity relationships of a novel series of non-peptide angiotensin II receptor binding inhibitors specific for the AT2 subtype.

    PubMed

    Blankley, C J; Hodges, J C; Klutchko, S R; Himmelsbach, R J; Chucholowski, A; Connolly, C J; Neergaard, S J; Van Nieuwenhze, M S; Sebastian, A; Quin, J

    1991-11-01

    Structure-activity relationships are reported for a novel class of 4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid derivatives that displace 125I-labeled angiotensin II from a specific subset of angiotensin II (Ang II) binding sites in rat adrenal preparations. This binding site is not the Ang II receptor mediating vascular contraction or aldosterone release, but, rather, is one whose function has not yet been fully elucidated. It has been identified in a number of tissues and has a similar affinity for Ang II and its peptide analogues as does the vascular receptor. The non-peptide compounds reported here are uniquely specific in displacing Ang II at this binding site and are inactive in antagonizing Ang II at the vascular receptor or in pharmacological assays measuring vascular effects. PD 123,319 (79), one of the most potent compounds, has an IC50 of 34 nM. Certain of these compounds may have utility in the definition and study of Ang II receptor subtypes.

  14. p38 Mitogen-Activated Protein Kinase (MAPK) Increases Arginase Activity and Contributes to Endothelial Dysfunction in Corpora Cavernosa from Angiotensin-II Treated Mice

    PubMed Central

    Toque, Haroldo A.; Romero, Maritza J.; Tostes, Rita C.; Shatanawi, Alia; Chandra, Surabhi; Carneiro, Zidonia N.; Inscho, Edward W.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2010-01-01

    Introduction Angiotensin II (AngII) activates p38 mitogen-activated protein kinase (MAPK) and elevates arginase activity in endothelial cells. Upregulation of arginase activity has been implicated in endothelial dysfunction by reducing NO bioavailability. However, signaling pathways activated by AngII in the penis are largely unknown. Aim We hypothesized that activation of p38 MAPK increases arginase activity and thus impairs penile vascular function in AngII-treated mice. Methods Male C57BL/6 mice were implanted with osmotic minipumps containing saline or AngII (42 μg/kg/h) for 14 days and co-treated with p38 MAPK inhibitor, SB 203580 (5 μg/kg/day), beginning 2 days before minipump implantation. Systolic blood pressure (SBP) was measured. Corpus cavernosum (CC) tissue was used for vascular functional studies and protein expression levels of p38 MAPK, arginase and constitutive NOS, and arginase activity. Main Outcome Measures Arginase expression and activity; expression of phospho-p38 MAPK, -eNOS and nNOS proteins; endothelium-dependent and nitrergic nerve-mediated relaxations were determined in CC from control and AngII-infused mice. Results AngII increased SBP (22%) and increased CC arginase activity and expression (~2-fold), and phosphorylated P38 MAPK levels (30%) over control. Treatment with SB 203580 prevented these effects. Endothelium-dependent NO-mediated relaxation to acetylcholine was significantly reduced by AngII and this effect was prevented by SB 203580 (P<0.01). AngII (2-week) did not alter nitrergic function. However, SB 203580 significantly increased nitrergic relaxation in both control and AngII tissue at lower frequencies. Maximum contractile responses for phenylephrine and electrical field stimulation were increased by AngII (56% and 171%, respectively), and attenuated by SB 203580 treated. AngII treatment also decreased eNOS phosphorylation at Ser-1177 compared to control. Treatment with SB 203580 prevented all these changes. Conclusion p38

  15. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt. PMID:15525798

  16. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  17. Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells.

    PubMed

    Leung, Joseph C K; Chan, Loretta Y Y; Saleem, M A; Mathieson, P W; Tang, Sydney C W; Lai, Kar Neng

    2015-07-01

    Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls. Conditioned media were prepared from growth arrested human mesangial cells (HMC) incubated with pIgA from patients with IgAN (IgA-HMC media) or healthy controls (Ctl-HMC media). A human podocyte cell line was used as a model to examine the regulation of the expression of AT1R, PRR, TNF-α and CTGF by IgA-HMC media. Podocytic nephrin expression, annexin V binding and caspase 3 activity were used as the functional readout of podocytic apoptosis. IgA-HMC media had no effect on AngII release by podocytes. IgA-HMC media significantly up-regulated the expression of AT1R and PRR, down-regulated nephrin expression and induced apoptosis in podocytes. Mono-blockade of AT1R, PRR, TNF-α or CTGF partially reduced podocytic apoptosis. IgA-HMC media activated NFκB, notch1 and HEY1 expression by podocytes and dual blockade of AT1R with PRR, or anti-TNF-α with anti-CTGF, effectively rescued the podocytic apoptosis induced by IgA-HMC media. Our data suggests that pIgA-activated HMC up-regulates the expression of AT1R and PRR expression by podocytes and the associated activation of NFκB and notch signalling pathways play an essential role in the podocytic apoptosis induced by glomerulo-podocytic communication in IgAN. Simultaneously targeting the AT1R and PRR could be a potential therapeutic option to reduce the podocytic injury in IgAN.

  18. Angiotensin(1-7) attenuated Angiotensin II-induced hepatocyte EMT by inhibiting NOX-derived H2O2-activated NLRP3 inflammasome/IL-1β/Smad circuit.

    PubMed

    Zhang, Li-Li; Huang, Shan; Ma, Xiao-Xin; Zhang, Wen-Yong; Wang, Dan; Jin, Si-Yi; Zhang, Yan-Ping; Li, Yang; Li, Xu

    2016-08-01

    Epithelial-mesenchymal transition (EMT) is correlated with NAPDH oxidase (NOX)-derived reactive oxygen species (ROS). The ROS-induced NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome is a novel mechanism of EMT. Angiotensin II (AngII) induces EMT by regulating intracellular ROS. Nevertheless, it has not been reported whether AngII could induce hepatocyte EMT. Angiotensin-(1-7) [Ang-(1-7)] can inhibit the effects of AngII via a counter-regulatory mechanism. However, whether Ang-(1-7) attenuated the effects of AngII on hepatocyte EMT remains unclear. The aim of this study was to determine whether Ang-(1-7) attenuated AngII-induced hepatocyte EMT by inhibiting the NOX-derived ROS-mediated NLRP3 inflammasome/IL-1ß/Smad circuit. In vivo, two animal models were established. In the first model, rats were infused AngII. In the second model, Ang-(1-7) was constantly infused into double bile duct ligated (BDL) rats. In vitro, hepatocytes were pretreated with antioxidant, NLRP3 siRNA, NOX4 siRNA, or Ang-(1-7) before exposure to AngII. In vitro, AngII induced hepatocyte EMT, which was inhibited by N-acetylcysteine (NAC), diphenylene iodonium (DPI), and NOX4 siRNA. NLRP3 inflammasome, which was activated by hydrogen peroxide (H2O2), mediated AngII-induced hepatocyte EMT. Ang-(1-7) suppressed AngII-induced EMT by inhibiting the NOX-derived H2O2-activated NLRP3 inflammasome/IL-1ß/Smad circuit. In vivo, infusion of AngII induced activation of H2O2-correlated NLRP3 inflammasome in rat livers and accumulation of α-collagen I (Col1A1) in hepatocytes. Infusion of Ang-(1-7) alleviated BDL-induced liver fibrosis and inhibited the expression of Col1A1 and the activation of NLRP3 inflammasome in hepatocytes. Ang-(1-7) attenuated AngII-induced hepatocyte EMT by inhibiting the NOX-derived H2O2-activated NLRP3 inflammasome/IL-1ß/Smad circuit.

  19. Contractile Function During Angiotensin-II Activation

    PubMed Central

    Zhang, Min; Prosser, Benjamin L.; Bamboye, Moradeke A.; Gondim, Antonio N.S.; Santos, Celio X.; Martin, Daniel; Ghigo, Alessandra; Perino, Alessia; Brewer, Alison C.; Ward, Christopher W.; Hirsch, Emilio; Lederer, W. Jonathan; Shah, Ajay M.

    2015-01-01

    Background Renin-angiotensin system activation is a feature of many cardiovascular conditions. Activity of myocardial reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2 or Nox2) is enhanced by angiotensin II (Ang II) and contributes to increased hypertrophy, fibrosis, and adverse remodeling. Recent studies found that Nox2-mediated reactive oxygen species production modulates physiological cardiomyocyte function. Objectives This study sought to investigate the effects of cardiomyocyte Nox2 on contractile function during increased Ang II activation. Methods We generated a cardiomyocyte-targeted Nox2-transgenic mouse model and studied the effects of in vivo and ex vivo Ang II stimulation, as well as chronic aortic banding. Results Chronic subpressor Ang II infusion induced greater cardiac hypertrophy in transgenic than wild-type mice but unexpectedly enhanced contractile function. Acute Ang II treatment also enhanced contractile function in transgenic hearts in vivo and transgenic cardiomyocytes ex vivo. Ang II–stimulated Nox2 activity increased sarcoplasmic reticulum (SR) Ca2+ uptake in transgenic mice, increased the Ca2+ transient and contractile amplitude, and accelerated cardiomyocyte contraction and relaxation. Elevated Nox2 activity increased phospholamban phosphorylation in both hearts and cardiomyocytes, related to inhibition of protein phosphatase 1 activity. In a model of aortic banding–induced chronic pressure overload, heart function was similarly depressed in transgenic and wild-type mice. Conclusions We identified a novel mechanism in which Nox2 modulates cardiomyocyte SR Ca2+ uptake and contractile function through redox-regulated changes in phospholamban phosphorylation. This mechanism can drive increased contractility in the short term in disease states characterized by enhanced renin-angiotensin system activation. PMID:26184620

  20. Participation of angiotensin II in learning and memory. II. Interactions of angiotensin II with dopaminergic drugs.

    PubMed

    Yonkov, D I; Georgiev, V P; Opitz, M J

    1986-04-01

    The effect of angiotensin II (ATII) and of its interactions with dopaminergic drugs injected post-trial on retention in active avoidance tasks in shuttle-box-trained rats were studied. ATII at doses of 0.10 and 0.50 micrograms administered intracerebroventricularly (i.c.v.) immediately after training improved retention. The dopaminergic receptor agonist apomorphine at a dose of 0.10 mg/kg injected intraperitoneally (i.p.) facilitated retention whereas elymoclavine (a dopaminergic agonist) at a dose of 2.5 mg/kg i.p. had no effect. ATII at a dose of 0.10 micrograms i.c.v. administered after apomorphine 0.10 mg/kg or elymoclavine 2.5 mg/kg exerted a stronger retention-facilitating effect. The dopaminergic receptor antagonist haloperidol at a dose of 1 mg/kg i.p. markedly impaired retention. ATII at a dose of 0.50 micrograms administered after haloperidol (1 mg/kg) did not exercise its retention-facilitating effect. It is concluded that the retention facilitating effects of ATII are realized through interactions with brain dopaminergic transmission.

  1. Cytoplasmic translocation of HuR contributes to angiotensin II induced cardiac fibrosis.

    PubMed

    Bai, Danna; Ge, Lan; Gao, Yan; Lu, Xiaozhao; Wang, Haichang; Yang, Guodong

    2015-08-01

    Cardiac fibrosis is one of the key structural changes of the hypertrophied left ventricle in hypertensive heart disease. Increased angiotensin II was found to be important in the hypertension related fibrosis, while the underlying mechanism is unknown. In this study, we found that angiotensin II dose-dependently increased the expression of Col1a1, Col3a1 and α-smooth muscle actin, which were blocked by ROS (reactive oxygen species) scavenger N-acetyl cysteine (NAC). Mechanistically, angiotensin II induced robust ROS generation, which in turn induced cytoplasmic translocation of RNA binding protein HuR. Cytoplasmic translocated HuR increased TGFβ pathway activity and subsequent collagen synthesis. In contrast, knockdown of HuR nearly blocked angiotensin II induced TGFβ activation and collagen synthesis. Taken together, we here identified that angiotensin II promotes collagen synthesis in cardiac fibroblast through ROS-HuR-TGFβ pathway.

  2. Cytoplasmic translocation of HuR contributes to angiotensin II induced cardiac fibrosis.

    PubMed

    Bai, Danna; Ge, Lan; Gao, Yan; Lu, Xiaozhao; Wang, Haichang; Yang, Guodong

    2015-08-01

    Cardiac fibrosis is one of the key structural changes of the hypertrophied left ventricle in hypertensive heart disease. Increased angiotensin II was found to be important in the hypertension related fibrosis, while the underlying mechanism is unknown. In this study, we found that angiotensin II dose-dependently increased the expression of Col1a1, Col3a1 and α-smooth muscle actin, which were blocked by ROS (reactive oxygen species) scavenger N-acetyl cysteine (NAC). Mechanistically, angiotensin II induced robust ROS generation, which in turn induced cytoplasmic translocation of RNA binding protein HuR. Cytoplasmic translocated HuR increased TGFβ pathway activity and subsequent collagen synthesis. In contrast, knockdown of HuR nearly blocked angiotensin II induced TGFβ activation and collagen synthesis. Taken together, we here identified that angiotensin II promotes collagen synthesis in cardiac fibroblast through ROS-HuR-TGFβ pathway. PMID:26093296

  3. Angiotensin II stimulates phospholipases C and A/sub 2/ in cultured rat mesangial cells

    SciTech Connect

    Schlondorff, D.; DeCandido, S.; Satriano, J.A.

    1987-07-01

    Angiotensin II stimulates prostaglandin (PG) E/sub 2/ formation in mesangial cells cultured from rat renal glomeruli. The interactions between angiotensin II and PGE/sub 2/ are important in modulating glomerular function. The authors examined the mechanism for stimulation of PGE/sub 2/ production in mesangial cells using the putative diacylglycerol-lipase inhibitor RHC 80267 and trifluoperazine (TFP), an agent interfering with Ca/sup 2 +/-CaM-mediated processes. Although RHC 80267 inhibited diacylglycerol-lipase activity in mesangial cells, it did not influence PGE/sub 2/ production in response to either angiotensin II or A23187. TFP also decreased /sup 14/C release in response to either angiotensin II of A23187. In contrast, TFP (50 ..mu..M) inhibited basal PGE/sub 2/ production and stimulation by angiotensin II and A23187. TFP also decreased /sup 14/C release in response to angiotensin from cells prelabeled with (/sup 14/C)arachidonic acid, which was associated with inhibition of /sup 14/C loss from phosphatidylinositol. In cells prelabeled with /sup 32/P, orthophosphate angiotensin II caused a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate. TFP enhanced formation of (/sup 3/H)inositol trisphosphate both under basal- and angiotensin II-stimulated conditions. Thus TFP did not inhibit phospholipase C activation by angiotensin. Angiotensin II caused marked increases in (/sup 32/P)lysophospholipids, indicating activation of also phospholipase A/sub 2/. Taken together, these results are consistent with stimulation of both phospholipase C and A/sub 2/ by angiotensin, the latter step responsible for the release of arachidonic acid and PGE/sub 2/ formation.

  4. Vascular and Central Activation of Peroxisome Proliferator-Activated Receptor-β Attenuates Angiotensin II-Induced Hypertension: Role of RGS-5.

    PubMed

    Romero, Miguel; Jiménez, Rosario; Toral, Marta; León-Gómez, Elvira; Gómez-Gúzman, Manuel; Sánchez, Manuel; Zarzuelo, María José; Rodríguez-Gómez, Isabel; Rath, Geraldine; Tamargo, Juan; Pérez-Vizcaíno, Francisco; Dessy, Chantal; Duarte, Juan

    2016-07-01

    Activation of peroxisome proliferator-activated receptor-β/δ (PPARβ) lowers blood pressure in genetic and mineralocorticoid-induced hypertension. Regulator of G-protein-coupled receptor signaling 5 (RGS5) protein, which interferes in angiotensin II (AngII) signaling, is a target gene to PPARβ The aim of the present study was to examine whether PPARβ activation in resistance arteries and brain tissues prevents the elevated blood pressure in AngII-induced hypertension and evaluate the role of RGS5 in this effect. C57BL/6J male mice were divided into five groups (control mice, PPARβ agonist [4-[[[2-[3-Fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy]acetic acid (GW0742)-treated mice AngII-infused mice, GW0742-treated AngII-infused mice, and AngII-infused mice treated with GW0742 plus PPARβ antagonist 3-[[[2-Methoxy-4-(phenylamino)phenyl]amino]sulfonyl]-2-thiophenecarboxylic acid methyl ester (GSK0660)) and were followed for 3 weeks. GW0742 prevented the increase in both arterial blood pressure and plasma noradrenaline levels and the higher reduction of blood pressure after ganglionic blockade, whereas it reduced the mesenteric arterial remodeling and the hyper-responsiveness to vasoconstrictors (AngII and endothelin-1) in AngII-infused mice. These effects were accompanied by an inhibition of NADPH oxidase expression and activity in the brain. Gene expression profiling revealed a marked loss of brainstem and vascular RGS5 in AngII-infused mice, which was restored by GW0742. GW0742-induced effects were abolished by GSK0660. Small interfering RNA targeting RGS5 caused augmented contractile response to AngII in resistance mesenteric arteries and blunted the inhibitory effect of GW0742 on this response. In conclusion, GW0742 exerted antihypertensive effects, restoring sympathetic tone and vascular structure and function in AngII-infused mice by PPARβ activation in brain and vessels inhibiting AngII signaling as a result of RGS5

  5. Angiotensin II AT1 receptor stimulates Na+–K+ ATPase activity through a pathway involving PKC-ζ in rat thyroid cells

    PubMed Central

    Marsigliante, S; Muscella, A; Elia, M G; Greco, S; Storelli, C

    2003-01-01

    Angiotensin II (Ang II) receptor subtype 1, AT1, is expressed by the rat thyroid. A relationship between thyroid function and several components of the renin-angiotensin system has also been established, but the Ang II cellular effects in thyrocytes and its transduction signalling remain undefined. The aim of the present paper was to investigate the modulation of the activity of the Na+-K+ ATPase by Ang II and its intracellular transduction pathway in PC-Cl3 cells, an established epithelial cell line derived from rat thyroid. Here we have demonstrated, by RT-PCR analysis, the expression of mRNA for the Ang II AT1 receptor in PC-Cl3 cells; mRNA for the Ang II AT2 receptor was not detected. Ang II was not able to affect the intracellular Ca2+ concentration in fura-2-loaded cells, but it stimulated the translocation from the cytosol to the plasma membrane of atypical protein kinase C-zeta (PKC-ζ) and -iota (PKC-ι) isoforms with subsequent phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1 and 2). Translocated atypical PKCs displayed temporally different activations, the activation of PKC-ζ being the fastest. PC-Cl3 cells stimulated with increasing Ang II concentrations showed dose- and time-dependent activation of the Na+-K+ ATPase activity, which paralleled the PKC-ζ translocation time course. Na+-K+ ATPase activity modulation was dependent on PKC activation since the PKC antagonist staurosporine abolished the stimulatory effect of Ang II. The inhibition of the ERK kinases 1 and 2 (MEK1 and 2) by PD098059 (2′-amino-3′-methoxyflavone) failed to block the effect of Ang II on the Na+-K+ ATPase activity. In conclusion, our results suggest that Ang II modulates Na+-K+ ATPase activity in PC-Cl3 cells through the AT1 receptor via activation of atypical PKC-ζ while the Ang II-activated PKC-ζ appears to have other as yet unknown functions. PMID:12527732

  6. Atrial natriuretic peptide inhibits the expression of tissue factor and plasminogen activator inhibitor 1 induced by angiotensin II in cultured rat aortic endothelial cells.

    PubMed

    Yoshizumi, M; Tsuji, H; Nishimura, H; Kasahara, T; Sugano, T; Masuda, H; Nakagawa, K; Nakahara, Y; Kitamura, H; Yamada, K; Yoneda, M; Sawada, S; Nakagawa, M

    1998-03-01

    The pharmacological characteristics of atrial natriuretic peptide (ANP), such as natriuresis, vasodilation, or suppression of smooth muscle cell proliferation, are well investigated. However, this is the first study to report its role on blood coagulation and fibrinolysis mediated by vascular endothelial cells. In this study, the effects of ANP on the enhanced expression of tissue factor (TF) and plasminogen activator inhibitor 1 (PAI-1) by angiotensin II (Ang II) in cultured rat aortic endothelial cells (RAECs) were examined. The expressions of TF and PAI-1 mRNA were detected by northern blotting methods. The activities of TF on the surface of RAECs and PAI-1 in the culture media were measured by chromogenic assay. ANP suppressed mRNA expressions of TF and PAI-1 induced by Ang II in a concentration-dependent manner. This suppression was accompanied by the decreased activities of TF and PAI-1.

  7. Cardiac Overexpression of Constitutively Active Galpha q Causes Angiotensin II Type1 Receptor Activation, Leading to Progressive Heart Failure and Ventricular Arrhythmias in Transgenic Mice

    PubMed Central

    Matsushita, Naoko; Kashihara, Toshihide; Shimojo, Hisashi; Suzuki, Satoshi; Nakada, Tsutomu; Takeishi, Yasuchika; Mende, Ulrike; Taira, Eiichi; Yamada, Mitsuhiko; Sanbe, Atsushi; Hirose, Masamichi

    2014-01-01

    Background Transgenic mice with transient cardiac expression of constitutively active Galpha q (Gαq-TG) exhibt progressive heart failure and ventricular arrhythmias after the initiating stimulus of transfected constitutively active Gαq becomes undetectable. However, the mechanisms are still unknown. We examined the effects of chronic administration of olmesartan on heart failure and ventricular arrhythmia in Gαq-TG mice. Methodology/Principal Findings Olmesartan (1 mg/kg/day) or vehicle was chronically administered to Gαq-TG from 6 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic olmesartan administration prevented the severe reduction of left ventricular fractional shortening, and inhibited ventricular interstitial fibrosis and ventricular myocyte hypertrophy in Gαq-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC) was frequently (more than 20 beats/min) observed in 9 of 10 vehicle-treated Gαq-TG but in none of 10 olmesartan-treated Gαq-TG. The collected QT interval and monophasic action potential duration in the left ventricle were significantly shorter in olmesartan-treated Gαq-TG than in vehicle-treated Gαq-TG. CTGF, collagen type 1, ANP, BNP, and β-MHC gene expression was increased and olmesartan significantly decreased the expression of these genes in Gαq-TG mouse ventricles. The expression of canonical transient receptor potential (TRPC) 3 and 6 channel and angiotensin converting enzyme (ACE) proteins but not angiotensin II type 1 (AT1) receptor was increased in Gαq-TG ventricles compared with NTG mouse ventricles. Olmesartan significantly decreased TRPC6 and tended to decrease ACE expressions in Gαq-TG. Moreover, it increased AT1 receptor in Gαq-TG. Conclusions/Significance These findings suggest that angiotensin II type 1 receptor activation plays an important role in the development of heart failure and ventricular arrhythmia in Gαq-TG mouse model of heart failure

  8. Angiotensin II induces secretion of plasminogen activator inhibitor 1 and a tissue metalloprotease inhibitor-related protein from rat brain astrocytes

    SciTech Connect

    Olson, J.A. Jr.; Shiverick, K.T.; Ogilvie, S.; Buhi, W.C.; Raizada, M.K. )

    1991-03-01

    The present study investigates angiotensin (Ang) II effects on secretory protein synthesis in brain astrocytes cultured from neonatal and 21-day-old rats. Ang II-induced changes in the de novo synthesis of (35S)methionine-labeled secretory proteins were visualized using two-dimensional NaDodSO4/PAGE. Astrocytes from 21-day-old rat brain possess specific high-affinity receptors for Ang II. These cells express two Ang II-induced secretory proteins with Mr 55,000 (AISP-55K) and Mr 30,000 (AISP-30K), which were time- and dose-dependent (EC50, 1 nM). (Sar1, Ile8)Ang II (where Sar is sarcosine) inhibited Ang II-induced secretion of AISP-55K but not AISP-30K. N-terminal amino acid sequencing indicates that AISP-55K is identical to rat plasminogen activator inhibitor 1, whereas AISP-30K exhibits 72-81% identity to three closely related proteins: human tissue inhibitor of metalloproteases, a rat phorbol ester-induced protein, and the murine growth-responsive protein 16C8. Immunofluorescent staining with rat plasminogen activator inhibitor 1 antibody was induced in the majority of cells in culture after Ang II treatment of astrocytes from 21-day-old rat brains. Absence of this response to Ang II in astrocytes from neonatal rat brain provides evidence that this action of Ang II on astrocytes is developmentally regulated.

  9. Angiotensin II receptor alterations during pregnancy in rabbits

    SciTech Connect

    Brown, G.P.; Venuto, R.C.

    1986-07-01

    Despite activation of the renin-angiotensin system during pregnancy, renal and peripheral vascular blood flows increase, and the systemic blood pressure and the pressor response to exogenous angiotensin II (Ang II) fall. Gestational alterations in Ang II receptors could contribute to these changes. Ang II binding parameters were determining utilizing SVI-Ang II in vascular (glomeruli and mesenteric arteries) and nonvascular (adrenal glomerulosa) tissues from 24- to 28-day pregnant rabbits. Comparisons were made utilizing tissues from nonpregnant rabbits. Binding site concentrations (N) and dissociation constants (K/sub d/) were obtained by Scatchard analyses of binding inhibition data. Meclofenamate (M) inhibits prostaglandin synthesis, reduces plasma renin activity, and enhances the pressor response to infused Ang II in pregnant rabbits. Administration of M to pregnant rabbits increased N in glomerular and in mesenteric artery membranes. These data demonstrate that Ang II receptors in glomeruli and mesenteric arteries are down regulated during gestation in rabbits. Elevated endogenous Ang II during pregnancy in rabbits may contribute to the down regulation of vascular Ang II receptors.

  10. Arsenic causes aortic dysfunction and systemic hypertension in rats: Augmentation of angiotensin II signaling.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kandasamy, Kannan; Choudhury, Soumen; Kutty, Harikumar Sankaran; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2015-07-25

    The groundwater pollutant arsenic can cause various cardiovascular disorders. Angiotensin II, a potent vasoconstrictor, plays an important role in vascular dysfunction by promoting changes in endothelial function, vascular reactivity, tissue remodeling and oxidative stress. We investigated whether modulation of angiotensin II signaling and redox homeostasis could be a mechanism contributing to arsenic-induced vascular disorder. Rats were exposed to arsenic at 25, 50 and 100ppm of sodium arsenite through drinking water consecutively for 90 days. Blood pressure was recorded weekly. On the 91st day, the rats were sacrificed for blood collection and isolation of thoracic aorta. Angiotensin converting enzyme and angiotensin II levels were assessed in plasma. Aortic reactivity to angiotensin II was assessed in organ-bath system. Western blot of AT1 receptors and G protein (Gαq/11), ELISA of signal transducers of MAP kinase pathway and reactive oxygen species (ROS) generation were assessed in aorta. Arsenic caused concentration-dependent increase in systolic, diastolic and mean arterial blood pressure from the 10th, 8th and 7th week onwards, respectively. Arsenic caused concentration-dependent enhancement of the angiotensin II-induced aortic contractile response. Arsenic also caused concentration-dependent increase in the plasma levels of angiotensin II and angiotensin converting enzyme and the expression of aortic AT1 receptor and Gαq/11 proteins. Arsenic increased aortic protein kinase C activity and the concentrations of protein tyrosine kinase, extracellular signal-regulated kinase-1/2 and vascular endothelial growth factor. Further, arsenic increased aortic mRNA expression of Nox2, Nox4 and p22phox, NADPH oxidase activity and ROS generation. The results suggest that arsenic-mediated enhancement of angiotensin II signaling could be an important mechanism in the arsenic-induced vascular disorder, where ROS could augment the angiotensin II signaling through activation

  11. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells.

    PubMed

    Morales, María Gabriela; Vazquez, Yaneisi; Acuña, María José; Rivera, Juan Carlos; Simon, Felipe; Salas, José Diego; Alvarez Ruf, Joel; Brandan, Enrique; Cabello-Verrugio, Claudio

    2012-11-01

    Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF

  12. Lovastatin prevents angiotensin II-induced cardiac hypertrophy in cultured neonatal rat heart cells.

    PubMed

    Oi, S; Haneda, T; Osaki, J; Kashiwagi, Y; Nakamura, Y; Kawabe, J; Kikuchi, K

    1999-07-01

    Angiotensin II activates p21ras, and mediates cardiac hypertrophic growth through the type 1 angiotensin II receptor in cardiac myocytes. An inhibitor of 3-hydroxy-3-methyglutaryl-coenzyme A (HMG-CoA) reductase has been shown to block the post-translational farnesylation of p21ras and inhibit protein synthesis in several cell types. Primary cultures of neonatal cardiac myocytes were used to determine whether HMG-CoA reductase inhibitors, lovastatin, simvastatin and pravastatin inhibit the angiotensin II-induced hypertrophic growth. Angiotensin II (10(-6) M) significantly increased protein-DNA ratio, RNA-DNA ratio, ratios of protein synthesis and mitogen-activated protein (MAP) kinase activity. Lipid-soluble HMG-CoA reductase inhibitors, lovastatin (10(-6) M) and simvastatin (10(-6) M) partially and significantly inhibited the angiotensin II-induced increases in these parameters, but a water-soluble HMG-CoA reductase inhibitor, pravastatin (10(-6) M) did not. Mevalonate (10(-4) M) overcame the inhibitory effects of lovastatin and simvastatin on angiotensin II-induced increases in these parameters. A selective protein kinase C inhibitor, calphostin C (10(-6) M) partially and significantly prevented angiotensin II-induced increases in these parameters, and treatment with both lovastatin and calphostin C inhibited completely. Angiotensin II increased p21ras activity and membrane association, and lovastatin inhibited them. These studies demonstrate that a lipid-soluble HMG-CoA reductase inhibitor, lovastatin, may prevent angiotensin II-induced cardiac hypertrophy, at least in part, through p21ras/MAP kinase pathway, which is linked to mevalonate metabolism.

  13. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings. PMID:23918749

  14. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme.

    PubMed

    Agata, Jun; Ura, Nobuyuki; Yoshida, Hideaki; Shinshi, Yasuyuki; Sasaki, Haruki; Hyakkoku, Masaya; Taniguchi, Shinya; Shimamoto, Kazuaki

    2006-11-01

    Angiotensin II receptor blockers (ARBs) are widely used for the treatment of hypertension. It is believed that treatment with an ARB increases the level of plasma angiotensin II (Ang II) because of a lack of negative feedback on renin activity. However, Ichikawa (Hypertens Res 2001; 24: 641-646) reported that long-term treatment of hypertensive patients with olmesartan resulted in a reduction in plasma Ang II level, though the mechanism was not determined. It has been reported that angiotensin 1-7 (Ang-(1-7)) potentiates the effect of bradykinin and acts as an angiotensin-converting enzyme (ACE) inhibitor. It is known that ACE2, which was discovered as a novel ACE-related carboxypeptidase in 2000, hydrolyzes Ang I to Ang-(1-9) and also Ang II to Ang-(1-7). It has recently been reported that olmesartan increases plasma Ang-(1-7) through an increase in ACE2 expression in rats with myocardial infarction. We hypothesized that over-expression of ACE2 may be related to a reduction in Ang II level and the cardioprotective effect of olmesartan. Administration of 0.5 mg/kg/day of olmesartan for 4 weeks to 12-week-old stroke-prone spontaneously hypertensive rats (SHRSP) significantly reduced blood pressure and left ventricular weight compared to those in SHRSP given a vehicle. Co-administration of olmesartan and (D-Ala7)-Ang-(1-7), a selective Ang-(1-7) antagonist, partially inhibited the effect of olmesartan on blood pressure and left ventricular weight. Interestingly, co-administration of (D-Ala7)-Ang-(1-7) with olmesartan significantly increased the plasma Ang II level (453.2+/-113.8 pg/ml) compared to olmesartan alone (144.9+/-27.0 pg/ml, p<0.05). Moreover, olmesartan significantly increased the cardiac ACE2 expression level compared to that in Wistar Kyoto rats and SHRSP treated with a vehicle. Olmesartan significantly improved cardiovascular remodeling and cardiac nitrite/ nitrate content, but co-administration of olmesartan and (D-Ala7)-Ang-(1-7) partially reversed

  15. Angiotensin-(1-7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells

    SciTech Connect

    Zhang, Feng; Ren, Jingyi; Chan, Kenneth; Chen, Hong

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We for the first time found that Ang-(1-7) inhibits Ang II-induced VCAM-1 expression. Black-Right-Pointing-Pointer The inhibitory effect of Ang-(1-7) on VCAM-1 is mediated by MAS receptor. Black-Right-Pointing-Pointer The effect of Ang-(1-7) is due to the suppression of NF-kappaB translocation. -- Abstract: Angiotensin II (Ang II) and Angiotensin-(1-7) (Ang-(1-7)) are key effector peptides in the renin-angiotensin system. Increased circulatory Ang II level is associated with the development of hypertension and atherosclerosis, whereas Ang-(1-7) is a counter-regulatory mediator of Ang II which appears to be protective against cardiovascular disease. However, whether Ang-(1-7) regulates the action of Ang II on vascular endothelial cells (EC) remains unclear. We investigated the effects of Ang II and Ang-(1-7) in the context of atherogenesis, specifically endothelial cell VCAM-1 expression that is implicated in early plaque formation. The results show that Ang II increased VCAM-1 mRNA expression and protein displayed on EC surface, while Ang-(1-7) alone exerted no effects. However, Ang-(1-7) significantly suppressed Ang II-induced VCAM-1 expression. Ang-(1-7) also inhibited the Ang II-induced VCAM-1 promoter activity driven by transcription factor NF-KappaB. Furthermore, immunofluorescence assay and ELISA showed that Ang II facilitated the nuclear translocation of NF-kappaB in ECs, and this was attenuated by the presence of Ang-(1-7). The inhibitory effects of Ang-(1-7) on Ang II-induced VCAM-1 promoter activity and NF-kappaB nuclear translocation were all reversed by the competitive antagonist of Ang-(1-7) at the Mas receptor. Our results suggest that Ang-(1-7) mediates its affects on ECs through the Mas receptor, and negatively regulates Ang II-induced VCAM-1 expression by attenuating nuclear translocation of NF-kappaB.

  16. Angiotensin II: multitasking in the brain.

    PubMed

    Saavedra, Juan M; Benicky, Julius; Zhou, Jin

    2006-03-01

    In addition to controlling systemic blood pressure, angiotensin II (Ang II) has several roles in the brain, including the regulation of cerebrovascular flow and the reaction to stress. In order to clarify the central effects of Ang II and its type 1 (AT1) receptors, we reviewed the literature reporting recent research on the effects of pretreatment with the AT1-receptor blocker, candesartan, on experimental ischemia, cerebrovascular remodeling, and inflammation in spontaneously hypertensive rats (SHRs), and the responses to stress induced by isolation and by cold-restraint. Angiotensin II regulates the brain circulation through stimulation of AT1-receptors located in the cerebrovascular endothelium and central pathways. SHRs express greater numbers of endothelial AT1-receptors and a central sympathetic overdrive, resulting in pathological cerebrovascular growth, inflammation, decreased cerebrovascular compliance, and enhanced vulnerability to brain ischemia. Sustained central AT1-receptor antagonism reverses these effects. Sustained reduction of AT1-receptor stimulation before stress prevents the hormonal and sympathoadrenal stress responses during isolation and prevents the gastric ulceration stress response to cold-restraint, indicating that increased AT1-receptor stimulation is essential to enhance the central sympathetic response and the formation and release of corticotropin-releasing factor (CRF) and arginine vasopressin that occur during stress. AT1-receptor blocking agents reverse the cortical alterations in CRF1 and benzodiazepine receptors characteristic of isolation stress, effects probably related to their anti-anxiety effect in rodents. Sustained reduction of Ang II tone by AT1-receptor antagonism could be considered as a preventive and therapeutic approach for brain ischemia and stress-related and mood disorders. Additional preclinical studies and controlled clinical trials are necessary to confirm the efficacy of this novel therapeutic approach.

  17. How does angiotensin II increase cardiac dopamine-beta-hydroxylation?

    PubMed

    Chevillard, C; Duchene, N; Alexandre, J M

    1975-03-01

    The potent accelerating effect of angiotensin II (Ang II) on caridac dopamine beta-hydroxylation was studied on slices of rat heart. Ang II did not affect the kinetics of beta-hydroxylation but it increased the axonal uptake of dopamine, and, concomitant with the acceleration of biosynthesis, it enhanced the accumulation of dopamine into tissue. Puromycin, in contrast to actinomycin D, antagonized the stimulation of dopamine beta-hydroxylation by Ang II, but did not suppress the rise in cardiac dopamine. Therefore, to promote the acceleration of dopamine beta-hydroxylation, (i) the rise in tissue dopamine available for conversion appeared to be insufficient, (ii) the formation of new proteins by activation of traduction seemed to constitute the basic mechanism of Ang II action.

  18. Inhibition of Proteasome Activity by Low-dose Bortezomib Attenuates Angiotensin II-induced Abdominal Aortic Aneurysm in Apo E−/− Mice

    PubMed Central

    Ren, Hualiang; Li, Fangda; Tian, Cui; Nie, Hao; Wang, Lei; Li, Hui-Hua; Zheng, Yuehong

    2015-01-01

    Abdominal aortic aneurysm (AAA) is a leading cause of sudden death in aged people. Activation of ubiquitin proteasome system (UPS) plays a critical role in the protein quality control and various diseases. However, the functional role of UPS in AAA formation remains unclear. In this study, we found that the proteasome activities and subunit expressions in AAA tissues from human and angiotensin II (Ang II)-infused apolipoprotein E knockout (Apo E−/−) mice were significantly increased. To investigate the effect of proteasome activation on the AAA formation, Apo E−/− mice were cotreated with bortezomib (BTZ) (a proteasome inhibitor, 50 μg/kg, 2 times per week) and Ang II (1000 ng/kg/min) up to 28 days. Ang II infusion significantly increased the incidence and severity of AAA in Apo E−/− mice, whereas BTZ treatment markedly inhibited proteasome activities and prevented AAA formation. Furthermore, BTZ treatment significantly reduced the inflammation, inhibited the metal matrix metalloprotease activity, and reversed the phenotypic SMC modulation in AAA tissue. In conclusion, these results provide a new evidence that proteasome activation plays a critical role in AAA formation through multiple mechanisms, and suggest that BTZ might be a novel therapeutic target for treatment of AAA formation. PMID:26508670

  19. Pancreatic angiotensin-converting enzyme 2 improves glycemia in angiotensin II-infused mice

    PubMed Central

    Chhabra, Kavaljit H.; Xia, Huijing; Pedersen, Kim Brint; Speth, Robert C.

    2013-01-01

    An overactive renin-angiotensin system (RAS) is known to contribute to type 2 diabetes mellitus (T2DM). Although ACE2 overexpression has been shown to be protective against the overactive RAS, a role for pancreatic ACE2, particularly in the islets of Langerhans, in regulating glycemia in response to elevated angiotensin II (Ang II) levels remains to be elucidated. This study examined the role of endogenous pancreatic ACE2 and the impact of elevated Ang II levels on the enzyme's ability to alleviate hyperglycemia in an Ang II infusion mouse model. Male C57bl/6J mice were infused with Ang II or saline for a period of 14 days. On the 7th day of infusion, either an adenovirus encoding human ACE2 (Ad-hACE2) or a control adenovirus (Ad-eGFP) was injected into the mouse pancreas. After an additional 7–8 days, glycemia and plasma insulin levels as well as RAS components expression and oxidative stress were assessed. Ang II-infused mice exhibited hyperglycemia, hyperinsulinemia, and impaired glucose-stimulated insulin secretion from pancreatic islets compared with control mice. This phenotype was associated with decreased ACE2 expression and activity, increased Ang II type 1 receptor (AT1R) expression, and increased oxidative stress in the mouse pancreas. Ad-hACE2 treatment restored pancreatic ACE2 expression and compensatory activity against Ang II-mediated impaired glycemia, thus improving β-cell function. Our data suggest that decreased pancreatic ACE2 is a link between overactive RAS and impaired glycemia in T2DM. Moreover, maintenance of a normal endogenous ACE2 compensatory activity in the pancreas appears critical to avoid β-cell dysfunction, supporting a therapeutic potential for ACE2 in controlling diabetes resulting from an overactive RAS. PMID:23462816

  20. Interaction between Angiotensin II and Insulin/IGF-1 Exerted a Synergistic Stimulatory Effect on ERK1/2 Activation in Adrenocortical Carcinoma H295R Cells

    PubMed Central

    Tong, An-li; Wang, Fen; Cui, Yun-ying; Li, Chun-yan; Li, Yu-xiu

    2016-01-01

    The cross talk between angiotensin II (Ang II) and insulin has been described mainly in cardiovascular cells, hepatocytes, adipocytes, and so forth, and to date no such cross talk was reported in adrenal. In this study, we examined the interaction between Ang II and insulin/IGF-1 in ERK and AKT signaling pathways and expression of steroidogenic enzymes in H295R cells. Compared to the control, 100 nM Ang II increased phospho-ERK1/2 approximately 3-fold. Insulin (100 nM) or IGF-1 (10 nM) alone raised phospho-ERK1/2 1.8- and 1.5-fold, respectively, while, after pretreatment with 100 nM Ang II for 30 min, insulin (100 nM) or IGF-1 (10 nM) elevated phospho-ERK1/2 level 8- and 7-fold, respectively. The synergistic effect of Ang II and insulin/IGF-1 on ERK1/2 activation was inhibited by selective AT1 receptor blocker, PKC inhibitor, and MEK1/2 inhibitor. Ang II marginally suppressed AKT activation under the basal condition, while it had no effect on phospho-AKT induced by insulin/IGF-1. Ang II significantly stimulated mRNA expression of CYP11B1 and CYP11B2, and such stimulatory effects were enhanced when cells were cotreated with insulin/IGF-1. We are led to conclude that Ang II in combination with insulin/IGF-1 had an evident synergistic stimulatory effect on ERK1/2 activation in H295R cells and the effect may be responsible for the enhanced steroid hormone production induced by Ang II plus insulin/IGF-1. PMID:27293433

  1. The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes.

    PubMed Central

    Sadoshima, J; Izumo, S

    1996-01-01

    p21 ras plays as important role in cell proliferation, transformation and differentiation. Recently, the requirement of p21 ras has been suggested for cellular responses induced by stimulation of heterotrimeric G protein-coupled receptors. However, it remains to be determined how agonists for G protein-coupled receptors activate p21 ras in metazoans. We show here that stimulation of the G q protein-coupled angiotensin II (Ang II) receptor causes activation of p21 ras in cardiac myocytes. The p21 ras activation by Ang II is mediated by an increase in the guanine nucleotide exchange activity, but not by an inhibition of the GTPase-activating protein. Ang II causes rapid tyrosine phosphorylation of Shc and its association with Grb2 and mSos-1, a guanine nucleotide exchange factor of p21 ras. This leads to translocation of mSos-1 to the membrane fraction. Shc associates with the SH3 domain of Fyn whose tyrosine kinase activity is activated by Ang II with a similar time course as that of tyrosine phosphorylation of Shc. Ang II-induced increase in the guanine nucleotide exchange activity was inhibited by a peptide ligand specific to the SH3 domain of the Src family tyrosine kinases. These results suggest that an agonist for a pertussis toxin-insensitive G protein-coupled receptor may initiate the cross-talk with non-receptor-type tyrosine kinases, thereby activating p21 ras using a similar mechanism as receptor tyrosine kinase-induced p21 ras activation. Images PMID:8631299

  2. Angiotensin II reduces calcium uptake into bone.

    PubMed

    Schurman, Scott J; Bergstrom, William H; Shoemaker, Lawrence R; Welch, Thomas R

    2004-01-01

    Children with neonatal Bartter syndrome (NBS) have hypercalciuria, nephrocalcinosis, and osteopenia. A complex of basic-fibroblast growth factor (b-FGF) and a naturally occurring glycosaminoglycan has been identified in the serum and urine of NBS patients. This complex increases bone resorption in a bone disc bioassay system. Angiotensin II (AT II), which is increased in Bartter syndrome, increases the synthesis of b-FGF by cultured endothelial cells. Addition of 10(-8) M AT II to the bioassay, a concentration reported in Bartter syndrome patients, significantly decreased calcium uptake into bone discs [E/C 0.60 (0.04), P < 0.001 compared with buffer, normal E/C >0.90]. Adding b-FGF monoclonal antibody at 10 microg/ml [E/C 0.90 (0.06), P=NS] or indomethacin [E/C 1.00 (0.03), P=NS] to 10(-8 )M AT II neutralized this effect. In separate experiments, newborn rats were given intraperitoneal injections of AT II. Bone discs from these animals were used in the bioassay system and calcium uptake was markedly reduced compared with discs from rats injected with phosphate-buffered saline [AT II 6.6 x 10(-9), E/C 0.10 (0.04), P<0.001, AT II 3.3 x 10(-8), E/C 0.10 (0.05), P<0.001]. AT II decreases calcium uptake in the bone disc bioassay system. This effect can be abrogated by antibody to b-FGF or prostaglandin synthetase inhibition. These results support the hypothesis that in children with NBS, elevated levels of AT II stimulate local skeletal b-FGF synthesis, with a resultant increase in bone resorption via a prostaglandin-dependent pathway. PMID:14648327

  3. The angiotensin hexapeptide 3-8 fragment potently inhibits [125I]angiotensin II binding to non-AT1 or -AT2 recognition sites in bovine adrenal cortex.

    PubMed

    Jarvis, M F; Gessner, G W; Ly, C Q

    1992-08-25

    In the present studies, ligand competition experiments were conducted to examine the ability of angiotensin II peptide agonists and nonpeptide AT1- and AT2-selective receptor antagonists to inhibit the binding of [125I]angiotensin II to bovine adrenal cortical membranes. Angiotensin II, angiotensin III, the All-(3-8) hexapeptide fragment of angiotensin II, and the AT1-selective receptor antagonist L-158,809, inhibited [125I]angiotensin II binding in a biphasic fashion indicative of a ligand interaction at more than one recognition site. Approximately 20% of low affinity [125I]angiotensin II binding was inhibited only by high micromolar concentrations of L-158,809. RG 13647 (1(-1,4-benzodioxan-2-methyl)-5-diphenylacetyl-4,5,6,7-tetra hydro-1H-imidazo- [4,5,c]-pyridine-6-carboxylic acid) represents a potent and AT2-selective analog of PD 123177 and showed weak activity in competing for [125I]angiotensin II binding with an IC50 value of 100 microM. When subsequent competition studies were conducted in the presence of 1 microM L-158,809 to block [125I]angiotensin II to the AT1 receptor subtype, the angiotensin II agonists produced monophasic inhibition curves with AII-(3-8) showing the greatest activity (IC50 = 6 nM) followed by angiotensin III (IC50 = 15 nM) much greater than angiotensin II (IC50 = 110 nM). RG 13647 was not found to significantly inhibit this portion of [125I]angiotensin II binding. These data demonstrate that bovine adrenal cortex contains both the AT1 receptor subtype, as well as, a novel class of [125I]angiotensin II recognition sites which may be analogous to the recently described angiotensin IV (AT4) receptor.

  4. β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells.

    PubMed

    Charles, Ricardo; Namkung, Yoon; Cotton, Mathieu; Laporte, Stéphane A; Claing, Audrey

    2016-02-19

    Angiotensin II (Ang II) is a vasopressive hormone but is also a potent activator of cellular migration. We have previously shown that it can promote the activation of the GTPase ARF6 in a heterologous overexpressing system. The molecular mechanisms by which receptors control the activation of this small G protein remain, however, largely unknown. Furthermore, how ARF6 coordinates the activation of complex cellular responses needs to be further elucidated. In this study, we demonstrate that Ang II receptors engage β-arrestin, but not Gq, to mediate ARF6 activation in HEK 293 cells. To further confirm the key role of β-arrestin proteins, we overexpressed β-arrestin2-(1-320), a dominant negative mutant known to block receptor endocytosis. We show that expression of this truncated construct does not support the activation of the GTPase nor cell migration. Interestingly, β-arrestin2 can interact with the ARF guanine nucleotide exchange factor ARNO, although the C-terminally lacking mutant does not. We finally examined whether receptor endocytosis controlled ARF6 activation and cell migration. Although the clathrin inhibitor PitStop2 did not impact the ability of Ang II to activate ARF6, cell migration was markedly impaired. To further show that ARF activation regulates key signaling events leading to migration, we also examined MAPK activation. We demonstrate that this signaling axis is relevant in smooth muscle cells of the vasculature. Altogether, our findings show for the first time that Ang II receptor signaling to β-arrestin regulates ARF6 activation. These proteins together control receptor endocytosis and ultimately cell migration.

  5. Identification of angiotensin II receptor subtypes

    SciTech Connect

    Chiu, A.T.; Herblin, W.F.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L.; )

    1989-11-30

    We have demonstrated the existence of two distinct subtypes of the angiotensin II receptor in the rat adrenal gland using radioligand binding and tissue section autoradiography. The identification of the subtypes was made possible by the discovery of two structurally dissimilar, nonpeptide compounds, DuP 753 and EXP655, that show reciprocal selectivity for the two subtypes. In the rat adrenal cortex, DuP 753 inhibited 80% of the total AII binding with an IC50 value on the sensitive sites of 2 x 10(-8) M, while EXP655 displaced only 20%. In the rat adrenal medulla, EXP655 gave 90% inhibition of AII binding with an IC50 value of 3.0 x 10(-8) M, while DuP 753 was essentially inactive. The combination of the two compounds completely inhibited AII binding in both tissues.

  6. Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation

    PubMed Central

    Bruder-Nascimento, T; Chinnasamy, P; Riascos-Bernal, DF; Cau, SB; Callera, GE; Touyz, RM; Tostes, RC; Sibinga, NES

    2013-01-01

    Fat1 is an atypical cadherin that controls vascular smooth muscle cell (VSMC) proliferation and migration. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1) is an important source of reactive oxygen species (ROS) in VSMCs. Angiotensin II (Ang II) induces the expression and/or activation of both Fat1 and Nox1 proteins. This study tested the hypothesis that Ang II-induced Fat1 activation and VSMC migration are mediated by Nox1-dependent ROS generation and redox signaling. Studies were performed in cultured VSMCs from Sprague-Dawley rats. Cells were treated with Ang II (1 μmol/L) for short (5 to 30 min) or long term stimulations (3 to 12 h) in the absence or presence of the antioxidant apocynin (10 μmol/L), extracellular-signal-regulated kinases 1/2 (Erk1/2) inhibitor PD98059 (1 μmol/L), or Ang II type 1 receptor (AT1R) valsartan (1 μmol/L). siRNA was used to knockdown Nox1 or Fat1. Cell migration was determined by Boyden chamber assay. Ang II increased Fat1 mRNA and protein levels and promoted Fat1 translocation to the cell membrane, responses that were inhibited by AT1R antagonist and antioxidant treatment. Downregulation of Nox1 inhibited the effects of Ang II on Fat1 protein expression. Nox1 protein induction, ROS generation, and p44/p42 MAPK phosphorylation in response to Ang II were prevented by valsartan and apocynin, and Nox1 siRNA inhibited Ang II-induced ROS generation. Knockdown of Fat1 did not affect Ang II-mediated increases in Nox1 expression or ROS. Inhibition of p44/p42 MAPK phosphorylation by PD98059 abrogated the Ang II-induced increase in Fat1 expression and membrane translocation. Knockdown of Fat1 inhibited Ang II-induced VSMC migration, which was also prevented by valsartan, apocynin, PD98059, and Nox1 siRNA. Our findings indicate that Ang II regulates Fat1 expression and activity and induces Fat1-dependent VSMC migration via activation of AT1R, ERK1/2, and Nox1-derived ROS, suggesting a role for Fat1 downstream of Ang II

  7. Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation.

    PubMed

    Xue, Baojian; Yu, Yang; Zhang, Zhongming; Guo, Fang; Beltz, Terry G; Thunhorst, Robert L; Felder, Robert B; Johnson, Alan Kim

    2016-05-01

    Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high-fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin II administration that is mediated at least, in part, by increased activity of brain renin-angiotensin system and proinflammatory cytokines. This study tested whether leptin mediates this HFD-induced sensitization of angiotensin II-elicited hypertension by interacting with brain renin-angiotensin system and proinflammatory cytokine mechanisms. Rats fed an HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels, and mRNA expression of leptin and its receptors in the lamina terminalis and hypothalamic paraventricular nucleus. Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of angiotensin II-elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the angiotensin II type 1 receptor antagonist irbesartan, the tumor necrosis factor-α synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus. The leptin antagonist and the inhibitors of angiotensin II type 1 receptor, tumor necrosis factor-α synthesis, and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of angiotensin II-elicited hypertension is mediated by leptin through upregulation of central renin-angiotensin system and proinflammatory cytokines.

  8. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    PubMed

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells. PMID:26582472

  9. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    PubMed

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells.

  10. APE1/Ref-1 promotes the effect of angiotensin II on Ca2+ -activated K+ channel in human endothelial cells via suppression of NADPH oxidase.

    PubMed

    Park, Won Sun; Ko, Eun A; Jung, In Duk; Son, Youn Kyoung; Kim, Hyoung Kyu; Kim, Nari; Park, So Youn; Hong, Ki Whan; Park, Yeong-Min; Choi, Tae-Hoon; Han, Jin

    2008-10-01

    The effects of angiotensin II (Ang II) on whole-cell large conductance Ca(2+)-activated K(+) (BK(Ca)) currents was investigated in control and Apurinic/apyrimidinic endonuclease1/redox factor 1 (APE1/Ref-1)-overexpressing human umbilical vein endothelial cells (HUVECs). Ang II blocked the BK(Ca) current in a dose-dependent fashion, and this inhibition was greater in APE1/Ref-1-overexpressing HUVECs than in control HUVECs (half-inhibition values of 102.81+/-9.54 nM and 11.34+/-0.39 nM in control and APE1/Ref-1-overexpressing HUVECs, respectively). Pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) or knock down of NADPH oxidase (p22 phox) using siRNA increased the inhibitory effect of Ang II on the BK(Ca) currents, similar to the effect of APE1/Ref-1 overexpression. In addition, application of Ang II increased the superoxide and hydrogen peroxide levels in the control HUVECs but not in APE1/Ref-1-overexpressing HUVECs. Furthermore, direct application of hydrogen peroxide increased BK(Ca) channel activity. Finally, the inhibitory effect of Ang II on the BK(Ca) current was blocked by an antagonist of the Ang II type 1 (AT(1)) receptor in both control and APE1/Ref-1-overexpressing HUVECs. From these results, we conclude that the inhibitory effect of Ang II on BK(Ca) channel function is NADPH oxidase-dependent and may be promoted by APE1/Ref-1.

  11. Exendin-4 alleviates angiotensin II-induced senescence in vascular smooth muscle cells by inhibiting Rac1 activation via a cAMP/PKA-dependent pathway.

    PubMed

    Zhao, Liang; Li, Ai Q; Zhou, Teng F; Zhang, Meng Q; Qin, Xiao M

    2014-12-15

    Vascular aging has been implicated in the progression of diabetes and age-related cardiovascular disorders. Glucagon-like peptide-1 (GLP-1) is an incretin hormone capable of cytoprotective actions in addition to its glucose-lowering effect. The present study was undertaken to examine whether Exendin-4, a specific ligand for the GLP-1 receptor, could prevent angiotensin (ANG) II-induced premature senescence in vascular smooth muscle cells (VSMCs) and to determine the underlying mechanism involved. Senescence-associated β-galactosidase (SA β-gal) assay showed that ANG II induced premature senescence of VSMCs. Pretreatment with Exendin-4 significantly attenuated ANG II-induced generation of H2O2 and the subsequent VSMC senescence. These effects were, however, reversed in the presence of exendin fragment 9-39, a GLP-1 receptor antagonist, or PKI14-22. Moreover, a marked increase in the levels of p53 and p21 induced by ANG II was blunted by the treatment with Exendin-4. Nevertheless, Exendin-4 failed to decrease ANG II-induced expression of NAD(P)H oxidase 1 (Nox1), NAD(P)H oxidase 4 (Nox4), p22(phox), or p47(phox) in VSMCs. Mechanistically, Exendin-4 blocked ANG II-induced Rac1 activation through the cAMP/PKA signaling cascade. Specifically, NSC23766, a Rac1 inhibitor, abrogated the suppressive effects of Exendin-4 on ANG II-induced premature senescence and H2O2 generation, respectively. Thus Exendin-4 confers resistance to ANG II-induced superoxide anion generation from NAD(P)H oxidase and the resultant VSMC senescence by inhibiting Rac1 activation via a cAMP/PKA-dependent pathway. These findings demonstrate that GLP-1 as well as its analogs (GLP-1-related reagents) may hold therapeutic potential in the treatment of diabetes with cardiovascular disease.

  12. Abilities of candesartan and other AT(1) receptor blockers to impair angiotensin II-induced AT(1) receptor activation after wash-out.

    PubMed

    Kiya, Yoshihiro; Miura, Shin-ichiro; Matsuo, Yoshino; Karnik, Sadashiva S; Saku, Keijiro

    2012-03-01

    Angiotensin II (Ang II) binds to Ang II type 1 (AT(1)) receptor and evokes cell signaling, and subsequently stimulates vasoconstriction and cell proliferation, which eventually lead to cardiovascular disease. Since most AT(1) receptor blockers (ARBs) have molecular (differential) effects, we evaluated the specific features of candesartan and compared the abilities of candesartan and other ARBs (olmesartan, telmisartan, valsartan, irbesartan and losartan) to bind to and activate AT(1) receptors using a cell-based wash-out assay. Each ARB blocked Ang II-induced extracellular signal-regulated kinase (ERK) activation and inositol phosphate production to different degrees after wash-out. In addition, a small difference in the molecular structure, i.e. a carboxyl group, between candesartan and candesartan-7H was associated with a difference in the degree of this blocking effect. In addition, interaction between Gln(257) in the AT(1) receptor and the carboxyl group of candesartan may be partially associated with the effect of candesartan after wash-out. Although our findings regarding the molecular effects of ARB are based on basic research, these findings may lead to an exciting new area in the clinical application of ARBs. PMID:21824992

  13. Norepinephrine metabolism in neuronal cultures is increased by angiotensin II

    SciTech Connect

    Sumners, C.; Shalit, S.L.; Kalberg, C.J.; Raizada, M.K.

    1987-06-01

    In this study the authors have examined the actions of angiotensin II (ANG II) on catecholamine metabolism in neuronal brain cell cultures prepared from the hypothalamus and brain stem. Neuronal cultures prepared from the brains of 1-day-old Sprague-Dawley rats exhibit specific neuronal uptake mechanisms for both norepinephrine (NE) and dopamine (DA), and also monoamine oxidase (MAO) and catechol O-methyltransferase (COMT) activity. Separate neuronal uptake sites for NE and DA were identified by using specific neuronal uptake inhibitors for each amine. In previous studies, they determined that ANG II (10 nM-1 ..mu..M) stimulates increased neuronal (/sup 3/H)NE uptake by acting as specific receptors. They have confirmed these results here and in addition have shown that ANG II has not significant effects on neuronal (/sup 3/H)DA uptake. These results suggest that the actions of ANG II are restricted to the NE transporter in neuronal cultures. It is possible that ANG II stimulates the intraneuronal metabolism of at least part of the NE that is taken up, because the peptide stimulates MAO activity, an effect mediated by specific ANG II receptors. ANG II had no effect on COMT activity in neuronal cultures. Therefore, the use of neuronal cultures of hypothalamus and brain stem they have determined that ANG II can specifically alter NE metabolism in these areas, while apparently not altering DA metabolism.

  14. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors.

    PubMed Central

    Liu, Y H; Yang, X P; Sharov, V G; Nass, O; Sabbah, H N; Peterson, E; Carretero, O A

    1997-01-01

    Angiotensin-converting enzyme inhibitors (ACEi) improve cardiac function and remodeling and prolong survival in patients with heart failure (HF). Blockade of the renin-angiotensin system (RAS) with an angiotensin II type 1 receptor antagonist (AT1-ant) may have a similar beneficial effect. In addition to inhibition of the RAS, ACEi may also act by inhibiting kinin destruction, whereas AT1-ant may block the RAS at the level of the AT1 receptor and activate the angiotensin II type 2 (AT2) receptor. Using a model of HF induced by myocardial infarction (MI) in rats, we studied the role of kinins in the cardioprotective effect of ACEi. We also investigated whether an AT1-ant has a similar effect and whether these effects are partly due to activation of the AT2 receptor. Two months after MI, rats were treated for 2 mo with: (a) vehicle; (b) the ACEi ramipril, with and without the B2 receptor antagonist icatibant (B2-ant); or (c) an AT1-ant with and without an AT2-antagonist (AT2-ant) or B2-ant. Vehicle-treated rats had a significant increase in left ventricular end-diastolic (LVEDV) and end-systolic volume (LVESV) as well as interstitial collagen deposition and cardiomyocyte size, whereas ejection fraction was decreased. Left ventricular remodeling and cardiac function were improved by the ACEi and AT1-ant. The B2-ant blocked most of the cardioprotective effect of the ACEi, whereas the effect of the AT1-ant was blocked by the AT2-ant. The decreases in LVEDV and LVESV caused by the AT1-ant were also partially blocked by the B2-ant. We concluded that (a) in HF both ACEi and AT1-ant have a cardioprotective effect, which could be due to either a direct action on the heart or secondary to altered hemodynamics, or both; and (b) the effect of the ACEi is mediated in part by kinins, whereas that of the AT1-ant is triggered by activation of the AT2 receptor and is also mediated in part by kinins. We speculate that in HF, blockade of AT1 receptors increases both renin and

  15. Angiotensin II receptors in the gonads

    SciTech Connect

    Aguilera, G.; Millan, M.A.; Harwood, J.P.

    1989-05-01

    The presence of components of the renin-angiotensin system in ovaries and testes suggests that angiotensin II (AII) is involved in gonadal function, and thus we sought to characterize receptors for AII in rat and primate gonads. In the testes, autoradiographic studies showed receptors in the interstitium in all species. In rat interstitial cells fractionated by Percoll gradient, AII receptors coincided with hCG receptors indicating that AII receptors are located on the Leydig cells. In Leydig cells and membranes from rat and rhesus monkey prepuberal testes, AII receptors were specific for AII analogues and of high affinity (Kd=nM). During development, AII receptor content in rat testes decreases with age parallel to a fall in the ratio of interstitial to tubular tissue. In the ovary, the distribution of AII receptors was dependent on the stage of development, being high in the germinal epithelium and stromal tissue between five and 15 days, and becoming localized in secondary follicles in 20-and 40-day-old rats. No binding was found in primordial or primary follicles. In rhesus monkey ovary, AII receptors were higher in stromal tissue and lower in granulosa and luteal cells of the follicles. Characterization of the binding in rat and monkey ovarian membranes showed a single class of sites with a Kd in the nmol/L range and specificity similar to that of the adrenal glomerulosa and testicular AII receptors. Receptors for AII were also present in membrane fractions from PMSG/hCG primed rat ovaries. Infusion of AII (25 ng/min) or captopril (1.4 micrograms/min) during the PMSG/hCG induction period had no effect on ovarian weight or AII receptor concentration in the ovaries.

  16. Distinct properties of telmisartan on agonistic activities for peroxisome proliferator-activated receptor γ among clinically used angiotensin II receptor blockers: drug-target interaction analyses.

    PubMed

    Kakuta, Hirotoshi; Kurosaki, Eiji; Niimi, Tatsuya; Gato, Katsuhiko; Kawasaki, Yuko; Suwa, Akira; Honbou, Kazuya; Yamaguchi, Tomohiko; Okumura, Hiroyuki; Sanagi, Masanao; Tomura, Yuichi; Orita, Masaya; Yonemoto, Takako; Masuzaki, Hiroaki

    2014-04-01

    A proportion of angiotensin II type 1 receptor blockers (ARBs) improves glucose dyshomeostasis and insulin resistance in a clinical setting. Of these ARBs, telmisartan has the unique property of being a partial agonist for peroxisome proliferator-activated receptor γ (PPARγ). However, the detailed mechanism of how telmisartan acts on PPARγ and exerts its insulin-sensitizing effect is poorly understood. In this context, we investigated the agonistic activity of a variety of clinically available ARBs on PPARγ using isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) system. Based on physicochemical data, we then reevaluated the metabolically beneficial effects of telmisartan in cultured murine adipocytes. ITC and SPR assays demonstrated that telmisartan exhibited the highest affinity of the ARBs tested. Distribution coefficient and parallel artificial membrane permeability assays were used to assess lipophilicity and cell permeability, for which telmisartan exhibited the highest levels of both. We next examined the effect of each ARB on insulin-mediated glucose metabolism in 3T3-L1 preadipocytes. To investigate the impact on adipogenesis, 3T3-L1 preadipocytes were differentiated with each ARB in addition to standard inducers of differentiation for adipogenesis. Telmisartan dose-dependently facilitated adipogenesis and markedly augmented the mRNA expression of adipocyte fatty acid-binding protein (aP2), accompanied by an increase in the uptake of 2-deoxyglucose and protein expression of glucose transporter 4 (GLUT4). In contrast, other ARBs showed only marginal effects in these experiments. In accordance with its highest affinity of binding for PPARγ as well as the highest cell permeability, telmisartan superbly activates PPARγ among the ARBs tested, thereby providing a fresh avenue for treating hypertensive patients with metabolic derangement. PMID:24424487

  17. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II.

    PubMed

    Peng, Kesong; Tian, Xinqiao; Qian, Yuanyuan; Skibba, Melissa; Zou, Chunpeng; Liu, Zhiguo; Wang, Jingying; Xu, Zheng; Li, Xiaokun; Liang, Guang

    2016-03-01

    Cardiac hypertrophy is an important risk factor for heart failure. Epidermal growth factor receptor (EGFR) has been found to play a role in the pathogenesis of various cardiovascular diseases. The aim of this current study was to examine the role of EGFR in angiotensin II (Ang II)-induced cardiac hypertrophy and identify the underlying molecular mechanisms. In this study, we observed that both Ang II and EGF could increase the phospohorylation of EGFR and protein kinase B (AKT)/extracellular signal-regulated kinase (ERK), and then induce cell hypertrophy in H9c2 cells. Both pharmacological inhibitors and genetic silencing significantly reduced Ang II-induced EGFR signalling pathway activation, hypertrophic marker overexpression, and cell hypertrophy. In addition, our results showed that Ang II-induced EGFR activation is mediated by c-Src phosphorylation. In vivo, Ang II treatment significantly led to cardiac remodelling including cardiac hypertrophy, disorganization and fibrosis, accompanied by the activation of EGFR signalling pathway in the heart tissues, while all these molecular and pathological alterations were attenuated by the oral administration with EGFR inhibitors. In conclusion, the c-Src-dependent EGFR activation may play an important role in Ang II-induced cardiac hypertrophy, and inhibition of EGFR by specific molecules may be an effective strategy for the treatment of Ang II-associated cardiac diseases. PMID:26762600

  18. Dual Activation of TRIF and MyD88 Adaptor Proteins by Angiotensin II Evokes Opposing Effects on Pressure, Cardiac Hypertrophy and Inflammatory Gene Expression

    PubMed Central

    Singh, Madhu V.; Cicha, Michael Z.; Meyerholz, David K.; Chapleau, Mark W.; Abboud, François M.

    2015-01-01

    Hypertension is recognized as an immune disorder whereby immune cells play a defining role in the genesis and progression of the disease. The innate immune system and its component toll-like receptors (TLRs) are key determinants of the immunological outcome through their pro-inflammatory response. TLR activated signaling pathways utilize several adaptor proteins of which adaptor proteins MyD88 and TRIF define two major inflammatory pathways. In this study, we compared the contributions of MyD88 and TRIF adaptor proteins to angiotensin II (Ang II)-induced hypertension and cardiac hypertrophy in mice. Deletion of MyD88 did not prevent cardiac hypertrophy and the pressor response to Ang II tended to increase. Moreover, the increase in inflammatory gene expression (Tnfa, Nox4 and Agtr1a) was significantly greater in the heart and kidney of MyD88-deficient mice compared with wild type mice. Thus, pathways involving MyD88 may actually restrain the inflammatory responses. On the other hand, in mice with non-functional TRIF (Trifmut mice), Ang II induced hypertension and cardiac hypertrophy were abrogated, and pro-inflammatory gene expression in heart and kidneys was unchanged or decreased. Our results indicate that Ang II induces activation of a pro-inflammatory innate immune response, causing hypertension, and cardiac hypertrophy. These effects require functional adaptor protein TRIF-mediated pathways. However, the common MyD88 dependent signaling pathway, which is also activated simultaneously by Ang II, paradoxically exerts a negative regulatory influence on these responses. PMID:26195481

  19. DIOL Triterpenes Block Profibrotic Effects of Angiotensin II and Protect from Cardiac Hypertrophy

    PubMed Central

    Jurado-López, Raquel; Martínez-Martínez, Ernesto; Gómez-Hurtado, Nieves; Delgado, Carmen; Visitación Bartolomé, Maria; San Román, José Alberto; Cordova, Claudia; Lahera, Vicente; Nieto, Maria Luisa; Cachofeiro, Victoria

    2012-01-01

    myofibroblasts. They inhibit the angiotensin II-induced proliferation in a PPAR-γ-dependent manner, while at high doses they activate pathways of programmed cell death that are dependent on JNK and PPAR-γ. PMID:22844495

  20. Angiotensin II binding to cultured bovine adrenal chromaffin cells: identification of angiotensin II receptors

    SciTech Connect

    Boyd, V.L.; Printz, M.P.

    1986-03-05

    Physiological experiments have provided evidence that angiotensin II stimulates catecholamine secretion from the adrenal gland. Their laboratory and others have now shown by receptor autoradiography the presence of angiotensin II receptors (AIIR) in bovine and rat adrenal medulla. In order to extend these studies they have undertaken to define AIIR on cultured bovine adrenal chromaffin cells. Cells were isolated using the method of Levitt including cell enrichment with Percoll gradient centrifugation. Primary cultures of bovine adrenal medullary cells were maintained in DME/F12 medium containing 10% FCS. Cells were characterized by immunocytochemistry for Met- and Leu-enkephalin, PNMT, DBH and Chromagranin A. Cultured cells bind with high affinity and specificity (/sup 125/I)-ANG II yielding a K/sub D/ of 0.74 nM and B/sub max/ of 24,350 sites/cell. After Percoll treatment values of .77 nm and 34,500 sites/cell are obtained. K/sub D/ values are in close agreement with that obtained in adrenal slices by Healy. Competition studies identify a rank order of binding by this receptor similar to that of other tissues. They conclude that cultured chromaffin cells provide a suitable model system for the investigation and characterization of the ANG II receptor and for cellular studies of its functional significance.

  1. Synthesis, anti-hypertensive effect of a novel angiotensin II AT1 receptor antagonist and its anti-tumor activity in prostate cancer.

    PubMed

    Da, Y-J; Yuan, W-D; Zhu, L-F; Chen, Z-L

    2012-12-01

    Since the first non-peptide Ang II receptor antagonist was originally reported, it has become the most common target in the development of new treatments for hypertension. In recent years, all components of the classical RAS have been reported in the prostate, these results suggest the possibility that ARB is a novel therapeutic class of agents for prostate cancer. In this study, a new compound 2-(4-((2-propyl-5-nitro-1H-benzo[d]imidazol-1-yl) methyl)-1H-indol-1-yl) benzoic acid was synthesized and evaluated as a novel angiotensin II AT1 receptor antagonist by radioligand binding assays, anti-hypertensive assays in vivo and oral acute toxicity test. MTT assays and tests in nude mice were used to demonstrate its anti-tumor activity. This new compound showed high affinity to AT1 receptor and anti-hypertensive activity in spontaneously hypertensive rats and renal hypertensive rats. Moreover, in human prostate cancer cells and in athymic nude mice bearing human prostate cancer cells, we observed this new compound had an efficient antiproliferative activity in vitro and anti-tumor activity in vivo. The preliminary pharmacological characteristics with oral acute toxicity test suggested that this new compound can be considered as a candidate for both anti-hypertensive and anti-tumor drug. PMID:23203543

  2. Activation of Na+/H+ exchanger NHE3 by angiotensin II is mediated by inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3 (IRBIT) and Ca2+/calmodulin-dependent protein kinase II.

    PubMed

    He, Peijian; Klein, Janet; Yun, C Chris

    2010-09-01

    Angiotensin II (ANG II) stimulates renal tubular reabsorption of NaCl by targeting Na(+)/H(+) exchanger NHE3. We have shown previously that inositol 1,4,5-triphosphate receptor-binding protein released with inositol 1,4,5-triphosphate (IRBIT) plays a critical role in stimulation of NHE3 in response to elevated intracellular Ca(2+) concentration ([Ca(2+)](i)). In this study, we investigated the role of IRBIT in mediating NHE3 activation by ANG II. IRBIT is abundantly expressed in the proximal tubules where NHE3 is located. ANG II at physiological concentrations stimulates NHE3 transport activity in a model proximal tubule cell line. ANG II-induced activation of NHE3 was abrogated by knockdown of IRBIT, whereas overexpression of IRBIT enhanced the effect of ANG II on NHE3. ANG II transiently increased binding of IRBIT to NHE3 at 5 min but became dissociated by 45 min. In comparison, it took at least 15 min of ANG II treatment for an increase in NHE3 activity and NHE3 surface expression. The stimulation of NHE3 by ANG II was dependent on changes in [Ca(2+)](i) and Ca(2+)/calmodulin-dependent protein kinases II. Inhibition of CaMKII completely blocked the ANG II-induced binding of IRBIT to NHE3 and the increase in NHE3 surface abundance. Several serine residues of IRBIT are thought to be important for IRBIT binding. Mutations of Ser-68, Ser-71, and Ser-74 of IRBIT decreased binding of IRBIT to NHE3 and its effect on NHE3 activity. In conclusion, our current findings demonstrate that IRBIT is critically involved in mediating activation of NHE3 by ANG II via a Ca(2+)/calmodulin-dependent protein kinases II-dependent pathway.

  3. Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II

    PubMed Central

    Macconi, Daniela; Perico, Luca; Longaretti, Lorena; Morigi, Marina; Cassis, Paola; Buelli, Simona; Perico, Norberto; Remuzzi, Giuseppe; Benigni, Ariela

    2015-01-01

    Background Angiotensin II promotes insulin resistance. The mechanism underlying this abnormality, however, is still poorly defined. In a different setting, skeletal muscle metabolism and insulin signaling are regulated by Sirtuin3. Objective Here, we investigate whether angiotensin II-induced insulin resistance in skeletal muscle is associated with Sirtuin3 dysregulation and whether pharmacological manipulation of Sirtuin3 confers protection. Study Design Parental and GLUT4-myc L6 rat skeletal muscle cells exposed to angiotensin II are used as in vitro models of insulin resistance. GLUT4 translocation, glucose uptake, intracellular molecular signals such as mitochondrial reactive oxygen species, Sirtuin3 protein expression and activity, along with its downstream targets and upstream regulators, are analyzed both in the absence and presence of acetyl-L-carnitine. The role of Sirtuin3 in GLUT4 translocation and intracellular molecular signaling is also studied in Sirtuin3-silenced as well as over-expressing cells. Results Angiotensin II promotes insulin resistance in skeletal muscle cells via mitochondrial oxidative stress, resulting in a two-fold increase in superoxide generation. In this context, reactive oxygen species open the mitochondrial permeability transition pore and significantly lower Sirtuin3 levels and activity impairing the cell antioxidant defense. Angiotensin II-induced Sirtuin3 dysfunction leads to the impairment of AMP-activated protein kinase/nicotinamide phosphoribosyltransferase signaling. Acetyl-L-carnitine, by lowering angiotensin II-induced mitochondrial superoxide formation, prevents Sirtuin3 dysfunction. This phenomenon implies the restoration of manganese superoxide dismutase antioxidant activity and AMP-activated protein kinase activation. Acetyl-L-carnitine protection is abrogated by specific Sirtuin3 siRNA. Conclusions Our data demonstrate that angiotensin II-induced insulin resistance fosters mitochondrial superoxide generation, in

  4. Diacylglycerol kinase theta is translocated and phosphoinositide 3-kinase-dependently activated by noradrenaline but not angiotensin II in intact small arteries.

    PubMed Central

    Walker, A J; Draeger, A; Houssa, B; van Blitterswijk , W J; Ohanian, V; Ohanian, J

    2001-01-01

    Diacylglycerol (DG) kinase (DGK) phosphorylates the lipid second messenger DG to phosphatidic acid. We reported previously that noradrenaline (NA), but not angiotensin II (AII), increases membrane-associated DGK activity in rat small arteries [Ohanian and Heagerty (1994) Biochem. J. 300, 51-56]. Here, we have identified this DGK activity as DGKtheta, present in both smooth muscle and endothelial cells of these small vessels. Subcellular fractionation of artery homogenates revealed that DGKtheta was present in nuclear, plasma membrane (and/or Golgi) and cytosolic fractions. Upon NA stimulation, DGKtheta translocated towards the membrane and cytosol (155 and 153% increases relative to the control, respectively) at 30 s, followed by a return to near-basal levels at 5 min; AII was without effect. Translocation to the membrane was to both Triton-soluble and -insoluble fractions. NA, but not AII, transiently increased DGKtheta activity in immunoprecipitates (126% at 60 s). Membrane translocation and DGKtheta activation were regulated differently: NA-induced DGKtheta activation, but not translocation, was dependent on transient activation of phosphoinositide 3-kinase (PI 3-K). In addition, DGK activity co-immunoprecipitated with protein kinase B, a downstream effector of PI 3-K, and was increased greatly by NA stimulation. The rapid and agonist-specific activation of DGKtheta suggests that this pathway may have a physiological role in vascular smooth-muscle responses. PMID:11115406

  5. Renoprotective effect of renal liver-type fatty acid binding protein and angiotensin II type 1a receptor loss in renal injury caused by RAS activation.

    PubMed

    Ichikawa, Daisuke; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Shibagaki, Yugo; Yasuda, Takashi; Katayama, Kimie; Hoshino, Seiko; Igarashi-Migitaka, Junko; Hirata, Kazuaki; Kimura, Kenjiro

    2014-03-15

    The aim of this study was to assess the renoprotective effect of renal human liver-type fatty acid binding protein (hL-FABP) and angiotensin II (ANG II) type 1A receptor (AT1a) loss in renal injury caused by renin-angiotensin system (RAS) activation. We established hL-FABP chromosomal transgenic mice (L-FABP(+/-)AT1a(+/+)), crossed the L-FABP(+/-)AT1a(+/+) with AT1a knockdown homo mice (L-FABP(-/-)AT1a(-/-)), and generated L-FABP(+/-)AT1a hetero mice (L-FABP(+/-)AT1a(+/-)). After the back-cross of these cubs, L-FABP(+/-)AT1a(-/-) were obtained. To activate the renal RAS, wild-type mice (L-FABP(-/-)AT1a(+/+)), L-FABP(+/-)AT1a(+/+), L-FABP(-/-)AT1a(+/-), L-FABP(+/-)AT1a(+/-), L-FABP(-/-)AT1a(-/-), and L-FABP(+/-)AT1a(-/-) were administered high-dose systemic ANG II infusion plus a high-salt diet for 28 days. In the L-FABP(-/-)AT1a(+/+), RAS activation (L-FABP(-/-)AT1a(+/+)RAS) caused hypertension and tubulointerstitial damage. In the L-FABP(+/-)AT1a(+/+)RAS, tubulointerstitial damage was significantly attenuated compared with L-FABP(-/-)AT1a(+/+)RAS. In the AT1a partial knockout (AT1a(+/-)) or complete knockout (AT1a(-/-)) mice, reduction of AT1a expression led to a significantly lower degree of renal injury compared with L-FABP(-/-)AT1a(+/+)RAS or L-FABP(+/-)AT1a(+/+)RAS mice. Renal injury in L-FABP(+/-)AT1a(+/-)RAS mice was significantly attenuated compared with L-FABP(-/-)AT1a(+/-)RAS mice. In both L-FABP(-/-)AT1a(-/-)RAS and L-FABP(+/-)AT1a(-/-)RAS mice, renal damage was rarely found. The degrees of renal hL-FABP expression and urinary hL-FABP levels increased by RAS activation and gradually decreased along with reduction of AT1a expression levels. In conclusion, in this mouse model, renal hL-FABP expression and a decrease in AT1a expression attenuated tubulointerstitial damage due to RAS activation.

  6. Angiotensin II Receptor Blockers and Cancer Risk

    PubMed Central

    Zhao, Yun-Tao; Li, Peng-Yang; Zhang, Jian-Qiang; Wang, Lei; Yi, Zhong

    2016-01-01

    Abstract Angiotensin II receptor blockers (ARB) are widely used drugs that are proven to reduce cardiovascular disease events; however, several recent meta-analyses yielded conflicting conclusions regarding the relationship between ARB and cancer incidence, especially when ARB are combined with angiotensin-converting enzyme inhibitors (ACEI). We investigated the risk of cancer associated with ARB at different background ACEI levels. Search of PubMed and EMBASE (1966 to December 17, 2015) without language restriction. Randomized, controlled trials (RCTs) had at least 12 months of follow-up data and reported cancer incidence was included. Study characteristics, quality, and risk of bias were assessed by 2 reviewers independently. Nineteen RCTs including 148,334 patients were included in this study. Random-effects model meta-analyses were used to estimate the risk ratio (RR) of cancer risk. No excessive cancer risk was observed in our analyses of ARB alone versus placebo alone without background ACEI use (risk ratio [RR] 1.08, 95% confidence interval [CI] 1.00–1.18, P = 0.05); ARB alone versus ACEI alone (RR 1.03, 95%CI 0.94–1.14, P = 0.50); ARB plus partial use of ACEI versus placebo plus partial use of ACEI (RR 0.97, 95%CI 0.90–1.04, P = 0.33); and ARB plus ACEI versus ACEI (RR 0.99, 95%CI 0.79–1.24, P = 0.95). Lack of long-term data, inadequate reporting of safety data, significant heterogeneity in underlying study populations, and treatment regimens. ARB have a neutral effect on cancer incidence in randomized trials. We observed no significant differences in cancer incidence when we compared ARB alone with placebo alone, ARB alone with ACEI alone, ARB plus partial use of ACEI with placebo plus partial use of ACEI, or ARB plus ACEI combination with ACEI. PMID:27149494

  7. Cardiac steatosis potentiates angiotensin II effects in the heart.

    PubMed

    Glenn, Denis J; Cardema, Michelle C; Ni, Wei; Zhang, Yan; Yeghiazarians, Yerem; Grapov, Dmitry; Fiehn, Oliver; Gardner, David G

    2015-02-15

    Lipid accumulation in the heart is associated with obesity and diabetes and may play an important role in the pathogenesis of heart failure. The renin-angiotensin system is also thought to contribute to cardiovascular morbidity in obese and diabetic patients. We hypothesized that the presence of lipid within the myocyte might potentiate the cardiomyopathic effects of ANG II in the cardiac diacylglycerol acyl transferase 1 (DGAT1) transgenic mouse model of myocyte steatosis. Treatment with ANG II resulted in a similar increase in blood pressure in both nontransgenic and DGAT1 transgenic mice. However, ANG II in DGAT1 transgenic mice resulted in a marked increase in interstitial fibrosis and a reduction in systolic function compared with nontransgenic littermates. Lipidomic analysis revealed that >20% of lipid species were significantly altered between nontransgenic and DGAT1 transgenic animals, whereas 3% were responsive to ANG II administration. ROS were also increased by ANG II in DGAT1 transgenic hearts. ANG II treatment resulted in increased expression of transforming growth factor (TGF)-β2 and the type I TGF-β receptor as well as increased phosphorylation of Smad2 in DGAT1 transgenic hearts. Injection of neutralizing antibodies to TGF-β resulted in a reduction in fibrosis in DGAT1 transgenic hearts treated with ANG II. These results suggest that myocyte steatosis amplifies the fibrotic effects of ANG II through mechanisms that involve activation of TGF-β signaling and increased production of ROS. PMID:25485904

  8. Ets-1 upregulation mediates angiotensin II-related cardiac fibrosis.

    PubMed

    Hao, Guanghua; Han, Zhenhua; Meng, Zhe; Wei, Jin; Gao, Dengfeng; Zhang, Hong; Wang, Nanping

    2015-01-01

    Ets-1, the prototypical member of the family of Ets transcription factors, has been shown to participate in tissue fibrotic remodeling. However, its role in cardiac fibrosis has not been established. The aim of this study was to investigate the role of Ets-1 in profibrotic actions of angiotensin II (Ang II) in cardiac fibroblasts (CFs) and in the in vivo heart. In growth-arrested CFs, Ang II induced Ets-1 expression in a time- and concentration-dependent manner. Pretreatment with Ang II type 1 receptor blocker losartan, protein kinase C inhibitor bisindolylmaleimide I, extracellular signal-regulated kinase (ERK) inhibitor PD98059, or c-Jun NH(2)-terminal kinase (JNK) inhibitor SP600125 partly inhibited this induction accompanied with impaired cell proliferation and production of plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) protein, the two downstream targets of Ets-1. Knockdown of Ets-1 by siRNA significantly inhibited the inductive effects of Ang II on cell proliferation and expression of CTGF and PAI-1. Moreover, the levels of Ets-1, PAI-1 and CTGF protein were simultaneously upregulated in left ventricle of Ang II-infused rats in parallel with an increase in the activation of ERK and JNK. Our data suggest that Ets-1 may mediate Ang II-induced cardiac fibrotic effects.

  9. Origin of the angiotensin II secreted by cells.

    PubMed

    Ganong, W F

    1994-03-01

    Circulating angiotensin II is unique in that it is formed in the blood by the interaction of circulating proteins. There are in addition many local renin-angiotensin systems in tissues in which angiotensin II is apparently secreted by various types of cells. This brief review considers the possible pathways for synthesis of locally produced angiotensin II in the brain, the anterior pituitary, the testes, the ovaries, the adrenal cortex, the kidneys, the heart, blood vessel walls, and brown and white fat. Synthesis by cells in culture is also reviewed. The possibility that certain cells contain a complete intracellular renin-angiotensin system is not ruled out, but there are problems with this hypothesis. Proteases other than renin may be involved, and there may be different pathways in different tissues. However, it appears that at least in some tissues, angiotensinogen is produced in one population of cells and transported in a paracrine fashion to other renin-containing cells, where it serves as the substrate for production of angiotensin II.

  10. A Structure-Activity Relationship Study of Imidazole-5-Carboxylic Acid Derivatives as Angiotensin II Receptor Antagonists Combining 2D and 3D QSAR Methods.

    PubMed

    Sharma, Mukesh C

    2016-03-01

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationship (QSAR) studies were performed for correlating the chemical composition of imidazole-5-carboxylic acid analogs and their angiotensin II [Formula: see text] receptor antagonist activity using partial least squares and k-nearest neighbor, respectively. For comparing the three different feature selection methods of 2D-QSAR, k-nearest neighbor models were used in conjunction with simulated annealing (SA), genetic algorithm and stepwise coupled with partial least square (PLS) showed variation in biological activity. The statistically significant best 2D-QSAR model having good predictive ability with statistical values of [Formula: see text] and [Formula: see text] was developed by SA-partial least square with the descriptors like [Formula: see text]count, 5Chain count, SdsCHE-index, and H-acceptor count, showing that increase in the values of these descriptors is beneficial to the activity. The 3D-QSAR studies were performed using the SA-PLS. A leave-one-out cross-validated correlation coefficient [Formula: see text] and predicate activity [Formula: see text] = 0.7226 were obtained. The information rendered by QSAR models may lead to a better understanding of structural requirements of substituted imidazole-5-carboxylic acid derivatives and also aid in designing novel potent antihypertensive molecules.

  11. Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis

    PubMed Central

    Vilas-Boas, Walkíria Wingester; Ribeiro-Oliveira Jr, Antônio; Pereira, Regina Maria; da Cunha Ribeiro, Renata; Almeida, Jerusa; Nadu, Ana Paula; Simões e Silva, Ana Cristina; dos Santos, Robson Augusto Souza

    2009-01-01

    AIM: To measure circulating angiotensins at different stages of human cirrhosis and to further evaluate a possible relationship between renin angiotensin system (RAS) components and hemodynamic changes. METHODS: Patients were allocated into 4 groups: mild-to-moderate liver disease (MLD), advanced liver disease (ALD), patients undergoing liver transplantation, and healthy controls. Blood was collected to determine plasma renin activity (PRA), angiotensin (Ang) I, Ang II, and Ang-(1-7) levels using radioimmunoassays. During liver transplantation, hemodynamic parameters were determined and blood was simultaneously obtained from the portal vein and radial artery in order to measure RAS components. RESULTS: PRA and angiotensins were elevated in ALD when compared to MLD and controls (P < 0.05). In contrast, Ang II was significantly reduced in MLD. Ang-(1-7)/Ang II ratios were increased in MLD when compared to controls and ALD. During transplantation, Ang II levels were lower and Ang-(1-7)/Ang II ratios were higher in the splanchnic circulation than in the peripheral circulation (0.52 ± 0.08 vs 0.38 ± 0.04, P < 0.02), whereas the peripheral circulating Ang II/Ang I ratio was elevated in comparison to splanchnic levels (0.18 ± 0.02 vs 0.13 ± 0.02, P < 0.04). Ang-(1-7)/Ang II ratios positively correlated with cardiac output (r = 0.66) and negatively correlated with systemic vascular resistance (r = -0.70). CONCLUSION: Our findings suggest that the relationship between Ang-(1-7) and Ang II may play a role in the hemodynamic changes of human cirrhosis. PMID:19469002

  12. Peroxisome proliferator-activated receptor-γ activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice.

    PubMed

    Min, Li-Juan; Mogi, Masaki; Shudou, Masachika; Jing, Fei; Tsukuda, Kana; Ohshima, Kousei; Iwanami, Jun; Horiuchi, Masatsugu

    2012-05-01

    We reported previously that an angiotensin II type 1 receptor blocker, telmisartan, improved cognitive decline with peroxisome proliferator-activated receptor-γ activation; however, the detailed mechanisms are unclear. Enhanced blood-brain barrier (BBB) permeability with alteration of tight junctions is suggested to be related to diabetes mellitus. Therefore, we examined the possibility that telmisartan could attenuate BBB impairment with peroxisome proliferator-activated receptor-γ activation to improve diabetes mellitus-induced cognitive decline. Type 2 diabetic mice KKA(y) exhibited impairment of cognitive function, and telmisartan treatment attenuated this. Cotreatment with GW9662, a peroxisome proliferator-activated receptor-γ antagonist, interfered with these protective effects of telmisartan against cognitive function. BBB permeability was increased in both the cortex and hippocampus in KKA(y) mice. Administration of telmisartan attenuated this increased BBB permeability. Coadministration of GW9662 reduced this effect of telmisartan. Significant decreases in expression of tight junction proteins and increases in matrix metalloproteinase expression, oxidative stress, and proinflammatory cytokine production were observed in the brain, and treatment with telmisartan restored these changes. Swollen astroglial end-feet in BBB were observed in KKA(y) mice, and this change in BBB ultrastructure was decreased in telmisartan. These effects of telmisartan were weakened by cotreatment with GW9662. In contrast, administration of another angiotensin II type 1 receptor blocker, losartan, was less effective compared with telmisartan in terms of preventing BBB permeability and astroglial end-foot swelling, and coadministration of GW9662 did not affect the effects of losartan. These findings are consistent with the possibility that, in type 2 diabetic mice, angiotensin II type 1 receptor blockade with peroxisome proliferator-activated receptor-γ activation by telmisartan

  13. Orphan nuclear receptor small heterodimer partner inhibits angiotensin II- stimulated PAI-1 expression in vascular smooth muscle cells.

    PubMed

    Lee, Kyeong-Min; Seo, Hye-Young; Kim, Mi-Kyung; Min, Ae-Kyung; Ryu, Seong-Yeol; Kim, Yoon-Nyun; Park, Young Joo; Choi, Hueng-Sik; Lee, Ki-Up; Park, Wan-Ju; Park, Keun-Gyu; Lee, In-Kyu

    2010-01-31

    Angiotensin II is a major effector molecule in the development of cardiovascular disease. In vascular smooth muscle cells (VSMCs), angiotensin II promotes cellular proliferation and extracellular matrix accumulation through the upregulation of plasminogen activator inhibitor-1 (PAI-1) expression. Previously, we demonstrated that small heterodimer partner (SHP) represses PAI-1 expression in the liver through the inhibition of TGF-beta signaling pathways. Here, we investigated whether SHP inhibited angiotensin II-stimulated PAI-1 expression in VSMCs. Adenovirus-mediated overexpression of SHP (Ad- SHP) in VSMCs inhibited angiotensin II- and TGF-beta-stimulated PAI-1 expression. Ad-SHP also inhibited angiotensin II-, TGF-beta- and Smad3-stimulated PAI-1 promoter activity, and angiotensin II-stimulated AP-1 activity. The level of PAI-1 expression was significantly higher in VSMCs of SHP(-/-) mice than wild type mice. Moreover, loss of SHP increased PAI-1 mRNA expression after angiotensin II treatment. These results suggest that SHP inhibits PAI-1 expression in VSMCs through the suppression of TGF-beta/Smad3 and AP-1 activity. Thus, agents that target the induction of SHP expression in VSMCs might help prevent the development and progression of atherosclerosis.

  14. Angiotensin II increases mRNA levels of all TGF-beta isoforms in quiescent and activated rat hepatic stellate cells.

    PubMed

    Moreno-Alvarez, Paola; Sosa-Garrocho, Marcela; Briones-Orta, Marco A; González-Espinosa, Claudia; Medina-Tamayo, Jaciel; Molina-Jijón, Eduardo; Pedraza-Chaverri, José; Macías-Silva, Marina

    2010-10-01

    AII (angiotensin II) is a vasoactive peptide that plays an important role in the development of liver fibrosis mainly by regulating profibrotic cytokine expression such as TGF-beta (transforming growth factor-beta). Activated HSCs (hepatic stellate cells) are the major cell type responsible for ECM (extracellular matrix) deposition during liver fibrosis and are also a target for AII and TGF-beta actions. Here, we studied the effect of AII on the mRNA levels of TGF-beta isoforms in primary cultures of rat HSCs. Both quiescent and activated HSCs were stimulated with AII for different time periods, and mRNA levels of TGF-beta1, TGF-beta2 and TGF-beta3 isoforms were evaluated using RNaseI protection assay. The mRNA levels of all TGF-beta isoforms, particularly TGF-beta2and TGF-beta3, were increased after AII treatment in activated HSCs. In addition, activated HSCs were able to produce active TGF-beta protein after AII treatment. The mRNA expression of TGF-beta isoforms induced by AII required both ERK1/2 and Nox (NADPH oxidase) activation but not PKC (protein kinase C) participation. ERK1/2 activation induced by AII occurs via AT1 receptors, but independently of either PKC and Nox activation or EGFR (epidermal growth factor receptor) transactivation. Interestingly, AII has a similar effect on TGF-beta expression in quiescent HSCs, although it has a smaller but significant effect on ERK1/2 activation in these cells.

  15. Selective hypoaldosteronism in a patient with Sjögren's syndrome: insensitivity to angiotensin II.

    PubMed

    Otabe, S; Muto, S; Asano, Y; Ohbu, E; Koyama, K; Okita, N; Yamada, K; Nonaka, K

    1991-01-01

    A 51-year-old Japanese woman with hypokalemia due to distal renal tubular acidosis associated with Sjögren's syndrome exhibited a decreased plasma aldosterone level despite elevated plasma renin activity. Our studies revealed selective hypoaldosteronism with normal adrenoglucocorticoid function. In the presence of a low level of serum potassium (3.6 mEq/l), plasma levels of deoxycorticosterone and corticosterone were normal, while plasma aldosterone was very low. The levels of these three mineralocorticoids showed only minor changes during infusion of angiotensin II. Furosemide administration under almost the same level of serum potassium (3.7 mEq/l) resulted in only a slight increase of plasma aldosterone. Since hypokalemia might possibly suppress the synthesis of aldosterone in the zona glomerulosa, angiotensin II was also infused under a normal level of potassium (4.3 mEq/l). However, angiotensin II also failed to stimulate any secretion of aldosterone, despite a progressive rise in blood pressure and sufficient suppression of plasma renin activity. On the other hand, rapid ACTH administration in the presence of 4.4 mEq/l of serum potassium increased both plasma aldosterone and cortisol. These results suggest that adrenal insensitivity to angiotensin II was the cause of the selective hypoaldosteronism in our patient, possibly due to a dysfunction of adrenal angiotensin II receptors, a disorder of postreceptors or both.

  16. Evidence for extracellular, but not intracellular, generation of angiotensin II in the rat adrenal zona glomerulosa

    SciTech Connect

    Urata, H.; Khosla, M.C.; Bumpus, M.; Husain, A. )

    1988-11-01

    Based on the observation that high levels of renin and angiotensin II (Ang II) are found in the adrenal zona glomerulosa (ZG), it has been postulated that Ang II is formed intracellularly by the renin-converting enzyme cascade in this tissue. To test this hypothesis, the authors examined renin-angiotensin system components in subcellular fractions of the rat adrenal ZG. Renin activity and immunoreactive-Ang II (IR-Ang II) were observed in vesicular fractions but were not colocalized. In addition, angiotensinogen, angiotensin I, and converting enzyme were not observed in the renin or IR-Ang II-containing vesicular fractions. These data do not support the hypothesis that Ang II is formed intracellularly within the renin-containing vesicles of the ZG. Rather, since modulatable renin release from adrenal ZG slices was observed and renin activity was found in dense vesicular fractions (33-39% sucrose), it is likely that Ang II formation in the ZG is extracellular and initiated by the release of vesicular renin. In ZG lysomal fractions {sup 125}I-labeled Ang II was degraded to {sup 125}I-labeled des-(Phe{sup 8})Ang II. Since Ang II antibodies do not recognize des-(Phe{sup 8})Ang II, these finding explain why IR-Ang II in the ZG is due predominantly to Ang II and not to its C-terminal immunoreactive fragments.

  17. New nonpeptide angiotensin II receptor antagonists. 2. Synthesis, biological properties, and structure-activity relationships of 2-alkyl-4-(biphenylylmethoxy)quinoline derivatives.

    PubMed

    Bradbury, R H; Allott, C P; Dennis, M; Fisher, E; Major, J S; Masek, B B; Oldham, A A; Pearce, R J; Rankine, N; Revill, J M

    1992-10-30

    A novel series of nonpeptidic angiotensin II (AII) receptor antagonists is reported, derived from linkage of the biphenylcarboxylic acid or biphenylyltetrazole moiety found in previously described antagonists via a methyleneoxy chain to the 4-position of a 2-alkyl quinoline. When evaluated in an in vitro binding assay using a guinea pig adrenal membrane preparation, compounds in this series generally gave IC50 values in the range 0.01-1 microM. Structure-activity studies showed the quinoline nitrogen atom and a short alkyl chain at the quinoline 2-position to be essential for receptor binding. On intravenous administration in a normotensive rat model, the more potent compounds inhibited the AII-induced pressor response with ED50 values in the range 0.1-2.0 mg/kg. One of the compounds, 2-ethyl-4-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methoxy]quinoline (5g), demonstrated good oral activity in two rat models. At doses in the range 1-10 mg/kg in AII-infused, normotensive rats, the compound exhibited a dose-related inhibition of the pressor response with a good duration of action at the higher doses. In a renal hypertensive rat model, compound 5g showed a rapid and sustained lowering of blood pressure at a dose of 5 mg/kg. On the basis of its profile, this compound, designated ICI D8731, has been selected for clinical evaluation.

  18. Hormonal stimulation of mitochondrial glutaminase. Effects of vasopressin, angiotensin II, adrenaline and glucagon.

    PubMed Central

    Corvera, S; García-Sáinz, J A

    1983-01-01

    Adrenaline (through alpha 1-adrenoceptors), vasopressin and angiotensin II stimulate mitochondrial glutaminase activity. This stimulation probably contributes to the ureogenic effect of these hormones. The activity of the enzyme is sensitive to Ca2+ depletion. A role of Ca2+ in hormonal modulation of glutaminase activity is suggested. PMID:6870814

  19. Cellular mechanisms mediating rat renal microvascular constriction by angiotensin II.

    PubMed Central

    Takenaka, T; Suzuki, H; Fujiwara, K; Kanno, Y; Ohno, Y; Hayashi, K; Nagahama, T; Saruta, T

    1997-01-01

    To assess cellular mechanisms mediating afferent (AA) and efferent arteriolar (EA) constriction by angiotensin II (AngII), experiments were performed using isolated perfused hydronephrotic kidneys. In the first series of studies, AngII (0.3 nM) constricted AAs and EAs by 29+/-3 (n = 8, P < 0.01) and 27+/-3% (n = 8, P < 0.01), respectively. Subsequent addition of nifedipine restored AA but not EA diameter. Manganese (8 mM) reversed EA constriction by 65+/-9% (P < 0.01). In the second group, the addition of N-ethylmaleimide (10 microM), a Gi/Go protein antagonist, abolished AngII- induced EA (n = 6) but not AA constriction (n = 6). In the third series of experiments, treatment with 2-nitro-4-carboxyphenyl-N, N-diphenyl-carbamate (200 microM), a phospholipase C inhibitor, blocked both AA and EA constriction by AngII (n = 6 for each). In the fourth group, thapsigargin (1 microM) prevented AngII-induced AA constriction (n = 8) and attenuated EA constriction (8+/-2% decrease in EA diameter at 0.3 nM AngII, n = 8, P < 0.05). Subsequent addition of manganese (8 mM) reversed EA constriction. Our data provide evidence that in AAs, AngII stimulates phospholipase C with subsequent calcium mobilization that is required to activate voltage-dependent calcium channels. Our results suggest that AngII constricts EAs by activating phospholipase C via the Gi protein family, thereby eliciting both calcium mobilization and calcium entry. PMID:9329977

  20. Effect of intracerebroventricular administration of angiotensin II on emetic reflex in dogs.

    PubMed

    Gupta, Y K; Chugh, A; Bhandari, P; Seth, S D

    1989-06-01

    Area postrema is rich in angiotensin II receptors and intravenous (iv) administration of angiotensin II has been reported to elicit emesis. However, in the present study intracerebroventricular (icv) administration of angiotensin II up to a dose of 10 micrograms failed to elicit emesis. It is suggested that presence of a cerebrospinal fluid-brain barrier in area postrema most probably prevents access of icv angiotensin II to its receptors which are otherwise accessible on iv administration. PMID:2583747

  1. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  2. Low-dose enalapril reduces angiotensin II and attenuates diabetic-induced cardiac and autonomic dysfunctions.

    PubMed

    Malfitano, Christiane; De Angelis, Kátia; Fernandes, Tiago; Wichi, Rogério Brandão; Rosa, Kaleizu; Pazzine, Mariana; Mostarda, Cristiano; Ronchi, Fernanda Aparecida; Oliveira, Edilamar Menezes; de Oliveira, Edilamar Menezes; Casarini, Dulce Elena; Irigoyen, Maria-Claudia

    2012-01-01

    Activation of renin-angiotensin system has been linked to cardiovascular and autonomic dysfunctions in diabetes. Experiments were performed to investigate the effects of angiotensin-converting enzyme inhibitor (ACEI), enalapril, on cardiac and autonomic functions in diabetic rats. Diabetes was induced by streptozotocin (50 mg/kg), and rats were treated with enalapril (1 mg · kg(-1) · d(-1)). After 30 days, evaluations were performed in control, diabetic, and enalapril-treated groups. Cardiac function was evaluated by echocardiography and through cannulation of the left ventricle (at baseline and in response to volume overload). Heart rate and systolic blood pressure variabilities were evaluated in the time and frequency domains. Streptozotocin rats had left ventricular systolic and diastolic dysfunctions, expressed by reduced ejection fraction and increased isovolumic relaxation time. The ACEI prevented these changes, improved diastolic cardiac responses to volume overload and total power of heart rate variability, reduced the ACE1 activity and protein expression and cardiac angiotensin (Ang) II levels, and increased angiotensin-converting enzyme 2 activity, despite unchanged blood pressure. Correlations were obtained between Ang II content with systolic and diastolic functions and heart rate variability. These findings provide evidence that the low-dose ACEI prevents autonomic and cardiac dysfunctions induced by diabetes without changing blood pressure and associated with reduced cardiac Ang II and increased angiotensin-converting enzyme 2 activity. PMID:21921804

  3. Activation of the Renin-Angiotensin System Promotes Colitis Development

    PubMed Central

    Shi, Yongyan; Liu, Tianjing; He, Lei; Dougherty, Urszula; Chen, Li; Adhikari, Sarbani; Alpert, Lindsay; Zhou, Guolin; Liu, Weicheng; Wang, Jiaolong; Deb, Dilip K.; Hart, John; Liu, Shu Q.; Kwon, John; Pekow, Joel; Rubin, David T.; Zhao, Qun; Bissonnette, Marc; Li, Yan Chun

    2016-01-01

    The renin-angiotensin system (RAS) plays pathogenic roles in renal and cardiovascular disorders, but whether it is involved in colitis is unclear. Here we show that RenTgMK mice that overexpress active renin from the liver developed more severe colitis than wild-type controls. More than 50% RenTgMK mice died whereas all wild-type mice recovered. RenTgMK mice exhibited more robust mucosal TH17 and TH1/TH17 responses and more profound colonic epithelial cell apoptosis compared to wild-type controls. Treatment with aliskiren (a renin inhibitor), but not hydralazine (a smooth muscle relaxant), ameliorated colitis in RenTgMK mice, although both drugs normalized blood pressure. Chronic infusion of angiotensin II into wild-type mice mimicked the severe colitic phenotype of RenTgMK mice, and treatment with losartan [an angiotensin type 1 receptor blocker (ARB)] ameliorated colitis in wild-type mice, confirming a colitogenic role for the endogenous RAS. In human biopsies, pro-inflammatory cytokines were suppressed in patients with inflammatory bowel disease who were on ARB therapy compared to patients not receiving ARB therapy. These observations demonstrate that activation of the RAS promotes colitis in a blood pressure independent manner. Angiotensin II appears to drive colonic mucosal inflammation by promoting intestinal epithelial cell apoptosis and mucosal TH17 responses in colitis development. PMID:27271344

  4. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    SciTech Connect

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan; Bigge, Christopher F.; Chen, Jing; Davis, Jo Ann; Dudley, Danette A.; Edmunds, Jeremy J.; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J.; Jalaie, Mehran; Ohren, Jeffrey F.; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P.; Stoner, Chad

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partial PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  5. Angiotensin II-induced angiotensin II type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2009-02-01

    Upon activation, the angiotensin (Ang) II type 1 receptor (AT1Rs) rapidly undergoes endocytosis. After a series of intracellular processes, the internalized AT1Rs recycle back to the plasma membrane or are trafficked to proteasomes or lysosomes for degradation. We recently reported that AT1Rs degrades in proteasomes upon stimulation of the D5 dopamine receptor (D5R) in human renal proximal tubule and HEK-293 cells. This is in contrast to the degradation of AT1R in lysosomes upon binding Ang II. However, the dynamic regulation of the AT1Rs in lysosomes is not well understood. Here we investigated the AT1Rs lysosomal degradation using FRET-FLIM in HEK 293 cells heterologously expressing the human AT1R tagged with EGFP as the donor fluorophore. Compared to its basal state, the lifetime of AT1Rs decreased after a 5-minute treatment with Ang II treatment and colocalized with Rab5 but not Rab7 and LAMP1. With longer Ang II treatment (30 min), the AT1Rs lifetime decreased and co-localized with Rab5, as well as Rab7 and LAMP1. The FLIM data are corroborated with morphological and biochemical co-immunoprecipitation studies. These data demonstrate that Ang II induces the internalization of AT1Rs into early sorting endosomes prior to trafficking to late endosomes and subsequent degradation in lysosomes.

  6. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer.

    PubMed

    Okazaki, Mitsuyoshi; Fushida, Sachio; Harada, Shinichi; Tsukada, Tomoya; Kinoshita, Jun; Oyama, Katsunobu; Tajima, Hidehiro; Ninomiya, Itasu; Fujimura, Takashi; Ohta, Tetsuo

    2014-12-01

    Gastric cancer with peritoneal dissemination has poor clinical prognosis because of the presence of rich stromal fibrosis and acquired drug resistance. Recently, Angiotensin II type I receptor blockers such as candesartan have attracted attention for their potential anti-fibrotic activity. We examined whether candesartan could attenuate tumor proliferation and fibrosis through the interaction between gastric cancer cell line (MKN45) cells and human peritoneal mesothelial cells. Candesartan significantly reduced TGF-β1 expression and epithelial-to-mesenchymal transition-like change, while tumor proliferation and stromal fibrosis were impaired. Targeting the Angiotensin II signaling pathway may therefore be an efficient strategy for treatment of tumor proliferation and fibrosis. PMID:25224569

  7. Mammary renin-angiotensin system-regulating aminopeptidase activities are modified in rats with breast cancer.

    PubMed

    del Pilar Carrera, Maria; Ramírez-Expósito, Maria Jesus; Mayas, Maria Dolores; García, Maria Jesus; Martínez-Martos, Jose Manuel

    2010-12-01

    Angiotensin II in particular and/or the local renin-angiotensin system in general could have an important role in epithelial tissue growth and modelling; therefore, it is possible that it may be involved in breast cancer. In this sense, previous works of our group showed a predominating role of angiotensin II in tumoral tissue obtained from women with breast cancer. However, although classically angiotensin II has been considered the main effector peptide of the renin-angiotensin system cascade, several of its catabolism products such as angiotensin III and angiotensin IV also possess biological functions. These peptides are formed through the activity of several proteolytic regulatory enzymes of the aminopeptidase type, also called angiotensinases. The aim of this work was to analyse several specific angiotensinase activities involved in the renin-angiotensin system cascade in mammary tissue from control rats and from rats with mammary tumours induced by N-methyl-nitrosourea (NMU), which may reflect the functional status of their target peptides under the specific conditions brought about by the tumoural process. The results show that soluble and membrane-bound specific aspartyl aminopeptidase activities and membrane-bound glutamyl aminopeptidase activity increased in mammary tissue from NMU-treated animals and soluble aminopeptidase N and aminopeptidase B activities significantly decreased in mammary tissue from NMU-treated rats. These changes support the existence of a local mammary renin-angiotensin system and that this system and its putative functions in breast tissue could be altered by the tumour process, in which we suggest a predominant role of angiotensin III. All described data about the renin-angiotensin system in mammary tissue support the idea that it must be involved in normal breast tissue functions, and its disruption could be involved in one or more steps of the carcinogenesis process.

  8. Angiotensin II induces phosphatidic acid formation in neonatal rat cardiac fibroblasts: evaluation of the roles of phospholipases C and D.

    PubMed

    Booz, G W; Taher, M M; Baker, K M; Singer, H A

    1994-12-21

    Phosphatidic acid has been proposed to contribute to the mitogenic actions of various growth factors. In 32P-labeled neonatal rat cardiac fibroblasts, 100 nM [Sar1]angiotensin II was shown to rapidly induce formation of 32P-phosphatidic acid. Levels peaked at 5 min (1.5-fold above control), but were partially sustained over 2 h. Phospholipase D contributed in part to phosphatidic acid formation, as 32P- or 3H-phosphatidylethanol was produced when cells labeled with [32P]H3PO4 or 1-O-[1,2- 3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine were stimulated in the presence of 1% ethanol. [Sar1]angiotensin II-induced phospholipase D activity was transient and mainly mediated through protein kinase C (PKC), since PKC downregulation reduced phosphatidylethanol formation by 68%. Residual activity may have been due to increased intracellular Ca2+, as ionomycin also activated phospholipase D in PKC-depleted cells. Phospholipase D did not fully account for [Sar1]angiotensin II-induced phosphatidic acid: 1) compared to PMA, a potent activator of phospholipase D, [Sar1]angiotensin II produced more phosphatidic acid relative to phosphatidylethanol, and 2) PKC downregulation did not affect [Sar1]angiotensin II-induced phosphatidic acid formation. The diacylglycerol kinase inhibitor R59949 depressed [Sar1]angiotensin II-induced phosphatidic acid formation by only 21%, indicating that activation of a phospholipase C and diacylglycerol kinase also can not account for the bulk of phosphatidic acid. Thus, additional pathways not involving phospholipases C and D, such as de novo synthesis, may contribute to [Sar1]angiotensin II-induced phosphatidic acid in these cells. Finally, as previously shown for [Sar1]angiotensin II, phosphatidic acid stimulated mitogen activated protein (MAP) kinase activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Retrieval improvement is induced by water shortage through angiotensin II.

    PubMed

    Frenkel, Lia; Maldonado, Héctor; Delorenzi, Alejandro

    2005-03-01

    Angiotensin II (ANGII) has an evolutionary preserved role in determining adaptative responses to water-shortages. In addition, it has been shown to modulate diverse phases of memory. Still, it is not clear whether ANGII improves or spoils memory. We demonstrated that endogenous angiotensins enhance consolidation of a long-term associative memory in the crab Chasmagnathus and that water shortage improves memory consolidation through brain ANGII actions. Here, we show that weakly trained crabs, when water-deprived, exhibit enhanced retrieval. Subsequently, memory retention is indistinguishable from that of strongly trained crabs. ANGII, but not angiotensin IV, is a necessary and sufficient condition for such enhancing effect. We conclude that ANGII released due to water shortage leads to enhanced memory retrieval. Thus, it seems that ANGII has an evolutionary preserved role as a multifunction coordinator that enables an adaptative response to water-shortage. The facilitation of memory consolidation and retrieval would be among those coordinated functions.

  10. Retrieval improvement is induced by water shortage through angiotensin II.

    PubMed

    Frenkel, Lia; Maldonado, Héctor; Delorenzi, Alejandro

    2005-03-01

    Angiotensin II (ANGII) has an evolutionary preserved role in determining adaptative responses to water-shortages. In addition, it has been shown to modulate diverse phases of memory. Still, it is not clear whether ANGII improves or spoils memory. We demonstrated that endogenous angiotensins enhance consolidation of a long-term associative memory in the crab Chasmagnathus and that water shortage improves memory consolidation through brain ANGII actions. Here, we show that weakly trained crabs, when water-deprived, exhibit enhanced retrieval. Subsequently, memory retention is indistinguishable from that of strongly trained crabs. ANGII, but not angiotensin IV, is a necessary and sufficient condition for such enhancing effect. We conclude that ANGII released due to water shortage leads to enhanced memory retrieval. Thus, it seems that ANGII has an evolutionary preserved role as a multifunction coordinator that enables an adaptative response to water-shortage. The facilitation of memory consolidation and retrieval would be among those coordinated functions. PMID:15721803

  11. Expression of Angiotensin II Receptor-1 in Human Articular Chondrocytes

    PubMed Central

    Kawakami, Yuki; Matsuo, Kosuke; Murata, Minako; Yudoh, Kazuo; Nakamura, Hiroshi; Shimizu, Hiroyuki; Beppu, Moroe; Inaba, Yutaka; Saito, Tomoyuki; Kato, Tomohiro; Masuko, Kayo

    2012-01-01

    Background. Besides its involvement in the cardiovascular system, the renin-angiotensin-aldosterone (RAS) system has also been suggested to play an important role in inflammation. To explore the role of this system in cartilage damage in arthritis, we investigated the expression of angiotensin II receptors in chondrocytes. Methods. Articular cartilage was obtained from patients with osteoarthritis, rheumatoid arthritis, and traumatic fractures who were undergoing arthroplasty. Chondrocytes were isolated and cultured in vitro with or without interleukin (IL-1). The expression of angiotensin II receptor types 1 (AT1R) and 2 (AT2R) mRNA by the chondrocytes was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). AT1R expression in cartilage tissue was analyzed using immunohistochemistry. The effect of IL-1 on AT1R/AT2R expression in the chondrocytes was analyzed by quantitative PCR and flow cytometry. Results. Chondrocytes from all patient types expressed AT1R/AT2R mRNA, though considerable variation was found between samples. Immunohistochemical analysis confirmed AT1R expression at the protein level. Stimulation with IL-1 enhanced the expression of AT1R/AT2R mRNA in OA and RA chondrocytes. Conclusions. Human articular chondrocytes, at least partially, express angiotensin II receptors, and IL-1 stimulation induced AT1R/AT2R mRNA expression significantly. PMID:23346400

  12. Angiotensin II modulates salty and sweet taste sensitivities.

    PubMed

    Shigemura, Noriatsu; Iwata, Shusuke; Yasumatsu, Keiko; Ohkuri, Tadahiro; Horio, Nao; Sanematsu, Keisuke; Yoshida, Ryusuke; Margolskee, Robert F; Ninomiya, Yuzo

    2013-04-10

    Understanding the mechanisms underlying gustatory detection of dietary sodium is important for the prevention and treatment of hypertension. Here, we show that Angiotensin II (AngII), a major mediator of body fluid and sodium homeostasis, modulates salty and sweet taste sensitivities, and that this modulation critically influences ingestive behaviors in mice. Gustatory nerve recording demonstrated that AngII suppressed amiloride-sensitive taste responses to NaCl. Surprisingly, AngII also enhanced nerve responses to sweeteners, but had no effect on responses to KCl, sour, bitter, or umami tastants. These effects of AngII on nerve responses were blocked by the angiotensin II type 1 receptor (AT1) antagonist CV11974. In behavioral tests, CV11974 treatment reduced the stimulated high licking rate to NaCl and sweeteners in water-restricted mice with elevated plasma AngII levels. In taste cells AT1 proteins were coexpressed with αENaC (epithelial sodium channel α-subunit, an amiloride-sensitive salt taste receptor) or T1r3 (a sweet taste receptor component). These results suggest that the taste organ is a peripheral target of AngII. The specific reduction of amiloride-sensitive salt taste sensitivity by AngII may contribute to increased sodium intake. Furthermore, AngII may contribute to increased energy intake by enhancing sweet responses. The linkage between salty and sweet preferences via AngII signaling may optimize sodium and calorie intakes. PMID:23575826

  13. Angiotensin II inhibits insulin-stimulated phosphorylation of eukaryotic initiation factor 4E-binding protein-1 in proximal tubular epithelial cells.

    PubMed Central

    Senthil, D; Faulkner, J L; Choudhury, G G; Abboud, H E; Kasinath, B S

    2001-01-01

    Interaction between angiotensin II, which binds a G-protein-coupled receptor, and insulin, a ligand for receptor tyrosine kinase, was examined in renal proximal tubular epithelial cells. Augmented protein translation by insulin involves activation of eukaryotic initiation factor 4E (eIF4E) which follows the release of the factor from a heterodimeric complex by phosphorylation of its binding protein, 4E-BP1. Angiotensin II (1 nM) or insulin (1 nM) individually stimulated 4E-BP1 phosphorylation. However, pre-incubation with angiotensin II abrogated insulin-induced phosphorylation of 4E-BP1, resulting in persistent binding to eIF4E. Although angiotensin II and insulin individually activated phosphoinositide 3-kinase and extracellular signal-regulated kinase (ERK)-1/-2-type mitogen-activated protein (MAP) kinase, pre-incubation with angiotensin II abolished insulin-induced stimulation of these kinases, suggesting more proximal events in insulin signalling may be intercepted. Pretreatment with angiotensin II markedly inhibited insulin-stimulated tyrosine phosphorylation of insulin-receptor beta-chain and insulin-receptor substrate 1. Losartan prevented angiotensin II inhibition of insulin-induced ERK-1/-2-type MAP kinase activation and 4E-BP1 phosphorylation, suggesting mediation of the effect of angiotensin II by its type 1 receptor. Insulin-stimulated de novo protein synthesis was also abolished by pre-incubation with angiotensin II. These data show that angiotensin II inhibits 4E-BP1 phosphorylation and stimulation of protein synthesis induced by insulin by interfering with proximal events in insulin signalling. Our data provide a mechanistic basis for insulin insensitivity induced by angiotensin II. PMID:11695995

  14. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor.

    PubMed Central

    Wolf, G; Ziyadeh, F N; Thaiss, F; Tomaszewski, J; Caron, R J; Wenzel, U; Zahner, G; Helmchen, U; Stahl, R A

    1997-01-01

    Glomerular influx of monocytes/macrophages (M/M) occurs in many immune- and non-immune-mediated renal diseases. The mechanisms targeting M/M into the glomerulus are incompletely understood, but may involve stimulated expression of chemokines. We investigated whether angiotensin II (ANG II) induces the chemokine RANTES in cultured glomerular endothelial cells of the rat and in vivo. ANG II stimulated mRNA and protein expression of RANTES in cultured glomerular endothelial cells. The ANG II-induced RANTES protein was chemotactic for human monocytes. Surprisingly, the ANG II-stimulated RANTES expression was transduced by AT2 receptors because the AT2 receptor antagonists PD 123177 and CGP-42112A, but not an AT1 receptor blocker, abolished the induced RANTES synthesis. Intraperitoneal infusion of ANG II (500 ng/h) into naive rats for 4 d significantly stimulated glomerular RANTES mRNA and protein expression compared with solvent-infused controls. Immunohistochemistry revealed induction of RANTES protein mainly in glomerular endothelial cells and small capillaries. Moreover, ANG II- infused animals exhibited an increase in glomerular ED-1- positive cells compared with controls. Oral treatment with PD 123177 (50 mg/liter drinking water) attenuated the glomerular M/M influx without normalizing the slightly elevated systolic blood pressure caused by ANG II infusion, suggesting that the effects on blood pressure and RANTES induction can be separated. We conclude that the vasoactive peptide ANG II may play an important role in glomerular chemotaxis of M/M through local induction of the chemokine RANTES. The observation that the ANG II- mediated induction of RANTES is transduced by AT2 receptors may influence the decision as to which substances might be used for the therapeutic interference with the activity of the renin-angiotensin system. PMID:9276721

  15. Heterogeneity of angiotensin II receptors in membranes of developing rat metanephros.

    PubMed

    Uva, B; Vallarino, M; Ghiani, P

    1985-10-01

    Specific and high affinity binding sites for angiotensin II were demonstrated in the membranes of the developing rat metanephros during the second half of pregnancy and in the newborn by binding studies with 125I angiotensin II. Only one type of angiotensin receptor was found during intrauterine life while after birth two classes of angiotensin receptors were present in the membranes of the cortical renal tissue.

  16. Angiotensin I converting enzyme activity in rabbit corneal endothelial cells.

    PubMed

    Neels, H M; Vanden Berghe, D A; Neetens, A J; Delgadillo, R A; Scharpe, S L

    1983-01-01

    Angiotensin I converting enzyme (ACE) was studied in Vero cells, rabbit corneal fibroblasts, and rabbit corneal endothelial cells. The enzyme activity was determined by means of an assay employing hippuryl-glycyl-glycine as a substrate. The hippuric acid end product was separated from the substrate by reversed phase liquid chromatography and measured spectrophotometrically at 228 nm. The enzyme was further characterized by a captopril inhibition study. Significant ACE activity was found in rabbit corneal endothelial cells but not in other types of cells tested. This is the first report of the presence of this enzyme in a specific ocular cell type and suggests that angiotensin II may play a role in normal ocular physiology.

  17. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    SciTech Connect

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  18. Diabetic state, high plasma insulin and angiotensin II combine to augment endothelin-1-induced vasoconstriction via ETA receptors and ERK

    PubMed Central

    Kobayashi, T; Nogami, T; Taguchi, K; Matsumoto, T; Kamata, K

    2008-01-01

    Background and purpose: Mechanisms associated with the enhanced contractile response to endothelin-1 in hyperinsulinaemic diabetes have been examined using the rat aorta. Functions for angiotensin II, endothelin-1 receptor expression and extracellular signal-regulated kinase (ERK) have been investigated. Experimental approach: Streptozotocin-induced diabetic rats were infused with angiotensin II or, following insulin treatment, were treated with losartan, an angiotensin II receptor antagonist. Contractions of aortic strips with or without endothelium, in response to endothelin-1 and angiotensin II, were examined in vitro. Aortic ETA receptors and ERK/MEK expression were measured by western blotting. Key results: Insulin-treated diabetic rats exhibited increases in plasma insulin, angiotensin II and endothelin-1. The systolic blood pressure and endothelin-1-induced contractile responses in aortae in vitro were enhanced in insulin-treated diabetic rats and blunted by chronic losartan administration. LY294002 (phosphatidylinositol 3-kinase inhibitor) and/or PD98059 (MEK inhibitor) diminished the enhanced contractile response to endothelin-1 in aortae from insulin-treated diabetic rats. ETA and ETB receptors, ERK-1/2 and MEK-1/2 protein expression and endothelin-1-stimulated ERK phosphorylation were all increased in aortae from insulin-treated diabetic rats. Such increases were blunted by chronic losartan administration. Endothelin-1-induced contraction was significantly higher in aortae from angiotensin II-infused diabetic rats. angiotensin II-infusion increased ERK phosphorylation, but the expression of endothelin receptors and ERK/MEK proteins remained unchanged. Conclusions and implications: These results suggest that the combination of high plasma angiotensin II and insulin with a diabetic state induced enhancement of endothelin-1-induced vasoconstriction, ETA receptor expression and ERK expression/activity in the aorta. Losartan improved both the diabetes

  19. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy

    PubMed Central

    Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin

    2016-01-01

    Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR1), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR1) signaling and miR-155 was investigated. Rat H9C2 (2–1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR1, atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR1 and suppressing the calcium signaling pathways activated by AGTR1. PMID:27588076

  20. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm

    PubMed Central

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M.; Farley, Michelle; Roy, Nilay; Chin, Matthew S.; von Andrian, Ulrich H.; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J.; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J.; Bonventre, Joseph V.; Siedlecki, Andrew M.

    2014-01-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 minute injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 minute unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury blood flow was decreased in the inner cortex of wild type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 hours after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMC) to secrete the macrophage chemoattractant, RANTES; a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared to transgenic and non-transgenic mice after the 10 minute injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849

  1. Regulatory networks and complex interactions between the insulin and angiotensin II signalling systems: models and implications for hypertension and diabetes.

    PubMed

    Cizmeci, Deniz; Arkun, Yaman

    2013-01-01

    The cross-talk between insulin and angiotensin II signalling pathways plays a significant role in the co-occurrence of diabetes and hypertension. We developed a mathematical model of the system of interactions among the biomolecules that are involved in the cross-talk between the insulin and angiotensin II signalling pathways. We have identified several feedback structures that regulate the dynamic behavior of the individual signalling pathways and their interactions. Different scenarios are simulated and dominant steady-state, dynamic and stability characteristics are revealed. The proposed mechanistic model describes how angiotensin II inhibits the actions of insulin and impairs the insulin-mediated vasodilation. The model also predicts that poor glycaemic control induced by diabetes contributes to hypertension by activating the renin angiotensin aystem.

  2. Auto-inhibitory regulation of angiotensin II functionality in hamster aorta during the early phases of dyslipidemia.

    PubMed

    Pereira, Priscila Cristina; Pernomian, Larissa; Côco, Hariane; Gomes, Mayara Santos; Franco, João José; Marchi, Kátia Colombo; Hipólito, Ulisses Vilela; Uyemura, Sergio Akira; Tirapelli, Carlos Renato; de Oliveira, Ana Maria

    2016-06-15

    Emerging data point the crosstalk between dyslipidemia and renin-angiotensin system (RAS). Advanced dyslipidemia is described to induce RAS activation in the vasculature. However, the interplay between early dyslipidemia and the RAS remains unexplored. Knowing that hamsters and humans have a similar lipid profile, we investigated the effects of early and advanced dyslipidemia on angiotensin II-induced contraction. Cumulative concentration-response curves for angiotensin II (1.0pmol/l to 1.0µmol/l) were obtained in the hamster thoracic aorta. We also investigated the modulatory action of NAD(P)H oxidase on angiotensin II-induced contraction using ML171 (Nox-1 inhibitor, 0.5µmol/l) and VAS2870 (Nox-4 inhibitor, 5µmol/l). Early dyslipidemia was detected in hamsters treated with a cholesterol-rich diet for 15 days. Early dyslipidemia decreased the contraction induced by angiotensin II and the concentration of Nox-4-derived hydrogen peroxide. Advanced dyslipidemia, observed in hamsters treated with cholesterol-rich diet for 30 days, restored the contractile response induced by angiotensin II by compensatory mechanism that involves Nox-4-mediated oxidative stress. The hyporresponsiveness to angiotensin II may be an auto-inhibitory regulation of the angiotensinergic function during early dyslipidemia in an attempt to reduce the effects of the upregulation of the vascular RAS during the advanced stages of atherogenesis. The recovery of vascular angiotensin II functionality during the advanced phases of dyslipidemia is the result of the upregulation of redox-pro-inflammatory pathway that might be most likely involved in atherogenesis progression rather than in the recovery of vascular function. Taken together, our findings show the early phase of dyslipidemia may be the most favorable moment for effective atheroprotective therapeutic interventions. PMID:27063446

  3. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults

    PubMed Central

    Coelho, Vinícius A.; Probst, Vanessa S.; Nogari, Bruna M.; Teixeira, Denilson C.; Felcar, Josiane M.; Santos, Denis C.; Gomes, Marcus Vinícius M.; Andraus, Rodrigo A. C.; Fernandes, Karen B. P.

    2016-01-01

    [Purpose] This study aimed to assess the exercise capacity and muscle strength in elderly people using drugs for angiotensin-II blockage. [Subjects and Methods] Four hundred and seven older adults were recruited for this study. Data about comorbidities and medication use were recorded and the individuals were divided into three groups: control group- elderly people with normal exercise capacity (n=235); angiotensin-converting enzyme inhibitor group − individuals using angiotensin-converting enzyme inhibitors (n=140); and angiotensin-II receptor blocker group- patients using angiotensin-II receptor blockers (n= 32). Exercise capacity was evaluated by a 6-minute walking test and muscle strength was measured using a handgrip dynamometer. [Results] Patients from the angiotensin-converting enzyme inhibitor group (mean: 99 ± 12%) and the angiotensin-II receptor blocker group (mean: 101 ± 14%) showed higher predicted values in the 6-minute walking test than the control group patients (mean: 96 ± 10%). Patients from the angiotensin-converting enzyme inhibitor group (mean: 105 ± 19%) and the angiotensin-II receptor blocker group (mean: 105.1 ± 18.73%) showed higher predicted values of muscle strength than control group patients (mean: 98.15 ± 18.77%). [Conclusion] Older adults using angiotensin-converting enzyme inhibitors or angiotensin-II receptor blockers have better functional exercise capacity and muscle strength. PMID:27065543

  4. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults.

    PubMed

    Coelho, Vinícius A; Probst, Vanessa S; Nogari, Bruna M; Teixeira, Denilson C; Felcar, Josiane M; Santos, Denis C; Gomes, Marcus Vinícius M; Andraus, Rodrigo A C; Fernandes, Karen B P

    2016-01-01

    [Purpose] This study aimed to assess the exercise capacity and muscle strength in elderly people using drugs for angiotensin-II blockage. [Subjects and Methods] Four hundred and seven older adults were recruited for this study. Data about comorbidities and medication use were recorded and the individuals were divided into three groups: control group- elderly people with normal exercise capacity (n=235); angiotensin-converting enzyme inhibitor group - individuals using angiotensin-converting enzyme inhibitors (n=140); and angiotensin-II receptor blocker group- patients using angiotensin-II receptor blockers (n= 32). Exercise capacity was evaluated by a 6-minute walking test and muscle strength was measured using a handgrip dynamometer. [Results] Patients from the angiotensin-converting enzyme inhibitor group (mean: 99 ± 12%) and the angiotensin-II receptor blocker group (mean: 101 ± 14%) showed higher predicted values in the 6-minute walking test than the control group patients (mean: 96 ± 10%). Patients from the angiotensin-converting enzyme inhibitor group (mean: 105 ± 19%) and the angiotensin-II receptor blocker group (mean: 105.1 ± 18.73%) showed higher predicted values of muscle strength than control group patients (mean: 98.15 ± 18.77%). [Conclusion] Older adults using angiotensin-converting enzyme inhibitors or angiotensin-II receptor blockers have better functional exercise capacity and muscle strength.

  5. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells

    SciTech Connect

    Griendling, K.K.; Rittenhouse, S.E.; Brock, T.A.; Ekstein, L.S.; Gimbrone, M.A. Jr.; Alexander, R.W.

    1986-05-05

    Angiotensin II acts on cultured rat aortic vascular smooth muscle cells to stimulate phospholipase C-mediated hydrolysis of membrane phosphoinositides and subsequent formation of diacylglycerol and inositol phosphates. In intact cells, angiotensin II induces a dose-dependent increase in diglyceride which is detectable after 5 s and sustained for at least 20 min. Angiotensin II (100 nM)-stimulated diglyceride formation is biphasic, peaking at 15 s (227 +/- 19% control) and at 5 min (303 +/- 23% control). Simultaneous analysis of labeled inositol phospholipids shows that at 15 s phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP) decline to 52 +/- 6% control and 63 +/- 5% control, respectively, while phosphatidylinositol (PI) remains unchanged. In contrast, at 5 min, PIP2 and PIP have returned toward control levels (92 +/- 2 and 82 +/- 4% control, respectively), while PI has decreased substantially (81 +/- 2% control). The calcium ionophore ionomycin (15 microM) stimulates diglyceride accumulation but does not cause PI hydrolysis. 4 beta-Phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibits early PIP and PIP2 breakdown and diglyceride formation, without inhibiting late-phase diglyceride accumulation. Thus, angiotensin II induces rapid transient breakdown of PIP and PIP2 and delayed hydrolysis of PI. The rapid attenuation of polyphosphoinositide breakdown is likely caused by a protein kinase C-mediated inhibition of PIP and PIP2 hydrolysis. While in vascular smooth muscle stimulated with angiotensin II inositol 1,4,5-trisphosphate formation is transient, diglyceride production is biphasic, suggesting that initial and sustained diglyceride formation from the phosphoinositides results from different biochemical and/or cellular processes.

  6. 6β-hydroxytestosterone, a cytochrome P450 1B1 metabolite of testosterone, contributes to angiotensin II-induced hypertension and its pathogenesis in male mice.

    PubMed

    Pingili, Ajeeth K; Kara, Mehmet; Khan, Nayaab S; Estes, Anne M; Lin, Zongtao; Li, Wei; Gonzalez, Frank J; Malik, Kafait U

    2015-06-01

    Previously, we showed that Cyp1b1 gene disruption minimizes angiotensin II-induced hypertension and associated pathophysiological changes in male mice. This study was conducted to test the hypothesis that cytochrome P450 1B1-generated metabolites of testosterone, 6β-hydroxytestosterone and 16α-hydroxytestosterone, contribute to angiotensin II-induced hypertension and its pathogenesis. Angiotensin II infusion for 2 weeks increased cardiac cytochrome P450 1B1 activity and plasma levels of 6β-hydroxytestosterone, but not 16α-hydroxytestosterone, in Cyp1b1(+/+) mice without altering Cyp1b1 gene expression; these effects of angiotensin II were not observed in Cyp1b1(-/-) mice. Angiotensin II-induced increase in systolic blood pressure and associated cardiac hypertrophy, and fibrosis, measured by intracardiac accumulation of α-smooth muscle actin, collagen, and transforming growth factor-β, and increased nicotinamide adenine dinucleotide phosphate oxidase activity and production of reactive oxygen species; these changes were minimized in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice, and restored by treatment with 6β-hydroxytestoterone. In Cyp1b1(+/+) mice, 6β-hydroxytestosterone did not alter the angiotensin II-induced increase in systolic blood pressure; the basal systolic blood pressure was also not affected by this agent in either genotype. Angiotensin II or castration did not alter cardiac, angiotensin II type 1 receptor, angiotensin-converting enzyme, Mas receptor, or androgen receptor mRNA levels in Cyp1b1(+/+) or in Cyp1b1(-/-) mice. These data suggest that the testosterone metabolite, 6β-hydroxytestosterone, contributes to angiotensin II-induced hypertension and associated cardiac pathogenesis in male mice, most probably by acting as a permissive factor. Moreover, cytochrome P450 1B1 could serve as a novel target for developing agents for treating renin-angiotensin and testosterone-dependent hypertension and associated pathogenesis in males.

  7. Angiotensin II induces interleukin-1β-mediated islet inflammation and β-cell dysfunction independently of vasoconstrictive effects.

    PubMed

    Sauter, Nadine S; Thienel, Constanze; Plutino, Yuliya; Kampe, Kapil; Dror, Erez; Traub, Shuyang; Timper, Katharina; Bédat, Benoit; Pattou, Francois; Kerr-Conte, Julie; Jehle, Andreas W; Böni-Schnetzler, Marianne; Donath, Marc Y

    2015-04-01

    Pathological activation of the renin-angiotensin system (RAS) is associated with the metabolic syndrome, and the new onset of type 2 diabetes can be delayed by RAS inhibition. In animal models of type 2 diabetes, inhibition of the RAS improves insulin secretion. However, the direct effects of angiotensin II on islet function and underlying mechanisms independent of changes in blood pressure remain unclear. Here we show that exposure of human and mouse islets to angiotensin II induces interleukin (IL)-1-dependent expression of IL-6 and MCP-1, enhances β-cell apoptosis, and impairs mitochondrial function and insulin secretion. In vivo, mice fed a high-fat diet and treated with angiotensin II and the vasodilator hydralazine to prevent hypertension showed defective glucose-stimulated insulin secretion and deteriorated glucose tolerance. Application of an anti-IL-1β antibody reduced the deleterious effects of angiotensin II on islet inflammation, restored insulin secretion, and improved glycemia. We conclude that angiotensin II leads to islet dysfunction via induction of inflammation and independent of vasoconstriction. Our findings reveal a novel role for the RAS and an additional rationale for the treatment of type 2 diabetic patients with an IL-1β antagonist.

  8. Effect of subpressor dose of angiotensin II on pain-related behavior in relation with neuronal injury and activation of satellite glial cells in the rat dorsal root ganglia.

    PubMed

    Pavel, Jaroslav; Oroszova, Zuzana; Hricova, Ludmila; Lukacova, Nadezda

    2013-07-01

    To clarify the role of angiotensin II (Ang II) in the regulation of sensory signaling, we studied the effect of subpressor dose (150 ng/kg/min) of Ang II on pain-related behavior in relation with neuronal injury and activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRGs) after chronic constriction injury (CCI). Systemic continuous delivery of Ang II induced the tactile, heat and cold hyperlagesia, when measured at 7 days ofpost-injury. Blockade of the AT1 receptor with losartan (2.5 mg/kg/day) prevented tactile hyperalgesia and attenuated cold hyperalgesia, but did not affect the response to noxious heat stimulus. A marked increase of large-sized injured primary afferent neurons, detected by ATF3 immunolabeling, was seen in lower lumbar DRGs on ipsilateral side after Ang II treatment. Subpressor dose of Ang II induced an increase of activated SGCs (detected by GFAP immunolabeling) enveloping large-diameter neurons. Our results suggested that Ang II through the AT1 receptor activation is an important regulatory factor in neuropathic pain perception and plays an important role in the injury of large-sized primary afferent neurons and activation of SGCs elicited by the CCI.

  9. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension.

    PubMed

    Zhang, Jiandong; Patel, Mehul B; Griffiths, Robert; Mao, Alice; Song, Young-soo; Karlovich, Norah S; Sparks, Matthew A; Jin, Huixia; Wu, Min; Lin, Eugene E; Crowley, Steven D

    2014-12-01

    Immune system activation contributes to the pathogenesis of hypertension and the resulting progression of chronic kidney disease. In this regard, we recently identified a role for proinflammatory Th1 T-lymphocyte responses in hypertensive kidney injury. Because Th1 cells generate interferon-γ and tumor necrosis factor-α (TNF-α), we hypothesized that interferon-γ and TNF-α propagate renal damage during hypertension induced by activation of the renin-angiotensin system. Therefore, after confirming that mice genetically deficient of Th1 immunity were protected from kidney glomerular injury despite a preserved hypertensive response, we subjected mice lacking interferon-γ or TNF-α to our model of hypertensive chronic kidney disease. Interferon deficiency had no impact on blood pressure elevation or urinary albumin excretion during chronic angiotensin II infusion. By contrast, TNF-deficient (knockout) mice had blunted hypertensive responses and reduced end-organ damage in our model. As angiotensin II-infused TNF knockout mice had exaggerated endothelial nitric oxide synthase expression in the kidney and enhanced nitric oxide bioavailability, we examined the actions of TNF-α generated from renal parenchymal cells in hypertension by transplanting wild-type or TNF knockout kidneys into wild-type recipients before the induction of hypertension. Transplant recipients lacking TNF solely in the kidney had blunted hypertensive responses to angiotensin II and augmented renal endothelial nitric oxide synthase expression, confirming a role for kidney-derived TNF-α to promote angiotensin II-induced blood pressure elevation by limiting renal nitric oxide generation.

  10. Inhibition by trifluoperazine of glycogenolytic effects of phenylephrine, vasopressin, and angiotensin II.

    PubMed

    Koide, Y; Kimura, S; Tada, R; Kugai, N; Yamashita, K

    1982-06-01

    The effects of trifluoperazine on the activation of glycogenolysis by various hormones were studied in perfused rat liver. Trifluoperazine significantly inhibited glycogenolytic effect of phenylephrine and angiotensin II by lowering maximal response, and that of vasopressin by shifting the dose-response curve to the right, while alpha-antagonist phentolamine was inhibitory only to phenylephrine. Phosphorylase activation of phenylephrine was inhibited by trifluoperazine in parallel with glycogenolytic response. The increase in 45Ca2+ efflux induced by phenylephrine, angiotensin II, and vasopressin was also inhibited by the agent. These inhibitory effects of trifluoperazine were not related to the change in tissue cyclic AMP or cyclic GMP levels. On the other hand, neither the glycogenolytic effect of glucagon, cyclic AMP, and N6,O2-dibutyryl cyclic AMP nor phosphorylase activation by glucagon was affected by trifluoperazine. Thus, trifluoperazine specifically inhibits the activation of glycogenolysis by Ca2+-dependent hormones.

  11. Angiotensin II prevents hypoxic pulmonary hypertension and vascular changes in rat

    SciTech Connect

    Rabinovitch, M.; Mullen, M.; Rosenberg, H.C.; Maruyama, K.; O'Brodovich, H.; Olley, P.M. )

    1988-03-01

    Angiotensin II, a vasoconstrictor, has been previously demonstrated to produce a secondary vasodilatation due to release of prostaglandins. Because of this effect, the authors investigated whether infusion of exogenous angiotensin II via miniosmopumps in rats during a 1-wk exposure to chronic hypobaric hypoxia might prevent pulmonary hypertension, right ventricular hypertrophy, and vascular changes. They instrumented the rats with indwelling cardiovascular catheters and compared the hemodynamic and structural response in animals given angiotensin II, indomethacin in addition to angiotensin II (to block prostaglandin production), or saline with or without indomethacin. They then determine whether angiotensin II infusion also prevents acute hypoxic pulmonary vasoconstriction. They observed that exogenous angiotensin II infusion abolished the rise in pulmonary artery pressure, the right ventricular hypertrophy, and the vascular changes induced during chronic hypoxia in control saline-infused rats with or without indomethacin. The protective effects of angiotensin II was lost when indomethacin was given to block prostaglandin synthesis. During acute hypoxia, both antiotensin II and prostacyclin infusion similarly prevented the rise in pulmonary artery pressure observed in saline-infused rats and in rats given indomethacin or saralasin in addition to angiotensin II. Thus exogenous angiotensin II infusion prevents chronic hypoxic pulmonary hypertension, associated right ventricular hypertrophy, and vascular changes and blocks acute hypoxic pulmonary hypertension, and this is likely related to its ability to release vasodilator prostaglandins.

  12. Conformational restriction of angiotensin II: cyclic analogues having high potency.

    PubMed

    Spear, K L; Brown, M S; Reinhard, E J; McMahon, E G; Olins, G M; Palomo, M A; Patton, D R

    1990-07-01

    Cyclic analogues of angiotensin II (AII) were synthesized by connecting the side chains of residues 3 and 5 via a disulfide bridge. Appropriate conformational constraints afforded an analogue, [Hcy3,5]AII, having high contractile activity (pD2 = 8.48 vs 8.81 for AII) and excellent binding affinity (IC50 = 2.1 nM vs 2.2 nM for AII). This type of cyclization was also used to prepare a highly potent AII antagonist, [Sar1,Hcy3,5,Ile8]AII (pA2 = 9.09 vs 9.17 for [Sar1, Ile8]AII; IC50 = 0.9 nM vs 1.9 nM for [Sar1,Ile8]AII). Model building suggests that this ring structure is consistent with a receptor-bound conformation having any of a variety of three-residue turns, including a gamma-turn. In contrast, the receptor-bound conformation of AII does not appear to accommodate a beta-turn or an alpha-helix which includes residues 3-5.

  13. Serotonin uptake rates in platelets from angiotensin II-induced hypertensive mice.

    PubMed

    Singh, Preeti; Fletcher, Terry W; Li, Yicong; Rusch, Nancy J; Kilic, Fusun

    2013-03-01

    Angiotensin II (Ang II) is a critical component of the renin-angiotensin system that contributes to hypertension. Although platelets in blood from hypertensive subjects have an abnormal biological profile, it is unclear if circulating Ang II influences platelet aggregation or thrombus formation. One of the abnormalities presented to the platelets during hypertension is an elevated plasma concentration of serotonin (5-HT) caused by reduced 5-HT uptake secondary to loss of the 5-HT transporter (SERT) on the platelet plasma membrane. In the current study, we evaluated in vivo platelet function after 7 days of subcutaneous Ang II infusion to establish hypertension in mice and additionally assessed the biology of isolated platelets exposed to Ang II in vitro. The administration of Ang II elevated systolic blood pressure, but markers of platelet activation including P-selectin and (PE)Jon/A staining were not changed. However, the aggregation response to collagen was reduced in isolated platelets from Ang II-infused mice, which also showed reduced 5-HT uptake by SERT. In vitro exposure of isolated platelets to Ang II also resulted in a loss of surface SERT associated with a reduced aggregation response to collagen. These abnormalities were reversed by increasing concentrations of the Ang II receptor antagonist, valsartan. Interestingly, SERT KO mice failed to fully develop hypertension in response to Ang II infusion and isolated platelets from these animals were insensitive to the anti-aggregatory influence of Ang II. Thus, Ang II blunts the aggregation responses of platelets and the mechanism underlying this action may involve a loss of SERT on the platelet plasma membrane. The latter event depletes intracellular 5-HT in platelets, an event that is associated with reduced aggregation. The widespread use of antihypertensive drugs that target the renin-angiotensin system suggest the potential clinical utility of our findings and emphasize the importance of understanding

  14. Serotonin uptake rates in platelets from angiotensin II-induced hypertensive mice

    PubMed Central

    Singh, Preeti; Fletcher, Terry W.; Li, Yicong; Rusch, Nancy J.; Kilic, Fusun

    2013-01-01

    Angiotensin II (Ang II) is a critical component of the renin-angiotensin system that contributes to hypertension. Although platelets in blood from hypertensive subjects have an abnormal biological profile, it is unclear if circulating Ang II influences platelet aggregation or thrombus formation. One of the abnormalities presented to the platelets during hypertension is an elevated plasma concentration of serotonin (5-HT) caused by reduced 5-HT uptake secondary to loss of the 5-HT transporter (SERT) on the platelet plasma membrane. In the current study, we evaluated in vivo platelet function after 7 days of subcutaneous Ang II infusion to establish hypertension in mice and additionally assessed the biology of isolated platelets exposed to Ang II in vitro. The administration of Ang II elevated systolic blood pressure, but markers of platelet activation including P-selectin and PEJon/A staining were not changed. However, the aggregation response to collagen was reduced in isolated platelets from Ang II-infused mice, which also showed reduced 5-HT uptake by SERT. In vitro exposure of isolated platelets to Ang II also resulted in a loss of surface SERT associated with a reduced aggregation response to collagen. These abnormalities were reversed by increasing concentrations of the Ang II receptor antagonist, valsartan. Interestingly, SERT KO mice failed to fully develop hypertension in response to Ang II infusion and isolated platelets from these animals were insensitive to the anti-aggregatory influence of Ang II. Thus, Ang II blunts the aggregation responses of platelets and the mechanism underlying this action may involve a loss of SERT on the platelet plasma membrane. The latter event depletes intracellular 5-HT in platelets, an event that is associated with reduced aggregation. The widespread use of antihypertensive drugs that target the renin-angiotensin system suggest the potential clinical utility of our findings and emphasize the importance of understanding the

  15. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells.

    PubMed

    Chen, X L; Tummala, P E; Olbrych, M T; Alexander, R W; Medford, R M

    1998-11-01

    Monocyte infiltration into the vessel wall, a key initial step in the process of atherosclerosis, is mediated in part by monocyte chemoattractant protein-1 (MCP-1). Hypertension, particularly in the presence of an activated renin-angiotensin system, is a major risk factor for the development of atherosclerosis. To investigate a potential molecular basis for a link between hypertension and atherosclerosis, we studied the effects of angiotensin II (Ang II) on MCP-1 gene expression in rat aortic smooth muscle cells. Rat smooth muscle cells treated with Ang II exhibited a dose-dependent increase in MCP-1 mRNA accumulation that was prevented by the AT1 receptor antagonist losartan. Ang II also activated MCP-1 gene transcription. Inhibition of NADH/NADPH oxidase, which generates superoxide and H2O2, with diphenylene iodonium or apocynin decreased Ang II-induced MCP-1 mRNA accumulation. Induction of MCP-1 gene expression by Ang II was inhibited by catalase, suggesting a second messenger role for H2O2. The tyrosine kinase inhibitor genistein and the mitogen-activated protein kinase kinase inhibitor PD098059 inhibited Ang II-induced MCP-1 gene expression, consistent with a mitogen-activated protein kinase-dependent signaling mechanism. Ang II may thus promote atherogenesis by direct activation of MCP-1 gene expression in vascular smooth muscle cells.

  16. Angiotensin II Signaling in Human Preadipose Cells: Participation of ERK1,2-Dependent Modulation of Akt

    PubMed Central

    Dünner, Natalia; Quezada, Carolina; Berndt, F. Andrés; Cánovas, José; Rojas, Cecilia V.

    2013-01-01

    The renin-angiotensin system expressed in adipose tissue has been implicated in the modulation of adipocyte formation, glucose metabolism, triglyceride accumulation, lipolysis, and the onset of the adverse metabolic consequences of obesity. As we investigated angiotensin II signal transduction mechanisms in human preadipose cells, an interplay of extracellular-signal-regulated kinases 1 and 2 (ERK1,2) and Akt/PKB became evident. Angiotensin II caused attenuation of phosphorylated Akt (p-Akt), at serine 473; the p-Akt/Akt ratio decreased to 0.5±0.2-fold the control value without angiotensin II (p<0.001). Here we report that the reduction of phosphorylated Akt associates with ERK1,2 activities. In the absence of angiotensin II, inhibition of ERK1,2 activation with U0126 or PD98059 resulted in a 2.1±0.5 (p<0.001) and 1.4±0.2-fold (p<0.05) increase in the p-Akt/Akt ratio, respectively. In addition, partial knockdown of ERK1 protein expression by the short hairpin RNA technique also raised phosphorylated Akt in these cells (the p-Akt/Akt ratio was 1.5±0.1-fold the corresponding control; p<0.05). Furthermore, inhibition of ERK1,2 activation with U0126 prevented the reduction of p-Akt/Akt by angiotensin II. An analogous effect was found on the phosphorylation status of Akt downstream effectors, the forkhead box (Fox) proteins O1 and O4. Altogether, these results indicate that angiotensin II signaling in human preadipose cells involves an ERK1,2-dependent attenuation of Akt activity, whose impact on the biological functions under its regulation is not fully understood. PMID:24098385

  17. A Low-Protein Diet Enhances Angiotensin II Production in the Lung of Pregnant Rats but Not Nonpregnant Rats

    PubMed Central

    Gao, Haijun; Tanchico, Daren Tubianosa; Yallampalli, Uma; Yallampalli, Chandrasekhar

    2016-01-01

    Pulmonary angiotensin II production is enhanced in pregnant rats fed a low-protein (LP) diet. Here we assessed if LP diet induces elevations in angiotensin II production in nonpregnant rats and whether Ace expression and ACE activity in lungs are increased. Nonpregnant rats were fed a normal (CT) or LP diet for 8, 12, or 17 days and timed pregnant rats fed for 17 days from Day 3 of pregnancy. Plasma angiotensin II, expressions of Ace and Ace2, and activities of these proteins in lungs, kidneys, and plasma were measured. These parameters were compared among nonpregnant rats or between nonpregnant and pregnant rats fed different diets. Major findings are as follows: (1) plasma angiotensin II levels were slightly higher in the LP than CT group on Days 8 and 12 in nonpregnant rats; (2) expression of Ace and Ace2 and abundance and activities of ACE and ACE2 in lungs, kidneys, and plasma of nonpregnant rats were unchanged by LP diet except for minor changes; (3) the abundance and activities of ACE in lungs of pregnant rats fed LP diet were greater than nonpregnant rats, while those of ACE2 were decreased. These results indicate that LP diet-induced increase in pulmonary angiotensin II production depends on pregnancy. PMID:27195150

  18. Cognitive effects attributed to angiotensin II may result from its conversion to angiotensin IV.

    PubMed

    Braszko, Jan Jozef; Walesiuk, Anna; Wielgat, Przemyslaw

    2006-09-01

    This study tests the hypothesis that the facilitation of learning and improvement of memory observed after an intracerebroventricular (i.c.v.) injection of angiotensin II (Ang II) is, in fact, caused by its derivative angiotensin IV (Ang IV). We ran two memory tests as well as an auxiliary test assessing motor performance in rats injected (i.c.v., 1 nmol in 2 microl saline) with Ang II or Ang IV. There were separate groups receiving peptide or saline five, 10 and 15 minutes before testing. Ang IV significantly increased step-through latencies in a passive avoidance paradigm as well as improved discrimination between familiar and unfamiliar objects in an object recognition test in all groups showing better retrieval of memory of aversive as well as appetitive stimuli in the peptide-treated groups regardless of the time of its injection. In contrast, rats treated with Ang II demonstrated significant improvement of memory of aversive and appetitive stimuli in the same tests only 15 minutes after its i.c.v. injection, with no effect in the groups injected five minutes before testing and slight efficacy in those injected 10 minutes before the test. Numbers of crossings, rearings and bar approaches in an open field were similar both in the peptide-treated and control groups making it unlikely that changes in motor performance affected the memory tests. In line with the present views on the intracellular metabolism of Ang II, these results suggest degradation to Ang IV by aminopeptidases A and N is necessary before the cognitive effects can occur.

  19. Chronic angiotensin II infusion modulates angiotensin II type I receptor expression in the subfornical organ and the rostral ventrolateral medulla in hypertensive rats.

    PubMed

    Nunes, Fabíola C; Braga, Valdir A

    2011-12-01

    Blood-borne angiotensin II (Ang II) has profound effects on the central nervous system, including regulation of vasopressin secretion and modulation of sympathetic outflow. However, the mechanism by which circulating Ang II affects the central nervous system remains largely unknown. We tested the hypothesis that increased circulating levels of Ang II activate angiotensin type I (AT1) receptors in the subfornical organ (SFO), increasing the Ang II signalling in the rostral ventrolateral medulla (RVLM). Male Wistar rats were subcutaneously implanted with two 14-day osmotic minipumps filled with Ang II (150 ng/kg/minute), Losartan (10mg/kg/day), or saline. In addition, AT1 receptor mRNA levels in the SFO and RVLM were detected by reverse transcription polymerase chain reaction (RT-PCR). Infusion of Ang II-induced hypertension (134 ± 10 mmHg vs 98 ± 9 mmHg, n = 9, p < 0.05), which was blunted by concomitant infusion of Losartan (105 ± 8 vs 134 ± 10 mmHg, n = 9, p < 0.05). In addition, hexamethonium produced a greater decrease in blood pressure in Ang II-infused rats. Real time PCR revealed that chronic Ang II infusion induced an increase in AT1 receptor mRNA levels in the RVLM and a decrease in the SFO. Taken together, using combined in vivo and molecular biology approaches, our data suggest that Ang II-induced hypertension is mediated by an increase in sympathetic nerve activity, which seems to involve up-regulation of AT1 receptors in the RVLM and down-regulation of AT1 receptors in the SFO. PMID:21393361

  20. Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells

    SciTech Connect

    Ishizuka, Toshiaki; Goshima, Hazuki; Ozawa, Ayako; Watanabe, Yasuhiro

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression

  1. Cytosolic phospholipase A2α is critical for angiotensin II-induced hypertension and associated cardiovascular pathophysiology.

    PubMed

    Khan, Nayaab S; Song, Chi Young; Jennings, Brett L; Estes, Anne M; Fang, Xiao R; Bonventre, Joseph V; Malik, Kafait U

    2015-04-01

    Angiotensin II activates cytosolic phospholipase A(2)α (cPLA2α) and releases arachidonic acid from tissue phospholipids, which mediate or modulate ≥1 cardiovascular effects of angiotensin II and has been implicated in hypertension. Because arachidonic acid release is the rate limiting step in eicosanoid production, cPLA2α might play a central role in the development of angiotensin II-induced hypertension. To test this hypothesis, we investigated the effect of angiotensin II infusion for 13 days by micro-osmotic pumps on systolic blood pressure and associated pathogenesis in wild type (cPLA2α(+/+)) and cPLA2α(-/-) mice. Angiotensin II-induced increase in systolic blood pressure in cPLA2α(+/+) mice was abolished in cPLA2α(-/-) mice; increased systolic blood pressure was also abolished by the arachidonic acid metabolism inhibitor, 5,8,11,14-eicosatetraynoic acid in cPLA2α(+/+) mice. Angiotensin II in cPLA2α(+/+) mice increased cardiac cPLA2 activity and urinary eicosanoid excretion, decreased cardiac output, caused cardiovascular remodeling with endothelial dysfunction, and increased vascular reactivity in cPLA2α(+/+) mice; these changes were diminished in cPLA2α(-/-) mice. Angiotensin II also increased cardiac infiltration of F4/80(+) macrophages and CD3(+) T lymphocytes, cardiovascular oxidative stress, expression of endoplasmic reticulum stress markers p58(IPK), and CHOP in cPLA2α(+/+) but not cPLA2α(-/-) mice. Angiotensin II increased cardiac activity of ERK1/2 and cSrc in cPLA2α(+/+) but not cPLA2α(-/-) mice. These data suggest that angiotensin II-induced hypertension and associated cardiovascular pathophysiological changes are mediated by cPLA2α activation, most likely through the release of arachidonic acid and generation of eicosanoids with predominant prohypertensive effects and activation of ≥1 signaling molecules, including ERK1/2 and cSrc.

  2. Central effects of angiotensin II, its fragment and analogues.

    PubMed

    Georgiev, V P; Klousha, V E; Petkov, V D; Markovska, V L; Svirskis, S V; Mountsinietse, R K; Anouans, Z E

    1984-01-01

    The effects of the octapeptide angiotensin II (AT II), its fragment Ile8 AT3-8 and the analogues Sar1 Ala8 AT II, Ala8 AT II and Ile8 AT II were studied with respect to: the level of biogenic amines (DA, 5-HT and their metabolites HVA and 5-HIAA) in the forebrain; the behaviour of the animals--haloperidol catalepsy, apomorphine stereotypy, unconditioned jumping reaction (UJR), convulsive threshold. Good correlation was found between the biochemical and behavioural effects. The fragment of AT II where phenylalanine is substituted at the C-terminal by Ile reduces the haloperidol-increased content of HVA, potentiates apomorphine stereotypy and reduces catalepsy, whereas the AT II analogues (where the C-terminal phenylalanine is substituted by Ala, and the N-terminal--by Sar) potentiate the effect of haloperidol increasing the HVA content, reduce apomorphine stereotypy and potentiate catalepsy; saralasine independently applied induces brief catalepsy; AT II, its fragment and analogues inhibit UJR, in combination with amphetamine and PTZ this effect becomes deeper; the duration of hexobarbital sleep is increased. The peptides investigated increase the convulsive threshold. The results show that the hexapeptide fragment has preserved the effects of AT II, whereas in the analogues (with changed C- and N-terminals) they are changed. The results obtained may be explained with the modulating influence of AT II-receptors on the DA-ergic receptors in the brain structures with which AT II and its fragment and analogues enter in contact.

  3. Angiotensin II receptor binding in the rat hypothalamus and circumventricular organs during dietary sodium deprivation.

    PubMed

    Yamada, H; Mendelsohn, F A

    1989-10-01

    The effect of dietary sodium intake on angiotensin II (Ang II) receptor binding in the rat brain was studied using quantitative in vitro autoradiography. After 2 weeks of sodium deprivation, the peripheral angiotensin system was activated as shown by increased plasma renin activity (4-fold) and plasma aldosterone concentration (approximately 40-fold). At the same time, Ang II receptor binding in the adrenal glomerulosa zone increased by 40%. Frozen brain sections prepared from 12 male Sprague-Dawley rats (6 control, 6 sodium-deprived) were incubated with 125I[Sar1, Ile8] Ang II, exposed to X-ray film, and Ang II receptor binding in individual brain nuclei was quantitated by computerized densitometry. Ang II binding in the area postrema was significantly suppressed in the sodium-deprived rats (60% of control; p less than 0.05). No change was observed in the other circumventricular organs studied, the subfornical organ or organum vasculosum of the lamina terminalis. Ang II binding in the solitary tract nucleus was not affected by the dietary salt treatment. In the hypothalamic paraventricular nucleus, there was a small (9%) but significant (p less than 0.001) increase in Ang II receptor binding in the sodium-deprived group. However, no change was observed in the hypothalamic median preoptic or suprachiasmatic nuclei, areas with similarly high Ang II receptor binding. These results suggest that only a limited subset of brain Ang II receptors respond to sodium deprivation and do so in a region-specific manner. These results support evidence that the central angiotensin system may contribute to the regulation of fluid and electrolyte homeostasis.

  4. Angiotensin II centrally induces frequent detrusor contractility of the bladder by acting on brain angiotensin II type 1 receptors in rats

    PubMed Central

    Kawamoto, Bunya; Shimizu, Shogo; Shimizu, Takahiro; Higashi, Youichirou; Honda, Masashi; Sejima, Takehiro; Saito, Motoaki; Takenaka, Atsushi

    2016-01-01

    Angiotensin (Ang) II plays an important role in the brain as a neurotransmitter and is involved in psychological stress reactions, for example through activation of the sympatho-adrenomedullary system. We investigated the effects of centrally administered Ang II on the micturition reflex, which is potentially affected by the sympatho-adrenomedullary system, and brain Ang II receptors in urethane-anesthetized (1.0 g/kg, intraperitoneally) male rats. Central administration of Ang II (0.01, 0.02, and 0.07 nmol per rat, intracerebroventricularly, icv) but not vehicle rapidly and dose-dependently decreased the urinary bladder intercontraction interval, without altering the bladder detrusor pressure. Central administration of antagonists of Ang II type 1 but not type 2 receptors inhibited the Ang II-induced shortening of intercontraction intervals. Administration of the highest dose of Ang II (0.07 nmol per rat, icv) but not lower doses (0.01 and 0.02 nmol per rat, icv) elevated the plasma concentration of adrenaline. Bilateral adrenalectomy reduced Ang II-induced elevation in adrenaline, but had no effect on the Ang II-induced shortening of the intercontraction interval. These data suggest that central administration of Ang II increases urinary frequency by acting on brain Ang II type 1 receptors, independent of activation of the sympatho-adrenomedullary system. PMID:26908391

  5. Impact of peroxisome proliferator-activated receptor γ on angiotensin II type 1 receptor-mediated insulin sensitivity, vascular inflammation and atherogenesis in hypercholesterolemic mice

    PubMed Central

    Becher, Ulrich M.; Camara, Bakary; Yildirimtürk, Cihan; Aksoy, Adem; Kebschull, Moritz; Werner, Nikos; Nickenig, Georg; Müller, Cornelius

    2015-01-01

    Introduction The angiotensin II type 1 receptor (AT1R) and the peroxisome proliferator-activated receptor γ (PPARγ) have been implicated in the pathogenesis of atherosclerosis. A number of studies have reported that AT1R inhibition or genetic AT1R disruption and PPARγ activation inhibit vascular inflammation and improve glucose and lipid metabolism, underscoring a molecular interaction of AT1R and PPARγ. We here analyzed the hypothesis that vasculoprotective anti-inflammatory and metabolic effects of AT1R inhibition are mediated by PPARγ. Material and methods Female ApoE–/–/AT1R–/– mice were fedwith a high-fat and cholesterol-rich diet and received continuous treatment with the selective PPARγ antagonist GW9662 or vehicle at a rate of 700 ng/kg/min for 4 weeks using subcutaneously implanted osmotic mini-pumps. Additionally, one group of female ApoE–/– mice served as a control group. After treatment for 4 weeks mice were sacrificed and read-outs (plaque development, vascular inflammation and insulinsensitivity) were performed. Results Using AT1R deficient ApoE–/– mice (ApoE–/–/AT1R–/– mice) we found decreased cholesterol-induced endothelial dysfunction and atherogenesis compared to ApoE–/– mice. Inhibition of PPARγ by application of the specific PPARγ antagonist GW9662 significantly abolished the anti-atherogenic effects of AT1R deficiency in ApoE–/–/AT1R–/– mice (plaque area as % of control: ApoE–/–: 39 ±5%; ApoE–/–/AT1R–/–: 17 ±7%, p = 0.044 vs. ApoE–/–; ApoE–/–/AT1R–/– + GW9662: 31 ±8%, p = 0.047 vs. ApoE–/–/AT1R–/–). Focusing on IL6 as a pro-inflammatory humoral marker we detected significantly increased IL-6 levels in GW9662-treated animals (IL-6 in pg/ml: ApoE–/–: 230 ±16; ApoE–/–/AT1R–/–: 117 ±20, p = 0.01 vs. ApoE–/–; ApoE–/–/AT1R–/– + GW9662: 199 ±20, p = 0.01 vs. ApoE–/–/AT1R–/–), while the anti-inflammatory marker IL-10 was significantly

  6. Tumor necrosis factor receptor-associated factor-6 and ribosomal S6 kinase intracellular pathways link the angiotensin II AT1 receptor to the phosphorylation and activation of the IkappaB kinase complex in vascular smooth muscle cells.

    PubMed

    Doyon, Priscilla; Servant, Marc J

    2010-10-01

    Activation of NF-κB transcription factors by locally produced angiotensin II (Ang II) is proposed to be involved in chronic inflammatory reactions leading to atherosclerosis development. However, a clear understanding of the signaling cascades coupling the Ang II AT1 receptors to the activation of NF-κB transcription factors is still lacking. Using primary cultured aortic vascular smooth muscle cells, we show that activation of the IKK complex and NF-κB transcription factors by Ang II is regulated by phosphorylation of the catalytic subunit IKKβ on serine residues 177 and 181 in the activation T-loop. The use of pharmacological inhibitors against conventional protein kinases C (PKCs), mitogen-activated/extracellular signal-regulated kinase (MEK) 1/2, ribosomal S6 kinase (RSK), and silencing RNA technology targeting PKCα, IKKβ subunit, tumor growth factor β-activating kinase-1 (TAK1), the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor-6 (TRAF6), and RSK isoforms, demonstrates the requirement of two distinct signaling pathway for the phosphorylation of IKKβ and the activation of the IKK complex by Ang II. Rapid phosphorylation of IKKβ requires a second messenger-dependent pathway composed of PKCα-TRAF6-TAK1, whereas sustained phosphorylation and activation of IKKβ requires the MEK1/2-ERK1/2-RSK pathway. Importantly, simultaneously targeting components of these two pathways completely blunts the phosphorylation of IKKβ and the proinflammatory effect of the octapeptide. This is the first report demonstrating activation of TAK1 by the AT1R. We propose a model whereby TRAF6-TAK1 and ERK-RSK intracellular pathways independently and sequentially converge to the T-loop phosphorylation for full activation of IKKβ, which is an essential step in the proinflammatory activity of Ang II.

  7. Novel roles of intracrine angiotensin II and signalling mechanisms in kidney cells

    PubMed Central

    Zhuo, Jia L; Li, Xiao C

    2008-01-01

    Angiotensin II (Ang II) has powerful sodium-retaining, growth-promoting and pro-inflammatory properties in addition to its physiological role in maintaining body salt and fluid balance and blood pressure homeostasis. Increased circulating and local tissue Ang II is one of the most important factors contributing to the development of sodium and fluid retention, hypertension and target organ damage. The importance of Ang II in the pathogenesis of hypertension and target organ injury is best demonstrated by the effectiveness of angiotensin-converting enzyme (ACE) inhibitors and AT1-receptor antagonists in treating hypertension and progressive renal disease including diabetic nephropathy. The detrimental effects of Ang II are mediated primarily by the AT1-receptor, while the AT2-receptor may oppose the AT1-receptor. The classical view of the AT1-receptor-mediated effects of Ang II is that the agonist binds its receptors at the cell surface, and following receptor phosphorylation, activates downstream signal transduction pathways and intracellular responses. However, evidence is emerging that binding of Ang II to its cell surface AT1-receptors also activates endocytotic (or internalisation) processes that promote trafficking of both the effector and the receptor into intracellular compartments. Whether internalised Ang II has important intracrine and signalling actions is not well understood. The purpose of this article is to review recent advances in Ang II research with focus on the mechanisms underlying high levels of intracellular Ang II in proximal tubule cells and the contribution of receptor-mediated endocytosis of extracellular Ang II. Further attention is devoted to the question whether intracellular and/or internalised Ang II plays a physiological role by activating cytoplasmic or nuclear receptors in proximal tubule cells. This information may aid future development of drugs to prevent and treat Ang II-induced target organ injury in cardiovascular and renal

  8. Glucagon-like peptide-1 inhibits angiotensin II-induced mesangial cell damage via protein kinase A.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Ojima, Ayako; Nishino, Yuri; Nakashima, Sae; Maeda, Sayaka; Yamagishi, Sho-ichi

    2012-11-01

    There is a growing body of evidence that renin-angiotensin system plays a role in diabetic nephropathy. Recently, we have found that glucagon-like peptide-1 (GLP-1), one of the incretins, a gut hormone secreted from L cells in the intestine in response to food intake, inhibits advanced glycation end product-induced monocyte chemoattractant protein-1 gene expression in mesangial cells thorugh the interaction with the receptor of GLP-1. However, effects of GLP-1 on angiotensin II-exposed mesangial cells are unknown. This study investigated whether and how GLP-1 blocked the angiotensin II-induced mesangial cell damage in vitro. GLP-1 completely blocked the angiotensin II-induced superoxide generation, NF-κB activation, up-regulation of mRNA levels of intercellular adhesion molecule-1 and plasminogen activator inhibitor-1 in mesangial cells, all of which were prevented by the treatments with H-89, an inhibitor of protein kinase A. The present results demonstrated for the first time that GLP-1 blocked the angiotensin II-induced mesangial cell injury by inhibiting superoxide-mediated NF-κB activation via protein kinase C pathway. Our present study suggests that strategies to enhance the biological actions of GLP-1 may be a promising strategy for the treatment of diabetic nephropathy.

  9. Glycyl-histidyl-lysine interacts with the angiotensin II AT1 receptor.

    PubMed

    García-Sáinz, J A; Olivares-Reyes, J A

    1995-01-01

    Gly-His-Lys, a tripeptide isolated from human plasma that increases the growth rate of many cells, stimulated in dose-dependent fashion the activity of phosphorylase a in isolated rat hepatocytes. Such effect was associated to increases in both IP3 production and [Ca++]i. Interestingly, these effects of Gly-His-Lys were antagonized by losartan, a nonpeptide angiotensin II receptor antagonist (AT1 selective), which suggested that these receptors were involved in its effect. Binding competition experiments using the radioligand [125I][Sar1-Ile8]angiotensin II clearly indicated that Gly-His-Lys interacts with AT1 receptors. It was also observed that other histidine-containing tripeptides were also capable of interacting with these receptors. PMID:8545239

  10. A specific binding site recognizing a fragment of angiotensin II in bovine adrenal cortex membranes.

    PubMed

    Bernier, S G; Fournier, A; Guillemette, G

    1994-12-12

    We have characterized a specific binding site for angiotensin IV in bovine adrenal cortex membranes. Pseudo-equilibrium studies at 37 degrees C for 2 h have shown that this binding site recognizes angiotensin IV with a high affinity (Kd = 0.24 +/- 0.03 nM). The binding site is saturable and relatively abundant (maximal binding capacity around 0.5 pmol/mg protein). Non-equilibrium kinetic analyses at 37 degrees C revealed a calculated kinetic Kd of 47 pM. The binding site is pharmacologically distinct from the classic angiotensin receptors AT1 or AT2. Competitive binding studies with bovine adrenal cortex membranes demonstrated the following rank order of effectiveness: angiotensin IV (Val-Tyr-Ile-His-Pro-Phe) = angiotensin II-(3-7) (Val-Tyr-Ile-His-Pro) > angiotensin III (Arg-Val-Tyr-Ile-His-Pro-Phe) > or = angiotensin II-(4-7) (Tyr-Ile-His-Pro) > angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) > angiotensin II-(1-6) (Asp-Arg-Val-Tyr-Ile-His) > angiotensin II-(4-8) (Tyr-Ile-His-Pro-Phe) > > > angiotensin II-(3-6) (Val-Tyr-Ile-His), angiotensin II-(4-6) (Tyr-Ile-His), L-158,809 (5,7-dimethyl-2-ethyl-3-[(2'(1-H-tetrazol-5-yl)[1,1'-biphenyl]-4-y l) methyl]-3-H-imidazo[4,5-beta]pyridine H2O) and PD 123319 (1-[4-(dimethylamino)3-methylphenyl]methyl-5-(diphenylacetyl)4,5,6 ,7- tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid). The divalent cations Mg2+ and Ca2+ were shown to diminish the binding of 125I-angiotensioffn IV to bovine adrenal cortex membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Angiotensin II receptors in rabbit renal preglomerular vessels

    SciTech Connect

    Brown, G.P.; Venuto, R.C. )

    1988-07-01

    Controversy exists regarding the specific sites within the renal microcirculation affected by angiotensin II (ANG II). Under some conditions, ANG II can elicit direct vasoconstrictor responses in the preglomerular vessels and efferent arterioles. These experiments were designed to evaluate the binding of {sup 125}I-ANG II in preglomerular vessels. Arcuate and interlobular arteries, with attached proximal segments of afferent arterioles, were microdissected from rabbit renal cortexes. A membrane preparation was obtained from the pooled freshly dissected vessels and utilized in an ANG II radioreceptor assay on the same day. The dissociation of bound ANG II was enhanced in the presence of a nonhydrolyzable analogue of GTP. Linear Scatchard plots were obtained, indicating the presence of a single class of high-affinity binding sites. In conclusion, there is a single class of specific ANG II receptors in preglomerular vessels. The K{sub D} and N are similar, but the binding inhibition potencies of selected ANG analogues differ in renal and extrarenal vascular tissues. Intrarenal vascular receptors also appear to differ from glomerular receptors. Furthermore, these data support the concept that ANG II may affect renal vascular resistance at sites proximal to the distal afferent arterioles.

  12. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells

    PubMed Central

    SHI, MIAO-QIAN; SU, FEI-FEI; XU, XUAN; LIU, XIONG-TAO; WANG, HONG-TAO; ZHANG, WEI; LI, XUE; LIAN, CHENG; ZHENG, QIANG-SUN; FENG, ZHI-CHUN

    2016-01-01

    Patients with essential hypertension undergo endothelial dysfunction, particularly in the conduit arteries. Cilostazol, a type III phosphodiesterase inhibitor, serves a role in the inhibition of platelet aggregation and it is widely used in the treatment of peripheral vascular diseases. Previous studies have suggested that cilostazol suppresses endothelial dysfunction; however, it remains unknown whether cilostazol protects the endothelial function in essential hypertension. The aim of the present study was to investigate whether, and how, cilostazol suppresses angiotensin II (angII)-induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) and Sprague Dawley rats were exposed to angII and treated with cilostazol. Endothelial cell apoptosis and function, nitric oxide and superoxide production, phosphorylation (p) of Akt, and caspase-3 protein expression levels were investigated. AngII exposure resulted in the apoptosis of endothelial cells in vitro and in vivo. In vitro, cilostazol significantly suppressed the angII-induced apoptosis of HUVECs; however, this effect was reduced in the presence of LY294002, a phosphoinositide 3 kinase (PI3K) inhibitor. Furthermore, cilostazol suppressed the angII-induced p-Akt downregulation and cleaved caspase-3 upregulation. These effects were also alleviated by LY294002. In vivo, cilostazol suppressed the angII-induced endothelial cell apoptosis and dysfunction. Cilostazol was also demonstrated to partially reduced the angII-induced increase in superoxide production. The results of the present study suggested that cilostazol suppresses endothelial apoptosis and dysfunction by modulating the PI3K/Akt pathway. PMID:26862035

  13. Epoxyeicosatrienoic acid analog attenuates angiotensin II hypertension and kidney injury.

    PubMed

    Khan, Abdul Hye; Falck, John R; Manthati, Vijaya L; Campbell, William B; Imig, John D

    2014-01-01

    Epoxyeicosatrienoic acids (EETs) contribute to blood pressure regulation leading to the concept that EETs can be therapeutically targeted for hypertension and the associated end organ damage. In the present study, we investigated anti-hypertensive and kidney protective actions of an EET analog, EET-B in angiotensin II (ANG II)-induced hypertension. EET-B was administered in drinking water for 14 days (10 mg/kg/d) and resulted in a decreased blood pressure elevation in ANG II hypertension. At the end of the two-week period, blood pressure was 30 mmHg lower in EET analog-treated ANG II hypertensive rats. The vasodilation of mesenteric resistance arteries to acetylcholine was impaired in ANG II hypertension; however, it was improved with EET-B treatment. Further, EET-B protected the kidney in ANG II hypertension as evidenced by a marked 90% decrease in albuminuria and 54% decrease in nephrinuria. Kidney histology demonstrated a decrease in renal tubular cast formation in EET analog-treated hypertensive rats. In ANG II hypertension, EET-B treatment markedly lowered renal inflammation. Urinary monocyte chemoattractant protein-1 excretion was decreased by 55% and kidney macrophage infiltration was reduced by 52% with EET-B treatment. Overall, our results demonstrate that EET-B has anti-hypertensive properties, improves vascular function, and decreases renal inflammation and injury in ANG II hypertension.

  14. Angiotensin II alters blood flow distribution in amphibians.

    PubMed

    Slivkoff, M D; Warburton, S J

    2001-01-01

    In toads, angiotensin II (ANG II) induces the water absorption response (WR) during which the seat patch (pelvic+inner-thigh skin) is pressed to a wet substrate from which water flows osmotically into the animal. Since ANG II is a potent vasoconstrictor, it has the potential to redistribute blood flow. To determine the regional circulatory effects of ANG II, we used microsphere methods to measure relative changes in blood flow to several skin regions and other organs before and after ANG II administration in terrestrial toads and aquatic bullfrogs. In toads, after ANG II administration, seat patch and bladder blood flow increased by 264.2%+/-197.6% and 287.2%+/-86.7%, respectively (P<0.05), while dorsal and pectoral skin flow decreased by 48.0%+/-19.4% and 21.3%+/-25.4%, respectively (P<0.05). In bullfrogs, ANG II caused no significant changes in blood flow. Our results support our hypothesis that, in toads, ANG II increases and decreases blood flow to regions of the body associated with water gain and water loss, respectively.

  15. Angiotensin II (de)sensitization: Fluid intake studies with implications for cardiovascular control.

    PubMed

    Daniels, Derek

    2016-08-01

    Cardiovascular disease is the leading cause of death worldwide and hypertension is the most common risk factor for death. Although many anti-hypertensive pharmacotherapies are approved for use in the United States, rates of hypertension have increased over the past decade. This review article summarizes a presentation given at the 2015 meeting of the Society for the Study of Ingestive Behavior. The presentation described work performed in our laboratory that uses angiotensin II-induced drinking as a model system to study behavioral and cardiovascular effects of the renin-angiotensin system, a key component of blood pressure regulation, and a common target of anti-hypertensives. Angiotensin II (AngII) is a potent dipsogen, but the drinking response shows a rapid desensitization after repeated injections of AngII. This desensitization appears to be dependent upon the timing of the injections, requires activation of the AngII type 1 (AT1) receptor, requires activation of mitogen-activated protein (MAP) kinase family members, and involves the anteroventral third ventricle (AV3V) region as a critical site of action. Moreover, the response does not appear to be the result of a more general suppression of behavior, a sensitized pressor response to AngII, or an aversive state generated by the treatment. More recent studies suggest that the treatment regimen used to produce desensitization in our laboratory also prevents the sensitization that occurs after daily bolus injections of AngII. Our hope is that these findings can be used to support future basic research on the topic that could lead to new developments in treatments for hypertension.

  16. Angiotensin II (de)sensitization: Fluid intake studies with implications for cardiovascular control.

    PubMed

    Daniels, Derek

    2016-08-01

    Cardiovascular disease is the leading cause of death worldwide and hypertension is the most common risk factor for death. Although many anti-hypertensive pharmacotherapies are approved for use in the United States, rates of hypertension have increased over the past decade. This review article summarizes a presentation given at the 2015 meeting of the Society for the Study of Ingestive Behavior. The presentation described work performed in our laboratory that uses angiotensin II-induced drinking as a model system to study behavioral and cardiovascular effects of the renin-angiotensin system, a key component of blood pressure regulation, and a common target of anti-hypertensives. Angiotensin II (AngII) is a potent dipsogen, but the drinking response shows a rapid desensitization after repeated injections of AngII. This desensitization appears to be dependent upon the timing of the injections, requires activation of the AngII type 1 (AT1) receptor, requires activation of mitogen-activated protein (MAP) kinase family members, and involves the anteroventral third ventricle (AV3V) region as a critical site of action. Moreover, the response does not appear to be the result of a more general suppression of behavior, a sensitized pressor response to AngII, or an aversive state generated by the treatment. More recent studies suggest that the treatment regimen used to produce desensitization in our laboratory also prevents the sensitization that occurs after daily bolus injections of AngII. Our hope is that these findings can be used to support future basic research on the topic that could lead to new developments in treatments for hypertension. PMID:26801390

  17. Purification of an angiotensin II binding protein by using antibodies to a peptide encoded by angiotensin II complementary RNA

    SciTech Connect

    Elton, T.S.; Dion, L.D.; Bost, K.L.; Oparil, S.; Blalock, J.E.

    1988-04-01

    The authors have generated a monospecific antibody to a synthetic peptide encoded by an RNA complementary to the mRNA for angiotensin II (AII) and determined whether this antibody recognizes the AII receptor. They demonstrate that the antibody competes specifically with /sup 125/I-labeled AII for the same binding site on rat adrenal membranes. Furthermore, they show this antibody inhibits the secretion of aldosterone from cultured rat adrenal cells, suggesting that the antibody recognizes the biologically relevant AII receptor. Finally, they demonstrate that antibody to the complementary peptide can be used to immunoaffinity-purify a protein of M/sub r/ 66,000 that specifically binds radiolabeled AII.

  18. Quantitative autoradiography of angiotensin II receptors in brain and kidney: focus on cardiovascular implications

    SciTech Connect

    Gehlert, D.R.; Speth, R.C.; Wamsley, J.K.

    1985-01-01

    Quantitative techniques of receptor autoradiography have been applied to localize (/sup 125/I)-angiotensin II binding sites in brain and kidney. High densities of autoradiographic grains, indicating the presence of angiotensin II receptors, have been localized to several rat brain nuclei including the dorsal motor nucleus of the vagus, nucleus of the solitary tract, anterior pituitary, locus coeruleus and several hypothalamic nuclei. Cat thoracic spinal cord exhibited a high density of sites over the intermedio-lateral cell column. In sections of rat kidney, angiotensin II receptors were detected in the glomerulus, vasa recta and ureter. The cardiovascular implications of these results are apparent and relate angiotensin II to hypertensive mechanisms. Thus, angiotensin II represents an endocoid which is involved in control of blood pressure through its effects on peripheral organs as well as the central nervous system.

  19. Identification and characterization of an angiotensin II receptor on cultured bovine adrenal chromaffin cells

    SciTech Connect

    Boyd, V.L.

    1987-01-01

    The presence of an angiotensin II receptor on cultured bovine adrenal chromaffin cells was demonstrated by radioligand binding. A single class of finding sites with a K/sub D/ of 0.7 nM was characterized. The use of radioligands also allows the localization of receptors by autoradiography. Autoradiography demonstrated that approximately 50% of the isolated cells bound angiotensin II. It was of interest to see if angiotensin II bound to a cell that possessed a certain phenotype. In order to evaluate this possibility a technique was developed that combined autoradiography and immunocytochemistry. Results indicated that angiotensin II binding sites were not localized preferentially to either norepinephrine or epinephrine cells. Binding of angiotensin II was associated with the release of intracellular catecholamine stores. Cells were pre-loaded with /sup 3/H-norepinephrine and secretion was monitored by following radioactivity released into the supernatant. Alternatively, release of endogenous catecholamines was determined by fluorometric assay.

  20. Lack of angiotensin II conversion to angiotensin III increases water but not alcohol consumption in aminopeptidase A-deficient mice.

    PubMed

    Faber, Franziska; Gembardt, Florian; Sun, Xiaoou; Mizutani, Shigehiko; Siems, Wolf-Eberhard; Walther, Thomas

    2006-09-11

    Elevated central concentrations of the vasopressor octapeptide angiotensin (Ang) II increase the water intake in mammals. Recently, we showed that central AngII is also crucial in alcohol-consuming behavior. Since the heptapeptide AngIII, an AngII metabolite, is discussed to mediate AngII-related effects, we investigated water and alcohol consumption in mice, genetically deficient in aminopeptidase A (APA), a peptidase responsible for AngII conversion to AngIII. Sixteen male APA-deficient mice and their age matched wild-type controls were monitored on their water intake under basal conditions and total fluid and alcohol intake before and after social stress in a two-bottle free-choice paradigm. Alterations were connected to the regulation in activity of Ang-related peptidases (APA, ACE; ACE2) in brain regions involved in alcohol intake and peripheral organs. In comparison to their wild-type controls, APA-deficient mice drank significantly more water but not more alcohol at all investigated time points. A reduction in water intake, as observed in wild-type animals after social stress, did not occur in knockout mice. However, the reduction in alcohol consumption after social stress was significantly reduced in both strains. Alcohol consumption upregulated all three peptidases in the kidney, but not in lung. Notable, renal ACE2 activity was significantly higher in APA-deficient mice under basal condition. While the inhibition of AngII metabolism to AngIII does not influence the alcohol intake, water consumption in mice deficient for APA was significantly elevated. These differences induced by an altered AngII/AngIII ratio oppose the hypothesis that central AngII and AngIII act in a congruent pattern.

  1. Metabolic Actions of Angiotensin II and Insulin: A Microvascular Endothelial Balancing Act

    PubMed Central

    Muniyappa, Ranganath; Yavuz, Shazene

    2012-01-01

    Metabolic actions of insulin to promote glucose disposal are augmented by nitric oxide (NO)-dependent increases in microvascular blood flow to skeletal muscle. The balance between NO-dependent vasodilator actions and endothelin-1-dependent vasoconstrictor actions of insulin is regulated by phosphatidylinositol 3-kinase-dependent (PI3K) - and mitogen-activated protein kinase (MAPK)-dependent signaling in vascular endothelium, respectively. Angiotensin II acting on AT2 receptor increases capillary blood flow to increase insulin-mediated glucose disposal. In contrast, AT1 receptor activation leads to reduced NO bioavailability, impaired insulin signaling, vasoconstriction, and insulin resistance. Insulin-resistant states are characterized by dysregulated local renin-angiotensin-aldosterone system (RAAS). Under insulin-resistant conditions, pathway-specific impairment in PI3K-dependent signaling may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased blood flow, which worsens insulin resistance. Similarly, excess AT1 receptor activity in the microvasculature may selectively impair vasodilation while simultaneously potentiating the vasoconstrictor actions of insulin. Therapeutic interventions that target pathway-selective impairment in insulin signaling and the imbalance in AT1 and AT2 receptor signaling in microvascular endothelium may simultaneously ameliorate endothelial dysfunction and insulin resistance. In the present review, we discuss molecular mechanisms in the endothelium underlying microvascular and metabolic actions of insulin and Angiotensin II, the mechanistic basis for microvascular endothelial dysfunction and insulin resistance in RAAS dysregulated clinical states, and the rationale for therapeutic strategies that restore the balance in vasodilator and constrictor actions of insulin and Angiotensin II in the microvasculature. PMID:22684034

  2. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm.

    PubMed

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M; Farley, Michelle; Roy, Nilay; Chin, Matthew S; von Andrian, Ulrich H; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J; Bonventre, Joseph V; Siedlecki, Andrew M

    2015-04-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 min injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 min unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury, blood flow was decreased in the inner cortex of wild-type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild-type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 h after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMCs) to secrete the macrophage chemoattractant RANTES, a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared with transgenic and non-transgenic mice after the 10 min injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849

  3. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm.

    PubMed

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M; Farley, Michelle; Roy, Nilay; Chin, Matthew S; von Andrian, Ulrich H; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J; Bonventre, Joseph V; Siedlecki, Andrew M

    2015-04-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 min injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 min unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury, blood flow was decreased in the inner cortex of wild-type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild-type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 h after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMCs) to secrete the macrophage chemoattractant RANTES, a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared with transgenic and non-transgenic mice after the 10 min injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation.

  4. The Cooperative Effect of Local Angiotensin-II in Liver with Adriamycin Hepatotoxicity on Mitochondria

    PubMed Central

    Taskin, Eylem; Guven, Celal; Sahin, Leyla; Dursun, Nurcan

    2016-01-01

    Background Adriamycin (ADR) is a drug used clinically for anticancer treatment; however, it causes adverse effects in the liver. The mechanism by which these adverse effects occur remains unclear, impeding efforts to enhance the therapeutic effects of ADR. Its hepatotoxicity might be related to increasing reactive oxygen species (ROS) and mitochondrial dysfunction. The interaction between ADR and the local renin-angiotensin system (RAS) in the liver is unclear. ADR might activate the RAS. Angiotensin-II (Ang-II) leads to ROS production and mitochondrial dysfunction. In the present study we investigated whether ADR’s hepatotoxicity interacts with local RAS in causing oxidative stress resulting from mitochondrial dysfunction in the rat liver. Material/Methods Rats were divided into 5 groups: control, ADR, co-treated ADR with captopril, co-treated ADR with Aliskiren, and co-treated ADR with both captopril and Aliskiren. Mitochondria and cytosol were separated from the liver, then biochemical measurements were made from them. Mitochondrial membrane potential (MMP) and ATP levels were evaluated. Results ADR remarkably decreased MMP and ATP in liver mitochondria (p<0.05). Co-administration with ADR and Aliskiren and captopril improved the dissipation of MMP (p<0.05). The decreased ATP level was restored by treatment with inhibitors of ACE and renin. Conclusions Angiotensin-II may contribute to hepatotoxicity of in the ADR via mitochondrial oxidative production, resulting in the attenuation of MMP and ATP production. PMID:27019222

  5. The Angiotensin II Type 2 Receptor in Brain Functions: An Update

    PubMed Central

    Guimond, Marie-Odile; Gallo-Payet, Nicole

    2012-01-01

    Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor. PMID:23320146

  6. Pyrido[2,3-d]pyrimidine angiotensin II antagonists.

    PubMed

    Ellingboe, J W; Antane, M; Nguyen, T T; Collini, M D; Antane, S; Bender, R; Hartupee, D; White, V; McCallum, J; Park, C H

    1994-02-18

    A series of pyrido[2,3-d]pyrimidine angiotensin II (A II) antagonists was synthesized and tested for antagonism of A II. Compounds with a biphenylyltetrazole pharmacophore and small alkyl groups at the 2- and 4-positions of the pyridopyrimidine ring were found to be the most potent in an AT1 receptor binding assay and in blocking the A II pressor response in anesthetized, ganglion-blocked A II-infused rats. 5,8-Dihydro-2,4-dimethyl-8-[(2'-(1H-tetrazol-5-yl) [1,1'-biphenyl]-4-yl)methyl]pyrido[2,3-d]pyrimidin-7(6H)-one (4a) was one of the more potent compounds in the binding assay and was the most efficacious compound in the A II-infused rat model. Further study of 4a in Goldblatt (2K-1C) rats showed the compound to have oral bioavailability and to be an efficacious and potent compound in a high renin form of hypertension.

  7. Angiotensin II Induced Cardiac Dysfunction on a Chip

    PubMed Central

    Horton, Renita E.; Yadid, Moran; McCain, Megan L.; Sheehy, Sean P.; Pasqualini, Francesco S.; Park, Sung-Jin; Cho, Alexander; Campbell, Patrick; Parker, Kevin Kit

    2016-01-01

    In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II) to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF), allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics. PMID:26808388

  8. Angiotensin II Induced Cardiac Dysfunction on a Chip.

    PubMed

    Horton, Renita E; Yadid, Moran; McCain, Megan L; Sheehy, Sean P; Pasqualini, Francesco S; Park, Sung-Jin; Cho, Alexander; Campbell, Patrick; Parker, Kevin Kit

    2016-01-01

    In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II) to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF), allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics.

  9. Angiotensin II receptor blockers for the treatment of hypertension.

    PubMed

    See, S

    2001-11-01

    The rising incidence of stroke, congestive heart failure (CHF) and end stage renal disease (ESRD) has signalled a need to increase awareness, treatment and control of hypertension. There continues to be a need for effective antihypertensive medications since hypertension is a major precursor to various forms of cardiovascular disease. The renin-angiotensin (AT) aldosterone system (RAAS) is a key component to the development of hypertension and can be one target of drug therapy. Angotensin II (ATII) receptor blockers (ARBs) are the most recent class of agents available to treat hypertension, which work by by inhibiting ATII at the receptor level. Currently, national consensus guidelines recommend that ARBs should be reserved for hypertensive patients who cannot tolerate angiotensin converting enzyme (ACE) inhibitors (ACEIs). ARBs, however, are moving to the forefront of therapy with a promising role in the area of renoprotection and CHF. Recent trials such as the The Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes Trial (IDNT), the Effect of Irbesartan on the Development of Diabetic Nephropathy in Patients with Type 2 Diabetes (IRMA2), and The Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy (RENAAL) study have demonstrated the renoprotective effects of ARBs in patients with Type 2 diabetes. The Valsartan Heart Failure Trial (Val-HeFT) adds to the growing body of evidence that ARBs may improve morbidity and mortality in CHF patients. As a class, ARBs are well tolerated and have a lower incidence of cough and angioedema compared to ACEIs. This article reviews the differences among the ARBs, existing efficacy data in hypertension, and explores the role of ARBs in CHF and renal disease.

  10. Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice.

    PubMed

    Pati, Paramita; Fulton, David J R; Bagi, Zsolt; Chen, Feng; Wang, Yusi; Kitchens, Julia; Cassis, Lisa A; Stepp, David W; Rudic, R Daniel

    2016-03-01

    Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in night-time blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and period isoform knockout (KO) mice (Per2-KO, Per2, 3-KO, and Per1, 2, 3-KO/Per triple KO [TKO] mice). On a normal diet, administration of angiotensin II caused nondipping blood pressure and exacerbated vascular hypertrophy in the Period isoform KO mice relative to WT mice. To study the endogenous effects of angiotensin II stimulation, we then administered a low-salt diet to the mice, which does stimulate endogenous angiotensin II in addition to lowering blood pressure. A low-salt diet decreased blood pressure in wild-type mice. In contrast, Period isoform KO mice lost their circadian rhythm in blood pressure on a low-salt diet, because of an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic administration of low salt caused vascular hypertrophy in Period isoform KO mice, which also exhibited increased renin levels and altered angiotensin 1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension.

  11. Comparing Angiotensin II Receptor Blockers on Benefits Beyond Blood Pressure

    PubMed Central

    2016-01-01

    The renin-angiotensin-aldosterone system (RAAS) is one of the main regulators of blood pressure, renal hemodynamics, and volume homeostasis in normal physiology, and contributes to the development of renal and cardiovascular (CV) diseases. Therefore, pharmacologic blockade of RAAS constitutes an attractive strategy in preventing the progression of renal and CV diseases. This concept has been supported by clinical trials involving patients with hypertension, diabetic nephropathy, and heart failure, and those after myocardial infarction. The use of angiotensin II receptor blockers (ARBs) in clinical practice has increased over the last decade. Since their introduction in 1995, seven ARBs have been made available, with approved indications for hypertension and some with additional indications beyond blood pressure reduction. Considering that ARBs share a similar mechanism of action and exhibit similar tolerability profiles, it is assumed that a class effect exists and that they can be used interchangeably. However, pharmacologic and dosing differences exist among the various ARBs, and these differences can potentially influence their individual effectiveness. Understanding these differences has important implications when choosing an ARB for any particular condition in an individual patient, such as heart failure, stroke, and CV risk reduction (prevention of myocardial infarction). A review of the literature for existing randomized controlled trials across various ARBs clearly indicates differences within this class of agents. Ongoing clinical trials are evaluating the role of ARBs in the prevention and reduction of CV rates of morbidity and mortality in high-risk patients. PMID:20524096

  12. Protective effect of long-term angiotensin II inhibition.

    PubMed

    Basso, Nidia; Cini, Rosa; Pietrelli, Adriana; Ferder, León; Terragno, Norberto A; Inserra, Felipe

    2007-09-01

    Experimental studies indicate that angiotensin II (ANG II) through its type 1 receptor (AT(1)) promotes cardiovascular hypertrophy and fibrosis. Therefore, the aim of this study was to analyze whether chronic long-term inhibition of the renin-angiotensin system (RAS) can prevent most of the deleterious effects due to aging in the cardiovascular system of the normal rat. The main objective was to compare two strategies of ANG II blockade: a converting enzyme inhibitor (CEI) and an AT(1) receptor blocker (AT(1)RB). A control group remained untreated; treatment was initiated 2 wk after weaning. A CEI, enalapril (10 mg.kg(-1).day(-1)), or an AT(1)RB, losartan (30 mg.kg(-1).day(-1)), was used to inhibit the RAS. Systolic blood pressure, body weight, and water and food intake were recorded over the whole experimental period. Heart, aorta, and mesenteric artery weight as well as histological analysis of cardiovascular structure were performed at 6 and 18 mo. Twenty animals in each of the three experimental groups were allowed to die spontaneously. The results demonstrated a significant protective effect on the function and structure of the cardiovascular system in all treated animals. Changes observed at 18 mo of age in the hearts and aortas were quite significant, but each treatment completely abolished this deterioration. The similarity between the results detected with either enalapril or losartan treatment clearly indicates that most of the effects are exerted through AT(1) receptors. An outstanding finding was the significant and similar prolongation of life span in both groups of treated animals compared with untreated control animals. PMID:17557916

  13. Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase.

    PubMed

    Eguchi, S; Matsumoto, T; Motley, E D; Utsunomiya, H; Inagami, T

    1996-06-14

    In cultured rat vascular smooth muscle cells, angiotensin II (Ang II) induced a rapid increase in mitogen-activated protein kinase (MAPK) activity through the Ang II type 1 receptor, which was insensitive to pertussis toxin but was abolished by the phospholipase C inhibitor, U73122. The Ang II-induced MAPK activation was not affected by the protein kinase C inhibitor, GF109203X, and was only partially impaired by pretreatment with a phorbol ester, whereas both treatments completely prevented MAPK activation by the phorbol ester. Intracellular Ca2+ chelation by TMB-8, but not extracellular Ca2+ chelation or inhibition of Ca2+ influx, abolished Ang II-induced MAPK activation. The calmodulin inhibitor, calmidazolium, and the tyrosine kinase inhibitor, genistein, completely blocked MAPK activation by Ang II as well as by the Ca2+ ionophore A23187. Ang II caused a rapid increase in the binding of GTP to p21(ras), and this was inhibited by genistein, TMB-8, and calmidazolium but not by pertussis toxin or GF109203X. These data suggest that Ang II-induced MAPK activation through the Ang II type 1 receptor could be mediated by p21(ras)activation through a currently unidentified tyrosine kinase that lies downstream of Gq-coupled Ca2+/calmodulin signals.

  14. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.

    PubMed

    Okamoto, Koichi; Tajima, Hidehiro; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Nakamura, Keishi; Oyama, Katsunobu; Nakagawara, Hisatoshi; Fujita, Hideto; Takamura, Hiroyuki; Ninomiya, Itasu; Kitagawa, Hirohisa; Fushida, Sachio; Fujimura, Takashi; Harada, Shinichi; Wakayama, Tomohiko; Iseki, Shoichi; Ohta, Tetsuo

    2012-08-01

    We previously reported that hepatic stellate cells (HSCs) activated by angiotensin II (AngII) facilitate stromal fibrosis and tumor progression in intrahepatic cholangiocarcinoma (ICC). AngII has been known as a growth factor which can promote epithelial-to-mesenchymal transition (EMT) in renal epithelial cells, alveolar epithelial cells and peritoneal mesothelial cells. However, in the past, the relationship between AngII and stromal cell-derived factor-1 (SDF-1) in the microenvironment around cancer and the role of AngII on EMT of cancer cells has not been reported in detail. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. In this study, we examined whether activated HSCs promote tumor fibrogenesis, tumor progression and distant metastasis by mediating EMT via the AngII/AngII type 1 receptor (AT-1) and the SDF-1/CXCR4 axis. Two human ICC cell lines and a human HSC line, LI-90, express CXCR4. Significantly higher concentration of SDF-1α was released into the supernatant of LI-90 cells to which AngII had been added. SDF-1α increased the proliferative activity of HSCs and enhanced the activation of HSCs as a growth factor. Furthermore, addition of SDF-1α and AngII enhanced the increase of the migratory capability and vimentin expression, reduced E-cadherin expression, and translocated the expression of β-catenin into the nucleus and cytoplasm in ICC cells. Co-culture with HSCs also enhanced the migratory capability of ICC cells. These findings suggest that SDF-1α, released from activated HSCs and AngII, play important roles in cancer progression, tumor fibrogenesis, and migration in autocrine and paracrine fashion by mediating EMT. Our mechanistic findings may provide pivotal insights into the molecular mechanism of the AngII and SDF-1α-initiated signaling pathway that regulates fibrogenesis in cancerous stroma, tumor progression and meta-stasis of tumor cells expressing AT-1 and CXCR4

  15. Investigations in foot shock stress of variable intensity in mice: Adaptation and role of angiotensin II.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-08-15

    The present study investigated the stress adaptation and role of angiotensin in response to repeated exposures of electric foot shocks of varying intensity. Mice were subjected to moderate (0.5mA) or severe (1.5mA) electric foot shocks for 1h for 5 days. Stress-induced behavioral changes were assessed by actophotometer, hole board, open field and social interaction tests. The serum corticosterone levels were measured as an index of HPA axis. Telmisartan (a selective AT1 receptor blocker) was employed as a pharmacological tool. A single exposure of moderate and severe stress produced behavioral deficits and increased the corticosterone levels. The restoration of these alterations was observed in response to repeated exposures of moderate stress, while no adaptation was observed in severe foot shock stress. A single administration of telmisartan (5mg/kg) exacerbated the moderate stress-induced decrease in behavioral activity and increase in corticosterone levels on the first day of stress exposure, suggesting the anti-stress role of angiotensin. In contrast, telmisartan normalized severe stress-induced behavioral and biochemical alterations suggesting the stress inducing actions of angiotensin. Furthermore, treatment with telmisartan abolished the stress adaptive response following repeated exposures of moderate stress suggesting that angiotensin has an adaptive role. It is concluded that there is a differential adaptive response in foot shock stress depending upon the severity of stress. Angiotensin II may act as an anti-stress agent and helps to promote the adaptation during medium stress, whereas it may promote stress response during severe stress.

  16. Production of angiotensin II receptors type one (AT1) and type two (AT2) during the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Mallow, H; Trindl, A; Löffler, G

    2000-01-01

    During their development from progenitor cells, adipocytes not only express enzymatic activities necessary for the storage of triglycerides, but also achieve the capability to produce a number of endocrine factors such as leptin, tumor necrosis factor alpha (TNFalpha), complement factors, adiponectin/adipoQ, plasminogen activator inhibitor-1 (PAI-1), angiotensin II and others. Angiotensin II is produced from angiotensinogen by the proteolytic action of renin and angiotensin-converting enzyme; and several data point to the existence of a complete local renin-angiotensin system in adipose tissue, including angiotensin II receptors. In this study, we directly monitored the production of angiotensin II type one receptor (AT1) and angiotensin II type two receptor (AT2) proteins during the adipose conversion of murine 3T3-L1 preadipocytes by immunodetection with specific antibodies. AT1 receptors could be detected throughout the whole differentiation period. The strong AT2 signal in preadipocytes however was completely lost during the course of differentiation, which suggests that expression of AT2 receptors is inversely correlated to the adipose conversion program.

  17. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats.

    PubMed

    Walters, Pia E; Gaspari, Tracey A; Widdop, Robert E

    2005-05-01

    Given that angiotensin-(1-7) (Ang-[1-7]) has been frequently reported to exert direct in vitro vascular effects but less often in vivo, we investigated whether a vasodepressor effect of Ang-(1-7) could be unmasked acutely in conscious spontaneously hypertensive rats (SHR) against a background of angiotensin II type 1 (AT1) receptor blockade. Mean arterial pressure (MAP) and heart rate were measured over a 5-day protocol in various groups of rats randomized to receive the following drug combinations: saline, AT1 receptor (AT1R) antagonist candesartan (0.01 or 0.1 mg/kg IV) alone, Ang-(1-7) (5 pmol/min) alone, candesartan plus Ang-(1-7), and candesartan plus Ang-(1-7) and angiotensin II type 2 (AT2) receptor (AT2R) antagonist PD123319 (50 microg/kg per minute). In Wistar-Kyoto (WKY) rats, saline, Ang-(1-7), or candesartan alone caused no significant alteration in MAP, whereas Ang-(1-7) coadministered with candesartan caused a marked, sustained reduction in MAP. A similar unmasking of a vasodepressor response to Ang-(1-7) during AT1R blockade was observed in SHR. Moreover, the AT(2)R antagonist PD123319 markedly attenuated the enhanced depressor response evoked by the Ang-(1-7)/candesartan combination in SHR and WKY rats, whereas in other experiments, the putative Ang-(1-7) antagonist A-779 (5 and 50 pmol/min) did not attenuate this vasodepressor effect. In separate experiments, the bradykinin type 2 receptor antagonist HOE 140 (100 microg/kg IV) or the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester (1 mg/kg IV) abolished the depressor effect of Ang-(1-7) in the presence of candesartan. Collectively, these results suggest that Ang-(1-7) evoked a depressor response during AT1R blockade via activation of AT2R, which involves the bradykinin-NO cascade.

  18. Modulation of angiotensin II signaling following exercise training in heart failure.

    PubMed

    Zucker, Irving H; Schultz, Harold D; Patel, Kaushik P; Wang, Hanjun

    2015-04-15

    Sympathetic activation is a consistent finding in the chronic heart failure (CHF) state. Current therapy for CHF targets the renin-angiotensin II (ANG II) and adrenergic systems. Angiotensin converting enzyme (ACE) inhibitors and ANG II receptor blockers are standard treatments along with β-adrenergic blockade. However, the mortality and morbidity of this disease is still extremely high, even with good medical management. Exercise training (ExT) is currently being used in many centers as an adjunctive therapy for CHF. Clinical studies have shown that ExT is a safe, effective, and inexpensive way to improve quality of life, work capacity, and longevity in patients with CHF. This review discusses the potential neural interactions between ANG II and sympatho-excitation in CHF and the modulation of this interaction by ExT. We briefly review the current understanding of the modulation of the angiotensin type 1 receptor in sympatho-excitatory areas of the brain and in the periphery (i.e., in the carotid body and skeletal muscle). We discuss possible cellular mechanisms by which ExT may impact the sympatho-excitatory process by reducing oxidative stress, increasing nitric oxide. and reducing ANG II. We also discuss the potential role of ACE2 and Ang 1-7 in the sympathetic response to ExT. Fruitful areas of further investigation are the role and mechanisms by which pre-sympathetic neuronal metabolic activity in response to individual bouts of exercise regulate redox mechanisms and discharge at rest in CHF and other sympatho-excitatory states. PMID:25681422

  19. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells.

    PubMed

    Shi, Miao-Qian; Su, Fei-Fei; Xu, Xuan; Liu, Xiong-Tao; Wang, Hong-Tao; Zhang, Wei; Li, Xue; Lian, Cheng; Zheng, Qiang-Sun; Feng, Zhi-Chun

    2016-03-01

    Patients with essential hypertension undergo endothelial dysfunction, particularly in the conduit arteries. Cilostazol, a type III phosphodiesterase inhibitor, serves a role in the inhibition of platelet aggregation and it is widely used in the treatment of peripheral vascular diseases. Previous studies have suggested that cilostazol suppresses endothelial dysfunction; however, it remains unknown whether cilostazol protects the endothelial function in essential hypertension. The aim of the present study was to investigate whether, and how, cilostazol suppresses angiotensin II (angII)‑induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) and Sprague Dawley rats were exposed to angII and treated with cilostazol. Endothelial cell apoptosis and function, nitric oxide and superoxide production, phosphorylation (p) of Akt, and caspase‑3 protein expression levels were investigated. AngII exposure resulted in the apoptosis of endothelial cells in vitro and in vivo. In vitro, cilostazol significantly suppressed the angII‑induced apoptosis of HUVECs; however, this effect was reduced in the presence of LY294002, a phosphoinositide 3 kinase (PI3K) inhibitor. Furthermore, cilostazol suppressed the angII‑induced p‑Akt downregulation and cleaved caspase‑3 upregulation. These effects were also alleviated by LY294002. In vivo, cilostazol suppressed the angII‑induced endothelial cell apoptosis and dysfunction. Cilostazol was also demonstrated to partially reduced the angII‑induced increase in superoxide production. The results of the present study suggested that cilostazol suppresses endothelial apoptosis and dysfunction by modulating the PI3K/Akt pathway.

  20. Gender differences in response to acute and chronic angiotensin II infusion: a translational approach

    PubMed Central

    Toering, Tsjitske J; van der Graaf, Anne Marijn; Visser, Folkert W; Buikema, Hendrik; Navis, Gerjan; Faas, Marijke M; Lely, A Titia

    2015-01-01

    Women with renal disease progress at a slower rate to end stage renal disease than men. As angiotensin II has both hemodynamic and direct renal effects, we hypothesized that the female protection may result from gender differences in responses to angiotensin II. Therefore, we studied gender differences in response to angiotensin II, during acute (human) and chronic (rats) angiotensin II administration. In young healthy men (n = 18) and women (n = 18) we studied the responses of renal hemodynamics (125I-iothalamate and 131I-Hippuran) and blood pressure to graded angiotensin II infusion (0.3, 1.0, and 3.0 ng/kg/min for 1 h). Men had increased responses of diastolic blood pressure (P = 0.01), mean arterial pressure (P = 0.05), and a more pronounced decrease in effective renal plasma flow (P = 0.009) than women. We measured the changes in proteinuria and blood pressure in response to chronic administration (200 ng/kg/min for 3 weeks) of angiotensin II in rats. Male rats had an increased response of proteinuria compared with females (GEE analysis, P = 0.001). Male, but not female, angiotensin II-treated rats had increased numbers of renal interstitial macrophages compared to sham-treated rats (P < 0.001). In conclusion, gender differences are present in the response to acute and chronic infusion of angiotensin II. Difference in angiotensin II sensitivity could play a role in gender differences in progression of renal disease. PMID:26149279

  1. L-type calcium channel β subunit modulates angiotensin II responses in cardiomyocytes.

    PubMed

    Hermosilla, Tamara; Moreno, Cristian; Itfinca, Mircea; Altier, Christophe; Armisén, Ricardo; Stutzin, Andres; Zamponi, Gerald W; Varela, Diego

    2011-01-01

    Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)β subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)β subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)β subunit isoform, with Ca(v)β(1b) containing channels being more strongly regulated. Ca(v)β(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)β subunit-dependent manner. These data demonstrate that Ca(v)β subunits alter the magnitude of inhibition of L-type current by Angiotensin II. PMID:21525790

  2. The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice.

    PubMed

    Meneses, Carla; Morales, María Gabriela; Abrigo, Johanna; Simon, Felipe; Brandan, Enrique; Cabello-Verrugio, Claudio

    2015-09-01

    Angiotensin-(1-7) [Ang (1-7)] is a peptide belonging to the non-classical renin-angiotensin system (RAS). Ang (1-7), through its receptor Mas, has an opposite action to angiotensin II (Ang II), the typical peptide of the classical RAS axis. Ang II produces skeletal muscle atrophy, a pathological condition characterised by the loss of strength and muscle mass. A feature of muscle atrophy is the decrease of the myofibrillar proteins produced by the activation of the ubiquitin-proteasome pathway (UPP), evidenced by the increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. In addition, it has been described that Ang II also induces myonuclear apoptosis during muscle atrophy. We assessed the effects of Ang (1-7) and Mas participation on myonuclear apoptosis during skeletal muscle atrophy induced by Ang II. Our results show that Ang (1-7), through Mas, prevents the effects induced by Ang II in the diaphragm muscles and decreases several events associated with apoptosis in the diaphragm (increased apoptotic nuclei, increased expression of caspase-8 and caspase-9, increased caspase-3 activity and increased Bax/Bcl-2 ratio). Concomitantly, Ang (1-7) also attenuates the decrease in fibre diameter and muscle strength, and prevents the increase in atrogin-1 and MuRF-1 during the muscle wasting induced by Ang II. Interestingly, these effects of Ang (1-7) are dependent on the Mas receptor. Thus, we demonstrated for the first time that Ang (1-7) prevents myonuclear apoptosis during the recovery of skeletal muscle atrophy induced by Ang II.

  3. The effect of angiotensin II receptor blockers on hyperuricemia

    PubMed Central

    Wolff, Marissa L.; Cruz, Jennifer L.; Vanderman, Adam J.; Brown, Jamie N.

    2015-01-01

    The objective of this review was to explore the efficacy of angiotensin II receptor blockers (ARBs) for the treatment of hyperuricemia in individuals diagnosed with gout or hyperuricemia defined as ⩾7 mg/dl at baseline. A literature search of MEDLINE (1946 to June 2015) and EMBASE (1947 to June 2015) was conducted. The following search terms were used: ‘uric acid’, ‘urate transporter’, ‘gout’, ‘angiotensin II receptor blockers’, ‘hyperuricemia’ and the names for individual ARBs, as well as any combinations of these terms. Studies were excluded that did not explore fractional excretion or serum uric acid as an endpoint, if patients did not have a diagnosis of gout or hyperuricemia at baseline, or if they were non-English language. A total of eight studies met the inclusion criteria. Of the eight studies identified, six explored ARB monotherapy and two studies investigated ARBs as adjunct therapy. Losartan demonstrated statistically significant reductions in serum uric acid levels or increases in fractional excretion of uric acid in all studies, whereas no other ARB reached statistical benefit. The effect of ARBs on the occurrence of gout attacks or other clinical outcomes were not represented. Four studies evaluated safety effects of these agents indicating abnormalities such as minor changes in lab values. In conclusion, losartan is the only ARB that has consistently demonstrated a significant reduction in serum uric acid levels, although the significance of impacting clinical outcomes remains unknown. Losartan appears to be a safe and efficacious agent to lower serum uric acid levels in patients with hyperuricemia. PMID:26568810

  4. Norepinephrine uptake by rat jejunum: Modulation by angiotensin II

    SciTech Connect

    Suvannapura, A.; Levens, N.R. )

    1988-02-01

    Angiotensin II (ANG II) is believed to stimulate sodium and water absorption from the small intestine by enhancing sympathetic nerve transmission. This study is designed to determine whether ANG II can enhance sympathetic neurotransmission within the small intestine by inhibition norepinephrine (NE) uptake. Intracellular NE accumulation by rat jejunum was concentration dependent and resolved into high- and low-affinity components. The high-affinity component (uptake 1) exhibited a Michaelis constant (K{sub m}) of 1.72 {mu}M and a maximum velocity (V{sub max}) of 1.19 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. The low-affinity component (uptake 2) exhibited a K{sub m} of 111.1 {mu}M and a V{sub max} of 37.1 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. Cocaine, an inhibitor of neuronal uptake, inhibited the intracellular accumulation of label by 80%. Treatment of animals with 6-hydroxydopamine, which depletes norepinephrine from sympathetic terminals, also attenuated NE uptake by 60%. Thus accumulation within sympathetic nerves constitutes the major form of ({sup 3}H)NE uptake into rat jejunum. ANG II inhibited intracellular ({sup 3}H)NE uptake in a concentration-dependent manner. At a dose of 1 mM, ANG II inhibited intracellular ({sup 3}H)NE accumulation by 60%. Cocaine failed to potentiate the inhibition of ({sup 3}H)NE uptake produced by ANG II. Thus ANG II appears to prevent ({sup 3}H)NE accumulation within rat jejunum by inhibiting neuronal uptake.

  5. Brain and peripheral angiotensin II play a major role in stress.

    PubMed

    Saavedra, Juan M; Benicky, Julius

    2007-06-01

    Angiotensin II (Ang II), the active principle of the renin-angiotensin system (RAS), was discovered as a vasoconstrictive, fluid retentive circulating hormone. It was revealed later that there are local RAS in many organs, including the brain. The physiological receptor for Ang II, the AT(1) receptor type, was found to be highly expressed in many tissues and brain areas involved in the hypothalamic-pituitary-adrenal axis response to stress and in the sympathoadrenal system. The production of circulating and local Ang II, and the expression of AT(1) receptors increase during stress. Blockade of peripheral and brain AT(1) receptors with receptor antagonists administered peripherally prevented the hormonal and sympathoadrenal response to isolation stress, the stress-related alterations in cortical CRF(1) and benzodiazepine receptors, part of the GABA(A) complex, and reduced anxiety in rodents. AT(1) receptor blockade prevented the ulcerations of the gastric mucosa produced by cold-restraint stress, by preservation of the gastric blood flow, prevention of the stress-induced inflammatory response of the gastric mucosa, and partial blockade of the sympathoadrenal response to the stress. Our observations demonstrate that Ang II is an important stress hormone, and that blockade of AT(1) receptors could be proposed as a potentially useful therapy for stress-induced disorders.

  6. Effect of simvastatin on high glucose- and angiotensin II-induced activation of the JAK/STAT pathway in mesangial cells.

    PubMed

    Banes-Berceli, Amy K; Shaw, Sean; Ma, Guochuan; Brands, Michael; Eaton, Douglas C; Stern, David M; Fulton, David; Caldwell, R William; Marrero, Mario B

    2006-07-01

    In the current study, we investigated the effect of simvastatin on the ability of high glucose (HG) and ANG II to activate the JAK2-STAT signaling cascade and induce glomerular mesangial cell (GMC) growth. We found that pretreatment with simvastatin significantly inhibited HG- and ANG II-induced collagen IV production, JAK2 activation, and phosphorylation of STAT1 and STAT3 in GMC. We also found that the activation of JAK2 by HG and ANG II was dependent on the Rho family of GTPases. Consistent with these in vitro results, both albumin protein excretion and phosphorylation of JAK2, STAT1, and STAT3 were attenuated in renal glomeruli by administration of simvastatin in a streptozotocin-induced rat model of HG diabetes. This study demonstrates that simvastatin blocks ANG II-induced activation of the JAK/STAT pathway in the diabetic environment, in vitro and in vivo, and, thereby, provides new insights into the molecular mechanisms underlying early diabetic nephropathy. PMID:16449352

  7. Neprilysin is a Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney.

    PubMed

    Domenig, Oliver; Manzel, Arndt; Grobe, Nadja; Königshausen, Eva; Kaltenecker, Christopher C; Kovarik, Johannes J; Stegbauer, Johannes; Gurley, Susan B; van Oyen, Dunja; Antlanger, Marlies; Bader, Michael; Motta-Santos, Daisy; Santos, Robson A; Elased, Khalid M; Säemann, Marcus D; Linker, Ralf A; Poglitsch, Marko

    2016-01-01

    Cardiovascular and renal pathologies are frequently associated with an activated renin-angiotensin-system (RAS) and increased levels of its main effector and vasoconstrictor hormone angiotensin II (Ang II). Angiotensin-converting-enzyme-2 (ACE2) has been described as a crucial enzymatic player in shifting the RAS towards its so-called alternative vasodilative and reno-protective axis by enzymatically converting Ang II to angiotensin-(1-7) (Ang-(1-7)). Yet, the relative contribution of ACE2 to Ang-(1-7) formation in vivo has not been elucidated. Mass spectrometry based quantification of angiotensin metabolites in the kidney and plasma of ACE2 KO mice surprisingly revealed an increase in Ang-(1-7), suggesting additional pathways to be responsible for alternative RAS activation in vivo. Following assessment of angiotensin metabolism in kidney homogenates, we identified neprilysin (NEP) to be a major source of renal Ang-(1-7) in mice and humans. These findings were supported by MALDI imaging, showing NEP mediated Ang-(1-7) formation in whole kidney cryo-sections in mice. Finally, pharmacologic inhibition of NEP resulted in strongly decreased Ang-(1-7) levels in murine kidneys. This unexpected new role of NEP may have implications for the combination therapy with NEP-inhibitors and angiotensin-receptor-blockade, which has been shown being a promising therapeutic approach for heart failure therapy. PMID:27649628

  8. Neprilysin is a Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney.

    PubMed

    Domenig, Oliver; Manzel, Arndt; Grobe, Nadja; Königshausen, Eva; Kaltenecker, Christopher C; Kovarik, Johannes J; Stegbauer, Johannes; Gurley, Susan B; van Oyen, Dunja; Antlanger, Marlies; Bader, Michael; Motta-Santos, Daisy; Santos, Robson A; Elased, Khalid M; Säemann, Marcus D; Linker, Ralf A; Poglitsch, Marko

    2016-09-21

    Cardiovascular and renal pathologies are frequently associated with an activated renin-angiotensin-system (RAS) and increased levels of its main effector and vasoconstrictor hormone angiotensin II (Ang II). Angiotensin-converting-enzyme-2 (ACE2) has been described as a crucial enzymatic player in shifting the RAS towards its so-called alternative vasodilative and reno-protective axis by enzymatically converting Ang II to angiotensin-(1-7) (Ang-(1-7)). Yet, the relative contribution of ACE2 to Ang-(1-7) formation in vivo has not been elucidated. Mass spectrometry based quantification of angiotensin metabolites in the kidney and plasma of ACE2 KO mice surprisingly revealed an increase in Ang-(1-7), suggesting additional pathways to be responsible for alternative RAS activation in vivo. Following assessment of angiotensin metabolism in kidney homogenates, we identified neprilysin (NEP) to be a major source of renal Ang-(1-7) in mice and humans. These findings were supported by MALDI imaging, showing NEP mediated Ang-(1-7) formation in whole kidney cryo-sections in mice. Finally, pharmacologic inhibition of NEP resulted in strongly decreased Ang-(1-7) levels in murine kidneys. This unexpected new role of NEP may have implications for the combination therapy with NEP-inhibitors and angiotensin-receptor-blockade, which has been shown being a promising therapeutic approach for heart failure therapy.

  9. Neprilysin is a Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney

    PubMed Central

    Domenig, Oliver; Manzel, Arndt; Grobe, Nadja; Königshausen, Eva; Kaltenecker, Christopher C.; Kovarik, Johannes J.; Stegbauer, Johannes; Gurley, Susan B.; van Oyen, Dunja; Antlanger, Marlies; Bader, Michael; Motta-Santos, Daisy; Santos, Robson A.; Elased, Khalid M.; Säemann, Marcus D.; Linker, Ralf A.; Poglitsch, Marko

    2016-01-01

    Cardiovascular and renal pathologies are frequently associated with an activated renin-angiotensin-system (RAS) and increased levels of its main effector and vasoconstrictor hormone angiotensin II (Ang II). Angiotensin-converting-enzyme-2 (ACE2) has been described as a crucial enzymatic player in shifting the RAS towards its so-called alternative vasodilative and reno-protective axis by enzymatically converting Ang II to angiotensin-(1-7) (Ang-(1-7)). Yet, the relative contribution of ACE2 to Ang-(1-7) formation in vivo has not been elucidated. Mass spectrometry based quantification of angiotensin metabolites in the kidney and plasma of ACE2 KO mice surprisingly revealed an increase in Ang-(1-7), suggesting additional pathways to be responsible for alternative RAS activation in vivo. Following assessment of angiotensin metabolism in kidney homogenates, we identified neprilysin (NEP) to be a major source of renal Ang-(1-7) in mice and humans. These findings were supported by MALDI imaging, showing NEP mediated Ang-(1-7) formation in whole kidney cryo-sections in mice. Finally, pharmacologic inhibition of NEP resulted in strongly decreased Ang-(1-7) levels in murine kidneys. This unexpected new role of NEP may have implications for the combination therapy with NEP-inhibitors and angiotensin-receptor-blockade, which has been shown being a promising therapeutic approach for heart failure therapy. PMID:27649628

  10. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    SciTech Connect

    Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie; Massiera, Florence; Teboul, Michele; Ailhaud, Gerard; Kim, Jung; Moustaid-Moussa, Naima; Voy, Brynn H

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO), and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  11. Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells

    SciTech Connect

    Sharma, Girish; Goalstone, Marc Lee; E-mail: Marc.Goalstone@uchsc.edu

    2007-03-23

    ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment (<60 min) with insulin or A-II increased phosphorylation of ERK1/2 at 15 min and ERK5 at 5 min. Chronic treatment ({<=}8 h) with insulin increased ERK1/2 phosphorylation by 4 h and ERK5 by 8 h. A-II-stimulated phosphorylation of ERK1/2 by 8 h and ERK5 by 4 h. The EC{sub 50} for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1 nM, whereas the EC{sub 50} for A-II was 2 nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2.

  12. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    PubMed Central

    Fujii, Naoto; Meade, Robert D.; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah

    2015-01-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P < 0.05). However, during both exercise bouts, there were no differences in CVC or sweating between the treatment sites (all P > 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P < 0.05). We show angiotensin II impairs cutaneous perfusion independent of oxidative stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. PMID:25767030

  13. Adenosine restores angiotensin II-induced contractions by receptor-independent enhancement of calcium sensitivity in renal arterioles.

    PubMed

    Lai, En Yin; Martinka, Peter; Fähling, Michael; Mrowka, Ralf; Steege, Andreas; Gericke, Adrian; Sendeski, Mauricio; Persson, P B; Persson, A Erik G; Patzak, Andreas

    2006-11-10

    Adenosine is coupled to energy metabolism and regulates tissue blood flow by modulating vascular resistance. In this study, we investigated isolated, perfused afferent arterioles of mice, which were subjected to desensitization during repeated applications of angiotensin II. Exogenously applied adenosine restores angiotensin II-induced contractions by increasing calcium sensitivity of the arterioles, along with augmented phosphorylation of the regulatory unit of the myosin light chain. Adenosine restores angiotensin II-induced contractions via intracellular action, because inhibition of adenosine receptors do not prevent restoration, but inhibition of NBTI sensitive adenosine transporters does. Restoration was prevented by inhibition of Rho-kinase, protein kinase C, and the p38 mitogen-activated protein kinase, which modulate myosin light chain phosphorylation and thus calcium sensitivity in the smooth muscle. Furthermore, adenosine application increased the intracellular ATP concentration in LuciHEK cells. The results of the study suggest that restoration of the angiotensin II-induced contraction by adenosine is attributable to the increase of the calcium sensitivity by phosphorylation of the myosin light chain. This can be an important component of vascular control during ischemic and hypoxic conditions. Additionally, this mechanism may contribute to the mediation of the tubuloglomerular feedback by adenosine in the juxtaglomerular apparatus of the kidney. PMID:17038642

  14. Caveolae regulate vasoconstriction of conduit arteries to angiotensin II in hindlimb unweighted rats.

    PubMed

    Wang, Zhongchao; Bai, Yungang; Yu, Jinwen; Liu, Huan; Cheng, Yaoping; Liu, Yonghong; Xie, Xiaoping; Ma, Jin; Bao, Junxiang

    2015-10-15

    Weightlessness induces the functional remodelling of arteries, but the changes to angiotensin II (Ang II)-elicited vasoconstriction and the underlying mechanism have never been reported. Caveolae are invaginations of the cell membrane crucial for the contraction of vascular smooth muscle cells, so we investigated the adaptation of Ang II-elicited vasoconstriction to simulated weightlessness and the role of caveolae in it. The 4 week hindlimb unweighted (HU) rat was used to simulate the effects of weightlessness. Ang II-elicited vasoconstriction was measured by isometric force recording. The morphology of caveolae was examined by transmission electron microscope. The binding of the angiotensin II type 1 receptor (AT1 ) and caveolin-1 (cav-1) was examined by coimmunoprecipitation and Western blot. We found that the maximal developing force (E(max)) of Ang II-elicited vasoconstriction was decreased in abdominal aorta by 30.6%, unchanged in thoracic aorta and increased in carotid artery by 17.9% after HU, while EC50 of the response was increased in all three arteries (P < 0.05). AT1 desensitization upon activation was significantly reduced by HU in all three arteries, as was the number of caveolae (P < 0.05). Furthermore, Ang II promoted the binding of AT1 and cav-1 significantly in control but not HU arteries. Both the number of caveolae and the binding of AT1 and cav-1 in HU arteries were restored by cholesterol pretreatment which also reinstated the change in EC50 as well as the level of AT1 desensitization. These results indicate that modified caveolae in vascular smooth muscle cells could interfere with the binding of AT1 and cav-1 mediating the adaptation of Ang II-elicited vasoconstriction to HU.

  15. Angiotensin II increases the permeability and PV-1 expression of endothelial cells.

    PubMed

    Bodor, Csaba; Nagy, János Péter; Végh, Borbála; Németh, Adrienn; Jenei, Attila; MirzaHosseini, Shahrokh; Sebe, Attila; Rosivall, László

    2012-01-01

    Angiotensin II (ANG II), the major effector molecule of the renin-angiotensin system (RAS), is a powerful vasoactive mediator associated with hypertension and renal failure. In this study the permeability changes and its morphological attributes in endothelial cells of human umbilical vein (HUVECs) were studied considering the potential regulatory role of ANG II. The effects of ANG II were compared with those of vascular endothelial growth factor (VEGF). Permeability was determined by 40 kDa FITC-Dextran and electrical impedance measurements. Plasmalemmal vesicle-1 (PV-1) mRNA levels were measured by PCR. Endothelial cell surface was studied by atomic force microscopy (AFM), and caveolae were visualized by transmission electron microscopy (TEM) in HUVEC monolayers. ANG II (10(-7) M), similarly to VEGF (100 ng/ml), increased the endothelial permeability parallel with an increase in the number of cell surface openings and caveolae. AT1 and VEGF-R2 receptor blockers (candesartan and ZM-323881, respectively) blunted these effects. ANG II and VEGF increased the expression of PV-1, which could be blocked by candesartan or ZM-323881 pretreatments and by the p38 mitogem-activated protein (MAP) kinase inhibitor SB-203580. Additionally, SB-203580 blocked the increase in endothelial permeability and the number of surface openings and caveolae. In conclusion, we have demonstrated that ANG II plays a role in regulation of permeability and formation of cell surface openings through AT1 receptor and PV-1 protein synthesis in a p38 MAP kinase-dependent manner in endothelial cells. The surface openings that increase in parallel with permeability may represent transcellular channels, caveolae, or both. These morphological and permeability changes may be involved in (patho-) physiological effects of ANG II. PMID:22012329

  16. Nitric oxide up-regulates endothelial expression of angiotensin II type 2 receptors.

    PubMed

    Dao, Vu Thao-Vi; Medini, Sawsan; Bisha, Marion; Balz, Vera; Suvorava, Tatsiana; Bas, Murat; Kojda, Georg

    2016-07-15

    Increasing vascular NO levels following up-regulation of endothelial nitric oxide synthase (eNOS) is considered beneficial in cardiovascular disease. Whether such beneficial effects exerted by increased NO-levels include the vascular renin-angiotensin system remains elucidated. Exposure of endothelial cells originated from porcine aorta, mouse brain and human umbilical veins to different NO-donors showed that expression of the angiotensin-II-type-2-receptor (AT2) mRNA and protein is up-regulated by activation of soluble guanylyl cyclase, protein kinase G and p38 mitogen-activated protein kinase without changing AT2 mRNA stability. In mice, endothelial-specific overexpression of eNOS stimulated, while chronic treatment with the NOS-blocker l-nitroarginine inhibited AT2 expression. The NO-induced AT2 up-regulation was associated with a profound inhibition of angiotensin-converting enzyme (ACE)-activity. In endothelial cells this reduction of ACE-activity was reversed by either the AT2 antagonist PD 123119 or by inhibition of transcription with actinomycin D. Furthermore, in C57Bl/6 mice an acute i.v. bolus of l-nitroarginine did not change AT2-expression and ACE-activity suggesting that inhibition of ACE-activity by endogenous NO is crucially dependent on AT2 protein level. Likewise, three weeks of either voluntary or forced exercise training increased AT2 expression and reduced ACE-activity in C57Bl/6 but not in mice lacking eNOS suggesting significance of this signaling interaction for vascular physiology. Finally, aortic AT2 expression is about 5 times greater in female as compared to male C57Bl/6 and at the same time aortic ACE activity is reduced in females by more than 50%. Together these findings imply that endothelial NO regulates AT2 expression and that AT2 may regulate ACE-activity. PMID:27235748

  17. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype

    PubMed Central

    Shrestha, Sanjeeb; Noh, Jae Myoung; Kim, Shin-Yeong; Ham, Hwa-Yong; Kim, Yeon-Ja; Yun, Young-Jin; Kim, Min-Ju; Kwon, Min-Soo; Song, Dong-Keun; Hong, Chang-Won

    2016-01-01

    ABSTRACT Tumor microenvironments polarize neutrophils to protumoral phenotypes. Here, we demonstrate that the angiotensin converting enzyme inhibitors (ACEis) and angiotensin II type 1 receptor (AGTR1) antagonist attenuate tumor growth via polarization of neutrophils toward an antitumoral phenotype. The ACEis or AGTR1 antagonist enhanced hypersegmentation of human neutrophils and increased neutrophil cytotoxicity against tumor cells. This neutrophil hypersegmentation was dependent on the mTOR pathway. In a murine tumor model, ACEis and AGTR1 antagonist attenuated tumor growth and enhanced neutrophil hypersegmentation. ACEis inhibited tumor-induced polarization of neutrophils to a protumoral phenotype. Neutrophil depletion reduced the antitumor effect of ACEi. Together, these data suggest that the modulation of Ang II pathway attenuates tumor growth via polarization of neutrophils to an antitumoral phenotype. PMID:26942086

  18. The anteroventral third ventricle region is critical for the behavioral desensitization caused by repeated injections of angiotensin II.

    PubMed

    Vento, Peter J; Daniels, Derek

    2014-01-01

    A single central injection of angiotensin II (AngII) potently increases water intake; however, a growing body of research suggests that repeated, acute intracerebroventricular injections of AngII cause a reduction in the dipsogenic response to subsequent AngII. This AngII-induced behavioral desensitization is specific to the effects of angiotensin and mediated by the angiotensin type-1 (AT1) receptor. The neuroanatomical substrate for this phenomenon, however, remains unknown. The anteroventral third ventricle (AV3V) region is an important site for the behavioral and physiological actions of AngII. Therefore, we hypothesized that this region also mediates the effects of repeated central AngII administration. In support of this hypothesis, we found that repeated injections of AngII into the AV3V reduced water intake stimulated by a test injection of AngII given into this region. Moreover, repeated AngII injections in the AV3V reduced water intake after AngII was injected into the lateral ventricle. These studies also demonstrate that activation of the AT1 receptor within the AV3V is required for AngII-induced behavioral desensitization because direct injection of the AT1 receptor antagonist, losartan, into the AV3V blocked the desensitizing effect of repeated AngII injections into the lateral ventricle. These findings provide additional support for a role of the AV3V in the dipsogenic actions of AngII, and suggest that this region is critical for the desensitization that occurs after acute repeated central injections of AngII.

  19. Angiotensin 1-7 Protects against Angiotensin II-Induced Endoplasmic Reticulum Stress and Endothelial Dysfunction via Mas Receptor

    PubMed Central

    Murugan, Dharmani; Lau, Yeh Siang; Lau, Wai Chi; Mustafa, Mohd Rais; Huang, Yu

    2015-01-01

    Angiotensin 1–7 (Ang 1–7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1–7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1–7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1–7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1–7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1–7. In addition, Ang 1–7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1–7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function. PMID:26709511

  20. Topographic probes of angiotensin and receptor: potent angiotensin II agonist containing diphenylalanine and long-acting antagonists containing biphenylalanine and 2-indan amino acid in position 8.

    PubMed

    Hsieh, K H; LaHann, T R; Speth, R C

    1989-04-01

    A series of phenylalanine-mimicking amino acids with increasing conformational restraint were prepared and incorporated into angiotensin II, in order to develop topographic probes of angiotensin useful for probing receptor boundaries by molecular graphics analysis and for conformational analysis of the ligand by NMR. In binding studies, all analogues displayed high affinity for rat uterus (Ki of 0.74-6.08 nM) and brain (0.46-1.82 nM) receptors. In smooth muscle (rat uterus) contraction assay, the diphenylalanine-containing [Sar1,Dip8]AII and [Sar1,D-Dip8]AII were potent agonists with respectively 284% and 48% activity of [Asn1]AII. In contrast, the biphenylalanine-containing [Sar1,Bip8]AII, [Sar1,D-Bip8]AII, and the 2-indan amino acid containing [Sar1,2-Ind8]AII were potent inhibitors, approximately 9, 2, and 1.4 times more effective than a standard antagonist, [Sar1,Leu8]AII. Their respective pA10 values in rat uterus assay were 8.87, 8.70, and 8.82. By comparison, the pA10 value for [Sar1,Leu8]AII was 8.35. In rats, a single dose of 10 micrograms of [Sar1,2-Ind8]AII or [Sar1,Bip8]AII produced prolonged blockade of the pressor response toward angiotensin II for over 90 min. The very different pharmacological profiles of these rigid aromatic analogues suggest that the angiotensin receptor activation site consists of a relatively wide and elongated pocket with a narrow opening.

  1. Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats.

    PubMed

    Daniels, Derek; Mietlicki, Elizabeth G; Nowak, Erica L; Fluharty, Steven J

    2009-01-01

    Angiotensin II (AngII) stimulation of water and NaCl intake is a classic model of the behavioural effects of hormones. In vitro studies indicate that the AngII type 1 (AT(1)) receptor stimulates intracellular pathways that include protein kinase C (PKC) and mitogen-activated protein (MAP) kinase activation. Previous studies support the hypotheses that PKC is involved in AngII-induced water, but not NaCl intake and that MAP kinase plays a role in NaCl consumption, but not water intake, after injection of AngII. The present experiments test these hypotheses in rats using central injections of AngII in the presence or absence of a PKC inhibitor or a MAP kinase inhibitor. Pretreatment with the PKC inhibitor chelerythrine attenuated AngII-induced water intake, but NaCl intake was unaffected. In contrast, pretreatment with U0126, a MAP kinase inhibitor, had no effect on AngII-induced water intake, but attenuated NaCl intake. These data support the working hypotheses and significantly extend our earlier findings and those of others. Perhaps more importantly, these experiments demonstrate the remarkable diversity of peptide receptor systems and add support for the surprising finding that intracellular signalling pathways can have divergent behavioural relevance.

  2. Mechanisms underlying angiotensin II-induced calcium oscillations

    PubMed Central

    Edwards, Aurélie; Pallone, Thomas L.

    2008-01-01

    To gain insight into the mechanisms that underlie angiotensin II (ANG II)-induced cytoplasmic Ca2+ concentration ([Ca]cyt) oscillations in medullary pericytes, we expanded a prior model of ion fluxes. ANG II stimulation was simulated by doubling maximal inositol trisphosphate (IP3) production and imposing a 90% blockade of K+ channels. We investigated two configurations, one in which ryanodine receptors (RyR) and IP3 receptors (IP3R) occupy a common store and a second in which they reside on separate stores. Our results suggest that Ca2+ release from stores and import from the extracellular space are key determinants of oscillations because both raise [Ca] in subplasmalemmal spaces near RyR. When the Ca2+-induced Ca2+ release (CICR) threshold of RyR is exceeded, the ensuing Ca2+ release is limited by Ca2+ reuptake into stores and export across the plasmalemma. If sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps do not remain saturated and sarcoplasmic reticulum Ca2+ stores are replenished, that phase is followed by a resumption of leak from internal stores that leads either to [Ca]cyt elevation below the CICR threshold (no oscillations) or to elevation above it (oscillations). Our model predicts that oscillations are more prone to occur when IP3R and RyR stores are separate because, in that case, Ca2+ released by RyR during CICR can enhance filling of adjacent IP3 stores to favor a high subsequent leak that generates further CICR events. Moreover, the existence or absence of oscillations depends on the set points of several parameters, so that biological variation might well explain the presence or absence of oscillations in individual pericytes. PMID:18562632

  3. Acute angiotensin II increases plasma F2-isoprostanes in salt-replete human hypertensives.

    PubMed

    Murphey, Laine J; Morrow, Jason D; Sawathiparnich, Pairunyar; Williams, Gordon H; Vaughan, Douglas E; Brown, Nancy J

    2003-10-01

    Angiotensin (Ang) II induces oxidative stress in vitro and in animal models of hypertension. We tested the hypothesis that Ang II increases oxidative stress in human hypertension, as assessed by plasma F2-isoprostane concentrations. Plasma F2-isoprostanes, hemodynamic and endocrine parameters were measured at baseline and following a 55 min infusion of 3 ng/kg/min Ang II in 13 normotensive and 13 hypertensive volunteers ingesting a high- (200 mmol/d) or low- (10 mmol/d) sodium diet. Mean arterial pressure (MAP) and body mass index were higher in hypertensive subjects. Ang II infusion increased MAP (p<.001) and plasma aldosterone concentrations (p<.001) and decreased plasma renin activity (p<.001) and renal plasma flow (p<.001) to a similar extent in both groups. Plasma F2-isoprostane concentrations were similar at baseline. There was no effect of Ang II on F2-isoprostane concentrations during low-salt intake in either group (normotensive 51.7 +/- 7.1 to 53.7 +/- 6.5 pg/ml and hypertensive 52.2 +/- 8.2 to 56.2 +/- 10.0 pg/ml; mean +/- SE). During high-salt intake, Ang II increased F2-isoprostane concentrations in the hypertensive group (52.3 +/- 7.2 to 63.2 +/- 10.4 pg/ml, p=0.010) but not in the normotensive group (54.2 +/- 4.4 to 58.9 +/- 6.6 pg/ml, p=0.83). Acute Ang II infusion increases oxidative stress in vivo in hypertensive humans. The renin-angiotensin system may contribute to oxidative stress in human cardiovascular disease.

  4. Synthesis and biological evaluation of a new angiotensin II receptor antagonist.

    PubMed

    Zheng, H-l; Zhu, W-b; Wu, D; Da, Y-j; Yan, Y-J; Bian, J; Chen, Z-l

    2014-12-01

    The design, synthesis, in vitro and in vivo evaluation of (2 R,6 S)-4-({1-[2-(1 H-tetrazol-5-yl)phenyl]-1 H-indol-4-yl}methyl)-2,6-dimethylmorpholine, compound 1, as a novel angiotensin II receptor antagonist is outlined. Radioligand binding assays showed that 1 displayed a high affinity for the angiotensin II type 1receptor with IC50 value of 0.82 nM. It acted as a potent anti-hypertensive derivative (maximal reduction of mean arterial pressure of 47 mm Hg at 10 mg/kg po in spontaneously hypertensive rat producing a dose-dependent fall in blood pressure following oral administration lasting beyond 10 h. Acute toxicity tests measured the LD50 of 1 value as 2431.7 mg/kg, which is higher than Losartan (LD50=2248 mg/kg). In addition further testing showed that 1 also demonstrated efficient anti-proliferative activity in vitro and anti-prostate cancer activity in vivo were also found. Taken together this compound could be considered as an effective and durable anti-hypertension drug candidate with additional anti-prostate cancer activity. These encouraging results are deserved of further investigation towards its use for therapeutic benefit. PMID:24573978

  5. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes.

    PubMed

    Lyu, Linmao; Wang, Hui; Li, Bin; Qin, Qingyun; Qi, Lei; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing

    2015-12-01

    Chronic activation of the myocardial renin angiotensin system (RAS) elevates the local level of angiotensin II (Ang II) thereby inducing pathological cardiac hypertrophy, which contributes to heart failure. However, the precise underlying mechanisms have not been fully delineated. Herein we report a novel paracrine mechanism between cardiac fibroblasts (CF)s and cardiomyocytes whereby Ang II induces pathological cardiac hypertrophy. In cultured CFs, Ang II treatment enhanced exosome release via the activation of Ang II receptor types 1 (AT1R) and 2 (AT2R), whereas lipopolysaccharide, insulin, endothelin (ET)-1, transforming growth factor beta (TGFβ)1 or hydrogen peroxide did not. The CF-derived exosomes upregulated the expression of renin, angiotensinogen, AT1R, and AT2R, downregulated angiotensin-converting enzyme 2, and enhanced Ang II production in cultured cardiomyocytes. In addition, the CF exosome-induced cardiomyocyte hypertrophy was blocked by both AT1R and AT2R antagonists. Exosome inhibitors, GW4869 and dimethyl amiloride (DMA), inhibited CF-induced cardiomyocyte hypertrophy with little effect on Ang II-induced cardiomyocyte hypertrophy. Mechanistically, CF exosomes upregulated RAS in cardiomyocytes via the activation of mitogen-activated protein kinases (MAPKs) and Akt. Finally, Ang II-induced exosome release from cardiac fibroblasts and pathological cardiac hypertrophy were dramatically inhibited by GW4869 and DMA in mice. These findings demonstrate that Ang II stimulates CFs to release exosomes, which in turn increase Ang II production and its receptor expression in cardiomyocytes, thereby intensifying Ang II-induced pathological cardiac hypertrophy. Accordingly, specific targeting of Ang II-induced exosome release from CFs may serve as a novel therapeutic approach to treat cardiac pathological hypertrophy and heart failure.

  6. Involvement of Spinal Angiotensin II System in Streptozotocin-Induced Diabetic Neuropathic Pain in Mice.

    PubMed

    Ogata, Yoshiki; Nemoto, Wataru; Nakagawasai, Osamu; Yamagata, Ryota; Tadano, Takeshi; Tan-No, Koichi

    2016-09-01

    Renin-angiotensin system (RAS) activity increases under hyperglycemic states, and is thought to be involved in diabetic complications. We previously demonstrated that angiotensin (Ang) II, a main bioactive component of the RAS, might act as a neurotransmitter and/or neuromodulator in the transmission of nociceptive information in the spinal cord. Here, we examined whether the spinal Ang II system is responsible for diabetic neuropathic pain induced by streptozotocin (STZ). Tactile allodynia was observed concurrently with an increase in blood glucose levels the day after mice received STZ (200 mg/kg, i.v.) injections. Tactile allodynia on day 14 was dose-dependently inhibited by intrathecal administration of losartan, an Ang II type 1 (AT1) receptor antagonist, but not by PD123319, an AT2 receptor antagonist. In the lumbar dorsal spinal cord, the expression of Ang II, Ang converting enzyme (ACE), and phospho-p38 mitogen-activated protein kinase (MAPK) were all significantly increased on day 14 after STZ injection compared with vehicle-treated controls, whereas no differences were observed among AT1 receptors or angiotensinogen levels. Moreover, the increase in phospho-p38 MAPK was significantly inhibited by intrathecal administration of losartan. These results indicate that the expression of spinal ACE increased in STZ-induced diabetic mice, which in turn led to an increase in Ang II levels and tactile allodynia. This increase in spinal Ang II was accompanied by the phosphorylation of p38 MAPK, which was shown to be mediated by AT1 receptors.

  7. Involvement of Spinal Angiotensin II System in Streptozotocin-Induced Diabetic Neuropathic Pain in Mice.

    PubMed

    Ogata, Yoshiki; Nemoto, Wataru; Nakagawasai, Osamu; Yamagata, Ryota; Tadano, Takeshi; Tan-No, Koichi

    2016-09-01

    Renin-angiotensin system (RAS) activity increases under hyperglycemic states, and is thought to be involved in diabetic complications. We previously demonstrated that angiotensin (Ang) II, a main bioactive component of the RAS, might act as a neurotransmitter and/or neuromodulator in the transmission of nociceptive information in the spinal cord. Here, we examined whether the spinal Ang II system is responsible for diabetic neuropathic pain induced by streptozotocin (STZ). Tactile allodynia was observed concurrently with an increase in blood glucose levels the day after mice received STZ (200 mg/kg, i.v.) injections. Tactile allodynia on day 14 was dose-dependently inhibited by intrathecal administration of losartan, an Ang II type 1 (AT1) receptor antagonist, but not by PD123319, an AT2 receptor antagonist. In the lumbar dorsal spinal cord, the expression of Ang II, Ang converting enzyme (ACE), and phospho-p38 mitogen-activated protein kinase (MAPK) were all significantly increased on day 14 after STZ injection compared with vehicle-treated controls, whereas no differences were observed among AT1 receptors or angiotensinogen levels. Moreover, the increase in phospho-p38 MAPK was significantly inhibited by intrathecal administration of losartan. These results indicate that the expression of spinal ACE increased in STZ-induced diabetic mice, which in turn led to an increase in Ang II levels and tactile allodynia. This increase in spinal Ang II was accompanied by the phosphorylation of p38 MAPK, which was shown to be mediated by AT1 receptors. PMID:27401876

  8. Angiotensin II stimulates sodium-dependent proton extrusion in perfused ferret heart.

    PubMed

    Grace, A A; Metcalfe, J C; Weissberg, P L; Bethell, H W; Vandenberg, J I

    1996-06-01

    The Na+/H+ antiport and Na(+)-HCO3- coinflux carrier contribute to recovery from intracellular acidosis in cardiac tissue. The effects of angiotensin II (10(-12)-10(-6) M) on H+ fluxes after intracellular acid loading and during reperfusion after myocardial ischemia have been investigated in the isovolumic, Langendorff-perfused ferret heart. Intracellular pH (pHi) was estimated using 31P nuclear magnetic resonance (NMR) spectroscopy from the chemical shift of intracellular deoxyglucose-6-phosphate or inorganic phosphate. Angiotensin II produced concentration-dependent stimulation (maximum at 10(-6) M: 67%) of 5-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na(+)-dependent of H+ efflux consistent with stimulation of the Na+/H+ antiport. Half-maximal stimulation of H+ efflux occurred at approximately 10(-9) M, which is close to the dissociation constant of the cardiac angiotensin AT1 receptor. Stimulation via this receptor was confirmed with the nonpeptide AT1 receptor blocker, GR-117289. Angiotensin II had less pronounced effects on HCO3(-)-dependent pHi recovery after acid loading with no effect on pHi recovery after intracellular alkalosis. During reperfusion, angiotensin II significantly increased H+ extrusion but impaired contractile recovery. The results support the hypothesis that angiotensin II facilitates H+ extrusion in the heart. This may help maintain physiological homeostasis, but the hypothesized obligated Na+ influx could exacerbate cellular dysfunction during reperfusion. PMID:8764151

  9. Autoradiographic localization of angiotensin II receptors in rat brain

    SciTech Connect

    Mendelsohn, F.A.O.; Quirion, R.; Saavedra, J.M.; Aguilera, G.; Catt, K.J.

    1984-03-01

    The /sup 125/I-labeled agonist analog (1-sarcosine)-angiotensin II ((Sar/sup 1/)AII) bound with high specificity and affinity (K/sub a/ = 2 x 10/sup 9/ M/sup -1/) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. 75 references, 2 figures.

  10. Angiotensin II Type 1 Receptor-Mediated Electrical Remodeling in Mouse Cardiac Myocytes.

    PubMed

    Kim, Jeremy; Gao, Junyuan; Cohen, Ira S; Mathias, Richard T

    2015-01-01

    We recently characterized an autocrine renin angiotensin system (RAS) in canine heart. Activation of Angiotensin II Type 1 Receptors (AT1Rs) induced electrical remodeling, including inhibition of the transient outward potassium current Ito, prolongation of the action potential (AP), increased calcium entry and increased contractility. Electrical properties of the mouse heart are very different from those of dog heart, but if a similar system existed in mouse, it could be uniquely studied through genetic manipulations. To investigate the presence of a RAS in mouse, we measured APs and Ito in isolated myocytes. Application of angiotensin II (A2) for 2 or more hours reduced Ito magnitude, without affecting voltage dependence, and prolonged APs in a dose-dependent manner. Based on dose-inhibition curves, the fast and slow components of Ito (Ito,fast and IK,slow) appeared to be coherently regulated by [A2], with 50% inhibition at an A2 concentration of about 400 nM. This very high K0.5 is inconsistent with systemic A2 effects, but is consistent with an autocrine RAS in mouse heart. Pre-application of the microtubule destabilizing agent colchicine eliminated A2 effects on Ito and AP duration, suggesting these effects depend on intracellular trafficking. Application of the biased agonist SII ([Sar1-Ile4-Ile8]A2), which stimulates receptor internalization without G protein activation, caused Ito reduction and AP prolongation similar to A2-induced changes. These data demonstrate AT1R mediated regulation of Ito in mouse heart. Moreover, all measured properties parallel those measured in dog heart, suggesting an autocrine RAS may be a fundamental feedback system that is present across species. PMID:26430746

  11. Role of angiotensin II and alpha-adrenergic receptors during estrogen-induced vasodilation in ewes.

    PubMed

    Davis, L E; Magness, R R; Rosenfeld, C R

    1992-11-01

    Estradiol-17 beta (E2 beta) produces uterine and systemic vasodilation in nonpregnant ewes without altering mean arterial pressure (MAP). Mechanisms responsible for maintaining MAP and thus uterine blood flow (UBF) may include activation of the renin-angiotensin and/or adrenergic systems. We therefore investigated the effects of systemic blockade of angiotensin II (ANG II) and/or alpha-adrenergic receptors in nonpregnant, castrated ewes, using saralasin (Sar) and/or phentolamine (Phen) in the presence or absence of intravenous E2 beta (1.0 microgram/kg). In nonestrogenized ewes neither antagonist alone had substantial cardiovascular effects; however, Sar + Phen decreased systemic vascular resistance (SVR) 20 +/- 7.4% (SE) and increased heart rate (HR) 50 +/- 19% (P < 0.01); MAP and UBF were unaffected. Following E2 beta treatment SVR fell 17 +/- 2.4% (P < 0.01), UBF increased more than fourfold, and MAP was unchanged. Compared with E2 beta alone, Phen + E2 beta decreased SVR 42 +/- 4.7%, and MAP fell 11 +/- 1.8% (P < 0.05) despite 40-50% increases in HR and cardiac output (P < 0.05). Responses to Sar + E2 beta were similar to E2 beta alone, except for a fall in MAP, whereas responses to Sar + Phen + E2 beta resembled those of Phen + E2 beta. E2 beta-induced uterine vasodilation was unaltered by Sar and/or Phen. During E2 beta-induced vasodilation, MAP is maintained by enhanced activation of the alpha-adrenergic and renin-angiotensin systems; however, uterine vascular responses to E2 beta are independent of both systems and perfusion pressure.

  12. Activation of the Cardiac Renin-Angiotensin System in High Oxygen-Exposed Newborn Rats: Angiotensin Receptor Blockade Prevents the Developmental Programming of Cardiac Dysfunction.

    PubMed

    Bertagnolli, Mariane; Dios, Anne; Béland-Bonenfant, Sarah; Gascon, Gabrielle; Sutherland, Megan; Lukaszewski, Marie-Amélie; Cloutier, Anik; Paradis, Pierre; Schiffrin, Ernesto L; Nuyt, Anne Monique

    2016-04-01

    Newborn rats exposed to high oxygen (O2), mimicking preterm birth-related neonatal stress, develop later in life cardiac hypertrophy, dysfunction, fibrosis, and activation of the renin-angiotensin system. Cardiac renin-angiotensin system activation in O2-exposed adult rats is characterized by an imbalance in angiotensin (Ang) receptors type 1/2 (AT1/2), with prevailing AT1 expression. To study the role of renin-angiotensin system in the developmental programming of cardiac dysfunction, we assessed Ang receptor expression during neonatal high O2 exposure and whether AT1 receptor blockade prevents cardiac alterations in early adulthood. Sprague-Dawley newborn rats were kept with their mother in 80% O2 or room air (control) from days 3 to 10 (P3-P10) of life. Losartan or water was administered by gavage from P8 to P10 (n=9/group). Rats were studied at P3 (before O2 exposure), P5, P10 (end of O2), and P28. Losartan treatment had no impact on growth or kidney development. AT1 and Ang type 2 receptors were upregulated in the left ventricle by high O2 exposure (P5 and P10), which was prevented by Losartan treatment at P10. Losartan prevented the cardiac AT1/2 imbalance at P28. Losartan decreased cardiac hypertrophy and fibrosis and improved left ventricle fraction of shortening in P28 O2-exposed rats, which was associated with decreased oxidation of calcium/calmodulin-dependent protein kinase II, inhibition of the transforming growth factor-β/SMAD3 pathway, and upregulation of cardiac angiotensin-converting enzyme 2. In conclusion, short-term Ang II blockade during neonatal high O2 prevents the development of cardiac alterations later in life in rats. These findings highlight the key role of neonatal renin-angiotensin system activation in the developmental programming of cardiac dysfunction induced by deleterious neonatal conditions.

  13. An Interaction of Renin-Angiotensin and Kallikrein-Kinin Systems Contributes to Vascular Hypertrophy in Angiotensin II-Induced Hypertension: In Vivo and In Vitro Studies

    PubMed Central

    Ceravolo, Graziela S.; Montezano, Augusto C.; Jordão, Maria T.; Akamine, Eliana H.; Costa, Tiago J.; Takano, Ana P.; Fernandes, Denise C.; Barreto-Chaves, Maria L.; Laurindo, Francisco R.; Tostes, Rita C.; Fortes, Zuleica B.; Chopard, Renato P.; Touyz, Rhian M.; Carvalho, Maria Helena C.

    2014-01-01

    The kallikrein-kinin and renin-angiotensin systems interact at multiple levels. In the present study, we tested the hypothesis that the B1 kinin receptor (B1R) contributes to vascular hypertrophy in angiotensin II (ANG II)–induced hypertension, through a mechanism involving reactive oxygen species (ROS) generation and extracellular signal-regulated kinase (ERK1/2) activation. Male Wistar rats were infused with vehicle (control rats), 400 ng/Kg/min ANG II (ANG II rats) or 400 ng/Kg/min ANG II plus B1 receptor antagonist, 350 ng/Kg/min des-Arg9-Leu8-bradykinin (ANGII+DAL rats), via osmotic mini-pumps (14 days) or received ANG II plus losartan (10 mg/Kg, 14 days, gavage - ANG II+LOS rats). After 14 days, ANG II rats exhibited increased systolic arterial pressure [(mmHg) 184±5.9 vs 115±2.3], aortic hypertrophy; increased ROS generation [2-hydroxyethidium/dihydroethidium (EOH/DHE): 21.8±2.7 vs 6.0±1.8] and ERK1/2 phosphorylation (% of control: 218.3±29.4 vs 100±0.25]. B1R expression was increased in aortas from ANG II and ANG II+DAL rats than in aortas from the ANG II+LOS and control groups. B1R antagonism reduced aorta hypertrophy, prevented ROS generation (EOH/DHE: 9.17±3.1) and ERK1/2 phosphorylation (137±20.7%) in ANG II rats. Cultured aortic vascular smooth muscle cells (VSMC) stimulated with low concentrations (0.1 nM) of ANG II plus B1R agonist exhibited increased ROS generation, ERK1/2 phosphorylation, proliferating-cell nuclear antigen expression and [H3]leucine incorporation. At this concentration, neither ANG II nor the B1R agonist produced any effects when tested individually. The ANG II/B1R agonist synergism was inhibited by losartan (AT1 blocker, 10 µM), B1R antagonist (10 µM) and Tiron (superoxide anion scavenger, 10 mM). These data suggest that B1R activation contributes to ANG II-induced aortic hypertrophy. This is associated with activation of redox-regulated ERK1/2 pathway that controls aortic smooth muscle cells growth. Our findings

  14. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.

    PubMed

    Yoshida, Tadashi; Tabony, A Michael; Galvez, Sarah; Mitch, William E; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-10-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  15. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis

    PubMed Central

    Bataller, Ramón; Schwabe, Robert F.; Choi, Youkyung H.; Yang, Liu; Paik, Yong Han; Lindquist, Jeffrey; Qian, Ting; Schoonhoven, Robert; Hagedorn, Curt H.; Lemasters, John J.; Brenner, David A.

    2003-01-01

    Angiotensin II (Ang II) is a pro-oxidant and fibrogenic cytokine. We investigated the role of NADPH oxidase in Ang II–induced effects in hepatic stellate cells (HSCs), a fibrogenic cell type. Human HSCs express mRNAs of key components of nonphagocytic NADPH oxidase. Ang II phosphorylated p47phox, a regulatory subunit of NADPH oxidase, and induced reactive oxygen species formation via NADPH oxidase activity. Ang II phosphorylated AKT and MAPKs and increased AP-1 DNA binding in a redox-sensitive manner. Ang II stimulated DNA synthesis, cell migration, procollagen α1(I) mRNA expression, and secretion of TGF-β1 and inflammatory cytokines. These effects were attenuated by N-acetylcysteine and diphenylene iodonium, an NADPH oxidase inhibitor. Moreover, Ang II induced upregulation of genes potentially involved in hepatic wound-healing response in a redox-sensitive manner, as assessed by microarray analysis. HSCs isolated from p47phox–/– mice displayed a blunted response to Ang II compared with WT cells. We also assessed the role of NADPH oxidase in experimental liver fibrosis. After bile duct ligation, p47phox–/– mice showed attenuated liver injury and fibrosis compared with WT counterparts. Moreover, expression of smooth muscle α-actin and expression of TGF-β1 were reduced in p47phox–/– mice. Thus, NADPH oxidase mediates the actions of Ang II on HSCs and plays a critical role in liver fibrogenesis. PMID:14597764

  16. Novel concept in the mechanism of injury and protection of gastric mucosa: role of renin-angiotensin system and active metabolites of angiotensin.

    PubMed

    Brzozowski, T; Ptak-Belowska, A; Kwiecien, S; Krzysiek-Maczka, G; Strzalka, M; Drozdowicz, D; Pajdo, R; Olszanecki, R; Korbut, R; Konturek, S J; Pawlik, W W

    2012-01-01

    The term cytoprotection pioneered by Robert and colleagues has been introduced to describe the remarkable ability of endogenous and exogenous prostaglandins (PGs) to prevent acute gastric hemorrhagic lesions induced by noxious stimuli such as ethanol, bile acids, hiperosmolar solutions and nonsteroidal anti-inflammatory agents such as aspirin. Since that time many factors were implicated to possess gastroprotective properties such as growth factors including epidermal growth factor (EGF) and transforming factor alpha (TGFα), vasodilatory mediators such as nitric oxide (NO) and calcitonin gene related peptide (CGRP) as well as appetite gut hormones including gastrin and cholecystokinin (CCK), leptin and recently ghrelin. This protective action of gut peptides has been attributed to the release of PG but question remains whether another peptide angiotensin, the classic component of the systemic and local renin-angiotensin system (RAS) could be involved in the mechanism of gastric integrity and gastroprotection. After renin stimulation, the circulating angiotensin I is converted to angiotensin II (ANG II) by the activity of the Angiotensin Converting Enzyme (ACE). The ANG II acting via its binding to two major receptor subtypes the ANG type 1 (AT1) and type 2 (AT2) has been shown be activated during stress and to contribute to the pathogenesis of cold stress- and ischemia-reperfusion-induced gastric lesions. All bioactive angiotensin peptides can be generated not only in systemic circulation, but also locally in several tissues and organs. Recently the new functional components of RAS, such as Ang-(1-7), Ang IV, Ang-(1-12) and novel pathways ACE2 have been described suggesting the gastroprotective role for the novel ANG II metabolite, Ang-(1-7). The fact that Ang-(1-7) is produced in excessive amounts in the gastric mucosa of rodents and that pretreatment by Ang-(1-7) exhibits a potent gastroprotective activity against the gastric lesions induced by cold

  17. Debate: angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers--a gap in evidence-based medicine.

    PubMed

    Ball, Stephen G; White, William B

    2003-05-22

    In this article, 2 leading physicians debate the strength of outcome data on the efficacy of angiotensin-converting enzyme (ACE) inhibitors versus angiotensin II receptor blockers (ARBs) for reducing the incidence of cardiovascular, cerebrovascular, and renovascular events. Dr. Stephen G. Ball notes that the efficacy of ACE inhibitors for reducing the risk for myocardial infarction independent of their effects on blood pressure is controversial. In the Heart Outcomes Prevention Evaluation (HOPE) study, ramipril treatment in high-risk patients was associated with a 20% reduction in the risk for myocardial infarction; mean reduction in blood pressure was 3 mm Hg for systolic blood pressure and 1 mm Hg for diastolic blood pressure. The HOPE investigators propose that the 20% reduction was much greater than would be expected based on the observed blood pressure reduction. However, a meta-regression analysis of blood pressure reduction in >20 antihypertensive therapy outcome trials found that the reduction in myocardial infarction risk with ramipril observed in HOPE was consistent with the modest blood pressure reduction seen with that agent. Nevertheless, there are convincing data for prevention of myocardial infarction with ACE inhibitors in patients with heart failure, including those with heart failure after myocardial infarction, as well as supportive evidence from studies in patients with diabetes mellitus and concomitant hypertension. On the other hand, Dr. William B. White takes the position that ARBs are well-tolerated antihypertensive agents that specifically antagonize the angiotensin II type 1 (AT(1)) receptor and provide a more complete block of the pathologic effects of angiotensin II-which are mediated via the AT(1) receptor-than ACE inhibitors. The Evaluation of Losartan in the Elderly (ELITE) II study and the Valsartan Heart Failure Trial (ValHeFT) suggest that ARBs reduce the risk for mortality in patients with congestive heart failure. The Losartan

  18. Debate: angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers--a gap in evidence-based medicine.

    PubMed

    Ball, Stephen G; White, William B

    2003-05-22

    In this article, 2 leading physicians debate the strength of outcome data on the efficacy of angiotensin-converting enzyme (ACE) inhibitors versus angiotensin II receptor blockers (ARBs) for reducing the incidence of cardiovascular, cerebrovascular, and renovascular events. Dr. Stephen G. Ball notes that the efficacy of ACE inhibitors for reducing the risk for myocardial infarction independent of their effects on blood pressure is controversial. In the Heart Outcomes Prevention Evaluation (HOPE) study, ramipril treatment in high-risk patients was associated with a 20% reduction in the risk for myocardial infarction; mean reduction in blood pressure was 3 mm Hg for systolic blood pressure and 1 mm Hg for diastolic blood pressure. The HOPE investigators propose that the 20% reduction was much greater than would be expected based on the observed blood pressure reduction. However, a meta-regression analysis of blood pressure reduction in >20 antihypertensive therapy outcome trials found that the reduction in myocardial infarction risk with ramipril observed in HOPE was consistent with the modest blood pressure reduction seen with that agent. Nevertheless, there are convincing data for prevention of myocardial infarction with ACE inhibitors in patients with heart failure, including those with heart failure after myocardial infarction, as well as supportive evidence from studies in patients with diabetes mellitus and concomitant hypertension. On the other hand, Dr. William B. White takes the position that ARBs are well-tolerated antihypertensive agents that specifically antagonize the angiotensin II type 1 (AT(1)) receptor and provide a more complete block of the pathologic effects of angiotensin II-which are mediated via the AT(1) receptor-than ACE inhibitors. The Evaluation of Losartan in the Elderly (ELITE) II study and the Valsartan Heart Failure Trial (ValHeFT) suggest that ARBs reduce the risk for mortality in patients with congestive heart failure. The Losartan

  19. Effect of chronic intracerebroventricular angiotensin II infusion on vasopressin release in rats

    NASA Technical Reports Server (NTRS)

    Sterling, G. H.; Chee, O.; Riggs, R. V.; Keil, L. C.

    1980-01-01

    The effects of the chronic infusion of angiotensin II into the lateral cerebral ventricle on the release of arginine vasopressin in rats are investigated. Rats were subjected to a continuous infusion of angiotensin at a rate of 1 microgram/h for five days, during which they were offered water, isotonic saline or hypertonic saline ad libitum or 40 ml water/day, and fluid intake, changes in body weight, plasma sodium ion concentrations and plasma and pituitary arginine vasopressin levels were measured. Angiotensin II is found to increase the fluid intake of rats given isotonic saline and decrease plasma sodium ion levels with no changes in plasma or pituitary arginine vasopressin in those given water or isotonic saline. However, in rats given hypertonic saline, plasma sodium concentrations remained at control levels while plasma vasopressin increased, and in water-restricted rats the effects of angiotensin II were intermediate. Results thus demonstrate that angiotensin II-stimulated arginine vasopressin release is reduced under conditions in which plasma sodium ion concentration becomes dilute, compatible with a central role of angiotensin in the regulation of salt and water balance.

  20. [Advance in Research of Angiotensin II and Its Receptor and Malignant Tumor].

    PubMed

    Sun, Lulu; Shi, Jian

    2016-09-20

    Angiotensin AngII, a linear small peptide,which is composed of eight amino acids, is the main effectors of renin-angiotensin systen (Renin-angiotensin system, RAS). AngII, a main biopolypeptide of the RAS, has important pathophysiologic in effects participating in cardiac hypertrophy, vascular cell proproliferation, inflammation and tissue remodeling through G-protein-coupled receptors. In recent years, Ang II can promote tumor cell proliferation, tumor vessel formation and inhibit the differentiation of the tumor cells. This suggests that inhibit the production of AngII or block its effect is expected to become a new measure for the treatment of malignant tumors. This article reviews the advances in research on the relationship between AngII and its receptor and malignant tumor in recent years. PMID:27666553

  1. Novel Roles for Peroxynitrite in Angiotensin II and CaMKII Signaling

    PubMed Central

    Zhou, Chaoming; Ramaswamy, Swarna S.; Johnson, Derrick E.; Vitturi, Dario A.; Schopfer, Franciso J.; Freeman, Bruce A.; Hudmon, Andy; Levitan, Edwin S.

    2016-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) oxidation controls excitability and viability. While hydrogen peroxide (H2O2) affects Ca2+-activated CaMKII in vitro, Angiotensin II (Ang II)-induced CaMKIIδ signaling in cardiomyocytes is Ca2+ independent and requires NADPH oxidase-derived superoxide, but not its dismutation product H2O2. To better define the biological regulation of CaMKII activation and signaling by Ang II, we evaluated the potential for peroxynitrite (ONOO−) to mediate CaMKII activation and downstream Kv4.3 channel mRNA destabilization by Ang II. In vitro experiments show that ONOO− oxidizes and modestly activates pure CaMKII in the absence of Ca2+/CaM. Remarkably, this apokinase stimulation persists after mutating known oxidation targets (M281, M282, C290), suggesting a novel mechanism for increasing baseline Ca2+-independent CaMKII activity. The role of ONOO− in cardiac and neuronal responses to Ang II was then tested by scavenging ONOO− and preventing its formation by inhibiting nitric oxide synthase. Both treatments blocked Ang II effects on Kv4.3, tyrosine nitration and CaMKIIδ oxidation and activation. Together, these data show that ONOO− participates in Ang II-CaMKII signaling. The requirement for ONOO− in transducing Ang II signaling identifies ONOO−, which has been viewed as a reactive damaging byproduct of superoxide and nitric oxide, as a mediator of GPCR-CaMKII signaling. PMID:27079272

  2. Statin Treatment in Hypercholesterolemic Men Does Not Attenuate Angiotensin II-Induced Venoconstriction

    PubMed Central

    Schindler, Christoph; Guenther, Kristina; Hermann, Cosima; Ferrario, Carlos M.; Schroeder, Christoph; Haufe, Sven

    2014-01-01

    Experimental studies suggested that statins attenuate vascular AT1 receptor responsiveness. Moreover, the augmented excessive pressor response to systemic angiotensin II infusions in hypercholesterolemic patients was normalized with statin treatment. In 12 hypercholesterolemic patients, we tested the hypothesis that statin treatment attenuates angiotensin II-mediated vasoconstriction in hand veins assessed by a linear variable differential transducer. Subjects ingested daily doses of either atorvastatin (40 mg) or positive control irbesartan (150 mg) for 30 days in a randomized and cross-over fashion. Ang II–induced venoconstriction at minute 4 averaged 59%±10% before and 28%±9% after irbesartan (mean ± SEM; P<0.05) compared to 65%±11% before and 73%±11% after 30 days of atorvastatin treatment. Plasma angiotensin levels increased significantly after irbesartan treatment (Ang II: 17±22 before vs 52±40 pg/mL after [p = 0.048]; Ang-(1–7): 18±10 before vs 37±14 pg/mL after [p = 0.002]) compared to atorvastatin treatment (Ang II: 9±4 vs 11±10 pg/mL [p = 0.40]; Ang-(1–7): 24±9 vs 32±8 pg/mL [p = 0.023]). Our study suggests that statin treatment does not elicit major changes in angiotensin II-mediated venoconstriction or in circulating angiotensin II levels whereas angiotensin-(1–7) levels increased modestly. The discrepancy between local vascular and systemic angiotensin II responses might suggest that statin treatment interferes with blood pressure buffering reflexes. Trial Registration ClinicalTrials.gov NCT00154024 PMID:25264877

  3. JS ISH-ECCR-4 THE PLASMA ALDOSTERONE / ANGIOTENSIN II RATIO FOR THE SCREENING OF SECONDARY HYPERTENSION.

    PubMed

    Poglitsch, Marko

    2016-09-01

    Primary aldosteronism (PA) is severe form of hypertension characterized by a strongly increased aldosterone secretion mediated by adenomas or other forms of adrenal hyper-activity. Once detected, PA can be usually cured by either surgical intervention or by appropriate pharmacologic treatments. The incidence of PA among hypertensive patients varies strongly between different studies, which is in part caused by the complex state-of-the-art testing procedure that is unfortunately far away from being a versatile PA screening tool. Despite strong limitations regarding selectivity and the interference with multiple anti-hypertensive drugs, the antibody-based determination of the aldosterone-renin-ratio (ARR) is widely used in the diagnostic process of PA. However, there is still a strong demand for accurate, reliable and patient friendly PA case detection. The implementation of novel LC-MS/MS based assays for quantification of aldosterone might help to improve the power of the ARR as a diagnostic tool for PA. However, there is a big need for a versatile PA screening test that doesn't interfere with anti-hypertensive treatments and therefore allows the clear identification of PA patients without complex and risky treatment adaptions being necessary in the course of the diagnostic process.The Aldosterone-to-Angiotensin-II-Ratio (AA2-Ratio) is a novel LC-MS/MS based high-throughput test for PA that combines the molar plasma levels of aldosterone and physiologically active angiotensin II into a single dimension-free diagnostic value. The availability of innovative diagnostic approaches for biochemical analysis of the Renin-Angiotensin-Aldosterone-System paved the way for Angiotensin peptides to be used in clinical routine testing by overcoming pre-analytic issues regarding analyte stability. In addition to overall RAS activity and aldosterone levels, the AA2-Ratio integrates the activity of all plasma enzymes involved in angiotensin II metabolism and accurately estimates of

  4. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question.

  5. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question. PMID:27246933

  6. Angiopoietin-like protein 2 expression is suppressed by angiotensin II via the angiotensin II type 1 receptor in rat cardiomyocytes

    PubMed Central

    Wang, Shuya; Li, Ying; Miao, Wei; Zhao, Hong; Zhang, Feng; Liu, Nan; Su, Guohai; Cai, Xiaojun

    2016-01-01

    The present study aimed to determine the inhibitory effects of angiotensin II (AngII) on angiopoietin-like protein 2 (Angptl2) in rat primary cardiomyocytes, and to investigate the potential association between angiotensin II type 1 receptor (AT1R) and these effects. Cardiomyocytes were isolated from 3-day-old Wistar rats, and were cultured and identified. Subsequently, the expression levels of Angptl2 were detected following incubation with various concentrations of AngII for various durations using western blotting, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescence. Finally, under the most appropriate conditions (100 nmol/l AngII, 24 h), the cardiomyocytes were divided into six groups: Normal, AngII, AngII + losartan, normal + losartan, AngII + PD123319 and normal + PD123319 groups, in order to investigate the possible function of AT1R in Angptl2 suppression. Losartan and PD123319 are antagonists of AT1R and angiotensin II type 2 receptor, respectively. The statistical significance of the results was analyzed using Student's t-test or one-way analysis of variance. The results demonstrated that Angptl2 expression was evidently suppressed (P<0.05) following incubation with 100 nmol/l AngII for 24 h. Conversely, the expression levels of Angptl2 were significantly increased in the AngII + losartan group compared with the AngII group (P<0.01). However, no significant difference was detected between the AngII + PD123319, normal + losartan or normal + PD123319 groups and the normal group. The present in vitro study indicated that AngII was able to suppress Angptl2 expression, whereas losartan was able to significantly reverse this decrease by inhibiting AT1R. PMID:27483989

  7. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    PubMed Central

    Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263

  8. Effect of angiotensin II and small GTPase Ras signaling pathway inhibition on early renal changes in a murine model of obstructive nephropathy.

    PubMed

    Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  9. p38 MAPK Inhibition Improves Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice

    PubMed Central

    Dai, Hai-long; Hu, Wei-yuan; Jiang, Li-hong; Li, Le; Gaung, Xue-feng; Xiao, Zhi-cheng

    2016-01-01

    The pathogenesis of hypertension-related cognitive impairment has not been sufficiently clarified, new molecular targets are needed. p38 MAPK pathway plays an important role in hypertensive target organ damage. Activated p38 MAPK was seen in AD brain tissue. In this study, we found that long-term potentiation (LTP) of hippocampal CA1 was decreased, the density of the dendritic spines on the CA1 pyramidal cells was reduced, the p-p38 protein expression in hippocampus was elevated, and cognitive function was impaired in angiotensin II-dependent hypertensive C57BL/6 mice. In vivo, using a p38 heterozygous knockdown mice (p38KI/+) model, we showed that knockdown of p38 MAPK in hippocampus leads to the improvement of cognitive function and hippocampal synaptic plasticity in angiotensin II-dependent p38KI/+ hypertensive mice. In vitro, LTP was improved in hippocampal slices from C57BL/6 hypertensive mice by treatment with p38MAPK inhibitor SKF86002. Our data demonstrated that p38 MAPK may be a potential therapeutic target for hypertension-related cognitive dysfunction. PMID:27283322

  10. Serum levels of renin, angiotensin-converting enzyme and angiotensin II in patients treated by surgical excision, propranolol and captopril for problematic proliferating infantile haemangioma.

    PubMed

    Sulzberger, L; Baillie, R; Itinteang, T; de Jong, S; Marsh, R; Leadbitter, P; Tan, S T

    2016-03-01

    The role of the renin-angiotensin system (RAS) in the biology of infantile haemangioma (IH) and its accelerated involution induced by β-blockers was first proposed in 2010. This led to the first clinical trial in 2012 using low-dose captopril, an angiotensin-converting enzyme (ACE) inhibitor, demonstrating a similar response in these tumours. This study aimed to compare serial serum levels of the components of the RAS in patients before and after surgical excision, propranolol or captopril treatment for problematic proliferating IH. Patients with problematic proliferating IH underwent measurements of serum levels of plasma renin activity (PRA), ACE and angiotensin II (ATII) before, and 1-2 and 6 months following surgical excision, propranolol or captopril treatment. This study included 27 patients undergoing surgical excision (n = 8), propranolol (n = 11) and captopril (n = 8) treatment. Treatment with either surgical excision or propranolol resulted in significant decrease in the mean levels of PRA. Surgical excision or captopril treatment led to significant decline in the mean levels of ATII. All three treatment modalities had no significant effect on the mean levels of ACE. This study demonstrates the effect of surgical excision, propranolol and captopril treatment in lowering the levels of PRA and ATII, but not ACE, supporting a mechanistic role for the RAS in the biology of IH.

  11. Serum levels of renin, angiotensin-converting enzyme and angiotensin II in patients treated by surgical excision, propranolol and captopril for problematic proliferating infantile haemangioma.

    PubMed

    Sulzberger, L; Baillie, R; Itinteang, T; de Jong, S; Marsh, R; Leadbitter, P; Tan, S T

    2016-03-01

    The role of the renin-angiotensin system (RAS) in the biology of infantile haemangioma (IH) and its accelerated involution induced by β-blockers was first proposed in 2010. This led to the first clinical trial in 2012 using low-dose captopril, an angiotensin-converting enzyme (ACE) inhibitor, demonstrating a similar response in these tumours. This study aimed to compare serial serum levels of the components of the RAS in patients before and after surgical excision, propranolol or captopril treatment for problematic proliferating IH. Patients with problematic proliferating IH underwent measurements of serum levels of plasma renin activity (PRA), ACE and angiotensin II (ATII) before, and 1-2 and 6 months following surgical excision, propranolol or captopril treatment. This study included 27 patients undergoing surgical excision (n = 8), propranolol (n = 11) and captopril (n = 8) treatment. Treatment with either surgical excision or propranolol resulted in significant decrease in the mean levels of PRA. Surgical excision or captopril treatment led to significant decline in the mean levels of ATII. All three treatment modalities had no significant effect on the mean levels of ACE. This study demonstrates the effect of surgical excision, propranolol and captopril treatment in lowering the levels of PRA and ATII, but not ACE, supporting a mechanistic role for the RAS in the biology of IH. PMID:26612192

  12. Characterization of angiotensin II binding sites in African Green monkey uterus

    SciTech Connect

    Petersen, E.P.; Wright, J.W.; Harding, J.W.

    1985-01-14

    The observation that there are significant differences in the concentration, affinity, and specificity of both central nervous system (CNS) and peripheral angiotensin receptors among several different mammalian species, including the African Green monkey, led to the detailed analysis of /sup 125/I-angiotensin II binding in the uterus of the African Green monkey. The B/sub max/ for angiotensin receptors in uterine tissue from this species is 56.6 +/- 8.7 fmole per mg protein. The K/sub d/ for angiotensin II is .601 +/- .108 mM. The specificity of the receptor is similar to that reported for the uterus of the rat and dog. These results indicate that the angiotensin II receptors, although nearly absent from the CNS of the African Green monkey, are found in the uterus and are very similar to uterine receptors previously characterized in the rat and dog and support the use of these species as appropriate models for studying the biochemistry of angiotensin binding in the uterus. 25 references, 1 figure, 2 tables.

  13. Structural characterization of a diuretic peptide from the central nervous system of the leech Erpobdella octoculata. Angiotensin II Amide.

    PubMed

    Salzet, M; Bulet, P; Wattez, C; Verger-Bocquet, M; Malecha, J

    1995-01-27

    Purification of a material immunoreactive to an antiserum against angiotensin II and present in the central nervous system of the pharyngobdellid leech Erpobdella octoculata was performed by reversed-phase high pressure liquid chromatography combined with both enzyme-linked immunosorbent assay and dot immunobinding assays for angiotensin II. Establishment of the amino acid sequence by Edman degradation, electrospray, and fast atom bombardement mass spectrometry measurements and enzymatic treatment by carboxypeptidase A indicated that this "central" angiotensin II-like material, the first one fully characterized in the animal kingdom, is an angiotensin II amide. This finding constitutes also the first biochemical characterization of a peptide of the angiotensin family in an invertebrate. Synthetic angiotensin II amide exerts, when injected in leeches, a diuretic effect and is, 1 and 2 h postinjection, 100-fold more potent than vertebrate angiotensin II. An identification of the proteins immunoreactive to an antiserum against angiotensin II performed at the level of both central nervous system extracts and in vitro central nervous system-translated RNA products indicated that in the two cases, two proteins were detected. Their molecular masses, which were, respectively, approximately 14 and approximately 18 kDa for the central nervous system extracts and approximately 15 and approximately 19 kDa for in vitro central nervous system-translated RNA products, differ from that of angiotensinogen (approximately 60 kDa), the precursor of vertebrate angiotensin II.

  14. Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin-angiotensin system.

    PubMed

    Kemp, Jacqueline R; Unal, Hamiyet; Desnoyer, Russell; Yue, Hong; Bhatnagar, Anushree; Karnik, Sadashiva S

    2014-10-01

    Improper regulation of signaling in vascular smooth muscle cells (VSMCs) by angiotensin II (AngII) can lead to hypertension, vascular hypertrophy and atherosclerosis. The extent to which the homeostatic levels of the components of signaling networks are regulated through microRNAs (miRNA) modulated by AngII type 1 receptor (AT1R) in VSMCs is not fully understood. Whether AT1R blockers used to treat vascular disorders modulate expression of miRNAs is also not known. To report differential miRNA expression following AT1R activation by AngII, we performed microarray analysis in 23 biological and technical replicates derived from humans, rats and mice. Profiling data revealed a robust regulation of miRNA expression by AngII through AT1R, but not the AngII type 2 receptor (AT2R). The AT1R-specific blockers, losartan and candesartan antagonized >90% of AT1R-regulated miRNAs and AngII-activated AT2R did not modulate their expression. We discovered VSMC-specific modulation of 22 miRNAs by AngII, and validated AT1R-mediated regulation of 17 of those miRNAs by real-time polymerase chain reaction analysis. We selected miR-483-3p as a novel representative candidate for further study because mRNAs of multiple components of the renin-angiotensin system (RAS) were predicted to contain the target sequence for this miRNA. MiR-483-3p inhibited the expression of luciferase reporters bearing 3'-UTRs of four different RAS genes and the inhibition was reversed by antagomir-483-3p. The AT1R-regulated expression levels of angiotensinogen and angiotensin converting enzyme 1 (ACE-1) proteins in VSMCs are modulated specifically by miR-483-3p. Our study demonstrates that the AT1R-regulated miRNA expression fingerprint is conserved in VSMCs of humans and rodents. Furthermore, we identify the AT1R-regulated miR-483-3p as a potential negative regulator of steady-state levels of RAS components in VSMCs. Thus, miRNA-regulation by AngII to affect cellular signaling is a novel aspect of RAS biology

  15. Hyperhydrating effect of acute administration of angiotensin II in rats.

    PubMed

    Fregly, M J; Wilson, K M; Rowland, N E; Cade, J R

    1992-01-01

    Water intake, urine output, and fluid exchange (water intake less urine output) were measured in rats at hourly intervals for 7 hours and at 24 hours following acute administration of angiotensin II (AII, 200 micrograms/kg SC). AII induced the expected abrupt increase in water intake and a more gradual increase in urine output. The change in fluid exchange (fluid exchange of the AII-treated group less fluid exchange of controls) became positive within the first hour after treatment with AII, decreased linearly with time, and reached 0 at approximately 10 to 12 hours after treatment with AII. When AII was administered intracerebroventricularly (50 ng), similar results were observed. In this case, the change in fluid exchange (delta F) reached 0 in about 6 hours. Imposition of a water load (1% of body weight, IP) on the group receiving AII SC failed to affect the time required for delta F to reach 0 if the water load was disregarded. However, inclusion of the load as a part of intake extended the time the rats remained in positive fluid balance beyond that of the nonloaded, AII-treated control group. In the case of the larger water load (3% of body weight, IP), delta F returned to that of controls in about 4 to 5 hours if the water load was disregarded. However, inclusion of the load as part of intake extended the period of hyperhydration well beyond that of both the nonloaded, AII-treated group and the AII-treated group given the 1% load.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Exploring new scaffolds for angiotensin II receptor antagonism.

    PubMed

    Kritsi, Eftichia; Matsoukas, Minos-Timotheos; Potamitis, Constantinos; Karageorgos, Vlasios; Detsi, Anastasia; Magafa, Vasilliki; Liapakis, George; Mavromoustakos, Thomas; Zoumpoulakis, Panagiotis

    2016-09-15

    Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities. PMID:27480029

  17. Memory strengthening by a real-life episode during reconsolidation: an outcome of water deprivation via brain angiotensin II.

    PubMed

    Frenkel, Lia; Maldonado, Héctor; Delorenzi, Alejandro

    2005-10-01

    A considerable body of evidence reveals that consolidated memories, recalled by a reminder, enter into a new vulnerability phase during which they are susceptible to disruption again. Consistently, reconsolidation was shown by the amnesic effects induced by administration of consolidation blockers after memory labilization. To shed light on the functional value of reconsolidation, we explored whether an endogenous process activated during a concurrent real-life experience improved this memory phase. Reconsolidation of long-term contextual memory has been well documented in the crab Chasmagnathus. Previously we showed that angiotensin II facilitates memory consolidation. Moreover, water deprivation increases brain angiotensin and improves memory consolidation and retrieval through angiotensin II receptors. Here, we tested whether concurrent water deprivation improves reconsolidation via endogenous angiotensin and therefore strengthens memory. We show that memory reconsolidation, induced by training context re-exposure, is facilitated by a concurrent episode of water deprivation, which induces a raise in endogenous brain angiotensin II. Positive modulation is expressed by full memory retention, despite a weak training, 24 or 72 but not 4 h after memory reactivation. This is the first evidence that memory can be positively modulated during reconsolidation through an identified endogenous process triggered during a real-life episode. We propose that the functional value for reconsolidation would be to make possible a change in memory strength by the influence of a concurrent experience. Reconsolidation improvement would lead to memory re-evaluation, not by altering memory content but by modifying the behaviour as an outcome of changing the hierarchy of the memories that control it.

  18. Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension

    PubMed Central

    Xiao, Liang; Kirabo, Annet; Wu, Jing; Saleh, Mohamed A.; Zhu, Linjue; Wang, Feng; Takahashi, Takamune; Loperena, Roxana; Foss, Jason D.; Mernaugh, Raymond L.; Chen, Wei; Roberts, Jackson; Osborn, John W.; Itani, Hana A.; Harrison, David G.

    2015-01-01

    Rationale Inflammation and adaptive immunity plays a crucial role in the development of hypertension. Angiotensin II and likely other hypertensive stimuli activate the central nervous system and promote T cell activation and end-organ damage in peripheral tissues. Objective To determine if renal sympathetic nerves mediate renal inflammation and T cell activation in hypertension. Methods and Results Bilateral renal denervation (RDN) using phenol application to the renal arteries reduced renal norepinephrine (NE) levels and blunted angiotensin II induced hypertension. Bilateral RDN also reduced inflammation, as reflected by decreased accumulation of total leukocytes, T cells and both CD4+ and CD8+ T cells in the kidney. This was associated with a marked reduction in renal fibrosis, albuminuria and nephrinuria. Unilateral RDN, which partly attenuated blood pressure, only reduced inflammation in the denervated kidney, suggesting that this effect is pressure independent. Angiotensin II also increased immunogenic isoketal-protein adducts in renal dendritic cells (DCs) and increased surface expression of costimulation markers and production of IL-1α, IL-1β, and IL-6 from splenic dendritic cells. NE also dose dependently stimulated isoketal formation in cultured DCs. Adoptive transfer of splenic DCs from angiotensin II-treated mice primed T cell activation and hypertension in recipient mice. RDN prevented these effects of hypertension on DCs. In contrast to these beneficial effects of ablating all renal nerves, renal afferent disruption with capsaicin had no effect on blood pressure or renal inflammation. Conclusions Renal sympathetic nerves contribute to dendritic cell activation, subsequent T cell infiltration and end-organ damage in the kidney in the development of hypertension. PMID:26156232

  19. Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels.

    PubMed

    Yue, Peng; Sun, Peng; Lin, Dao-Hong; Pan, Chunyang; Xing, Wenming; Wang, WenHui

    2011-02-01

    ROMK1 channels are located in the apical membrane of the connecting tubule and cortical collecting duct and mediate the potassium secretion during normal dietary intake. We used a perforated whole-cell patch clamp to explore the effect of angiotensin II on these channels in HEK293 cells transfected with green fluorescent protein (GFP)-ROMK1. Angiotensin II inhibited ROMK1 channels in a dose-dependent manner, an effect abolished by losartan or by inhibition of protein kinase C. Furthermore, angiotensin II stimulated a protein kinase C-sensitive phosphorylation of tyrosine 416 within c-Src. Inhibition of protein tyrosine kinase attenuated the effect of angiotensin II. Western blot studies suggested that angiotensin II inhibited ROMK1 channels by enhancing its tyrosine phosphorylation, a notion supported by angiotensin II's failure to inhibit potassium channels in cells transfected with the ROMK1 tyrosine mutant (R1Y337A). However, angiotensin II restored the with-no-lysine kinase-4 (WNK4)-induced inhibition of R1Y337A in the presence of serum-glucocorticoids-induced kinase 1 (SGK1), which reversed the inhibitory effect of WNK4 on ROMK1. Moreover, protein tyrosine kinase inhibition abolished the angiotensin II-induced restoration of WNK4-mediated inhibition of ROMK1. Angiotensin II inhibited ROMK channels in the cortical collecting duct of rats on a low sodium diet, an effect blocked by protein tyrosine kinase inhibition. Thus, angiotensin II inhibits ROMK channels by two mechanisms: increasing tyrosine phosphorylation of the channel and synergizing the WNK4-induced inhibition. Hence, angiotensin II may have an important role in suppressing potassium secretion during volume depletion. PMID:20927043

  20. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis.

    PubMed

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2(-/y)) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2(-/y) mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1-7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what's more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1-7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1-7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  1. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    SciTech Connect

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin

  2. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier.

    PubMed

    Biancardi, Vinicia Campana; Son, Sook Jin; Ahmadi, Sahra; Filosa, Jessica A; Stern, Javier E

    2014-03-01

    Angiotensin II-mediated vascular brain inflammation emerged as a novel pathophysiological mechanism in neurogenic hypertension. However, the precise underlying mechanisms and functional consequences in relation to blood-brain barrier (BBB) integrity and central angiotensin II actions mediating neurohumoral activation in hypertension are poorly understood. Here, we aimed to determine whether BBB permeability within critical hypothalamic and brain stem regions involved in neurohumoral regulation was altered during hypertension. Using digital imaging quantification after intravascularly injected fluorescent dyes and immunohistochemistry, we found increased BBB permeability, along with altered key BBB protein constituents, in spontaneously hypertensive rats within the hypothalamic paraventricular nucleus, the nucleus of the solitary tract, and the rostral ventrolateral medulla, all critical brain regions known to contribute to neurohumoral activation during hypertension. BBB disruption, including increased permeability and downregulation of constituent proteins, was prevented in spontaneously hypertensive rats treated with the AT1 receptor antagonist losartan, but not with hydralazine, a direct vasodilator. Importantly, we found circulating angiotensin II to extravasate into these brain regions, colocalizing with neurons and microglial cells. Taken together, our studies reveal a novel angiotensin II-mediated feed-forward mechanism during hypertension, by which circulating angiotensin II evokes increased BBB permeability, facilitating in turn its access to critical brain regions known to participate in blood pressure regulation.

  3. Renin angiotensin system-regulating aminopeptidase activities in serum of pre- and postmenopausal women with breast cancer.

    PubMed

    Martínez-Martos, José Manuel; del Pilar Carrera-González, María; Dueñas, Basilio; Mayas, María Dolores; García, María Jesús; Ramírez-Expósito, María Jesús

    2011-10-01

    Angiotensin peptides regulate vascular tone and natriohydric balance through the renin angiotensin system (RAS) and are related with the angiogenesis which plays an important role in the metastatic pathway. Estrogen influences the aminopeptidases (APs) involved in the metabolism of bioactive peptides of RAS through several pathways. We analyze RAS-regulating AP activities in serum of pre- and postmenopausal women with breast cancer to evaluate the putative value of these activities as biological markers of the development of breast cancer. We observed an increase in aminopeptidase N (APN) and aminopeptidase B (APB) activities in women with breast cancer; however, a decrease in aspartyl-aminopeptidase (AspAP) activity in premenopausal women. These results suggest a slow metabolism of angiotensin II (Ang II) to angiotensin III (Ang III) in premenopausal women and a rapid metabolism of Ang III to angiotensin IV (Ang IV) in pre- and postmenopausal women with breast cancer. An imbalance in the signals activated by Ang II may produce abnormal vascular growth with different response between pre- and postmenopausal women depending on the hormonal profile and the development of the disease.

  4. Hippocampal angiotensin II receptors play an important role in mediating the effect of voluntary exercise on learning and memory in rat.

    PubMed

    Akhavan, Maziar M; Emami-Abarghoie, Mitra; Sadighi-Moghaddam, Bizhan; Safari, Manouchehr; Yousefi, Yasaman; Rashidy-Pour, Ali

    2008-09-26

    The beneficial effects of physical activity and exercise on brain functions such as improvement in learning and memory are well documented. The aim of this study was to examine the possible role of hippocampal angiotensin II receptors in voluntary exercise-induced enhancement of learning and memory in rat. In order to block the hippocampal angiotension II receptors, the animals received a single injection of latex microbeads for delivery of [Sar1 Thr8]-Angiotensin II into the hippocampus. The animals were exposed to five consecutive nights of exercise and then their learning and memory were tested on the Morris water maze (MWM) task using a two-trial-per-day for five consecutive days. A probe trial was performed 2 days after the last training day. Our results showed that hippocampal angiotensin II receptor blockade reversed the exercise-induced improvement in learning and memory in rat.

  5. Safflor yellow B suppresses angiotensin II-mediated human umbilical vein cell injury via regulation of Bcl-2/p22{sup phox} expression

    SciTech Connect

    Wang, Chaoyun; He, Yanhao; Yang, Ming; Sun, Hongliu; Zhang, Shuping; Wang, Chunhua

    2013-11-15

    Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels of target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22{sup phox}, increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22{sup phox}. • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression.

  6. A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation.

    PubMed

    George, Amee J; Purdue, Brooke W; Gould, Cathryn M; Thomas, Daniel W; Handoko, Yanny; Qian, Hongwei; Quaife-Ryan, Gregory A; Morgan, Kylie A; Simpson, Kaylene J; Thomas, Walter G; Hannan, Ross D

    2013-12-01

    The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R-EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R-EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R-EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR-EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer. PMID:24046455

  7. The effect of angiotensin II on in vivo albumin transport in normal rabbit aortic tissue.

    PubMed

    Feig, L A; Peppas, N A; Colton, C K; Smith, K A; Lees, R S

    1982-09-01

    Angiotensin II and other vasoactive amines may have a direct effect on the permeability of the arterial wall. We have investigated the effect of angiotensin II in vivo albumin transport across the aortic wall in rabbits following intravenous injection of [125I]albumin. Transmural concentration profiles of 125I-labeled albumin across the intima and media of the aorta, generated during 25 min of either angiotensin or saline infusion, were measured by a serial-sectioning technique. The uptake of labeled albumin through the aortic wall was found to be dependent on position and to increase from the descending thoracic up to the arch. Angiotensin infusion increased albumin uptake in the region of the aorta proximal to the first pair of intercostal arteries and magnified the position dependence. Angiotensin infusion did not change the uptake of albumin in the descending thoracic aorta between intercostal arteries. The arterial blood pressure elevation associated with angiotensin infusion was not of prime importance in producing the uptake patterns described above.

  8. Separation and detection of angiotensin peptides by Cu(II) complexation and capillary electrophoresis with UV and electrochemical detection.

    PubMed

    Lacher, Nathan A; Garrison, Kenneth E; Lunte, Susan M

    2002-06-01

    The use of capillary electrophoresis (CE) with on-capillary Cu(II) complexation for the determination of angiotensin and its metabolites is described. The resulting copper-peptide complexes can be detected using either UV or electrochemical (EC) detection. Optimal reaction and separation conditions for the angiotensin peptides were first determined using CE with UV detection. With UV detection, the limit of detection (signal-to noise ratio S/N = 3) for native angiotensin II was 18 microM, while the limit of detection (LOD) obtained for the copper-angiotensin II complex is 2 microM. CE with EC detection was then evaluated, yielding significantly lower LODs--2 microM for native angiotensin II and 200 nM for the copper-angiotensin II complex. The addition of copper to the run buffer improved the separation and sensitivity for both CE-UV and CE-EC detection. The method was demonstrated by monitoring the conversion of angiotensin I to angiotensin II in plasma via angiotensin-converting enzyme (ACE) and subsequent inhibition of ACE by captopril. PMID:12179974

  9. Effect of angiotensin II receptor blockade on the interaction between enalaprilat and doxazosin in rat tail arteries.

    PubMed

    Marwood, J F

    1998-01-01

    1. Previous work has shown that enalaprilat, an inhibitor of angiotensin-converting enzyme (ACE), potentiated the actions of alpha 1-adrenoceptor antagonists; it was hypothesized that angiotensin II (AngII) modulated the activity of alpha 1-adrenoceptors. This hypothesis was tested in Sprague-Dawley rat isolated perfused tail arteries using the AT1 receptor antagonist losartan and the AT2 receptor antagonist PD123319. 2. Losartan had no alpha 1-adrenoceptor antagonist effects at concentrations below 1 mumol/L. Similarly, losartan (0.1 mumol/L) had no effect on the alpha 1-adrenoceptor antagonist action of doxazosin (1, 10 nmol/L) nor on the potentiation of doxazosin by enalaprilat (1 mumol/L). 3. PD123319 (0.1 mumol/L) had no alpha 1-adrenoceptor antagonist effect but altered the mode of action of the alpha 1-adrenoceptor antagonist doxazosin: PD123319 changed doxazosin from a competitive to a non-competitive antagonist, as evidenced by the reduced slope of the dose-response curve for the alpha 1-adrenoceptor agonist phenylephrine. 4. These results suggest that AngII can modulate alpha 1-adrenoceptor function in rat tail arteries via an indirect action at AT2 receptors. However, the present results do not rule out the involvement of bradykinin, endothelin or prostaglandin in the modulation of alpha 1-adrenoceptor function by angiotensin II.

  10. Genotoxicity of Advanced Glycation End Products: Involvement of Oxidative Stress and of Angiotensin II Type 1 Receptors

    NASA Astrophysics Data System (ADS)

    Schupp, Nicole; Schinzel, Reinhard; Heidland, August; Stopper, Helga

    2005-06-01

    In patients with chronic renal failure, cancer incidence is increased. This may be related to an elevated level of genomic damage, which has been demonstrated by micronuclei formation as well as by comet assay analysis. Advanced glycation end products (AGEs) are markedly elevated in renal failure. In the comet assay, the model AGEs methylglyoxal- and carboxy(methyl)lysine-modified bovine serum albumin (BSA) induced significant DNA damage in colon, kidney, and liver cells. The addition of antioxidants prevented AGE-induced DNA damage, suggesting enhanced formation of reactive oxygen species (ROS). The coincubation with dimethylfumarate (DMF), an inhibitor of NF-κB translocation, reduced the genotoxic effect, thereby underscoring the key role of NF-κB in this process. One of the genes induced by NF-κB is angiotensinogen. The ensuing proteolytic activity yields angiotensin II, which evokes oxidative stress as well as proinflammatory responses. A modulator of the renin-angiotensin system (RAS), the angiotensin II (Ang II) receptor 1 antagonist, candesartan, yielded a reduction of the AGE-induced DNA damage, connecting the two signal pathways, RAS and AGE signaling. We were able to identify important participants in AGE-induced DNA damage: ROS, NF-κB, and Ang II, as well as modulators to prevent this DNA damage: antioxidants, DMF, and AT1 antagonists.

  11. Sex differences in T-lymphocyte tissue infiltration and development of angiotensin II hypertension.

    PubMed

    Pollow, Dennis P; Uhrlaub, Jennifer; Romero-Aleshire, Melissa J; Sandberg, Kathryn; Nikolich-Zugich, Janko; Brooks, Heddwen L; Hay, Meredith

    2014-08-01

    There is extensive evidence that activation of the immune system is both necessary and required for the development of angiotensin II (Ang II)-induced hypertension in males. The purpose of this study was to determine whether sex differences exist in the ability of the adaptive immune system to induce Ang II-dependent hypertension and whether central and renal T-cell infiltration during Ang II-induced hypertension is sex dependent. Recombinant activating gene-1 (Rag-1)(-/-) mice, lacking both T and B cells, were used. Male and female Rag-1(-/-) mice received adoptive transfer of male CD3(+) T cells 3 weeks before 14-day Ang II infusion (490 ng/kg per minute). Blood pressure was monitored via tail cuff. In the absence of T cells, systolic blood pressure responses to Ang II were similar between sexes (Δ22.1 mm Hg males versus Δ18 mm : Hg females). After adoptive transfer of male T cells, Ang II significantly increased systolic blood pressure in males (Δ37.7 mm : Hg; P<0.05) when compared with females (Δ13.7 mm : Hg). Flow cytometric analysis of total T cells and CD4(+), CD8(+), and regulatory Foxp3(+)-CD4(+) T-cell subsets identified that renal lymphocyte infiltration was significantly increased in males versus females in both control and Ang II-infused animals (P<0.05). Immunohistochemical staining for CD3(+)-positive T cells in the subfornical organ region of the brain was increased in males when compared with that in females. These results suggest that female Rag-1(-/-) mice are protected from male T-cell-mediated increases in Ang II-induced hypertension when compared with their male counterparts, and this protection may involve sex differences in the magnitude of T-cell infiltration of the kidney and brain.

  12. Metformin treatment improves erectile function in an angiotensin II model of erectile dysfunction

    PubMed Central

    Labazi, Hicham; Wynne, Brandi M.; Tostes, Rita C.; Webb, R. Clinton

    2015-01-01

    Introduction Increased angiotensin II (AngII) levels cause hypertension, which is a major risk factor for erectile dysfunction (ED). Studies have demonstrated that increased AngII levels in penile tissue are associated with ED. A recent study showed that metformin treatment restored nitric oxide synthase (NOS) protein expression in penile tissue in obese rats; however, whether metformin treatment can be beneficial and restore erectile function in a model of ED has not yet been established. Aim The goal of this study was to test the hypothesis that AngII induces ED by means of increased corpus cavernosum contraction, and that metformin treatment will reverse ED in AngII-treated rats. Methods Male Sprague-Dawley rats were implanted with mini-osmotic pumps containing saline or AngII (70 ng/min, 28 days). Animals were then treated with metformin or vehicle during the last week of AngII infusion. Main Outcome Measures Intracavernosal pressure (ICP); corpus cavernosum contraction and relaxation; nNOS protein expression; extracellular signal-regulated kinase (ERK1/2), AMP-activated protein kinase (AMPK) and eNOS protein expression and phosphorylation. Results AngII induced ED was accompanied with an increase in corpus cavernusom contractility, decreased nitrergic relaxation and increased ERK1/2 phosphorylation. Metformin treatment improved erectile function in the AngII-treated rats by reversing the increased contraction and decreased relaxation. Metformin treatment also resulted in an increase in eNOS phosphorylation at ser1177. Conclusions Metformin treatment increased eNOS phosphorylation and improved erectile function in AngII hypertensive rats by re-establishing normal cavernosal smooth muscle tone. PMID:23889981

  13. Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion.

    PubMed

    Ma, Chun-Ye; Yin, Lin

    2016-07-01

    Angiotensin II type 2 receptor (AT2R) activation has been shown to protect against stroke, but its precise mechanism remains poorly understood. We investigated whether the protective effect of AT2R against ischemia/reperfusion injury is mediated by the suppression of immune and inflammatory responses. Rat models of middle cerebral artery occlusion were intraperitoneally injected with physiological saline, the AT2R agonist CGP42112 (1 mg/kg per day) or antagonist PD123319 (1 mg/kg per day). In the CGP42112 group, AT2R expression increased, the infarct area decreased, interleukin-1β and tumor necrosis factor-α expression decreased, and interleukin-10 expression increased compared with the saline group. Antagonisin AT2R using PD123319 produced the opposite effects. These results indicate that AT2R activation suppresses immune and inflammatory responses, and protects against cerebral ischemia/reperfusion injury. PMID:27630693

  14. Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion

    PubMed Central

    Ma, Chun-ye; Yin, Lin

    2016-01-01

    Angiotensin II type 2 receptor (AT2R) activation has been shown to protect against stroke, but its precise mechanism remains poorly understood. We investigated whether the protective effect of AT2R against ischemia/reperfusion injury is mediated by the suppression of immune and inflammatory responses. Rat models of middle cerebral artery occlusion were intraperitoneally injected with physiological saline, the AT2R agonist CGP42112 (1 mg/kg per day) or antagonist PD123319 (1 mg/kg per day). In the CGP42112 group, AT2R expression increased, the infarct area decreased, interleukin-1β and tumor necrosis factor-α expression decreased, and interleukin-10 expression increased compared with the saline group. Antagonisin AT2R using PD123319 produced the opposite effects. These results indicate that AT2R activation suppresses immune and inflammatory responses, and protects against cerebral ischemia/reperfusion injury.

  15. Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion

    PubMed Central

    Ma, Chun-ye; Yin, Lin

    2016-01-01

    Angiotensin II type 2 receptor (AT2R) activation has been shown to protect against stroke, but its precise mechanism remains poorly understood. We investigated whether the protective effect of AT2R against ischemia/reperfusion injury is mediated by the suppression of immune and inflammatory responses. Rat models of middle cerebral artery occlusion were intraperitoneally injected with physiological saline, the AT2R agonist CGP42112 (1 mg/kg per day) or antagonist PD123319 (1 mg/kg per day). In the CGP42112 group, AT2R expression increased, the infarct area decreased, interleukin-1β and tumor necrosis factor-α expression decreased, and interleukin-10 expression increased compared with the saline group. Antagonisin AT2R using PD123319 produced the opposite effects. These results indicate that AT2R activation suppresses immune and inflammatory responses, and protects against cerebral ischemia/reperfusion injury. PMID:27630693

  16. Angiotensin II regulates growth of the developing papillas ex vivo

    PubMed Central

    Song, Renfang; Preston, Graeme; Khalili, Ali; El-Dahr, Samir S.

    2012-01-01

    We tested the hypothesis that lack of angiotensin (ANG) II production in angiotensinogen (AGT)-deficient mice or pharmacologic antagonism of ANG II AT1 receptor (AT1R) impairs growth of the developing papillas ex vivo, thus contributing to the hypoplastic renal medulla phenotype observed in AGT- or AT1R-null mice. Papillas were dissected from Hoxb7GFP+ or AGT+/+, +/−, −/− mouse metanephroi on postnatal day P3 and grown in three-dimentional collagen matrix gels in the presence of media (control), ANG II (10−5 M), or the specific AT1R antagonist candesartan (10−6 M) for 24 h. Percent reduction in papillary length was attenuated in AGT+/+ and in AGT+/− compared with AGT−/− (−18.4 ± 1.3 vs. −32.2 ± 1.6%, P < 0.05, −22.8 ± 1.3 vs. −32.2 ± 1.6%, P < 0.05, respectively). ANG II blunted the decrease in papilla length observed in respective media-treated controls in Hoxb7GFP+ (−1.5 ± 0.3 vs. −10.0 ± 1.4%, P < 0.05) or AGT+/+, +/−, and −/− papillas (−12.8 ± 0.7 vs. −18.4 ± 1.3%, P < 0.05, −16.8 ± 1.1 vs. −23 ± 1.2%, P < 0.05; −26.2 ± 1.6 vs. −32.2 ± 1.6%, P < 0.05, respectively). In contrast, percent decrease in the length of Hoxb7GFP+ papillas in the presence of the AT1R antagonist candesartan was higher compared with control (−24.3 ± 2.1 vs. −10.5 ± 1.8%, P < 0.05). The number of proliferating phospho-histone H3 (pH3)-positive collecting duct cells was lower, whereas the number of caspase 3-positive cells undergoing apoptosis was higher in candesartan- vs. media-treated papillas (pH3: 12 ± 1.4 vs. 21 ± 2.1, P < 0.01; caspase 3: 3.8 ± 0.5 vs. 1.7 ± 0.2, P < 0.01). Using quantitative RT-PCR, we demonstrate that AT1R signaling regulates the expression of genes implicated in morphogenesis of the renal medulla. We conclude that AT1R prevents shrinkage of the developing papillas observed ex vivo via control of Wnt7b, FGF7, β-catenin, calcineurin B1, and α3 integrin gene expression, collecting duct cell

  17. Attrition of Hepatic Damage Inflicted by Angiotensin II with α-Tocopherol and β-Carotene in Experimental Apolipoprotein E Knock-out Mice.

    PubMed

    Gopal, Kaliappan; Gowtham, Munusamy; Sachin, Singh; Ravishankar Ram, Mani; Shankar, Esaki M; Kamarul, Tunku

    2015-01-01

    Angiotensin II is one of the key regulatory peptides implicated in the pathogenesis of liver disease. The mechanisms underlying the salubrious role of α-tocopherol and β-carotene on liver pathology have not been comprehensively assessed. Here, we investigated the mechanisms underlying the role of Angiotensin II on hepatic damage and if α-tocopherol and β-carotene supplementation attenuates hepatic damage. Hepatic damage was induced in Apoe(-/-)mice by infusion of Angiotensin II followed by oral administration with α-tocopherol and β-carotene-enriched diet for 60 days. Investigations showed fibrosis, kupffer cell hyperplasia, hepatocyte degeneration and hepatic cell apoptosis; sinusoidal dilatation along with haemorrhages; evidence of fluid accumulation; increased ROS level and increased AST and ALT activities. In addition, tPA and uPA were down-regulated due to 42-fold up-regulation of PAI-1. MMP-2, MMP-9, MMP-12, and M-CSF were down-regulated in Angiotensin II-treated animals. Notably, α-tocopherol and β-carotene treatment controlled ROS, fibrosis, hepatocyte degeneration, kupffer cell hyperplasia, hepatocyte apoptosis, sinusoidal dilatation and fluid accumulation in the liver sinusoids, and liver enzyme levels. In addition, PAI-1, tPA and uPA expressions were markedly controlled by β-carotene treatment. Thus, Angiotensin II markedly influenced hepatic damage possibly by restraining fibrinolytic system. We concluded that α-tocopherol and β-carotene treatment has salubrious role in repairing hepatic pathology. PMID:26670291

  18. Attrition of Hepatic Damage Inflicted by Angiotensin II with α-Tocopherol and β-Carotene in Experimental Apolipoprotein E Knock-out Mice

    PubMed Central

    Gopal, Kaliappan; Gowtham, Munusamy; Sachin, Singh; Ravishankar Ram, Mani; Shankar, Esaki M.; Kamarul, Tunku

    2015-01-01

    Angiotensin II is one of the key regulatory peptides implicated in the pathogenesis of liver disease. The mechanisms underlying the salubrious role of α-tocopherol and β-carotene on liver pathology have not been comprehensively assessed. Here, we investigated the mechanisms underlying the role of Angiotensin II on hepatic damage and if α-tocopherol and β-carotene supplementation attenuates hepatic damage. Hepatic damage was induced in Apoe−/−mice by infusion of Angiotensin II followed by oral administration with α-tocopherol and β-carotene-enriched diet for 60 days. Investigations showed fibrosis, kupffer cell hyperplasia, hepatocyte degeneration and hepatic cell apoptosis; sinusoidal dilatation along with haemorrhages; evidence of fluid accumulation; increased ROS level and increased AST and ALT activities. In addition, tPA and uPA were down-regulated due to 42-fold up-regulation of PAI-1. MMP-2, MMP-9, MMP-12, and M-CSF were down-regulated in Angiotensin II-treated animals. Notably, α-tocopherol and β-carotene treatment controlled ROS, fibrosis, hepatocyte degeneration, kupffer cell hyperplasia, hepatocyte apoptosis, sinusoidal dilatation and fluid accumulation in the liver sinusoids, and liver enzyme levels. In addition, PAI-1, tPA and uPA expressions were markedly controlled by β-carotene treatment. Thus, Angiotensin II markedly influenced hepatic damage possibly by restraining fibrinolytic system. We concluded that α-tocopherol and β-carotene treatment has salubrious role in repairing hepatic pathology. PMID:26670291

  19. Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron.

    PubMed

    Nguyen, Mien T X; Han, Jiyang; Ralph, Donna L; Veiras, Luciana C; McDonough, Alicia A

    2015-09-01

    In Sprague Dawley rats, 2-week angiotensin II (AngII) infusion increases Na(+) transporter abundance and activation from cortical thick ascending loop of Henle (TALH) to medullary collecting duct (CD) and raises blood pressure associated with a pressure natriuresis, accompanied by depressed Na(+) transporter abundance and activation from proximal tubule (PT) through medullary TALH. This study tests the hypothesis that early during AngII infusion, before blood pressure raises, Na(+) transporters' abundance and activation increase all along the nephron. Male Sprague Dawley rats were infused via osmotic minipumps with a subpressor dose of AngII (200 ng/kg/min) or vehicle for 3 days. Overnight urine was collected in metabolic cages and sodium transporters' abundance and phosphorylation were determined by immunoblotting homogenates of renal cortex and medulla. There were no significant differences in body weight gain, overnight urine volume, urinary Na(+) and K(+) excretion, or rate of excretion of a saline challenge between AngII and vehicle infused rats. The 3-day nonpressor AngII infusion significantly increased the abundance of PT Na(+)/H(+) exchanger 3 (NHE3), cortical TALH Na-K-2Cl cotransporter 2 (NKCC2), distal convoluted tubule (DCT) Na-Cl cotransporter (NCC), and cortical CD ENaC subunits. Additionally, phosphorylation of cortical NKCC2, NCC, and STE20/SPS1-related proline-alanine-rich kinase (SPAK) were increased; medullary NKCC2 and SPAK were not altered. In conclusion, 3-day AngII infusion provokes PT NHE3 accumulation as well as NKCC2, NCC, and SPAK accumulation and activation in a prehypertensive phase before evidence for intrarenal angiotensinogen accumulation. PMID:26347505

  20. Electrospray ionization mass spectral characteristics and fragmentation mechanisms of Angiotensin II and its analogues

    NASA Astrophysics Data System (ADS)

    Li, Huihui; Yuan, Gu

    2006-05-01

    The characteristic fragmentation pathways of Angiotensin II and eight analogues were investigated by electrospray ionization tandem mass spectrometry. The main fragmentations involve the cleavages of the CCO and CONH bonds with the loss of water, ammonia or carbon monoxide and rearrangements involving hydrogen atoms, and the MS/MS spectra give significant sequence information of these octapeptides. In addition, the two members of the analogues with the same mass and different elemental composition can be distinguished by the MS/MS spectra of [M + H]+ and fragment ions. These results show that ESI tandem mass spectrometry is an excellent tool for the structural identification of Angiotensin II and its analogues.

  1. SY 12-1 RENIN ANGIOTENSIN PATHWAY BEYOND ACE AND ANGIOTENSIN II RECEPTORS: HOW IT RELATES TO THE PATHOPHYSIOLOGY OF HYPERTENSION.

    PubMed

    Burrell, Louise

    2016-09-01

    The renin-angiotensin system (RAS) plays a major role in the pathogenesis of hypertension, a major risk factor for stroke, coronary events, heart failure and kidney disease. Within the RAS, angiotensin converting enzyme (ACE) converts angiotensin (Ang) I into the vasoconstrictor Ang II, which mediates its effects via the angiotensin type 1 receptor (AT1R). An "alternate" arm of the RAS is now known to exist in which the monocarboxypeptidase ACE2 counterbalances the effects of the classic RAS through degradation of the vasoconstrictor peptide, Ang II, and generation of the vasodilatory peptide, Ang 1-7. ACE2 is highly expressed in tissues of cardiovascular relevance including the heart, blood vessels and kidney. The catalytically active ectodomain of ACE2 undergoes shedding resulting in ACE2 in the circulation. The finding that the ACE2 gene maps to a quantitative trait locus on the X chromosome in three strains of genetically hypertensive rats suggests that the ACE2 gene may be a candidate gene for hypertension. It is hypothesised that disruption of tissue ACE/ACE2 balance results in changes in blood pressure, with increased ACE2 expression protecting against increased blood pressure, and ACE2 deficiency contributing to hypertension. Studies in experimental models of hypertension have measured ACE2 gene, protein and/or activity, in either the heart or kidney and/or plasma, usually at one time point, and most commonly in animals with established hypertension. As experimental studies report that deletion or inhibition of ACE2 leads to hypertension, whilst enhancing ACE2 protects against the development of hypertension, increasing or activating ACE2 may be a therapeutic option for the management of high blood pressure in man. There have been relatively few studies of ACE2, either at the gene or the circulating level in patients with hypertension. The available data indicates that plasma ACE2 activity is low in healthy subjects, but elevated in patients with

  2. Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction

    PubMed Central

    Leo, M. Dennis; Bulley, Simon; Bannister, John P.; Kuruvilla, Korah P.; Narayanan, Damodaran

    2015-01-01

    Arterial smooth muscle cells (myocytes) express large-conductance Ca2+-activated K+ (BK) channel α and auxiliary β1 subunits that modulate arterial contractility. In arterial myocytes, β1 subunits are stored within highly mobile rab11A-positive recycling endosomes. In contrast, BKα subunits are primarily plasma membrane-localized. Trafficking pathways for BKα and whether physiological stimuli that regulate arterial contractility alter BKα localization in arterial myocytes are unclear. Here, using biotinylation, immunofluorescence resonance energy transfer (immunoFRET) microscopy, and RNAi-mediated knockdown, we demonstrate that rab4A-positive early endosomes traffic BKα to the plasma membrane in myocytes of resistance-size cerebral arteries. Angiotensin II (ANG II), a vasoconstrictor, reduced both surface and total BKα, an effect blocked by bisindolylmaleimide-II, concanavalin A, and dynasore, protein kinase C (PKC), internalization, and endocytosis inhibitors, respectively. In contrast, ANG II did not reduce BKα mRNA, and sodium nitroprusside, a nitric oxide donor, did not alter surface BKα protein over the same time course. MG132 and bafilomycin A, proteasomal and lysosomal inhibitors, respectively, also inhibited the ANG II-induced reduction in surface and total BKα, resulting in intracellular BKα accumulation. ANG II-mediated BK channel degradation reduced BK currents in isolated myocytes and functional responses to iberiotoxin, a BK channel blocker, and NS1619, a BK activator, in pressurized (60 mmHg) cerebral arteries. These data indicate that rab4A-positive early endosomes traffic BKα to the plasma membrane in arterial myocytes. We also show that ANG II stimulates PKC-dependent BKα internalization and degradation. These data describe a unique mechanism by which ANG II inhibits arterial myocyte BK currents, by reducing surface channel number, to induce vasoconstriction. PMID:26179602

  3. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    PubMed

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; P<0.05), suggesting that AngII-mediated epithelial Na(+) channel activation provokes K(+) depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K(+) depletion during AngII infusion and, thus, prevent NCC accumulation. A2K-fed rats exhibited normal plasma [K(+)] and 2-fold higher K(+) excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (P<0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation.

  4. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    PubMed

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; P<0.05), suggesting that AngII-mediated epithelial Na(+) channel activation provokes K(+) depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K(+) depletion during AngII infusion and, thus, prevent NCC accumulation. A2K-fed rats exhibited normal plasma [K(+)] and 2-fold higher K(+) excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (P<0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation. PMID:27600183

  5. Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway.

    PubMed

    Wang, Xiaowu; Yuan, Binbin; Dong, Wenpeng; Yang, Bo; Yang, Yongchao; Lin, Xi; Gong, Gu

    2015-05-01

    Exposure to humid heat stress leads to the initiation of serious physiological dysfunction that may result in heat-related diseases, including heat stroke, heat cramp, heat exhaustion, and even death. Increasing evidences have shown that the humid heat stress-induced dysfunction of the cardiovascular system was accompanied with severe cardiomyocyte injury; however, the precise mechanism of heat stress-induced injury of cardiomyocyte remains unknown. In the present study, we hypothesized that humid heat stress promoted oxidative stress through the activation of angiotensin II (Ang II) in cardiomyocytes. To test our hypothesis, we established mouse models of humid heat stress. Using the animal models, we found that Ang II levels in serum were significantly up-regulated and that the Ang II receptor AT1 was increased in cardiomyocytes. The antioxidant ability in plasma and heart tissues which was detected by the ferric reducing/antioxidant power assay was also decreased with the increased ROS production under humid heat stress, as was the expression of antioxidant genes (SOD2, HO-1, GPx). Furthermore, we demonstrated that the Ang II receptor antagonist, valsartan, effectively relieved oxidative stress, blocked Ang II signaling pathway and suppressed cardiomyocyte apoptosis induced by humid heat stress. In addition, overexpression of antioxidant genes reversed cardiomyocyte apoptosis induced by Ang II. Overall, these results implied that humid heat stress increased oxidative stress and caused apoptosis of cardiomyocytes through the Ang II signaling pathway. Thus, targeting the Ang II signaling pathway may provide a promising approach for the prevention and treatment of cardiovascular diseases caused by humid heat stress.

  6. Intravital Imaging Reveals Angiotensin II-Induced Transcytosis of Albumin by Podocytes.

    PubMed

    Schießl, Ina Maria; Hammer, Anna; Kattler, Veronika; Gess, Bernhard; Theilig, Franziska; Witzgall, Ralph; Castrop, Hayo

    2016-03-01

    Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (P<0.001), and 239.4±34.6 µm(3) (P<0.001) albumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II-infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function.

  7. Nitrosonifedipine ameliorates angiotensin II-induced vascular remodeling via antioxidative effects.

    PubMed

    Sakurada, Takumi; Ishizawa, Keisuke; Imanishi, Masaki; Izawa-Ishizawa, Yuki; Fujii, Shoko; Tominaga, Erika; Tsuneishi, Teppei; Horinouchi, Yuya; Kihira, Yoshitaka; Ikeda, Yasumasa; Tomita, Shuhei; Aihara, Ken-ichi; Minakuchi, Kazuo; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2013-01-01

    Nifedipine is unstable under light and decomposes to a stable nitroso analog, nitrosonifedipine (NO-NIF). The ability of NO-NIF to block calcium channels is quite weak compared with that of nifedipine. Recently, we have demonstrated that NO-NIF reacts with unsaturated fatty acid leading to generate NO-NIF radical, which acquires radical scavenging activity. However, the effects of NO-NIF on the pathogenesis related with oxidative stress, such as atherosclerosis and hypertension, are unclear. In this study, we investigated the effects of NO-NIF on angiotensin II (Ang II)-induced vascular remodeling. Ang II-induced thickening and fibrosis of aorta were inhibited by NO-NIF in mice. NO-NIF decreased reactive oxygen species (ROS) in the aorta and urinary 8-hydroxy-20-deoxyguanosine. Ang II-stimulated mRNA expressions of p22(phox), CD68, F4/80, monocyte chemoattractant protein-1, and collagen I in the aorta were inhibited by NO-NIF. Moreover, NO-NIF inhibited Ang II-induced cell migration and proliferation of vascular smooth muscle cells (VSMCs). NO-NIF reduced Ang II-induced ROS to the control level detected by dihydroethidium staining and lucigenin chemiluminescence assay in VSMCs. NO-NIF suppressed phosphorylations of Akt and epidermal growth factor receptor induced by Ang II. However, NO-NIF had no effects on intracellular Ca(2+) increase and protein kinase C-δ phosphorylation induced by Ang II in VSMCs. The electron paramagnetic resonance spectra indicated the continuous generation of NO-NIF radical of reaction with cultured VSMCs. These findings suggest that NO-NIF improves Ang II-induced vascular remodeling via the attenuation of oxidative stress.

  8. Obligatory Role for B Cells in the Development of Angiotensin II-Dependent Hypertension.

    PubMed

    Chan, Christopher T; Sobey, Christopher G; Lieu, Maggie; Ferens, Dorota; Kett, Michelle M; Diep, Henry; Kim, Hyun Ah; Krishnan, Shalini M; Lewis, Caitlin V; Salimova, Ekaterina; Tipping, Peter; Vinh, Antony; Samuel, Chrishan S; Peter, Karlheinz; Guzik, Tomasz J; Kyaw, Tin S; Toh, Ban-Hock; Bobik, Alexander; Drummond, Grant R

    2015-11-01

    Clinical hypertension is associated with raised serum IgG antibodies. However, whether antibodies are causative agents in hypertension remains unknown. We investigated whether hypertension in mice is associated with B-cell activation and IgG production and moreover whether B-cell/IgG deficiency affords protection against hypertension and vascular remodeling. Angiotensin II (Ang II) infusion (0.7 mg/kg per day; 28 days) was associated with (1) a 25% increase in the proportion of splenic B cells expressing the activation marker CD86, (2) an 80% increase in splenic plasma cell numbers, (3) a 500% increase in circulating IgG, and (4) marked IgG accumulation in the aortic adventitia. In B-cell-activating factor receptor-deficient (BAFF-R(-/-)) mice, which lack mature B cells, there was no evidence of Ang II-induced increases in serum IgG. Furthermore, the hypertensive response to Ang II was attenuated in BAFF-R(-/-) (Δ30±4 mm Hg) relative to wild-type (Δ41±5 mm Hg) mice, and this response was rescued by B-cell transfer. BAFF-R(-/-) mice displayed reduced IgG accumulation in the aorta, which was associated with 80% fewer aortic macrophages and a 70% reduction in transforming growth factor-β expression. BAFF-R(-/-) mice were also protected from Ang II-induced collagen deposition and aortic stiffening (assessed by pulse wave velocity analysis). Finally, like BAFF-R deficiency, pharmacological depletion of B cells with an anti-CD20 antibody attenuated Ang II-induced hypertension by ≈35%. Hence, these studies demonstrate that B cells/IgGs are crucial for the development of Ang II-induced hypertension and vessel remodeling in mice. Thus, B-cell-targeted therapies-currently used for autoimmune diseases-may hold promise as future treatments for hypertension.

  9. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.

    PubMed

    Takahashi, Ryo; Goto, Takaaki; Oe, Tomoyuki; Lee, Seon Hwa

    2015-09-01

    Polyunsaturated fatty acids are highly susceptible to oxidation induced by reactive oxygen species and enzymes, leading to the formation of lipid hydroperoxides. The linoleic acid (LA)-derived hydroperoxide, 13-hydroperoxyoctadecadienoic acid (HPODE) undergoes homolytic decomposition to reactive aldehydes, 4-oxo-2(E)-nonenal (ONE), 4-hydroxy-2(E)-nonenal, trans-4,5-epoxy-2(E)-decenal (EDE), and 4-hydroperoxy-2(E)-nonenal (HPNE), which can covalently modify peptides and proteins. ONE and HNE have been shown to react with angiotensin (Ang) II (DRVYIHPF) and modify the N-terminus, Arg(2), and His(6). ONE-derived pyruvamide-Ang II (Ang P) alters the biological activities of Ang II considerably. The present study revealed that EDE and HPNE preferentially modified the N-terminus and His(6) of Ang II. In addition to the N-substituted pyrrole of [N-C4H2]-Ang II and Michael addition products of [His(6)(EDE)]-Ang II, hydrated forms were detected as major products, suggesting considerable involvement of the vicinal dihydrodiol (formed by epoxide hydration) in EDE-derived protein modification in vivo. Substantial amounts of [N-(EDE-H2O)]-Ang II isomers were also formed and their synthetic pathway might involve the tautomerization of a carbinolamine intermediate, followed by intramolecular cyclization and dehydration. The main HPNE-derived products were [His(6)(HPNE)]-Ang II and [N-(HPNE-H2O)]-Ang II. However, ONE, HNE, and malondialdehyde-derived modifications were dominant, because HPNE is a precursor of these aldehydes. A mixture of 13-HPODE and [(13)C18]-13-HPODE (1:1) was then used to determine the major modifications derived from LA peroxidation. The characteristic doublet (1:1) observed in the mass spectrum and the mass difference of the [M+H](+) doublet aided the identification of Ang P (N-terminal α-ketoamide), [N-ONE]-Ang II (4-ketoamide), [Arg(2)(ONE-H2O)]-Ang II, [His(6)(HNE)]-Ang II (Michael addition product), [N-C4H2]-Ang II (EDE-derived N-substituted pyrrole

  10. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.

    PubMed

    Takahashi, Ryo; Goto, Takaaki; Oe, Tomoyuki; Lee, Seon Hwa

    2015-09-01

    Polyunsaturated fatty acids are highly susceptible to oxidation induced by reactive oxygen species and enzymes, leading to the formation of lipid hydroperoxides. The linoleic acid (LA)-derived hydroperoxide, 13-hydroperoxyoctadecadienoic acid (HPODE) undergoes homolytic decomposition to reactive aldehydes, 4-oxo-2(E)-nonenal (ONE), 4-hydroxy-2(E)-nonenal, trans-4,5-epoxy-2(E)-decenal (EDE), and 4-hydroperoxy-2(E)-nonenal (HPNE), which can covalently modify peptides and proteins. ONE and HNE have been shown to react with angiotensin (Ang) II (DRVYIHPF) and modify the N-terminus, Arg(2), and His(6). ONE-derived pyruvamide-Ang II (Ang P) alters the biological activities of Ang II considerably. The present study revealed that EDE and HPNE preferentially modified the N-terminus and His(6) of Ang II. In addition to the N-substituted pyrrole of [N-C4H2]-Ang II and Michael addition products of [His(6)(EDE)]-Ang II, hydrated forms were detected as major products, suggesting considerable involvement of the vicinal dihydrodiol (formed by epoxide hydration) in EDE-derived protein modification in vivo. Substantial amounts of [N-(EDE-H2O)]-Ang II isomers were also formed and their synthetic pathway might involve the tautomerization of a carbinolamine intermediate, followed by intramolecular cyclization and dehydration. The main HPNE-derived products were [His(6)(HPNE)]-Ang II and [N-(HPNE-H2O)]-Ang II. However, ONE, HNE, and malondialdehyde-derived modifications were dominant, because HPNE is a precursor of these aldehydes. A mixture of 13-HPODE and [(13)C18]-13-HPODE (1:1) was then used to determine the major modifications derived from LA peroxidation. The characteristic doublet (1:1) observed in the mass spectrum and the mass difference of the [M+H](+) doublet aided the identification of Ang P (N-terminal α-ketoamide), [N-ONE]-Ang II (4-ketoamide), [Arg(2)(ONE-H2O)]-Ang II, [His(6)(HNE)]-Ang II (Michael addition product), [N-C4H2]-Ang II (EDE-derived N-substituted pyrrole

  11. Angiotensin converting enzyme inhibition in normotensive type II diabetics with persistent mild proteinuria.

    PubMed

    Stornello, M; Valvo, E V; Scapellato, L

    1989-12-01

    To evaluate the effect of enalapril on proteinuria, 16 normotensive type II diabetics with persistent proteinuria were studied. At random, the patients were allocated to enalapril (5 mg once a day) or placebo, in a double-blind fashion, for 12 months. Blood pressure, heart rate, urinary albumin excretion, plasma renin activity and aldosterone, blood glucose, serum fructosamine, urine urea and body weight were checked monthly during the run-in period and every 2 months during the treatment period. The kidney function was studied at the beginning of the study and during the sixth and 12th months. Enalapril decreased urinary albumin excretion in our patients in the absence of any effect on blood pressure and kidney function. Our data may be interpreted on the basis of a direct vascular effect of enalapril that is probably related to a tissue mechanism consisting of reduced angiotensin formation, increased kinins, or both, or of other unknown factors.

  12. Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity.

    PubMed

    Domazet, Ivana; Holleran, Brian J; Richard, Alexandra; Vandenberghe, Camille; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2015-06-01

    The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, βarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward βarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι.

  13. Des-aspartate angiotensin I (DAA-I) reduces endothelial dysfunction in the aorta of the spontaneously hypertensive rat through inhibition of angiotensin II-induced oxidative stress.

    PubMed

    Loh, Wei Mee; Ling, Wei Chih; Murugan, Dharmani D; Lau, Yeh Siang; Achike, Francis I; Vanhoutte, Paul M; Mustafa, Mohd Rais

    2015-08-01

    Des-aspartate angiotensin I (DAA-I), an endogenous nonapeptide, counteracts several effects of angiotensin II on vascular tone. The aim of this study was to investigate the acute protective effect of DAA-I on endothelial function in the spontaneously hypertensive rat (SHR) as well as its effect on angiotensin II-induced contractions and oxidative stress. Aortic rings were incubated with DAA-I (0.1μM) for 30min prior to the assessment of angiotensin II-induced contractions (0.1nM-10μM) in WKY and SHR aortas. Total nitrate and nitrite levels were assessed using a colorimetric method and reactive oxygen species (ROS) were measured by dihydroethidium (DHE) fluorescence and lucigenin-enhanced chemiluminescence. The effect of DAA-I was also assessed against endothelium-dependent and -independent relaxations to acetylcholine and sodium nitroprusside, respectively. Angiotensin II-induced contractions were significantly reduced by DAA-I, losartan and tempol. Incubation with ODQ (soluble guanylyl cyclase inhibitor) and removal of the endothelium prevented the reduction of angiotensin II-induced contractions by DAA-I. Total nitrate and nitrite levels were increased in DAA-I, losartan and tempol treated-SHR tissues while ROS level was reduced by DAA-I and the latter inhibitors. In addition, DAA-I significantly improved the impaired acetylcholine-induced relaxation in SHR aortas whilst sodium nitroprusside-induced endothelium-independent relaxation remained unaffected. The present findings indicate that improvement of endothelial function by DAA-I in the SHR aorta is mediated through endothelium-dependent release of nitric oxide and inhibition of angiotensin II-induced oxidative stress. PMID:25869508

  14. Sex-specific T-cell regulation of angiotensin II-dependent hypertension.

    PubMed

    Ji, Hong; Zheng, Wei; Li, Xiangjun; Liu, Jun; Wu, Xie; Zhang, Monan Angela; Umans, Jason G; Hay, Meredith; Speth, Robert C; Dunn, Shannon E; Sandberg, Kathryn

    2014-09-01

    Studies suggest T cells modulate arterial pressure. Because robust sex differences exist in the immune system and in hypertension, we investigated sex differences in T-cell modulation of angiotensin II-induced increases in mean arterial pressure in male (M) and female (F) wild-type and recombination-activating-gene-1-deficient (Rag1(-/-)) mice. Sex differences in peak mean arterial pressure in wild-type were lost in Rag1(-/-) mice (mm Hg: wild-type-F, 136±4.9 versus wild-type-M, 153±1.7; P<0.02; Rag1(-/-)-F, 135±2.1 versus Rag1(-/-)-M, 141±3.8). Peak mean arterial pressure was 13 mm Hg higher after adoptive transfer of male (CD3(M)→Rag1(-/-)-M) versus female (CD3(F)→Rag1(-/-)-M) T cells. CD3(M)→Rag1(-/-)-M mice exhibited higher splenic frequencies of proinflammatory interleukin-17A (2.4-fold) and tumor necrosis factor-α (2.2-fold)-producing T cells and lower plasma levels (13-fold) and renal mRNA expression (2.4-fold) of interleukin-10, whereas CD3(F)→Rag1(-/-)-M mice displayed a higher activation state in general and T-helper-1-biased renal inflammation. Greater T-cell infiltration into perivascular adipose tissue and kidney associated with increased pressor responses to angiotensin II if the T cell donor was male but not female and these sex differences in T-cell subset expansion and tissue infiltration were maintained for 7 to 8 weeks within the male host. Thus, the adaptive immune response and role of pro- and anti-inflammatory cytokine signaling in hypertension are distinct between the sexes and need to be understood to improve therapeutics for hypertension-associated disease in both men and women.

  15. Effects of angiotensin II and ionomycin on fluid and bicarbonate absorption in the rat proximal tubule

    SciTech Connect

    Chatsudthipong, V.; Chan, Y.L.

    1986-03-01

    Microperfusion of proximal convoluted tubule(PCT) and peritubular capillaries was performed to examine the effects of angiotensin II(Ang II) and ionomycin on fluid and bicarbonate absorption. Bicarbonate was determined by microcalorimetry and C-14 inulin was used as a volume marker. The rates of bicarbonate absorption (JHCO/sub 3/) was 143 peq/min x mm and fluid absorption(Jv) was 2.70 nl/min x mm, when PCT and capillary perfusate contained normal Ringer solution. Addition of Ang II (10/sup -6/M) to the capillary perfusate caused reductions of JHCO/sub 3/ and Jv by 35%. A similar effect was observed when ionomycin was added to the capillary perfusate. Ang II antagonist, (Sar/sup 1/, Ile/sup 8/)-Angiotensin II(10/sup -6/M), completely blocked the inhibitory effect of Ang II on Jv and JHCO/sub 3/. Removal of calcium from both luminal and capillary perfusate did not change the effect of Ang II on Jv and JHCO/sub 3/. Our results indicate that Ang II inhibits the sodium-hydrogen exchanger in the proximal tubule via interacting with angiotensin receptor. The mechanism of Ang II action may involve mobilization of intracellular calcium.

  16. The 3-7 fragment of angiotensin II is probably responsible for its psychoactive properties.

    PubMed

    Braszko, J J; Własienko, J; Koziołkiewicz, W; Janecka, A; Wiśniewski, K

    1991-02-22

    The abilities of angiotensin II-(3-7)-pentapeptide (A-II-(3-7), 1 nmol) and angiotensin II (A-II, 1 nmol) to influence rat's psychomotor and cognitive behaviours were compared. Both peptides, given intracerebroventricularly (i.c.v.), 15 min before the experiment, increased number of crossings, rearings and bar approaches in the open field. A-II-(3-7) as well as A-II, at the same doses and routes, significantly intensified stereotypy produced by apomorphine (1 mg/kg) and amphetamine (6.5 mg/kg), both given intraperitoneally. The 3-7 fragment of A-II and A-II in equimolar doses (1 nmol, i.c.v.) were similarly effective in improving learning of conditioned avoidance responses and recall of a passive avoidance behaviour. Taken together, these data and our previous findings indicate that, in rats, the 3-7 fragment of A-II is responsible for the psychoactive properties of angiotensins.

  17. Baicalein protects against the development of angiotensin II-induced abdominal aortic aneurysms by blocking JNK and p38 MAPK signaling.

    PubMed

    Wang, Fang; Chen, Houzao; Yan, Yunfei; Liu, Yue; Zhang, Shuyang; Liu, Depei

    2016-09-01

    An abdominal aortic aneurysm (AAA) is a permanent, localized dilatation of the abdominal aorta. In western countries, the morbidity of AAA is approximately 8%. Currently, pharmacotherapies for AAA are limited. Here, we demonstrate that baicalein (BAI), the main component of the Chinese traditional drug "Huang Qin", attenuates the incidence and severity of AAA in Apoe (-/-) mice infused with angiotensin II (AngII). Mechanically, BAI treatment decreases AngII-induced reactive oxygen species (ROS) production in the aortic wall. Moreover, BAI inhibits inflammatory cell accumulation in the aortas of mice infused with AngII. It also inhibits AngII-induced activation of matrix metalloproteinase 2 (MMP-2) and MMP-9 to maintain elastin content in vivo. In addition, it blocks AngII cascade by downregulating angiotensin type 1 receptor (AT1R) and inhibiting mitogen-activated protein kinases (MAPKs). Taken together, our findings show that BAI is an effective agent for AAA prevention. PMID:27333787

  18. New bioactive angiotensins formation pathways and functional involvements.

    PubMed

    Haulică, I; Petrescu, G; Slătineanu, Simona Mihaela; Bild, W; Mihaila, C N; Ioniţă, T

    2004-01-01

    After a brief review of the actual knowledge concerning the circulating and tissue Renin-Angiotensin System (RAS) as a unitary hormonal system, the cognitive acquisitions regarding the formation and action mechanisms of the new biologically active angiotensins will be presented. The review of the enzymatic pathways for their synthesis and inactivation, as metabolism products of angiotensin II (1-8), will be followed by the presentation of the main physio-pharmacological actions of angiotensin III (2-8), angiotensin IV (3-8) and angiotensin (1-7). The functional involvements of the cerebral angiotensin IV in what concerns its possible participation in the normal neurochemical processes of memory and in the neurodegenerative processes of Alzheimer disease will be exposed, together with the vasodilating effects of angiotensin (1-7) as counteracting factor for the constricting effects of angiotensin II. The data concerning the bioactive fragments of angiotensin II will be accompanied by those regarding its implication in the cardiovascular modeling and the induction of oxidative stress, inflammation, atherogenesis, etc. In their turn, personal researches bring new experimental evidences in favor of interactions between angiotensin (1-7) and angiotensin II within the rat thoracic aorta. Biphasic, dose-dependent effects were observed for angiotensin (1-7), induced both through nitric oxide, kinins and prostaglandin release for counteracting the vasoconstricting effects of angiotensin II and the modulation of its own vasodilator action. PMID:15529593

  19. Angiotensin II Levels in Gingival Tissues from Healthy Individuals, Patients with Nifedipine Induced Gingival Overgrowth and Non Responders on Nifedipine

    PubMed Central

    Balaji, Anitha; Balaji, Thodur Madapusi

    2015-01-01

    Context The Renin Angiotensin system has been implicated in the pathogenesis of Drug Induced Gingival Overgrowth (DIGO), a fibrotic condition, caused by Phenytoin, Nifedipine and Cyclosporine. Aim This study quantified Angiotensin II levels in gingival tissue samples obtained from healthy individuals, patients on Nifedipine manifesting/not manifesting drug induced gingival overgrowth. Materials and Methods Gingival tissue samples were obtained from healthy individuals (n=24), patients on nifidipine manifesting gingival overgrowth (n= 18) and patients on nifidipine not manifesting gingival overgrowth (n=8). Angiotensin II levels were estimated in the samples using a commercially available ELISA kit. Results Angiotensin II levels were significantly elevated in patients on Nifedipine manifesting gingival overgrowth compared to the other 2 groups (p<0.01). Conclusion The results of the study give an insight into the role played by Angiotensin II in the pathogenesis of drug induced gingival overgrowth. PMID:26436057

  20. Interaction of angiotensin II with the C-terminal 300-320 fragment of the rat angiotensin II receptor AT1a monitored by NMR.

    PubMed

    D'Amelio, Nicola; Gaggelli, Elena; Gaggelli, Nicola; Lozzi, Luisa; Neri, Paolo; Valensin, Daniela; Valensin, Gianni

    2003-10-01

    Interaction between angiotensin II (Ang II) and the fragment peptide 300-320 (fCT300-320) of the rat angiotensin II receptor AT1a was demonstrated by relaxation measurements, NOE effects, chemical shift variations, and CD measurements. The correlation times modulating dipolar interactions for the bound and free forms of Ang II were estimated by the ratio of the nonselective and single-selective longitudinal relaxation rates. The intermolecular NOEs observed in NOESY spectra between HN protons of 9Lys(fCT) and 6His(ang), 10Phe(fCT) and 8Phe(ang), HN proton of 3Tyr(fCT) and Halpha of 4Tyr(ang), 5Phe(fCT)Hdelta and Halpha of 4Tyr(ang) indicated that Ang II aromatic residues are directly involved in the interaction, as also verified by relaxation data. Some fCT300-320 backbone features were inferred by the CSI method and CD experiments revealing that the presence of Ang II enhances the existential probability of helical conformations in the fCT fragment. Restrained molecular dynamics using the simulated annealing protocol was performed with intermolecular NOEs as constraints, imposing an alpha-helix backbone structure to fCT300-320 fragment. In the built model, one strongly preferred interaction was found that allows intermolecular stacking between aromatic rings and forces the peptide to wrap around the 6Leu side chain of the receptor fragment.

  1. Activation of the renin-angiotensin system stimulates biliary hyperplasia during cholestasis induced by extrahepatic bile duct ligation.

    PubMed

    Afroze, Syeda H; Munshi, Md Kamruzzaman; Martínez, Allyson K; Uddin, Mohammad; Gergely, Maté; Szynkarski, Claudia; Guerrier, Micheleine; Nizamutdinov, Damir; Dostal, David; Glaser, Shannon

    2015-04-15

    Cholangiocyte proliferation is regulated in a coordinated fashion by many neuroendocrine factors through autocrine and paracrine mechanisms. The renin-angiotensin system (RAS) is known to play a role in the activation of hepatic stellate cells and blocking the RAS attenuates hepatic fibrosis. We investigated the role of the RAS during extrahepatic cholestasis induced by bile duct ligation (BDL). In this study, we used normal and BDL rats that were treated with control, angiotensin II (ANG II), or losartan for 2 wk. In vitro studies were performed in a primary rat cholangiocyte cell line (NRIC). The expression of renin, angiotensin-converting enzyme, angiotensinogen, and angiotensin receptor type 1 was evaluated by immunohistochemistry (IHC), real-time PCR, and FACs and found to be increased in BDL compared with normal rat. The levels of ANG II were evaluated by ELISA and found to be increased in serum and conditioned media of cholangiocytes from BDL compared with normal rats. Treatment with ANG II increased biliary mass and proliferation in both normal and BDL rats. Losartan attenuated BDL-induced biliary proliferation. In vitro, ANG II stimulated NRIC proliferation via increased intracellular cAMP levels and activation of the PKA/ERK/CREB intracellular signaling pathway. ANG II stimulated a significant increase in Sirius red staining and IHC for fibronectin that was blocked by angiotensin receptor blockade. In vitro, ANG II stimulated the gene expression of collagen 1A1, fibronectin 1, and IL-6. These results indicate that cholangiocytes express a local RAS and that ANG II plays an important role in regulating biliary proliferation and fibrosis during extraheptic cholestasis.

  2. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    SciTech Connect

    Zhao, Zhuo; Wang, Hao; Lin, Marina; Groban, Leanne

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

  3. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    SciTech Connect

    Tilley, Douglas G.; Nguyen, Anny D.; Rockman, Howard A.

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.

  4. Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells.

    PubMed

    Kim, Su-Mi; Kim, Yang-Gyun; Jeong, Kyung-Hwan; Lee, Sang-Ho; Lee, Tae-Won; Ihm, Chun-Gyoo; Moon, Ju-Young

    2012-01-01

    Angiotensin II (Ang II)-induced activation of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase leads to increased production of reactive oxygen species (ROS), an important intracellular second messenger in renal disease. Recent findings suggest that Ang II induces mitochondrial depolarization and further amplifies mitochondrial generation of ROS. We examined the hypothesis that ROS injury mediated by Ang II-induced mitochondrial Nox4 plays a pivotal role in mitochondrial dysfunction in tubular cells and is related to cell survival. In addition, we assessed whether angiotensin (1-7) peptide (Ang-(1-7)) was able to counteract Ang II-induced ROS-mediated cellular injury. Cultured NRK-52E cells were stimulated with 10(-6) M Ang II for 24 h with or without Ang-(1-7) or apocynin. Ang II simulated mitochondrial Nox4 and resulted in the abrupt production of mitochondrial superoxide (O(2) (-)) and hydrogen peroxide (H(2)O(2)). Ang II also induced depolarization of the mitochondrial membrane potential, and cytosolic secretion of cytochrome C and apoptosis-inducing factor (AIF). Ang-(1-7) attenuated Ang II-induced mitochondrial Nox4 expression and apoptosis, and its effect was comparable to that of the NAD(P)H oxidase inhibitor. These findings suggest that Ang II-induced activation of mitochondrial Nox4 is an important endogenous source of ROS, and is related to cell survival. The ACE2-Ang-(1-7)-Mas receptor axis should be investigated further as a novel target of Ang II-mediated ROS injury.

  5. The role of IL-6 in the physiologic versus hypertensive blood pressure actions of angiotensin II

    PubMed Central

    Manhiani, M Marlina; Seth, Dale M; Banes-Berceli, Amy K L; Satou, Ryosuke; Navar, L Gabriel; Brands, Michael W

    2015-01-01

    Angiotensin II (AngII) is a critical physiologic regulator of volume homeostasis and mean arterial pressure (MAP), yet it also is known to induce immune mechanisms that contribute to hypertension. This study determined the role of interleukin-6 (IL-6) in the physiologic effect of AngII to maintain normal MAP during low-salt (LS) intake, and whether hypertension induced by plasma AngII concentrations measured during LS diet required IL-6. IL-6 knockout (KO) and wild-type (WT) mice were placed on LS diet for 7 days, and MAP was measured 19 h/day with telemetry. MAP was not affected by LS in either group, averaging 101 ± 4 and 100 ± 4 mmHg in WT and KO mice, respectively, over the last 3 days. Seven days of ACEI decreased MAP ∼25 mmHg in both groups. In other KO and WT mice, AngII was infused at 200 ng/kg per minute to approximate plasma AngII levels during LS. Surgical reduction of kidney mass and high-salt diet were used to amplify the blood pressure effect. The increase in MAP after 7 days was not different, averaging 20 ± 5 and 22 ± 6 mmHg in WT and KO mice, respectively. Janus Kinase 2 (JAK2)/signal transducer of activated transcription (STAT3) phosphorylation were not affected by LS, but were increased by AngII infusion at 200 and 800 ng/kg per minute. These data suggest that physiologic levels of AngII do not activate or require IL-6 to affect blood pressure significantly, whether AngII is maintaining blood pressure on LS diet or causing blood pressure to increase. JAK2/STAT3 activation, however, is tightly associated with AngII hypertension, even when caused by physiologic levels of AngII. PMID:26486161

  6. Angiotensin-II receptor antagonist combined with calcium channel blocker or diuretic for essential hypertension.

    PubMed

    Ishimitsu, Toshihiko; Numabe, Atsushi; Masuda, Toshihide; Akabane, Tomoyuki; Okamura, Atsushi; Minami, Junichi; Matsuoka, Hiroaki

    2009-11-01

    To achieve the target blood pressure recommended by the latest guidelines, multiple antihypertensive drugs are needed in most patients. In this study, the efficacy of treatment using an angiotensin II receptor antagonist (ARB) combined with a calcium channel blocker (CCB) or a diuretic was compared from multiple perspectives in patients with hypertension. Twenty-nine patients with essential hypertension, who had failed to achieve their target blood pressure (<130/85 mm Hg for patients <65 years old and <140/90 mm Hg for those >/=65 years) when treated with the ARB olmesartan at 20 mg day(-1), were additionally given 8-16 mg day(-1) of the CCB azelnidipine or 1-2 mg day(-1) of trichlormethiazide (a thiazide diuretic) in a randomized crossover manner for 4 months each. At the end of each combination therapy period, blood and urine samples were collected and arterial stiffness was evaluated by measuring the cardio-ankle pulse wave velocity. Compared with monotherapy, the blood pressure was reduced similarly by adding azelnidipine (-12/-10 mm Hg) or trichlormethiazide (-14/-9 mm Hg). The heart rate was decreased with the CCB by 4 b.p.m. (P<0.05), whereas it was unchanged with the thiazide. Serum K, lipids and blood glucose were not significantly changed with either combination, whereas serum uric acid was increased with the thiazide (P<0.01) but was unchanged with azelnidipine. Plasma levels of renin, angiotensin II and aldosterone were also increased with the thiazide period, whereas high-sensitivity C-reactive protein and oxidized low-density lipoprotein were decreased with azelnidipine. In addition, the cardio-ankle vascular index, a parameter of arterial stiffness, was decreased with the azelnidipine period but was unchanged with the thiazide period (P<0.01). It is suggested that the combination of olmesartan and azelnidipine has advantages over the combination of olmesartan and a thiazide with respect to avoiding hyperuricemia, sympathetic activation, renin-angiotensin

  7. Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models.

    PubMed

    Kusumoto, Keiji; Igata, Hideki; Ojima, Mami; Tsuboi, Ayako; Imanishi, Mitsuaki; Yamaguchi, Fuminari; Sakamoto, Hiroki; Kuroita, Takanobu; Kawaguchi, Naohiro; Nishigaki, Nobuhiro; Nagaya, Hideaki

    2011-11-01

    The pharmacological profile of a novel angiotensin II type 1 receptor blocker, azilsartan medoxomil, was compared with that of the potent angiotensin II receptor blocker olmesartan medoxomil. Azilsartan, the active metabolite of azilsartan medoxomil, inhibited the binding of [(125)I]-Sar(1)-I1e(8)-angiotensin II to angiotensin II type 1 receptors. Azilsartan medoxomil inhibited angiotensin II-induced pressor responses in rats, and its inhibitory effects lasted 24h after oral administration. The inhibitory effects of olmesartan medoxomil disappeared within 24h. ID(50) values were 0.12 and 0.55 mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In conscious spontaneously hypertensive rats (SHRs), oral administration of 0.1-1mg/kg azilsartan medoxomil significantly reduced blood pressure at all doses even 24h after dosing. Oral administration of 0.1-3mg/kg olmesartan medoxomil also reduced blood pressure; however, only the two highest doses significantly reduced blood pressure 24h after dosing. ED(25) values were 0.41 and 1.3mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In renal hypertensive dogs, oral administration of 0.1-1mg/kg azilsartan medoxomil reduced blood pressure more potently and persistently than that of 0.3-3mg/kg olmesartan medoxomil. In a 2-week study in SHRs, azilsartan medoxomil showed more stable antihypertensive effects than olmesartan medoxomil and improved the glucose infusion rate, an indicator of insulin sensitivity, more potently (≥ 10 times) than olmesartan medoxomil. Azilsartan medoxomil also exerted more potent antiproteinuric effects than olmesartan medoxomil in Wistar fatty rats. These results suggest that azilsartan medoxomil is a potent angiotensin II receptor blocker that has an attractive pharmacological profile as an antihypertensive agent.

  8. Different reactivity to angiotensin II of peripheral and renal arteries in spontaneously hypertensive rats: effect of acute and chronic angiotensin converting enzyme inhibition

    NASA Technical Reports Server (NTRS)

    Guidi, E.; Hollenberg, N. K.

    1986-01-01

    We assessed renal blood flow and pressor responses to graded angiotensin II doses in spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats ingesting a diet containing 1.6% sodium basally and after acute and chronic angiotensin converting enzyme (ACE) inhibition with captopril. In the basal state the pressor response to angiotensin II was enhanced (P<0.0005) and the renal vascular response was blunted (P<0.005) in SHR compared with WKY rats. After acute captopril administration the pressor response was enhanced in both strains, and the difference between them was maintained, while the renal vascular response was enhanced in both, but more in SHR, so that the renal vascular response in the SHR became larger than in WKY (P<0.0001). Chronic captopril treatment blunted both pressor and renal responses in WKY rats, but only the pressor response in SHR. The renal vessels of SHR seem to be different from those of WKY rats in reaction to exogenous angiotensin II, and in response to both acute administration of captopril (probably acting through blockade of angiotensin II production) and chronic administration of captopril (probably acting mainly through accumulation of kinin or production of prostaglandins).

  9. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease.

    PubMed

    Michel, Martin C; Brunner, Hans R; Foster, Carolyn; Huo, Yong

    2016-08-01

    We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined. PMID:27130806

  10. The Effects of Angiotensin II on Renal Water and Electrolyte Excretion in Normal and Caval Dogs*

    PubMed Central

    Porush, Jerome G.; Kaloyanides, George J.; Cacciaguida, Roy J.; Rosen, Stanley M.

    1967-01-01

    The effects of intravenous administration of angiotensin II on renal water and electrolyte excretion were examined during hydropenia, water diuresis, and hypotonic saline diuresis in anesthetized normal dogs and dogs with thoracic inferior vena cava constriction and ascites (caval dogs). The effects of unilateral renal artery infusion of a subpressor dose were also examined. During hydropenia angiotensin produced a decrease in tubular sodium reabsorption, with a considerably greater natriuresis in caval dogs, and associated with a decrease in free water reabsorption (TcH2O). Water and hypotonic saline diuresis resulted in an augmented angiotensin natriuresis, with a greater effect still observed in caval dogs. In these experiments free water excretion (CH2O) was limited to 8-10% of the glomerular filtration rate (GFR), although distal sodium load increased in every instance. In the renal artery infusion experiments a significant ipsilateral decrease in tubular sodium reabsorption was induced, particularly in caval dogs. These findings indicate that angiotensin has a direct effect on renal sodium reabsorption unrelated to a systemic circulatory alteration. The attenuation or prevention of the falls in GFR and effective renal plasma flow (ERPF) usually induced by angiotensin may partially account for the greater natriuretic response in caval dogs and the augmentation during water or hypotonic saline diuresis. However, a correlation between renal hemodynamics and the degree of natriuresis induced was not always present and, furthermore, GFR and ERPF decreased significantly during the intrarenal artery infusion experiments. Therefore, the present experiments indicate that another mechanism is operative in the control of the angiotensin natriuresis and suggest that alterations in intrarenal hemodynamics may play a role. The decrease in TcH2O and the apparent limitation of CH2O associated with an increase in distal sodium load localize the site of action of angiotensin

  11. Biomarkers of activation of renin-angiotensin-aldosterone system in heart failure: how useful, how feasible?

    PubMed

    Emdin, Michele; Fatini, Cinzia; Mirizzi, Gianluca; Poletti, Roberta; Borrelli, Chiara; Prontera, Concetta; Latini, Roberto; Passino, Claudio; Clerico, Aldo; Vergaro, Giuseppe

    2015-03-30

    Renin-angiotensin-aldosterone system (RAAS), participated by kidney, liver, vascular endothelium, and adrenal cortex, and counter-regulated by cardiac endocrine function, is a complex endocrine system regulating systemic functions, such as body salt and water homeostasis and vasomotion, in order to allow the accomplishment of physiological tasks, such as orthostasis, physical and emotional stimuli, and to react towards the hemorrhagic insult, in tight conjunction with other neurohormonal axes, namely the sympathetic nervous system, the endothelin and vasopressin systems. The systemic as well as the tissue RAAS are also dedicated to promote tissue remodeling, particularly relevant after damage, when chronic activation may configure as a maladaptive response, leading to fibrosis, hypertrophy and apoptosis, and organ dysfunction. RAAS activation is a fingerprint of systemic arterial hypertension, kidney dysfunction, vascular atherosclerotic disease, and is definitely an hallmark of heart failure, which rapidly shifts from organ disease to a disorder of neurohormonal regulatory systems. Chronic RAAS activation is an indirect or direct target of most effective pharmacological treatments in heart failure, such as beta-blockers, inhibitors of angiotensin converting enzyme, angiotensin receptor blockers, direct renin inhibitors, and mineralocorticoid receptor blockers. Biomarkers of RAAS activation are available, with different feasibility and accuracy, such as plasma renin activity, renin, angiotensin II, and aldosterone, which all accompany the increasing clinical severity of heart failure disease, and are well recognized prognostic factors, even in patients with optimal therapy. Polymorphisms influencing the expression and activity of RAAS pathways have been recognized as clinically relevant biomarkers, likely influencing either the individual clinical phenotype, or the response to drugs. This solid, growing evidence strongly suggests the rationale for the use of

  12. Comparison of angiotensin II type 1 receptor blockade and angiotensin-converting enzyme inhibition in pregnant sheep during late gestation.

    PubMed Central

    Forhead, A. J.; Whybrew, K.; Hughes, P.; Broughton Pipkin, F.; Sutherland, M.; Fowden, A. L.

    1996-01-01

    1. The effects of antagonism of the maternal renin-angiotensin system (RAS) with either an angiotensin II type 1-(AT1) specific receptor blocker (GR138950) or an angiotensin-converting enzyme (ACE) inhibitor (captopril) were compared in chronically-catheterised ewes and their foetuses during late gestation. 2. Daily from 127 +/- 1 days of gestation until parturition at 145 +/- 2 days, each ewe received i.v. either GR138950 (3 mg kg-1; n = 10), captopril (3 mg kg-1; n = 6) or an equivalent volume of vehicle solution (0.9% w/v saline; n = 10). 3. Within 2 h of drug administration, GR138950 abolished the maternal, but not the foetal, pressor responses to angiotensin II (AII; 100-188 ng kg-1, i.v.; P < 0.05), whereas captopril abolished both the maternal and foetal pressor responses to angiotensin I (AI; 400-750 ng kg-1, i.v.; P < 0.05). 4. On the first day of treatment, maternal blood pressure decreased in all GR138950-treated (-21 +/- 4 mmHg; P < 0.05) and captopril-treated (-13 +/- 5 mmHg; P > 0.05) ewes at 2 h after drug administration. Captopril also significantly decreased foetal blood pressure by 5 +/- 1 mmHg (P < 0.05). However, foetal blood pressure in the GR138950-treated animals remained unchanged. Maternal and foetal heart rates were unaffected by any treatment. Uterine blood flow was significantly reduced within 2 h of both GR138950 (-130 +/- 20 ml min-1; P < 0.05) and captopril (-72 +/- 16 ml min-1; P < 0.05) administration. 5. On the first day of treatment, maternal arterial haemoglobin (Hb) concentration and oxygen (O2) content increased at 2 h in all GR138950-treated and captopril-treated ewes. Foetal arterial pH and oxygenation (O2 content, O2 saturation and Pao2) were reduced by a similar extent in both groups of drug-treated ewes. 6. After one week of daily GR138950 administration, maternal blood pressure decreased from a pretreatment value of 96 +/- 5 mmHg on day 1 to 79 +/- 2 mmHg by day 7 (P < 0.05). Captopril treatment had no long-term effect on

  13. Ontogeny of angiotensin II receptors, types 1 and 2, in ovine mesonephros and metanephros.

    PubMed

    Butkus, A; Albiston, A; Alcorn, D; Giles, M; McCausland, J; Moritz, K; Zhuo, J; Wintour, E M

    1997-09-01

    By RNAse protection assay, hybridization histochemistry, and in vitro autoradiography it was shown that both mRNA and protein for AT1 and AT2 receptors were present in ovine fetal meso- and metanephroi at 40 days of gestation (term approximately 150 days). AT1 mRNA was localized to presumptive mesangial cells of glomeruli at 40-, 75-, 131-gestational-day-old fetuses and two-day-old lambs, in addition to being widely present in interstitial cells of the cortex and medulla, once these zones formed (60 days). By two days after birth the medullary AT1 distribution was confined to the inner stripe of the outer medulla. AT2 mRNA was present in peripheral interstitial/tissue of the mesonephros, and interstitial tissue surrounding developing glomeruli, but not the outermost nephrogenic mesenchyme in the metanephros from 40 to approximately 131 days (the period of active nephrogenesis). In addition, AT2 mRNA was localized to epithelial cells of the macula densa in metanephroi (40 to 131 gestational days) during, but not after completion, of nephrogenesis. These studies suggest that angiotensin II (Ang II) could have differentiating effects, via AT1 receptors, from very early in development. The unique epithelial site of AT2 expression in the macula densa raises the possibility that Ang II may play a role in the invariant positioning of the macula densa at the pole of its glomerulus, via this receptor.

  14. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2

    PubMed Central

    Pellieux, Corinne; Foletti, Alessandro; Peduto, Giovanni; Aubert, Jean-François; Nussberger, Jürg; Beermann, Friedrich; Brunner, Hans-R.; Pedrazzini, Thierry

    2001-01-01

    FGF-2 has been implicated in the cardiac response to hypertrophic stimuli. Angiotensin II (Ang II) contributes to maintain elevated blood pressure in hypertensive individuals and exerts direct trophic effects on cardiac cells. However, the role of FGF-2 in Ang II–induced cardiac hypertrophy has not been established. Therefore, mice deficient in FGF-2 expression were studied using a model of Ang II–dependent hypertension and cardiac hypertrophy. Echocardiographic measurements show the presence of dilated cardiomyopathy in normotensive mice lacking FGF-2. Moreover, hypertensive mice without FGF-2 developed no compensatory cardiac hypertrophy. In wild-type mice, hypertrophy was associated with a stimulation of the c-Jun N-terminal kinase, the extracellular signal regulated kinase, and the p38 kinase pathways. In contrast, mitogen-activated protein kinase (MAPK) activation was markedly attenuated in FGF-2–deficient mice. In vitro, FGF-2 of fibroblast origin was demonstrated to be essential in the paracrine stimulation of MAPK activation in cardiomyocytes. Indeed, fibroblasts lacking FGF-2 expression have a defective capacity for releasing growth factors to induce hypertrophic responses in cardiomyocytes. Therefore, these results identify the cardiac fibroblast population as a primary integrator of hypertrophic stimuli in the heart, and suggest that FGF-2 is a crucial mediator of cardiac hypertrophy via autocrine/paracrine actions on cardiac cells. PMID:11748268

  15. Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia.

    PubMed

    Burke, Suzanne D; Zsengellér, Zsuzsanna K; Khankin, Eliyahu V; Lo, Agnes S; Rajakumar, Augustine; DuPont, Jennifer J; McCurley, Amy; Moss, Mary E; Zhang, Dongsheng; Clark, Christopher D; Wang, Alice; Seely, Ellen W; Kang, Peter M; Stillman, Isaac E; Jaffe, Iris Z; Karumanchi, S Ananth

    2016-07-01

    Preeclampsia is a hypertensive disorder of pregnancy in which patients develop profound sensitivity to vasopressors, such as angiotensin II, and is associated with substantial morbidity for the mother and fetus. Enhanced vasoconstrictor sensitivity and elevations in soluble fms-like tyrosine kinase 1 (sFLT1), a circulating antiangiogenic protein, precede clinical signs and symptoms of preeclampsia. Here, we report that overexpression of sFlt1 in pregnant mice induced angiotensin II sensitivity and hypertension by impairing endothelial nitric oxide synthase (eNOS) phosphorylation and promoting oxidative stress in the vasculature. Administration of the NOS inhibitor l-NAME to pregnant mice recapitulated the angiotensin sensitivity and oxidative stress observed with sFlt1 overexpression. Sildenafil, an FDA-approved phosphodiesterase 5 inhibitor that enhances NO signaling, reversed sFlt1-induced hypertension and angiotensin II sensitivity in the preeclampsia mouse model. Sildenafil treatment also improved uterine blood flow, decreased uterine vascular resistance, and improved fetal weights in comparison with untreated sFlt1-expressing mice. Finally, sFLT1 protein expression inversely correlated with reductions in eNOS phosphorylation in placental tissue of human preeclampsia patients. These data support the concept that endothelial dysfunction due to high circulating sFLT1 may be the primary event leading to enhanced vasoconstrictor sensitivity that is characteristic of preeclampsia and suggest that targeting sFLT1-induced pathways may be an avenue for treating preeclampsia and improving fetal outcomes. PMID:27270170

  16. Upregulation of M3 muscarinic receptor inhibits cardiac hypertrophy induced by angiotensin II

    PubMed Central

    2013-01-01

    Background M3 muscarinic acetylcholine receptor (M3-mAChR) is stably expressed in the myocardium, but its pathophysiological role remains largely undefined. This study aimed to investigate the role of M3-mAChR in cardiac hypertrophy induced by angiotensin II (Ang II) and elucidate the underlying mechanisms. Methods Cardiac-specific M3-mAChR overexpression transgenic (TG) mice and rat H9c2 cardiomyoblasts with ectopic expression of M3-mAChR were established. Models of cardiac hypertrophy were induced by transverse aortic constriction (TAC) or Ang II infusion in the mice in vivo, and by isoproterenol (ISO) or Ang II treatment of H9c2 cells in vitro. Cardiac hypertrophy was evaluated by electrocardiography (ECG) measurement, hemodynamic measurement and histological analysis. mRNA and protein expression were detected by real-time RT-PCR and Western blot analysis. Results M3-mAChR was upregulated in hypertrophic heart, while M2-mAChR expression did not change significantly. M3-mAChR overexpression significantly attenuated the increased expression of atrial natriuretic peptide and β-myosin heavy chain induced by Ang II both in vivo and in vitro. In addition, M3-mAChR overexpression downregulated AT1 receptor expression and inhibited the activation of MAPK signaling in the heart. Conclusion The upregulation of M3-mAChR during myocardial hypertrophy could relieve the hypertrophic response provoked by Ang II, and the mechanism may involve the inhibition of MAPK signaling through the downregulation of AT1 receptor. PMID:24028210

  17. Non-peptide angiotensin II receptor antagonists. 2. Design, synthesis, and biological activity of N-substituted (phenylamino)phenylacetic acids and acyl sulfonamides.

    PubMed

    Dhanoa, D S; Bagley, S W; Chang, R S; Lotti, V J; Chen, T B; Kivlighn, S D; Zingaro, G J; Siegl, P K; Patchett, A A; Greenlee, W J

    1993-12-24

    The design, synthesis, and biological activity of a new class of highly potent non-peptide AII receptor antagonists derived from N-substituted (phenylamino)phenylacetic acids and acyl sulfonamides which exhibit a high selectivity for the AT1 receptor are described. A series of N-substituted (phenylamino)phenylacetic acids (9) and acyl sulfonamides (16) and a tetrazole derivative (19) were synthesized and evaluated in the in vitro AT1 (rabbit aorta) and AT2 (rat midbrain) binding assay. The (phenylamino)phenylacetic acids 9c (AT1 IC50 = 4 nM, AT2 IC50 = 0.74 microM), 9d (AT1 IC50 = 5.3 nM, AT2 IC50 = 0.49 microM), and 9e (AT1 IC50 = 5.3 nM, AT2 IC50 = 0.56 microM) were found to be the most potent AT1-selective AII antagonists in the acid series. Incorporation of various substituents in the central and bottom phenyl rings led to a decrease in the AT1 and AT2 binding affinity of the resulting compounds. Replacement of the carboxylic acid (CO2H) in 9c, 9d, and 9e with the bioisostere acyl sulfonamide (CONHSO2Ph) resulted in a (5-7)-fold increase in the AT1 potency of 16a (AT1 IC50 = 0.9 nM, AT2 IC50 = 0.2 microM), 16b (AT1 IC50 = 1 nM, AT2 IC50 = 2.9 microM), and 16c (AT1 IC50 = 0.8 nM, AT2 IC50 = 0.42 microM) and yielded acyl sulfonamides with subnanomolar AT1 activity. Incorporation of the acyl sulfonamide (CONHSO2Ph) for the CO2H of 9c not only enhanced the AT1 potency but also effected a marked increase in the AT2 potency of 16a (AT2 IC50 = 0.74 microM of 9c vs 0.2 microM of 16a) and made it the most potent AT2 antagonist in this study. Replacement of the CO2H of 9b with the bioisostere tetrazole resulted in 19 (AT1 IC50 = 15 nM) with a 2-fold loss in the AT1 and a complete loss in the AT2 binding affinity. (Phenylamino)phenylacetic acid 9c demonstrated good oral activity in AII-infused conscious normotensive rats at an oral dose of 1.0 mg/kg by inhibiting the pressor response for > 6 h. Acyl sulfonamides 16a-c displayed excellent in vivo activity by blocking the

  18. Direct angiotensin II type 2 receptor stimulation decreases dopamine synthesis in the rat striatum.

    PubMed

    Mertens, Birgit; Vanderheyden, Patrick; Michotte, Yvette; Sarre, Sophie

    2010-06-01

    A relationship between the central renin angiotensin system and the dopaminergic system has been described in the striatum. However, the role of the angiotensin II type 2 (AT(2)) receptor in this interaction has not yet been established. The present study examined the outcome of direct AT(2) receptor stimulation on dopamine (DA) release and synthesis by means of the recently developed nonpeptide AT(2) receptor agonist, compound 21 (C21). The effects of AT(2) receptor agonism on the release of DA and its major metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and on the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine biosynthesis, were investigated using in vivo microdialysis. Local administration of C21 (0.1 and 1 microM) resulted in a decrease of the extracellular DOPAC levels, whereas extracellular DA concentrations remained unaltered, suggesting a reduced synthesis of DA. This effect was mediated by the AT(2) receptor since it could be blocked by the AT(2) receptor antagonist PD123319 (1 microM). A similar effect was observed after local striatal (10 nM) as well as systemic (0.3 and 3 mg/kg i.p.) administration of the AT(1) receptor antagonist, candesartan. TH activity as assessed by accumulation of extracellular levels of L-DOPA after inhibition of amino acid decarboxylase with NSD1015, was also reduced after local administration of C21 (0.1 and 1 microM) and candesartan (10 nM). Together, these data suggest that AT(1) and AT(2) receptors in the striatum exert an opposite effect on the modulation of DA synthesis rather than DA release. PMID:20097214

  19. Mechanism of angiotensin II-induced arachidonic acid metabolite release in aortic smooth muscle cells: involvement of phospholipase D.

    PubMed

    Shinoda, J; Kozawa, O; Suzuki, A; Watanabe-Tomita, Y; Oiso, Y; Uematsu, T

    1997-02-01

    In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholine-hydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/I and 0.1 mumol/I. D.L.-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells.

  20. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  1. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  2. Retinoids inhibit the actions of angiotensin II on vascular smooth muscle cells.

    PubMed

    Haxsen, V; Adam-Stitah, S; Ritz, E; Wagner, J

    2001-03-30

    Retinoids are derivatives of vitamin A and powerful inhibitors of cell proliferation and inflammation. Angiotensin II (Ang II) contributes to vascular lesions by promoting cell growth of vascular smooth muscle cells (VSMCs). Therefore, we examined whether retinoids interfere with the proproliferative actions of Ang II in VSMCs via AT(1) receptor-dependent or activator protein-1 (AP-1)-dependent mechanisms. VSMCs express retinoid receptor proteins, ie, retinoic acid receptor (RAR) alpha and retinoid X receptor (RXR) alpha. Long-term exposure to 1 micromol/L all-trans retinoic acid (RA) dose-dependently inhibited Ang II-induced cell proliferation (P<0.005) as well as DNA and protein synthesis (P<0.001). All-trans RA blocked Ang II stimulation of transforming growth factor-beta(1) mRNA (P<0.005). All-trans RA inhibition of vascular VSMC growth was mediated both via RAR- and RXR-dependent pathways, as shown by receptor-specific synthetic retinoids. Transfection experiments revealed that inhibition of AP-1-dependent gene transcription is one mechanism by which all-trans RA inhibits Ang II action. RARalpha cotransfection enhanced the anti-AP-1 effects of all-trans RA dose-dependently. AP-1 activity was similarly inhibited by cotransfection with either RARalpha or RXRalpha. Ang II-induced gene expression of c-fos was abrogated by all-trans RA treatment (P<0.005). In VSMCs, all-trans RA downregulated AT(1) receptor mRNA (P<0.01) and reduced B(max) (P<0.001). All-trans RA repressed Ang II-stimulated AT(1) receptor promoter activity. The all-trans RA inhibitory effect was abolished when the AP-1 consensus site on the AT(1) receptor promoter was deleted. Our findings demonstrate that retinoids are potent inhibitors of the actions of Ang II on VSMCs. The findings support the notion that retinoids may interfere with proliferative vascular disease.

  3. Tumor Necrosis Factor: A Mechanistic Link between Angiotensin-II-Induced Cardiac Inflammation and Fibrosis

    PubMed Central

    Duerrschmid, Clemens; Trial, JoAnn; Wang, Yanlin; Entman, Mark L.; Haudek, Sandra B.

    2015-01-01

    Background Continuous angiotensin-II (Ang-II) infusion induced the uptake of monocytic fibroblast precursors that initiated the development of cardiac fibrosis; these cells and concurrent fibrosis were absent in mice lacking tumor necrosis factor-alpha receptor 1 (TNFR1). We now investigated their cellular origin and temporal uptake, and the involvement of TNFR1 in monocyte-to-fibroblast differentiation. Methods and Results Within a day, Ang-II induced a pro-inflammatory environment characterized by production of inflammatory chemokines, cytokines, and TH1-interleukins and uptake of bone marrow-derived M1-cells. After a week, the cardiac environment changed to profibrotic with growth-factor and TH2-interleukin synthesis, uptake of bone marrow-derived M2-cells, and presence of M2-related fibroblasts. TNFR1 signaling was not necessary for early M1 uptake, but its absence diminished the amount of M2-cells. TNFR1-KO hearts also showed reduced levels of cytokine expression, but not of TH-related lymphokines. Reconstitution of wild-type bone marrow into TNFR1-KO mice was sufficient to restore M2 uptake, upregulation of pro-inflammatory and pro-fibrotic genes, and development of fibrosis in response to Ang-II. We also developed an in vitro mouse monocyte-to-fibroblast-maturation assay that confirmed the essential role of TNFR1 in the sequential progression of monocyte activation and fibroblast formation. Conclusions Development of cardiac fibrosis in response to Ang-II was mediated by myeloid precursors and consisted of two stages. A primary M1 inflammatory response was followed by a subsequent M2 fibrotic response. While the first phase appeared to be independent of TNFR1 signaling, the later phase (and development of fibrosis) was abrogated by deletion of TNFR1. PMID:25550440

  4. Inactivation of the EP3 receptor attenuates the Angiotensin II pressor response via decreasing arterial contractility

    PubMed Central

    Chen, Lihong; Miao, Yifei; Zhang, Yahua; Dou, Dou; Liu, Limei; Tian, Xiaoyu; Yang, Guangrui; Pu, Dan; Zhang, Xiaoyan; Kang, Jihong; Gao, Yuansheng; Wang, Shiqiang; Breyer, Matthew D.; Wang, Nanping; Zhu, Yi; Huang, Yu; Breyer, Richard M; Guan, Youfei

    2012-01-01

    Objective The present studies aimed at elucidating the role of prostaglandin E2 (PGE2) receptor subtype 3 (EP3) in regulating blood pressure. Methods and Results Mice bearing a genetic disruption of the EP3 gene (EP3−/−) exhibited reduced baseline mean arterial pressure monitored by both tail-cuff and carotid arterial catheterization. The pressor responses induced by EP3 agonists M&B28767 and sulprostone were markedly attenuated in EP3−/− mice, while the reduction of BP induced by PGE2 was comparable in both genotypes. Vasopressor effect of acute or chronic infusion of angiotensin II (AngII) was attenuated in EP3−/− mice. AngII–induced vasoconstriction in mesenteric arteries decreased in EP3−/− group. In mesenteric arteries from wild type mice, AngII–induced vasoconstriction was inhibited by EP3 selective antagonist DG-041 or L798106. The expression of Arhgef-1 is attenuated in EP3 deficient mesenteric arteries. EP3 antagonist DG-041 diminished AngII-induced phosphorylation of MLC20 and MYPT1 in isolated mesenteric arteries. Furthermore, in vascular smooth muscle cells (VSMCs), AngII induced intracellular Ca2+ increase was potentiated by EP3 agonist sulprostone, while inhibited by DG-041. Conclusions Activation of the EP3 receptor raises baseline blood pressure and contributes to AngII-dependent hypertension at least partially via enhancing Ca2+ sensitivity and intracellular calcium concentration in VSMCs. Selective targeting of the EP3 receptor may represent a potential therapeutic target for the treatment of hypertension. PMID:23065824

  5. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway.

    PubMed

    Nijenhuis, Tom; Sloan, Alexis J; Hoenderop, Joost G J; Flesche, Jan; van Goor, Harry; Kistler, Andreas D; Bakker, Marinka; Bindels, Rene J M; de Boer, Rudolf A; Möller, Clemens C; Hamming, Inge; Navis, Gerjan; Wetzels, Jack F M; Berden, Jo H M; Reiser, Jochen; Faul, Christian; van der Vlag, Johan

    2011-10-01

    The transient receptor potential channel C6 (TRPC6) is a slit diaphragm-associated protein in podocytes involved in regulating glomerular filter function. Gain-of-function mutations in TRPC6 cause hereditary focal segmental glomerulosclerosis (FSGS), and several human acquired proteinuric diseases show increased glomerular TRPC6 expression. Angiotensin II (AngII) is a key contributor to glomerular disease and may regulate TRPC6 expression in nonrenal cells. We demonstrate that AngII regulates TRPC6 mRNA and protein levels in cultured podocytes and that AngII infusion enhances glomerular TRPC6 expression in vivo. In animal models for human FSGS (doxorubicin nephropathy) and increased renin-angiotensin system activity (Ren2 transgenic rats), glomerular TRPC6 expression was increased in an AngII-dependent manner. TRPC6 expression correlated with glomerular damage markers and glomerulosclerosis. We show that the regulation of TRPC6 expression by AngII and doxorubicin requires TRPC6-mediated Ca(2+) influx and the activation of the Ca(2+)-dependent protein phosphatase calcineurin and its substrate nuclear factor of activated T cells (NFAT). Accordingly, calcineurin inhibition by cyclosporine decreased TRPC6 expression and reduced proteinuria in doxorubicin nephropathy, whereas podocyte-specific inducible expression of a constitutively active NFAT mutant increased TRPC6 expression and induced severe proteinuria. Our findings demonstrate that the deleterious effects of AngII on podocytes and its pathogenic role in glomerular disease involve enhanced TRPC6 expression via a calcineurin/NFAT positive feedback signaling pathway. PMID:21839714

  6. Key features of candesartan cilexetil and a comparison with other angiotensin II receptor antagonists.

    PubMed

    Sever, P S

    1999-01-01

    Current research on angiotensin II AT1-receptor antagonists (AIIRAs) and selected studies presented at the recent symposium held in Amsterdam, The Netherlands, on 6 June 1998, titled 'Angiotensin II Receptor Antagonists are NOT all the Same' are reviewed. AIIRAs offer a number of potential advantages over alternative antihypertensive agents acting via the renin-angiotensin-aldosterone system. They combine blood pressure-lowering effects at least equivalent to those of angiotensin-converting enzyme (ACE) inhibitors, coupled with placebo-like tolerability. Candesartan cilexetil is a novel AIIRA that has demonstrated clinical efficacy superior to losartan, has a sustained duration of action over 24 hours (trough:peak ratio close to 100%) and is well tolerated in patients with essential hypertension. Candesartan cilexetil has a rapid onset of action (approximately 80% of total blood pressure reduction within the first 2 weeks) and dose-dependent effects on blood pressure, is comparable in efficacy to a number of classes of antihypertensives, and is effective in combination therapy (eg, with hydrochlorothiazide and amlodipine). This favourable profile may be due in part to the highly selective, tight binding to and slow dissociation of candesartan from the AT1 receptor. Preliminary studies suggest that candesartan cilexetil also protects end organs (kidney, heart, vasculature, and brain) beyond blood pressure control. PMID:10076915

  7. Investigation of long chain omega-3 PUFAs on arterial blood pressure, vascular reactivity and survival in angiotensin II-infused Apolipoprotein E-knockout mice.

    PubMed

    Bürgin-Maunder, Corinna S; Nataatmadja, Maria; Vella, Rebecca K; Fenning, Andrew S; Brooks, Peter R; Russell, Fraser D

    2016-02-01

    Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease. Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) decrease inflammation and oxidative stress in an angiotensin II-infused apolipoprotein E-knockout (ApoE(-/-)) mouse model of AAA. This study investigated the effects of LC n-3 PUFAs on blood pressure and vascular reactivity in fourteen angiotensin II-infused ApoE(-/-) male mice. Blood pressure was obtained using a non-invasive tail cuff method and whole blood was collected by cardiac puncture. Vascular reactivity of the thoracic aorta was assessed using wire myography and activation of endothelial nitric oxide synthase (eNOS) was determined by immunohistochemistry. A high LC n-3 PUFA diet increased the omega-3 index and reduced the n-6 to n-3 PUFA ratio. At day 10 post-infusion with angiotensin II, there was no difference in systolic blood pressure or diastolic blood pressure in mice fed the high or low n-3 PUFA diets. The high LC n-3 PUFA diet resulted in a non-significant trend for delay in time to death from abdominal aortic rupture. Vascular reactivity and eNOS activation remained unchanged in mice fed the high compared to the low LC n-3 PUFA diet. This study argues against direct improvement in vascular reactivity in ApoE(-/-) mice that were supplemented with n-3 PUFA for 8 weeks prior to infusion with angiotensin II.

  8. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells.

    PubMed

    Sánchez-Calvo, Beatriz; Cassina, Adriana; Rios, Natalia; Peluffo, Gonzalo; Boggia, José; Radi, Rafael; Rubbo, Homero; Trostchansky, Andres

    2016-01-01

    Nitro-arachidonic acid (NO2-AA) is a cell signaling nitroalkene that exerts anti-inflammatory activities during macrophage activation. While angiotensin II (ANG II) produces an increase in reactive oxygen species (ROS) production and mitochondrial dysfunction in renal tubular cells, little is known regarding the potential protective effects of NO2-AA in ANG II-mediated kidney injury. As such, this study examines the impact of NO2-AA on ANG II-induced mitochondrial dysfunction in an immortalized renal proximal tubule cell line (HK-2 cells). Treatment of HK-2 cells with ANG II increases the production of superoxide (O2●-), nitric oxide (●NO), inducible nitric oxide synthase (NOS2) expression, peroxynitrite (ONOO-) and mitochondrial dysfunction. Using high-resolution respirometry, it was observed that the presence of NO2-AA prevented ANG II-mediated mitochondrial dysfunction. Attempting to address mechanism, we treated isolated rat kidney mitochondria with ONOO-, a key mediator of ANG II-induced mitochondrial damage, in the presence or absence of NO2-AA. Whereas the activity of succinate dehydrogenase (SDH) and ATP synthase (ATPase) were diminished upon exposure to ONOO-, they were restored by pre-incubating the mitochondria with NO2-AA. Moreover, NO2-AA prevents oxidation and nitration of mitochondrial proteins. Combined, these data demonstrate that ANG II-mediated oxidative damage and mitochondrial dysfunction is abrogated by NO2-AA, identifying this compound as a promising pharmacological tool to prevent ANG II-induced renal disease. PMID:26943326

  9. 6β-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone-Metabolite, Mediates Angiotensin II-Induced Renal Dysfunction in Male Mice.

    PubMed

    Pingili, Ajeeth K; Thirunavukkarasu, Shyamala; Kara, Mehmet; Brand, David D; Katsurada, Akemi; Majid, Dewan S A; Navar, L Gabriel; Gonzalez, Frank J; Malik, Kafait U

    2016-05-01

    6β-Hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension, and end-organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in male Cyp1b1(+/+) and Cyp1b1(-/-) mice. Castration of Cyp1b1(+/+) mice or Cyp1b1(-/-) gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-Hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality in Cyp1b1(+/+) mice, but restored these effects of angiotensin II in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice. Cyp1b1 gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin-converting enzyme. 6β-Hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin-converting enzyme in Cyp1b1(+/+)mice. However, in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end-organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in male mice.

  10. Cardiac Oxidative Stress and Dysfunction by Fine Concentrated Ambient Particles (CAPs) are Mediated by Angiotensin-II

    PubMed Central

    Ghelfi, Elisa; Wellenius, Gregory A.; Lawrence, Joy; Millet, Emil; Gonzalez-Flecha, Beatriz

    2013-01-01

    Inhalation exposure to fine Concentrated Ambient Particles (CAPs) increases cardiac oxidants by mechanisms involving modulation of the sympathovagal tone on the heart. Angiotensin-II is a potent vasoconstrictor and a sympatho-excitatory peptide involved in the regulation of blood pressure. We hypothesized that increases in angiotensin-II after fine PM exposure could be involved in the development of cardiac oxidative stress. Adult rats were treated with an angiotensin converting enzyme (ACE) inhibitor (Benazepril ®), or an angiotensin receptor blocker (ARB, Valsartan ®) before exposure to fine PM aerosols or filtered air. Exposures were carried out for 5 hours in the chamber of the Harvard Fine Particle Concentrator (fine PM mass concentration: 440 ± 80 μg/m3). At the end of the exposure the animals were tested for in situ chemiluminescence (CL) of the heart, TBARS and for plasma levels of angiotensin-II. Also, continuous ECG measurements were collected on a subgroup of exposed animals. PM exposure was associated with statistically significant increases in plasma angiotensin concentrations. Pretreatment with the ACE inhibitor effectively lowered angiotensin concentration, whereas ARB treatment led to increases in angiotensin above the PM-only level. PM exposure also led to significant increases in heart oxidative stress (CL, TBARs), and a shortening of the T-end to T-peak interval on the ECG that were prevented by treatment with both the ACE inhibitor and ARB. These results show that ambient fine particles can increase plasma levels of angiotensin-II and suggest a role of the renin-angiotensin system in the development of particle-related acute cardiac events. PMID:20718632

  11. Differential brain angiotensin-II type I receptor expression in hypertensive rats.

    PubMed

    Braga, Valdir A

    2011-09-01

    Blood-borne angiotensin-II (Ang-II) has profound effects in the brain. We tested the hypothesis that Ang-II-dependent hypertension involves differential Ang-II type I (AT(1)) receptors expression in the subfornical organ (SFO) and the rostral ventrolateral medulla (RVLM). Male Wistar rats were implanted with 14-day osmotic minipump filled with Ang-II (150 ng/kg/min) or saline. AT(1) receptor mRNA levels were detected in the SFO and RVLM by reverse transcription-polymerase chain reaction (RT-PCR). Ang-II caused hypertension (134 ± 10 mmHg vs. 98 ± 9 mmHg, n = 9, p < 0.05). RT-PCR revealed that Ang-II infusion induced increased AT(1) receptor mRNA levels in RVLM and decreased in SFO. Our data suggest that Ang-II-induced hypertension involves differential expression of brain AT(1) receptors. PMID:21897104

  12. Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation

    NASA Technical Reports Server (NTRS)

    Koide, M.; Carabello, B. A.; Conrad, C. C.; Buckley, J. M.; DeFreyte, G.; Barnes, M.; Tomanek, R. J.; Wei, C. C.; Dell'Italia, L. J.; Cooper, G. 4th; Zile, M. R.

    1999-01-01

    Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 +/- 3 mmHg in normals to 68 +/- 4 mmHg in PAB, 65 +/- 5 mmHg in PAB plus losartan and 62 +/- 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 +/- 0.04 g/kg in normals to 1.11 +/- 0.06 g/kg in PAB, 1.06 +/- 0.06 g/kg in PAB plus losartan and 1.06 +/- 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the

  13. Angiopoietin-2 attenuates angiotensin II-induced aortic aneurysm and atherosclerosis in apolipoprotein E-deficient mice

    PubMed Central

    Yu, Hongyou; Moran, Corey S.; Trollope, Alexandra F.; Woodward, Lynn; Kinobe, Robert; Rush, Catherine M.; Golledge, Jonathan

    2016-01-01

    Angiogenesis and inflammation are implicated in aortic aneurysm and atherosclerosis and regulated by angiopoietin-2 (Angpt2). The effect of Angpt2 administration on experimental aortic aneurysm and atherosclerosis was examined. Six-month-old male apolipoprotein E deficient (ApoE−/−) mice were infused with angiotensin II (AngII) and administered subcutaneous human Fc-protein (control) or recombinant Angpt2 (rAngpt2) over 14 days. Administration of rAngpt2 significantly inhibited AngII-induced aortic dilatation and rupture of the suprarenal aorta (SRA), and development of atherosclerosis within the aortic arch. These effects were blood pressure and plasma lipoprotein independent and associated with Tie2 activation and down-regulation of monocyte chemotactic protein-1 (MCP-1) within the SRA. Plasma concentrations of MCP-1 and interleukin-6 were significantly lower in mice receiving rAngpt2. Immunostaining for the monocyte/macrophage marker MOMA-2 and the angiogenesis marker CD31 within the SRA were less in mice receiving rAngpt2 than controls. The percentage of inflammatory (Ly6Chi) monocytes within the bone marrow was increased while that in peripheral blood was decreased by rAngpt2 administration. In conclusion, administration of rAngpt2 attenuated angiotensin II-induced aortic aneurysm and atherosclerosis in ApoE−/− mice associated with reduced aortic inflammation and angiogenesis. Up-regulation of Angpt2 may have potential therapeutic value in patients with aortic aneurysm and atherosclerosis. PMID:27767064

  14. Reciprocal roles of angiotensin II and Angiotensin II Receptors Blockade (ARB) in regulating Cbfa1/RANKL via cAMP signaling pathway: possible mechanism for hypertension-related osteoporosis and antagonistic effect of ARB on hypertension-related osteoporosis.

    PubMed

    Guan, Xiao-Xu; Zhou, Yi; Li, Ji-Yao

    2011-01-01

    Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB) on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway. PMID:21845073

  15. Activity of protein kinase C-α within the subfornical organ is necessary for fluid intake in response to brain angiotensin.

    PubMed

    Coble, Jeffrey P; Johnson, Ralph F; Cassell, Martin D; Johnson, Alan Kim; Grobe, Justin L; Sigmund, Curt D

    2014-07-01

    Angiotensin-II production in the subfornical organ acting through angiotensin-II type-1 receptors is necessary for polydipsia, resulting from elevated renin-angiotensin system activity. Protein kinase C and mitogen-activated protein kinase pathways have been shown to mediate effects of angiotensin-II in the brain. We investigated mechanisms that mediate brain angiotensin-II-induced polydipsia. We used double-transgenic sRA mice, consisting of human renin controlled by the neuron-specific synapsin promoter crossed with human angiotensinogen controlled by its endogenous promoter, which results in brain-specific overexpression of angiotensin-II, particularly in the subfornical organ. We also used the deoxycorticosterone acetate-salt model of hypertension, which exhibits polydipsia. Inhibition of protein kinase C, but not extracellular signal-regulated kinases, protein kinase A, or vasopressin V₁A and V₂ receptors, corrected the elevated water intake of sRA mice. Using an isoform selective inhibitor and an adenovirus expressing dominant negative protein kinase C-α revealed that protein kinase C-α in the subfornical organ was necessary to mediate elevated fluid and sodium intake in sRA mice. Inhibition of protein kinase C activity also attenuated polydipsia in the deoxycorticosterone acetate-salt model. We provide evidence that inducing protein kinase C activity centrally is sufficient to induce water intake in water-replete wild-type mice, and that cell surface localization of protein kinase C-α can be induced in cultured cells from the subfornical organ. These experimental findings demonstrate a role for central protein kinase C activity in fluid balance, and further mechanistically demonstrate the importance of protein kinase C-α signaling in the subfornical organ in fluid intake stimulated by angiotensin-II in the brain.

  16. Pioglitazone inhibits angiotensin II-induced atrial fibroblasts proliferation via NF-κB/TGF-β1/TRIF/TRAF6 pathway

    SciTech Connect

    Chen, Xiao-qing; Liu, Xu; Wang, Quan-xing; Zhang, Ming-jian; Guo, Meng; Liu, Fang; Jiang, Wei-feng; Zhou, Li

    2015-01-01

    The exact mechanisms underlying inhibitory effects of pioglitazone (Pio) on Angiotensin II (AngII)-induced atrial fibrosis are complex and remain largely unknown. In the present study, we examined the effect of Pio on AngII-induced mice atrial fibrosis in vivo and atrial fibroblasts proliferation in vitro. In vivo study showed that AngII infusion induced atrial fibrosis and increased expressions of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and tumor necrosis factor receptor associated factor 6 (TRAF6) in mice models. However, those effects could be attenuated by Pio (P<0.01). As for in vitro experiment, Pio suppressed AngII-induced atrial fibroblasts proliferation via nuclear factor-κB/transforming growth factor-β1/TRIF/TRAF6 signaling pathway in primary cultured mice atrial fibroblasts (P<0.01). In conclusion, suppression of Pio on AngII-induced atrial fibrosis might be related to its inhibitory effects on above signaling pathway. - Highlights: • Angiotensin II increased atrial fibrosis and related gene expressions in mice. • Angiotensin II induced atrial fibroblasts proliferation by activating signaling pathway. • Pioglitazone reversed both aforementioned changes.

  17. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    PubMed

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. PMID:26015450

  18. Angiotensin II is a new component involved in splenic T lymphocyte responses during Plasmodium berghei ANKA infection.

    PubMed

    Silva-Filho, João Luiz; Souza, Mariana Conceição; Ferreira-Dasilva, Claudio Teixeira; Silva, Leandro Souza; Costa, Maria Fernanda Souza; Padua, Tatiana Almeida; Henriques, Maria das Graças; Morrot, Alexandre; Savino, Wilson; Caruso-Neves, Celso; Pinheiro, Ana Acacia Sá

    2013-01-01

    The contribution of T cells in severe malaria pathogenesis has been described. Here, we provide evidence for the potential role of angiotensin II (Ang II) in modulating splenic T cell responses in a rodent model of cerebral malaria. T cell activation induced by infection, determined by 3 to 4-fold enhancement in CD69 expression, was reduced to control levels when mice were treated with 20 mg/kg losartan (IC₅₀ = 0.966 mg/kg/d), an AT₁ receptor antagonist, or captopril (IC₅₀ = 1.940 mg/kg/d), an inhibitor of angiotensin-converting enzyme (ACE). Moreover, the production of interferon-γ and interleukin-17 by CD4+ T cells diminished 67% and 70%, respectively, by both treatments. Losartan reduced perforin expression in CD8+ T cells by 33% while captopril completely blocked it. The upregulation in chemokine receptor expression (CCR2 and CCR5) observed during infection was abolished and CD11a expression was partially reduced when mice were treated with drugs. T cells activated by Plasmodium berghei ANKA antigens showed 6-fold enhance in AT₁ levels in comparison with naive cells. The upregulation of AT₁ expression was reduced by losartan (80%) but not by captopril. Our results suggest that the AT₁/Ang II axis has a role in the establishment of an efficient T cell response in the spleen and therefore could participate in a misbalanced parasite-induced T cell immune response during P. berghei ANKA infection.

  19. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells

    PubMed Central

    Sánchez-Calvo, Beatriz; Cassina, Adriana; Rios, Natalia; Boggia, José; Radi, Rafael; Rubbo, Homero; Trostchansky, Andres

    2016-01-01

    Nitro-arachidonic acid (NO2-AA) is a cell signaling nitroalkene that exerts anti-inflammatory activities during macrophage activation. While angiotensin II (ANG II) produces an increase in reactive oxygen species (ROS) production and mitochondrial dysfunction in renal tubular cells, little is known regarding the potential protective effects of NO2-AA in ANG II-mediated kidney injury. As such, this study examines the impact of NO2-AA on ANG II-induced mitochondrial dysfunction in an immortalized renal proximal tubule cell line (HK-2 cells). Treatment of HK-2 cells with ANG II increases the production of superoxide (O2●-), nitric oxide (●NO), inducible nitric oxide synthase (NOS2) expression, peroxynitrite (ONOO-) and mitochondrial dysfunction. Using high-resolution respirometry, it was observed that the presence of NO2-AA prevented ANG II-mediated mitochondrial dysfunction. Attempting to address mechanism, we treated isolated rat kidney mitochondria with ONOO-, a key mediator of ANG II-induced mitochondrial damage, in the presence or absence of NO2-AA. Whereas the activity of succinate dehydrogenase (SDH) and ATP synthase (ATPase) were diminished upon exposure to ONOO-, they were restored by pre-incubating the mitochondria with NO2-AA. Moreover, NO2-AA prevents oxidation and nitration of mitochondrial proteins. Combined, these data demonstrate that ANG II-mediated oxidative damage and mitochondrial dysfunction is abrogated by NO2-AA, identifying this compound as a promising pharmacological tool to prevent ANG II–induced renal disease. PMID:26943326

  20. Midkine, a newly discovered regulator of the renin-angiotensin pathway in mouse aorta: significance of the pleiotrophin/midkine developmental gene family in angiotensin II signaling.

    PubMed

    Ezquerra, Laura; Herradon, Gonzalo; Nguyen, Trang; Silos-Santiago, Inmaculada; Deuel, Thomas F

    2005-07-29

    We previously demonstrated that pleiotrophin (PTN the protein, Ptn the gene) highly regulates the levels of expression of the genes encoding the proteins of the renin-angiotensin pathway in mouse aorta. We now demonstrate that the levels of expression of these same genes are significantly regulated in mouse aorta by the PTN family member midkine (MK the protein, Mk the gene); a 3-fold increase in expression of renin, an 82-fold increase in angiotensinogen, a 6-fold decrease in the angiotensin converting enzyme, and a 6.5-fold increase in the angiotensin II type 1 and a 9-fold increase in the angiotensin II type 2 receptor mRNAs were found in Mk-/- mouse aorta in comparison with the wild type (WT, +/+). The results in Mk-/- mice are remarkably similar to those previously reported in Ptn-/- mouse aorta, with the single exception of that the levels of the angiotensinogen gene expression in Ptn-/- mice are equal to those in WT+/+ mouse aorta, and thus, in contrast to Mk gene expression unaffected by levels of Ptn gene expression. The data indicate that MK and PTN share striking but not complete functional redundancy. These data support potentially high levels importance of MK and the MK/PTN developmental gene family in downstream signals initiated by angiotensin II either in development or in the many pathological conditions in which MK expression levels are increased, such as atherosclerosis and many human neoplasms that acquire constitutive endogenous Mk gene expression by mutation during tumor progression and potentially provide a target through the renin-angiotensin pathway to treat advanced malignancies.

  1. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans

    PubMed Central

    Pais, Ramona; Rievaj, Juraj; Larraufie, Pierre

    2016-01-01

    Angiotensin II (Ang II) is the key hormone mediator of the renin angiotensin system, which regulates blood pressure and fluid and electrolyte balance in the body. Here we report that in the colonic epithelium, the Ang II type 1 receptor is highly and exclusively expressed in enteroendocrine L cells, which produce the gut hormones glucagon-like peptide-1 and peptide YY (PYY). Ang II stimulated glucagon-like peptide-1 and PYY release from primary cultures of mouse and human colon, which was antagonized by the specific Ang II type 1 receptor blocker candesartan. Ang II raised intracellular calcium levels in L cells in primary cultures, recorded by live-cell imaging of L cells specifically expressing the fluorescent calcium sensor GCaMP3. In Ussing chamber recordings, Ang II reduced short circuit currents in mouse distal colon preparations, which was antagonized by candesartan or a specific neuropeptide Y1 receptor inhibitor but insensitive to amiloride. We conclude that Ang II stimulates PYY secretion, in turn inhibiting epithelial anion fluxes, thereby reducing net fluid secretion into the colonic lumen. Our findings highlight an important role of colonic L cells in whole-body fluid homeostasis by controlling water loss through the intestine. PMID:27447725

  2. Peach (Prunus persica) extract inhibits angiotensin II-induced signal transduction in vascular smooth muscle cells.

    PubMed

    Kono, Ryohei; Okuno, Yoshiharu; Nakamura, Misa; Inada, Ken-ichi; Tokuda, Akihiko; Yamashita, Miki; Hidaka, Ryu; Utsunomiya, Hirotoshi

    2013-08-15

    Angiotensin II (Ang II) is a vasoactive hormone that has been implicated in cardiovascular diseases. Here, the effect of peach, Prunus persica L. Batsch, pulp extract on Ang II-induced intracellular Ca(2+) mobilization, reactive oxygen species (ROS) production and signal transduction events in cultured vascular smooth muscle cells (VSMCs) was investigated. Pretreatment of peach ethyl acetate extract inhibited Ang II-induced intracellular Ca(2+) elevation in VSMCs. Furthermore, Ang II-induced ROS generation, essential for signal transduction events, was diminished by the peach ethyl acetate extract. The peach ethyl acetate extract also attenuated the Ang II-induced phosphorylation of epidermal growth factor receptor and myosin phosphatase target subunit 1, both of which are associated with atherosclerosis and hypertension. These results suggest that peach ethyl acetate extract may have clinical potential for preventing cardiovascular diseases by interfering with Ang II-induced intracellular Ca(2+) elevation, the generation of ROS, and then blocking signal transduction events.

  3. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    SciTech Connect

    Gu, Jun; Liu, Xu; Wang, Quan-xing; Tan, Hong-wei; Guo, Meng; Jiang, Wei-feng; Zhou, Li

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.

  4. Identification and characterization of a novel angiotensin binding site in cultured vascular smooth muscle cells that is specific for the hexapeptide (3-8) fragment of angiotensin II, angiotensin IV.

    PubMed

    Hall, K L; Hanesworth, J M; Ball, A E; Felgenhauer, G P; Hosick, H L; Harding, J W

    1993-03-19

    This study demonstrates the existence of a previously unrecognized class of angiotensin binding sites on vascular smooth muscle that exhibit high affinity and specificity for the hexapeptide (3-8) fragment of angiotensin II (AngIV). Binding of [125I]AngIV is saturable, reversible and describes a pharmacologic profile that is distinct and separate from the classic AT1 or AT2 angiotensin receptors. Saturation binding studies utilizing cultured vascular smooth muscle cells obtained from bovine aorta (BVSM) revealed that [125I]AngIV bound to a single high affinity site with an associated Hill coefficient of 0.99 +/- 0.003, exhibiting a KD = 1.85 +/- 0.45 nM and a corresponding Bmax = 960 +/- 100 fmol mg-1 protein. Competition binding curves in BVSM demonstrated the following rank order effectiveness: AngIV > AngII(3-7) > AngIII > Sar1,Ile8 AngII > AngII > AngII(1-7) > AngII(4-8), DuP 753, PD123177. The presence of the non-hydrolyzable GTP analog GTP gamma S, had no effect on [125I]AngIV binding affinity in BVSM. The presence of this novel angiotensin binding site on smooth muscle in high concentration suggests the possibility that this system may play an important, yet unrecognized role in vascular control.

  5. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    PubMed

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (P<0.05) in LXSN rats (23+/-1, 37+/-2, and 52+/-2 at 0.5, 2, and 10 ng). Importantly, treating LSN-HHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  6. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders

    PubMed Central

    SAAVEDRA, Juan M.

    2012-01-01

    The effects of brain AngII (angiotensin II) depend on AT1 receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT1 receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood–brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT1 receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT1 receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer’s disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer’s disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic

  7. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy

    PubMed Central

    Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa

    2013-01-01

    BACKGROUND AND PURPOSE Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. EXPERIMENTAL APPROACH We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. KEY RESULTS As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. PMID:23937445

  8. Angiotensin II receptor antagonists (AT1-blockers, ARBs, sartans): similarities and differences

    PubMed Central

    van Zwieten, P.A.

    2006-01-01

    A survey is presented of the registered non-peptidergic angiotensin II receptor antagonists (AT1 blockers, ARBs, sartans) and their general properties and similarities. Accordingly, their receptor profile, pharmacokinetic and therapeutic applications are discussed. In addition, attention is paid to the individual characteristics of the AT1 blockers now available. A few components of this category offer additional potentially beneficial properties, owing to their pharmacological or metabolic characteristics. Such additional properties are critically discussed for eprosartan, losartan, telmisartan and valsartan. PMID:25696573

  9. Intrarenal mouse renin-angiotensin system during ANG II-induced hypertension and ACE inhibition.

    PubMed

    Gonzalez-Villalobos, Romer A; Satou, Ryousuke; Ohashi, Naro; Semprun-Prieto, Laura C; Katsurada, Akemi; Kim, Catherine; Upchurch, G M; Prieto, Minolfa C; Kobori, Hiroyuki; Navar, L Gabriel

    2010-01-01

    Angiotensin-converting enzyme (ACE) inhibition (ACEi) ameliorates the development of hypertension and the intrarenal ANG II augmentation in ANG II-infused mice. To determine if these effects are associated with changes in the mouse intrarenal renin-angiotensin system, the expression of angiotensinogen (AGT), renin, ACE, angiotensin type 1 receptor (AT(1)R) mRNA (by quanitative RT-PCR) and protein [by Western blot (WB) and/or immunohistochemistry (IHC)] were analyzed. C57BL/6J male mice (9-12 wk old) were distributed as controls (n = 10), ANG II infused (ANG II = 8, 400 ng x kg(-1) x min(-1) for 12 days), ACEi only (ACEi = 10, lisinopril, 100 mg/l), and ANG II infused + ACEi (ANG II + ACEi = 11). When compared with controls (1.00), AGT protein (by WB) was increased by ANG II (1.29 +/- 0.13, P < 0.05), and this was not prevented by ACEi (ACEi + ANG II, 1.31 +/- 0.14, P < 0.05). ACE protein (by WB) was increased by ANG II (1.21 +/- 0.08, P < 0.05), and it was reduced by ACEi alone (0.88 +/- 0.07, P < 0.05) or in combination with ANG II (0.80 +/- 0.07, P < 0.05). AT(1)R protein (by WB) was increased by ANG II (1.27 +/- 0.06, P < 0.05) and ACEi (1.17 +/- 0.06, P < 0.05) but not ANG II + ACEi [1.15 +/- 0.06, not significant (NS)]. Tubular renin protein (semiquantified by IHC) was increased by ANG II (1.49 +/- 0.23, P < 0.05) and ACEi (1.57 +/- 0.15, P < 0.05), but not ANG II + ACEi (1.10 +/- 0.15, NS). No significant changes were observed in AGT, ACE, or AT(1)R mRNA. In summary, reduced responses of intrarenal tubular renin, ACE, and the AT(1)R protein to the stimulatory effects of chronic ANG II infusions, in the presence of ACEi, are associated with the effects of this treatment to ameliorate augmentations in blood pressure and intrarenal ANG II content during ANG II-induced hypertension. PMID:19846570

  10. Intrarenal mouse renin-angiotensin system during ANG II-induced hypertension and ACE inhibition

    PubMed Central

    Satou, Ryousuke; Ohashi, Naro; Semprun-Prieto, Laura C.; Katsurada, Akemi; Kim, Catherine; Upchurch, G. M.; Prieto, Minolfa C.; Kobori, Hiroyuki; Navar, L. Gabriel

    2010-01-01

    Angiotensin-converting enzyme (ACE) inhibition (ACEi) ameliorates the development of hypertension and the intrarenal ANG II augmentation in ANG II-infused mice. To determine if these effects are associated with changes in the mouse intrarenal renin-angiotensin system, the expression of angiotensinogen (AGT), renin, ACE, angiotensin type 1 receptor (AT1R) mRNA (by quanitative RT-PCR) and protein [by Western blot (WB) and/or immunohistochemistry (IHC)] were analyzed. C57BL/6J male mice (9–12 wk old) were distributed as controls (n = 10), ANG II infused (ANG II = 8, 400 ng·kg−1·min−1 for 12 days), ACEi only (ACEi = 10, lisinopril, 100 mg/l), and ANG II infused + ACEi (ANG II + ACEi = 11). When compared with controls (1.00), AGT protein (by WB) was increased by ANG II (1.29 ± 0.13, P < 0.05), and this was not prevented by ACEi (ACEi + ANG II, 1.31 ± 0.14, P < 0.05). ACE protein (by WB) was increased by ANG II (1.21 ± 0.08, P < 0.05), and it was reduced by ACEi alone (0.88 ± 0.07, P < 0.05) or in combination with ANG II (0.80 ± 0.07, P < 0.05). AT1R protein (by WB) was increased by ANG II (1.27 ± 0.06, P < 0.05) and ACEi (1.17 ± 0.06, P < 0.05) but not ANG II + ACEi [1.15 ± 0.06, not significant (NS)]. Tubular renin protein (semiquantified by IHC) was increased by ANG II (1.49 ± 0.23, P < 0.05) and ACEi (1.57 ± 0.15, P < 0.05), but not ANG II + ACEi (1.10 ± 0.15, NS). No significant changes were observed in AGT, ACE, or AT1R mRNA. In summary, reduced responses of intrarenal tubular renin, ACE, and the AT1R protein to the stimulatory effects of chronic ANG II infusions, in the presence of ACEi, are associated with the effects of this treatment to ameliorate augmentations in blood pressure and intrarenal ANG II content during ANG II-induced hypertension. PMID:19846570

  11. Molecular characterization of a dual endothelin-1/Angiotensin II receptor.

    PubMed Central

    Ruiz-Opazo, N.; Hirayama, K.; Akimoto, K.; Herrera, V. L.

    1998-01-01

    BACKGROUND: The molecular recognition theory (MRT) provides a conceptual framework that could explain the evolution of intermolecular and intramolecular interaction of peptides and proteins. As such, it predicts that binding sites of peptide hormones, and its receptor binding sites were originally encoded by and evolved from complementary strands of genomic DNA. MATERIALS AND METHODS: On the basis of principles underlying the MRT, we screened a rat brain complementary DNA library using an AngII followed by an endothelin-1 (ET-1) antisense oligonucleotide probe, expecting to isolate potential cognate receptors. RESULTS: An identical cDNA clone was isolated independently from both the AngII and ET-1 oligonucleotide screenings. Structural analysis revealed a receptor polypeptide containing a single predicted transmembrane region with distinct ET-1 and AngII putative binding domains. Functional analysis demonstrated ET-1- and AngII-specific binding as well as ET-1- and AngII-induced coupling to a Ca2+ mobilizing transduction system. Amino acid substitutions within the predicted ET-1 binding domain obliterate ET-1 binding while preserving AngII binding, thus defining the structural determinants of ET-1 binding within the dual ET-1/AngII receptor, as well as corroborating the dual nature of the receptor. CONCLUSIONS: Elucidation of the dual ET-1/AngII receptor provides further molecular genetic evidence in support of the molecular recognition theory and identifies for the first time a molecular link between the ET-1 and AngII hormonal systems that could underlie observed similar physiological responses elicited by ET-1 and AngII in different organ systems. The prominent expression of the ET-1/AngII receptor mRNA in brain and heart tissues suggests an important role in cardiovascular function in normal and pathophysiological states. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:9508787

  12. Curcumin inhibits ACTH- and angiotensin II-stimulated cortisol secretion and Ca(v)3.2 current.

    PubMed

    Enyeart, Judith A; Liu, Haiyan; Enyeart, John J

    2009-08-01

    Adrenocorticotropic hormone and angiotensin II stimulate cortisol secretion from bovine adrenal zona fasciculata cells by the activation of adenylate cyclase and phospholipase C-coupled receptors. Curcumin (1- 20 muM), a compound found in the spice turmeric, inhibited cortisol secretion stimulated by ACTH, AngII, and 8CPT-cAMP. Curcumin also suppressed ACTH-stimulated increases in mRNAs coding for steroid acute regulatory protein and CYP11a1 steroid hydroxylase. In whole cell patch clamp recordings from AZF cells, curcumin at slightly higher concentrations also inhibited Ca(v)3.2 current. These results identify curcumin as an effective inhibitor of ACTH- and AngII-stimulated cortisol secretion. The inhibition of Ca(v)3.2 current by curcumin may contribute to its suppression of secretion.

  13. Effect of angiotensin II, ATP, and ionophore A23187 on potassium efflux in adrenal glomerulosa cells

    SciTech Connect

    Lobo, M.V.; Marusic, E.T.

    1986-02-01

    Angiotensin II stimulus on perifused bovine adrenal glomerulosa cells elicited an increase in 86Rb efflux from cells previously equilibrated with the radioisotope. When 45Ca fluxes were measured under similar conditions, it was observed that Ca and Rb effluxes occurred within the first 30 s of the addition of the hormone and were independent of the presence of external Ca. The 86Rb efflux due to angiotensin II was inhibited by quinine and apamin. The hypothesis that the angiotensin II response is a consequence of an increase in the K permeability of the glomerulosa cell membrane triggered by an increase in cytosolic Ca is supported by the finding that the divalent cation ionophore A23187 also initiated 86Rb or K loss (as measured by an external K electrode). This increased K conductance was also seen with 10(-4) M ATP. Quinine and apamin greatly reduced the effect of ATP or A23187 on 86Rb or K release in adrenal glomerulosa cells. The results suggest that Ca-dependent K channels or carriers are present in the membranes of bovine adrenal glomerulosa cells and are sensitive to hormonal stimulus.

  14. Complement regulator CD59 protects against angiotensin II-induced abdominal aortic aneurysms in mice

    PubMed Central

    Wu, Gongxiong; Chen, Ting; Shahsafaei, Aliakbar; Hu, Weiguo; Bronson, Rod T.; Shi, Guo-Ping; Halperin, Jose A; Aktas, Huseyin; Qin, Xuebin

    2010-01-01

    Background Complement system, an innate immunity, has been well documented to play a critical role in many inflammatory diseases. However, the role of complement in pathogenesis of abdominal aortic aneurysm (AAA), which is considered as an immune and inflammatory disease, remains obscure. Methods and Results Here, we evaluated the pathogenic roles of complement membrane attack complex (MAC) and CD59, a key regulator that inhibits MAC, in the development of AAA. We demonstrated that in the angiotensin II-induced AAA model, deficiency of MAC regulator CD59 in ApoE-null mice (mCd59ab−/−/ApoE−/−) accelerated the disease development, while transgenic over-expression of human CD59 (hCD59ICAM-2+/−/ApoE−/−) in this model attenuated progression of AAA. The severity of aneurysm among these three groups positively correlates with C9 deposition, and/or the activities of MMP2 and MMP9, and/or the levels of phosphor (p)-c-Jun, p-c-Fos, p-IKK-α/β, and p-65. Furthermore, we demonstrated that MAC directly induced gene expression of MMP2 and MMP9 in vitro, which required activation of AP-1 and NF-κB signaling pathways. Conclusions Together, these results defined the protective role of CD59 and shed light on the important pathogenic role of MAC in AAA. PMID:20212283

  15. Non-peptide angiotensin II receptor antagonists: chemical feature based pharmacophore identification.

    PubMed

    Krovat, Eva M; Langer, Thierry

    2003-02-27

    Chemical feature based pharmacophore models were elaborated for angiotensin II receptor subtype 1 (AT(1)) antagonists using both a quantitative and a qualitative approach (Catalyst HypoGen and HipHop algorithms, respectively). The training sets for quantitative model generation consisted of 25 selective AT(1) antagonists exhibiting IC(50) values ranging from 1.3 nM to 150 microM. Additionally, a qualitative pharmacophore hypothesis was derived from multiconformational structure models of the two highly active AT(1) antagonists 4u (IC(50) = 0.2 nM) and 3k (IC(50) = 0.7 nM). In the case of the quantitative model, the best pharmacophore hypothesis consisted of a five-features model (Hypo1: seven points, one hydrophobic aromatic, one hydrophobic aliphatic, a hydrogen bond acceptor, a negative ionizable function, and an aromatic plane function). The best qualitative model consisted of seven features (Hypo2: 11 points, two aromatic rings, two hydrogen bond acceptors, a negative ionizable function, and two hydrophobic functions). The obtained pharmacophore models were validated on a wide set of test molecules. They were shown to be able to identify a range of highly potent AT(1) antagonists, among those a number of recently launched drugs and some candidates presently undergoing clinical tests and/or development phases. The results of our study provide confidence for the utility of the selected chemical feature based pharmacophore models to retrieve structurally diverse compounds with desired biological activity by virtual screening. PMID:12593652

  16. Non-peptide angiotensin II receptor antagonists: chemical feature based pharmacophore identification.

    PubMed

    Krovat, Eva M; Langer, Thierry

    2003-02-27

    Chemical feature based pharmacophore models were elaborated for angiotensin II receptor subtype 1 (AT(1)) antagonists using both a quantitative and a qualitative approach (Catalyst HypoGen and HipHop algorithms, respectively). The training sets for quantitative model generation consisted of 25 selective AT(1) antagonists exhibiting IC(50) values ranging from 1.3 nM to 150 microM. Additionally, a qualitative pharmacophore hypothesis was derived from multiconformational structure models of the two highly active AT(1) antagonists 4u (IC(50) = 0.2 nM) and 3k (IC(50) = 0.7 nM). In the case of the quantitative model, the best pharmacophore hypothesis consisted of a five-features model (Hypo1: seven points, one hydrophobic aromatic, one hydrophobic aliphatic, a hydrogen bond acceptor, a negative ionizable function, and an aromatic plane function). The best qualitative model consisted of seven features (Hypo2: 11 points, two aromatic rings, two hydrogen bond acceptors, a negative ionizable function, and two hydrophobic functions). The obtained pharmacophore models were validated on a wide set of test molecules. They were shown to be able to identify a range of highly potent AT(1) antagonists, among those a number of recently launched drugs and some candidates presently undergoing clinical tests and/or development phases. The results of our study provide confidence for the utility of the selected chemical feature based pharmacophore models to retrieve structurally diverse compounds with desired biological activity by virtual screening.

  17. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    PubMed Central

    Shen, Tao; Ding, Ling; Ruan, Yang; Qin, Weiwei; Lin, Yajun; Xi, Chao; Lu, Yonggang; Dou, Lin; Zhu, Yuping; Cao, Yuan; Man, Yong; Bian, Yunfei; Wang, Shu; Xiao, Chuanshi; Li, Jian

    2014-01-01

    Background. Sirtuin 1 (SIRT1) is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII-) induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs) to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1's protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury. PMID:25614777

  18. Effects of probucol on angiotensin II-induced BMP-2 expression in human umbilical vein endothelial cells.

    PubMed

    Zhang, Ming; Wang, Jian; Liu, Jing-Hua; Chen, Shu-Juan; Zhen, Bin; Wang, Chang-Hua; He, Hua; Jiang, Chen-Xi

    2013-01-01

    Bone morphogenetic protein-2 (BMP-2) participates significantly in vascular development and pathophysiological processes. Angiotensin II (AngII) has been demonstrated to be critical in the initiation and progression of atherosclerosis. However, the effects of AngII on BMP-2 expression and of probucol on the AngII-induced BMP-2 expression in human umbilical vein endothelial cells (HUVECs) are unknown. The aim of our study was to investigate these effects. HUVECs were cultured and stimulated with various agents. The total superoxide dismutase (SOD) activity and the concentrations of malondialdehyde (MDA) and BMP-2 were measured by standard methods. Northern blotting was used to detect the expression of BMP-2 mRNA. The activation of NF-κB in the HUVECs was also determined. The AngII treatment significantly increased BMP-2 expression levels and activated NF-κB. These effects were suppressed by treatment with pyrrolidine dithiocarbamate (PDTC) or probucol. Furthermore, the increased levels of MDA in the conditioned medium and the decrease in the total SOD activity caused by the AngII treatment were reversed by treatment with probucol or PDTC. Probucol downregulated the AngII‑induced BMP-2 expression. These effects of probucol may be mediated by the inhibition of NF-κB activation. PMID:23128665

  19. Deficiency of Smad7 Enhances Cardiac Remodeling Induced by Angiotensin II Infusion in a Mouse Model of Hypertension

    PubMed Central

    Wei, Li Hua; Huang, Xiao Ru; Zhang, Yang; Li, You Qi; Chen, Hai-yong; Heuchel, Rainer; Yan, Bryan P.; Yu, Cheuk-Man; Lan, Hui Yao

    2013-01-01

    Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II)-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO) and wild-type (WT) mice by subcutaneous infusion of Ang II (1.46 mg/kg/day) for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV) mass (P<0.01),reduction of LV ejection fraction(P<0.001) and fractional shortening(P<0.001). Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3+ T cells and F4/80+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network. PMID:23894614

  20. Ca2+ -regulated lysosome fusion mediates angiotensin II-induced lipid raft clustering in mesenteric endothelial cells.

    PubMed

    Han, Wei-Qing; Chen, Wen-Dong; Zhang, Ke; Liu, Jian-Jun; Wu, Yong-Jie; Gao, Ping-Jin

    2016-04-01

    It has been reported that intracellular Ca2+ is involved in lysosome fusion and membrane repair in skeletal cells. Given that angiotensin II (Ang II) elicits an increase in intracellular Ca2+ and that lysosome fusion is a crucial mediator of lipid raft (LR) clustering, we hypothesized that Ang II induces lysosome fusion and activates LR formation in rat mesenteric endothelial cells (MECs). We found that Ang II acutely increased intracellular Ca2+ content, an effect that was inhibited by the extracellular Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release inhibitor 2-aminoethoxydiphenyl borate (2-APB). Further study showed that EGTA almost completely blocked Ang II-induced lysosome fusion, the translocation of acid sphingomyelinase (ASMase) to LR clusters, ASMase activation and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activation. In contrast, 2-APB had a slight inhibitory effect. Functionally, both the lysosome inhibitor bafilomycin A1 and the ASMase inhibitor amitriptyline reversed Ang II-induced impairment of vasodilation. We conclude that Ca2+ -regulated lysosome fusion mediates the Ang II-induced regulation of the LR-redox signaling pathway and mesenteric endothelial dysfunction.

  1. The Adipose Renin-Angiotensin System Modulates Systemic Markers of Insulin Sensitivity and Activates the Intrarenal Renin-Angiotensin System

    DOE PAGES

    Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie; Massiera, Florence; Teboul, Michele; Ailhaud, Gerard; Kim, Jung Han; Moustaid-Moussa, Naima; Voy, Brynn H.

    2006-01-01

    Background . The adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass and may also impact systemic functions such as blood pressure and metabolism. Methods and results . A panel of mouse models including mice lacking angiotensinogen, Agt ( Agt -KO), mice expressing Agt solely in adipose tissue (aP2- Agt/Agt -KO), and mice overexpressing Agt in adipose tissue (aP2- Agt ) was studied. Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin, and resistin were significantly decreased in Agt -KO mice, while plasma adiponectin levels were increased. aP2- Agt mice exhibited increased adipositymore » and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also elevated in kidney of aP2- Agt mice. Conclusion . These findings demonstrate that alterations in adipose RAS activity significantly impact both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.« less

  2. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    PubMed

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (P<0.05). In addition, catalase transfection significantly attenuated AngII‑induced ROS generation, macrophage infiltration, collagen deposition and adventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  3. Regulatory T cells in human and angiotensin II-induced mouse abdominal aortic aneurysms

    PubMed Central

    Zhou, Yi; Wu, Wenxue; Lindholt, Jes S.; Sukhova, Galina K.; Libby, Peter; Yu, Xueqing; Shi, Guo-Ping

    2015-01-01

    Aims Regulatory T cells (Tregs) protect mice from angiotensin II (Ang-II)-induced abdominal aortic aneurysms (AAA). This study tested whether AAA patients are Treg-insufficient and the Treg molecular mechanisms that control AAA pathogenesis. Methods and results ELISA determined the Foxp3 concentration in blood cell lysates from 485 AAA patients and 204 age- and sex-matched controls. AAA patients exhibited lower blood cell Foxp3 expression than controls (P < 0.0001). Pearson's correlation test demonstrated a significant but negative correlation between Foxp3 and AAA annual expansion rate before (r = –0.147, P = 0.007) and after (r = –0.153, P = 0.006) adjustment for AAA risk factors. AAA in apolipoprotein E-deficient (Apoe–/–) mice that received different doses of Ang-II exhibited a negative correlation of lesion Foxp3+ Treg numbers with AAA size (r = –0.883, P < 0.0001). Adoptive transfer of Tregs from wild-type (WT) and IL10-deficient (Il10–/–) mice increased AAA lesion Treg content, but only WT mice Tregs reduced AAA size, AAA incidence, blood pressure, lesion macrophage and CD4+ and CD8+ T-cell accumulation, and angiogenesis with concurrent increase of lesion collagen content. Both AAA lesion immunostaining and plasma ELISA demonstrated that adoptive transfer of WT Tregs, but not Il10–/– Tregs, reduced the expression of MCP-1. In vitro cell culture and aortic ring assay demonstrated that only Tregs from WT mice, but not those from Il10–/– mice, reduced macrophage MCP-1 secretion, macrophage and vascular cell protease expression and activity, and aortic ring microvessel formation. Conclusion This study supports a protective role of Tregs in human and experimental AAA by releasing IL10 to suppress inflammatory cell chemotaxis, arterial wall remodelling, and angiogenesis. PMID:25824145

  4. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    PubMed

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension.

  5. Selective small molecule angiotensin II type 2 receptor antagonists for neuropathic pain: preclinical and clinical studies.

    PubMed

    Smith, Maree T; Anand, Praveen; Rice, Andrew S C

    2016-02-01

    Neuropathic pain affects up to 10% of the general population, but drug treatments recommended for the treatment of neuropathic pain are associated with modest efficacy and/or produce dose-limiting side effects. Hence, neuropathic pain is an unmet medical need. In the past 2 decades, research on the pathobiology of neuropathic pain has revealed many novel pain targets for use in analgesic drug discovery programs. However, these efforts have been largely unsuccessful as molecules that showed promising pain relief in rodent models of neuropathic pain generally failed to produce analgesia in early phase clinical trials in patients with neuropathic pain. One notable exception is the angiotensin II type 2 (AT2) receptor that has clinical validity on the basis of a successful double-blind, randomized, placebo-controlled, clinical trial of EMA401, a highly selective, orally active, peripherally restricted AT2 receptor antagonist in patients with postherpetic neuralgia. In this study, we review research to date on target validation, efficacy, and mode of action of small molecule AT2 receptor antagonists in rodent models of peripheral neuropathic pain and in cultured human sensory neurons, the preclinical pharmacokinetics of these compounds, and the outcome of the above clinical trial.

  6. Phospholipase D2 Localizes to the Plasma Membrane and Regulates Angiotensin II Receptor Endocytosis

    PubMed Central

    Du, Guangwei; Huang, Ping; Liang, Bruce T.; Frohman, Michael A.

    2004-01-01

    Phospholipase D (PLD) is a key facilitator of multiple types of membrane vesicle trafficking events. Two PLD isoforms, PLD1 and PLD2, exist in mammals. Initial studies based on overexpression studies suggested that in resting cells, human PLD1 localized primarily to the Golgi and perinuclear vesicles in multiple cell types. In contrast, overexpressed mouse PLD2 was observed to localize primarily to the plasma membrane, although internalization on membrane vesicles was observed subsequent to serum stimulation. A recent report has suggested that the assignment of PLD2 to the plasma membrane is in error, because the endogenous isoform in rat secretory cells was imaged and found to be present primarily in the Golgi apparatus. We have reexamined this issue by using a monoclonal antibody specific for mouse PLD2, and find, as reported initially using overexpression studies, that endogenous mouse PLD2 is detected most readily at the plasma membrane in multiple cell types. In addition, we report that mouse, rat, and human PLD2 when overexpressed all similarly localize to the plasma membrane in cell lines from all three species. Finally, studies conducted using overexpression of wild-type active or dominant-negative isoforms of PLD2 and RNA interference-mediated targeting of PLD2 suggest that PLD2 functions at the plasma membrane to facilitate endocytosis of the angiotensin II type 1 receptor. PMID:14718562

  7. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance.

    PubMed

    Violin, Jonathan D; DeWire, Scott M; Yamashita, Dennis; Rominger, David H; Nguyen, Lisa; Schiller, Kevin; Whalen, Erin J; Gowen, Maxine; Lark, Michael W

    2010-12-01

    Biased G protein-coupled receptor ligands engage subsets of the receptor signals normally stimulated by unbiased agonists. However, it is unclear whether ligand bias can elicit differentiated pharmacology in vivo. Here, we describe the discovery of a potent, selective β-arrestin biased ligand of the angiotensin II type 1 receptor. TRV120027 (Sar-Arg-Val-Tyr-Ile-His-Pro-D-Ala-OH) competitively antagonizes angiotensin II-stimulated G protein signaling, but stimulates β-arrestin recruitment and activates several kinase pathways, including p42/44 mitogen-activated protein kinase, Src, and endothelial nitric-oxide synthase phosphorylation via β-arrestin coupling. Consistent with β-arrestin efficacy, and unlike unbiased antagonists, TRV120027 increased cardiomyocyte contractility in vitro. In rats, TRV120027 reduced mean arterial pressure, as did the unbiased antagonists losartan and telmisartan. However, unlike the unbiased antagonists, which decreased cardiac performance, TRV120027 increased cardiac performance and preserved cardiac stroke volume. These striking differences in vivo between unbiased and β-arrestin biased ligands validate the use of biased ligands to selectively target specific receptor functions in drug discovery.

  8. Angiotensin II type I and prostaglandin F2α receptors cooperatively modulate signaling in vascular smooth muscle cells.

    PubMed

    Goupil, Eugénie; Fillion, Dany; Clément, Stéphanie; Luo, Xiaoyan; Devost, Dominic; Sleno, Rory; Pétrin, Darlaine; Saragovi, H Uri; Thorin, Éric; Laporte, Stéphane A; Hébert, Terence E

    2015-01-30

    The angiotensin II type I (AT1R) and the prostaglandin F2α (PGF2α) F prostanoid (FP) receptors are both potent regulators of blood pressure. Physiological interplay between AT1R and FP has been described. Abdominal aortic ring contraction experiments revealed that PGF2α-dependent activation of FP potentiated angiotensin II-induced contraction, whereas FP antagonists had the opposite effect. Similarly, PGF2α-mediated vasoconstriction was symmetrically regulated by co-treatment with AT1R agonist and antagonist. The underlying canonical Gαq signaling via production of inositol phosphates mediated by each receptor was also regulated by antagonists for the other receptor. However, binding to their respective agonists, regulation of receptor-mediated MAPK activation and vascular smooth muscle cell growth were differentially or asymmetrically regulated depending on how each of the two receptors were occupied by either agonist or antagonist. Physical interactions between these receptors have never been reported, and here we show that AT1R and FP form heterodimeric complexes in both HEK 293 and vascular smooth muscle cells. These findings imply that formation of the AT1R/FP dimer creates a novel allosteric signaling unit that shows symmetrical and asymmetrical signaling behavior, depending on the outcome measured. AT1R/FP dimers may thus be important in the regulation of blood pressure.

  9. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation.

    PubMed Central

    Schunkert, H; Dzau, V J; Tang, S S; Hirsch, A T; Apstein, C S; Lorell, B H

    1990-01-01

    We compared the activity and physiologic effects of cardiac angiotensin converting enzyme (ACE) using isovolumic hearts from male Wistar rats with left ventricular hypertrophy due to chronic experimental aortic stenosis and from control rats. In response to the infusion of 3.5 X 10(-8) M angiotensin I in the isolated buffer perfused beating hearts, the intracardiac fractional conversion to angiotensin II was higher in the hypertrophied hearts compared with the controls (17.3 +/- 4.1% vs 6.8 +/- 1.3%, P less than 0.01). ACE activity was also significantly increased in the free wall, septum, and apex of the hypertrophied left ventricle, whereas ACE activity from the nonhypertrophied right ventricle of the aortic stenosis rats was not different from that of the control rats. Northern blot analyses of poly(A)+ purified RNA demonstrated the expression of ACE mRNA, which was increased fourfold in left ventricular tissue obtained from the hearts with left ventricular hypertrophy compared with the controls. In both groups, the intracardiac conversion of angiotensin I to angiotensin II caused a comparable dose-dependent increase in coronary resistance. In the control hearts, angiotensin II activation had no significant effect on systolic or diastolic function; however, it was associated with a dose-dependent depression of left ventricular diastolic relaxation in the hypertrophied hearts. These novel observations suggest that cardiac ACE is induced in hearts with left ventricular hypertrophy, and that the resultant intracardiac activation of angiotensin II may have differential effects on myocardial relaxation in hypertrophied hearts relative to controls. Images PMID:2174912

  10. Differentiation in the effects of the angiotensin II receptor blocker class on autonomic function.

    PubMed

    Esler, Murray

    2002-06-01

    Measurement of regional sympathetic activity with nerve recording and noradrenaline spillover isotope dilution techniques demonstrates activation of the sympathetic nerves of the heart, kidneys and skeletal muscle vasculature in younger patients with essential hypertension. Sympathetic overactivity in the renal sympathetic outflow is a prominent pathophysiological feature in obesity-related hypertensives of any age. This increase in sympathetic activity is thought to both initiate and sustain the blood pressure elevation, and, in addition, contributes to adverse cardiovascular events. Sympathetic overactivity seems to particularly influence systolic pressure, by increasing the rate of left ventricular ejection, by reducing arterial compliance through increasing neural arterial tone, and via arteriolar vasoconstriction, by promoting rebound of the reflected arterial wave from the periphery. Inhibition of the renin-angiotensin system in certain circumstances appears to be able to reduce sympathetic nervous activity. Claims have been made for such an action at virtually every site in the sympathetic neuraxis. In reality, renin-angiotensin actions on the sympathetic nervous system are probably much more circumscribed than this, with the case perhaps being strongest for a presynaptic action of angiotensin on sympathetic nerves, to augment noradrenaline release. The ability of angiotensin receptor blockers to antagonize neural presynaptic angiotensin AT1 receptors appears to differ markedly between the individual agents in this drug class. In experimental models, such as the pithed rat, neural presynaptic actions are particularly evident with eprosartan. In a blinded study of crossover design, the effects of eprosartan and losartan on sympathetic nerve firing, measured by microneurography, and whole body noradrenaline spillover to plasma is currently being measured in patients with essential hypertension. A reduction in noradrenaline spillover disproportionate to any

  11. Central Angiotensin II Stimulation Promotes β Amyloid Production in Sprague Dawley Rats

    PubMed Central

    Zhu, Donglin; Shi, Jingping; Zhang, Yingdong; Wang, Bianrong; Liu, Wei; Chen, Zhicong; Tong, Qiang

    2011-01-01

    Background Stress and various stress hormones, including catecholamines and glucocorticoids, have recently been implicated in the pathogenesis of Alzheimer's disease (AD), which represents the greatest unresolved medical challenge in neurology. Angiotensin receptor blockers have shown benefits in AD and prone-to-AD animals. However, the mechanisms responsible for their efficacy remain unknown, and no studies have directly addressed the role of central angiotensin II (Ang II), a fundamental stress hormone, in the pathogenesis of AD. The present study focused on the role of central Ang II in amyloidogenesis, the critical process in AD neuropathology, and aimed to provide direct evidence for the role of this stress hormone in the pathogenesis of AD. Methodology/Principal Findings Increased central Ang II levels during stress response were modeled by intracerebroventricular (ICV) administration of graded doses of Ang II (6 ng/hr low dose, 60 ng/hr medium dose, and 600 ng/hr high dose, all delivered at a rate of 0.25 µl/hr) to male Sprague Dawley rats (280–310 g) via osmotic pumps. After 1 week of continuous Ang II infusion, the stimulation of Ang II type 1 receptors was accompanied by the modulation of amyloid precursor protein, α-, β-and γ-secretase, and increased β amyloid production. These effects could be completely abolished by concomitant ICV infusion of losartan, indicating that central Ang II played a causative role in these alterations. Conclusions/Significance Central Ang II is essential to the stress response, and the results of this study suggest that increased central Ang II levels play an important role in amyloidogenesis during stress, and that central Ang II-directed stress prevention and treatment might represent a novel anti-AD strategy. PMID:21297982

  12. COX-2 mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla.

    PubMed

    Wang, Fei; Lu, Xiaohan; Peng, Kexin; Zhou, Li; Li, Chunling; Wang, Weidong; Yu, Xueqing; Kohan, Donald E; Zhu, Shu-Feng; Yang, Tianxin

    2014-07-01

    (Pro)renin receptor (PRR) is predominantly expressed in the distal nephron where it is activated by angiotensin II (ANG II), resulting in increased renin activity in the renal medulla thereby amplifying the de novo generation and action of local ANG II. The goal of the present study was to test the role of cycloxygenase-2 (COX-2) in meditating ANG II-induced PRR expression in the renal medulla in vitro and in vivo. Exposure of primary rat inner medullary collecting duct cells to ANG II induced sequential increases in COX-2 and PRR protein expression. When the cells were pretreated with a COX-2 inhibitor NS-398, ANG II-induced upregulation of PRR protein expression was almost completely abolished, in parallel with the changes in medium active renin content. The inhibitory effect of NS-398 on the PRR expression was reversed by adding exogenous PGE2. A 14-day ANG II infusion elevated renal medullary PRR expression and active and total renin content in parallel with increased urinary renin, all of which were remarkably suppressed by the COX-2 inhibitor celecoxib. In contrast, plasma and renal cortical active and total renin content were suppressed by ANG II treatment, an effect that was unaffected by COX-2 inhibition. Systolic blood pressure was elevated with ANG II infusion, which was attenuated by the COX-2 inhibition. Overall, the results obtained from in vitro and in vivo studies established a crucial role of COX-2 in mediating upregulation of renal medullary PRR expression and renin content during ANG II hypertension.

  13. The effect of altered sodium balance upon renal vascular reactivity to angiotensin II and norepinephrine in the dog. Mechanism of variation in angiotensin responses.

    PubMed Central

    Oliver, J A; Cannon, P J

    1978-01-01

    The mechanism whereby the vasoconstrictor response to angiotensin II (AII) is influenced by sodium balance or disease is unclear. To explore this question, the renal vascular responses (RVR) to intrarenal injections of subpressor doses of AII and norepinephrine were studied in dogs with an electromagnetic flowmeter. Acute and chronic sodium depletion increased plasma renin activity (PRA) and blunted the RVR to AII, while acute sodium repletion and chronic sodium excess plus desoxycorticosterone acetate decreased PRA and enhanced the RVR to AII. The magnitude of the RVR to AII was inversely related to PRA. The RVR to norepinephrine was unaffected by sodium balance and was not related to PRA. Inhibition of the conversion of angiotensin I to AII by SQ 20,881 during sodium depletion lowered mean arterial blood pressure (MABP), increased renal blood flow (RBF), and enhanced the RVR to AII but not to norepinephrine. Administration of bradykinin to chronically sodium-depleted dogs also lowered the MABP and increased RBF but had no effect on the RVR to AII. SQ 20,881 had no effect on MABP, RBF, or the RVR to AII in the dogs with chronic sodium excess and desoxycorticosterone acetate. Administration of indomethacin to chronically sodium-depleted dogs lowered RBF but did not influence the RVR to AII. The results indicate that the RVR to AII is selectively influenced by sodium balance and that the magnitude of the response is inversely related to the availability of endogenous AII. The data did not suggest that the variations in the RVR to AII were because of direct effects of sodium on vascular contraction, changes in the number of vascular AII receptors, or the renal prostaglandins. The results are consistent with the hypothesis that the vasoconstrictor effect of AII in the renal vasculature is primarily dependent upon the degree to which the AII vascular receptors are occupied by endogenous hormone. PMID:641142

  14. Comparative Effectiveness of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers in Terms of Major Cardiovascular Disease Outcomes in Elderly Patients

    PubMed Central

    Chien, Shu-Chen; Ou, Shuo-Ming; Shih, Chia-Jen; Chao, Pei-Wen; Li, Szu-Yuan; Lee, Yi-Jung; Kuo, Shu-Chen; Wang, Shuu-Jiun; Chen, Tzeng-Ji; Tarng, Der-Cherng; Chu, Hsi; Chen, Yung-Tai

    2015-01-01

    Abstract Renin and aldosterone activity levels are low in elderly patients, raising concerns about the benefits and risks of angiotensin-converting-enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARB) use. However, data from direct comparisons of the effects of ACEIs on ARBs in the elderly population remain inconclusive. In this nationwide study, all patients aged ≥ 70 years were retrieved from the Taiwan National Health Insurance database for the period 2000 to 2009 and were followed up until the end of 2010. The ARB cohort (12,347 patients who continuously used ARBs for ≥ 90 days) was matched to ACEI cohort using high-dimensional propensity score (hdPS). Intention-to-treat (ITT) and as-treated (AT) analyses were conducted. In the ITT analysis, after considering death as a competing risk, the ACEI cohort had similar risks of myocardial infarction (hazard ratio [HR] 0.92, 95% confidence interval [CI] 0.79–1.06), ischemic stroke (HR 0.98, 95% CI 0.90–1.07), and heart failure (HR 0.93, 95% CI 0.83–1.04) compared with the ARB cohort. No difference in adverse effects, such as acute kidney injury (HR 0.99, 95% CI 0.89–1.09) and hyperkalemia (HR 1.02, 95% CI 0.87–1.20), was observed between cohorts. AT analysis produced similar results to those of ITT analysis. We were unable to demonstrate a survival difference between cohorts (HR 1.03, 95% CI 0.88–1.21) after considering drug discontinuation as a competing risk in AT analysis. Our study supports the notion that ACEI and ARB users have similar risks of major adverse cardiovascular events (MACE), even in elderly populations. PMID:26512568

  15. [Renin-angiotensin system under extracorporeal circulation during heart valve surgery].

    PubMed

    Heck, I; Hack, G; Wickenhöfer, R

    1983-08-01

    Angiotensin I (A I), angiotensin II (A II) and the activity of angiotensin-converting enzyme (ACE) were measured in 15 patients undergoing cardiopulmonary bypass for mitral or aortic valve replacement. During cardiopulmonary bypass A I, A II, A I/II ratio and arteriovenous A II--difference decreased markedly, whereas the activity of ACE fell only during a small 15 min period after start of extracorporeal circulation. Possible reasons for these effects are discussed.

  16. Investigation of the fate of type I angiotensin receptor after biased activation.

    PubMed

    Szakadáti, Gyöngyi; Tóth, András D; Oláh, Ilona; Erdélyi, László Sándor; Balla, Tamas; Várnai, Péter; Hunyady, László; Balla, András

    2015-06-01

    Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein-dependent and -independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed β-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase-tagged receptors and yellow fluorescent protein-tagged β-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. β-arrestin binding and the internalization kinetics of the angiotensin II-stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II-stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to β-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the β-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor.

  17. Vascular ADAM17 as a Novel Therapeutic Target in Mediating Cardiovascular Hypertrophy and Perivascular Fibrosis Induced by Angiotensin II.

    PubMed

    Takayanagi, Takehiko; Forrester, Steven J; Kawai, Tatsuo; Obama, Takashi; Tsuji, Toshiyuki; Elliott, Katherine J; Nuti, Elisa; Rossello, Armando; Kwok, Hang Fai; Scalia, Rosario; Rizzo, Victor; Eguchi, Satoru

    2016-10-01

    Angiotensin II (AngII) has been strongly implicated in hypertension and its complications. Evidence suggests the mechanisms by which AngII elevates blood pressure and enhances cardiovascular remodeling and damage may be distinct. However, the signal transduction cascade by which AngII specifically initiates cardiovascular remodeling, such as hypertrophy and fibrosis, remains insufficiently understood. In vascular smooth muscle cells, a metalloproteinase ADAM17 mediates epidermal growth factor receptor transactivation, which may be responsible for cardiovascular remodeling but not hypertension induced by AngII. Thus, the objective of this study was to test the hypothesis that activation of vascular ADAM17 is indispensable for vascular remodeling but not for hypertension induced by AngII. Vascular ADAM17-deficient mice and control mice were infused with AngII for 2 weeks. Control mice infused with AngII showed cardiac hypertrophy, vascular medial hypertrophy, and perivascular fibrosis. These phenotypes were prevented in vascular ADAM17-deficient mice independent of blood pressure alteration. AngII infusion enhanced ADAM17 expression, epidermal growth factor receptor activation, and endoplasmic reticulum stress in the vasculature, which were diminished in ADAM17-deficient mice. Treatment with a human cross-reactive ADAM17 inhibitory antibody also prevented cardiovascular remodeling and endoplasmic reticulum stress but not hypertension in C57Bl/6 mice infused with AngII. In vitro data further supported these findings. In conclusion, vascular ADAM17 mediates AngII-induced cardiovascular remodeling via epidermal growth factor receptor activation independent of blood pressure regulation. ADAM17 seems to be a unique therapeutic target for the prevention of hypertensive complications.

  18. Vascular ADAM17 as a Novel Therapeutic Target in Mediating Cardiovascular Hypertrophy and Perivascular Fibrosis Induced by Angiotensin II.

    PubMed

    Takayanagi, Takehiko; Forrester, Steven J; Kawai, Tatsuo; Obama, Takashi; Tsuji, Toshiyuki; Elliott, Katherine J; Nuti, Elisa; Rossello, Armando; Kwok, Hang Fai; Scalia, Rosario; Rizzo, Victor; Eguchi, Satoru

    2016-10-01

    Angiotensin II (AngII) has been strongly implicated in hypertension and its complications. Evidence suggests the mechanisms by which AngII elevates blood pressure and enhances cardiovascular remodeling and damage may be distinct. However, the signal transduction cascade by which AngII specifically initiates cardiovascular remodeling, such as hypertrophy and fibrosis, remains insufficiently understood. In vascular smooth muscle cells, a metalloproteinase ADAM17 mediates epidermal growth factor receptor transactivation, which may be responsible for cardiovascular remodeling but not hypertension induced by AngII. Thus, the objective of this study was to test the hypothesis that activation of vascular ADAM17 is indispensable for vascular remodeling but not for hypertension induced by AngII. Vascular ADAM17-deficient mice and control mice were infused with AngII for 2 weeks. Control mice infused with AngII showed cardiac hypertrophy, vascular medial hypertrophy, and perivascular fibrosis. These phenotypes were prevented in vascular ADAM17-deficient mice independent of blood pressure alteration. AngII infusion enhanced ADAM17 expression, epidermal growth factor receptor activation, and endoplasmic reticulum stress in the vasculature, which were diminished in ADAM17-deficient mice. Treatment with a human cross-reactive ADAM17 inhibitory antibody also prevented cardiovascular remodeling and endoplasmic reticulum stress but not hypertension in C57Bl/6 mice infused with AngII. In vitro data further supported these findings. In conclusion, vascular ADAM17 mediates AngII-induced cardiovascular remodeling via epidermal growth factor receptor activation independent of blood pressure regulation. ADAM17 seems to be a unique therapeutic target for the prevention of hypertensive complications. PMID:27480833

  19. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1

    PubMed Central

    Colucci, Rocchina; Fornai, Matteo; Duranti, Emiliano; Antonioli, Luca; Rugani, Ilaria; Aydinoglu, Fatma; Ippolito, Chiara; Segnani, Cristina; Bernardini, Nunzia; Taddei, Stefano; Blandizzi, Corrado; Virdis, Agostino

    2013-01-01

    Background and Purpose NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. Experimental Approach Male rats received angiotensin II (120 ng·kg−1·min−1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg−1·day−1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. Key Results In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α, and enhanced copper/zinc-superoxide dismutase expression. Conclusion and Implications Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of

  20. Iron chelation and a free radical scavenger suppress angiotensin II-induced upregulation of TGF-beta1 in the heart.

    PubMed

    Saito, Kan; Ishizaka, Nobukazu; Aizawa, Toru; Sata, Masataka; Iso-o, Naoyuki; Noiri, Eisei; Mori, Ichiro; Ohno, Minoru; Nagai, Ryozo

    2005-04-01

    Long-term administration of angiotensin II causes myocardial loss and cardiac fibrosis. We previously found iron deposition in the heart of the angiotensin II-infused rat, which may promote angiotensin II-induced cardiac damage. In the present study, we have investigated whether an iron chelator (deferoxamine) and a free radical scavenger (T-0970) affect the angiotensin II-induced upregulation of transforming growth factor-beta1 (TGF-beta1). Angiotensin II infusion for 7 days caused a robust increase in TGF-beta1 mRNA expression in vascular smooth muscle cells, myofibroblast-like cells, and migrated monocytes/macrophages. T-0970 and deferoxamine suppressed the upregulation of TGF-beta1 mRNA and reduced the extent of cardiac fibrosis in the heart of rats treated with angiotensin II. These agents blocked the angiotensin II-induced upregulation of heme oxygenase-1, a potent oxidative and cellular stress-responsive gene, but they did not significantly affect systolic blood pressure or plasma levels of aldosterone. In addition, T-0970 and deferoxamine suppressed the angiotensin II-induced upregulation of monocyte chemoattractant protein-1 in the heart. These results collectively suggest that iron and the iron-mediated generation of reactive oxygen species may contribute to angiotensin II-induced upregulation of profibrotic and proinflammatory genes, such as TGF-beta1 and monocyte chemoattractant protein-1.

  1. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression.

    PubMed

    Schelman, William R; Andres, Robert; Ferguson, Paul; Orr, Brent; Kang, Evan; Weyhenmeyer, James A

    2004-09-10

    While angiotensin II (Ang II) plays a major role in the regulation of blood pressure, fluid homeostasis and neuroendocrine function, recent studies have also implicated the peptide hormone in cell growth, differentiation and apoptosis. In support of this, we have previously demonstrated that Ang II attenuates N-methyl-D-aspartate (NMDA) receptor signaling [Molec. Brain Res. 48 (1997) 197]. To further examine the modulatory role of Ang II on NMDA receptor function, we investigated the effect of angiotensin receptor (AT) activation on NMDA-mediated cell death and the accompanying decrease in Bcl-2 expression. The viability of differentiated N1E-115 and NG108-15 neuronal cell lines was reduced following exposure to NMDA in a dose-dependent manner. MTT analysis (mitochondrial integrity) revealed a decrease in cell survival of 49.4+/-12.3% in NG108 cells and 79.9+/-6.8% in N1E cells following treatment with 10 mM NMDA for 20 h. Cytotoxicity in N1E cells was inhibited by the noncompetitive NMDA receptor antagonist, MK-801. Further, NMDA receptor-mediated cell death in NG108 cells was attenuated by treatment with Ang II. The Ang II effect was inhibited by both AT1 and AT2 receptor antagonists, losartan and PD123319, respectively, suggesting that both receptor subtypes may play a role in the survival effect of Ang II. Since it has been shown that activation of NMDA receptors alters the expression of Bcl-2 family proteins, Western blot analysis was performed in N1E cells to determine whether Ang II alters the NMDA-induced changes in Bcl-2 expression. A concentration-dependent decrease of intracellular Bcl-2 protein levels was observed following treatment with NMDA, and this reduction was inhibited by MK801. Addition of Ang II suppressed the NMDA receptor-mediated reduction in Bcl-2. The Ang II effect on NMDA-mediated changes in Bcl-2 levels was blocked by PD123319, but was not significantly changed by losartan, suggesting AT2 receptor specificity. Taken together, these

  2. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    PubMed

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969

  3. Role of integrin-linked kinase in vascular smooth muscle cells: Regulation by statins and angiotensin II

    SciTech Connect

    Friedrich, Erik B. . E-mail: efriedrich@med-in.uni-sb.de; Clever, Yvonne P.; Wassmann, Sven; Werner, Nikos; Boehm, Michael; Nickenig, Georg

    2006-10-27

    Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy.

  4. Formation of inositol 1,3,4,6-tetrakisphosphate during angiotensin II action in bovine adrenal glomerulosa cells

    SciTech Connect

    Balla, T.; Guillemette, G.; Baukal, A.J.; Catt, K.J.

    1987-10-14

    Angiotensin II stimulates the formation of several inositol polyphosphates in cultured bovine adrenal glomerulosa cells prelabelled with (/sup 3/H) inositol. Analysis by high performance anion exchange chromatography of the inositol-phosphate compounds revealed the existence of two additional inositol tetrakisphosphate (InsP4) isomers in proximity to Ins-1,3,4,5-P4, the known phosphorylation product of Ins-1,4,5-trisphosphate and precursor of Ins-1,3,4-trisphosphate. Both of these new compounds showed a slow increase after stimulation with angiotensin II. The structure of one of these new InsP4 isomers, which is a phosphorylation product of Ins-1,3,4-P3, was deduced by its resistance to periodate oxidation to be Ins-1,3,4,6-P4. The existence of multiple cycles of phosphorylation-dephosphorylation reactions for the processing of Ins-1,4,5-P4 may represent a new aspect of the inositol-lipid related signalling mechanism in agonist-activated target cells.

  5. Angiotensin II receptor subtypes in rat renal preglomerular vessels.

    PubMed

    De León, H; Garcia, R

    1992-01-01

    A simple technique to isolate rat renal preglomerular vessels is described. Kidneys were pressed against a 0.3 mm stainless steel grid. The whole vascular tree, including the interlobar, arcuate, and interlobular arteries, as well as the afferent arterioles, remained on the grid surface from where they were recovered. Extensive washing yielded a highly pure preparation of renal microvessels. Radioligand binding experiments were performed to characterize 125I-[Sar1,Ile8]-ANG II binding sites in preglomerular microvessel membranes. Equilibrium saturation binding experiments revealed the presence of one group of high affinity receptors (Kd = 1.22 +/- 0.171 nM; Bmax = 209 +/- 14 fmol/mg protein). Competitive inhibition experiments with two highly specific nonpeptide ANG II antagonists, losartan (DuP 753), which is specific for the AT1 receptor subtype, and PD123319, which is specific for the AT2 subtype, demonstrated that the large majority of, if not all, ANG II receptors in rat renal preglomerular vessels correspond to the AT1 subtype. PMID:1299411

  6. Atorvastatin inhibits the apoptosis of human umbilical vein endothelial cells induced by angiotensin II via the lysosomal-mitochondrial axis.

    PubMed

    Chang, Ye; Li, Yuan; Ye, Ning; Guo, Xiaofan; Li, Zhao; Sun, Guozhe; Sun, Yingxian

    2016-09-01

    This study was aimed to evaluate lysosomes-mitochondria cross-signaling in angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and whether atorvastatin played a protective role via lysosomal-mitochondrial axis. Apoptosis was detected by flow cytometry, Hoechst 33342 and AO/EB assay. The temporal relationship of lysosomal and mitochondrial permeabilization was established. Activity of Cathepsin D (CTSD) was suppressed by pharmacological and genetic approaches. Proteins production were measured by western blotting. Our study showed that Ang II could induce the apoptosis of HUVECs in a dose-depended and time-depended manner. Exposure to 1 μM Ang II for 24 h resulted in mitochondrial depolarization, cytochrome c release, and increased ROS production. Lysosomal permeabilization and CTSD redistribution into the cytoplasm occurred several hours prior to mitochondrial dysfunction. These effects were all suppressed by atorvastatin. Either pharmacological or genetic inhibition of CTSD preserved mitochondrial function and decreased apoptosis in HUVECs. Most importantly, we found that the protective effect of atorvastatin was significantly greater than pharmacological or genetic inhibition of CTSD. Finally, overexpression of CTSD without exposure to Ang II had no effect on mitochondrial function and apoptosis. Our data strongly suggested that Ang II induced apoptosis through the lysosomal-mitochondrial axis in HUVECs. Furthermore, atorvastatin played an important role in the regulation of lysosomes and mitochondria stability, resulting in an antagonistic role against Ang II on HUVECs. PMID:27394920

  7. Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells.

    PubMed

    Kozako, Tomohiro; Soeda, Shuhei; Yoshimitsu, Makoto; Arima, Naomichi; Kuroki, Ayako; Hirata, Shinya; Tanaka, Hiroaki; Imakyure, Osamu; Tone, Nanako; Honda, Shin-Ichiro; Soeda, Shinji

    2016-05-01

    Adult T-cell leukemia/lymphoma (ATL), an aggressive T-cell malignancy that develops after long-term infection with human T-cell leukemia virus (HTLV-1), requires new treatments. Drug repositioning, reuse of a drug previously approved for the treatment of another condition to treat ATL, offers the possibility of reduced time and risk. Among clinically available angiotensin II receptor blockers, telmisartan is well known for its unique ability to activate peroxisome proliferator-activated receptor-γ, which plays various roles in lipid metabolism, cellular differentiation, and apoptosis. Here, telmisartan reduced cell viability and enhanced apoptotic cells via caspase activation in ex vivo peripheral blood monocytes from asymptomatic HTLV-1 carriers (ACs) or via caspase-independent cell death in acute-type ATL, which has a poor prognosis. Telmisartan also induced significant growth inhibition and apoptosis in leukemia cell lines via caspase activation, whereas other angiotensin II receptor blockers did not induce cell death. Interestingly, telmisartan increased the LC3-II-enriched protein fraction, indicating autophagosome accumulation and autophagy. Thus, telmisartan simultaneously caused caspase activation and autophagy. A hypertension medication with antiproliferation effects on primary and leukemia cells is intriguing. Patients with an early diagnosis of ATL are generally monitored until the disease progresses; thus, suppression of progression from AC and indolent ATL to acute ATL is important. Our results suggest that telmisartan is highly effective against primary cells and leukemia cell lines in caspase-dependent and -independent manners, and its clinical use may suppress acute transformation and improve prognosis of patients with this mortal disease. This is the first report demonstrating a cell growth-inhibitory effect of telmisartan in fresh peripheral blood mononuclear cells from leukemia patients. PMID:27419050

  8. Klotho inhibits angiotensin II-induced cardiomyocyte hypertrophy through suppression of the AT1R/beta catenin pathway.

    PubMed

    Yu, Liangzhu; Meng, Wei; Ding, Jieqiong; Cheng, Menglin

    2016-04-29

    Myocardial hypertrophy is an independent risk factor for cardiac morbidity and mortality. The antiaging protein klotho reportedly possesses a protective role in cardiac diseases. However, the precise mechanisms underlying the cardioprotective effects of klotho remain unknown. This study was aimed to determine the effects of klotho on angiotensin II (Ang II)-induced hypertrophy in neonatal rat cardiomyocytes and the possible mechanism of actions. We found that klotho significantly inhibited Ang II-induced hypertrophic growth of neonatal cardiomyocytes, as evidenced by decreased [(3)H]-Leucine incorporation, cardiomyocyte surface area and β-myosin heavy chain (β-MHC) mRNA expression. Meanwhile, klotho inhibited Ang II-stimulated activation of the Wnt/β-catenin pathway in cardiomyocytes, as evidenced by decreased protein expression of active β-catenin, downregulated protein and mRNA expression of the β-catenin target genes c-myc and cyclin D1, and increased β-catenin phosphorylation. Inhibition of the Wnt/β-catenin pathway by the specific inhibitor XAV939 markedly attenuated Ang II-induced cardiomyocyte hypertrophy. The further study revealed that klotho treatment significantly downregulated protein expression of Ang II receptor type I (AT1R) but not type II (AT2R). The AT1R antagonist losartan inhibited Ang II-stimulated activation of the Wnt/β-catenin pathway and cardiomyocyte hypertrophy. Our findings suggest that klotho inhibits Ang II-induced cardiomyocyte hypertrophy through suppression of the AT1R/β-catenin signaling pathway, which may provide new insights into the mechanism underlying the protective effects of klotho in heart diseases, and raise the possibility that klotho may act as an endogenous antihypertrophic factor by inhibiting the Ang II signaling pathway. PMID:26970306

  9. Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells.

    PubMed

    Andresen, Bradley T; Linnoila, Jenny J; Jackson, Edwin K; Romero, Guillermo G

    2003-03-01

    Angiotensin (Ang) II promotes the phosphorylation of extracellular regulated kinase (ERK); however, the mechanisms leading to Ang II-induced ERK phosphorylation are debated. The currently accepted theory involves transactivation of epidermal growth factor receptor (EGFR). We have shown that generation of phosphatidic acid (PA) is required for the recruitment of Raf to membranes and the activation of ERK by multiple agonists, including Ang II. In the present report, we confirm that phospholipase D-dependent generation of PA is required for Ang II-mediated phosphorylation of ERK in Wistar-Kyoto and spontaneously hypertensive rat preglomerular smooth muscle cells (PGSMCs). However, EGF stimulation does not activate phospholipase D or generate PA. These observations indicate that EGF recruits Raf to membranes via a mechanism that does not involve PA, and thus, Ang II-mediated phosphorylation of ERK is partially independent of EGFR-mediated signaling cascades. We hypothesized that phosphoinositide-3-kinase (PI3K) can also act to recruit Raf to membranes; therefore, inhibition of PI3K should inhibit EGF signaling to ERK. Wortmannin, a PI3K inhibitor, inhibited EGF-mediated phosphorylation of ERK (IC50, approximately 14 nmol/L). To examine the role of the EGFR in Ang II-mediated phosphorylation of ERK we utilized 100 nmol/L wortmannin to inhibit EGFR signaling to ERK and T19N RhoA to block Ang II-mediated ERK phosphorylation. Wortmannin treatment inhibited EGF-mediated but not Ang II-mediated phosphorylation of ERK. Furthermore, T19N RhoA inhibited Ang II-mediated ERK phosphorylation, whereas T19N RhoA had significantly less effect on EGF-mediated ERK phosphorylation. We conclude that transactivation of the EGFR is not primarily responsible for Ang II-mediated activation of ERK in PGSMCs.

  10. Properly timed exposure to central ANG II prevents behavioral sensitization and changes in angiotensin receptor expression.

    PubMed

    Santollo, Jessica; Whalen, Philip E; Speth, Robert C; Clark, Stewart D; Daniels, Derek

    2014-12-15

    Previous studies show that the angiotensin type 1 receptor (AT1R) is susceptible to rapid desensitization, but that more chronic treatments that stimulate ANG II lead to sensitization of several responses. It is unclear, however, if the processes of desensitization and sensitization interact. To test for differences in AT1R expression associated with single or repeated injections of ANG II, we measured AT1R mRNA in nuclei that control fluid intake of rats given ANG II either in a single injection or divided into three injections spaced 20 min apart. Rats given a single injection of ANG II had more AT1R mRNA in the subfornical organ (SFO) and the periventricular tissue surrounding the anteroventral third ventricle (AV3V) than did controls. The effect was not observed, however, when the same cumulative dose of ANG II was divided into multiple injections. Behavioral tests found that single daily injections of ANG II sensitized the dipsogenic response to ANG II, but a daily regimen of four injections did not cause sensitization. Analysis of (125)I-Sar(1)-ANG II binding revealed a paradoxical decrease in binding in the caudal AV3V and dorsal median preoptic nucleus after 5 days of single daily injections of ANG II; however, this effect was absent in rats treated for 5 days with four daily ANG II injections. Taken together, these data suggest that a desensitizing treatment regimen prevents behavior- and receptor-level effects of repeated daily ANG II.

  11. Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation

    PubMed Central

    Gomolak, Jessica R.; Didion, Sean P.

    2014-01-01

    Angiotensin II (Ang II) is associated with vascular hypertrophy, endothelial dysfunction and activation of a number of inflammatory molecules, however the linear events involved in the development of hypertension and endothelial dysfunction produced in response to Ang II are not well defined. The goal of this study was to examine the dose- and temporal-dependent development of endothelial dysfunction in response to Ang II. Blood pressure and responses of carotid arteries were examined in control (C57Bl/6) mice and in mice infused with 50, 100, 200, 400, or 1000 ng/kg/min Ang II for either 14 or 28 Days. Infusion of Ang II was associated with graded and marked increases in systolic blood pressure and plasma Ang II concentrations. While low doses of Ang II (i.e., 50 and 100 ng/kg/min) had little to no effect on blood pressure or endothelial function, high doses of Ang II (e.g., 1000 ng/kg/min) were associated with large increases in arterial pressure and marked impairment of endothelial function. In contrast, intermediate doses of Ang II (200 and 400 ng/kg/min) while initially having no effect on systolic blood pressure were associated with significant increases in pressure over time. Despite increasing blood pressure, 200 ng/kg/min had no effect on endothelial function, whereas 400 ng/kg/min produced modest impairment on Day 14 and marked impairment of endothelial function on Day 28. The degree of endothelial dysfunction produced by 400 and 1000 ng/kg/min Ang II was reflective of parallel increases in plasma IL-6 levels and vascular macrophage content, suggesting that increases in arterial blood pressure precede the development of endothelial dysfunction. These findings are important as they demonstrate that along with increases in arterial pressure that increases in IL-6 and vascular macrophage accumulation correlate with the impairment of endothelial function produced by Ang II. PMID:25400581

  12. Effect of angiotensin II on uterine and systemic vasculature in pregnant sheep.

    PubMed Central

    Naden, R P; Rosenfeld, C R

    1981-01-01

    The response of uteroplacental blood flow (UBF) to angiotensin II is controversial. Moreover, the relationship of the uterine and systemic responses to infused angiotensin II is not well understood. Thus, in eight chronically instrumented, near-term pregnant sheep, we have determined the relationships between the dose and duration of constant systemic infusions of angiotensin II ([Val5] ANG II) and changes in UBF, uterine vascular resistance (UVR), mean arterial pressure (MAP), and systemic vascular resistance (SVR). [Val5] ANG II caused dose-dependent increases in UVR and MAP at all doses studied (P less than 0.05). The response in UBF was bidirectional, with increases at doses less than or equal to 1.15 microgram/min and decreases at greater than or equal to 2.29 micrograms/min (P less than 0.05). Increases in UBP occurred when the relative rise (delta) in MAP greater than delta UVR, whereas UBF was unchanged when delta MAP = delta UVR and decreased when delta MAP less than delta UVR. SVR also rose in a dose-dependent fashion (P less than 0.05); delta SVR was greater than delta UVR at doses less than or equal to 2.29 micrograms [Val5] ANG II/min (P less than 0.01). In studies of the effect of duration of [Val5] ANG II infusions, UBF increased at all doses during the 1st min, followed by stabilization at 4--5 min, with eventual decreases at doses greater than or equal to 2.29 micrograms/min and increases at doses less than 2.29 micrograms/min. The relationship between the changes in MAP and UVR to the response of UBF was as noted above. It is evident that (a) [Val5] NAG II is uterine vasoconstrictor, (b) changes in UBF are dependent upon relative changes in perfusion pressure and UVR, which in turn are dependent upon both the dose and duration of a [Val5] ANG II infusion, and (c) the uteroplacental vasculature is relatively refractory to the vasoconstricting effects of low doses of [Val5] ANG II. PMID:7263862

  13. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta.

    PubMed Central

    Wolf, G; Mueller, E; Stahl, R A; Ziyadeh, F N

    1993-01-01

    Previous studies by our group have demonstrated that angiotensin II (ANG II), as a single factor in serum-free medium, induces cellular hypertrophy of a cultured murine proximal tubular cell line (MCT). The present study was performed to test the hypothesis that this growth effect was mediated by activation of endogenous transforming growth factor-beta (TGF-beta). Exogenous TGF-beta 1 (1 ng/ml) mimicked the growth effects observed with 10(-8) M ANG II (inhibition of DNA synthesis and induction of cellular hypertrophy). A neutralizing anti-TGF-beta antibody attenuated the ANG II-induced increase in de novo protein and total RNA synthesis as well as total protein content. This antibody also abolished the ANG II-mediated inhibition of [3H]thymidine incorporation into quiescent MCT cells. Control IgG or an unrelated antibody had no effect. A bioassay for TGF-beta using mink lung epithelial cells revealed that MCT cells treated with ANG II released active TGF-beta into the cell culture supernatant. Northern blot analysis and semi-quantitative cDNA amplification demonstrated increases in steady-state levels for TGF-beta 1 mRNA after ANG II stimulation of MCT cells, but not in a syngeneic murine mesangial cell line. Our data indicate that the ANG II-induced hypertrophy in MCT cells is mediated by synthesis and activation of endogenous TGF-beta. It is intriguing to speculate that TGF-beta may play a role in the early tubular cell hypertrophy and the subsequent interstitial scarring observed in several models of chronic renal injury that are characterized by increased activity of intrarenal ANG II. Images PMID:7690779

  14. Activation of calpain by renin-angiotensin system in pleural mesothelial cells mediates tuberculous pleural fibrosis

    PubMed Central

    Yang, Jie; Xiang, Fei; Cai, Peng-Cheng; Lu, Yu-Zhi; Xu, Xiao-Xiao; Yu, Fan; Li, Feng-Zhi; Greer, Peter A.; Shi, Huan-Zhong; Zhou, Qiong; Xin, Jian-Bao; Ye, Hong; Su, Yunchao

    2016-01-01

    Pleural fibrosis is defined as an excessive deposition of extracellular matrix (ECM) components that results in destruction of the normal pleural tissue architecture. It can result from diverse inflammatory conditions, especially tuberculous pleurisy. Pleural mesothelial cells (PMCs) play a pivotal role in pleural fibrosis. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodeling. However, the role of calpain in pleural fibrosis remains unknown. In the present study, we found that tuberculous pleural effusion (TPE) induced calpain activation in PMCs and that inhibition of calpain prevented TPE-induced collagen-I synthesis and cell proliferation of PMCs. Moreover, our data revealed that the levels of angiotensin (ANG)-converting enzyme (ACE) were significantly higher in pleural fluid of patients with TPE than those with malignant pleural effusion, and ACE-ANG II in TPE resulted in activation of calpain and subsequent triggering of the phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB signaling pathway in PMCs. Finally, calpain activation in PMCs and collagen depositions were confirmed in pleural biopsy specimens from patients with tuberculous pleurisy. Together, these studies demonstrated that calpain is activated by renin-angiotensin system in pleural fibrosis and mediates TPE-induced collagen-I synthesis and proliferation of PMCs via the PI3K/Akt/NF-κB signaling pathway. Calpain in PMCs might be a novel target for intervention in tuberculous pleural fibrosis. PMID:27261452

  15. Activation of calpain by renin-angiotensin system in pleural mesothelial cells mediates tuberculous pleural fibrosis.

    PubMed

    Yang, Jie; Xiang, Fei; Cai, Peng-Cheng; Lu, Yu-Zhi; Xu, Xiao-Xiao; Yu, Fan; Li, Feng-Zhi; Greer, Peter A; Shi, Huan-Zhong; Zhou, Qiong; Xin, Jian-Bao; Ye, Hong; Su, Yunchao; Ma, Wan-Li

    2016-07-01

    Pleural fibrosis is defined as an excessive deposition of extracellular matrix (ECM) components that results in destruction of the normal pleural tissue architecture. It can result from diverse inflammatory conditions, especially tuberculous pleurisy. Pleural mesothelial cells (PMCs) play a pivotal role in pleural fibrosis. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodeling. However, the role of calpain in pleural fibrosis remains unknown. In the present study, we found that tuberculous pleural effusion (TPE) induced calpain activation in PMCs and that inhibition of calpain prevented TPE-induced collagen-I synthesis and cell proliferation of PMCs. Moreover, our data revealed that the levels of angiotensin (ANG)-converting enzyme (ACE) were significantly higher in pleural fluid of patients with TPE than those with malignant pleural effusion, and ACE-ANG II in TPE resulted in activation of calpain and subsequent triggering of the phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB signaling pathway in PMCs. Finally, calpain activation in PMCs and collagen depositions were confirmed in pleural biopsy specimens from patients with tuberculous pleurisy. Together, these studies demonstrated that calpain is activated by renin-angiotensin system in pleural fibrosis and mediates TPE-induced collagen-I synthesis and proliferation of PMCs via the PI3K/Akt/NF-κB signaling pathway. Calpain in PMCs might be a novel target for intervention in tuberculous pleural fibrosis. PMID:27261452

  16. Functional and biochemical responses of cultured heart cells to angiotensin II

    SciTech Connect

    Allen, I.; Gaa, S.; Rogers, T.B.

    1986-05-01

    The authors have utilized a cultured neonatal rat heart myocyte system to study the molecular mechanisms involved in the stimulation of heart cells by angiotensin II (AII). The intact cultured cells, and membranes from these cells, have specific, high affinity receptors for /sup 125/I-AII and for an AII antagonist, /sup 125/I-Sar/sup 1/,Leu/sup 8/-AII. Binding affinity was in the nanomolar range and was inhibited by guanine nucleotides. Functional studies on intact, beating cells revealed a maximal increase in contractile frequency of 50%, observed at 5 nM AII, with half maximal effects noted at around 1 nM. These responses were reversible and specific as the antagonist, Sar/sup 1/, Ala/sup 8/-AII, inhibited AII-induced chronotropic stimulation. AII (100 nM) had no effect on basal adenylate cyclase activity (20 pmoles cAMP/mg prot/min at 2.5mM Mg/sup 2 +/) in cell membranes. Further, in membranes where cyclase activity was stimulated with isoproterenol (290 pmoles cAMP/mg prot/min at 2.5mM Mg/sup 2 +/), addition of AII had no effect. The cyclase-inhibitory muscarinic agonist, carbachol, also failed to reduce isoproterenol-stimulated activity. In preliminary work with the intact cells, AII again did not alter basal cAMP levels (3-10 pmoles cAMP/mg prot). However, the hormone increased isoproterenol-stimulated cAMP levels by almost 50%. These cells are an excellent system for correlating AII receptor binding with functional and biochemical responses.

  17. P2X7 receptor antagonism improves renal blood flow and oxygenation in angiotensin-II infused rats

    PubMed Central

    Menzies, Robert I.; Howarth, Amelia R.; Unwin, Robert J.; Tam, Frederick W.K.; Mullins, John J.; Bailey, Matthew A.

    2015-01-01

    Chronic activation of the renin angiotensin system promotes hypertension, renal microvascular dysfunction, tissue hypoxia and inflammation. We found previously that the injurious response to excess angiotensin II (ANGII) is greater in F344 rats, whereas Lewis rats are renoprotected, despite similar hypertension. We further identified p2rx7, encoding the P2X7 receptor (P2X7R), as a candidate gene for differential susceptibility and here we have tested the hypothesis that activation of P2X7R promotes vascular dysfunction under high ANGII tone. 14-day infusion of ANGII at 30ng/min into F344 rats increased blood pressure by ~15mmHg without inducing fibrosis or albuminuria. In vivo pressure natriuresis was suppressed, medullary perfusion reduced by ~50% and the cortico-medullary oxygenation gradient disrupted. Selective P2X7R antagonism restored pressure natriuresis, promoting a significant leftward shift in the intercept and increasing the slope. Sodium excretion was increased 6 fold and blood pressure normalized. The specific P2X7R antagonist AZ11657312 increased renal medullary perfusion, but only in ANGII-treated rats. Tissue oxygenation was improved by P2X7R blockade, particularly in poorly oxygenated regions of the kidney. Activation of P2X7R induces microvascular dysfunction and regional hypoxia when ANGII is elevated. These pro-inflammatory effects may contribute to progression of renal injury induced by chronic ANGII. PMID:26108066

  18. Proliferative effects of angiotensin II and endothelin-1 on guinea pig gingival fibroblast cells in culture.

    PubMed

    Ohuchi, Nozomi; Koike, Katsuo; Sano, Masakazu; Kusama, Tadashi; Kizawa, Yasuo; Hayashi, Kazuhiko; Taniguchi, Yumiko; Ohsawa, Masami; Iwamoto, Keishi; Murakami, Hajime

    2002-08-01

    We investigated whether phenytoin (PHT) and nifedipine (NIF) induce angiotensin II (Ang II) and endothelin-1 (ET-1) generation by cultured gingival fibroblasts derived from guinea pigs and whether Ang II and ET-1 induce proliferation of these cells. Immunohistochemical experiments showed that PHT (250 nM) and NIF (250 nM) increased the immunostaining intensities of immunoreactive Ang II and ET-1 (IRET-1) in these cells. Captopril (3 microM), an angiotensin-converting enzyme inhibitor, reduced these enhanced intensities to control levels. Ang II (100 nM) enhanced the immunostaining intensity of IRET-1. PHT (250 nM) and NIF (250 nM)-induced cell proliferation. Both PHT- and NIF-induced proliferation was inhibited by captopril (3 microM). Ang II (100 nM) and ET-1 (100 nM) also induced cell proliferation. Ang II-induced proliferation was inhibited by CV11974 (1 microM), an AT(1) receptor antagonist and saralasin (1 microM), an AT(1)/AT(2) receptor antagonist, but not by PD123,319 (1 microM), an AT(2) receptor antagonist. ET-1-induced proliferation was inhibited by BQ123 (10 microM), an ET(A) receptor antagonist, but not by BQ788 (1 microM), an ET(B) receptor antagonist. These findings suggest that PHT- and NIF-induced gingival fibroblast proliferation is mediated indirectly through the induction of Ang II and ET-1 and probably mediated through AT(1) and ET(A) receptors present in or on gingival fibroblasts. PMID:12223201

  19. Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors.