Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve
2017-06-06
A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wu; Canfield, Nathan L.; Zhang, Ji-Guang
Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein themore » anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.« less
Chen, Qin; Pu, Wenhong; Hou, Huijie; Hu, Jingping; Liu, Bingchuan; Li, Jianfeng; Cheng, Kai; Huang, Long; Yuan, Xiqing; Yang, Changzhu; Yang, Jiakuan
2018-02-01
Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m -3 ) 2.3 times higher than carbon cloth anode (10.4 W m -3 ). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Disordered anodes for Ni-metal rechargeable battery
Young, Kwo-hsiung; Wang, Lixin; Mays, William C.
2016-11-22
An electrochemical cell is provided that includes a structurally and compositionally disordered electrochemically active alloy material as an anode active material with unexpected capacity against a nickel hydroxide based cathode active material. The disordered metal hydroxide alloy includes three or more transition metal elements and is formed in such a way so as to produce the necessary disorder in the overall system. When an anode active material includes nickel as a predominant, the resulting cells represent the first demonstration of a functional Ni/Ni cell.
Silicon oxide based high capacity anode materials for lithium ion batteries
Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet
2017-03-21
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
Yang, Jiawei; Cheng, Shaoan; Sun, Yi; Li, Chaochao
2017-10-01
To increase the power generation of microbial fuel cells (MFCs), anode modification with carbon materials (activated carbon, carbon nanotubes, and carbon nanohorns) was investigated. Maximum power densities of a stainless-steel anode MFC with a non-modified electrode (SS-MFC), an activated carbon-modified electrode (AC-MFC), a carbon nanotube-modified electrode (CNT-MFC) and a carbon nanohorn-modified electrode (CNH-MFC) were 72, 244, 261 and 327 mW m -2 , respectively. The total polarization resistance measured by electrochemical impedance spectroscopy were 3610 Ω for SS-MFC, 283 Ω for AC-MFC, 231 Ω for CNTs-MFC, and 136 Ω for CNHs-MFC, consistent with the anode resistances obtained by fitting the anode polarization curves. Single-wall carbon nanohorns are better than activated carbon and carbon nanotubes as a new anode modification material for improving anode performance.
NASA Astrophysics Data System (ADS)
Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut
2016-03-01
Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.
Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.
2014-11-25
The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.
Thermal control materials on EOIM-3
NASA Technical Reports Server (NTRS)
Finckenor, Miria M.; Linton, Roger C.; Kamenetzky, Rachel R.; Vaughn, Jason A.
1995-01-01
Thermal control paints, anodized aluminum, and beta cloth samples were flown on STS-46 as part of the Evaluation of Oxygen Interaction with Materials Experiment (EOIM-3). The thermal control paints flown on EOIM-3 include ceramic and polyurethane-based paints. Passively exposed samples are compared to actively heated samples and controlled exposure samples. Optical property measurements of absorptivity, emissivity, and spectrofluorescence are presented for each paint. Several variations of anodized aluminum, including chromic acid anodize, sulfuric acid anodize, and boric/sulfuric acid anodize were flown on the actively heated trays and the passive exposure trays. The post-flight optical properties are within tolerances for these materials. Also flown were two samples of yellow anodized aluminum. The yellow anodized aluminum samples darkened noticeably. Samples of aluminized and unaluminized beta cloth, a fiberglass woven mat impregnated with TFE Teflon, were flown with passive exposure to the space environment. Data from this part of the experiment is correlated to observations from LDEF and erosion of the Teflon thin film samples also flown on EOIM-3 and LDEF.
Hollow Nanostructured Anode Materials for Li-Ion Batteries
2010-01-01
Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674
Thermally activated ("thermal") battery technology. Part IV. Anode materials
NASA Astrophysics Data System (ADS)
Guidotti, Ronald A.; Masset, Patrick J.
In this paper, the history of anode materials developed for use in thermally activated ("thermal") batteries is presented. The chemistries (phases) and electrochemical characteristics (discharge mechanisms) of these materials are described, along with general thermodynamic properties, where available. This paper is the last of a five-part series that presents a general review of thermal-battery technology.
High capacity anode materials for lithium ion batteries
Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject
2015-11-19
High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.
Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, III, D. L.; Yoon, S.
2012-10-25
The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, whichmore » is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.« less
Nanocomposite anode materials for sodium-ion batteries
Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric
2016-06-14
The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.
Alkaline and non-aqueous proton-conducting pouch-cell batteries
Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun
2018-01-02
Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.
NASA Astrophysics Data System (ADS)
Wu, Gaoming; Bao, Han; Xia, Zheng; Yang, Bin; Lei, Lecheng; Li, Zhongjian; Liu, Chunxian
2018-04-01
Anode materials, as the core component of microbial fuel cells (MFCs), have huge impacts on power generation performance and overall cost. Stainless-steel sponge (SS) can be a promising material for MFC anodes, due to its open continuous three-dimensional structure, high conductivity and low cost. However, poor biocompatibility limits its application. In this paper, a polypyrrole/sargassum activated carbon modified SS anode (Ppy/SAC/SS) is developed by electrochemical polymerization of pyrrole on the SS with the SAC as a dopant. The maximum power density achieved with the Ppy/SAC/SS anode is 45.2 W/m3, which is increased by 2 orders of magnitude and 2.9 times compared with an unmodified SS anode and a solely Ppy modified SS anode (Ppy/SS), respectively. In addition, the Ppy/SAC layer effectively eliminates electrochemical corrosion of the SS substrate. Electrochemical impedance spectroscopy reveals that Ppy/SAC modification decreases electron transfer resistance between the bacteria and the electrode. Furthermore, in vivo fluorescence imaging indicates that a more uniform biofilm is formed on the Ppy/SAC/SS compared to the unmodified SS and Ppy/SS. Due to the low cost of the materials, easy fabrication process and relatively high performance, our developed Ppy/SAC/SS can be a cost efficient anode material for MFCs in practical applications.
Electroactive materials for rechargeable batteries
Wu, Huiming; Amine, Khalil; Abouimrane, Ali
2016-10-25
A secondary battery including a cathode having a primary cathode active material and an alkaline source material selected from the group consisting of Li.sub.2O, Li.sub.2O.sub.2, Li.sub.2S, LiF, LiCl, Li.sub.2Br, Na.sub.2O, Na.sub.2O.sub.2, Na.sub.2S, NaF, NaCl, and a mixture of any two or more thereof; an anode having an anode active material; an electrolyte; and a separator.
Review on recent progress of nanostructured anode materials for Li-ion batteries
NASA Astrophysics Data System (ADS)
Goriparti, Subrahmanyam; Miele, Ermanno; De Angelis, Francesco; Di Fabrizio, Enzo; Proietti Zaccaria, Remo; Capiglia, Claudio
2014-07-01
This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.
Porous graphene nanocages for battery applications
Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.
2017-03-07
An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.
Miniature Lightweight Ion Pump
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva P.
2010-01-01
This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are sputtered away. For stable pumping of inert gases, one side of the cathode is made of Ta. Impaction on Ta produces energetic, neutral atoms that pump the inert gases on the anode structure at the peripheral areas of the cathodes (between anode rings). For inert gases stability, a post design has been implemented. Here, posts of cathode material (Ti) are mounted on the cathode. These protrude into the initial part of the anode elements. Materials sputtered from the posts condense on the anode assembly and on the cathode plane at higher rates than in the normal diodes due to enhanced sputtering at glancing angles from geometrical considerations. This increases pumping by burial. This post design has enhanced pumping rates for both active and inert gases, compared with conventional designs.
Battery designs with high capacity anode materials and cathode materials
Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.
2017-10-03
Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
Method of fabricating a monolithic core for a solid oxide fuela cell
Zwick, S.A.; Ackerman, J.P.
1983-10-12
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002 to 0.01 cm thick; and the cathode and anode materials are only 0.002 to 0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
Method of fabricating a monolithic core for a solid oxide fuel cell
Zwick, Stanley A.; Ackerman, John P.
1985-01-01
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong
2017-08-01
This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Tae-Sic; Vaden, DeeEarl; Westphal, Brian Robert
2016-01-01
The Experimental Breeder Reactor II (EBR-II) is a sodium cooled fast reactor developed at Argonne National Laboratory (ANL). The used fuels from the EBR-II are currently being treated in the Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL). The Mark IV (Mk-IV) electrorefiner (ER) is a unit process in the FCF, which is primarily assigned to treating the used driver fuels. The stainless steel anode baskets hold the chopped spent driver fuel segments. During electrorefining, the anode baskets are immersed into the electrolyte and the used fuel is dissolved electrochemically. Perforated sides and bottoms allow the flow ofmore » the electrolyte into and out of the anode baskets. The steel cathode is also immersed into the electrolyte and collects the reduced products. The active metal contents in the used fuel (e.g., Cs, Sr, lanthanides, Pu, etc.) reacts with uranium cations in the electrolyte and progressively reports to the electrolyte. Noble metals are mostly retained in the cladding hulls. Varying quantities of zirconium are retained in the cladding hulls depending on the operational conditions of the Mk-IV ER. The undissolved anode materials are removed from the anode baskets and stored for subsequent metal waste form processing. These undissolved materials typically include undissolved fuels, stainless steel cladding, and adhering electrolyte. A couple of hulls are retrieved for chemical analysis and used for estimating the composition of the entire undissolved anode materials. The mass balance attempt based on this practice of estimating the undissolved anode materials has been a challenge due to inherently high sampling errors associated with heterogeneous undissolved material compositions. Responding to the prescribed challenge, this report investigates chemical analysis data as a whole and finds noticeable trends in the compositions of undissolved anode material samples with respect to the mass of the whole undissolved anode materials. Based upon this discovery, an empirical model is proposed.« less
Electro-catalytic oxidation device for removing carbon from a fuel reformate
Liu, Di-Jia [Naperville, IL
2010-02-23
An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.
TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells
Marks, Iobin J [Evanston, IL; Hains, Alexander W [Evanston, IL
2011-02-15
The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.
NASA Astrophysics Data System (ADS)
Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo
2007-12-01
The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.
Kipf, Elena; Koch, Julia; Geiger, Bettina; Erben, Johannes; Richter, Katrin; Gescher, Johannes; Zengerle, Roland; Kerzenmacher, Sven
2013-10-01
We present a systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Under anoxic conditions nanoporous activated carbon cloth is a superior anode material in terms of current density normalized to the projected anode area and anode volume (24.0±0.3 μA cm(-2) and 482±7 μA cm(-3) at -0.2 vs. SCE, respectively). The good performance can be attributed to the high specific surface area of the material, which is available for mediated electron transfer through self-secreted flavins. Under aerated conditions no influence of the specific surface area is observed, which we attribute to a shift from primary indirect electron transfer by mediators to direct electron transfer via adherent cells. Furthermore, we show that an aerated initial growth phase enhances the current density under subsequent anoxic conditions fivefold when compared to a similar experiment that was conducted under permanently anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Song, Rong-Bin; Zhao, Cui-E; Gai, Pan-Pan; Guo, Dan; Jiang, Li-Ping; Zhang, Qichun; Zhang, Jian-Rong; Zhu, Jun-Jie
2017-02-01
The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe 3 O 4 (G/Fe 3 O 4 ) composite, has been designed for Shewanella-inoculated MFCs. Because the Shewanella species could bind to Fe 3 O 4 with high affinity and their growth could be supported by Fe 3 O 4 , the bacterial cells attached quickly onto the anode surface and their long-term activity improved. As a result, MFCs with reduced startup time and improved stability were obtained. Additionally, the introduction of graphene not only provided a large surface area for bacterial attachment, but also offered high electrical conductivity to facilitate extracellular electron transfer (EET). The results showed that the current and power densities of a G/Fe 3 O 4 anode were much higher than those of each individual component as an anode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, L M; Lei, A W; Cao, Y L; Ai, X P; Yang, H X
2013-01-21
An all-organic rechargeable battery is realized by use of polyparaphenylene as both cathode- and anode-active material. This new battery can operate at a high voltage of 3.0 V with fairly high capacity, offering a renewable and cheaper alternative to conventional batteries.
Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai
2016-09-01
Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and themore » abnormal high capacity associated with these high energy cathode materials.« less
Next Generation Anodes for Lithium-Ion Batteries: Thermodynamic Understanding and Abuse Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenton, Kyle R.; Allcorn, Eric; Nagasubramanian, Ganesan
The objectives of this report are as follows: elucidate degradation mechanisms, decomposition products, and abuse response for next generation silicon based anodes; and Understand the contribution of various materials properties and cell build parameters towards thermal runaway enthalpies. Quantify the contributions from particle size, composition, state of charge (SOC), electrolyte to active materials ratio, etc.
Sonawane, Jayesh M; Yadav, Abhishek; Ghosh, Prakash C; Adeloju, Samuel B
2017-04-15
Microbial fuel cells (MFCs) are novel bio-electrochemical device for spontaneous or single step conversion of biomass into electricity, based on the use of metabolic activity of bacteria. The design and use of MFCs has attracted considerable interests because of the potential new opportunities they offer for sustainable production of energy from biodegradable and reused waste materials. However, the associated slow microbial kinetics and costly construction materials has limited a much wider commercial use of the technology. In the past ten years, there has been significant new developments in MFCs which has resulted in several-fold increase in achievable power density. Yet, there is still considerable possibility for further improvement in performance and development of new cost effective materials. This paper comprehensively reviews recent advances in the construction and utilization of novel anodes for MFCs. In particular, it highlights some of the critical roles and functions of anodes in MFCs, strategies available for improving surface areas of anodes, dominant performance of stainless-steel based anode materials, and the emerging benefits of inclusion of nanomaterials. The review also demonstrates that some of the materials are very promising for large scale MFC applications and are likely to replace conventional anodes for the development of next generation MFC systems. The hurdles to the development of commercial MFC technology are also discussed. Furthermore, the future directions in the design and selection of materials for construction and utilization of MFC anodes are highlighted. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Young, Benjamin; Heskett, David; Nguyen, Cao Cuong; Woicik, Joseph; Lucht, Brett
From portable electronics to space exploration, the desire for more capable rechargeable batteries is driving a search for high capacity anodes. There is much interest in incorporating silicon as a partial or full replacement for the current graphite material in the most popular batteries because it could potentially hold much more charge. There is a significant challenge, however, in that storing so much more lithium in either electrode as the battery is charged and discharged as this causes an accompanying increase in the physical size fluctuation of the electrodes. Specifically, in the anode where this investigation focuses, the active material may experience a 300% volume change between the charged and discharged state. This makes a long lifetime difficult to achieve because the passivation layer protecting the electrolyte material from decomposition is compromised upon each cycle. One approach to accommodating the large volumetric fluctuation without sacrificing lifetime is to find a better material to include in the anode substrate to act as a binder. Ideally, such a material would permit the anode to fluctuate without breaking. Polyvinylidene fluoride (PVdF) is not successful for silicon-based anodes and we present Hard X-ray photoelectron spectroscopy studies of batteries incorporating three alternatives. The alternative binders outperform the PVdF and we present possible explanations. DOE EPSCoR and RI College Faculty Research Fund.
Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.
Cui, Li-Feng; Hu, Liangbing; Choi, Jang Wook; Cui, Yi
2010-07-27
Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of approximately 30 Ohm/sq. It shows a high specific charge storage capacity (approximately 2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers approximately 10 times improvement in specific capacity compared with widely used graphite/copper anode sheets.
NASA Astrophysics Data System (ADS)
Du, Qing; An, Jingkun; Li, Junhui; Zhou, Lean; Li, Nan; Wang, Xin
2017-03-01
The bacterial anode material is important to the performance of microbial fuel cells (MFCs) because its characteristics affect the biofilm formation and extracellular electron transfer. Here we find that a superhydrophilic semiconductor, polydopamine (PDA), is an effective modification material for the anode to accelerate startup and improve power density. When the activated carbon anode is added with 50% (wt.) PDA, the startup time is 14% shorter than the control (from 88 h to 76 h), with a 31% increase in maximum power density from 613 ± 9 to 803 ± 6 mW m-2, and the Columbic efficiency increases from 19% to 48%. These can be primarily attributed to the abundant functional groups (such as amino group, and catechol functions) introduced by PDA that improve hydrophilicity and extracellular electron transfer. PDA also increases proportions of Proteobacteria and Firmicutes families, indicating that PDA has a selective effect on anode microbial community. Our findings provide a new approach to accelerate anode biofilm formation and enhance MFC power output by modification of biocompatible PDA.
Next Generation Anodes for Lithium Ion Batteries: Thermodynamic Understanding and Abuse Performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenton, Kyle R.; Allcorn, Eric; Nagasubramanian, Ganesan
The objectives of this project are to elucidate degradation mechanisms, decomposition products, and abuse response for next generation silicon based anodes; and understand the contribution of various materials properties and cell build parameters towards thermal runaway enthalpies. Quantify the contributions from various cell parameters such as particle size, composition, state of charge (SOC), electrolyte to active materials ratio, etc.
Electrodes and electrochemical storage cells utilizing tin-modified active materials
Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam
1995-01-01
An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.
NASA Astrophysics Data System (ADS)
Dong, Jiajun; Zhang, Tong; Zhang, Dong; Zhang, Weiwei; Zhang, Huafang; Liu, Ran; Yao, Mingguang; Liu, Bingbing
2017-01-01
Onion-like carbon nanospheres (OCNSs) with an average diameter of 43 nm were produced on a large scale via a combustion method and examined as an anode material for lithium ion batteries. The OCNSs exhibit a remarkable electrochemical cycling behavior and a capacity much higher than that of graphite. The capacity increases significantly with increasing charge-discharge cycles and reaches a value of 178% of the initial value (from 586 mA h g-1to 1045 mA h g-1) after 200 cycles. Further investigation provides unambiguous experimental evidence that such a remarkable capacity increase is related to the stable onion-like structure of the OCNSs and to the existence of large numbers of disordered/short graphitic fragments, which gradually provide more active sites for Li ion storage. The unique electrochemical performance of OCNSs provides a new way to design a high-performance anode material for rechargeable batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui, E-mail: liuenhui99@sina.com.cn
Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl{sub 2} and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a currentmore » density of 100 mA g{sup −1}, the carbon without activation shows a first discharge capacity of 515 mAh g{sup −1}. After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl{sub 2} and KOH activation was 1010 and 2085 mAh g{sup −1}, respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g{sup −1} after 20 cycles, which was much better than that activated by ZnCl{sub 2}. These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.« less
Yang, Meng; Zhong, Yuezhi; Zhang, Baogang; Shi, Jiaxin; Huang, Xueyang; Xing, Yi; Su, Lin; Liu, Huipeng; Borthwick, Alistair G L
2018-01-31
Anode materials and structures are of critical importance for microbial fuel cells (MFCs) recovering energy from toxic substrates. Carbon-fiber-felt anodes modified by layers of vertically oriented TiO 2 and Fe 2 O 3 nanosheets were applied in the present study. Enhanced sulfide removal efficiencies (both over 90%) were obtained after a 48-h operation, with maximum power densities improved by 1.53 and 1.36 folds compared with MFCs with raw carbon-fiber-felt anode. The modified anodes provided more active sites for microbial adhesion with increasing biomass densities. High-throughput 16S rRNA gene sequencing analysis also indicated the increase in microbial diversities. Bacteroidetes responsible for bioelectricity generation with Thiobacillus and Spirochaeta dominating sulfide removal were found in the MFCs with the modified anodes, with less anaerobic fermentative bacteria as Firmicutes appeared. This indicates that the proposed materials are competitive for applications of MFCs generating bioelectricity from toxic sulfide.
The Weinstein conjecture with multiplicities on spherizations
NASA Astrophysics Data System (ADS)
Hertzberg, Benjamin J.
2011-07-01
Si-based anodes have recently received considerable attention for use in Li-ion batteries, due to their extremely high specific capacity---an order of magnitude beyond that offered by conventional graphite anode materials. However, during the lithiation process, Si-based anodes undergo extreme increases in volume, potentially by more than 300 %. The stresses produced within the electrode by these volume changes can damage the electrode binder, the active Si particles and the solid electrolyte interphase (SEI), causing the electrode to rapidly fail and lose capacity. These problems can be overcome by producing new anode materials incorporating both Si and C, which may offer a favorable combination of the best properties of both materials, and which can be designed with internal porosity, thereby buffering the high strains produced during battery charge and discharge with minimal overall volume changes. However, in order to develop useful anode materials, we must gain a thorough understanding of the structural, microstructural and chemical changes occurring within the electrode during the lithiation and delithiation process, and we must develop new processes for synthesizing composite anode particles which can survive the extreme strains produced during lithium intercalation of Si and exhibit no volume changes in spite of the volume changes in Si. In this work we have developed several novel synthesis processes for producing internally porous Si-C nanocomposite anode materials for Li-ion batteries. These nanocomposites possess excellent specific capacity, Coulombic efficiency, cycle lifetime, and rate capability. We have also investigated the influence of a range of different parameters on the electrochemical performance of these materials, including pore size and shape, carbon and silicon film thickness and microstructure, and binder chemistry.
Electrolytes for Low Impedance, Wide Operating Temperature Range Lithium-Ion Battery Module
NASA Technical Reports Server (NTRS)
Hallac, Boutros (Inventor); Krause, Frederick C. (Inventor); Jiang, Junwei (Inventor); Smart, Marshall C. (Inventor); Metz, Bernhard M. (Inventor); Bugga, Ratnakumar V. (Inventor)
2018-01-01
A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte.
NASA Astrophysics Data System (ADS)
Olu, Pierre-Yves; Job, Nathalie; Chatenet, Marian
2016-09-01
In this paper, different methods are discussed for the evaluation of the potential of a given catalyst, in view of an application as a direct borohydride fuel cell DBFC anode material. Characterizations results in DBFC configuration are notably analyzed at the light of important experimental variables which influence the performances of the DBFC. However, in many practical DBFC-oriented studies, these various experimental variables prevent one to isolate the influence of the anode catalyst on the cell performances. Thus, the electrochemical three-electrode cell is a widely-employed and useful tool to isolate the DBFC anode catalyst and to investigate its electrocatalytic activity towards the borohydride oxidation reaction (BOR) in the absence of other limitations. This article reviews selected results for different types of catalysts in electrochemical cell containing a sodium borohydride alkaline electrolyte. In particular, propositions of common experimental conditions and benchmarks are given for practical evaluation of the electrocatalytic activity towards the BOR in three-electrode cell configuration. The major issue of gaseous hydrogen generation and escape upon DBFC operation is also addressed through a comprehensive review of various results depending on the anode composition. At last, preliminary concerns are raised about the stability of potential anode catalysts upon DBFC operation.
Molten Salt Electrolytically Produced Carbon/Tin Nanomaterial as the Anode in a Lithium Ion Battery
NASA Astrophysics Data System (ADS)
Das Gupta, Rajshekar; Schwandt, Carsten; Fray, Derek J.
2017-03-01
A carbon/tin nanomaterial, consisting of predominantly Sn-filled carbon nanotubes and nanoparticles, is prepared by molten salt electrochemistry, using electrodes of graphite and an electrolyte of LiCl salt containing a small admixture of SnCl2. The C/Sn hybrid material generated is incorporated into the active anode material of a lithium ion battery and tested with regard to storage capacity and cycling behavior. The results demonstrate that the C/Sn material has favorable properties, in terms of energy density and in particular long-term stability, that exceed those of the individual components alone. The initial irreversible capacity of the material is somewhat larger than that of conventional battery graphite which is due to its unique nanostructure. Overall the results would indicate the suitability of this material for use in the anodes of lithium ion batteries with high rate capability.
Power output of microbial fuel cell emphasizing interaction of anodic binder with bacteria
NASA Astrophysics Data System (ADS)
Li, Hongying; Liao, Bo; Xiong, Juan; Zhou, Xingwang; Zhi, Huozhen; Liu, Xiang; Li, Xiaoping; Li, Weishan
2018-03-01
Electrochemically active biofilm is necessary for the electron transfer between bacteria and anodic electrode in microbial fuel cells and selecting the type of anodic electrode material that favours formation of electrochemically active biofilm is crucial for the microbial fuel cell operation. We report a new finding that the interaction of anodic binder with bacteria plays more important role than its hydrophilicity for forming an electrochemically active biofilm, which is emphasized by applying poly(bisphenol A-co-epichorohydrin) as an anodic binder of the microbial fuel cell based on carbon nanotubes as anodic electrode and Escherichia coli as bacterium. The physical characterizations and electrochemical measurements demonstrate that poly(bisphenol A-co-epichorohydrin) exhibits a strong interaction with bacteria and thus provides the microbial fuel cell with excellent power density output. The MFC using poly(bisphenol A-co-epichorohydrin) reaches a maximum power density output of 3.8 W m-2. This value is larger than that of the MFCs using polytetrafluoroethylene that has poorer hydrophilicity, or polyvinyl alcohol that has better hydrophilicity but exhibits weaker interaction with bacteria than poly(bisphenol A-co-epichorohydrin).
Chen, Chih-Yao; Sano, Teruki; Tsuda, Tetsuya; Ui, Koichi; Oshima, Yoshifumi; Yamagata, Masaki; Ishikawa, Masashi; Haruta, Masakazu; Doi, Takayuki; Inaba, Minoru; Kuwabata, Susumu
2016-01-01
A comprehensive understanding of the charge/discharge behaviour of high-capacity anode active materials, e.g., Si and Li, is essential for the design and development of next-generation high-performance Li-based batteries. Here, we demonstrate the in situ scanning electron microscopy (in situ SEM) of Si anodes in a configuration analogous to actual lithium-ion batteries (LIBs) with an ionic liquid (IL) that is expected to be a functional LIB electrolyte in the future. We discovered that variations in the morphology of Si active materials during charge/discharge processes is strongly dependent on their size and shape. Even the diffusion of atomic Li into Si materials can be visualized using a back-scattering electron imaging technique. The electrode reactions were successfully recorded as video clips. This in situ SEM technique can simultaneously provide useful data on, for example, morphological variations and elemental distributions, as well as electrochemical data. PMID:27782200
Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian
2016-04-27
Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.
Recycled diesel carbon nanoparticles for nanostructured battery anodes
NASA Astrophysics Data System (ADS)
Chen, Yuming; Liu, Chang; Sun, Xiaoxuan; Ye, Han; Cheung, Chunshun; Zhou, Limin
2015-02-01
Considerable attention has been devoted to using rational nanostructure design to address critical carbonaceous anode material issues for next-generation lithium-ion batteries (LIBs). However, the fabrication of nanostructured carbonaceous anode materials often involves complex processes and expensive starting materials. Diesel engine is an important source of nanostructured carbon particles with diameters ranging 20 nm-60 nm suspended in air, resulting in a serious scourge of global climate and a series of diseases such as lung cancer, asthma, and cardiovascular disease. Here, we show that diesel carbon nanoparticles collected from diesel engines can be chemically activated to create a porous structure. The resulting nanostructured carbon electrodes have a high specific capacity of 936 mAh g-1 after 40 cycles at 0.05 A/g, and excellent cycle stability while retaining a capacity of ∼210 mAh g-1 after 1200 cycles at 5 A/g. As recycled diesel carbon nanoparticles are readily available due to the several billion tons of diesel fuel consumed every year by diesel engines, their use represents an exciting source for nanostructured carbonaceous anode materials for high-performance LIBs and improves our environment and health.
Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions
Ross, Alexandra P; Webster, Thomas J
2013-01-01
Current titanium-based implants are often anodized in sulfuric acid (H2SO4) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications. PMID:23319862
Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.
Ross, Alexandra P; Webster, Thomas J
2013-01-01
Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.
NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; DelCastillo, Linda
2009-01-01
Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.
Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.
Jackson, Everett D; Prieto, Amy L
2016-11-09
Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.
The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes
NASA Astrophysics Data System (ADS)
Fan, Liang; Lu, Huimin
2015-06-01
Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.
NASA Astrophysics Data System (ADS)
Zhang, Rupeng; Wang, Yu; Jia, Mengqiu; Xu, Junjie; Pan, Erzhuang
2018-04-01
Committed to research high-performance sodium-ion batteries(SIBs) and lithium-ion batteries(LIBs) anode materials is attractive but challenging. Among the many promising anode materials, sulfides are considered as promising available anode material. In this paper, we successfully synthesized uniformly dispersed ZnS quantum dots (QDs) with sub-10-nm-scale on graphene nanosheets via a facile hydrothermal method. The prepared ZnS/graphene composites was studied as a dual anode for sodium-ion and lithium-ion batteries. Tested against SIBs, the nanocomposites exhibits an impressive specific capacity of 491 mAh/g at 100 mA/g after 100 cycles. Tested against LIBs, the nanocomposites delivers a superior specific capacity of 759 mAh/g at 100 mA/g after 100 cycles. This excellent performance is mainly due to the fact that graphene can improve the conductivity of the composites and effectively prevent the agglomeration and pulverization of ZnS quantum dots during cycling. Meanwhile, ZnS quantum dots with sub-10-nm-scale may also shorten diffuse path and reduce migration barrier, which is in favor of the full utilization of the active material and the improvement of the stability of the structure
NASA Astrophysics Data System (ADS)
Guzman Blas, Rolando Pedro
This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the carbon-platinum-cerium has better catalytic activity than platinum-carbon. Due to the hybridization behavior of C and Ce could arise charge transfer, both carbon and cerium to the Platinum. Ce-C→Pt charge transfer could occur at the Ce-C/Pt interface. Thus, results in an increase in the catalytic activity of platinum-cerium-carbon when compared with carbon-platinum.
Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia
2017-08-02
The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g -1 at 2 A g -1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g -1 at 1 A g -1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.
Co9 S8 /Co as a High-Performance Anode for Sodium-Ion Batteries with an Ether-Based Electrolyte.
Zhao, Yingying; Pang, Qiang; Wei, Yingjin; Wei, Luyao; Ju, Yanming; Zou, Bo; Gao, Yu; Chen, Gang
2017-12-08
Co 9 S 8 has been regarded as a desirable anode material for sodium-ion batteries because of its high theoretical capacity. In this study, a Co 9 S 8 anode material containing 5.5 wt % Co (Co 9 S 8 /Co) was prepared by a solid-state reaction. The electrochemical properties of the material were studied in carbonate and ether-based electrolytes (EBE). The results showed that the material had a longer cycle life and better rate capability in EBE. This excellent electrochemical performance was attributed to a low apparent activation energy and a low overpotential for Na deposition in EBE, which improved the electrode kinetic properties. Furthermore, EBE suppressed side reactions of the electrode and electrolyte, which avoided the formation of a solid electrolyte interphase film. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dhungana, Pramod
Microbial fuel cell (MFC) technology has attracted great attention in the scientific community as it offers the possibility of extraction of electricity from wide range of soluble and dissolved organic waste or renewable biomass, including sludge, waste water and cellulosic biomass. Microbial fuel cells are devices that utilize microbial metabolic processes to convert chemical energy via the oxidation of organic substances to produce electric current. MFCs consist of two chambers, an anode and cathode, separated by ion-permeable materials. The efficiency of producing electricity using the MFC depends on several factors such as immobilization of microorganisms on anode, mode of electron transfer, types of substrate/fuel and effectiveness of cathode materials for oxygen reduction reaction (ORR). In this work, in order to immobilize the microorganisms on anode materials, we have investigated the surface modification of gold electrode (anode) using alkyl dithiol and aryl thiol with glucose. The modification processes were characterized by using contact angle measurements and proton nuclear magnetic resonance (NMR). In order to study the effectiveness of cathode materials for ORR, we have synthesized hollow Mn3O 4 nanoparticles which are electrically very poor. Therefore, the hollow nanoparticles were mixed with electrically conductive multi-walled carbon nanotube as support and optimized the mixing process. This composite material shows enhanced ORR activity in all types of pH conditions. In future, we will focus to integrate anode and cathode in MFC to check its efficiency to produce electricity.
NASA Astrophysics Data System (ADS)
Qu, Yue; Slootsky, Michael; Forrest, Stephen
2015-10-01
We demonstrate a method for extracting waveguided light trapped in the organic and indium tin oxide layers of bottom emission organic light emitting devices (OLEDs) using a patterned planar grid layer (sub-anode grid) between the anode and the substrate. The scattering layer consists of two transparent materials with different refractive indices on a period sufficiently large to avoid diffraction and other unwanted wavelength-dependent effects. The position of the sub-anode grid outside of the OLED active region allows complete freedom in varying its dimensions and materials from which it is made without impacting the electrical characteristics of the device itself. Full wave electromagnetic simulation is used to study the efficiency dependence on refractive indices and geometric parameters of the grid. We show the fabrication process and characterization of OLEDs with two different grids: a buried sub-anode grid consisting of two dielectric materials, and an air sub-anode grid consisting of a dielectric material and gridline voids. Using a sub-anode grid, substrate plus air modes quantum efficiency of an OLED is enhanced from (33+/-2)% to (40+/-2)%, resulting in an increase in external quantum efficiency from (14+/-1)% to (18+/-1)%, with identical electrical characteristics to that of a conventional device. By varying the thickness of the electron transport layer (ETL) of sub-anode grid OLEDs, we find that all power launched into the waveguide modes is scattered into substrate. We also demonstrate a sub-anode grid combined with a thick ETL significantly reduces surface plasmon polaritons, and results in an increase in substrate plus air modes by a >50% compared with a conventional OLED. The wavelength, viewing angle and molecular orientational independence provided by this approach make this an attractive and general solution to the problem of extracting waveguided light and reducing plasmon losses in OLEDs.
Lithium air batteries having ether-based electrolytes
Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook
2016-10-25
A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.
Li-air batteries having ether-based electrolytes
Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook
2015-03-03
A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.
Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.
Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S
2014-01-01
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization.
Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries
2014-01-01
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization. PMID:25114651
Evaluation of lithium alloy anode materials for Li-TiS2 cells
NASA Technical Reports Server (NTRS)
Huang, C.-K.; Subbarao, S.; Shen, D. H.; Deligiannis, F.; Attia, A.; Halpert, G.
1991-01-01
A study was performed to select candidate lithium alloy anode materials and establish selection criteria. Some of the selected alloy materials were evaluated for their electrochemical properties and performance. This paper describes the criteria for the selection of alloys and the findings of the studies. Li-Si and Li-Cd alloys have been found to be unstable in the EC+2-MeTHF-based electrolyte. The Li-Al alloy system was found to be promising among the alloy systems studied in view of its stability and reversibility. Unfortunately, the large volume changes of LiAl alloys during charge/discharge cycling cause considerable 'exfoliation' of its active mass. This paper also describes ways how to address this problem. The rate of disintegration of this anode would probably be surpressed by the presence of an inert solid solution or a uniform distribution of precipitates within the grains of the active mass. It was discovered that the addition of a small quantity of Mn may improve the mechanical properties of LiAl. In an attempt to reduce the Li-Al alloy vs. Li voltage, it was observed that LiAlPb(0.1)Cd(0.3) material can be cycled at 1.5 mA/sq cm without exfoliation of the active mass.
Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing
2017-02-01
A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oliveira, Edna M S; Silva, Francisco R; Morais, Crislânia C O; Oliveira, Thiago Mielle B F; Martínez-Huitle, Carlos A; Motheo, Artur J; Albuquerque, Cynthia C; Castro, Suely S L
2018-06-01
This study investigated the anodic oxidation of phenolic wastewater generated by cashew-nut processing industry (CNPI) using active (Ti/RuO 2 -TiO 2 ) and inactive (boron doped diamond, BDD) anodes. During electrochemical treatment, various operating parameters were investigated, such as current density, chemical oxygen demand (COD), total phenols, O 2 production, temperature, pH, as well as current efficiency and energy consumption. After electrolysis under optimized working conditions, samples were evaluated by chromatography and toxicological tests against L. sativa. When both electrode materials were compared under the same operating conditions, higher COD removal efficiency was achieved for BDD anode; achieving lower energy requirements when compared with the values estimated for Ti/RuO 2 -TiO 2 . The presence of Cl - in the wastewater promoted the electrogeneration of strong oxidant species as chlorine, hypochlorite and mainly hypochlorous acid, increasing the efficiency of degradation process. Regarding the temperature effect, BDD showed slower performances than those achieved for Ti/RuO 2 -TiO 2 . Chromatographic and phytotoxicity studies indicated formation of some by-products after electrolytic process, regardless of the anode evaluated, and phytotoxic action of the effluent. Results encourage the applicability of the electrochemical method as wastewater treatment process for the CNPI, reducing depuration time. Copyright © 2018. Published by Elsevier Ltd.
Effective regeneration of anode material recycled from scrapped Li-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Jin; Li, Xuelei; Song, Dawei; Miao, Yanli; Song, Jishun; Zhang, Lianqi
2018-06-01
Recycling high-valuable metal elements (such as Li, Ni, Co, Al and Cu elements) from scrapped lithium ion batteries can bring significant economic benefits. However, recycling and reusing anode material has not yet attracted wide attention up to now, due to the lower added-value than the above valuable metal materials and the difficulties in regenerating process. In this paper, a novel regeneration process with significant green advance is proposed to regenerate anode material recycled from scrapped Li-ion batteries for the first time. After regenerated, most acetylene black (AB) and all the styrene butadiene rubber (SBR), carboxymethylcellulose sodium (CMC) in recycled anode material are removed, and the surface of anode material is coated with pyrolytic carbon from phenolic resin again. Finally, the regenerated anode material (graphite with coating layer, residual AB and a little CMC pyrolysis product) is obtained. As expected, all the technical indexs of regenerated anode material exceed that of a midrange graphite with the same type, and partial technical indexs are even closed to that of the unused graphite. The results indicate the effective regeneration of anode material recycled from scrapped Li-ion batteries is really achieved.
Use of low-cost aluminum in electric energy production
NASA Astrophysics Data System (ADS)
Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.
Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.
Anode-Free Rechargeable Lithium Metal Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming
2016-08-18
Anode-free rechargeable lithium (Li) batteries (AFLBs) are phenomenal energy storage systems due to their significantly increased energy density and reduced cost relative to Li-ion batteries, as well as ease of assembly owing to the absence of an active (reactive) anode material. However, significant challenges, including Li dendrite growth and low cycling Coulombic efficiency (CE), have prevented their practical implementation. Here, we report for the first time an anode-free rechargeable lithium battery based on a Cu||LiFePO4 cell structure with an extremely high CE (> 99.8%). This results from the utilization of both an exceptionally stable electrolyte and optimized charge/discharge protocols whichmore » minimize the corrosion of the in-situ formed Li metal anode.« less
NASA Astrophysics Data System (ADS)
Cao, Wanjun; Li, Yangxing; Fitch, Brian; Shih, Jonathan; Doung, Tien; Zheng, Jim
2014-12-01
The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP®) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC.
Performance evaluation of GDC-SrMoO4-YSZ SOFCs prepared with different pore formers
NASA Astrophysics Data System (ADS)
Hongxin, You; Lian, Peng; Xiaojuan, Wang; Cong, Zhao; Yajun, Guan; Tao, Yu; Lijun, Xu; Abuliti
2018-04-01
The paper aims to evaluate the performance of anodes prepared with different pore formers. Anodic precursor material SrMoO4 was prepared by hard template method. Gd0.2Ce0.8O1.9 (GDC) was introduced to the precursor to prepare composite anode material GDC-SrMoO4-YSZ by wet impregnation method. Cotton-fibers, graphite powder, flour and activated carbon fibers (ACF) were added as pore formers to the anode to prepare the corresponding solid oxide fuel cell (SOFC), respectively. The electrical performance testing was conducted under the methane environment at 800°C. The result showed that the single cell with 5wt% cotton-fibers as anode pore-former performed best with the maximum power density (464.49 mW.cm2). The cross section samples of the test cells indicated that the anode was left with a plenty of continuous long channels because of the burning of cotton-fibers. Thus, the influence of the amount of cotton-fibers (2wt%, 4wt%, 5wt%, 7wt%, 10wt%) of the anode on the performance of SOFC was tested and further analyzed by the scanning electron microscope (SEM). It was indicated that the optimum adding amount of cotton-fibers was 5wt%.
Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries.
Zhong, Xiongwu; Wu, Ying; Zeng, Sifan; Yu, Yan
2018-02-12
Sodium-ion batteries (SIBs) have attracted much attention for application in large-scale grid energy storage owing to the abundance and low cost of sodium sources. However, low energy density and poor cycling life hinder practical application of SIBs. Recently, substantial efforts have been made to develop electrode materials to push forward large-scale practical applications. Carbon materials can be directly used as anode materials, and they show excellent sodium storage performance. Additionally, designing and constructing carbon hybrid materials is an effective strategy to obtain high-performance anodes for SIBs. In this review, we summarize recent research progress on carbon and carbon hybrid materials as anodes for SIBs. Nanostructural design to enhance the sodium storage performance of anode materials is discussed, and we offer some insight into the potential directions of and future high-performance anode materials for SIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of Cadmium in Undissolved Anode Materials of Mark-IV Electrorefiner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tae-Sic Yoo; Guy L. Fredrickson; DeeEarl Vaden
2013-10-01
The Mark-IV electrorefiner (Mk-IV ER) contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolved anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussionsmore » are given to explain the prescribed correlation.« less
Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua
2015-07-01
It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.
Conductive Polymeric Binder for Lithium-Ion Battery Anode
NASA Astrophysics Data System (ADS)
Gao, Tianxiang
Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle is performed under current of 0.1 C.
A POM–organic framework anode for Li-ion battery
Yue, Yanfeng; Li, Yunchao; Bi, Zhonghe; ...
2015-10-12
Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for portable electronic devices and electric vehicles, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge–discharge cycles. In this work, we demonstrate an approach to improving the cycling performance of lithium-ion battery anodes by constructing an extended 3D network of flexible redox active polyoxometalate (POM) clusters with redox active organic linkers, herein described as POMOF. In addition, this architecture enables the accommodation of large volumemore » changes during cycling at relatively high current rates. For example, the POMOF anode exhibits a high reversible capacity of 540 mA h g –1 after 360 cycles at a current rate of 0.25C and a long cycle life at a current rate of 1.25C (>500 cycles).« less
NASA Technical Reports Server (NTRS)
Bishop, William L. (Inventor); Mcleod, Kathleen A. (Inventor); Mattauch, Robert J. (Inventor)
1991-01-01
A Schottky diode for millimeter and submillimeter wave applications is comprised of a multi-layered structure including active layers of gallium arsenide on a semi-insulating gallium arsenide substrate with first and second insulating layers of silicon dioxide on the active layers of gallium arsenide. An ohmic contact pad lays on the silicon dioxide layers. An anode is formed in a window which is in and through the silicon dioxide layers. An elongated contact finger extends from the pad to the anode and a trench, preferably a transverse channel or trench of predetermined width, is formed in the active layers of the diode structure under the contact finger. The channel extends through the active layers to or substantially to the interface of the semi-insulating gallium arsenide substrate and the adjacent gallium arsenide layer which constitutes a buffer layer. Such a structure minimizes the effect of the major source of shunt capacitance by interrupting the current path between the conductive layers beneath the anode contact pad and the ohmic contact. Other embodiments of the diode may substitute various insulating or semi-insulating materials for the silicon dioxide, various semi-conductors for the active layers of gallium arsenide, and other materials for the substrate, which may be insulating or semi-insulating.
Sanabria Arenas, Beatriz Eugenia; Schiavi, Luca; Russo, Valeria; Pedeferri, MariaPia
2018-01-01
The availability of immobilized nanostructured photocatalysts is of great importance in the purification of both polluted air and liquids (e.g., industrial wastewaters). Metal-supported titanium dioxide films with nanotubular morphology and good photocatalytic efficiency in both environments can be produced by anodic oxidation, which avoids release of nanoscale materials in the environment. Here we evaluate the effect of different anodizing procedures on the photocatalytic activity of TiO2 nanostructures in gas and liquid phases, in order to identify the most efficient and robust technique for the production of TiO2 layers with different morphologies and high photocatalytic activity in both phases. Rhodamine B and toluene were used as model pollutants in the two media, respectively. It was found that the role of the anodizing electrolyte is particularly crucial, as it provides substantial differences in the oxide specific surface area: nanotubular structures show remarkably different activities, especially in gas phase degradation reactions, and within nanotubular structures, those produced by organic electrolytes lead to better photocatalytic activity in both conditions tested. PMID:29587360
NASA Astrophysics Data System (ADS)
Zhao, Guangyu; Sun, Xin; Zhang, Li; Chen, Xuan; Mao, Yachun; Sun, Kening
2018-06-01
Derivates of metal-organic frameworks are promising materials of self-supported Li ion battery anodes due to the good dispersion of active materials, conductive scaffold, and mass transport channels in them. However, the discontinuous growth and poor adherence of metal-organic framework films on substrates hamper their development in self-supported electrodes. In the present study, cobalt-based metal-organic frameworks are anchored on Ti nanowire arrays through an electrochemically assistant method, and then the metal-organic framework films are pyrolyzed to carbon-containing, porous, self-supported anodes of Li ion battery anodes. Scanning electron microscope images indicate that, a layer cobaltosic oxide polyhedrons inserted by the nanowires are obtained with the controllable in-situ synthesis. Thanks to the good dispersion and adherence of cobaltosic oxide polyhedrons on Ti substrates, the self-supported anodes exhibit remarkable rate capability and durability. They possess a capacity of 300 mAh g-1 at a rate current of 20 A g-1, and maintain 2000 charge/discharge cycles without obvious decay.
Stevanović, Sanja I; Panić, Vladimir V; Dekanski, Aleksandar B; Tripković, Amalija V; Jovanović, Vladislava M
2012-07-14
We report on new insights into the relationships between structure and activity of glassy carbon (GC), as a model material for electrocatalyst support, during its anodization in acid solution. Our investigation strongly confirms the role of CFGs in promotion of Pt activity by the "spill-over" effect related to CO(ads) for methanol electrooxidation (MEO) on a carbon-supported Pt catalyst. Combined analysis of voltammetric and impedance behaviour as well as changes in GC surface morphology induced by intensification of anodizing conditions reveal an intrinsic influence of the carbon functionalization and the structure of a graphene oxide (GO) layer on the electrical and electrocatalytic properties of activated GC. Although GO continuously grows during anodization, it structurally changes from being a graphite inter-layer within graphite ribbons toward a continuous GO surface layer that deteriorates the native structure of GC. As a consequence of the increased distance between GO-spaced graphite layers, the GC conductivity decreases until the case of profound GO exfoliation under drastic anodizing conditions. This exposes the native, yet abundantly functionalized, GC texture. While GC capacitance continuously increases with intensification of anodizing conditions, the surface nano-roughness and GO resistance reach the highest values at modest anodizing conditions, and then decrease upon drastic anodization due to the onset of GO exfoliation. We found for the first time that the activity of a GC-supported Pt catalyst in MEO, as one of the promising half-reactions in polymer electrolyte fuel cells, strictly follows the changes in GC nano-roughness and GO-induced GC resistance. The highest GC/Pt MEO activity is reached when optimal distance between graphite layers and optimal degree of GC functionalization bring the highest amount of CFGs into intimate contact with the Pt surface. This confirms the promoting role of CFGs in MEO catalysis.
Cells having cathodes containing polycarbon disulfide materials
Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.
1995-08-15
The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.
Zeng, Yinxiang; Lin, Ziqi; Wang, Zifan; Wu, Mingmei; Tong, Yexiang; Lu, Xihong
2018-05-01
To achieve high-energy and stable aqueous rechargeable batteries, state-of-the art of anode materials are needed. Bismuth (Bi) has recently emerged as an attractive anode material due to its highly reversible redox reaction and suitable negative operating working window. However, the capacity and durability of currently reported Bi anodes are still far from satisfactory. Here, an in situ activation strategy is reported to prepare a 3D porous high-density Bi nanoparticles/carbon architecture (P-Bi-C) as an efficient anode for nickel-bismuth batteries. Taking advantages of the fast channels for charge transfer and ion diffusion, enhanced wettability, and accessible surface area, the highly loaded P-Bi-C electrode delivers a remarkable capacity of 2.11 mA h cm -2 as well as high rate capability (1.19 mA h cm -2 at 120 mA cm -2 ). To highlight, a robust aqueous rechargeable Ni//Bi battery based on the P-Bi-C anode is first constructed, achieving decent capacity (141 mA h g -1 ), impressive durability (94% capacity retention after 5000 cycles), and admirable energy density (16.9 mW h cm -3 ). This work paves the way for designing superfast nickel-bismuth batteries with high energy and long-life and may inspire new development for aqueous rechargeable batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mathematical modeling of a primary zinc/air battery
NASA Technical Reports Server (NTRS)
Mao, Z.; White, R. E.
1992-01-01
The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.
Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes
NASA Astrophysics Data System (ADS)
Miller, Elizabeth C.
This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which presents opportunities for the new kinds of ex situ and in situ experiments performed in this thesis. Ex situ experiments involved reducing powder samples at SOFC operating temperatures under hydrogen gas and characterizing them via electron microscopy and X-ray diffraction (XRD). For the in situ experiments, powders were heated, then reduced at temperature, and catalyst exsolution was observed in real-time. Pechini-synthesized cerium oxide substituted with 2-5 mol% Pd was studied using in situ X-ray heating experiments at Argonne National Laboratory's Advanced Photon Source. In these experiments, the powder was subjected to several cycles of reduction and oxidation at 800°C, and Pd metal formation was confirmed through the appearance of Pd peaks in the X-ray spectra. Next, Fe- and Ru-substituted lanthanum strontium chromite (LSCrFeRu14) synthesized by solid state reaction was characterized with ex situ and in situ microscopy. Transmission electron microscopy (TEM) in situ heating experiments were conducted to observe Ru nanoparticle evolution under the reducing conditions of the TEM vacuum chamber. LSCrFeRu14 was heated to 750°C and observed over ˜ 90 min at temperature during which time nanoparticle formation, coarsening, and di?usion were observed. Experiments on both materials sought to understand the conditions and timing of nanoparticle formation in the anode, which is not necessarily apparent from electrochemical data. Reducing the operating temperature of SOFCs from the current state-of-the-art range of 700-800°C to ≤ 650°C has many advantages, among them increased long-term stability, reduced balance of plant costs, fewer interconnect/seal material issues, and decreased start-up times. In order to maintain good performance at reduced temperature, these intermediate temperature SOFCs require new materials including highly active alternatives to micron-scale Ni-YSZ composite anodes. The present work focuses on the development of IT-SOFCs with Sr0.8La 0.2TiO3 (SLT) anode supports, thin La1--xSr x Ga0.8Mg0.2O3 (x = 0.1, 0.2) dense electrolytes, and porous LSGM anode functional layers. The SLT support and the LSGM functional layer are infiltrated with nanoscale Ni, creating extensive electrochemically active triple phase boundary area. The scope of the work presented here encompasses every step of cell development including powder synthesis, optimization of firing conditions, and long-term stability testing. Using an optimized fabrication process, cells with power density > 1.2 W cm-2 were fabricated. Dry pressing and colloidal de-position were used to make the first generation of these cells, and once suitable times and temperatures were determined, the process was shifted to tape casting to make larger batches of uniform cells. After obtaining initial results of low anode polarization resistance and high power density, the long-term stability of the Ni-infiltrated anodes was examined. A coarsening model was developed using the data from accelerated degradation tests to predict cell performance over a typical device lifetime. This thesis encompasses a broad range of novel SOFC anode materials, each of which has its own strengths and weaknesses. Presenting several possible avenues for SOFC development provides a complete picture of the ?eld and its current focuses. The wide scope of this work offers multiple solutions for the SOFC community and demonstrates that SOFCs are a strong candidate for meeting the United States' need for energy conversion and storage.
Tang, Yakun; Liu, Lang; Zhao, Hongyang; Zhang, Yue; Kong, Ling Bing; Gao, Shasha; Li, Xiaohui; Wang, Lei; Jia, Dianzeng
2018-06-20
Hybrid nanotubes of cation disordered rock salt structured Li 2 FeTiO 4 nanoparticles embedded in porous CNTs were developed. Such unique hybrids with continuous 3D electron transportation paths and isolated small particles have been shown to be an ideal architecture that brought out enhanced electrochemical performances. Meanwhile, they exhibited improved extrinsic capacitive characteristics. In addition, we demonstrate a successful example to use cathode active material as anode for lithium-ion batteries (LIBs). More importantly, our hybrids had much superior electrochemical performances than most of the reported Li 4 Ti 5 O 12 -based nanocomposites. Therefore, it is concluded that Li 2 FeTiO 4 can be a prospective anode material for LIBs.
Logan, Clinton M.
1994-01-01
An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.
He, Meinan; Sa, Qina; Liu, Gao; Wang, Yan
2013-11-13
Silicon is a very promising anode material for lithium ion batteries. It has a 4200 mAh/g theoretical capacity, which is ten times higher than that of commercial graphite anodes. However, when lithium ions diffuse to Si anodes, the volume of Si will expand to almost 400% of its initial size and lead to the crack of Si. Such a huge volume change and crack cause significant capacity loss. Meanwhile, with the crack of Si particles, the conductivity between the electrode and the current collector drops. Moreover, the solid electrolyte interphase (SEI), which is generated during the cycling, reduces the discharge capacity. These issues must be addressed for widespread application of this material. In this work, caramel popcorn shaped porous silicon particles with carbon coating are fabricated by a set of simple chemical methods as active anode material. Si particles are etched to form a porous structure. The pores in Si provide space for the volume expansion and liquid electrolyte diffusion. A layer of amorphous carbon is formed inside the pores, which gives an excellent isolation between the Si particle and electrolyte, so that the formation of the SEI layer is stabilized. Meanwhile, this novel structure enhances the mechanical properties of the Si particles, and the crack phenomenon caused by the volume change is significantly restrained. Therefore, an excellent cycle life under a high rate for the novel Si electrode is achieved.
NASA Astrophysics Data System (ADS)
Paul, Neelima; Wandt, Johannes; Seidlmayer, Stefan; Schebesta, Sebastian; Mühlbauer, Martin J.; Dolotko, Oleksandr; Gasteiger, Hubert A.; Gilles, Ralph
2017-03-01
The aging behavior of commercially produced 18650-type Li-ion cells consisting of a lithium iron phosphate (LFP) based cathode and a graphite anode based on either mesocarbon microbeads (MCMB) or needle coke (NC) is studied by in situ neutron diffraction and standard electrochemical techniques. While the MCMB cells showed an excellent cycle life with only 8% relative capacity loss (i.e., referenced to the capacity after formation) after 4750 cycles and showed no capacity loss on storage for two years, the needle coke cells suffered a 23% relative capacity loss after cycling and a 11% loss after storage. Based on a combination of neutron diffraction and electrochemical characterization, it is shown that the entire capacity loss for both cell types is dominated by the loss of active lithium; no other aging mechanisms like structural degradation of anode or cathode active materials or deactivation of active material could be found, highlighting the high structural stability of the active material and the excellent quality of the investigated cells.
Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam
2018-02-21
The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.
NASA Astrophysics Data System (ADS)
Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven
2017-09-01
The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.
Analysis of cadmium in undissolved anode materials of Mark-IV electro-refiner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Tae-Sic; Fredrickson, G.L.; Vaden, D.
2013-07-01
The Mark-IV electro-refiner (Mk-IV ER) is a unit process in the FCF (Fuel Conditioning Facility), which is primarily assigned to treating the used driver fuels. Mk-IV ER contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolvedmore » anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussions are given to explain the prescribed correlation. (authors)« less
Fuel cell electrode interconnect contact material encapsulation and method
Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.
2016-05-31
A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.
NASA Astrophysics Data System (ADS)
Wang, Linqian; Wang, Richu; Feng, Yan; Deng, Min; Wang, Naiguang
2017-12-01
Mg-Al-Pb alloy can serve as a good candidate for the anode material in seawater-activated batteries. The effect of solution and aging treatment on electrochemical properties of Mg-9 wt.%Al-2.5 wt.%Pb alloy in 3.5 wt.% NaCl solution was investigated through scanning electron microscopy and electrochemical tests. The results indicate that the discharge activity of Mg-9 wt.%Al-2.5 wt.%Pb alloy decreases after solution treatment, although its anodic efficiency increases slightly. In contrast, its discharge performance and anodic efficiency, which are crucial for the application of batteries, are both enhanced after aging at 200°C for 12 h.
New Anode Material for Rechargeable Li-ION Cells
NASA Technical Reports Server (NTRS)
Huang, C. -K.; Smart, M.; Halpert, G.; Surampudi, S.; Wolfenstine, J.
1995-01-01
Carbon materials, such as graphite, cokes, pitch and PAN fibers, are being evaluated in lithium batteries as alternate anode materials with some degree of success. There is an effort to look for other non-carbon anode materials which have larger Li capacity, higher rate capability, smaller first charge capacity loss and better mechanical stability during cycling. A Li-Mg-Si material is evaluated.
Metallic anodes for next generation secondary batteries.
Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk; Kim, Jae-Hun; Park, Cheol-Min; Sohn, Hun-Joon
2013-12-07
Li-air(O2) and Li-S batteries have gained much attention recently and most relevant research has aimed to improve the electrochemical performance of air(O2) or sulfur cathode materials. However, many technical problems associated with the Li metal anode have yet to be overcome. This review mainly focuses on the electrochemical behaviors and technical issues related to metallic Li anode materials as well as other metallic anode materials such as alkali (Na) and alkaline earth (Mg) metals, including Zn and Al when these metal anodes were employed for various types of secondary batteries.
Logan, C.M.
1994-12-20
An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.
Bombelli, Paolo; Zarrouati, Marie; Thorne, Rebecca J; Schneider, Kenneth; Rowden, Stephen J L; Ali, Akin; Yunus, Kamran; Cameron, Petra J; Fisher, Adrian C; Ian Wilson, D; Howe, Christopher J; McCormick, Alistair J
2012-09-21
Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all other conductive materials tested, indicating that carbon may not be an optimal substrate for microbial fuel cell operation.
Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes.
Shi, Liurong; Pang, Chunlei; Chen, Shulin; Wang, Mingzhan; Wang, Kexin; Tan, Zhenjun; Gao, Peng; Ren, Jianguo; Huang, Youyuan; Peng, Hailin; Liu, Zhongfan
2017-06-14
Silicon-based materials are considered as strong candidates to next-generation lithium ion battery anodes because of their ultrahigh specific capacities. However, the pulverization and delamination of electrochemical active materials originated from the huge volume expansion (>300%) of silicon during the lithiation process results in rapid capacity fade, especially in high mass loading electrodes. Here we demonstrate that direct chemical vapor deposition (CVD) growth of vertical graphene nanosheets on commercial SiO microparticles can provide a stable conducting network via interconnected vertical graphene encapsulation during lithiation, thus remarkably improving the cycling stability in high mass loading SiO anodes. The vertical graphene encapsulated SiO (d-SiO@vG) anode exhibits a high capacity of 1600 mA h/g and a retention up to 93% after 100 cycles at a high areal mass loading of 1.5 mg/cm 2 . Furthermore, 5 wt % d-SiO@vG as additives increased the energy density of traditional graphite/NCA 18650 cell by ∼15%. We believe that the results strongly imply the important role of CVD-grown vertical graphene encapsulation in promoting the commercial application of silicon-based anodes.
NASA Astrophysics Data System (ADS)
Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng
2014-02-01
In this study, we synthesized a carbon coated Mn-Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g-1 after 200 cycles at a current density of 100 mA g-1. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.
Anode materials for electrochemical waste destruction
NASA Technical Reports Server (NTRS)
Molton, Peter M.; Clarke, Clayton
1990-01-01
Electrochemical Oxidation (ECO) offers promise as a low-temperature, atmospheric pressure method for safe destruction of hazardous organic chemical wastes in water. Anode materials tend to suffer corrosion in the intensely oxidizing environment of the ECO cell. There is a need for cheaper, more resistant materials. In this experiment, a system is described for testing anode materials, with examples of several common anodes such as stainless steel, graphite, and platinized titanium. The ECO system is simple and safe to operate and the experiment can easily be expanded in scope to study the effects of different solutions, temperatures, and organic materials.
Cells having cathodes containing polycarbon disulfide materials
Okamoto, Y.; Skotheim, T.A.; Lee, H.S.
1995-08-15
The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.
Anode materials for lithium-ion batteries
Manthiram, Arumugam; Applestone, Danielle; Yoon, Sukeun
2017-03-21
The current disclosure relates to an anode material with the general formula M.sub.ySb-M'O.sub.x--C, where M and M' are metals and M'O.sub.x--C forms a matrix containing M.sub.ySb. It also relates to an anode material with the general formula M.sub.ySn-M'C.sub.x--C, where M and M' are metals and M'C.sub.x--C forms a matrix containing M.sub.ySn. It further relates to an anode material with the general formula Mo.sub.3Sb.sub.7--C, where --C forms a matrix containing Mo.sub.3Sb.sub.7. The disclosure also relates to an anode material with the general formula M.sub.ySb-M'C.sub.x--C, where M and M' are metals and M'C.sub.x--C forms a matrix containing M.sub.ySb. Other embodiments of this disclosure relate to anodes or rechargeable batteries containing these materials as well as methods of making these materials using ball-milling techniques and furnace heating.
Space Environmental Effects on Colored Coatings and Anodizes
NASA Technical Reports Server (NTRS)
Kamenetzky, Rachel R.; Finckenor, Miria M.; Vaughn, Jason A.
1999-01-01
Colored coatings and anodizes are used on spacecraft as markers and astronaut visual aids. These materials must be stable in the space environment and withstand atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and high vacuum without significant change in optical and mechanical properties. A variety of colored coatings and anodizes have been exposed to simulated space environments at Marshall Space Flight Center and also actual space environment as part of the Passive Optical Sample Assembly (POSA) - I flight experiment. Colored coatings were developed by AZ Technology, Huntsville, AL, under a NASA contract for International Space Station (ISS). These include yellow, red, blue, and black paints suitable for Extra-Vehicular Activity (EVA) visual aids and ISS emblems. AaChron, Inc., Minneapolis, MN, developed stable colored anodizes, also in yellow, red, blue, and black, for astronaut visual aids. These coatings were exposed in the laboratory to approximately 550 equivalent sun-hours of solar ultraviolet radiation and approximately 1 x 10(exp 21) atoms/sq cm of atomic oxygen in vacuum. The AZ Technology yellow colored coating, designated TMS800IY, and all four AaChron colored anodizes were flown on POSA-I. POSA-I was a Risk Mitigation Experiment for ISS. It was attached to the exterior of the Mir space station docking module by EVA and was exposed for 18 months. The laboratory-simulated space environment, the natural space environment and the unique environment of an orbiting, active space station and their effects on these developmental materials are discussed.
New Cathode Material for High Energy-Density Batteries
1974-07-31
Lithium Anodes LINK A ROLK LINK B LINK C INSTRUCTIONS I. ORIGINATING ACTIVITY: Enter the name and oddM-ss of the contractor...theoretical energy density of 399 whr/lb when paired with a lithium anode. Results of related, but less extensive, work on zinc fluoride and...a) The semiconductor was cathodically passi- vated in the presence of lithium ions, which would normally exist in lithium battery electrolytes
Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun
2013-09-01
Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode
NASA Astrophysics Data System (ADS)
Tamirat, Andebet Gedamu; Hou, Mengyan; Liu, Yao; Bin, Duan; Sun, Yunhe; Fan, Long; Wang, Yonggang; Xia, Yongyao
2018-04-01
Silicon is an ideal candidate anode material for Li-ion batteries (LIBs). However, it suffers from rapid capacity fading due to large volume expansion upon lithium insertion. Herein, we design and fabricate highly stable carbon coated porous Mg2Si intermetallic anode material using facile mechano-thermal technique followed by carbon coating using thermal vapour deposition (TVD), toluene as carbon source. The electrode exhibits an excellent first reversible capacity of 726 mAh g-1 at a rate of 100 mA g-1. More importantly, the electrode demonstrates high rate capability (380 mAh g-1 at high rate of 2 A g-1) as well as high cycle stability, with capacity retentions of 65% over 500 cycles. These improvements are attributable to both Mg supporting medium and the uniform carbon coating, which can effectively increase the conductivity and electronic contact of the active material and protects large volume alterations during the electrochemical cycling process.
NASA Astrophysics Data System (ADS)
Lee, Dokyol; Han, Ju-Hyeong; Kim, Eun-Gu; Song, Rak-Hyun; Shin, Dong-Ryul
La 0.8Sr 0.2Ga 0.8Mg 0.2O 2.8 (LSGM8080) powder, showing the highest electrical conductivity among LSGMs of various compositions, is synthesized using the glycine nitrate process (GNP) and used as the electrolyte for an intermediate-temperature solid oxide fuel cell (IT-SOFC). The LDC (Ce 0.55La 0.45O 1.775) powder is synthesized by a solid-state reaction and employed as the material for a buffer layer to prevent the reaction between the anode and electrolyte materials. The LDC also serves as the skeleton material for the anode. An anode-supported single cell with an active area of 1 cm 2 is constructed for performance evaluation. A single-cell test is performed at 750 and 800 °C. The maximum power density of the cell 459 and 664 mW cm -2 at 750 and 800 °C, respectively.
On the impact of water activity on reversal tolerant fuel cell anode performance and durability
NASA Astrophysics Data System (ADS)
Hong, Bo Ki; Mandal, Pratiti; Oh, Jong-Gil; Litster, Shawn
2016-10-01
Durability of polymer electrolyte fuel cells in automotive applications can be severely affected by hydrogen starvation arising due to transients during the drive-cycle. It causes individual cell voltage reversal, yielding water electrolysis and carbon corrosion reactions at the anode, ultimately leading to catastrophic cell failure. A popular material-based mitigation strategy is to employ a reversal tolerant anode (RTA) that includes oxygen evolution reaction (OER) catalyst (e.g., IrO2) to promote water electrolysis over carbon corrosion. Here we report that RTA performance surprisingly drops under not only water-deficient but also water-excess conditions. This presents a significant technical challenge since the most common triggers for cell reversal involve excess liquid water. Our findings from detailed electrochemical diagnostics and nano-scale X-ray computed tomography provide insight into how automotive fuel cells can overcome critical vulnerabilities using material-based solutions. Our work also highlights the need for improved materials, electrode designs, and operation strategies for robust RTAs.
Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Simões, Mário; Surace, Yuri; Yoon, Songhak; Battaglia, Corsin; Pokrant, Simone; Weidenkaff, Anke
2015-09-01
Vanadium manganese oxides with Mn content up to 33 at% were synthesized by a low temperature hydrothermal route allowing for the preparation of both anodic and cathodic materials for Li-ion batteries. Low amounts of manganese (below 13 at%) lead to the formation of elongated particles of layered hydrated vanadium oxides with manganese and water intercalated between the V2O5 slabs, while for higher Mn content of 33 at%, monoclinic MnV2O6 is formed. Former materials are suitable for high energy cathodes while the latter one is an anodic compound. The material containing 10 at% Mn has the composition Mn0.2V2O5·0.9H2O and shows the best cathodic activity with 20% capacity improvement over V2O5·0.5H2O. Lithiated MnV2O6 with Li5MnV2O6 composition prepared electrochemically was evaluated for the first time as anode in a full-cell against Mn0.2V2O5·0.9H2O cathode. An initial capacity ca. 300 A h kg-1 was measured with this battery corresponding to more than 500 Wh kg-1. These results confirm the prospect of using Li5MnV2O6 anodes in lithium-ion batteries as well as high-capacity layered hydrated vanadium oxides cathodes such as V2O5·0.5H2O and Mn0.2V2O5·0.9H2O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hui; Wei, Yang; Wang, Cheng
The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less
Dissecting anode swelling in commercial lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Ningxin; Tang, Huaqiong
2012-11-01
An innovative method is applied to investigate anode swelling during electrochemical processes in commercial lithium-ion batteries. Cathode surface is partially covered with a piece of paste to block the transportation of lithium ion from active material during charging/discharging, and the corresponding part on the anode film shows no formation of Li-graphite compounds during different electrochemical processes, which is confirmed by XRD analysis. The increases of anode thickness within and outside lithiated zone are measured, and defined as electrochemical swelling and physical swelling respectively. The microscopic lattice expansion of graphite due to lithiation process correlates to mesoscopic electrochemical swelling synchronically, while physical swelling tends to decrease steadily with time. The relationship among the microscopic stress due to lithium-ion intercalation, the mesoscopic stress resulting in anode swelling, and the macroscopic rippling of pouch cell after a large number of cycle test, is analyzed and correlated in terms of stress evolution across different scales, and suggestions for solving anode swelling are provided.
Anderson, Travis M.; Pratt, Harry D.
2016-03-15
Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.
Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries
Zhao, Hui; Wei, Yang; Wang, Cheng; ...
2018-01-15
The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less
Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells
NASA Technical Reports Server (NTRS)
Ehrlich, Grant M.; Durand, Christopher
2005-01-01
Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.
NASA Astrophysics Data System (ADS)
Bachand, Gabrielle
In the foreseeable future, global energy demand is expected to rapidly increase as a result of the swelling population and higher standards of living. Current energy generation and transportation methods predominantly involve the combustion of non-renewable fossil fuels, and greenhouse gas emissions from these processes have been shown to contribute to global climate change and to be detrimental to human and environmental health. To satisfy future energy needs and to reduce greenhouse gas emissions, the advancement of renewable energy generation and electric vehicles is important. The proliferation of intermittent renewable energy sources (such as solar and wind) and electric vehicles depends upon reliable, high-capacity energy storage to serve the practical needs of society. The present-day lithium-ion battery offers excellent qualities for this purpose; however, improvements in the capacity and cost-effectiveness of these batteries are needed for further growth. As an anode material, silicon has exceptionally high theoretical capacity and is an earth-abundant, low-cost option. However, silicon also suffers from poor conductivity and long-term stability, prompting many studies to investigate the use of additive materials to mitigate these issues. This thesis focuses on the improvement of silicon anode performance by using a nanoparticulate copper additive to increase material conductivity and an inexpensive, industry-compatible anode fabrication process. Three main fabrication processes were explored using differing materials and heat treatment techniques for comparison. Anodes were tested using CR2032 type coin cells. The final anodes with the most-improved characteristics were fabricated using a high-temperature heating step for the anode material, and an additional batch was formed to test the viability of the copper additive functioning as a full substitute for carbon black, which is the traditional choice of conductive additive for electrode materials. Anodes materials were characterized using a variety of techniques including scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectrometry (ICP-OES), Raman spectroscopy, and X-ray diffraction (XRD) to evaluate surface qualities and material content. Electrochemical techniques including electrochemical impedance spectroscopy (EIS) and charge/discharge cycling were also used to determine the conductivity and functional behavior of the anode materials. Anodes from the final experimental study achieved initial capacities of 309 mA/g and 957 mA/g for the silicon-only control and silicon with copper additive anodes, respectively, demonstrating an over 300% increase in specific capacity. Si-Cu (NC) anodes also showed superior performance over control anodes with an initial capacity of 775 mA/g. For all three anodes, high efficiencies of over 96% were achieved for the testing duration of 100 cycles and reached near or over 99% in final cycles. Results also show a significant decrease in the resistance of anodes with copper additive, contributing to the improved performance of these anodes.
Yang, Yingchang; Ji, Xiaobo; Lu, Fang; Chen, Qiyuan; Banks, Craig E
2013-09-28
Porous activated graphene sheets have been for the first time exploited herein as encapsulating substrates for lithium ion battery (LIB) anodes. The as-fabricated SnO2 nanocrystals-porous activated graphene sheet (AGS) composite electrode exhibits improved electrochemical performance as an anode material for LIBs, such as better cycle performance and higher rate capability in comparison with graphene sheets, activated graphene sheets, bare SnO2 and SnO2-graphene sheet composites. The superior electrochemical performances of the designed anode can be ascribed to the porous AGS substrate, which improves the electrical conductivity of the electrode, inhibits agglomeration between particles and effectively buffers the strain from the volume variation during Li(+)-intercalation-de-intercalation and provides more cross-plane diffusion channels for Li(+) ions. As a result, the designed anode exhibits an outstanding capacity of up to 610 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles and a good rate performance of 889, 747, 607, 482 and 372 mA h g(-1) at a current density of 100, 200, 500, 1000, and 2000 mA g(-1), respectively. This work is of importance for energy storage as it provides a new substrate for the design and implementation of next-generation LIBs exhibiting exceptional electrochemical performances.
Carbons for lithium batteries prepared using sepiolite as an inorganic template
Sandi, Giselle; Winans, Randall E.; Gregar, K. Carrado
2000-01-01
A method of preparing an anode material using sepiolite clay having channel-like interstices in its lattice structure. Carbonaceous material is deposited in the channel-like interstices of the sepiolite clay and then the sepiolite clay is removed leaving the carbonaceous material. The carbonaceous material is formed into an anode. The anode is combined with suitable cathode and electrolyte materials to form a battery of the lithium-ion type.
Nano-Enabled Technologies for Naval Aviation Applications
2015-06-05
4. Reduced self- discharge DEW 1. Active materials (silicon based/anode only); 2. Active materials coated on CNTs surface; 3...polymer film capacitors have the potential to provide higher energy density, higher power density, reduce weight, improve duty cycles (fast discharge and...dependent excess of 200C) 4. Nano-particle dispersion 5. Understanding discharge rate 6. Design and control of the interface 1. Increased
Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage
Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.; ...
2017-05-03
Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less
Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.
Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.
1991-01-01
An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.
Zhang, Baoping; Xia, Guanglin; Sun, Dalin; Fang, Fang; Yu, Xuebin
2018-04-24
MgH 2 nanoparticles (NPs) uniformly anchored on graphene (GR) are fabricated based on a bottom-up self-assembly strategy as anode materials for lithium-ion batteries (LIBs). Monodisperse MgH 2 NPs with an average particle size of ∼13.8 nm are self-assembled on the flexible GR, forming interleaved MgH 2 /GR (GMH) composite architectures. Such nanoarchitecture could effectively constrain the aggregation of active materials, buffer the strain of volume changes, and facilitate the electron/lithium ion transfer of the whole electrode, leading to a significant enhancement of the lithium storage capacity of the GMH composite. Furthermore, the performances of GMH composite as anode materials for LIBs are enabled largely through robust interfacial interactions with poly(methyl methacrylate) (PMMA) binder, which plays multifunctional roles in forming a favorable solid-electrolyte interphase (SEI) film, alleviating the volume expansion and detachment of active materials, and maintaining the structural integrity of the whole electrode. As a result, these synergistic effects endow the obtained GMH composite with a significantly enhanced reversible capacity and cyclability as well as a good rate capability. The GMH composite with 50 wt % MgH 2 delivers a high reversible capacity of 946 mA h g -1 at 100 mA g -1 after 100 cycles and a capacity of 395 mAh g -1 at a high current density of 2000 mA g -1 after 1000 cycles.
NASA Astrophysics Data System (ADS)
Chen, Xuefang; Huang, Ying; Li, Tianpeng; Wei, Chao; Yan, Jing; Feng, Xuansheng
2017-05-01
Novel hierarchical flower-like Sn3O4 assembled by thin Sn3O4 nanosheets, as a kind of mixed-valence tin oxide, decorated on two-dimensional graphene nanosheets has been synthesized via a hydrothermal route and a step solution deoxidization technique. More importantly, as the anode materials for lithium ion batteries, the flower-like Sn3O4/graphene composite has not been investigated in detail. Noticeably, the nanosheets stemming from flower-like Sn3O4 and graphene have been linked together to form a specials three dimensional structure, possessing high active surface area and large enough inner spaces, which is benefit to the diffusion of liquid electrolyte into the electrode materials. In addition, the special structure could provide sufficient free volume to buffer the volume expansion appeared in the process of discharging and charging. The as-prepared flowers-like Sn3O4/graphene displayed excellent electrochemical performance with high capacity and good cycling stability as anode materials for lithium ion batteries. The discharge capacity is 1727 mAh/g in the first cycle at the current density of 60 mA/g. The obtained reversible capacity is 631mAh/g with a coulomb efficiency of 97.04% after 50 cycles. With its better electrochemical properties, the as-prepared flowers-like Sn3O4/graphene has the potential to be the next generation materials as an environmentally benign, abundant, cheap anode materials for lithium ion batteries.
Butler, Caitlyn S; Nerenberg, Robert
2010-05-01
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.
Ma, Xiaomei; Zhou, Yongning; Chen, Min; Wu, Limin
2017-05-01
The development of environment-friendly and high-performance carbon materials for energy applications has remained a great challenge. Here, a novel and facile method for synthesis of olive-like nitrogen-doped carbon embedded with germanium (Ge) nanoparticles using widespread and nontoxic dopamine as carbon and nitrogen precursors is demonstrated, especially by understanding the tendency of pure GeO 2 nanoparticles forming ellipsoidal aggregation, and the chelating reaction of the catechol structure in dopamine with metal ions. The as-synthesized Ge/N-C composites show an olive-like porous carbon structure with a loading weight of as high as 68.5% Ge nanoparticles. A lithium ion battery using Ge/N-C as the anode shows 1042 mAh g -1 charge capacity after 2000 cycles (125 d) charge/discharge at C/2 (1C = 1600 mA g -1 ) with a capacity maintaining efficiency of 99.6%, significantly exceeding those of the previously reported Ge/C-based anode materials. This prominent cyclic charge/discharge performance of the Ge/N-C anode is attributed to the well-dispersed Ge nanoparticles in graphitic N-doped carbon matrix, which facilitates high rates (0.5-15 C) of charge/discharge and increases the anode structure integrity. The synthesis strategy presented here may be a very promising approach to prepare a series of active nanoparticle-carbon hybrid materials with nitrogen doping for more and important applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electro-catalytic degradation of sulfisoxazole by using graphene anode.
Wang, Yanyan; Liu, Shuan; Li, Ruiping; Huang, Yingping; Chen, Chuncheng
2016-05-01
Graphite and graphene electrodes were prepared by using pure graphite as precursor. The electrode materials were characterized by a scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) measurements. The electro-catalytic activity for degradation of sulfisoxazole (SIZ) was investigated by using prepared graphene or graphite anode. The results showed that the degradation of SIZ was much more rapid on the graphene than that on the graphite electrode. Moreover, the graphene electrode exhibited good stability and recyclability. The analysis on the intermediate products and the measurement of active species during the SIZ degradation demonstrated that indirect oxidation is the dominant mechanism, involving the electro-catalytic generation of OH and O2(-) as the main active oxygen species. This study implies that graphene is a promising potential electrode material for long-term application to electro-catalytic degradation of organic pollutants. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Jo, Gyuha; Park, Moon Jeong
2012-02-01
In recent years Li-batteries have attracted significant interests for a variety of applications such as portable electronics and electric vehicle (EV) batteries due to their high energy densities. Key challenges in advancing the technology lie in specific energy density, the long term cycle properties, and durability at elevated temperature. In present study, we were motivated to prepare high capacity Li-battery by creating regular arrays of germanium nanoparticles (GeNPs, 1600 mAh/g) to replace commercial graphite anode (370 mAh/g). Thermoset polymers were employed to prepare GeNPs/polymer composites with tunable NP loadings and spacings, followed by carbonization process to prepare GeNPs/carbon composite anode material. Due to the large volume change of GeNPs with charge/discharge cycles, the regular arrays of GeNPs are turned out to be a crucial parameter in obtaining enhanced cyclability. The GeNPs/carbon anode materials were cycle tested in a half cell configuration using Lithium foil as a counter electrode and lithium salt doped PS-PEO block copolymers as electrolytes. High capacity and rate capability were achieved, which demonstrate the role of nano-sized and regularly-arrayed anode active materials in obtaining the improved battery performance.
NASA Astrophysics Data System (ADS)
Sun, Zhen; Cai, Xiang; Song, Yu; Liu, Xiao-Xia
2017-08-01
Research on anode materials with high capacitive performance is lagging behind that of cathode materials, which has severely hindered the development of high-efficient energy storage devices. Compared with other anode materials, Fe3O4 exhibits highly desirable advantages due to its low cost, high theoretical capacity and preferable electronic conductivity of ∼102 S cm-1. Herein, hierarchical honeycomb Fe3O4 is integrated on functionalized exfoliated graphite through electrochemical deposition and the following chemical conversion. The hierarchical honeycomb Fe3O4 is constructed by the oxide nanorods, which are assembled by a number of nanoparticles. This unique porous structure not only ensures fast ion diffusion in the electrode, but also provides large amount of active sites for electrochemical reactions. The exfoliated graphene atop the graphite base can act as 3D conductive scaffold to facilitate the electron transport of the electrode. Therefore, FEG/Fe3O4 exhibits large specific capacitances of 327 F g-1@1 A g-1 and 275 F g-1@10 A g-1. Good cycling stability is also achieved due to the flexibility of the graphene substrate. The assembled asymmetric device using FEG/Fe3O4 as anode can deliver a high energy density of 54 Wh kg-1.
Hassan, Fathy M; Hu, Qianqian; Fu, Jing; Batmaz, Rasim; Li, Jingde; Yu, Aiping; Xiao, Xingcheng; Chen, Zhongwei
2017-06-21
Tuned chalcogenide single crystals rooted in sulfur-doped graphene were prepared by high-temperature solution chemistry. We present a facile route to synthesize a rod-on-sheet-like nanohybrid as an active anode material and demonstrate its superior performance in lithium ion batteries (LIBs). This nanohybrid contains a nanoassembly of one-dimensional (1D) single-crystalline, orthorhombic SnS onto two-dimensional (2D) sulfur-doped graphene. The 1D nanoscaled SnS with the rodlike single-crystalline structure possesses improved transport properties compared to its 2D hexagonal platelike SnS 2 . Furthermore, we blend this hybrid chalcogenide with biodegradable polymer composite using water as a solvent. Upon drying, the electrodes were subjected to heating in vacuum at 150 °C to induce polymer condensation via formation of carboxylate groups to produce a mechanically robust anode. The LIB using the as-developed anode material can deliver a high volumetric capacity of ∼2350 mA h cm -3 and exhibit superior cycle stability over 1500 cycles as well as a high capacity retention of 85% at a 1 C rate. The excellent battery performance combined with the simplistic, scalable, and green chemistry approach renders this anode material as a very promising candidate for LIB applications.
Dominguez, Carmen M; Oturan, Nihal; Romero, Arturo; Santos, Aurora; Oturan, Mehmet A
2018-05-15
This study focuses on the effect of electrode materials on abatement of lindane (an organochlorine pesticide) by electrooxidation process. Comparative performances of different anodic (platinum (Pt), dimensionally stable anode (DSA) and boron-doped diamond (BDD)) and cathodic (carbon sponge (CS), carbon felt (CF) and stainless steel (SS)) materials on lindane electrooxidation and mineralization were investigated. Special attention was paid to determine the role of chlorine active species during the electrooxidation process. The results showed that better performances were obtained when using a BDD anode and CF cathode cell. The influence of the current density was assessed to optimize the oxidation of lindane and the mineralization of its aqueous solution. A quick (10 min) and complete oxidation of 10 mg L -1 lindane solution and relatively high mineralization degree (80% TOC removal) at 4 h electrolysis were achieved at 8.33 mA cm -2 current density. Lindane was quickly oxidized by in-situ generated hydroxyl radicals, (M( • OH)), formed from oxidation of water on the anode (M) surface following pseudo first-order reaction kinetics. Formation of chlorinated and hydroxylated intermediates and carboxylic acids during the treatment were identified and a plausible mineralization pathway of lindane by hydroxyl radicals was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Yubin; Lu, Zhikai; Zai, Xuerong; Wang, Jian
2015-08-01
Electrode materials have an important effect on the property of microbial fuel cell (MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell (BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam (PC) and urea-modified carbon foam (UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 mV lower than that of the PC, reaching -570 ±10 mV ( vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 mW m-2, which is 566.2-fold higher than that from plain graphite anode (PG). The fuel cell containing the UC anode has the maximum power density (256.0 mW m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.
NASA Astrophysics Data System (ADS)
Kolotygin, Vladislav
This work was focused on the analysis of transport, thermomechanical and electrochemical properties of a series of perovskite-like oxide materials and composites for potential applications as anodes of intermediate-temperature solid oxide fuel cells (SOFCs) with lanthanum gallate and silicate solid electrolytes. The primary attention was centered on A(Mn,Nb)O3-delta (A = Sr, Ca) and (La,Sr)(Mn,Ti)O3-based systems, lanthanum chromite substituted with acceptor-type and variable-valence cations, and various Ni-containing cermets. Emphasis was given to phase stability of the materials, their crystal structure, microstructure of porous electrode layers and dense ceramics, electronic conductivity, Seebeck coefficient, oxygen permeability, thermal and chemical induced expansion, and anodic overpotentials of the electrodes deposited onto (La,Sr)(Ga,Mg)O3- and La10(Si,Al)6O27-based electrolyte membranes. In selected cases, roles of oxygen diffusivity, states of the transition metal cations relevant for the electronic transport, catalytically active additives and doped ceria protective interlayers introduced in the model electrochemical cells were assessed. The correlations between transport properties of the electrode materials and electrochemical behavior of porous electrodes showed that the principal factors governing anode performance include, in particular, electronic conduction of the anode compositions and cation interdiffusion between the electrodes and solid electrolytes. The latter is critically important for the silicatebased electrolyte membranes, leading to substantially worse anode properties compared to the electrochemical cells with lanthanum gallate solid electrolyte. The results made it possible to select several anode compositions exhibiting lower area-specific electrode resistivity compared to known analogues, such as (La,Sr)(Cr,Mn)O3-delta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuandong; Liu, Kewei; Zhu, Yu
Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less
Sun, Yuandong; Liu, Kewei; Zhu, Yu
2017-07-31
Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less
NASA Astrophysics Data System (ADS)
Xia, Tian; Brüll, Annelise; Grimaud, Alexis; Fourcade, Sébastien; Mauvy, Fabrice; Zhao, Hui; Grenier, Jean-Claude; Bassat, Jean-Marc
2014-09-01
A-site deficient perovskite La0.57Sr0.15TiO3 (LSTO) materials are synthesized by a modified polyacrylamide gel route. X-ray diffraction pattern of LSTO indicates an orthorhombic structure. The thermal expansion coefficient of LSTO is 10.0 × 10-6 K-1 at 600 °C in 5%H2/Ar. LSTO shows an electrical conductivity of 2 S cm-1 at 600 °C in 3%H2O/H2. A new composite material, containing the porous LSTO backbone impregnated with small amounts of Ce0.9Gd0.1O2-δ (CGO) (3.4-8.3 wt.%) and Ni/Cu (2.0-6.3 wt.%), is investigated as an alternative anode for solid oxide fuel cells (SOFCs). Because of the substantial electro-catalytic activity of the fine and well-dispersed Ni particles on the surface of the ceramic framework, the polarization resistance of 6.3%Ni-8.3%CGO-LSTO anode reaches 0.73 Ω cm2 at 800 °C in 3%H2O/H2. In order to further improve the anodic performance, corn starch and carbon black are used as pore-formers to optimize the microstructure of anodes.
NASA Astrophysics Data System (ADS)
Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan
2017-08-01
An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.
Mesoporous activated carbon from corn stalk core for lithium ion batteries
NASA Astrophysics Data System (ADS)
Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce
2018-04-01
A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.
Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy
Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit
2011-01-01
Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641
2011-03-04
efficiency of cathode and anode materials in PEMFC (Proton Exchange Membrane Fuel Cells) 5a. CONTRACT NUMBER FA23861014012 5b. GRANT NUMBER 5c. PROGRAM...Rev. 8-98) Prescribed by ANSI Std Z39-18 Theoretical studies in enhancing the efficiency of cathode and anode materials in PEMFC (Proton Exchange
Advanced Nanostructured Anode Materials for Sodium-Ion Batteries.
Wang, Qidi; Zhao, Chenglong; Lu, Yaxiang; Li, Yunming; Zheng, Yuheng; Qi, Yuruo; Rong, Xiaohui; Jiang, Liwei; Qi, Xinguo; Shao, Yuanjun; Pan, Du; Li, Baohua; Hu, Yong-Sheng; Chen, Liquan
2017-11-01
Sodium-ion batteries (NIBs), due to the advantages of low cost and relatively high safety, have attracted widespread attention all over the world, making them a promising candidate for large-scale energy storage systems. However, the inherent lower energy density to lithium-ion batteries is the issue that should be further investigated and optimized. Toward the grid-level energy storage applications, designing and discovering appropriate anode materials for NIBs are of great concern. Although many efforts on the improvements and innovations are achieved, several challenges still limit the current requirements of the large-scale application, including low energy/power densities, moderate cycle performance, and the low initial Coulombic efficiency. Advanced nanostructured strategies for anode materials can significantly improve ion or electron transport kinetic performance enhancing the electrochemical properties of battery systems. Herein, this Review intends to provide a comprehensive summary on the progress of nanostructured anode materials for NIBs, where representative examples and corresponding storage mechanisms are discussed. Meanwhile, the potential directions to obtain high-performance anode materials of NIBs are also proposed, which provide references for the further development of advanced anode materials for NIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Binders and Hosts for High-Capacity Lithium-ion Battery Anodes
NASA Astrophysics Data System (ADS)
Dufficy, Martin Kyle
Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing ≤ 20 wt% tin result in small tin (metallic and tin oxide) particles (≤ 15 nm) within the composite-CNF matrix, which yield long cycle-lives; large reversible capacities of ˜ 600 mAh g-1 are observed at 0.2-C rates, while capacities of ˜ 400 mAh g-1 (double the capacity of CNFs) are observed after hundreds of cycles at 2-C rates. The second method comprises an approach to enhance the cycle life of silicon anodes. Many researchers believe that Si is the future anode material of LIBs, and Si is capable of providing a much needed boost in overall cell performance. Silicon has the highest known charge capacity at ˜ 3579 mAh g-1, nearly an order of magnitude larger than graphite (372 mAh g-1). In attempt to realize the entire capacity of Si anodes, we use binding agents to prolong cycle life. Binding agents enhance capacity retention via favorable interactions with cell components such as active materials and electrolytes. In this study, we introduce galactomannans (specifically, guar) as viable, inexpensive, biopolymer binders for Si electrodes. In attempt to elucidate the role of the binder in Si electrodes, we study guar-electrode and -electrolyte interactions that lead to electrochemical performance enhancements. We recognize that there are deficiencies in guar-silicon systems, which we address in our following approach. Notably, we develop a guar-derived binder to increase the strength and conductivity of Si-based electrodes by crosslinking guar and carbon black dispersions. The crosslinked binders, in effect, enhance electrode adhesion and hinder electrode cracking by self-healing. This study monitors gelation via rheological methods and assesses effects of crosslinking density on physical and electrochemical properties. Lastly, we consider a vacancy-induced manganese vanadate as high-capacity, high-power anodes for LIBs. Rather than assessing nanoparticles, we tailored molecular structure to enhance electrochemical performances. X-ray diffraction studies enable us to suggest a Li-insertion mechanism, where Li travels through large channels created by defects in the crystal structure. The ensuing manganese vanadate structure produces a stable framework that results in stable cycling of hundreds of cycles.
Development of Ambient Temperature Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Huang, C. K.; Ratnakumar, B. V.; Surampudi, S.; Halpert, G.
1994-01-01
Four types of materials have been evaluated as anodes for Li-ion cell fabrication. Among the materials evaluated, graphite and magnasium silicide were identified to be suitable candidate anode materials.
Solid oxide fuel cell having monolithic core
Ackerman, J.P.; Young, J.E.
1983-10-12
A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.
Solid oxide fuel cell having monolithic core
Ackerman, John P.; Young, John E.
1984-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.
NASA Astrophysics Data System (ADS)
Menzler, Norbert H.; Haanappel, Vincent A. C.
The influence of the thickness of the anode (functional layer) on the power output of anode-supported solid oxide fuel cells with a lanthanum-strontium-cobalt-ferrite cathode was investigated. The anode was applied by vacuum slip casting and the thickness varied between 1 and 22 μm. All other material and microstructural parameters were kept constant. Single cells with dimensions of 50 mm × 50 mm and with an active cathode area of 40 mm × 40 mm were manufactured and tested in an alumina housing with air as oxidant and hydrogen with 3% water vapour as the fuel gas. Results have shown that SOFCs with anodes between 1 and 13 μm have slightly better performance than those with thicker anodes (∼1.7 A cm -2 versus 1.5 A cm -2 at 800 °C and 0.7 V). The current densities were discussed with respect to cell area specific resistance, helium leak rate of the half-cell, and microstructure.
High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon.
Notohara, Hiroo; Urita, Koki; Yamamura, Hideyuki; Moriguchi, Isamu
2018-06-08
Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO 2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO 2 -embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO 2 -based anode and a LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 -based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.
Core-shell Si@TiO 2 nanosphere anode by atomic layer deposition for Li-ion batteries
Dai, Sheng
2016-01-28
Silicon (Si) is regarded as next-generation anode for high-energy lithium-ion batteries (LIBs) due to its high Li storage capacity (4200 mA h g -1). However, the mechanical degradation and resultant capacity fade critically hinder its practical application. In this regard, we demonstrate that nanocoating of Si spheres with a 3 nm titanium dioxide (TiO 2) layer via atomic layer deposition (ALD) can utmostly balance the high conductivity and the good structural stability to improve the cycling stability of Si core material. The resultant sample, Si@TiO 2-3 nm core–shell nanospheres, exhibits the best electrochemical performance of all with a highest initialmore » Coulombic efficiency and specific charge capacity retention after 50 cycles at 0.1C (82.39% and 1580.3 mA h g -1). In addition to making full advantage of the ALD technique, we believe that our strategy and comprehension in coating the electrode and the active material could provide a useful pathway towards enhancing Si anode material itself and community of LIBs.« less
Composition-Graded MoWSx Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry.
Tan, Shu Min; Pumera, Martin
2017-12-06
Among transition metal dichalcogenide (TMD)-based composites, TMD/graphene-related material and bichalcogen TMD composites have been widely studied for application toward energy production via the hydrogen evolution reaction (HER). However, scarcely any literature explored the possibility of bimetallic TMD hybrids as HER electrocatalysts. The use of harmful chemicals and harsh preparation conditions in conventional syntheses also detracts from the objective of sustainable energy production. Herein, we present the conservational alternative synthesis of MoWS x via one-step bipolar electrochemical deposition. Through bipolar electrochemistry, the simultaneous fabrication of composition-graded MoWS x hybrids, i.e., sulfur-deficient Mo x W (1-x) S 2 and Mo x W (1-x) S 3 (MoWS x /BPE cathodic and MoWS x /BPE anodic , respectively) under cathodic and anodic overpotentials, was achieved. The best-performing MoWS x /BPE cathodic and MoWS x /BPE anodic materials exhibited Tafel slopes of 45.7 and 50.5 mV dec -1 , together with corresponding HER overpotentials of 315 and 278 mV at -10 mA cm -2 . The remarkable HER activities of the composite materials were attributed to their small particle sizes, as well as the near-unity value of their surface Mo/W ratios, which resulted in increased exposed HER-active sites and differing active sites for the concurrent adsorption of protons and desorption of hydrogen gas. The excellent electrocatalytic performances achieved via the novel methodology adopted here encourage the empowerment of electrochemical deposition as the foremost fabrication approach toward functional electrocatalysts for sustainable energy generation.
NASA Astrophysics Data System (ADS)
Sauvet, A.-L.; Fouletier, J.
The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.
NASA Astrophysics Data System (ADS)
Velasco-Vélez, J. J.; Jones, Travis E.; Pfeifer, Verena; Dong, Chung-Li; Chen, Yu-Xun; Chen, Chieh-Ming; Chen, Hsin-Yu; Lu, Ying-Rui; Chen, Jin-Ming; Schlögl, R.; Knop-Gericke, A.; Chuang, C.-H.
2017-01-01
We activated gold electrodes for their use as electrocatalyst for water splitting by electrodepositing Cu, Ni and Co. A combination of operando x-ray absorption spectroscopy and potentiometric control under aqueous conditions revealed the trends in reactivity yielded by these electrodes, which are directly associated with the cross- and overpotentials as well as the occupancy of the 3d orbitals. It was found that under anodic polarization the materials electrodeposited on gold suffer from a lack of stability, while under cathodic polarization they exhibit stable behavior. The observed activity is strongly related to the lack of stability shown by these composites under anodic polarization revealing a dynamic process ruled by corrosion. By operando x-ray absorption, we established that the overall enhancement of the activity for the oxygen evolution reaction is directly attributable to the cross-potential and corrosion process of the electrodeposited materials. It is associated with the high potential deposition, which is the origin of the incipient oxidation-corrosion resistance of the lattice. We conclude that the observed trends in the total current are directly associated with the loss of oxygen in the metal-oxide lattice and the subsequent dissolution of metallic ions in the electrolyte under anodic polarization.
NASA Astrophysics Data System (ADS)
Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun
2017-02-01
Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg-1 and 84.6 Wh kg-1 at power densities of 731.25 W kg-1 and 24375 W kg-1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.
Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun
2017-02-03
Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg -1 and 84.6 Wh kg -1 at power densities of 731.25 W kg -1 and 24375 W kg -1 , respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.
Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun
2017-01-01
Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg−1 and 84.6 Wh kg−1 at power densities of 731.25 W kg−1 and 24375 W kg−1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode. PMID:28155853
Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery
NASA Astrophysics Data System (ADS)
Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim
2018-01-01
The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.
Improved Anode for a Direct Methanol Fuel Cell
NASA Technical Reports Server (NTRS)
Valdez, Thomas; Narayanan, Sekharipuram
2005-01-01
A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the catalyst by increasing electrical connectivity between catalyst particles. However, the relatively low density of carbon results in thick catalyst layers that impede the mass transport of methanol to the catalytic sites. Also, the electrical conductivity of carbon is less than 1/300th of typical metals. Furthermore, the polymer-electrolyte membrane material is acidic and most metals are not chemically stable in contact with it. Finally, a material that conducts electrons (but not protons) does not contribute to the needed transport of protons produced in the electro-oxidation reaction.
Li, Mei; Ma, Chao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wei, Xiao; Wu, Yong-Min; Tang, Wei-Ping; Wang, Kai-Xue; Chen, Jie-Sheng
2017-04-11
Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe 2 O 3 /C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe 2 O 3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe 2 O 3 nanoparticles. As a result, the well-ordered mesoporous Fe 2 O 3 /C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.
The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells
Nenning, Andreas; Volgger, Lukas; Miller, Elizabeth; ...
2017-02-18
Reduction-stable mixed ionic and electronic conductors such as Sr(Ti,Fe)O 3-δ (STF) are promising materials for application in anodes of solid oxide fuel cells. The defect chemistry of STF and its properties as solid oxide fuel cell (SOFC) cathode have been studied thoroughly, while mechanistic investigations of its electrochemical properties as SOFC anode material are still scarce. In this study, thin film model electrodes of STF with 30% and 70% Fe content were investigated in H 2+H 2O atmosphere by electrochemical impedance spectroscopy. Lithographically patterned thin film Pt current collectors were applied on top or beneath the STF thin films tomore » compensate for the low electronic conductivity under reducing conditions. Oxygen exchange resistances, electronic and ionic conductivities and chemical capacitances were quantified and discussed in a defect chemical model. Increasing Fe content increases the electro-catalytic activity of the STF surface as well as the electronic and ionic conductivity. Current collectors on top also increase the electrochemical activity due to a highly active Pt-atmosphere-STF triple phase boundary. Furthermore, the electrochemical activity depends decisively on the H 2:H 2O mixing ratio and the polarization. Lastly, Fe 0 nanoparticles may evolve on the surface in hydrogen rich atmospheres and increase the hydrogen adsorption rate.« less
Fuel cells with doped lanthanum gallate electrolyte
NASA Astrophysics Data System (ADS)
Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher
Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.
Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy.
Bernard, Sheldon A; Balla, Vamsi Krishna; Davies, Neal M; Bose, Susmita; Bandyopadhyay, Amit
2011-04-01
A laser processed NiTi alloy was anodized for different times in H(2)SO(4) electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-material interactions. The anodized surfaces were assessed for their in vitro cell-material interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with the surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that anodization creates a surface with nano/micro-roughness depending on the anodization conditions. The hydrophilicity of the NiTi surface was found to improve after anodization, as shown by the lower contact angles in cell medium, which dropped from 32° to <5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy, comparable with that of commercially pure Ti. Relatively high surface energies, especially the polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268±11 to 136±15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of a NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improves bone cell-material interactions and reduces Ni ion release in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A Survey of the Use of Ceramics in Battery and Fuel Cell Applications
1977-06-01
Company is looking at step IV, spray drying, to obtain powders with these desirable properties . At the University of (41) Utah the "zeta" process ...porous carbon matrix. As with other developments in high-temperature batteries a lithium alloy (Li- Al ) is used as the anode material, while the...with Li- Al alloys , where the activity of lithium is reduced, a longer life is obtained than with pure lithium anodes. Boron nitride felt or paper
Zhou, Yu; Guo, Huajun; Yan, Guochun; Wang, Zhixing; Li, Xinhai; Yang, Zhewei; Zheng, Anxiong; Wang, Jiexi
2018-04-10
A facile and large-scale fluidized bed reaction route was introduced for the first time to prepare crystalline embedded amorphous silicon nanoparticles with an average size of 50 nm as anode materials for lithium-ion batteries. By increasing the operating potential to control the electrochemically active degree, the resulting sample showed excellent cycle stability with a high capacity retention of 94.7% after 200 cycles at 1 A g-1 in the voltage range of 0.12-2.00 V.
NASA Astrophysics Data System (ADS)
Han, Jinzhi; Qin, Jian; Guo, Lichao; Qin, Kaiqiang; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Fang; Ma, Liying; He, Chunnian
2018-01-01
Poor intrinsic conductivity and huge volume expansion during charge/discharge process greatly limit the development of Ge-based ternary oxide as anode material for both lithium-ion batteries and sodium-ion batteries. To alleviate these issues, an ideal strategy is developed to achieve active particle nanocrystallization and composite with conductive carbon materials, simultaneously. Therefore, ultrasmall Fe2GeO4 nanodots (∼4.6 nm) uniformly and tightly anchored on 3D interconnected N-doped ultrathin carbon nanosheets (3D Fe2GeO4/N-CNSs) were constructed via one-step high temperature calcination process. This unique hybrid nanostructure can not only effectively enhance electron conductivity but also restrict the aggregation and volume fluctuation of Fe2GeO4 during the charge/discharge process. As a result, the 3D Fe2GeO4/N-CNSs electrode exhibited excellent electrochemical performances for both lithium-ion and sodium-ion battery anodes. When utilized for lithium-ion battery anode, the electrode delivered a highly reversible specific capacity (1280 mA h g-1 at 0.4 A g-1 after 180 cycles). It is the first time that Fe2GeO4 was applied for sodium-ion battery anode, which showed a remarkable rate capability (350 mA h g-1 at 0.1 A g-1 and 180 mA h g-1 at 22.8 A g-1), and ultralong cycling stability (∼86% reversible capacity retention after 6000 cycles).
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2016-06-07
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solidmore » cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.« less
NASA Astrophysics Data System (ADS)
Liu, Hao; Chen, Luyi; Liang, Yeru; Fu, Ruowen; Wu, Dingcai
2015-11-01
A novel active yolk@conductive shell nanofiber web with a unique synergistic advantage of various hierarchical nanodimensional objects including the 0D monodisperse SiO2 yolks, the 1D continuous carbon shell and the 3D interconnected non-woven fabric web has been developed by an innovative multi-dimensional construction method, and thus demonstrates excellent electrochemical properties as a self-standing LIB anode.A novel active yolk@conductive shell nanofiber web with a unique synergistic advantage of various hierarchical nanodimensional objects including the 0D monodisperse SiO2 yolks, the 1D continuous carbon shell and the 3D interconnected non-woven fabric web has been developed by an innovative multi-dimensional construction method, and thus demonstrates excellent electrochemical properties as a self-standing LIB anode. Electronic supplementary information (ESI) available: Experimental details and additional information about material characterization. See DOI: 10.1039/c5nr06531c
Anodes for alkaline electrolysis
Soloveichik, Grigorii Lev [Latham, NY
2011-02-01
A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.
Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan
2011-12-15
Decolorization of dye wastewater before discharge is pivotal because of its immense color and toxicities. In this study, a granular activated carbon based microbial fuel cell (GACB-MFC) was used without using any expensive materials like Nafion membrane and platinum catalyst for simultaneous decolorization of real dye wastewater and bioelectricity generation. After 48 hours of GACB-MFC operation, 73% color was removed at anode and 77% color was removed at cathode. COD removal was 71% at the anode and 76% at the cathode after 48 hours. Toxicity measurements showed that cathode effluent was almost nontoxic after 24 hours. The anode effluent was threefold less toxic compared to original dye wastewater after 48 hours. The GACB-MFC produced a power density of 1.7 W/m(3) with an open circuit voltage 0.45 V. One of the advantages of the GACB-MFC system is that pH was automatically adjusted from 12.4 to 7.2 and 8.0 at the anode and cathode during 48 hours operation. Copyright © 2011 Elsevier B.V. All rights reserved.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2016-07-05
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at leastmore » 5 mAh/cm.sup.2 at a C-rate of C/2.« less
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2015-11-10
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.
NASA Astrophysics Data System (ADS)
Mashkour, Mehrdad; Rahimnejad, Mostafa; Mashkour, Mahdi
2016-09-01
Microbial fuel cells (MFCs) are one of the possible renewable energy supplies which microorganisms play an active role in bio-oxidize reactions of a substrate such as glucose. Electrode materials and surface modifications are highly effective tools in enhancing MFCs' Performance. In this study, new composite anodes are fabricated. Bacterial cellulose (BC) is used as continuous phase and polyaniline (PANI) as dispersed one which is synthesized by in situ chemical oxidative polymerization on BC's fibers. With hydrogel nature of BC as a novel feature and polyaniline conductivity there meet the favorable conditions to obtain an active microbial biofilm on anode surface. Maximum power density of 117.76 mW/m2 in current density of 617 mA/m2 is achieved for BC/PANI anode. The amounts demonstrate a considerable enhancement compared with graphite plate (1 mW/m2 and 10 mA/m2).
Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K2Ti6O13 Microscaffolds.
Dong, Shengyang; Li, Zhifei; Xing, Zhenyu; Wu, Xianyong; Ji, Xiulei; Zhang, Xiaogang
2018-05-09
To fill the gap between batteries and supercapacitors requires integration of the following features in a single system: energy density well above that of supercapacitors, cycle life much longer than Li-ion batteries, and low cost. Along this line, we report a novel nonaqueous potassium-ion hybrid capacitor (KIC) that employs an anode of K 2 Ti 6 O 13 (KTO) microscaffolds constructed by nanorods and a cathode of N-doped nanoporous graphenic carbon (NGC). K 2 Ti 6 O 13 microscaffolds are studied for potential applications as the anode material in potassium-ion storage for the first time. This material exhibits an excellent capacity retention of 85% after 1000 cycles. In addition, the NGC//KTO KIC delivers a high energy density of 58.2 Wh kg -1 based on the active mass in both electrodes, high power density of 7200 W kg -1 , and outstanding cycling stability over 5000 cycles. The usage of K ions as the anode charge carrier instead of Li ions and the amenable performance of this device suggest that hybrid capacitor devices may welcome a new era of beyond lithium.
Cho, Su-Ho; Jung, Ji-Won; Kim, Chanhoon; Kim, Il-Doo
2017-01-01
Cobalt oxide that has high energy density, is the next-generation candidate as the anode material for LIBs. However, the practical use of Co3O4 as anode material has been hindered by limitations, especially, low electrical conductivity and pulverization from large volume change upon cycling. These features lead to hindrance to its electrochemical properties for lithium-ion batteries. To improve electrochemical properties, we synthesized one-dimensional (1-D) Co3O4 nanofibers (NFs) overed with reduced graphene oxide (rGO) sheets by electrostatic self-assembly (Co3O4 NFs@rGO). The flexible graphene oxide sheets not only prevent volume changes of active materials upon cycling as a clamping layer but also provide efficient electrical pathways by three-dimensional (3-D) network architecture. When applied as an anode for LIBs, the Co3O4 NFs@rGO exhibits superior electrochemical performance: (i) high reversible capacity (615 mAh g−1 and 92% capacity retention after 400 cycles at 4.0 A g−1) and (ii) excellent rate capability. Herein, we highlighted that the enhanced conversion reaction of the Co3O4 NFs@rGO is attributed to effective combination of 1-D nanostructure and low content of rGO (~3.5 wt%) in hybrid composite. PMID:28345589
Solar energy converters based on multi-junction photoemission solar cells.
Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V
2017-11-23
Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias = 0 in transmission and reflection modes, while, at V bias = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.
Dirican, Mahmut; Lu, Yao; Ge, Yeqian; Yildiz, Ozkan; Zhang, Xiangwu
2015-08-26
Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle).
NASA Astrophysics Data System (ADS)
Shellikeri, A.; Yturriaga, S.; Zheng, J. S.; Cao, W.; Hagen, M.; Read, J. A.; Jow, T. R.; Zheng, J. P.
2018-07-01
Energy storage devices, which can combine the advantages of lithium-ion battery with that of electric double layer capacitor, are of prime interest. Recently, composite cathodes, which combine a battery material with capacitor material, have shown promise in enhancing life cycle and energy/power performances. Lithium-ion capacitor (LIC), with unique charge storage mechanism of combining a pre-lithiated battery anode with a capacitor cathode, is one such device which has the potential to synergistically incorporate the composite cathode to enhance capacity and cycle life. We report here a hybrid LIC consisting of a lithium iron phosphate (LiFePO4-LFP)/Activated Carbon composite cathode in combination with a hard carbon anode, by integrating the cycle life and capacity enhancing strategies of a dry method of electrode fabrication, anode pre-lithiation and a 3:1 anode to cathode capacity ratio, demonstrating a long cycle life, while elaborating on the charge sharing between the faradaic and non-faradaic mechanism in the battery and capacitor materials, respectively in the composite cathode. An excellent cell capacity retention of 94% (1000 cycles at 1C) and 92% (100,000 cycles at 60C) were demonstrated, while retaining 78% (over 6000 cycles at 2.7C) and 67% (over 70,000 cycles at 43C) of the LFP capacity in the composite cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brousseau, R.; Arnott, M.; Baldock, B.
1995-08-01
Cathodic protection is used increasingly to mitigate steel reinforcement corrosion in concrete. the performance of zinc materials as impressed current anodes was evaluated. The anode materials investigated included rolled zinc sheets, metallized zinc, and 85% Zn-15% Al. The circuit resistance and the adhesion of the anodes was monitored with polarization time. Overall performance of arc-sprayed zinc was good. However, its adhesion to the concrete surface slowly decreased as the current density, or the polarization period, increased. Penny blank sheets and metallized 85% Zn-15% Al were found unsuitable as impressed current anodes.
NASA Astrophysics Data System (ADS)
Belharouak, Ilias; Koenig, Gary M.; Amine, K.
A promising anode material for hybrid electric vehicles (HEVs) is Li 4Ti 5O 12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn 2O 4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn 2O 4 cathode materials.
Investigation of different anode materials for aluminium rechargeable batteries
NASA Astrophysics Data System (ADS)
Muñoz-Torrero, David; Leung, Puiki; García-Quismondo, Enrique; Ventosa, Edgar; Anderson, Marc; Palma, Jesús; Marcilla, Rebeca
2018-01-01
In order to shed some light into the importance of the anodic reaction in reversible aluminium batteries, we investigate here the electrodeposition of aluminium in an ionic liquid electrolyte (BMImCl-AlCl3) using different substrates. We explore the influence of the type of anodic material (aluminium, stainless steel and carbon) and its 3D geometry on the reversibility of the anodic reaction by cyclic voltammetry (CV) and galvanostatic charge-discharge. The shape of the CVs confirms that electrodeposition of aluminium was feasible in the three materials but the highest peak currents and smallest peak separation in the CV of the aluminium anode suggested that this material was the most promising. Interestingly, carbon-based substrates appeared as an interesting alternative due to the high peak currents in CV, moderate overpotentials and dual role as anode and cathode. 3D substrates such as fiber-based carbon paper and aluminium mesh showed significantly smaller overpotentials and higher efficiencies for Al reaction suggesting that the use of 3D substrates in full batteries might result in enhanced power. This is corroborated by polarization testing of full Al-batteries.
Tin Oxynitride Anodes by Atomic Layer Deposition for Solid-State Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, David M.; Pearse, Alexander J.; Kim, Nam S.
Major advances in thin-film solid-state batteries (TFSSBs) may capitalize on 3D structuring using high-aspect-ratio substrates such as nanoscale pits, pores, trenches, flexible polymers, and textiles. This will require conformal processes such as atomic layer deposition (ALD) for every active functional component of the battery. In this paper, we explore the deposition and electrochemical properties of SnO 2, SnN y, and SnO xN y thin films as TFSSB anode materials, grown by ALD using tetrakisdimethylamido(tin), H 2O, and N 2 plasma as precursors. By controlling the dose ratio between H 2O and N 2, the N–O fraction can be tuned betweenmore » 0% N and 95% N. The electrochemical properties of these materials were tested across a composition range varying from pure SnO 2, to SnON intermediates, and pure SnNy. In TFSSBs, the SnNy anodes are found to be more stable during cycling than the SnO 2 or SnO xN y films, with an initial reversible capacity beyond that of Li–Sn alloying, retaining 75% of their capacity over 200 cycles compared to only 50% for SnO 2. Lastly, the performance of the SnO xN y anodes indicates that SnN y anodes should not be negatively impacted by small levels of O contamination.« less
Tin Oxynitride Anodes by Atomic Layer Deposition for Solid-State Batteries
Stewart, David M.; Pearse, Alexander J.; Kim, Nam S.; ...
2018-03-30
Major advances in thin-film solid-state batteries (TFSSBs) may capitalize on 3D structuring using high-aspect-ratio substrates such as nanoscale pits, pores, trenches, flexible polymers, and textiles. This will require conformal processes such as atomic layer deposition (ALD) for every active functional component of the battery. In this paper, we explore the deposition and electrochemical properties of SnO 2, SnN y, and SnO xN y thin films as TFSSB anode materials, grown by ALD using tetrakisdimethylamido(tin), H 2O, and N 2 plasma as precursors. By controlling the dose ratio between H 2O and N 2, the N–O fraction can be tuned betweenmore » 0% N and 95% N. The electrochemical properties of these materials were tested across a composition range varying from pure SnO 2, to SnON intermediates, and pure SnNy. In TFSSBs, the SnNy anodes are found to be more stable during cycling than the SnO 2 or SnO xN y films, with an initial reversible capacity beyond that of Li–Sn alloying, retaining 75% of their capacity over 200 cycles compared to only 50% for SnO 2. Lastly, the performance of the SnO xN y anodes indicates that SnN y anodes should not be negatively impacted by small levels of O contamination.« less
Scaling-Up Solid Oxide Membrane Electrolysis Technology for Magnesium Production
NASA Astrophysics Data System (ADS)
Pati, Soobhankar; Powell, Adam; Tucker, Steve; Derezinski, Steve
Metal Oxygen Separation Technologies, Inc. (MOxST) is actively developing Solid Oxide Membrane (SOM) electrolysis technology for production of magnesium directly from its oxide. The vital component of this technology is the oxygen ion-conducting solid zirconia electrolyte separating the molten flux (a mixture of salts and oxide) and the inert anode. The zirconia not only protects the anode from the flux but also prevents anode gas back-reaction, increasing the efficiency. This makes it possible to produce low-cost high-purity magnesium and high-purity oxygen as a byproduct with no direct greenhouse gas emissions. In this paper we discuss the design modifications made to address the scaling-up challenges, particularly for producing magnesium in liquid form. The key accomplishment to date is the successful development of a prototype capable of producing few kilograms of magnesium per day. We will also describe the prerequisite properties of an inert anode and suitable materials for the same.
Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material.
Tang, Wei; Liu, Lili; Tian, Shu; Li, Lei; Yue, Yunbo; Wu, Yuping; Zhu, Kai
2011-09-28
MoO(3) nanoplates were prepared as anode material for aqueous supercapacitors. They can deliver a high energy density of 45 W h kg(-1) at 450 W kg(-1) and even maintain 29 W h kg(-1) at 2 kW kg(-1) in 0.5 M Li(2)SO(4) aqueous electrolyte. These results present a new direction to explore non-carbon anode materials.
Development of Carbon Anode for Rechargeable Lithium Cells
NASA Technical Reports Server (NTRS)
Huang, C. -K.; Surampudi, S.; Halpert, G.
1994-01-01
Conventionally, rechargeable lithium cells employ a pure lithium anode. To overcome problems associated with the pure lithium electrode, it has been proposed to replace the conventional electrode with an alternative material having a greater stability with respect to the cell electrolytes. For this reason, several graphitic and coke based carbonaceous materials were evaluated as candidate anode materials...In this paper, we summarize the results of the studies on Li-ion cell development.
Lignin Based Carbon Materials for Energy Storage Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sabornie; Saito, Tomonori; Rios, Orlando
The implementation of Li-ion battery technology into electric and hybrid electric vehicles and portable electronic devices such as smart phones, laptops and tablets, creates a demand for efficient, economic and sustainable materials for energy storage. However, the high cost and long processing time associated with manufacturing battery-grade anode and cathode materials are two big constraints for lowering the total cost of batteries and environmentally friendly electric vehicles. Lignin, a byproduct of the pulp and paper industry and biorefinery, is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fibers with optimalmore » properties for use as anode materials. Recent developments in the preparation of lignin precursors and conversion to carbon fiber-based anode materials have created a new class of anode materials with excellent electrochemical characteristics suitable for immediate use in existing Li- or Na-ion battery technologies.« less
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2017-11-28
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2016-09-06
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin
2016-12-01
A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe2O3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe2O3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe2O3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe2O3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.
Sinusoidal current and stress evolutions in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang
2016-09-01
Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.
Space environmental effects on the integrity of chromic acid anodized coatings
NASA Technical Reports Server (NTRS)
Plagemann, W. L.
1993-01-01
This report describes the condition of chromic acid anodized aluminum subsequent to a 69-month exposure to low Earth orbit (LEO) on the Long Duration Exposure Facility. Optical properties and the condition of anodized coating are reported. This material was exposed to each environmental parameter present in LEO. Only slight changes in the material were observed.
High Areal Capacity Si/LiCoO 2 Batteries from Electrospun Composite Fiber Mats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Self, Ethan C.; Naguib, Michael; Ruther, Rose E.
Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g -1 (3,500 mA h gmore » $$-1\\atop{Si}$$) at 0.1 C and 489 mAh g -1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm -2 and 750 mA h cm -3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO 2-based cathode has a high specific energy density of 270 Wh kg -1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiO x surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats« less
High Areal Capacity Si/LiCoO 2 Batteries from Electrospun Composite Fiber Mats
Self, Ethan C.; Naguib, Michael; Ruther, Rose E.; ...
2017-03-24
Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g -1 (3,500 mA h gmore » $$-1\\atop{Si}$$) at 0.1 C and 489 mAh g -1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm -2 and 750 mA h cm -3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO 2-based cathode has a high specific energy density of 270 Wh kg -1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiO x surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats« less
Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr
NASA Technical Reports Server (NTRS)
Whitacre, Jay F. (Inventor); Narayanan, Sekharipuram R. (Inventor)
2010-01-01
A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.
NASA Astrophysics Data System (ADS)
Wang, XiaoFei; Zhu, Yong; Zhu, Sheng; Fan, JinChen; Xu, QunJie; Min, YuLin
2018-03-01
In this work, we have successfully synthesized the S/N dual-doped carbon nanosheets which are strongly coupled with Co x O y nanoparticles (SNCC) by calcinating cobalt/dithizone complex precursor following KOH activation. The SNCC as anode shows the wonderful charge capacity of 1200 mAh g-1 after 400th cycles at 1000 mA g-1 for Li-ion storage. The superior electrochemical properties illustrate that the SNCC can be a candidate for high-performance anode material of lithium-ion batteries (LIBs) because of the facile preparation method and excellent performance. Significantly, we also discuss the mechanism for the SNCC from the strong synergistic effect perspective.
Thermally conductive lithium ion electrodes and batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, Elena; Sumant, Anirudha V.; Balandin, Alexander
A thermally conductive electrochemical cell comprises a lithium ion-containing liquid electrolyte contacting a cathode and anode. The cathode and anode are in the form of electroactive sheets separated from each other by a membrane that is permeable to the electrolyte. One or more of the cathode and anode comprises two or more layers of carbon nanotubes, one of which layers includes electrochemically active nanoparticles and/or microparticles disposed therein or deposited on the nanotubes thereof. The majority of the carbon nanotubes in each of the layers are oriented generally parallel to the layers. Optionally, one or more of the layers includesmore » an additional carbon material such as graphene, nanoparticulate diamond, microparticulate diamond, and a combination thereof.« less
Development of an Acetate-Fed or Sugar-Fed Microbial Power Generator for Military Bases
2011-01-01
quarter. We tested graphite and stainless steel as anode materials for ARB growth, showing the greater suitability of carbon fibers as anode material...microbial electrolysis cells (MECs) with graphite rods and stainless steel meshes as anodes to select the optimum material for use in MFC modules to...be tested in the future. We selected meshes made from 316-grade stainless steel for these initial studies. We conducted several trials with the MECs
Nickel hydroxide positive electrode for alkaline rechargeable battery
Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean
2018-04-03
Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
Nickel hydroxide positive electrode for alkaline rechargeable battery
Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean
2018-02-20
Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
Architectures and criteria for the design of high efficiency organic photovoltaic cells
Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast
2015-03-24
An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.
BiVO4 Fern Architectures: A Competitive Anode for Lithium-Ion Batteries.
Dubal, Deepak P; Patil, Deepak R; Patil, Santosh S; Munirathnam, N R; Gomez-Romero, Pedro
2017-09-21
The development of high-performance anode materials for lithium-ion batteries (LIBs) is currently subject to much interest. In this study, BiVO 4 fern architectures are introduced as a new anode material for LIBs. The BiVO 4 fern shows an excellent reversible capacity of 769 mAh g -1 (ultrahigh volumetric capacity of 3984 mAh cm -3 ) at 0.12 A g -1 with large capacity retention. A LIB full cell is then assembled with a BiVO 4 fern anode and LiFePO 4 (LFP, commercial) as cathode material. The device can achieve a capacity of 140 mAh g -1 at 1C rate, that is, 81 % of the capacity of the cathode and maintained to 104 mAh g -1 at a high rate of 8C, which makes BiVO 4 a promising candidate as a high-energy anode material for LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Miremad, Seyed Milad; Shirani Bidabadi, Babak
2018-04-01
The effect of the anode's insert material of a plasma focus device on the properties of X-ray emission zone was studied. Inserts were fabricated out of six different materials including aluminum, copper, zinc, tin, tungsten, and lead to cover a wide range of atomic numbers. For each anode's insert material at different gas pressures and different voltages, the shape of X-ray emission zone was recorded by three pinhole cameras, which were installed on sidewall and roof of the chamber of plasma focus device. The results indicated that by changing the gas pressure and the charge voltage of capacitor, the X-ray source of plasma focus emerges with different forms as a concentrated column or conical shape with sharp or cloudy edges. These structures are in the form of a combination of plasma emission and anode-tip emission with different intensities. These observations indicate that the material of the anode-tip especially affects the structure of X-ray emission zone.
Tin doped PrBaFe 2O 5+δ anode material for solid oxide fuel cells
Dong, Guohui; Yang, Chunyang; He, Fei; ...
2017-04-25
Ceramic anodes have many advantages over cermet anodes for solid oxide fuel cells. We report the synthesis and characterization of Sn doped double perovskite PrBaFe (2-x)Sn xO 5+δ (x = 0–0.3) anode materials. Different crystal structures were observed depending on the Sn doping level and gas atmosphere. The materials demonstrated excellent stability in both reducing and redox atmospheres at elevated temperatures. The oxygen content in the as-prepared PrBaFe (2-x)Sn xO 5+δ was nonlinearly correlated to the Sn doping level and reached maximum values around x = 0.1. After the reducing treatment, the oxygen content linearly decreased with increasing Sn dopingmore » level. The electrical conductivity of bulk PrBaFe (2-x)Sn xO 5+δ (x = 0.1) reached 63.6 S cm -1 at 800 °C in humidified hydrogen. At 750 °C, the surface exchange coefficient and bulk diffusivity of PrBaFe (2-x)Sn xO 5+δ reached the maximum values of 4.42 × 10 -6 m s -1 and 6.04 × 10 -7 m 2 s -1, respectively, in the reducing process when the Sn doping level was x = 0.1. The activation energies of surface exchange coefficient and bulk diffusivity of PrBaFe (2-x)Sn xO 5+δ (x = 0.1) were 0.22 eV and 0.16 eV, respectively, in the reducing process. The area specific resistance of the PrBaFe (2-x)Sn xO 5+δ (x = 0.1) anode was 0.095–0.285 Ω cm 2 from 850–750 °C in humidified hydrogen, better than or comparable to the best ceramic anodes in the literature.« less
Yang, Eunjeong; Ji, Hyunjun; Kim, Jaehoon; Kim, Heejin; Jung, Yousung
2015-02-21
Recently a group of two-dimensional materials called MXenes have been discovered and they have demonstrated their potential in Li rechargeable batteries. Herein, the Na storage and ion migration properties of M2C-type MXenes (M = Ti, V, Cr, Mn, Fe, Co, Ni, Nb, Mo) were investigated using density functional theory (DFT) calculations, and were compared to the Li case. Based on the average voltage and migration barrier of surface ions, we suggest that M = Ti, V, Cr, Mn, and Mo are suitable for sodium ion battery (SIB) anodes. These screened M2C materials can provide a theoretical capacity of 190-288 mA h g(-1) by accommodating two alkali ions per formula unit. They also exhibit an activation barrier of 0.1-0.2 eV for ionic motion, suggesting that the M2C materials are promising for high-power applications. The underlying aspects of the voltage differences between M2C materials are also discussed using electrostatic considerations.
A Database Approach for Predicting and Monitoring Baked Anode Properties
NASA Astrophysics Data System (ADS)
Lauzon-Gauthier, Julien; Duchesne, Carl; Tessier, Jayson
2012-11-01
The baked anode quality control strategy currently used by most carbon plants based on testing anode core samples in the laboratory is inadequate for facing increased raw material variability. The low core sampling rate limited by lab capacity and the common practice of reporting averaged properties based on some anode population mask a significant amount of individual anode variability. In addition, lab results are typically available a few weeks after production and the anodes are often already set in the reduction cells preventing early remedial actions when necessary. A database approach is proposed in this work to develop a soft-sensor for predicting individual baked anode properties at the end of baking cycle. A large historical database including raw material properties, process operating parameters and anode core data was collected from a modern Alcoa plant. A multivariate latent variable PLS regression method was used for analyzing the large database and building the soft-sensor model. It is shown that the general low frequency trends in most anode physical and mechanical properties driven by raw material changes are very well captured by the model. Improvements in the data infrastructure (instrumentation, sampling frequency and location) will be necessary for predicting higher frequency variations in individual baked anode properties. This paper also demonstrates how multivariate latent variable models can be interpreted against process knowledge and used for real-time process monitoring of carbon plants, and detection of faults and abnormal operation.
NASA Astrophysics Data System (ADS)
Lewerenz, Meinert; Marongiu, Andrea; Warnecke, Alexander; Sauer, Dirk Uwe
2017-11-01
In this work the differential voltage analysis (DVA) is evaluated for LiFePO4|Graphite cylindrical cells aged in calendaric and cyclic tests. The homogeneity of the active lithium distribution and the loss of anode active material (LAAM) are measured by the characteristic shape and peaks of the DVA. The results from this analysis exhibit an increasing homogeneity of the lithium-ion distribution during aging for all cells subjected to calendaric aging. At 60 °C, LAAM is found additionally and can be associated with the deposition of dissolved Fe from the cathode on the anode, where it finally leads to the clogging of pores. For cells aged under cyclic conditions, several phenomena are correlated to degradation, such as loss of active lithium and local LAAM for 100% DOD. Moreover, the deactivation of certain parts of anode and cathode due to a lithium-impermeable covering layer on top of the anode is observed for some cells. While the 100% DOD cycling is featured by a continuous LAAM, the LAAM due to deactivation by a covering layer of both electrodes starts suddenly. The homogeneity of the active lithium distribution within the cycled cells is successively reduced with deposited passivation layers and with LAAM that is lost locally at positions with lower external pressure on the electrode.
Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin
2014-11-26
Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.
Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries.
Lao, Mengmeng; Zhang, Yu; Luo, Wenbin; Yan, Qingyu; Sun, Wenping; Dou, Shi Xue
2017-12-01
Sodium-ion batteries (SIBs) are considered as promising alternatives to lithium-ion batteries owing to the abundant sodium resources. However, the limited energy density, moderate cycling life, and immature manufacture technology of SIBs are the major challenges hindering their practical application. Recently, numerous efforts are devoted to developing novel electrode materials with high specific capacities and long durability. In comparison with carbonaceous materials (e.g., hard carbon), partial Group IVA and VA elements, such as Sn, Sb, and P, possess high theoretical specific capacities for sodium storage based on the alloying reaction mechanism, demonstrating great potential for high-energy SIBs. In this review, the recent research progress of alloy-type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed, and the challenges and perspectives regarding these anode materials are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, Roger B.; Dusek, Joseph T.
1984-01-01
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, R.B.; Dusek, J.T.
1983-10-12
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.
NASA Astrophysics Data System (ADS)
Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem
2015-11-01
Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.
Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery
NASA Astrophysics Data System (ADS)
Zhao, Liang; Pan, Hui-Lin; Hu, Yong-Sheng; Li, Hong; Chen, Li-Quan
2012-02-01
This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a “zero-strain" anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an average Na storage voltage of about 1.0 V and a reversible capacity of about 145 mAh/g, thereby making it a promising anode for sodium-ion battery. Ex-situ X-ray diffraction (XRD) is used to investigate the structure change in the Na insertion/deinsertion process. Based on this, a possible Na storage mechanism is proposed.
Improved performance of organic solar cells with solution processed hole transport layer
NASA Astrophysics Data System (ADS)
Bhargav, Ranoo; Gairola, S. P.; Patra, Asit; Naqvi, Samya; Dhawan, S. K.
2018-06-01
This work is based on Cobalt Oxide as solution processed, inexpensive and effective hole transport layer (HTL) for efficient organic photovoltaic applications (OPVs). In Organic solar cell (OSC) devices ITO coated glass substrate used as a transparent anode electrode for light incident, HTL material Co3O4 dissolve in DMF solvent deposited on anode electrode, after that active layer material (donor/acceptor) deposited on to HTL and finally Al were deposited by thermal evaporation used as cathode electrode. These devices were fabricated with PCDTBT well known low band gap donor material in OSCs and blended with PC71BM as an acceptor material using simplest device structure ITO/Co3O4/active layer/Al at ambient conditions. The power conversion efficiencies (PCEs) based on Co3O4 and PEDOT:PSS have been achieved to up to 3.21% and 1.47% with PCDTBT respectively. In this study we reported that the devices fabricated with Co3O4 showed better performance as compare to the devices fabricated with well known and most studied solution processed HTL material PEDOT:PSS under identical environmental conditions. The surface morphology of the HTL film was characterized by (AFM). Lastly, we have provided Co3O4 as an efficient hole transport material HTL for solution processed organic photovoltaic applications.
°Enhancing High Temperature Anode Performance with 2° Anchoring Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Robert A.; Sofie, Stephen W.; Amendola, Roberta
2015-10-01
Project accomplishments included developing and optimizing strength testing of aluminum titanate (ALT)-doped Ni-YSZ materials and identified the dopant levels that optimized mechanical strength and enhanced electrochemical performance. We also optimized our ability to fabricate electrolyte supported button cells with anodes consisting of powders provided by Fuel Cell Energy. In several instances, those anodes were infiltrated with ALT and tested with hydrogen for 30 hours at 800°C at an applied potential of 0.4 V. Our research activities were focused in three areas: 1) mechanical strength testing on as prepared and reducced nickel-YSZ structures that were either free of a dopant ormore » prepared by mechanically mixing in ALT at various weight percents (up to 10 wt%); 2) 24-hour electrochemical testing of electroylte supported cells having anodes made from Ni/YSZ and Ni/YSZ/ALT anodes with specific attention focused on modeling degradation rates; and 3) operando EIS and optical testing of both in-house fabricated devices as well as membrane electrode assemblies that were acquired from commercial vendors.« less
Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon
NASA Technical Reports Server (NTRS)
Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent
2010-01-01
When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.
Brannon, Paul J.; Cowgill, Donald F.
1990-01-01
A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.
Brannon, P.J.; Cowgill, D.F.
1990-12-18
A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.
Additive-free thick graphene film as an anode material for flexible lithium-ion batteries
NASA Astrophysics Data System (ADS)
Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun
2015-04-01
This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06082b
NASA Astrophysics Data System (ADS)
Dong, Yucheng; Ma, Ruguang; Hu, Mingjun; Cheng, Hua; Lee, Jong-Min; Li, Yang Yang; Zapien, Juan Antonio
2014-09-01
We present a simple polymer-pyrolysis assisted method to prepare vanadium trioxide and carbon nanocomposites as an advanced anode material for lithium-ion batteries. The as-prepared material deliver a superior battery performance with highly retained capacity of ∼780 mAh g-1 over 100 cycles at a current density of 200 mA g-1, showing excellent cyclic stability, and good rate capability. The improved electrochemical performance of vanadium trioxide and carbon nanocomposites electrode makes it promising as a suitable anode material for practical battery applications.
Effects of anode material on arcjet performance
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Curran, Frank M.; Larson, C. A.
1992-01-01
Anodes fabricated from four different materials were tested in a modular arcjet thruster at 1 kW power level on nitrogen/hydrogen mixtures. A two-percent thoriated tungsten anode served as the control. Graphite was chosen for its ease in fabrication, but experienced severe erosion in the constrictor and diverging side. Hafnium carbide and lanthanum hexaboride were chosen for their low work functions but failed due to thermal stress and reacted with the propellant. When compared to the thoriated tungsten nozzle, thruster performance was significantly lower for the lanthanum hexaboride insert and the graphite nozzle, but was slightly higher for the hafnium carbide nozzle. Both the lanthanum hexaboride and hafnium carbide nozzle operated at higher voltages. An attempt was made to duplicate higher performance hafnium carbide results, but repeated attempts at machining a second anode insert were unsuccessful. Graphite, hafnium carbide, and lanthanum hexaboride do not appear viable anode materials for low power arcjet thrusters.
Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa
2007-09-15
The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.
High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures
NASA Astrophysics Data System (ADS)
Babu, Binson; Shaijumon, M. M.
2017-06-01
Hybrid Na-ion capacitors bridge the performance gap between Na-ion batteries and supercapacitors and offer excellent energy and power characteristics. However, designing efficient anode and cathode materials with improved kinetics and long cycle life is essential for practical implementation of this technology. Herein, layered sodium titanium oxide hydroxide, Na2Ti2O4(OH)2, synthesized through hydrothermal technique, is studied as efficient anode material for hybrid Na-ion capacitor. Half-cell electrochemical studies vs. Na/Na+ showed excellent performance for Na2Ti2O4(OH)2 electrode, with ∼57.2% of the total capacity (323.3 C g-1 at 1.0 mV s-1) dominated by capacitive behavior and the remaining due to Na-intercalation. The obtained values are in good agreement with Trasatti plots indicating the potential of this material as efficient anode for hybrid Na-ion capacitor. Further, a full cell Na-ion capacitor is fabricated with Na2Ti2O4(OH)2 as anode and chemically activated Rice Husk Derived Porous Carbon (RHDPC-KOH) as cathode by using organic electrolyte. The hybrid device, operated at a maximum cell voltage of 4 V, exhibits stable electrochemical performance with a maximum energy density of ∼65 Wh kg-1 (at 500 W kg-1, 0.20 A g-1) and with more than ∼ 93% capacitive retention after 3000 cycles.
Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices
Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.
2013-01-01
Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163
Investigation of materials for inert electrodes in aluminum electrodeposition cells
NASA Astrophysics Data System (ADS)
Haggerty, J. S.; Sadoway, D. R.
1987-09-01
Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented.
Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries
NASA Astrophysics Data System (ADS)
Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah
2015-09-01
Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.
Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries.
Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S; Ozkan, Mihrimah
2015-09-29
Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.
Na-Ion Battery Anodes: Materials and Electrochemistry.
Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing
2016-02-16
The intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due to the unfavorable thermodynamics. In fact, it was the utilization of a carbon anode in LIBs that enabled the commercial successes. Anodes of metal-ion batteries determine key characteristics, such as safety and cycling life; thus, it is indispensable to identify suitable anode materials for NIBs. In this Account, we review recent development on anode materials for NIBs. Due to the limited space, we will mainly discuss carbon-based and alloy-based anodes and highlight progress made in our groups in this field. We first present what is known about the failure mechanism of graphite anode in NIBs. We then go on to discuss studies on hard carbon anodes, alloy-type anodes, and organic anodes. Especially, the multiple functions of natural cellulose that is used as a low-cost carbon precursor for mass production and as a soft substrate for tin anodes are highlighted. The strategies of minimizing the surface area of carbon anodes for improving the first-cycle Coulombic efficiency are also outlined, where graphene oxide was employed as dehydration agent and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was used to unzip wood fiber. Furthermore, surface modification by atomic layer deposition technology is introduced, where we discover that a thin layer of Al2O3 can function to encapsulate Sn nanoparticles, leading to a much enhanced cycling performance. We also highlight recent work about the phosphorene/graphene anode, which outperformed other anodes in terms of capacity. The aromatic organic anode is also studied as anode with very high initial sodiation capacity. Furthermore, electrochemical intercalation of Na ions into reduced graphene oxide is applied for fabricating transparent conductors, demonstrating the great feasibility of Na ion intercalation for optical applications.
NASA Astrophysics Data System (ADS)
Holtstiege, Florian; Schmuch, Richard; Winter, Martin; Brunklaus, Gunther; Placke, Tobias
2018-02-01
Pre-lithiation of anode materials can be an effective method to compensate active lithium loss which mainly occurs in the first few cycles of a lithium ion battery (LIB), due to electrolyte decomposition and solid electrolyte interphase (SEI) formation at the surface of the anode. There are many different pre-lithiation methods, whereas pre-lithiation using metallic lithium constitutes the most convenient and widely utilized lab procedure in literature. In this work, for the first time, solid state nuclear magnetic resonance spectroscopy (NMR) is applied to monitor the reaction kinetics of the pre-lithiation process of graphite with lithium. Based on static 7Li NMR, we can directly observe both the dissolution of lithium metal and parallel formation of LiCx species in the obtained NMR spectra with time. It is also shown that the degree of pre-lithiation as well as distribution of lithium metal on the electrode surface have a strong impact on the reaction kinetics of the pre-lithiation process and on the remaining amount of lithium metal. Overall, our findings are highly important for further optimization of pre-lithiation methods for LIB anode materials, both in terms of optimized pre-lithiation time and appropriate amounts of lithium metal.
Rüdiger, Celine; Favaro, Marco; Valero-Vidal, Carlos; Calvillo, Laura; Bozzolo, Nathalie; Jacomet, Suzanne; Hejny, Clivia; Gregoratti, Luca; Amati, Matteo; Agnoli, Stefano; Granozzi, Gaetano; Kunze-Liebhäuser, Julia
2016-04-07
Composite materials of titania and graphitic carbon, and their optimized synthesis are highly interesting for application in sustainable energy conversion and storage. We report on planar C/TiO2 composite films that are prepared on a polycrystalline titanium substrate by carbothermal treatment of compact anodic TiO2 with acetylene. This thin film material allows for the study of functional properties of C/TiO2 as a function of chemical composition and structure. The chemical and structural properties of the composite on top of individual Ti substrate grains are examined by scanning photoelectron microscopy and micro-Raman spectroscopy. Through comparison of these data with electron backscatter diffraction, it is found that the amount of generated carbon and the grade of anodic film crystallinity correlate with the crystallographic orientation of the Ti substrate grains. On top of Ti grains with ∼(0001) orientations the anodic TiO2 exhibits the highest grade of crystallinity, and the composite contains the highest fraction of graphitic carbon compared to Ti grains with other orientations. This indirect effect of the Ti substrate grain orientation yields new insights into the activity of TiO2 towards the decomposition of carbon precursors.
High-capacity aqueous zinc batteries using sustainable quinone electrodes
Zhao, Qing; Huang, Weiwei; Luo, Zhiqiang; Liu, Luojia; Lu, Yong; Li, Yixin; Li, Lin; Hu, Jinyan; Ma, Hua; Chen, Jun
2018-01-01
Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g−1 with an energy efficiency of 93% at 20 mA g−1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g−1. The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg−1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage. PMID:29511734
High-capacity aqueous zinc batteries using sustainable quinone electrodes.
Zhao, Qing; Huang, Weiwei; Luo, Zhiqiang; Liu, Luojia; Lu, Yong; Li, Yixin; Li, Lin; Hu, Jinyan; Ma, Hua; Chen, Jun
2018-03-01
Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g -1 with an energy efficiency of 93% at 20 mA g -1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g -1 . The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg -1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage.
Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...
2016-04-30
The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less
46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... installation of magnesium sacrificial anodes in cargo tanks utilized for the carriage of flammable or... analysis of the alloy composition shall be submitted for approval. The anode should be magnesium free and... consideration. (c) Sacrificial anodes using materials other than those having aluminum and/or magnesium in whole...
46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... installation of magnesium sacrificial anodes in cargo tanks utilized for the carriage of flammable or... analysis of the alloy composition shall be submitted for approval. The anode should be magnesium free and... consideration. (c) Sacrificial anodes using materials other than those having aluminum and/or magnesium in whole...
Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin
2017-01-11
Due to its high theoretical capacity (978 mA h g -1 ), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g -1 (at current density of 100 mA g -1 ) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.
Modeling studies of electrolyte flow and bubble behavior in advanced Hall cells
NASA Astrophysics Data System (ADS)
Shekhar, R.; Evans, J. W.
Much research was performed in recent years by corporations and university/government labs on materials for use in advanced Hall-Heroult cells. Attention has focussed on materials for use as wettable cathodes and inert anodes and much was achieved in terms of material development. Comparatively less attention was devoted to how these materials might be incorporated in new or existing cells, i.e., to how the cells should be designed and redesigned, to take full advantage of these materials. The effort, supported by the U.S. Department of Energy, to address this issue, is described. The primary objectives are cell design where electrolyte flow can be managed to promote both the removal of the anode gas bubbles and the convection of dissolved alumina in the inter-electrode region, under conditions where the anode-cathode distance is small. The principal experimental tool was a water model consisting of a large tank in which simulated anodes can be suspended in either the horizontal or vertical configurations. Gas generation was by forcing compressed air through porous graphite and the fine bubbles characteristic of inert anodes were produced by adding butanol to the water. Velocities were measured using a laser Doppler velocimeter. Velocity measurements with two different anode designs (one that is flat and the other that has grooves) are presented. The results show that the electrode configuration has a significant effect on the fluid flow pattern in the inter-electrode region. Furthermore, it is shown that rapid fluid flow is obtained when the cell is operated with a submerged anode.
Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide
NASA Astrophysics Data System (ADS)
Merwin, Augustus
Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy showed mixed (kinetic and diffusion) control and an overall low impedance due to extreme corrosion. It was observed that tungsten is sufficiently stable in LiCl - 2wt% Li 2O at 700°C at the required anodic potential for the reduction of uranium oxide. This study identifies tungsten to be a superior anode material to platinum for the electrolytic reduction of uranium oxide, both in terms of superior corrosion behavior and reduced cost, and thus recommends that tungsten be further investigated as an alternative anode for the electrolytic reduction of uranium dioxide.
Sulfone-based electrolytes for aluminium rechargeable batteries.
Nakayama, Yuri; Senda, Yui; Kawasaki, Hideki; Koshitani, Naoki; Hosoi, Shizuka; Kudo, Yoshihiro; Morioka, Hiroyuki; Nagamine, Masayuki
2015-02-28
Electrolyte is a key material for success in the research and development of next-generation rechargeable batteries. Aluminium rechargeable batteries that use aluminium (Al) metals as anode materials are attractive candidates for next-generation batteries, though they have not been developed yet due to the lack of practically useful electrolytes. Here we present, for the first time, non-corrosive reversible Al electrolytes working at room temperature. The electrolytes are composed of aluminium chlorides, dialkylsulfones, and dilutants, which are realized by the identification of electrochemically active Al species, the study of sulfone dependences, the effects of aluminium chloride concentrations, dilutions and their optimizations. The characteristic feature of these materials is the lower chloride concentrations in the solutions than those in the conventional Al electrolytes, which allows us to use the Al metal anodes without corrosions. We anticipate that the sulfone-based electrolytes will open the doors for the research and development of Al rechargeable batteries.
Miao, Fengjuan; Tao, Bairui; Chu, Paul K
2012-04-28
A new silicon-based anode suitable for direct ethanol fuel cells (DEFCs) is described. Pd-Ni nanoparticles are coated on Si nanowires (SiNWs) by electroless co-plating to form the catalytic materials. The electrocatalytic properties of the SiNWs and ethanol oxidation on the Pd-Ni catalyst (Pd-Ni/SiNWs) are investigated electrochemically. The effects of temperature and working potential limit in the anodic direction on ethanol oxidation are studied by cyclic voltammetry. The Pd-Ni/SiNWs electrode exhibits higher electrocatalytic activity and better long-term stability in an alkaline solution. It also yields a larger current density and negative onset potential thus boding well for its application to fuel cells. This journal is © The Royal Society of Chemistry 2012
Li, Jingwei; Wei, Bo; Cao, Zhiqun; Yue, Xing; Zhang, Yaxin; Lü, Zhe
2018-01-10
The Nb-doped lanthanum strontium ferrite perovskite oxide La 0.8 Sr 0.2 Fe 0.9 Nb 0.1 O 3-δ (LSFNb) is evaluated as an anode material in a solid oxide fuel cell (SOFC). The effects of Nb partial substitution in the crystal structure, the electrical conductivity, and the valence of Fe ions are studied. LSFNb exhibits good structural stability in a severe reducing atmosphere at 800 °C, suggesting that high-valent Nb can effectively promote the stability of the lattice structure. The concentration of Fe 2+ increases after Nb doping, as confirmed by X-ray photoelectron spectroscopy. The maximum power density of a thick Sc-stabilized zirconia (ScSZ) electrolyte-supported single cell reached 241.6 mW cm -2 at 800 °C with H 2 as fuel. The cell exhibited excellent stability for 100 h continuous operation without detectable degeneration. Scanning electron microscopy clearly revealed exsolution on the LSFNb surface after operation. Meanwhile, LSFNb particles agglomerated significantly during long-term stability testing. Impedance spectra suggested that both the LSFNb anode and the (La 0.75 Sr 0.25 ) 0.95 MnO 3-δ /ScSZ cathode underwent an activation process during long-term testing, through which the charge transfer ability increased significantly. Meanwhile, low-frequency resistance (R L ) mainly attributed to the anode (80 %) significantly increased, probably due to the agglomeration of LSFNb particles. The LSFNb anode exhibits excellent anti-sulfuring poisoning ability and redox stability. These results demonstrate that LSFNb is a promising anode material for SOFCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windisch, C.F. Jr.; Strachan, D.M.; Henager, C.H. Jr.
Cermet anodes were evaluated as nonconsumable substitutes for carbon anodes using a pilot-scale reduction cell at the Reynolds Manufacturing Technology Laboratory. After pilot cell testing, tile anodes were subjected to extensive materials characterization and physical properties measurements at the Pacific Northwest Laboratory. Significant changes in the composition of the cermet anodes were observed including the growth of a reaction layer and penetration of electrolyte deep into the cermet matrix. Fracture strength and toughness were measured as a function of temperature and the ductile-brittle transition wasreduced by 500C following pilot cell testing. These results imply difficulties with anode material and controlmore » of operating conditions in the pilot cell, and suggest that additional development work be performed before the cermet anodes are used in commercial reduction cells. The results also highlight specific fabrication and operational considerations that should be addressed in future testing.« less
NASA Astrophysics Data System (ADS)
Ye, Xiao-Feng; Wang, S. R.; Wang, Z. R.; Hu, Q.; Sun, X. F.; Wen, T. L.; Wen, Z. Y.
The perovskite system La 1- xSr xCr 1- yM yO 3- δ (M, Mn, Fe and V) has recently attracted much attention as a candidate material for the fabrication of solid oxide fuel cells (SOFCs) due to its stability in both H 2 and CH 4 atmospheres at temperatures up to 1000 °C. In this paper, we report the synthesis of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3 (LSCM) by solid-state reaction and its employment as an alternative anode material for anode-supported SOFCs. Because LSCM shows a greatly decreased electronic conductivity in a reducing atmosphere compared to that in air, we have fabricated Cu-LSCM-ScSZ (scandia-stabilized zirconia) composite anodes by tape-casting and a wet-impregnation method. Additionally, a composite structure (support anode, functional anode and electrolyte) structure with a layer of Cu-LSCM-YSZ (yttria-stabilized zirconia) on the supported anode surface has been manufactured by tape-casting and screen-printing. Single cells with these two kinds of anodes have been fabricated, and their performance characteristics using hydrogen and ethanol have been measured. In the operation period, no obvious carbon deposition was observed when these cells were operated on ethanol. These results demonstrate the stability of LSCM in an ethanol atmosphere and its potential utilization in anode-supported SOFCs.
Choi, Sinho; Cho, Yoon-Gyo; Kim, Jieun; Choi, Nam-Soon; Song, Hyun-Kon; Wang, Guoxiu; Park, Soojin
2017-04-01
Porous structured materials have unique architectures and are promising for lithium-ion batteries to enhance performances. In particular, mesoporous materials have many advantages including a high surface area and large void spaces which can increase reactivity and accessibility of lithium ions. This study reports a synthesis of newly developed mesoporous germanium (Ge) particles prepared by a zincothermic reduction at a mild temperature for high performance lithium-ion batteries which can operate in a wide temperature range. The optimized Ge battery anodes with the mesoporous structure exhibit outstanding electrochemical properties in a wide temperature ranging from -20 to 60 °C. Ge anodes exhibit a stable cycling retention at various temperatures (capacity retention of 99% after 100 cycles at 25 °C, 84% after 300 cycles at 60 °C, and 50% after 50 cycles at -20 °C). Furthermore, full cells consisting of the mesoporous Ge anode and an LiFePO 4 cathode show an excellent cyclability at -20 and 25 °C. Mesoporous Ge materials synthesized by the zincothermic reduction can be potentially applied as high performance anode materials for practical lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-Ion Batteries
He, Jun; Wei, Yaqing; Hu, Lintong; Li, Huiqiao; Zhai, Tianyou
2018-01-01
GeP5 is a recently reported new anode material for lithium ion batteries (LIBs), it holds a large theoretical capacity about 2300 mAh g−1, and a high rate capability due to its bi-active components and superior conductivity. However, it undergoes a large volume change during its electrochemical alloying and de-alloying with Li, a suitable binder is necessary to stable the electrode integrity for improving cycle performance. In this work, we tried to apply aqueous binders LiPAA and NaCMC to GeP5 anode, and compared the difference in electrochemical performance between them and traditional binder PVDF. As can be seen from the test result, GeP5 can keep stable in both common organic solvents and proton solvents such as water and alcohol solvents, it meets the application requirements of aqueous binders. The electrochemistry results show that the use of LiPAA binder can significantly improve the initial Coulombic efficiency, reversible capacity, and cyclability of GeP5 anode as compared to the electrodes based on NaCMC and PVDF binders. The enhanced electrochemical performance of GeP5 electrode with LiPAA binder can be ascribed to the unique high strength long chain polymer structure of LiPAA, which also provide numerous uniform distributed carboxyl groups to form strong ester groups with active materials and copper current collector. Benefit from that, the GeP5 electrode with LiPAA can also exhibit excellent rate capability, and even at low temperature, it still shows attractive electrochemical performance. PMID:29484292
NASA Astrophysics Data System (ADS)
Liu, Subiao; Behnamian, Yashar; Chuang, Karl T.; Liu, Qingxia; Luo, Jing-Li
2015-12-01
A site deficient La0.2Sr0.7TiO3-δ (LSTA) and a highly proton conductive electrolyte BaCe0.7Zr0.1Y0.2O3-δ (BCZY) are synthesized by using solid state reaction method. The performance of the electrolyte-supported single cell, comprised of LSTA + Cr2O3 + Cu//BCZY//(La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF)+BCZY, is fabricated and investigated. LSTA shows remarkably high electrical performance, with a conductivity as high as 27.78 Scm-1 at 1150 °C in a 10% H2/N2 reducing atmosphere. As a main anode component, it shows good catalytic activity towards the oxidation of ethane, causing the power density to considerably increase from 158.4 mW cm-2 to 320.9 mW cm-2 and the ethane conversion to significantly rise from 12.6% to 30.9%, when the temperature increases from 650 °C to 750 °C. These changes agree well with the polarization resistance which dramatically decreases from 0.346 Ωcm2 to 0.112 Ωcm2. EDX measurement shows that no element diffusion exists (chemical compatibility) between anode (LSTA + Cr2O3+Cu) and electrolyte (BCZY). With these properties, the pure phase LSTA is evaluated as a high electro-catalytic activity anode material for ethane proton conducting solid oxide fuel cell (PC-SOFC).
Physical and electrochemical properties of alkaline earth doped, rare earth vanadates
NASA Astrophysics Data System (ADS)
Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.
2012-06-01
The effect of partial substitution of alkaline earth (AE) ions, Sr2+ and Ca2+, for the rare earth (RE) ions, La3+, Ce3+, Pr3+, and Sm3+, on the physical properties of REVO4 compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO4-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H2 fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode.
NASA Astrophysics Data System (ADS)
Echendu, O. K.; Dejene, B. F.; Dharmadasa, I. M.
2018-03-01
The effects of the type of anode material on the properties of electrodeposited CdTe thin films for photovoltaic application have been studied. Cathodic electrodeposition of two sets of CdTe thin films on glass/fluorine-doped tin oxide (FTO) was carried out in two-electrode configuration using graphite and platinum anodes. Optical absorption spectra of films grown with graphite anode displayed significant spread across the deposition potentials compared to those grown with platinum anode. Photoelectrochemical cell result shows that the CdTe grown with graphite anode became p-type after post-deposition annealing with prior CdCl2 treatment, as a result of carbon incorporation into the films, while those grown with platinum anode remained n-type after annealing. A review of recent photoluminescence characterization of some of these CdTe films reveals the persistence of a defect level at (0.97-0.99) eV below the conduction band in the bandgap of CdTe grown with graphite anode after annealing while films grown with platinum anode showed the absence of this defect level. This confirms the impact of carbon incorporation into CdTe. Solar cell made with CdTe grown with platinum anode produced better conversion efficiency compared to that made with CdTe grown using graphite anode, underlining the impact of anode type in electrodeposition.
Smith, York R.; Ray, Rupashree S.; Carlson, Krista; Sarma, Biplab; Misra, Mano
2013-01-01
Metal oxide nanotubes have become a widely investigated material, more specifically, self-organized titania nanotube arrays synthesized by electrochemical anodization. As a highly investigated material with a wide gamut of applications, the majority of published literature focuses on the solar-based applications of this material. The scope of this review summarizes some of the recent advances made using metal oxide nanotube arrays formed via anodization in solar-based applications. A general methodology for theoretical modeling of titania surfaces in solar applications is also presented. PMID:28811415
Cathode for aluminum producing electrolytic cell
Brown, Craig W.
2004-04-13
A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.
Additive-free thick graphene film as an anode material for flexible lithium-ion batteries.
Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun
2015-04-28
This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g(-1) and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.
Mixed Electronic and Ionic Conductor-Coated Cathode Material for High-Voltage Lithium Ion Battery.
Shim, Jae-Hyun; Han, Jung-Min; Lee, Joon-Hyung; Lee, Sanghun
2016-05-18
A lithium ionic conductor, Li1.3Al0.3Ti1.7(PO4)3 (LATP), is introduced as a coating material on the surface of Mg-doped LiCoO2 to improve electrochemical performances for high-voltage (4.5 V) lithium ion batteries. Structure, morphology, elemental distribution, and electrical properties of the materials are thoroughly characterized by SEM, TEM, EELS, EDS, and C-AFM. The coating layer is electrically conductive with the aid of Mg ions which are used as a dopant for the active materials; therefore, this mixed electronic ionic conductor strongly enhances the electrochemical performances of initial capacity, cycling property, and rate capability. The LATP coating layer also demonstrates very promising applicability for 4.4 V prismatic full cells with graphite anode, which correspond to the 4.5 V half-cells with lithium anode. The 2900 mA h full cells show 85% of capacity retention after 500 cycles and more than 60% after 700 cycles.
Conductive Polymer Binder-Enabled SiO–Sn xCo yC z Anode for High-Energy Lithium-Ion Batteries
Zhao, Hui; Fu, Yanbao; Ling, Min; ...
2016-05-10
In this paper, a SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm 2 is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. Finally, bymore » achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.« less
40 CFR 63.850 - Notification, reporting, and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-time notification of startup of an existing potline or potroom group, anode bake furnace, or paste... production rate of green anode material placed in the anode bake furnace; (iii) A copy of the startup...
40 CFR 63.850 - Notification, reporting, and recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-time notification of startup of an existing potline or potroom group, anode bake furnace, or paste... production rate of green anode material placed in the anode bake furnace; (iii) A copy of the startup...
40 CFR 63.850 - Notification, reporting, and recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-time notification of startup of an existing potline or potroom group, anode bake furnace, or paste... production rate of green anode material placed in the anode bake furnace; (iii) A copy of the startup...
40 CFR 63.850 - Notification, reporting, and recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-time notification of startup of an existing potline or potroom group, anode bake furnace, or paste... production rate of green anode material placed in the anode bake furnace; (iii) A copy of the startup...
Activated graphene as a cathode material for Li-ion hybrid supercapacitors.
Stoller, Meryl D; Murali, Shanthi; Quarles, Neil; Zhu, Yanwu; Potts, Jeffrey R; Zhu, Xianjun; Ha, Hyung-Wook; Ruoff, Rodney S
2012-03-14
Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).
Non-pulsed electrochemical impregnation of flexible metallic battery plaques
Maskalick, Nicholas J.
1982-01-01
A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.
High-discharge-rate lithium ion battery
Liu, Gao; Battaglia, Vincent S; Zheng, Honghe
2014-04-22
The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.
Passivated p-type silicon: Hole injection tunable anode material for organic light emission
NASA Astrophysics Data System (ADS)
Zhao, W. Q.; Ran, G. Z.; Xu, W. J.; Qin, G. G.
2008-02-01
We find that hole injection can be enhanced simply by selecting a lower-resistivity p-Si anode to match an electron injection enhancement for organic light emitting diodes with ultrathin-SiO2-layer-passivated p-Si anode (Si-OLED). For a Si-OLED with ordinary AlQ electron transport layer, the optimized resistivity of the p-Si anode is 40Ωcm; for that with n-doped Bphen electron transport layer, it decreases to 5Ωcm. Correspondingly, the maximum power efficiency increases from 0.3to1.9lm /W, even higher than that of an indium tin oxide control device (1.4lm/W). This passivated p-type silicon is a hole injection tunable anode material for OLED.
Nanocontainers made of Various Materials with Tunable Shape and Size
NASA Astrophysics Data System (ADS)
Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing
2013-07-01
Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications.
Nanocontainers made of Various Materials with Tunable Shape and Size
Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing
2013-01-01
Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications. PMID:23867836
Metallic borophene polytypes as lightweight anode materials for non-lithium-ion batteries.
Xiang, Pan; Chen, Xianfei; Zhang, Wentao; Li, Junfeng; Xiao, Beibei; Li, Longshan; Deng, Kuisen
2017-09-20
Applications of rechargeable non-lithium-ion batteries (Na + , K + , Ca 2+ , Mg 2+ , and Al 3+ NLIBs) are significantly hampered by the deficiency of suitable electrode materials. Searching for anode materials with desirable electrochemical performance is urgent for the large-scale energy storage demands of next generation renewable energy technologies. In this study, three types of recently synthesized borophenes are predicted to serve as high-performing anodes for NLIBs based on density functional theory. All the borophenes considered here are metallic with favorable in-plane stiffness. Dirac fermions were identified in two types of borophenes, guaranteeing their high electron mobility. Moreover, borophene configuration-dependent metal-ion migration, theoretical capacities, and open-circuit voltages were demonstrated with respect to the different adsorption behaviors and atom mass densities of anode materials. Our results provide insights into the configuration-dependent electrode performance of borophene and the corresponding metal-ion storage mechanism.
V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries
Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun
2016-01-01
The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design. PMID:27677326
V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries
NASA Astrophysics Data System (ADS)
Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun
2016-09-01
The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design.
NASA Astrophysics Data System (ADS)
Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun
2014-07-01
We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.
NASA Astrophysics Data System (ADS)
Xu, Hui; Tian, Qinghua; Huang, Jun; Bao, Dongmei; Zhang, Zhengxi; Yang, Li
2017-11-01
Spinel Li4Ti5O12 (LTO) has attracted extensive attention as potential anode materials for power lithium-ion batteries due to its outstanding structural stability and remarkable safety. However, it's practical application yet be limited by such disadvantages of dissatisfied specific capacity, poor electron conductivity and low lithium-ion diffusion coefficient. Thus, design and preparation of LTO anodes with desirable performance is still a challenge. Herein, we have successfully and greatly improved the performance of LTO anodes, in terms of rate capability, life and specific capacity in particular via dot-to-face anatase TiO2in-situ decoration and hierarchical structure construction under a facile approach (directly using the tetrabutyl titanate as titanium source instead of specially prepared titanium oxide precursors). The as-prepared LTO-based anode (denoted as T-LTO) delivers an ultra-high reversible specific capacity of 196.5 mAh g-1 after 300 cycles at 20 mA g-1, and superior rate performance and even ultra-long life of more than 145.8 mAh g-1 at 28.5C between 1.0 and 3.0 V. The achieved outstanding electrochemical performance largely surpasses that of reportedly state-of-the-art LTO-based anode materials. This work may open up a broader vision into developing advanced LTO-based anode materials for lithium-ion batteries.
A self-cleaning Li-S battery enabled by a bifunctional redox mediator
NASA Astrophysics Data System (ADS)
Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R.
2017-09-01
The polysulfide shuttle effect and lithium dendrite growth in lithium-sulfur (Li-S) batteries can repeatedly breach the anodic solid electrolyte interphase (SEI) over cycling. As a result, irreversible short-chain sulfide side products (Li2Sx, x = 1, 2) keep depositing on the Li anode, leading to the active material loss, increasing the Li+ transport resistance, and thereby reducing the cycle life. In this work, indium iodide (InI3) is investigated as a bifunctional electrolyte additive for Li-S batteries to protect the Li anode and decompose the side products spontaneously. On the one hand, Indium (In) is electrodeposited onto the Li anode prior to Li plating during the initial charging process, forming a chemically and mechanically stable SEI to prevent the Li anode from reacting with soluble polysulfide species to form Li2Sx (x = 1, 2) side products. On the other hand, by adequately overcharging the battery, the triiodide/iodide redox mediator is capable of chemically transforming side products deposited on the Li anode and separator into soluble polysulfides, which can be recycled by the cathode. It is shown that the battery with the InI3 additive exhibits a prolonged cycle life, and is capable of retrieving its capacity by a facile overcharging process.
Wu, Song; Xiao, Yong; Zheng, Zhi-Yong; Zheng, Yue; Yang, Zhao-Hui; Zhao, Feng
2014-10-01
Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell.
An Insoluble Titanium-Lead Anode for Sulfate Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferdman, Alla
2005-05-11
The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead compositemore » material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.« less
Lei, Danni; Lee, Dong-Chan; Magasinski, Alexandre; Zhao, Enbo; Steingart, Daniel; Yushin, Gleb
2016-01-27
We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density), which exceed that of commercial Ni-Fe cells by nearly 1 order of magnitude at comparable current densities. These cells also showed the lack of any "activation", typical in commercial batteries, where low initial capacity slowly increases during the initial 20-50 cycles. The use of a highly conductive MWCNT network allows for high-capacity utilization because of rapid and efficient electron transport to active metal nanoparticles in oxidized [such as Fe(OH)2 or Fe3O4] states. The flexible nature of MWCNTs accommodates significant volume changes taking place during phase transformation accompanying reduction-oxidation reactions in metal electrodes. At the same time, we report and discuss that high surface areas of active nanoparticles lead to multiple side reactions. Dissolution of Fe anodes leads to reprecipitation of significantly larger anode particles. Dissolution of Ni cathodes leads to precipitation of Ni metal on the anode, thus blocking transport of OH(-) anions. The electrolyte molarity and composition have a significant impact on the capacity utilization and cycling stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul
Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly hasmore » been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.« less
Applications of Carbon Nanotubes for Lithium Ion Battery Anodes
Xiong, Zhili; Yun, Young Soo; Jin, Hyoung-Joon
2013-01-01
Carbon nanotubes (CNTs) have displayed great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs. PMID:28809361
Park, Hyunjung; Kwon, Jiseok; Choi, Heechae; Song, Taeseup; Paik, Ungyu
2017-01-01
Key issues for Na-ion batteries are the development of promising electrode materials with favorable sites for Na+ ion intercalation/deintercalation and an understanding of the reaction mechanisms due to its high activation energy and poor electrochemical reversibility. We first report a layered H0.43Ti0.93Nb1.07O5 as a new anode material. This anode material is engineered to have dominant (200) and (020) planes with both a sufficiently large d-spacing of ~8.3 Å and two-dimensional ionic channels for easy Na+ ion uptake, which leads to a small volume expansion of ~0.6 Å along the c direction upon Na insertion (discharging) and the lowest energy barrier of 0.19 eV in the [020] plane among titanium oxide–based materials ever reported. The material intercalates and deintercalates reversibly 1.7 Na ions (~200 mAh g−1) without a capacity fading in a potential window of 0.01 to 3.0 V versus Na/Na+. Na insertion/deinsertion takes place through a solid-solution reaction without a phase separation, which prevents coherent strain or stress in the microstructure during cycling and ensures promising sodium storage properties. These findings demonstrate a great potential of H0.43Ti0.93Nb1.07O5 as the anode, and our strategy can be applied to other layered metal oxides for promising sodium storage properties. PMID:28989960
Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
Bates, John B.
1994-01-01
A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.
Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells
NASA Technical Reports Server (NTRS)
Wu, James Jianjun; Hong, Haiping
2014-01-01
NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.
2D Electrides as Promising Anode Materials for Na-Ion Batteries from First-Principles Study.
Hu, Junping; Xu, Bo; Yang, Shengyuan A; Guan, Shan; Ouyang, Chuying; Yao, Yugui
2015-11-04
Searching for suitable anodes with good performance is a key challenge for rechargeable Na-ion batteries (NIBs). Using the first-principles method, we predict that 2D nitrogen electride materials can be served as anode materials for NIBs. Particularly, we show that Ca2N meets almost all the requirements of a good NIB anode. Each formula unit of a monolayer Ca2N sheet can absorb up to four Na atoms, corresponding to a theoretical specific capacity of 1138 mAh·g(-1). The metallic character for both pristine Ca2N and its Na intercalated state NaxCa2N ensures good electronic conduction. Na diffusion along the 2D monolayer plane can be very fast even at room temperature, with a Na migration energy barrier as small as 0.084 eV. These properties are key to the excellent rate performance of an anode material. The average open-circuit voltage is calculated to be 0.18 V vs Na/Na(+) for the chemical stoichiometry of Na2Ca2N and 0.09 V for Na4Ca2N. The relatively low average open-circuit voltage is beneficial to the overall voltage of the cell. In addition, the 2D monolayers have very small lattice change upon Na intercalation, which ensures a good cycling stability. All these results demonstrate that the Ca2N monolayer could be an excellent anode material for NIBs.
NASA Astrophysics Data System (ADS)
Dietz Rago, Nancy; Bareño, Javier; Li, Jianlin; Du, Zhijia; Wood, David L.; Steele, Leigh Anna; Lamb, Joshua; Spangler, Scott; Grosso, Christopher; Fenton, Kyle; Bloom, Ira
2018-05-01
Cells based on NMC/graphite, containing poly(vinylidene difluoride) (PVDF) binders in the positive and negative electrodes, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state-of-charge (SOC). At 250% SOC the cell vented. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) of the anodes showed several state-of-overcharge-dependent trends. Starting at 120% SOC, dendrites appeared and increased in concentration as the SOC increased. Dendrite morphology appeared to be dependent on whether the active material was on the "dull" or "shiny" side of the copper collector. Significantly more delamination of the active material from the collector was seen on the "shiny" side of the collector particularly at 180 and 250% SOC. Transition metals were detected at 120% SOC and increased in concentration as the SOC increased. There was considerable spatial heterogeneity in the microstructures across each laminate with several regions displaying complex layered structures.
Okawa, Seigo; Watanabe, Kouichi; Kanatani, Mitsugu
2013-01-01
We report experimental results about the effect of polarity of electrode and anodized titanium oxide film on the deposited materials by electrolysis of an acidic calcium phosphate solution. Mirror-polished titanium and anodized titanium were used as anode or cathode, and a Pt plate was used as a counter electrode. The load voltage was held constant at 20 VDC. No deposited materials were found on the anode surface. On the other hand, dicalcium phosphate dihydrate (DCPD) was deposited on the cathode surface at the beginning of the electrolysis. After the electrolysis time 600 s, the non-stoichiometric hydroxyapatite (HAp) with several hundred nanometers was formed on the specimen surface. Based on X-ray photoelectron spectroscopy data, the anodized oxide film contained both P(5+) and P(3+) ions. This characteristic of the oxide film and the electrolysis conditions were related to the behavior of the deposition of ultra fine HAp with high crystallinity.
Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries
NASA Astrophysics Data System (ADS)
Liu, Lehao; Xie, Fan; Lyu, Jing; Zhao, Tingkai; Li, Tiehu; Choi, Bong Gill
2016-07-01
Tin (Sn) has long been considered to be a promising replacement anode material for graphite in next-generation lithium-ion batteries (LIBs), because of its attractive comprehensive advantages of high gravimetric/volumetric capacities, environmental benignity, low cost, high safety, etc. However, Sn-based anodes suffer from severe capacity fading resulting mainly from their large volume expansions/contractions during lithiation/delithiation and subsequent pulverization, coalescence, delamination from current collectors, and poor Li+/electron transport. To circumvent these issues, a number of extraordinary architectures from nanostructures to anchored, layered/sandwich, core-shell, porous and even integrated structures have been exquisitely constructed to enhance the cycling performance. To cater for the rapid development of Sn-based anodes, we summarize the advances made in structural design principles, fabrication methods, morphological features and battery performance with focus on material structures. In addition, we identify the associated challenges and problems presented by recently-developed anodes and offer suggestions and perspectives for facilitating their practical implementations in next-generation LIBs.
Flexible anodized aluminum oxide membranes with customizable back contact materials
NASA Astrophysics Data System (ADS)
Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.
2016-12-01
Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.
Applications of large-area nanopatterning to energy generation and storage devices
NASA Astrophysics Data System (ADS)
Mills, Eric N.
This dissertation encompasses the creation and testing of nanostructured, electrochemically-active energy generation and storage devices, and development of the associated fabrication techniques. The fabricated devices include nanopatterned, plasmonically-active, TiO2+Au thin films for Photocatalytic Water Splitting (PCW), TiO2-based Dye-Sensitized Solar Cells (DSSCs) incorporating nanopatterned, plasmonically-active metallic front electrodes, and Si nanopillar anodes for Li-ion batteries. Techniques were also developed for encapsulation and removal of wet-etched Si nanowires from their mother substrates. TiO2 was the first material to be widely used for PCW. Its use is hampered by its large bandgap (~3.2eV), and poor recombination lifetimes. Au nanoparticles (NPs) have been previously used to improve recombination lifetimes in TiO2 by separating photogenerated carriers near the NP edges, and to increase photocurrents by injecting plasmonically-excited hot electrons into the TiO2 conduction band. Using nanostructured TiO 2+Au electrodes, we aim to increase the PCW efficiency of TiO2 -based electrodes. Dye-sensitized solar cells (DSSCs) employ visible-absorbing dyes anchored to a high-surface-area semiconducting scaffold. The front transparent conducting electrode (TCE) is typically ITO, a scarce and expensive material. We aim to increase the efficiency of thin-film DSSCs and eliminate the use of ITO by using a metallic subwavelength array (MESH) of nanoholes as the front TCE. Silicon holds promise as a high-capacity anode material for Li-ion batteries, as it can store ~10x the Li of graphite, the current leading anode material (3569 vs. 372 mAh/g). However, Si undergoes dramatic (>300%) volume expansion upon "lithiation", pulverizing any structure with non-nanoscopic dimensions (>250nm). We created large-area arrays of "nanopillars" with sub-100nm diameters, using roll-to-roll-compatible flexible-mold NIL on commercially-available metal substrates. Ordered nanopatterning by NIL combined with Metal-Assisted Chemical Etching (MACE) techniques is ideal for creating large-area arrays of high aspect-ratio nanowires, for use in solar cells or battery anodes. We introduce a polymer encapsulation technique that allows separation of the nanowire array from the mother substrate, while leaving the array structure, and original metal nanopattern, intact.
Structural micro-porous carbon anode for rechargeable lithium-ion batteries
Delnick, Frank M.; Even, Jr., William R.; Sylwester, Alan P.; Wang, James C. F.; Zifer, Thomas
1995-01-01
A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.
Hydrogen sulfide-powered solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Liu, Man
2004-12-01
The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts comprising Co-Mo-S admixed with up to 10% Ag powder were found to have excellent performance and longevity, as well as improved electrical contact when compared with Pt/M-Mo-S anode systems. The highest current density of 450 mA/cm2 and power density of 115 mW/cm2 were achieved with an anode that consisted of 95% (Co-Mo-S) and 5% Ag.
NASA Astrophysics Data System (ADS)
Priyono, S.; Primasari, R. D.; Saptari, S. A.; Prihandoko, B.
2017-07-01
Li4Ti5O12 powder as anode lithium ion battery was synthesized via solid state reaction with excess LiOH.H2O. Technical grades raw materials like LiOH.H2O and TiO2 were used as starting materials. LiOH.H2O excess was varied from 0; 2.5; 5 and 7.5% to get higher optimum phases and capacity of Li4Ti5O12. All raw materials were mixed stoichiometry then followed by calcination and sintering process to get final products. The obtained products were characterized by XRD, SEM, and PSA to get properties of active materials and the electrochemical properties were done by cyclic voltametry and charge-discharge test. The XRD test showed that 5% excess have highest Li4Ti5O12 phases. All samples have same in morphology, agglomerate and same in particle size distribution. Sample with 5% excess showed good reversible process and chargedischarge test showed that increasing Li4Ti5O12 phase can improve specific capacity.
Ghouri, Zafar Khan; Al-Meer, Saeed; Barakat, Nasser A M; Kim, Hak Yong
2017-05-11
Although numerous reports have introduced non precious electrocatalysts for methanol oxidation, most of those studies did not consider the corresponding high onset potential which restricts utilization in real fuel cells. In this study, an -90 mV [vs. Ag/AgCl] onset potential non-precious electrocatalyst is introduced as an applicable anode material for the direct methanol fuel cells. Moreover, the proposed material was prepared from a cheap and abundantly existing resource; the spent coffee grounds. Typically, the spent coffee grounds were facilely converted to core@shell (ZnO@C) microspheres through a two-step approach, involving chemical activation and a subsequent calcination at temperature of 700 °C. Activation of the carbon derived from the spent coffee grounds was performed with ZnCl 2 which acts as pore-forming agent as well as a precursor for the ZnO. The structure and morphology were characterized by (XRD), (SEM), and (TEM) analyses while the electrochemical characterizations was evaluated by cyclic voltammetry (CV) technique. Besides the comparatively very low onset potential, the introduced microspheres exhibited relatively high current density; 17 mA/cm 2 . Overall, based on the advantages of the green source of carbon and the good electrocatalytic activity, the spent coffee grounds-derived carbon can be considered a promise anode material for the DMFCs.
Planar Metal-Insulator-Metal Diodes Based on the Nb/Nb2O5/X Material System
2013-10-01
high -quality Nb2O5 insulator can be grown reproducibly as a pinhole-free, uniform layer on top of the Nb using an anodic oxidation process under atmos...harvesting applications. Six cathode materials (M2): Nb, Ag, Cu, Ni, Au, and Pt are studied in conjunction with Nb as the anode (M1) and Nb2O5 (I) as the...are studied in conjunction with Nb as the anode (M1) and Nb2O5 (I) as the dielectric. The cathode materials selections were based on results from a
2015-03-16
AFRL-OSR-VA-TR-2015-0088 Theoretical Study of Novel Nanostructured Materials for Lithium - Ion Batteries Mario Sanchez-Vazquez CENTRO DE INVESTIGACION...SiGeLi Clusters for Design of Novel Nanostructured Materials to Be Utilized as Anodes for Lithium - ion Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER...utilized as anodes for Lithium - ion batteries Final Report Nancy Perez-Peralta and Mario Sanchez-Vazquez Abstract In order to find out if
2015-03-16
AFRL-OSR-VA-TR-2015-0088 Theoretical Study of Novel Nanostructured Materials for Lithium - Ion Batteries Mario Sanchez-Vazquez CENTRO DE INVESTIGACION...of Novel Nanostructured Materials to Be Utilized as Anodes for Lithium - ion Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0175 5c...as anodes for Lithium - ion batteries Final Report Nancy Perez-Peralta and Mario Sanchez-Vazquez Abstract In order to find out if silicon
Localised anodic oxidation of aluminium material using a continuous electrolyte jet
NASA Astrophysics Data System (ADS)
Kuhn, D.; Martin, A.; Eckart, C.; Sieber, M.; Morgenstern, R.; Hackert-Oschätzchen, M.; Lampke, T.; Schubert, A.
2017-03-01
Anodic oxidation of aluminium and its alloys is often used as protection against material wearout and corrosion. Therefore, anodic oxidation of aluminium is applied to produce functional oxide layers. The structure and properties of the oxide layers can be influenced by various factors. These factors include for example the properties of the substrate material, like alloy elements and heat treatment or process parameters, like operating temperature, electric parameters or the type of the used electrolyte. In order to avoid damage to the work-piece surface caused by covering materials in masking applications, to minimize the use of resources and to modify the surface in a targeted manner, the anodic oxidation has to be localised to partial areas. Within this study a proper alternative without preparing the substrate by a mask is investigated for generating locally limited anodic oxidation by using a continuous electrolyte jet. Therefore aluminium material EN AW 7075 is machined by applying a continuous electrolyte jet of oxalic acid. Experiments were carried out by varying process parameters like voltage or processing time. The realised oxide spots on the aluminium surface were investigated by optical microscopy, SEM and EDX line scanning. Furthermore, the dependencies of the oxide layer properties from the process parameters are shown.
Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.
Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less
Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering
Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.; ...
2017-04-27
Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less
Li, Tao; Nie, Xueyuan
2018-05-23
This research prepared an amorphous Co(OH) 2 flexible film on Ti foil using plasma-assisted electrolytic deposition within 3.5 min. Amorphous Co(OH) 2 structure was determined by X-ray diffraction and X-ray photoelectron spectroscopy. Its areal capacity testing as the binder and adhesive-free anode of a lithium-ion battery shows that the cycling capacity can reach 2000 μAh/cm 2 and remain at 930 μAh/cm 2 after 50 charge-discharge cycles, which benefits from the emerging Co(OH) 2 active material and amorphous foamlike structure. The research introduced a new method to synthesize amorphous Co(OH) 2 as the anode in a fast-manufactured low-cost lithium-ion battery.
Method of forming and starting a sodium sulfur battery
Paquette, David G.
1981-01-01
A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.
Larrosa-Guerrero, Amor; Scott, Keith; Katuri, Krishna P; Godinez, Carlos; Head, Ian M; Curtis, Thomas
2010-08-01
The influence of various carbon anodes; graphite, sponge, paper, cloth, felt, fiber, foam and reticulated vitreous carbon (RVC); on microbial fuel cell (MFC) performance is reported. The feed was brewery wastewater diluted in domestic wastewater. Biofilms were grown at open circuit or under an external load. Microbial diversity was analysed as a function of current and anode material. The bacterial community formed at open circuit was influenced by the anode material. However at closed circuit its role in determining the bacterial consortia formed was less important than the passage of current. The rate and extent of organic matter removal were similar for all materials: over 95% under closed circuit. The biofilm in MFCs working at open circuit and in the control reactors, increased COD removal by up to a factor of nine compared with that for baseline reactors. The average voltage output was 0.6 V at closed circuit, with an external resistor of 300 kOmega and 0.75 V at open circuit for all materials except RVC. The poor performance of this material might be related to the surface area available and concentration polarizations caused by the morphology of the material and the structure of the biofilm. Peak power varied from 1.3 mW m(-2) for RVC to 568 mW m(-2) for graphite with biofilm grown at closed circuit.
Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Woodworth, James; Baldwin, Richard; Bennett, William
2010-01-01
A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.
NASA Technical Reports Server (NTRS)
Woodworth, James; Baldwin, Richard; Bennett, William
2010-01-01
A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.
Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries
NASA Technical Reports Server (NTRS)
Woodworth James; Baldwin, Richard; Bennett, William
2010-01-01
A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.
Method for making nanotubes and nanoparticles
Zettl, Alexander Karlwalter; Cohen, Marvin Lou
2000-01-01
The present invention is an apparatus and method for producing nano-scale tubes and particles. The apparatus comprises novel electrodes for use in arc discharge techniques. The electrodes have interior conduits for delivery and withdrawal of material from the arc region where product is formed. In one embodiment, the anode is optionally made from more than one material and is termed a compound anode. The materials used in the compound anode assist in the reaction that forms product in the arc region of the apparatus. The materials assist either by providing reaction ingredients, catalyst, or affecting the reaction kinetics. Among other uses, the inventive apparatus is used to produce nanotubes and nanoparticles having a variety of electrical and mechanical properties.
Fei, Hailong; Feng, Wenjing; Xu, Tan
2017-02-15
It is important to discover new, cheap and environmental friendly electrode materials with high capacity and good cycling stability for lithium and sodium-ion batteries. Zinc 1,4-naphthalenedicarboxylate was firstly found to be stable anode materials for lithium and sodium-ion batteries. The discharge capacity can be up to 468.9mAhg -1 after 100 cycles at a current density of 100mAg -1 for lithium-ion batteries, while the second discharge capacity of 320.7mAhg -1 was achieved as anode materials for sodium-ion batteries. A possible electrochemical reaction mechanism was discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina
2017-12-01
In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.
Carbon Materials Metal/Metal Oxide Nanoparticle Composite and Battery Anode Composed of the Same
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh (Inventor)
2006-01-01
A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.
Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries
Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah
2015-01-01
Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents. PMID:26415917
A novel strategy to prepare Ge@C/rGO hybrids as high-rate anode materials for lithium ion batteries
NASA Astrophysics Data System (ADS)
Wang, Bangrun; Wen, Zhaoyin; Jin, Jun; Hong, Xiaoheng; Zhang, Sanpei; Rui, Kun
2017-02-01
Germanium is considered as a promising anode material for lithium ion batteries (LIBs) due to its high-capacity. However, owing to the huge volume variation during cycling, the batteries based on germanium anodes usually show poor cyclability and inferior rate capability. Herein, we demonstrated a novel strategy to uniformly anchor the core-shell structured germanium@carbon (Ge@C) on the reduced graphene oxide (rGO) nanosheets by the strong adhesion of dopamine. In the resulting Ge@C/rGO hybrid, the amorphous carbon layer and rGO nanosheets can effectively reduce the agglomeration of germanium and provide buffer matrix for the volume change in electrochemical lithium reactions. When used as anode materials for LIBs, Ge@C/rGO hybrids deliver a reversible capacity of 1074.4 mA h g-1 at 2C after 600 cycles (with capacity retention of 96.5%) and high rate capability of 436 mA h g-1 at 20C after 200 cycles. The encouraging electrochemical performance clearly demonstrates that Ge@C/rGO hybrids could be a potential anode material with high capacity, excellent rate capability, and good cycling stability for LIBs.
In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.
Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S
2015-08-25
We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.
Riccomagno, Eva; Shayganpour, Amirreza; Salerno, Marco
2017-01-01
Anodic porous alumina is a known material based on an old industry, yet with emerging applications in nanoscience and nanotechnology. This is promising, but the nanostructured alumina should be fabricated from inexpensive raw material. We fabricated porous alumina from commercial aluminum food plate in 0.4 M aqueous phosphoric acid, aiming to design an effective manufacturing protocol for the material used as nanoporous filler in dental restorative composites, an application demonstrated previously by our group. We identified the critical input parameters of anodization voltage, bath temperature and anodization time, and the main output parameters of pore diameter, pore spacing and oxide thickness. Scanning electron microscopy and grain analysis allowed us to assess the nanostructured material, and the statistical design of experiments was used to optimize its fabrication. We analyzed a preliminary dataset, designed a second dataset aimed at clarifying the correlations between input and output parameters, and ran a confirmation dataset. Anodization conditions close to 125 V, 20 °C, and 7 h were identified as the best for obtaining, in the shortest possible time, pore diameters and spacing of 100–150 nm and 150–275 nm respectively, and thickness of 6–8 µm, which are desirable for the selected application according to previously published results. Our analysis confirmed the linear dependence of pore size on anodization voltage and of thickness on anodization time. The importance of proper control on the experiment was highlighted, since batch effects emerge when the experimental conditions are not exactly reproduced. PMID:28772776
CAM-7/LTO Cells for Lithium-Ion Batteries with Rapid Charging Capability at Low Temperature
2012-04-06
TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile-cosolvent...employing TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile- cosolvent...electrolyte formulation. CAM-7 provides the highest energy content and rate capability of any market- ready cathode material. Commercially available
Solid oxide fuel cell with single material for electrodes and interconnect
McPheeters, Charles C.; Nelson, Paul A.; Dees, Dennis W.
1994-01-01
A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.
Supported plasma sputtering apparatus for high deposition rate over large area
Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils
1977-01-01
A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.
The effect of zinc on the aluminum anode of the aluminum-air battery
NASA Astrophysics Data System (ADS)
Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun
Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.
THE DEVELOPMENT OF A PHOTOTROPIC ANODIZED ALUMINUM FINISH RESPONSIVE TO GAMMA RADIATION.
The present investigation was conducted to establish a phototropic anodized aluminum finish sensitive to gamma radiation. A comprehensive literature...search revealed a number of candidate phototropic materials but very little information about gamma radiation response. Because early trials...indicated that each candidate phototropic system possessed different dyeing characteristics for an anodic film, time-consuming trials with dyed anodic films
Morphology and Mechanism of Benign Inhibitors
2012-07-01
AAO resulting in much lower SLD. ....... 84 xiv List of Acronyms AA: Aluminum alloy; AAO : Anodic aluminum oxide ; AMCC: Advanced Materials...shown, we achieved excellent vanadate, trivalent chromium process (TCP) and anodic aluminum oxide ( AAO ) films. We also tried Ce but Ce did not form a...we also initiated the study of anodizing of aluminum . According to the literature anodic aluminum oxide
2011-11-01
within these cusps where electrons collide with the ceramic insulator lining the channel. In the MIT design, the overall magnetic field strength...allow compression of the anode spring (Sp), which holds the anode insulator (AI) flush with the base core (1). The anode stem and anode (A) are...case Aluminum bulk material 3 Insulator Cone HP-BN St. Gobain/ Ferro- Ceramic Grinding Inc. M1-M3 Permanent
Structural micro-porous carbon anode for rechargeable lithium-ion batteries
Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.
1995-06-20
A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.
Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.
Chen, Gen; Yan, Litao; Luo, Hongmei; Guo, Shaojun
2016-09-01
Rechargeable lithium-ion batteries (LIBs), as one of the most important electrochemical energy-storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon-nanomaterials-supported heterostructured anode materials; ii) conducting-polymer-coated electrode materials; iii) inorganic transition-metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high-performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organic light emitting device architecture for reducing the number of organic materials
D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA
2011-10-18
An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.
NASA Astrophysics Data System (ADS)
Gong, Mingyang
With demand over green energy economy, fuel cells have been developed as a promising energy conversion technology with higher efficiency and less emission. Solid oxide fuel cells (SOFC) can utilize various fuels in addition to hydrogen including coal derived sygas, and thus are favored for future power generation due to dependence on coal in electrical industry. However impurities such as sulfur and phosphorous present in coal syngas in parts per million (p.p.m.) levels can severely poison SOFC anode typically made of Ni/yttria-stabilized-zirconia (Ni-YSZ) and limit SOFC applicability in economically derivable fuels. The focus of the research is to develop strategy for application of high performance SOFC in coal syngas with tolerance against trace impurities such as H2S and PH3. To realize the research goal, the experimental study on sulfur tolerant anode materials and examination of various fuel impurity effects on SOFC anode are combined with electrochemical modeling of SOFC cathode kinetics in order to benefit design of direct-coal-syngas SOFC. Tolerant strategy for SOFC anode against sulfur is studied by using alternative materials which can both mitigate sulfur poisoning and function as active anode components. The Ni-YSZ anode was modified by incorporation of lanthanum doped ceria (LDC) nano-coatings via impregnation. Cell test in coal syngas containing 20 ppm H2S indicated the impregnated LDC coatings inhibited on-set of sulfur poisoning by over 10hrs. Cell analysis via X-ray photon spectroscopy (XPS), X-ray diffraction (XRD) and electrochemistry revealed LDC coatings reacted with H2S via chemisorptions, resulting in less sulfur blocking triple--phase-boundary and minimized performance loss. Meanwhile the effects of PH3 impurity on SOFC anode is examined by using Ni-YSZ anode supported SOFC. Degradation of cell is found to be irreversible due to adsorption of PH3 on TPB and further reaction with Ni to form secondary phases with low melting point. The feasibility of mixed ionic and electronic conductive (MIEC) metal oxides with perovskite structure (ABO3) as alternative ceramic SOFC anodes in coal syngas has been examined by PH3 exposure test. The study found although perovskite anodes can be generally more tolerant against H2S, further examination on PH3 tolerance is indispensable before their extensive application in coal syngas. On the theoretical end it is this research's initiative that oxygen reduction reaction at mixed ionic and electronic conductive (MIEC) cathode is a key factor controlling SOFC performance at intermediate temperature (700˜850°C). It is generally recognized that the overall charge-transfer process could occur through both surface pathway at triple-phase boundary (3PB) and bulk pathway at electrolyte/cathode interface (2PB). A modified one-dimensional model is thus developed to predict defect evolution of MIEC cathode under overpotential by incorporating multi-step charge-transfer into the bi-pathway continuum model. Finite volume control method is applied to obtain solutions for the model. The simulation predicted kinetics transition from 3PB control to 2PB control as cathodic overpotential stepping from -0.2V to -0.4V, depending on the material properties parameters. Meanwhile significant activation behavior of the MIEC electrode was also observed as indicated by extension of reaction region towards gas-exposed oxide surface. This model addressed contribution from electrochemical-controlled rate-limiting steps (RLSs) on the reduction kinetics, and identified the role played by multiple material property parameters such as surface oxygen ion concentration and bulk vacancy concentration on the kinetics transition. Combined academic knowledge gained through experimental investigation and theoretical simulation in this research would benefit the future design, development and application strategy of high-performance SOFC in coal syngas fuels.
Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications
Ferré-Borrull, Josep; Pallarès, Josep; Macías, Gerard; Marsal, Lluis F.
2014-01-01
Modifying the diameter of the pores in nanoporous anodic alumina opens new possibilities in the application of this material. In this work, we review the different nanoengineering methods by classifying them into two kinds: in situ and ex situ. Ex situ methods imply the interruption of the anodization process and the addition of intermediate steps, while in situ methods aim at realizing the in-depth pore modulation by continuous changes in the anodization conditions. Ex situ methods permit a greater versatility in the pore geometry, while in situ methods are simpler and adequate for repeated cycles. As an example of ex situ methods, we analyze the effect of changing drastically one of the anodization parameters (anodization voltage, electrolyte composition or concentration). We also introduce in situ methods to obtain distributed Bragg reflectors or rugate filters in nanoporous anodic alumina with cyclic anodization voltage or current. This nanopore engineering permits us to propose new applications in the field of biosensing: using the unique reflectance or photoluminescence properties of the material to obtain photonic barcodes, applying a gold-coated double-layer nanoporous alumina to design a self-referencing protein sensor or giving a proof-of-concept of the refractive index sensing capabilities of nanoporous rugate filters. PMID:28788127
Germanium and Tin Based Anode Materials for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Ji, Dongsheng
The discovery of safe anode materials with high energy density for lithium-ion batteries has always been a significant topic. Group IV elements have been under intensive study for their high capability of alloying with lithium. Batteries with graphite and tin based anode material have already been applied in cell phones and vehicles. In order to apply group IV elements, their dramatic volume change during lithiation and delithiation processes is the key point to work on. Reducing the particle size is the most common method to buffer the volume expansion. This strategy has been applied on both germanium and tin based materials. Germanium based anode material has been made by two different synthesis methods. The amorphous Ge-C-Ti composite material was made by ball milling method and performed much better than other germanium alloy including Ge-Mg, Ge-Fe and Ge-Fe.Germanium sphere nano particles with diameter of around 50 nm have been made by solution method. After ball milled with graphite, the resulted product performed stable capacity over 500 mAh˙g-1 for more than 20 cycles. Ball milled graphite in the composite plays an important role of buffering volume change and stabilizing germanium. Sn-Fe alloy is one of the feasible solutions to stabilize tin. Sn 2Fe-C composite has been made by ball milling method. After optimizations of the ratio of precursors, reaction time, milling balls and electrolyte additives, the electrochemistry performance was improved. The anode performed 420 mAh˙ -1 at 1.0 mA/cm2 and maintained its structure after cycling at 2.0 mA/cm2. At 0.3 mA/cm2 cycling rate, the anode performed 978 mAh/cm3 after 500 cycles, which still exceeds the theoretical capacity of graphite.
Xiao, Bo; Li, Yan-Chun; Yu, Xue-Fang; Cheng, Jian-Bo
2016-12-28
Recently, a new two-dimensional (2D) carbon allotrope named penta-graphene was theoretically proposed ( Zhang , S. ; et al. Proc. Natl. Acad. Sci. U.S.A. 2015 , 112 , 2372 ) and has been predicted to be the promising candidate for broad applications due to its intriguing properties. In this work, by using first-principles simulation, we have further extended the potential application of penta-graphene as the anode material for a Li/Na-ion battery. Our results show that the theoretical capacity of Li/Na ions on penta-graphene reaches up to 1489 mAh·g -1 , which is much higher than that of most of the previously reported 2D anode materials. Meanwhile, the calculated low open-circuit voltages (from 0.24 to 0.60 V), in combination with the low diffusion barriers (≤0.33 eV) and the high electronic conductivity during the whole Li/Na ions intercalation processes, further show the advantages of penta-graphene as the anode material. Particularly, molecular dynamics simulation (300 K) reveals that Li ion could freely diffuse on the surface of penta-graphene, and thus the ultrafast Li ion diffusivity is expected. Superior performance of penta-graphene is further confirmed by comparing with the other 2D anode materials. The light weight and unique atomic arrangement (with isotropic furrow paths on the surface) of penta-graphene are found to be mainly responsible for the high Li/Na ions storage capacity and fast diffusivity. In this regard, except penta-graphene, many other recently proposed 2D metal-free materials with pentagonal Cairo-tiled structures may be the potential candidates as the Li/Na-ion battery anodes.
NASA Astrophysics Data System (ADS)
Gong, Wenquan
2005-07-01
The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization resistances. Ni-LDC (50 v% NO was selected to be the anode for the LSGM electrolyte with a thin LDC barrier layer. Finally, the performance of complete LSGM electrolyte-supported IT-SOFCs with the selected cathode (LSCF-LSGM) and anode (Ni-LDC) materials coupled with the LDC barrier layer was evaluated at 600--800°C. The simulated cell performance of the anode-supported cell based on LSGM electrolyte was promising.
Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life.
Braga, Maria Helena; M Subramaniyam, Chandrasekar; Murchison, Andrew J; Goodenough, John B
2018-05-23
A room-temperature all-solid-state rechargeable battery cell containing a tandem electrolyte consisting of a Li + -glass electrolyte in contact with a lithium anode and a plasticizer in contact with a conventional, low cost oxide host cathode was charged to 5 V versus lithium with a charge/discharge cycle life of over 23,000 cycles at a rate of 153 mA·g -1 of active material. A larger positive electrode cell with 329 cycles had a capacity of 585 mAh·g -1 at a cutoff of 2.5 V and a current of 23 mA·g -1 of the active material; the capacity rose with cycle number over the 329 cycles tested during 13 consecutive months. Another cell had a discharge voltage from 4.5 to 3.7 V over 316 cycles at a rate of 46 mA·g -1 of active material. Both the Li + -glass electrolyte and the plasticizer contain electric dipoles that respond to the internal electric fields generated during charge by a redistribution of mobile cations in the glass and by extraction of Li + from the active cathode host particles. The electric dipoles remain oriented during discharge to retain an internal electric field after a discharge. The plasticizer accommodates to the volume changes in the active cathode particles during charge/discharge cycling and retains during charge the Li + extracted from the cathode particles at the plasticizer/cathode-particle interface; return of these Li + to the active cathode particles during discharge only involves a displacement back across the plasticizer/cathode interface and transport within the cathode particle. A slow motion at room temperature of the electric dipoles in the Li + -glass electrolyte increases with time the electric field across the EDLC of the anode/Li + -glass interface to where Li + from the glass electrolyte is plated on the anode without being replenished from the cathode, which charges the Li + -glass electrolyte negative and consequently the glass side of the Li + -glass/plasticizer EDLC. Stripping back the Li + to the Li + -glass during discharge is enhanced by the negative charge in the Li + -glass. Since the Li + -glass is not reduced on contact with metallic lithium, no passivating interface layer contributes to a capacity fade; instead, the discharge capacity increases with cycle number as a result of dipole polarization in the Li + -glass electrolyte leading to a capacity increase of the Li + -glass/plasticizer EDLC. The storage of electric power by both faradaic electrochemical extraction/insertion of Li + in the cathode and electrostatic stored energy in the EDLCs provides a safe and fast charge and discharge with a long cycle life and a greater capacity than can be provided by the cathode host extraction/insertion reaction. The cell can be charged to a high voltage versus a lithium anode because of the added charge of the EDLCs.
Semi-solid electrode cell having a porous current collector and methods of manufacture
Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki
2017-11-21
An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.
Aluminum reduction cell electrode
Payne, J.R.
1983-09-20
The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.
Aluminum reduction cell electrode
Payne, John R.
1983-09-20
The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces.
Low cost fuel cell diffusion layer configured for optimized anode water management
Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E
2013-08-27
A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.
SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials.
Sun, Xuejiao; Shao, Changzhen; Zhang, Feng; Li, Yi; Wu, Qi-Hui; Yang, Yonggang
2018-01-01
The development of high energy lithium-ion batteries (LIBs) has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic β-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g -1 after 250 cycles at a current density of 0.1 A g -1 . It is interesting that a high discharge capacity of 540.1 mAh g -1 was achieved after 500 cycles at an even higher current density of 0.3 A g -1 , which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.
In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion
NASA Astrophysics Data System (ADS)
McIntyre, Melissa Dawn
Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region and increase electrochemical activity in cermet electrodes. The final study of lanthanum strontium manganite cathodes infiltrated with BaO revealed the reversible decomposition/formation of a Ba3Mn2O8 secondary phase under applied potentials and proposed mechanisms for the enhanced electrocatalytic oxygen reduction associated with this compound under polarizing conditions. Collectively, these studies demonstrate that mechanistic information obtained from molecular/material specific techniques coupled with electrochemical measurements can be used to help optimize materials and operating conditions in solid-state electrochemical cells.
Charge–discharge properties of tin dioxide for sodium-ion battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jinsoo; Park, Jin-Woo; Han, Jeong-Hui
Highlights: • The electrochemical reaction of SnO2 as an anode for Na-ion batteries was studied. • The SnO2 electrode delivered the initial discharge capacity of 747 mAh/g. • Alarge irreversible capacity (597 mAh/g)was observedin the first cycle. • The in-plain crack in the electrode caused the incompletereduction of SnO{sub 2}. - Abstract: Tin dioxide was investigated as an anode material for sodium-ion batteries. The Na/SnO{sub 2} cell delivered a first discharge capacity of 747 mAh/g, but the first charge capacity was 150 mAh/g. The irreversible capacity in the first cycle was examined through characterization by X-ray diffraction and scanning electron microscopy.more » X-ray diffraction analysis revealed that the SnO{sub 2} active material was not reduced fully to metallic Sn. Furrows and wrinkles were formed on the electrode surface owing to the volumetric expansion upon first discharge, which led to a deterioration of the electrode structure and a loss of electrical contact between the active materials. The analysis is summarized in the schematic drawing.« less
Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.
2002-01-01
An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.
Ray, Siba P.; Weirauch, Jr., Douglas A.; Liu, Xinghua
2002-01-01
An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.
Enhanced ablation of small anodes in a carbon nanotube arc discharge
NASA Astrophysics Data System (ADS)
Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael
2008-11-01
An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (< 0.4 cm). This result is explained by the formation of an electron-attracting (positive) anode sheath leading to increased power losses on small anodes as compared to larger anodes [1]. The suggested mechanism for the positive anode sheath formation is plasma convergence. The increased ablation rate due to this positive sheath could imply a greater yield of carbon nanotube production. [1] A. J. Fetterman, Y. Raitses and M. Keidar, Carbon (2008).
Finding Platinum-Coating Gaps On Titanium Anodes
NASA Technical Reports Server (NTRS)
Bodemeijer, Ronnald; Flowers, Cecil E.
1990-01-01
Simple procedure makes gaps visible to eye. New gap-detection method consists of plating thin layer of non-silver-colored metal like copper or gold on anode. Contrast in color between plated metal and bare anode material makes gaps stand out. If anode passes inspection, copper or gold plate removable by reversal of test-plating current. Remains to be determined whether test plating and removal damages anode. New method simpler and more economical than previous attempts to identify gaps in platinum.
Surface modifications for carbon lithium intercalation anodes
Tran, Tri D.; Kinoshita, Kimio
2000-01-01
A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.
Electrode erosion in arc discharges at atmospheric pressure
NASA Technical Reports Server (NTRS)
Hardy, T. L.
1985-01-01
An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.
(abstract) Effect of Electrolyte Composition on Carbon Electrode Performance
NASA Technical Reports Server (NTRS)
Huang, C-K.; Surampudi, S.; Shen, D. H.; Halpert, G.
1993-01-01
Rechargeable lithium cells containing lithium foil anodes are reported to have limited cycle life (at 100% DOD) performance and safety problems. These limitations are understood to be due to the high reactivity of elemental Li with the electrolyte and the formation of high surface area Li during cycling. To mitigate these problems, several lithium alloys and lithium intercalation compounds are being investigated as alternate lithium anode materials. Li(sub x)C has been identified as a promising lithium anode material due to its low equivalent weight, low voltage vs. Li, and improved stability towards various electrolytes. In this paper, we report the results of our studies on the electrolyte evaluation for the Li(sub x)C anode.
Microbial fuel cell treatment of ethanol fermentation process water
Borole, Abhijeet P [Knoxville, TN
2012-06-05
The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.
Qu, Xue; Liu, Huan; Zhang, Chuchu; Lei, Yu; Lei, Miao; Xu, Miao; Jin, Dawei; Li, Peng; Yin, Meng; Payne, Gregory F; Liu, Changsheng
2018-06-01
Electrical signals can be imposed with exquisite spatiotemporal control and provide exciting opportunities to create structure and confer function. Here, we report the use of electrical signals to program the fabrication of a chloramine wound dressing with high antimicrobial activity. This method involves two electrofabrication steps: (i) a cathodic electrodeposition of an aminopolysaccharide chitosan triggered by a localized region of high pH; and (ii) an anodic chlorination of the deposited film in the presence of chloride. This electrofabrication process is completed within several minutes and the chlorinated chitosan can be peeled from the electrode to yield a free-standing film. The presence of active NCl species in this electrofabricated film was confirmed with chlorination occurring first on the amine groups and then on the amide groups when large anodic charges were used. Electrofabrication is quantitatively controllable as the cathodic input controls film growth during deposition and the anodic input controls film chlorination. In vitro studies demonstrate that the chlorinated chitosan film has antimicrobial activities that depend on the chlorination degree. In vivo studies with a MRSA infected wound healing model indicate that the chlorinated chitosan film inhibited bacterial growth, induced less inflammation, developed reorganized epithelial and dermis structures, and thus promoted wound healing compared to a bare wound or wound treated with unmodified chitosan. These results demonstrate the fabrication of advanced functional materials (i.e., antimicrobial wound dressings) using controllable electrical signals to both organize structure through non-covalent interactions (i.e., induce chitosan's reversible self-assembly) and to initiate function-conferring covalent modifications (i.e., generate chloramine bonds). Potentially, electrofabrication may provide a simple, low cost and sustainable alternative for materials fabrication. We believe this work is novel because this is the first report (to our knowledge) that electronic signals enable the fabrication of advanced antimicrobial dressings with controlled structure and biological performance. We believe this work is significant because electrofabrication enables rapid, controllable and sustainable materials construction with reduced adverse environmental impacts while generating high performance materials for healthcare applications. More specifically, we report an electrofbrication of antimicrobial film that can promote wound healing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Solid oxide fuel cell with single material for electrodes and interconnect
McPheeters, C.C.; Nelson, P.A.; Dees, D.W.
1994-07-19
A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.
2014-06-30
The aim of this study is to develop metal hydride-carbon nanomaterial based nanocomposites as anode electrode materials for high capacity lithium ion battery and...henceforth to develop high energy density, and good cyclic stability lithium ion battery .
Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors.
Wang, Huanwen; Zhu, Changrong; Chao, Dongliang; Yan, Qingyu; Fan, Hong Jin
2017-12-01
Hybrid metal-ion capacitors (MICs) (M stands for Li or Na) are designed to deliver high energy density, rapid energy delivery, and long lifespan. The devices are composed of a battery anode and a supercapacitor cathode, and thus become a tradeoff between batteries and supercapacitors. In the past two decades, tremendous efforts have been put into the search for suitable electrode materials to overcome the kinetic imbalance between the battery-type anode and the capacitor-type cathode. Recently, some transition-metal compounds have been found to show pseudocapacitive characteristics in a nonaqueous electrolyte, which makes them interesting high-rate candidates for hybrid MIC anodes. Here, the material design strategies in Li-ion and Na-ion capacitors are summarized, with a focus on pseudocapacitive oxide anodes (Nb 2 O 5 , MoO 3 , etc.), which provide a new opportunity to obtain a higher power density of the hybrid devices. The application of Mxene as an anode material of MICs is also discussed. A perspective to the future research of MICs toward practical applications is proposed to close. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Jun; Kopold, Peter; van Aken, Peter A; Maier, Joachim; Yu, Yan
2015-08-10
Silicon is an attractive anode material in energy storage devices, as it has a ten times higher theoretical capacity than its state-of-art carbonaceous counterpart. However, the common process to synthesize silicon nanostructured electrodes is complex, costly, and energy-intensive. Three-dimensional (3D) porous silicon-based anode materials have been fabricated from natural reed leaves by calcination and magnesiothermic reduction. This sustainable and highly abundant silica source allows for facile production of 3D porous silicon with very good electrochemical performance. The obtained silicon anode retains the 3D hierarchical architecture of the reed leaf. Impurity leaching and gas release during the fabrication process leads to an interconnected porosity and the reductive treatment to an inside carbon coating. Such anodes show a remarkable Li-ion storage performance: even after 4000 cycles and at a rate of 10 C, a specific capacity of 420 mA h g(-1) is achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NaAlTi 3O 8, A Novel Anode Material for Sodium Ion Battery
Ma, Xuetian; An, Ke; Bai, Jianmin; ...
2017-03-13
Sodium ion batteries are being considered as an alternative to lithium ion batteries in large-scale energy storage applications owing to the low cost. In this paper, a novel titanate compound, NaAlTi 3O 8, was successfully synthesized and tested as a promising anode material for sodium ion batteries. Powder X-ray Diffraction (XRD) and refinement were used to analyze the crystal structure. Electrochemical cycling tests under a C/10 rate between 0.01 - 2.5 V showed that ~83 mAh/g capacity could be achieved in the second cycle, with ~75% of which retained after 100 cycles, which corresponds to 0.75 Na + insertion andmore » extraction. The influence of synthesis conditions on electrochemical performances was investigated and discussed. Finally, NaAlTi 3O 8 not only presents a new anode material with low average voltage of ~0.5 V, but also provides a new type of intercalation anode with a crystal structure that differentiates from the anodes that have been reported.« less
Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela
2016-10-01
This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Vikram Babu, B.; Vijaya Babu, K.; Tewodros Aregai, G.; Seeta Devi, L.; Madhavi Latha, B.; Sushma Reddi, M.; Samatha, K.; Veeraiah, V.
2018-06-01
In this work we investigate Li4Ti5O12 (LTO) anode material synthesized by conventional solid state reaction method calcined at 850 °C for 16 h. Thermal analysis reveals the temperature dependence of the material properties. The phase composition, micro-morphology and elemental analysis of the compound are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectra (EDS) respectively. The results of XRD pattern possessed cubic spinel structure with space group Fd-3m. The morphological features of the powder sample are in the range of 1.1 μm. The EDS spectra confirm the constituent elemental composition of the sample. Electrical conductivity measurement at different frequencies and temperatures had been carried out; and at room temperature it is found to be 5.96 × 10-7 S/cm. Besides, for the different frequencies applied, the activation energies were calculated and obtained to be in the range of 0.2-0.4 eV.
Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings
NASA Astrophysics Data System (ADS)
Singer, F.
Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.
2015-01-15
Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework withmore » an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.« less
NASA Astrophysics Data System (ADS)
Yehezkel, Shani; Auinat, Mahmud; Sezin, Nina; Starosvetsky, David; Ein-Eli, Yair
2016-04-01
Carbon nanotubes (CNT) fabrics were studied and evaluated as anode current collectors, replacing the traditional copper foil current collector in Li-ion batteries. Glavanostatic measurements reveal high values of irreversible capacities (as high as 28%), resulted mainly from the formation of the solid electrolyte interphase (SEI) layer at the CNT fabric surface. Various pre-treatments to the CNT fabric prior to active anode material loading have shown that the lowest irreversible capacity is achieved by immersing and washing the CNT fabric with iso-propanol (IPA), which dramatically modified the fabric surface. Additionally, the use of very thin CNT fabrics (5 μm) results in a substantial irreversible capacity minimization. A combination of IPA rinse action and utilization of the thinnest CNT fabric provides the lowest irreversible capacity of 13%. The paper describes innovative and rather simple techniques towards a complete implementation of CNT fabric as an anode current collector in Li-ion batteries, instead of the relatively heavy and expensive copper foil, enabling an improvement in the gravimetric and volumetric energy densities of such advanced batteries.
Liu, Hao; Cho, Hyung-Man; Meng, Ying Shirley; Li, Quan
2014-06-25
Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffusion coefficients, when compared to the Si-on-Ni nanocable array electrode of the same active material mass. As a result, improved volumetric capacities and rate capabilities have been demonstrated in the Si-on-Ni inverse opal anode. We also show that optimization of the volumetric capacities and the rate performance of the inverse opal electrode can be realized by manipulating the pore size of the Ni scaffold and the thickness of the Si deposit.
Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang; Wang, Zilong; Tong, Yexiang; Lu, Xihong; Yang, Shihe
2016-06-01
A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Breitung, Ben; Aguiló-Aguayo, Noemí; Bechtold, Thomas; Hahn, Horst; Janek, Jürgen; Brezesinski, Torsten
2017-10-12
Si holds great promise as an alloying anode material for Li-ion batteries with improved energy density because of its high theoretical specific capacity and favorable operation voltage range. However, the large volume expansion of Si during electrochemical reaction with Li and the associated adverse effects strongly limit its prospect for application. Here, we report on the use of three-dimensional instead of flat current collectors for high-capacity Si anodes in an attempt to mitigate the loss of electrical contact of active electrode regions as a result of structural disintegration with cycling. The current collectors were produced by technical embroidery and consist of interconnected Cu wires of diameter <150 µm. In comparison to Si/Li cells using a conventional Cu foil current collector, the embroidered microwire network-based cells show much enhanced capacity and reversibility due to a higher degree of tolerance to cycling.
Lignin-based active anode materials synthesized from low-cost renewable resources
Rios, Orlando; Tenhaeff, Wyatt Evan; Daniel, Claus; Dudney, Nancy Johnston; Johs, Alexander; Nunnery, Grady Alexander; Baker, Frederick Stanley
2016-06-07
A method of making an anode includes the steps of providing fibers from a carbonaceous precursor, the carbon fibers having a glass transition temperature T.sub.g. In one aspect the carbonaceous precursor is lignin. The carbonaceous fibers are placed into a layered fiber mat. The fiber mat is fused by heating the fiber mat in the presence of oxygen to above the T.sub.g but no more than 20% above the T.sub.g to fuse fibers together at fiber to fiber contact points and without melting the bulk fiber mat to create a fused fiber mat through oxidative stabilization. The fused fiber mat is carbonized by heating the fused fiber mat to at least 650.degree. C. under an inert atmosphere to create a carbonized fused fiber mat. A battery anode formed from carbonaceous precursor fibers is also disclosed.
Roh, Sung-Hee; Kim, Sun-Il
2012-05-01
A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy using the catalytic reaction of microorganisms. We investigated the performance of mediator-less MFC with carbon nanotubes (CNTs)/graphite felt composite electrodes. The addition of CNTs to a graphite felt electrode increases the specific surface area of the electrode and enhances the charge transfer capability so as to cause considerable improvement of the electrochemical activity for the anode reaction in a MFC. The performance of the MFC using CNTs/graphite felt electrode has been compared against a plain graphite felt electrode based MFC. A CNTs/graphite felt electrode showed as high as 15% increase in the power density (252 mW/m2) compared to graphite felt electrode (214 mW/m2). The CNTs/graphite felt anode therefore offers good prospects for application in MFCs.
Development of lithium powder based anode with conductive carbon materials for lithium batteries
NASA Astrophysics Data System (ADS)
Park, Man Su
Current lithium ion battery with a graphite anode shows stable cycle performance and safety. However, the lithium ion battery still has the limitation of having a low energy density caused by the application of lithium intercalated cathode and anode with low energy density. The combination of high capacity non-lithiated cathode such as sulfur and carbon and lithium metal anode has been researched for a long time to maximize battery's energy density. However, this cell design also has a lot of technical challenges to be solved. Among the challenges, lithium anode's problem related to lithium dendrite growth causing internal short and low cycling efficiency is very serious. Thus, extensive research on lithium metal anode has been performed to solve the lithium dendrite problem and a major part of the research has been focused on the control of the interface between lithium and electrolyte. However, research on lithium anode design itself has not been much conducted. In this research, innovative lithium anode design for less dendrite growth and higher cycling efficiency was suggested. Literature review for the lithium dendrite growth mechanism was conducted in Chapter 2 to develop electrode design concept and the importance of the current density on lithium dendrite growth was also found in the literatures. The preliminary test was conducted to verify the developed electrode concept by using lithium powder based anode (LIP) with conductive carbon materials and the results showed that lithium dendrite growth could be suppressed in this electrode design due to its increased electrochemical surface area and lithium deposition sites during lithium deposition. The electrode design suggested in Chapter 2 was extensively studied in Chapter 3 in terms of lithium dendrite growth morphology, lithium cycling efficiency and full cell cycling performance. This electrode concept was further developed to maximize the electrode's performance and safety in Chapter 4. In this new electrode design, electrically isolated super-p carbon agglomerates in the electrode were effectively reduced by adding conductive fillers such as graphite and further improvement in cycling performance and safety was also verified. The lithium powder based anode with conductive carbon materials is very useful concept as an alternative anode design instead of pure lithium metal anode for high energy density lithium batteries such as lithium-sulfur and lithium-air. As shown in Chapter 5, this electrode concept can be further developed and optimized through the application of new carbon materials and structure.
Park, A Reum; Kim, Jung Sub; Kim, Kwang Su; Zhang, Kan; Park, Juhyun; Park, Jong Hyeok; Lee, Joong Kee; Yoo, Pil J
2014-02-12
Although Si is a promising high-capacity anode material for Li-ion batteries (LIB), it suffers from capacity fading due to excessively large volumetric changes upon Li insertion. Nanocarbon materials have been used to enhance the cyclic stability of LIB anodes, but they have an inherently low specific capacity. To address these issues, we present a novel ternary nanocomposite of Si, Mn, and reduced graphene oxide (rGO) for LIB anodes, in which the Si-Mn alloy offers high capacity characteristics and embedded rGO nanosheets confer structural stability. Si-Mn/rGO ternary nanocomposites were synthesized by mechanical complexation and subsequent thermal reduction of mixtures of Si nanoparticles, MnO2 nanorods, and rGO nanosheets. Resulting ternary nanocomposite anodes displayed a specific capacity of 600 mAh/g with ∼90% capacity retention after 50 cycles at a current density of 100 mA/g. The enhanced performance is attributed to facilitated Li-ion reactions with the MnSi alloy phase and the formation of a structurally reinforced electroconductive matrix of rGO nanosheets. The ternary nanocomposite design paradigm presented in this study can be exploited for the development of high-capacity and long-life anode materials for versatile LIB applications.
Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility
Zhao, Jie; Lee, Hyun-Wook; Sun, Jie; Yan, Kai; Liu, Yayuan; Liu, Wei; Lu, Zhenda; Lin, Dingchang; Zhou, Guangmin; Cui, Yi
2016-01-01
A common issue plaguing battery anodes is the large consumption of lithium in the initial cycle as a result of the formation of a solid electrolyte interphase followed by gradual loss in subsequent cycles. It presents a need for prelithiation to compensate for the loss. However, anode prelithiation faces the challenge of high chemical reactivity because of the low anode potential. Previous efforts have produced prelithiated Si nanoparticles with dry air stability, which cannot be stabilized under ambient air. Here, we developed a one-pot metallurgical process to synthesize LixSi/Li2O composites by using low-cost SiO or SiO2 as the starting material. The resulting composites consist of homogeneously dispersed LixSi nanodomains embedded in a highly crystalline Li2O matrix, providing the composite excellent stability even in ambient air with 40% relative humidity. The composites are readily mixed with various anode materials to achieve high first cycle Coulombic efficiency (CE) of >100% or serve as an excellent anode material by itself with stable cyclability and consistently high CEs (99.81% at the seventh cycle and ∼99.87% for subsequent cycles). Therefore, LixSi/Li2O composites achieved balanced reactivity and stability, promising a significant boost to lithium ion batteries. PMID:27313206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Yong X., E-mail: yong.gan@utoledo.edu; Gan, Bo J.; Clark, Evan
2012-09-15
Highlights: ► A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ► The fuel cell decomposes environmentally hazardous materials to produce electricity. ► Doping the anode with a transition metal oxide increases the visible light sensitivity. ► Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of puremore » Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.« less
Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network.
Wang, Min; Yang, Zhenzhong; Li, Weihan; Gu, Lin; Yu, Yan
2016-05-01
Carbonaceous materials have attracted immense interest as anode materials for Na-ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na-storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O-dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g(-1) at 100 mA g(-1) after 100 cycles and retaining a capacity of 240 mAh g(-1) at 2 A g(-1) after 2000 cycles. The NOC composite with 3D well-defined porosity and N,O-dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O-dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Recovery Process of Active Cathode Paste from Spent Li-Ion Batteries
NASA Astrophysics Data System (ADS)
Toma, C. M.; Ghica, G. V.; Buzatu, M.; Petrescu, M. I.; Vasile, E.; Iacob, G.
2017-06-01
In this work, the depleted active paste from spent lithium-ion batteries was separated from cathode by means of ultrasonic vibration. First the unit cells were discharged in brine at room temperature, for safety reasons. Then anode, separator, electrolyte and cathode were separated. Spent Li-Ion batteries were introduced into a washing container to separate electrode materials from their support substrate: active paste (lithium cobalt oxide - LiCoO2) from cathode (Al foil) and graphite from anode (Cu foil). The Al foil and Cu foil were also recovered. A cleaning efficiency of 91% was achieved using a solution of 1.5 M acetic acid after a 6 minute time of exposure into an ultrasonic washing container with a frequency and electric power of 50 kHz and 50 W, respectively. The XRD patterns and the morphology of LiCoO2 powder were presented.
DOE R&D Accomplishments Database
MacDiarmid, A. G.
1984-02-01
The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.
Water oxidation by size selected Co 27 clusters supported on Fe 2O 3
Pellin, Michael J.; Riha, Shannon C.; Tyo, Eric C.; ...
2016-09-22
The complexity of the water oxidation reaction makes understanding the role of individual catalytic sites critical to improving the process. Here, size-selected 27-atom cobalt clusters (Co 27) deposited on hematite (Fe 2O 3) anodes were tested for water oxidation activity. The uniformity of these anodes allows measurement of the activity of catalytic sites of well-defined nuclearity and known density. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) characterization of the anodes before and after electrochemical cycling demonstrates that these Co 27 clusters are stable to dissolution even in the harsh water oxidation electrochemical environment. They are also stable under illumination atmore » the equivalent of 0.4suns irradiation. The clusters show turnover rates for water oxidation that are comparable or higher than those reported for Pd- and Co-based materials or for hematite. The support for the Co 27 clusters is Fe 2O 3 grown by atomic layer deposition on a Si chip. We have chosen to deposit a Fe2O3 layer that is only a few unit cells thick (2nm), to remove complications related to exciton diffusion. We find that the electrocatalytic and the photoelectrocatalytic activity of the Co 27/Fe 2O 3 material is significantly improved when the samples are annealed (with the clusters already deposited). Lastly, given that the support is thin and that the cluster deposition density is equivalent to approximately 5% of an atomic monolayer, we suggest that annealing may significantly improve the exciton diffusion from the support to the catalytic moiety.« less
NASA Astrophysics Data System (ADS)
Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu
2014-10-01
La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.
Li, Chao; Zhang, Libin; Ding, Lili; Ren, Hongqiang; Cui, Hao
2011-06-15
Conductive polymer, one of the most attractive electrode materials, has been applied to coat anode of MFC to improve its performance recently. In this paper, two conductive polymer materials, polyaniline (PANI) and poly(aniline-co-o-aminophenol) (PAOA) were used to modify carbon felt anode and physical and chemical properties of the modified anodes were studied. The power output and biodiversity of modified anodes, along with unmodified carbon anode were compared in two-chamber MFCs. Results showed that the maximum power density of PANI and PAOA MFC could reach 27.4 mW/m(2) and 23.8 mW/m(2), comparing with unmodified MFC, increased by 35% and 18% separately. Low temperature caused greatly decrease of the maximum voltage by 70% and reduced the sorts of bacteria on anodes in the three MFCs. Anode biofilm analysis showed different bacteria enrichment: a larger mount of bacteria and higher biodiversity were found on the two modified anodes than on the unmodified one. For PANI anode, the two predominant bacteria were phylogenetically closely related to Hippea maritima and an uncultured clone MEC_Bicarb_Ac-008; for PAOA, Clostridiales showed more enrichment. Compare PAOA with PANI, the former introduced phenolic hydroxyl group by copolymerization o-aminophenol with aniline, which led to a different microbial community and the mechanism of group effect was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.
Lou, Shuaifeng; Ma, Yulin; Cheng, Xinqun; Gao, Jinlong; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping
2015-12-18
One-dimensional nanostructured TiNb2O7 was prepared by a simple solution-based process and subsequent thermal annealing. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability and cyclic stability.
Aerogel and xerogel composites for use as carbon anodes
Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA
2008-08-12
Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.
Large area organic light emitting diodes with multilayered graphene anodes
NASA Astrophysics Data System (ADS)
Moon, Jaehyun; Hwang, Joohyun; Choi, Hong Kyw; Kim, Taek Yong; Choi, Sung-Yool; Joo, Chul Woong; Han, Jun-Han; Shin, Jin-Wook; Lee, Bong Joon; Cho, Doo-Hee; Huh, Jin Woo; Park, Seung Koo; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik
2012-09-01
In this work, we demonstrate fully uniform blue fluorescence graphene anode OLEDs, which have an emission area of 10×7 mm2. Catalytically grown multilayered graphene films have been used as the anode material. In order to compensate the current drop, which is due to the graphene's electrical resistance, we have furnished metal bus lines on the support. Processing and optical issues involved in graphene anode OLED fabrications are presented. The fabricated OLEDs with graphene anode showed comparable performances to that of ITO anode OLEDs. Our works shows that metal bus furnished graphene anode can be extended into large area OLED lighting applications in which flexibility and transparency is required.
Zeng, Lingxing; Liu, Renpin; Han, Lei; Luo, Fenqiang; Chen, Xi; Wang, Jianbiao; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng
2018-04-03
In this work, an Si/SiO 2 -ordered-mesoporous carbon (Si/SiO 2 -OMC) nanocomposite was initially fabricated through a magnesiothermic reduction strategy by using a two-dimensional bicontinuous mesochannel of SiO 2 -OMC as a precursor, combined with an NaOH etching process, in which crystal Si/amorphous SiO 2 nanoparticles were encapsulated into the OMC matrix. Not only can such unique porous crystal Si/amorphous SiO 2 nanoparticles uniformly dispersed in the OMC matrix mitigate the volume change of active materials during the cycling process, but they can also improve electrical conductivity of Si/SiO 2 and facilitate the Li + /Na + diffusion. When applied as an anode for lithium-ion batteries (LIBs), the Si/SiO 2 -OMC composite displayed superior reversible capacity (958 mA h g -1 at 0.2 A g -1 after 100 cycles) and good cycling life (retaining a capacity of 459 mA h g -1 at 2 A g -1 after 1000 cycles). For sodium-ion batteries (SIBs), the composite maintained a high capacity of 423 mA h g -1 after 100 cycles at 0.05 A g -1 and an extremely stable reversible capacity of 190 mA h g -1 was retained even after 500 cycles at 1 A g -1 . This performance is one of the best long-term cycling properties of Si-based SIB anode materials. The Si/SiO 2 -OMC composites exhibited great potential as an alternative material for both lithium- and sodium-ion battery anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Xiaojun; Chen, Wenchao; Xu, Hongbo
2009-01-01
A method using trivalent chromium has been used to replace hexavalent chromium for the electro-deposition of chromium. Using a tri-chamber bath system various anodic materials and membranes were evaluated to minimize the production of environmentally and health damaging chromic acid. By measuring the absorbance of Cr(VI) at 640 nm, the results indicate that the use of a titanium plated ruthenium (Ti-Ru) anode produces the least amount of chromic acid byproduct compared to lead-gold alloy and graphite anodes. The concentration of Cr(VI) in the immediate vicinity of the Ti-Ru anode decreased from 0.389 mg/L to 0 during a 40-min deposition period. The use of a Nafion(TM) quaternary cation exchange membrane portioning the buffer and anode selectively prevented Cr(III) from entering the anode compartment whilst allowing the migration of H(+) to maintain overall voltaic continuity. It has been demonstrated that the use of a Ti-Ru anode with a Nafion(TM) membrane can eliminate the production of chromic acid associated with the electro-deposition of chromium plate thereby preventing its health damaging exposure to plant operators and preventing discharge of Cr(VI) into the environment. Addition of a surfactant improved current efficiency by 34.7%.
NASA Astrophysics Data System (ADS)
Viswanathan, Vilayanur V.; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas; Williford, Ralph E.; Zhang, Ji-Guang; Liu, Jun; Yang, Zhenguo
The entropy changes (Δ S) in various cathode and anode materials, as well as in complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO 2 has a much larger entropy change than electrodes based on LiNi xCo yMn zO 2 and LiFePO 4, while lithium titanate based anodes have lower entropy change compared to graphite anodes. The reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat generation rate across the 0-100% state of charge (SOC) range. In addition to screening for battery electrode materials with low reversible heat, the techniques described in this paper can be a useful engineering tool for battery thermal management in stationary and transportation applications.
DOT National Transportation Integrated Search
1999-01-01
This study provided the first field trial of a catalyzed, thermal-sprayed titanium anode for cathodic protection of steel reinforced concrete structures. Catalyzed titanium as an anode material offers the advantage of long life due to the inherent no...
Reitz, Christian; Breitung, Ben; Schneider, Artur; Wang, Di; von der Lehr, Martin; Leichtweiss, Thomas; Janek, Jürgen; Hahn, Horst; Brezesinski, Torsten
2016-04-27
Nitrogen-rich carbon with both a turbostratic microstructure and meso/macroporosity was prepared by hard templating through pyrolysis of a tricyanomethanide-based ionic liquid in the voids of a silica monolith template. This multifunctional carbon not only is a promising anode candidate for long-life lithium-ion batteries but also shows favorable properties as anode and cathode host material owing to a high nitrogen content (>8% after carbonization at 900 °C). To demonstrate the latter, the hierarchical carbon was melt-infiltrated with sulfur as well as coated by atomic layer deposition (ALD) of anatase TiO2, both of which led to high-quality nanocomposites. TiO2 ALD increased the specific capacity of the carbon while maintaining high Coulombic efficiency and cycle life: the composite exhibited stable performance in lithium half-cells, with excellent recovery of low rate capacities after thousands of cycles at 5C. Lithium-sulfur batteries using the sulfur/carbon composite also showed good cyclability, with reversible capacities of ∼700 mA·h·g(-1) at C/5 and without obvious decay over several hundred cycles. The present results demonstrate that nitrogen-rich carbon with an interconnected multimodal pore structure is very versatile and can be used as both active and inactive electrode material in high-performance lithium-based batteries.
High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating
Minnici, Krysten; Kwon, Yo Han; Huie, Matthew M.; ...
2017-12-06
Battery electrodes are complex mesoscale systems comprised of an active material, conductive agent, current collector, and polymeric binder. Previous work showed that introduction of poly [3-(potassium-4-butanoate) thiophene] (PPBT) as a binder component coupled with a polyethylene glycol (PEG) surface coating on magnetite (Fe 3O 4) nanoparticles enhanced electron and ion transport in the high capacity anode system. Here, the impact of Fe 3O 4 crystallite size (10 nm vs. 20 nm) and surface chemistry were explored to evaluate their effects on interfacial interactions within the composite PEG/PPBT based electrodes and resultant battery performance. The Fe 3O 4 synthesis methods inevitablymore » lead to differences in surface chemistry. For instance, the Fe 3O 4 particles synthesized using ammonium hydroxide appeared more dispersed, and afforded improved rate capability performance. Notably, chemical interactions between the active nanoparticles and PPBT binder were only seen with particles synthesized using triethylamine. Capacity retention and cycling performance were unaffected. Thus, this study provides fundamental insights into the significant impact of active material synthesis on the design and fabrication of composite battery electrodes.« less
High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minnici, Krysten; Kwon, Yo Han; Huie, Matthew M.
Battery electrodes are complex mesoscale systems comprised of an active material, conductive agent, current collector, and polymeric binder. Previous work showed that introduction of poly [3-(potassium-4-butanoate) thiophene] (PPBT) as a binder component coupled with a polyethylene glycol (PEG) surface coating on magnetite (Fe 3O 4) nanoparticles enhanced electron and ion transport in the high capacity anode system. Here, the impact of Fe 3O 4 crystallite size (10 nm vs. 20 nm) and surface chemistry were explored to evaluate their effects on interfacial interactions within the composite PEG/PPBT based electrodes and resultant battery performance. The Fe 3O 4 synthesis methods inevitablymore » lead to differences in surface chemistry. For instance, the Fe 3O 4 particles synthesized using ammonium hydroxide appeared more dispersed, and afforded improved rate capability performance. Notably, chemical interactions between the active nanoparticles and PPBT binder were only seen with particles synthesized using triethylamine. Capacity retention and cycling performance were unaffected. Thus, this study provides fundamental insights into the significant impact of active material synthesis on the design and fabrication of composite battery electrodes.« less
Advances in catalysts for internal reforming in high temperature fuel cells
NASA Astrophysics Data System (ADS)
Dicks, A. L.
Catalytic steam reforming of natural gas is an attractive method of producing the hydrogen required by the present generation of fuel cells. The molten carbonate (MCFC) and solid oxide (SOFC) fuel cells operate at high enough temperatures for the endothermic steam reforming reaction to be carried out within the stack. For the MCFC, the conventional anodes have insufficient activity to catalyse the steam reforming of natural gas. For these cells, internal reforming can be achieved only with the addition of a separate catalyst, preferably located in close proximity to the anode. However, in the so-called `Direct Internal Reforming' configuration, attack from alkali in the MCFC may severely limit catalyst lifetime. In the case of the state-of-the-art SOFC, natural gas can be reformed directly on the nickel cermet anode. However, in the SOFC, temperature variations in the cell caused by the reforming reaction may limit the amount of internal reforming that can be allowed in practice. In addition, some external pre-reforming may be desirable to remove high molecular weight hydrocarbons from the fuel gas, which would otherwise crack to produce elemental carbon. Degradation of the SOFC anode may also be a problem when internal reforming is carried out. This has prompted several research groups to investigate the use of alternative anode materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang , Jing; Bao, Wurigumula; Ma, Lu
2015-11-09
Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide–nickel–graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx/Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stickmore » well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx/Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.« less
Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil
2015-12-07
Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Hongwei; Sun, Xiaoran; Huang, Xiaodan; Zhou, Liang
2015-02-01
A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries.A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries. Electronic supplementary information (ESI) available: XRD pattern, XPS spectrum, CV curves, TEM and SEM images, and table. See DOI: 10.1039/c4nr06771a
High rate, long cycle life battery electrode materials with an open framework structure
Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro
2015-02-10
A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.
NASA Astrophysics Data System (ADS)
Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Park, Choong-Nyeon; Kim, Jaekook; Park, Chan-Jin
2014-08-01
To fulfill the high power and high energy density demands for Li-ion batteries (LIBs) new anode materials need to be explored to replace conventional graphite. Herein, we report the urea assisted facile co-precipitation synthesis of spinel NiCo2O4 and its application as an anode material for LIBs. The synthesized NiCo2O4 exhibited an urchin-like microstructure and polycrystalline and mesoporous nature. In addition, the mesoporous NiCo2O4 electrode exhibited an initial discharge capacity of 1095 mA h g-1 and maintained a reversible capacity of 1000 mA h g-1 for 400 cycles at 0.5 C-rate. The reversible capacity of NiCo2O4 could still be maintained at 718 mA h g-1, even at 10 C. The mesoporous NiCo2O4 exhibits great potential as an anode material for LIBs with the advantages of unique performance and facile preparation.To fulfill the high power and high energy density demands for Li-ion batteries (LIBs) new anode materials need to be explored to replace conventional graphite. Herein, we report the urea assisted facile co-precipitation synthesis of spinel NiCo2O4 and its application as an anode material for LIBs. The synthesized NiCo2O4 exhibited an urchin-like microstructure and polycrystalline and mesoporous nature. In addition, the mesoporous NiCo2O4 electrode exhibited an initial discharge capacity of 1095 mA h g-1 and maintained a reversible capacity of 1000 mA h g-1 for 400 cycles at 0.5 C-rate. The reversible capacity of NiCo2O4 could still be maintained at 718 mA h g-1, even at 10 C. The mesoporous NiCo2O4 exhibits great potential as an anode material for LIBs with the advantages of unique performance and facile preparation. Electronic supplementary information (ESI) available: Experimental details and additional experimental results. See DOI: 10.1039/c4nr02183e
Low temperature sodium-beta battery
Farmer, Joseph C
2013-11-19
A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.
Electrorefiner system for recovering purified metal from impure nuclear feed material
Berger, John F.; Williamson, Mark A.; Wiedmeyer, Stanley G.; Willit, James L.; Barnes, Laurel A.; Blaskovitz, Robert J.
2015-10-06
An electrorefiner system according to a non-limiting embodiment of the present invention may include a vessel configured to maintain a molten salt electrolyte and configured to receive a plurality of alternately arranged cathode and anode assemblies. The anode assemblies are configured to hold an impure nuclear feed material. Upon application of the power system, the impure nuclear feed material is anodically dissolved and a purified metal is deposited on the cathode rods of the cathode assemblies. A scraper is configured to dislodge the purified metal deposited on the cathode rods. A conveyor system is disposed at a bottom of the vessel and configured to remove the dislodged purified metal from the vessel.
Graphene-Oxide-Assisted Synthesis of GaN Nanosheets as a New Anode Material for Lithium-Ion Battery.
Sun, Changlong; Yang, Mingzhi; Wang, Tailin; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng
2017-08-16
As the most-studied III-nitride, theoretical researches have predicted the presence of gallium nitride (GaN) nanosheets (NSs). Herein, a facile synthesis approach is reported to prepare GaN NSs using graphene oxide (GO) as sacrificial template. As a new anode material of Li-ion battery (LIBs), GaN NSs anodes deliver the reversible discharge capacity above 600 mA h g -1 at 1.0 A g -1 after 1000 cycles, and excellent rate performance at current rates from 0.1 to 10 A g -1 . These results not only extend the family of 2D materials but also facilitate their use in energy storage and other applications.
Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L
2017-01-07
The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoO x ) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoO x interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoO x /CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.
Applications of Graphene-Modified Electrodes in Microbial Fuel Cells
Yu, Fei; Wang, Chengxian; Ma, Jie
2016-01-01
Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929
A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore.
Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong
2017-04-14
The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electrochemical performance with a maximum energy density of 86 W·h·kg -1 at 150 W·kg -1 , and 48 W·h·kg -1 at a high-power density of 7.4 kW·kg -1 . This high-performance LIC based on PVG and GPC is believed to be promising for practical applications, due to its low-cost raw materials and industrially feasible production.
A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore
Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong
2017-01-01
The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electrochemical performance with a maximum energy density of 86 W·h·kg−1 at 150 W·kg−1, and 48 W·h·kg−1 at a high-power density of 7.4 kW·kg−1. This high-performance LIC based on PVG and GPC is believed to be promising for practical applications, due to its low-cost raw materials and industrially feasible production. PMID:28772773
Yoon, Taeseung; Bok, Taesoo; Kim, Chulhyun; Na, Younghoon; Park, Soojin; Kim, Kwang S
2017-05-23
Controlling the morphology of nanostructured silicon is critical to improving the structural stability and electrochemical performance in lithium-ion batteries. The use of removable or sacrificial templates is an effective and easy route to synthesize hollow materials. Herein, we demonstrate the synthesis of mesoporous silicon hollow nanocubes (m-Si HCs) derived from a metal-organic framework (MOF) as an anode material with outstanding electrochemical properties. The m-Si HC architecture with the mesoporous external shell (∼15 nm) and internal void (∼60 nm) can effectively accommodate volume variations and relieve diffusion-induced stress/strain during repeated cycling. In addition, this cube architecture provides a high electrolyte contact area because of the exposed active site, which can promote the transportation of Li ions. The well-designed m-Si HC with carbon coating delivers a high reversible capacity of 1728 mAhg -1 with an initial Coulombic efficiency of 80.1% after the first cycle and an excellent rate capability of >1050 mAhg -1 even at a 15 C-rate. In particular, the m-Si HC anode effectively suppresses electrode swelling to ∼47% after 100 cycles and exhibits outstanding cycle stability of 850 mAhg -1 after 800 cycles at a 1 C-rate. Moreover, a full cell (2.9 mAhcm -2 ) comprising a m-Si HC-graphite anode and LiCoO 2 cathode exhibits remarkable cycle retention of 72% after 100 cycles at a 0.2 C-rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Zhou, Meijuan; Tan, Guoqiang
2015-01-01
Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge–discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both asmore » binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.« less
Dietz Rago, Nancy; Bareno, Javier; Li, Jianlin; ...
2018-03-17
Cells based on NMC/graphite, containing poly(vinylidene difluoride) (PVDF) binders in the positive and negative electrodes, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state-of-charge (SOC). At 250% SOC the cell vented. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) of the anodes showed several state-of-overcharge-dependent trends. Starting at 120% SOC, dendrites appeared and increased in concentration as the SOC increased. Dendrite morphology appeared to be dependent on whether the active material was on the “dull” or “shiny” side of the copper collector. Significantly more delamination of the active material from the collector was seen on themore » “shiny” side of the collector particularly at 180 and 250% SOC. Transition metals were detected at 120% SOC and increased in concentration as the SOC increased. Finally, there was considerable spatial heterogeneity in the microstructures across each laminate with several regions displaying complex layered structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietz Rago, Nancy; Bareno, Javier; Li, Jianlin
Cells based on NMC/graphite, containing poly(vinylidene difluoride) (PVDF) binders in the positive and negative electrodes, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state-of-charge (SOC). At 250% SOC the cell vented. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) of the anodes showed several state-of-overcharge-dependent trends. Starting at 120% SOC, dendrites appeared and increased in concentration as the SOC increased. Dendrite morphology appeared to be dependent on whether the active material was on the “dull” or “shiny” side of the copper collector. Significantly more delamination of the active material from the collector was seen on themore » “shiny” side of the collector particularly at 180 and 250% SOC. Transition metals were detected at 120% SOC and increased in concentration as the SOC increased. Finally, there was considerable spatial heterogeneity in the microstructures across each laminate with several regions displaying complex layered structures.« less
Anode materials for lithium-ion batteries
Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini
2014-12-30
An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.
Non-aqueous electrolytes for electrochemical cells
Zhang, Zhengcheng; Dong, Jian; Amine, Khalil
2016-06-14
An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.
Polarization Induced Deterioration of Reinforced Concrete with CFRP Anode.
Zhu, Ji-Hua; Wei, Liangliang; Zhu, Miaochang; Sun, Hongfang; Tang, Luping; Xing, Feng
2015-07-15
This paper investigates the deterioration of reinforced concrete with carbon fiber reinforced polymer (CFRP) anode after polarization. The steel in the concrete was first subjected to accelerated corrosion to various extents. Then, a polarization test was performed with the external attached CFRP as the anode and the steel reinforcement as the cathode. Carbon fiber reinforced mortar and conductive carbon paste as contact materials were used to adhere the CFRP anode to the concrete. Two current densities of 1244 and 2488 mA/m², corresponding to the steel reinforcements were applied for 25 days. Electrochemical parameters were monitored during the test period. The deterioration mechanism that occurred at the CFRP/contact material interface was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The increase of feeding voltage and the failure of bonding was observed during polarization process, which might have resulted from the deterioration of the interface between the contact material and CFRP. The formation and accumulation of NaCl crystals at the contact material/CFRP interface were inferred to be the main causes of the failure at the interface.
Yang, Fuhua; Yu, Fan; Zhang, Zhian; Zhang, Kai; Lai, Yanqing; Li, Jie
2016-02-12
Sodium-ion batteries (SIBs) are regarded as an attractive alternative to lithium-ion batteries (LIBs) for large-scale commercial applications, because of the abundant terrestrial reserves of sodium. Exporting suitable anode materials is the key to the development of SIBs and LIBs. In this contribution, we report on the fabrication of Bi@C microspheres using aerosol spray pyrolysis technique. When used as SIBs anode materials, the Bi@C microsphere delivered a high capacity of 123.5 mAh g(-1) after 100 cycles at 100 mA g(-1) . The rate performance is also impressive (specific capacities of 299, 252, 192, 141, and 90 mAh g(-1) are obtained under current densities of 0.1, 0.2, 0.5, 1, and 2 A g(-1) , respectively). Furthermore, the Bi@C microsphere also proved to be suitable LIB anode materials. The excellent electrochemical performance for both SIBs and LIBs can attributed to the Bi@C microsphere structure with Bi nanoparticles uniformly dispersed in carbon spheres. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multidimensional Germanium-Based Materials as Anodes for Lithium-Ion Batteries.
Qin, Jinwen; Cao, Minhua
2016-04-20
Metallic germanium is an ideal anode for lithium-ion batteries (LIBs), owing to its high theoretical capacity (1624 mA h g(-1) ) and low operating voltage. Herein, we highlight recent advances in the development of Ge-based anodes in LIBs, although improvements in their coulombic efficiency (CE), capacity retention, and rate performance are still required. One of the major concerns facing the development of Ge anodes is the controlled formation of microstructures. In this Focus Review, we summarize Ge-based materials with different structural dimensions, that is, zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D), and even monolithic and macroscale structures. Moreover, the design of Ge-based oxide materials, as an effective route for achieving higher Li-storage capacities and cycling performance, is also discussed. Finally, we briefly summarize new types of Ge-based materials, such as ternary germanium oxides, germanium sulfides, and germanium phosphides, and predict that they will bring about a reformation in the field of LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis & characterization of Bi7.38Ce0.62O12.3 and its optical and electrocatalytic property
NASA Astrophysics Data System (ADS)
Padmanaban, A.; Dhanasekaran, T.; Kumar, S. Praveen; Gnanamoorthy, G.; Stephen, A.; Narayanan, V.
2017-05-01
Bismuth cerium oxide was synthesized by thermal decomposition method. The material was characterized by X-ray diffraction technique, DRS UV-Vis, Raman spectral methods and FE-SEM. The electrocatalytic sensing activity of bismuth cerium oxide modified GCE toward 4-nitrophenol exhibits better activity than the bare GCE. The modified electrode shows higher anodic current response with lower potential.
Laser pumping of thyristors for fast high current rise-times
Glidden, Steven C.; Sanders, Howard D.
2013-06-11
An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.
Anode sheath transition in an anodic arc for synthesis of nanomaterials
NASA Astrophysics Data System (ADS)
Nemchinsky, V. A.; Raitses, Y.
2016-06-01
The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.
Electrolytic production of high purity aluminum using inert anodes
Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.
2001-01-01
A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, Joseph E.
1987-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
Low resistance, low-inductance power connectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony
An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, withmore » the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.« less
NASA Astrophysics Data System (ADS)
Anwar, Miftahul; Jupri, Dwi Rahmat; Saraswati, Teguh Endah
2017-01-01
This work aims to study the effect of the different size of Li-ion battery anode during charging state. Carbon-Based nanomaterial using arc-discharge in a liquid which is much simpler and cheaper compared to other techniques, i.e., CVD, laser vaporization, etc. The experiment was performed using intermediate DC power supply (1300 W) to produce an arc, and commercial graphite pencils (with 5 mm diameter) as negative and positive electrodes. Deionized water mixed with ethanol was used as a heat absorber. The result shows that arc discharge in deionized water could effectively produce carbon nanomaterial (i.e., nano-onions). In addition, finite element method-based simulation of the different intercalating process of Li-ion to the different shape of the anode, i.e., bulk semi-porous and porous anode materials for battery application is also presented. The results show that intercalation of Li ions depends on the anode structure due to the different potential density at anode region. This finding will provide support for design of Li-ion battery based on carbon nanomaterial
Zn-Ge-Sb glass composite mixed with Ba2+ ions: a high capacity anode material for Na-ion batteries
NASA Astrophysics Data System (ADS)
Ravuri, Balaji Rao; Gandi, Suman; Chinta, Srinivasa Rao
2018-06-01
(100-x)(0.7[0.625ZnO-0.375GeO2]-0.3Sb2O3)-xBaO (x = 0, 2, 4 and 6 mol%, labeled as ZGSB x ) glass anode samples are synthesized using a high-energy ball-milling method and employed as anode material for Na-ion batteries. The results on microstructures (XRD, SEM) and electrochemical properties (constant current charge/discharge tests, CV and EIS) indicated that the optimum concentration of Ba2+ ions in the Zn-Ge-Sb glass anode network exhibits the pillaring effect, which would lead to increased electrical conductivity, minimize the volume changes, cracks and voids to boost up electrochemical performance. The ZGSB4 glass anode sample exhibits good capacity retention even after 20 cycles with 95% coulombic efficiency, which is a significant trend for a successful anode network. Electrochemical performance is considerably enhanced by reducing the cut-off voltage from 2 to 1.25 V due to the disassembly of amorphous intermediate domains, optimum volume changes and increased electrical conductivity in this ZGSB x glass network.
NASA Astrophysics Data System (ADS)
Liu, Yuewen; Hassan Siddique, Ahmad; Huang, Heran; Fang, Qile; Deng, Wei; Zhou, Xufeng; Lu, Huanming; Liu, Zhaoping
2017-11-01
A new conductive carbon hybrid combining both reduced graphene nanoscrolls and carbon nanotubes (rGNSs-CNTs) is prepared, and used to host Fe3O4 nanoparticles through an in situ synthesis method. As an anode material for LIBs, the obtained Fe3O4@rGNSs-CNTs shows good electrochemical performance. At a current density of 0.1 A g-1, the anode material shows a high reversible capacity of 1232.9 mAh g-1 after 100 cycles. Even at a current density of 1 A g-1, it still achieves a high reversible capacity of 812.3 mAh g-1 after 200 cycles. Comparing with bare Fe3O4 and Fe3O4/rGO composite anode materials without nanoscroll structure, Fe3O4@rGNSs-CNTs shows much better rate capability with a reversible capacity of 605.0 and 500.0 mAh g-1 at 3 and 5 A g-1, respectively. The excellent electrochemical performance of the Fe3O4@rGNSs-CNTs anode material can be ascribed to the hybrid structure of rGNSs-CNTs, and their strong interaction with Fe3O4 nanoparticles, which on one hand provides more pathways for lithium ions and electrons, on the other hand effectively relieves the volume change of Fe3O4 during the charge-discharge process.
Liu, Pengcheng; Zhu, Kongjun; Xu, Yuan; Bian, Kan; Wang, Jing; Tai, Guo'an; Gao, Yanfeng; Luo, Hongjie; Lu, Li; Liu, Jinsong
2017-06-01
As intercalation-type anode materials for Li-ion batteries (LIBs), the commercially used graphite and Li 4 Ti 5 O 12 exhibit good cycling and rate properties, but their theoretical specific capacities are too low to meet the ever-growing demands of high-energy applications such as electric vehicles. Therefore, the development of new intercalation-type anode materials with larger capacity is very desirable. Herein, we design and synthesize novel 3 D hierarchical porous V 2 O 3 @C micro/nanostructures consisting of crumpled nanosheets, through self-reduction under annealing from the structurally similar VO 2 (B)@C precursors without the addition of any other reducing reagent or gas. Excitingly, it is found for the first time through ex situ XRD technology that V 2 O 3 is a new, promising intercalation-type anode material for LIBs with a high capacity. V 2 O 3 @C micro/nanostructures can deliver a large capacity of 732 mAh g -1 without capacity loss at 100 mA g -1 even after 136 cycles, as well as exhibiting excellent cycling and rate performances. The application of V 2 O 3 for Na-ion batteries (NIBs) is elaborated for the first time, and excitingly, it is found that V 2 O 3 @C micro/nanostructures may be promising anode materials for NIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
He, Xin; Wang, Jun; Jia, Haiping; Kloepsch, Richard; Liu, Haidong; Beltrop, Kolja; Li, Jie
2015-10-01
Mn-based Mn2O3 anode and LiMn2O4 cathode materials are prepared by a solvothermal method combined with post annealing process. Environmentally friendly ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate as both structure-directing agent and fluorine source is used to prepare hollow polyhedron MnF2 precursor. Both target materials Mn2O3 anode and LiMn2O4 cathode have the morphology of the MnF2 precursor. The Mn2O3 anode using carboxymethyl cellulose as binder could deliver slight better electrochemical performance than the one using poly (vinyldifluoride) as binder. The former has an initial charge capacity of 800 mAh g-1 at a current density of 101.8 mA g-1, and exhibits no obvious capacity decay for 150 cycles at 101.8 mA g-1. The LiMn2O4 cathode material prepared with molten salt assistant could display much better electrochemical performance than the one prepared without molten salt assistance. In particular, it has an initial discharge capacity of 117.5 mAh g-1 at a current density of 0.5C and good rate capability. In the field of lithium ion batteries, both the Mn2O3 anode and LiMn2O4 cathode materials could exhibit enhanced electrochemical performance due to the well formed morphology based on the ionic liquid-assisted solvothermal method.
Díaz, M; Sevilla, P; Galán, A M; Escolar, G; Engel, E; Gil, F J
2008-11-01
316L Stainless steel is one of the most used metallic material in orthopedical prosthesis, osteosinthesis plates, and cardiovascular stents. One of the main problems this material presents is the nickel and chromium release, specially the Ni ion release that provokes allergy in a high number of patients. Recently, experimental applications in vitro and in vivo seem to indicate that the thickness of the nature oxide of the stainless steel results in very strong reinforcement of the biological response and reduce the ion release due to the thicker surface oxide. It is possible to grow the natural chromium oxide layer by electrolytic method such anodization. In this study, two main anodization methods to grow chromium oxide on the 316L stainless steel have been evaluated. Nickel and Chromium ions release in human blood at 37 degrees C were detected at times of 1, 6, 11, and 15 days by means of atomic absorption in a graphite furnace (GAAF). Moreover, cytocompatibility tests were carried out. Perfusion experiments were performed to evaluate morphometrically platelet interaction with the material and to explore the potential thrombogenicity. The results showed a good cytocompatibility between the material and the osteoblast-like cells. However, these anodization methods released between 2 and 10 times more nickel and chromium than the original stainless steel, depending on the method used. Besides, anodized samples shown an increase of the percentage of surface covered by platelets. Consequently, the anodization methods studied do not improve the long-term behavior of the stainless steel for its application as cardiovascular stents.
A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device.
Fan, Ling; Lin, Kairui; Wang, Jue; Ma, Ruifang; Lu, Bingan
2018-05-01
A low cost nonaqueous potassium-based battery-supercapacitor hybrid device (BSH) is successfully established for the first time with soft carbon as the anode, commercialized activated carbon as the cathode, and potassium bis(fluoro-slufonyl)imide in dimethyl ether as the electrolyte. This BSH reconciles the advantages of potassium ion batteries and supercapacitors, achieving a high energy density of 120 W h kg -1 , a high power density of 599 W kg -1 , a long cycle life of 1500 cycles, and an ultrafast charge/slow discharge performance (energy density and power density are calculated based on the total mass of active materials in the anode and cathode). This work demonstrates a great potential of applying the nonaqueous BSH for low cost electric energy storage systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Shengjie; Han, Xiaopeng; Li, Linlin; Zhu, Zhiqiang; Cheng, Fangyi; Srinivansan, Madhavi; Adams, Stefan; Ramakrishna, Seeram
2016-03-09
Exploitation of high-performance anode materials is essential but challenging to the development of sodium-ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (rGO) to build CoS@rGO composite is described. When evaluated as anode for SIBs, an impressive high specific capacity (540 mAh g(-1) at 1 A g(-1) ), excellent rate capability (636 mAh g(-1) at 0.1 A g(-1) and 306 mAh g(-1) at 10 A g(-1)), and extraordinarily cycle stability (420 mAh g(-1) at 1 A g(-1) after 1000 cycles) have been demonstrated by CoS@rGO composite for sodium storage. The synergetic effect between the CoS nanoplates and rGO matrix contributes to the enhanced electrochemical performance of the hybrid composite. The results provide a facile approach to fabricate promising anode materials for high-performance SIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microbial fuel cell as a biocapacitor by using pseudo-capacitive anode materials
NASA Astrophysics Data System (ADS)
Lv, Zhisheng; Xie, Daohai; Li, Fusheng; Hu, Yun; Wei, Chaohai; Feng, Chunhua
2014-01-01
Here, we report that the microbial fuel cell (MFC) containing pseudo-capacitive anode materials such as polypyrrole (PPy)/9,10-anthraquinone-2-sulfonic acid sodium salt (AQS) composite films and RuO2 nanoparticles can function as a biocapacitor, able to store bioelectrons generated from microbial oxidation of substrate and release the accumulated charge upon requirement. Influences of the specific capacitance of the PPy/AQS- and RuO2-modified carbon felt anodes on the extent of accumulated charge are examined. Results show that increasing anode capacitance is responsible for the increases in the amount of electrons stored and released, and thereby leading to more energy stored and average power dissipated. The long-term charging-discharging tests indicate that the RuO2-modified biocapacitor with a specific capacitance of 3.74 F cm-2 exhibits 6% loss in the amount of released charge over 10 cycles for one-month operation, and 40% loss over 60 cycles for six-month operation. Our findings suggest that the MFC anode incorporating pseudo-capacitive materials shows potential for storing energy from waste organic matter and releasing in a short time of high power to the electronic device.
Singh, Archana; Fekete, Monika; Gengenbach, Thomas; Simonov, Alexandr N; Hocking, Rosalie K; Chang, Shery L Y; Rothmann, Mathias; Powar, Satvasheel; Fu, Dongchuan; Hu, Zheng; Wu, Qiang; Cheng, Yi-Bing; Bach, Udo; Spiccia, Leone
2015-12-21
We report that films screen printed from nickel oxide (NiO) nanoparticles and microballs are efficient electrocatalysts for water oxidation under near-neutral and alkaline conditions. Investigations of the composition and structure of the screen-printed films by X-ray diffraction, X-ray absorption spectroscopy, and scanning electron microscopy confirmed that the material was present as the cubic NiO phase. Comparison of the catalytic activity of the microball films to that of films fabricated by using NiO nanoparticles, under similar experimental conditions, revealed that the microball films outperform nanoparticle films of similar thickness owing to a more porous structure and higher surface area. A thinner, less-resistive NiO nanoparticle film, however, was found to have higher activity per Ni atom. Anodization in borate buffer significantly improved the activity of all three films. X-ray photoelectron spectroscopy showed that during anodization, a mixed nickel oxyhydroxide phase formed on the surface of all films, which could account for the improved activity. Impedance spectroscopy revealed that surface traps contribute significantly to the resistance of the NiO films. On anodization, the trap state resistance of all films was reduced, which led to significant improvements in activity. In 1.00 m NaOH, both the microball and nanoparticle films exhibit high long-term stability and produce a stable current density of approximately 30 mA cm(-2) at 600 mV overpotential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wuest, Craig R.; Bionta, Richard M.; Ables, Elden
1994-01-01
An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.
Wuest, C.R.; Bionta, R.M.; Ables, E.
1994-05-03
An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.
Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells
NASA Astrophysics Data System (ADS)
Wang, Heming; Davidson, Matthew; Zuo, Yi; Ren, Zhiyong
One of the greatest challenges facing microbial fuel cells (MFCs) in large scale applications is the high cost of electrode material. We demonstrate here that recycled tire crumb rubber coated with graphite paint can be used instead of fine carbon materials as the MFC anode. The tire particles showed satisfactory conductivity after 2-4 layers of coating. The specific surface area of the coated rubber was over an order of magnitude greater than similar sized graphite granules. Power production in single chamber tire-anode air-cathode MFCs reached a maximum power density of 421 mW m -2, with a coulombic efficiency (CE) of 25.1%. The control graphite granule MFC achieved higher power density (528 mW m -2) but lower CE (15.6%). The light weight of tire particle could reduce clogging and maintenance cost but posts challenges in conductive connection. The use of recycled material as the MFC anodes brings a new perspective to MFC design and application and carries significant economic and environmental benefit potentials.
High performance zinc anode for battery applications
NASA Technical Reports Server (NTRS)
Casey, John E., Jr. (Inventor)
1998-01-01
An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.
Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.
Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan
2016-04-27
Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Hualin; Wang, Lu; Deng, Shuo
The search for earth-abundant and high-performance electrode materials for sodium-ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain-like MoS3—can be a better choice as the anode material of sodium-ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuringmore » excellent specific capacity (≈615 mA h g-1), rate capability (235 mA h g-1 at 20 A g-1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm-3 and an areal capacity of >6.0 mA h cm-2 at very high areal loadings of active materials (up to 12 mg cm-2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.« less
Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.
Echeverry-Rendón, Mónica; Galvis, Oscar; Quintero Giraldo, David; Pavón, Juan; López-Lacomba, José Luis; Jiménez-Piqué, Emilio; Anglada, Marc; Robledo, Sara M; Castaño, Juan G; Echeverría, Félix
2015-02-01
Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.
Evaporation Source for Deposition of Protective Layers inside Tubes
NASA Astrophysics Data System (ADS)
Musa, Geavit; Mustata, Ion; Dinescu, Gheorghe; Bajeu, George; Raiciu, Elena
1992-09-01
A heated cathode arc can be ignited in vacuum in the vapours of the anode material due to the accelerated electron beam from the cathode. A small assembly, consisting of an electron gun as the cathode and a refractory metal crucible, containing the material to be evaporated, as the anode, can be moved along the axis of the tube whose inside wall is to be covered with a protective layer. The vacuum arc ignited between the electrodes in the vapours of the evaporating anode material ensures a high deposition rate with low thermal energy transport to the tube wall. This new method can be used for the deposition of various metal layers inside different kinds of tubes (metallic, glass, ceramics or plastics).
Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations
NASA Astrophysics Data System (ADS)
Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun
2017-02-01
Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.
Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations.
Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun
2017-02-06
Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.
Anodic oxidation of commercially pure titanium for purification of polluted water
NASA Astrophysics Data System (ADS)
Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali
2018-05-01
Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.
Zhu, Ji-Hua; Zhu, Miaochang; Han, Ningxu; Liu, Wei; Xing, Feng
2014-07-24
An investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.
Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz
2015-10-21
3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.
Ying, Hangjun
2017-01-01
Abstract With the fast‐growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn‐based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium‐ion batteries (LIBs) (994 mA h g−1) and sodium‐ion batteries (847 mA h g−1). Though Sony has used Sn–Co–C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn‐based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn‐based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in‐depth understanding of the theoretical works and practical developments of metallic Sn‐based anode materials. PMID:29201624
Ying, Hangjun; Han, Wei-Qiang
2017-11-01
With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.
Nanostructured silicon anodes for lithium ion rechargeable batteries.
Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil
2009-10-01
Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.
NASA Technical Reports Server (NTRS)
Henry, Francois
2015-01-01
For this Phase II project, Superior Graphite Co., in collaboration with the Georgia Institute of Technology and Streamline Nanotechnologies, Inc., developed, explored the properties of, and demonstrated the enhanced capabilities of novel nanostructured SiLix-C anodes. These anodes can retain high capacity at a rapid 2-hour discharge rate and at 0 C when used in Li-ion batteries. In Phase I, these advanced anode materials had specific capacity in excess of 1,000 mAh/g, minimal irreversible capacity losses, and stable performance for 20 cycles at C/1. The goals in Phase II were to develop and apply a variety of novel nanomaterials, fine-tune the properties of composite particles at the nanoscale, optimize the composition of the anodes, and select appropriate binder and electrolytes. In order to achieve a breakthrough in power characteristics of Li-ion batteries, the team developed new nanostructured SiLix-C anode materials to offer up to 1,200 mAh/g at C/2 at 0 C.
Experimental breakdown of selected anodized aluminum samples in dilute plasmas
NASA Technical Reports Server (NTRS)
Grier, Norman T.; Domitz, Stanley
1992-01-01
Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.
Chen, Renjie; Zhao, Teng; Wu, Weiping; Wu, Feng; Li, Li; Qian, Ji; Xu, Rui; Wu, Huiming; Albishri, Hassan M; Al-Bogami, A S; El-Hady, Deia Abd; Lu, Jun; Amine, Khalil
2014-10-08
Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one-dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage, Li-ion batteries, and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type architecture as anode for lithium-ion batteries for the first time. The graphene-based hierarchical architecture plays vital roles in achieving fast electron/ion transfer, thus leading to good electrochemical performance. When evaluated as anode, WS2-NTs/GS hybrid could maintain a capacity of 318.6 mA/g over 500 cycles at a current density of 1A/g. Besides, the hybrid anode does not require any additional polymetric binder, conductive additives, or a separate metal current-collector. The relatively high density of this hybrid is beneficial for high capacity per unit volume. Those characteristics make it a potential anode material for light and high-performance lithium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chidambaram, Dev; Misra, Mano; Heske, Clemens
2014-12-21
The objectives included: Develop high efficiency metal oxide nanotubular array photo-anodes for generating hydrogen by water splitting; Develop density functional theory to understand the effect of the morphology of the nanotubes on the photo-electrochemical (PEC) properties of the photo-anodes; Develop kinetics and formation mechanism of the metal oxide nanotubes under different synthesis conditions; Develop combinatorial approach to prepare hybrid photo-anodes having multiple hetero-atoms incorporation in a single photo anode; Improve the durability of the material; and Scale up the laboratory demonstration to production unit.
Lou, Peili; Cui, Zhonghui; Jia, Zhiqing; Sun, Jiyang; Tan, Yingbin; Guo, Xiangxin
2017-04-25
In search of new electrode materials for lithium-ion batteries, metal phosphides that exhibit desirable properties such as high theoretical capacity, moderate discharge plateau, and relatively low polarization recently have attracted a great deal of attention as anode materials. However, the large volume changes and thus resulting collapse of electrode structure during long-term cycling are still challenges for metal-phosphide-based anodes. Here we report an electrode design strategy to solve these problems. The key to this strategy is to confine the electroactive nanoparticles into flexible conductive hosts (like carbon materials) and meanwhile maintain a monodispersed nature of the electroactive particles within the hosts. Monodispersed carbon-coated cubic NiP 2 nanoparticles anchored on carbon nanotubes (NiP 2 @C-CNTs) as a proof-of-concept were designed and synthesized. Excellent cyclability (more than 1000 cycles) and capacity retention (high capacities of 816 mAh g -1 after 1200 cycles at 1300 mA g -1 and 654.5 mAh g -1 after 1500 cycles at 5000 mA g -1 ) are characterized, which is among the best performance of the NiP 2 anodes and even most of the phosphide-based anodes reported so far. The impressive performance is attributed to the superior structure stability and the enhanced reaction kinetics incurred by our design. Furthermore, a full cell consisting of a NiP 2 @C-CNTs anode and a LiFePO 4 cathode is investigated. It delivers an average discharge capacity of 827 mAh g -1 based on the mass of the NiP 2 anode and exhibits a capacity retention of 80.7% over 200 cycles, with an average output of ∼2.32 V. As a proof-of-concept, these results demonstrate the effectiveness of our strategy on improving the electrode performance. We believe that this strategy for construction of high-performance anodes can be extended to other phase-transformation-type materials, which suffer a large volume change upon lithium insertion/extraction.
Position-sensitive proportional counter with low-resistance metal-wire anode
Kopp, Manfred K.
1980-01-01
A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).
NASA Astrophysics Data System (ADS)
Girón, L.; Aperador, W.; Tirado, L.; Franco, F.; Caicedo, J. C.
2017-08-01
The anodized AZ31B magnesium alloys were synthesized via electrodeposition processes. The aim of this work was to determine the electrochemical behavior of magnesium alloys by using anodized alloys as a protective coating. The anodized alloys were characterized by x-ray diffraction, exhibiting the crystallography orientation for Mg and MgO phases. The x-ray photoelectron spectroscopy was used to determine the chemical composition of anodized magnesium alloys. By using electrochemical impedance spectroscopy and Tafel curves, it was possible to estimate the electrochemical behavior of anodized AZ31B magnesium alloys in Hank's balanced salt solution (HBSS). Scanning electron microscopy was performed to analyze chemical changes and morphological surface changes on anodized Mg alloys due to the reaction in HBSS/anodized magnesium surface interface. Electrochemical behavior in HBSS indicates that the coatings may be a promising material for biomedical industry.
Murillo-Sierra, Juan C; Sirés, Ignasi; Brillas, Enric; Ruiz-Ruiz, Edgar J; Hernández-Ramírez, Aracely
2018-02-01
A commercial sulfamethoxazole + trimethoprim formulation has been degraded in 0.050 M Na 2 SO 4 at pH 3.0 by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton with a 6-W UVA lamp (PEF) and solar photoelectro-Fenton (SPEF). The tests were performed in an undivided cell with an IrO 2 -based, Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H 2 O 2 electrogeneration. The anode material had little effect on the accumulated H 2 O 2 concentration. Both drugs always obeyed a pseudo-first-order decay with low apparent rate constant in EO-H 2 O 2 . Much higher values were found in EF, PEF and SPEF, showing no difference because the main oxidant was always OH formed from Fenton's reaction between H 2 O 2 and added Fe 2+ . The solution mineralization increased in the sequence EO-H 2 O 2 < EF < PEF < SPEF regardless of the anode. The IrO 2 -based and Pt anodes behaved similarly but BDD was always more powerful. In SPEF, similar mineralization profiles were found for all anodes because of the rapid removal of photoactive intermediates by sunlight. About 87% mineralization was obtained as maximum for the powerful SPEF with BDD anode. Addition of Cl - enhanced the decay of both drugs due to their quicker reaction with generated active chlorine, but the formation of persistent chloroderivatives decelerated the mineralization process. Final carboxylic acids like oxalic and oxamic were detected, yielding Fe(III) complexes that remained stable in EF with BDD but were rapidly photolyzed in SPEF with BDD, explaining its superior mineralization ability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng
2018-06-05
Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdichevsky, Gene
Commercial Li-ion batteries typically use Ni- and Co-based intercalation cathodes. As the demand for improved performance from batteries increases, these cathode materials will no longer be able to provide the desired energy storage characteristics since they are currently approaching their theoretical limits. Conversion cathode materials are prime candidates for improvement of Li-ion batteries. On both a volumetric and gravimetric basis they have higher theoretical capacity than intercalation cathode materials. Metal fluoride (MFx) cathodes offer higher specific energy density and dramatically higher volumetric energy density. Challenges associated with metal fluoride cathodes were addressed through nanostructured material design and synthesis. A majormore » goal of this project was to develop and demonstrate Li-ion cells based on Si-comprising anodes and metal fluoride (MFx) comprising cathodes. Pairing the high-capacity MFx cathode with a high-capacity anode, such as an alloying Si anode, allows for the highest possible energy density on a cell level. After facing and overcoming multiple material synthesis and electrochemical instability challenges, we succeeded in fabrication of MFx half cells with cycle stability in excess of 500 cycles (to 20% or smaller degradation) and full cells with MFx-based cathodes and Si-based anodes with cycle stability in excess of 200 cycles (to 20% or smaller degradation).« less
NASA Astrophysics Data System (ADS)
Jeena, M. T.; Bok, Taesoo; Kim, Si Hoon; Park, Sooham; Kim, Ju-Young; Park, Soojin; Ryu, Ja-Hyoung
2016-04-01
The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g-1 over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%.The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g-1 over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01559j
Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode.
Hou, Hongying; Yao, Yuan; Liu, Song; Duan, Jixiang; Liao, Qishu; Yu, Chengyi; Li, Dongdong; Dai, Zhipeng
2017-07-01
The wide applications of metal Cu inevitably resulted in a large quantity of waste Cu materials. In order to recover the useful Cu under the mild conditions and reduce the environmental emission, waste Cu scraps were recycled in the form of CuCl powders with high economic value added (EVA) via the facile hydrothermal route. The recycled CuCl powders were characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results suggested that the recycled CuCl powders consisted of many regular tetrahedron-like micro-particles. Furthermore, in order to reduce the cost of lithium ion battery (LIB) anode and build the connection of waste Cu scraps and LIB, the recycled CuCl powders were evaluated as the anode active material of LIB. As expected, the reversible discharge capacity was about 171.8mAh/g at 2.0C even after 50 cycles, implying the satisfactory cycle stability. Clearly, the satisfactory results may open a new avenue to develop the circular economy and the sustainable energy industry, which would be very important in terms of both the resource recovery and the environmental protection. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Liu, Chao; Liu, Xingang; Tan, Jiang; Wang, Qingfu; Wen, Hao; Zhang, Chuhong
2017-02-01
Nitrogen-doped graphene nanosheets (NGNS) are prepared by a novel mechanochemical method via all-solid-state ball-milling graphite with urea. The ball-milling process does not only successfully exfoliate the graphite into multi-layer (<10 layers) graphene nanosheets, but at the same time, enables the N element to be doped onto the graphene. Urea, acting as a new solid doping and assist-grinding agents, has the advantages of low cost and good water solubility that can simplify the fabrication process. The as-prepared NGNS are investigated in detail by XRD, SEM, HRTEM, TGA, XPS and Raman spectroscopy. The doping nitrogens are around 3.15% and dominated (>94%) by pyrindic-N and pyrrolic-N which facilitates the NGNS with enhanced electronic conductivity and Li-ion storage capability. For the first time, we demonstrate that the all-solid-state prepared NGNS exhibits, especially at high currents, enhanced cycling stability and rate capability as Lithium ion battery (LIB) anode active material when compared to pristine graphite and undoped graphene in half-cell configuration. The method presented in this article may provide a simple, clean, economical and scalable strategy for preparation of NGNS as a feasible and promising anode material for LIBs.
Jiang, Jian; Li, Linpo; Xu, Maowen; Zhu, Jianhui; Li, Chang Ming
2016-02-17
Ferruginous materials have long attracted great interest in aqueous batteries since Fe is an earth-abundant and low toxic element. However, their practical application is severely hindered by their poor structural stability during deep cycling. To maximize their cyclability, we herein propose a simple and effective method, by in situ packaging Fe-based materials into carbon nanosacks via a facile CVD approach. To verify our strategy, we purposely choose water-soluble Fe2F5 as a study paradigm. The in situ formed Fe2F5@C nanosacks product exhibits prominent anodic performance with high electrochemical activity and capacity, obviously prolonged cyclic lifetime, and outstanding rate capabilities. Besides, by pairing with the cathode of α-Co(OH)2 nanowire arrays@carbon cloth, a full device of rechargeable aqueous batteries has been developed, capable to deliver both high specific energy and power densities (Max. values reaching up to ∼163 Wh kg(-1) and ∼14.2 kW kg(-1)), which shows great potential in practical usage. Our present work may not only demonstrate the feasibility of using soluble fluorides as anodes for aqueous batteries but also provide a smart way to upgrade cyclic behaviors of Fe-based anodes.
Masking of aluminum surface against anodizing
NASA Technical Reports Server (NTRS)
Crawford, G. B.; Thompson, R. E.
1969-01-01
Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.
Beltrán-Partida, Ernesto; Moreno-Ulloa, Aldo; Valdez-Salas, Benjamín; Velasquillo, Cristina; Carrillo, Monica; Escamilla, Alan; Valdez, Ernesto; Villarreal, Francisco
2015-01-01
Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO2 nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials. PMID:28787976
Beltrán-Partida, Ernesto; Moreno-Ulloa, Aldo; Valdez-Salas, Benjamín; Velasquillo, Cristina; Carrillo, Monica; Escamilla, Alan; Valdez, Ernesto; Villarreal, Francisco
2015-03-02
Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO₂ nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials.
Duan, Zhi-Qiang; Liu, Yi-Tao; Xie, Xu-Ming; Ye, Xiong-Ying; Zhu, Xiao-Dong
2016-03-18
h-BN, as an isoelectronic analogue of graphene, has improved thermal mechanical properties. Moreover, the liquid-phase production of h-BN is greener since harmful oxidants/reductants are unnecessary. Here we report a novel hybrid architecture by employing h-BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles, followed by phenol/formol carbonization to form a carbon coating. The resulting carbon-encapsulated h-BN@Fe3O4 hybrid architecture exhibits synergistic interactions: 1) The h-BN nanosheets act as flexible 2D substrates to accommodate the volume change of the Fe3O4 nanoparticles; 2) The Fe3O4 nanoparticles serve as active materials to contribute to a high specific capacity; and 3) The carbon coating not only protects the hybrid architecture from deformation but also keeps the whole electrode highly conductive. The synergistic interactions translate into significantly enhanced electrochemical performances, laying a basis for the development of superior hybrid anode materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Shumin; Wang, Jinxian; Wang, Jianwei; Zhang, Feifei; Wang, Limin
2016-12-01
A Co9S8/GNS (graphene nanosheets) nanocomposites has been synthesized via a facile solvothermal approach followed by thermal treatment in nitrogen at 500 °C using graphite oxide sheets, CoCl2·6H2O and thiourea as the starting materials. Highly uniform Co9S8 nanoparticles with a size of about 80-90 nm are evenly grafted on the surface of GNS, forming a unique Co9S8/GNS hybrid nanostructure. When evaluated as anode materials for lithium ion batteries, impressive electrochemical performances of the as-prepared nanocomposites are achieved compared to that of pure bulk Co9S8, with an high reversible capacity of 1480 mAh g-1. Moreover, the as-synthesized nanocomposites present excellent cycling durability and high-rate capability. The improvement in the electrochemical properties could be attributed to the well-designed structure of the Co9S8/GNS nanocomposite which possesses large number of accessible active sites for lithium-ion insertion, fast ion diffusion rate and good electronic conductivity.
Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wu, Fangfang; Bai, Jing; Feng, Jinkui; Xiong, Shenglin
2015-10-01
The relentless pursuit of new electrode materials for lithium ion batteries (LIBs) has been conducted for decades. Structures with either porous or nanostructure configurations have been confirmed as advantageous candidates for energy storage/conversion applications. The integration of the two features into one structure can provide another chance to improve the electroactivities. Recently, single-phased mixed metal oxides (MMOs) containing different metal cations, in particular, have confirmed high electrochemical activities because of their complex chemical composition, interfacial effects, and the synergic effects of the multiple metal species. In this review, we will focus on recent research advances of MMOs with porous architectures as anode materials in the matter of structural arrangement and compositional manipulation. Moreover, the application of self-supported MMO-based porous structures as LIB anodes is also explained herein. More importantly, investigations on the synthetic system and formation mechanism of porous MMOs will be highlighted. Some future trends for the innovative design of new electrode materials are also discussed in this review. The challenges and prospects will draw many researchers' attention.
NASA Technical Reports Server (NTRS)
Kravchenko, Michael; ORourke, Mary Jane; Golden, Johnny; Finckenor, Miria; Leatherwood, Michael; Alred, John
2010-01-01
The International Space Station Materials and Processes (ISS M&P) team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. The ISS M&P team has participated in previous MISSE activities in order to better characterize the LEO effects on Space Station materials. This investigation will further this effort. Results for the following MISSE 6 samples materials will be presented: a comparison of anodize and chemical conversion coatings on various aluminum alloys, electroless nickel; AZ93 white ceramic thermal control coating with and without Teflon; Hyzod(TM) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; reformulated Teflon (TM) coated Beta Cloth (Teflon TM without perfluorooctanoic acid (PFOA)) and a Dutch version of beta cloth. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: deionized water sealed anodized aluminum Photofoil(TM); indium tin oxide (ITO)- coated Kapton(TM) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth ( alpha/Beta transformation); Crew Exploration Vehicle (CEV) parachute soft goods. MISSE 8 sample: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, Davlyn fiberglass sleeve material, Permacel and Intertape protective tapes, and ITO-coated Kapton.
NASA Astrophysics Data System (ADS)
Komiya, Shinji; Sakamoto, Kouta; Ohtsu, Naofumi
2014-03-01
The present study investigated the effect of anodization time, in constant current mode, on the anodic oxide layer formed on titanium (Ti). Anodization of the Ti substrate was carried out in a 0.1 M (NH4)2SO4 aqueous solution with reaction times of various durations, after which the characteristics and photocatalytic activity were investigated in detail. The TiO2 layer fabricated in a short duration exhibited comparatively flat surface morphology and an anatase-type crystal structure. This layer acted as a photocatalyst only under ultraviolet light (UV) illumination. Upon prolonging the anodization, the layer structure changed drastically. The surface morphology became rough, and the crystal structure changed to rutile-type TiO2. Furthermore, the layer showed photocatalytic activity both under UV and visible light illumination. Further anodization increased the amount of methylene blue (MB) adsorbed on the surface, but did not cause additional change to the structure of the anodic layer. The surface morphology and crystal structure of the anodic layer were predominantly controlled by the anodization time; thus, the anodization time is an important parameter for controlling the characteristics of the anodic layer.
Development of inorganic composite material based TiO2 for environmental application
NASA Astrophysics Data System (ADS)
Wahyuningsih, Sayekti; Handono Ramelan, Ari; Pramono, Edi; Purnawan, Candra; Anjani, Velina; Estianingsih, Puji; Rinawati, Ludfiaastu; Fadli, Khusnan
2016-02-01
Syntheses of various materials, for green energy nanotechnology applications have special attention to develop emerging areas, such as environmental as well as energy materials. Various approaches for preparing nanostructured photocatalysts, such as titanium dioxide, nickel oxide, lead oxide and their composites, was introduced. The use of nanomaterials as photocatalysts water detoxification by visible light photocatalyst of an inorganic composite as well as dye-sensitized photoreduction was also discussed. The enhancement of selective photocatalyst system was gain by the use of photocatalyst composite materials and applied potential bias on the system. The photoelectrocatalytic degradation of rhodamine B (RB) and Remazol Yellow FG (RY) as water contaminant using the thin film of modified TiO2 as the electrode was investigated via a series of potentials, and various pH. The result showed that the anodic potential bias influenced the degradation rate of water contaminant and exhibited better performance by the positive anodic bias was applied. The pH conditions influence the active dye structure whereas it will interact with inorganic semiconductor photocatalyst. Using dye- sensitized TiO2 system (DSTs), we have applied this system to build water decolorization as a novelty environmental remediation system.
NASA Astrophysics Data System (ADS)
Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna
2016-09-01
In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.
Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass.
Chin, Ching-Ju Monica; Chen, Tsan-Yao; Lee, Menshan; Chang, Chiung-Fen; Liu, Yu-Ting; Kuo, Yu-Tsun
2014-07-30
This study investigated applications of the electrochemical anodic oxidation process with Pt-FTO and Pt/MWCNTs-FTO glasses as anodes on the treatment of one of the most important emerging contaminants, naproxen. The anodes used in this study have been synthesized using commercial FTO, MWCNTs and Pt nanoparticles (PtNP). XRD patterns of Pt nanoparticles coated on FTO and MWCNTs revealed that MWCNTs can prevent the surface of PtNPs from sintering and thus provide a greater reaction sites density to interact with naproxen, which have also been confirmed by higher degradation and mineralization efficiencies in the Pt/MWCNTs-FTO system. Results from the CV analysis showed that the Pt-FTO and Pt/MWCNTs-FTO electrodes possessed dual functions of decreasing activation energy and interactions between hydroxyl radicals to effectively degrade naproxen. The lower the solution pH value, the better the degradation efficiency. The existence of humic acid indeed inhibited the degradation ability of naproxen due to the competitions in the multiple-component system. The electrochemical degradation processes were controlled by diffusion mechanism and two major intermediates of 2-acetyl-6-methoxynaphthalene and 2-(6-Hydroxy-2-naphthyl)propanoic acid were identified. This study has successfully demonstrated new, easy, flexible and effective anodic materials which can be feasibly applied to the electrochemical oxidation of naproxen. Copyright © 2014 Elsevier B.V. All rights reserved.
Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng
2018-05-22
Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.
Iqbal, Shahid; Bahadur, Ali; Saeed, Aamer; Zhou, Kebin; Shoaib, Muhammad; Waqas, Muhammad
2017-09-15
Lithium-ion battery (LIB) is a revolutionary step in the electric energy storage technology for making green environment. In the present communication, a LIB anode material was constructed by using graphene/polyaniline/CuS nanocomposite (GR/PANI/CuS NC) as a high-performance electrode. Initially, pure covellite CuS nanoplates (NPs) of the hexagonal structure were synthesized by hydrothermal route and then GR/PANI/CuS NC was fabricated by in-situ polymerization of aniline in the presence of CuS NPs and graphene nanosheets (GR NSs) as host matrix. GR/PANI/CuS NC-based LIB has shown the superior reversible current capacity of 1255mAhg -1 , a high cycling stability with more than 99% coulombic efficiency over 250 cycles even at a high current density of 5Ag -1 , low volume expansion, and excellent power capabilities. Galvanostatic charge/discharge tests and cyclic voltammetry analysis were used to investigate electrochemical properties. The electrochemical test proves that GR/PANI/CuS NC is promising anode material for LIB. The crystal phases and purity of the GR/PANI/CuS NC were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, size, chemical composition, and phase structure of the synthesized GR/PANI/CuS NC. Copyright © 2017. Published by Elsevier Inc.
Conformal Surface Coatings to Enable High Volume Expansion Li-Ion Anode Materials
2010-07-12
the formation of a metastable amor - phous alloy, sustaining up to 4.4 Li+ per Si.[2] Transition metal oxides undergo a conversion reaction at lower...in Figure 1a. The ele - mental composition of the circular area labeled P1 was exam- ined using energy dispersive X-ray spectroscopy (EDS) to verify...electrodes were of a 70:10:20 composition active material (AM): acetylene black ( AB ): binder (PVDF) and subjected to 250 8C heat treatment. For
Zhang, Jin; Wang, Beibei; Zhou, Jiachen; Xia, Ruoyu; Chu, Yingli; Huang, Jia
2017-01-17
The copper oxide (CuO) nanowires/functionalized graphene (f-graphene) composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group "-(CH₂)₅COOH", and the CuO nanowires (NWs) were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g -1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes.
Surface characterization of anodized zirconium for biomedical applications
NASA Astrophysics Data System (ADS)
Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.
2011-05-01
Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.
Cho, Jeong-Hyun; Picraux, S Tom
2013-01-01
It is well-known that one-dimensional nanostructures reduce pulverization of silicon (Si)-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nanowire-based structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than ~1000 mA·h/g discharge capacity over 1100 cycles.
Organic photosensitive cells having a reciprocal-carrier exciton blocking layer
Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA
2007-06-12
A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.
High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode.
Wang, Yuesheng; Yang, Shi-Ze; You, Ya; Feng, Zimin; Zhu, Wen; Gariépy, Vincent; Xia, Jiexiang; Commarieu, Basile; Darwiche, Ali; Guerfi, Abdelbast; Zaghib, Karim
2018-02-28
Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO 4 and amorphous FePO 4 ·2H 2 O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO 4 ·2H 2 O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO 4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO 4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO 4 ·2H 2 O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO 4 anodes commercially viable configurations for aqueous lithium-ion batteries.
Electrochemical properties of tin oxide anodes for sodium-ion batteries
NASA Astrophysics Data System (ADS)
Lu, Ying Ching; Ma, Chuze; Alvarado, Judith; Kidera, Takafumi; Dimov, Nikolay; Meng, Ying Shirley; Okada, Shigeto
2015-06-01
Few tin (Sn)-oxide based anode materials have been found to have large reversible capacity for both sodium (Na)-ion and lithium (Li)-ion batteries. Herein, we report the synthesis and electrochemical properties of Sn oxide-based anodes for sodium-ion batteries: SnO, SnO2, and SnO2/C. Among them, SnO is the most suitable anode for Na-ion batteries with less first cycle irreversibility, better cycle life, and lower charge transfer resistance. The energy storage mechanism of the above-mentioned Sn oxides was studied, which suggested that the conversion reaction of the Sn oxide anodes is reversible in Na-ion batteries. The better anode performance of SnO is attributed by the better conductivity.
NASA Astrophysics Data System (ADS)
Jacob, Susan
Electronics system miniaturization is a major driver for high-k materials. High-k materials in capacitors allow for high capacitance, enabling system miniaturization. Ta2O5 (k˜24) has been the dominant high-k material in the electronic industry for decoupling capacitors, filter capacitors, etc. In order to facilitate further system miniaturization, this project has investigated thin film integrated capacitors with Nb2O5 dielectric. Nb2O 5 has k˜41 and is a potential candidate for replacing Ta2O5. But, the presence of suboxides (NbO2 and NbO) in the dielectric deteriorates the electrical properties (leakage current, thermal instability of capacitance, etc.). Also, the high oxygen solubility of niobium results in oxygen diffusion from the dielectric to niobium metal, if any is present. The major purpose of this project was to check the ability of NbN as a diffusion barrier and fabricate thermally stable niobium capacitors. As a first step to produce niobium capacitors, the material characterizations of reactively sputtered Nb2O5 and NbN were done. Thickness and film composition, and crystal structures of the sputtered films were obtained and the deposition parameters for the desired stoichiometry were found. Also, anodized Nb2O5 was characterized for its stoichiometry and thickness. To study the effect of nitrides on capacitance and thermal stability, Ta2O5 capacitors were initially fabricated with and without TaN. The results showed that the nitride does not affect the capacitance, and that capacitors with TaN are stable up to 150°C. In the next step, niobium capacitors were first fabricated with anodized dielectric and the oxygen diffusion issues associated with capacitor processing were studied. Reactively sputtered Nb2O5 was anodized to form complete Nb2O5 (with few oxygen vacancies) and NbN was used to sandwich the dielectric. The capacitor fabrication was not successful due to the difficulties in anodizing the sputtered dielectric. Another method, anodizing reactively sputtered Nb2O5 and a thin layer of sputtered niobium metal yielded high yield (99%) capacitors. Capacitors were fabricated with and without NbN and the results showed 93% decrease in leakage for a capacitor with ˜2000 A dielectric when NbN was present in the structure. These capacitors could withstand 20 V and showed 2.7 muA leakage current at 5 V. These results were obtained after thermal storage at 100°C and 150°C in air for 168 hours at each temperature. Two set of experiments were performed using Ta2O5 dielectric: one to determine the effect of anodization end point on the thickness (capacitance) and the second to determine the effect of boiling the dielectric on functional yield. The anodization end point experiment showed that the final current of anodization along with the anodizing voltage determines the anodic oxide thickness. The lower the current, the thicker the films produced by anodization. Therefore, it was important to specify the final current along with the anodization voltage for oxide growth rate. The capacitors formed with boiled wafers showed better functional yield 3 out of 5 times compared with the unboiled wafer. Niobium anodization was studied for the Nb--->Nb 2O5 conversion ratio and the effect of anodization bath temperature on the oxide film; a color chart was prepared for thicknesses ranging from 1900 A - 5000 A. The niobium metal to oxide conversion ratio was found to change with temperature.
NASA Astrophysics Data System (ADS)
Ye, Yun-Sheng; Xie, Xiao-Lin; Rick, John; Chang, Feng-Chih; Hwang, Bing-Joe
2014-02-01
Si, when compared to conventional graphite, offers an order-of-magnitude improvement as a high capacity anode material for Li-ion batteries. Despite significant advances in nanostructured Si-based anodes, the formation of stable Si anodes remains a challenge, due to the significant volume changes that occur during lithiation and delithiation. Si/graphene composites, with graphene sheets and Si nanoparticles bound in a dispersion obtained by a self-assembly technique using non-covalent electrostatic attraction (following thermal processing to remove residual organic material) are used to prepare Si-based anodes for use in Li-ion batteries. A mesoporous structure, obtained by further thermal processing is able to accommodate large Si nanoparticle volume changes during cycling, thereby facilitating Li-ion diffusion within the electrode. Morphological analysis showed that Si nanoparticles are homogeneously distributed on the graphene sheets, which is thought to account for the excellent electrochemical performance of the resulting Si/graphene composite. A composite containing Si 67.3 wt% exhibits a greatly improved capacity and cycling stability in comparison with bare Si in combination with the thermal reduction of a simple mixture of graphene oxide and Si nanoparticles without electrostatic attraction (Si content = 64.6 wt%; capacity of 512 mAh g-1 in 40th cycle).
Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge.
Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E; Yao, Nan
2017-06-08
Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. To sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of ~100 A/cm 2 , is above the boron melting point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. Stable and reliable arc operation and arc synthesis were achieved with the boron-rich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. The results also show evidence of root-growth of BNNTs produced in the arc discharge.
Effect of anode material on the breakdown in low-pressure helium gas
NASA Astrophysics Data System (ADS)
Demidov, V. I.; Adams, S. F.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Miles, J. A.; Tolson, B. A.
2017-10-01
The electric breakdown of gases is one of the fundamental phenomena of gas discharge physics. It has been studied for a long time but still attracts incessant interest of researchers. Besides the interesting physics, breakdown is important for many applications including development of reliable electric insulation in electric grids and the study of different aspects of gas discharge physics. In this work an experimental study of the electric breakdown in helium gas for the plane-parallel electrode configuration has been conducted using a copper cathode and a variety of anode materials: copper, aluminum, stainless steel, graphite, platinum-plated aluminum and gold-plated aluminum. According to the Paschen law for studied electrode configuration, the breakdown voltage is a function of the product of gas pressure and inter-electrode gap. The breakdown processes on the left, lower pressure side of the Paschen curve have been the subject of this investigation. For those pressures, the Paschen curve may become multi-valued, where any given pressure corresponds to three breakdown voltage values. It was experimentally demonstrated that the form of the Paschen curve might strongly depend on the material of the anode and the cleanness of the anode surface. A possible explanation for this phenomenon is that electrons streaming from the cathode are reflected by the surface of the anode.
Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge
Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.; ...
2017-06-08
Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Fei; Luo, Wei; Dai, Jiaqi
Sodium-ion batteries (SIBs) have attracted extensive interest in the past few years because of the low cost and abundance of sodium resources and hence the potential for grid scale energy storage. Developing low cost electrode materials, particularly anode materials, is the key for further promoting the application of SIBs. Here, we for the first time report a self-standing porous carbon anode directly from natural wood for SIBs, which processes following advantages: (i) ultra-thick carbon anode with a high areal capacity, for example a capacity of 13.6 mAh cm-2 was delivered when the thickness reached 0.85 mm; (ii) low tortuosity, wheremore » numerous inherited aligned channels in the wood carbon provide a rapid ion transport path; (iii) porous nature enables a fast ion transfer between the carbon electrode and the electrolyte; (iv) 100% utilization of the wood carbon that conductive additives, binders, and current-collectors are not needed; v) when coupling a Na3V2(PO4)3 cathode with the wood carbon anode, a high capacity of 80 mAh g-1 was obtained at 0.5 C rate (base on cathode) and excellent cycling stability of 300 cycles was also achieved, which demonstrated the promising performance of earth-abundant wood derived carbon material.« less
NASA Astrophysics Data System (ADS)
Dirican, Mahmut; Zhang, Xiangwu
2016-09-01
Natural abundance and low cost of sodium resources bring forward the sodium-ion batteries as a promising alternative to widely-used lithium-ion batteries. However, insufficient energy density and low cycling stability of current sodium-ion batteries hinder their practical use for next-generation smart power grid and stationary storage applications. Electrospun carbon microfibers have recently been introduced as a high-performance anode material for sodium-ion batteries. However, electrospinning is not feasible for mass production of carbon microfibers due to its complex processing condition, low production rate and high cost. Herein, we report centrifugal spinning, a high-rate and low-cost microfiber production method, as an alternative approach to electrospinning for carbon microfiber production and introduce centrifugally-spun carbon microfibers (CMFs) and porous carbon microfibers (PCMFs) as anode materials for sodium-ion batteries. Electrochemical performance results indicated that the highly porous nature of centrifugally-spun PCMFs led to increased Na+ storage capacity and improved cycling stability. The reversible capacity of centrifugally-spun PCMF anodes at the 200th cycle was 242 mAh g-1, which was much higher than that of centrifugally-spun CMFs (143 mAh g-1). The capacity retention and coulombic efficiency of the centrifugally-spun PCMF anodes were 89.0% and 99.9%, respectively, even at the 200th cycle.
Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.
Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less
NASA Astrophysics Data System (ADS)
Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning
2017-12-01
Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g-1 at a current density of 50 mA·g-1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.
NASA Astrophysics Data System (ADS)
Ma, Yining; Li, Wenjing; Ji, Shidong; Zhou, Huaijuan; Li, Rong; Li, Ning; Yao, Heliang; Cao, Xun; Jin, Ping
2017-08-01
Three-dimensional bristlegrass-like hierarchical VO2 (B)-ZnO heteroarchitectures with ZnO nanorods grown radially on VO2 (B) nanorods were successfully fabricated via a simple two-step synthesized method. When applied as an anode material for lithium-ion batteries, the VO2 (B)-ZnO hybrid electrode exhibited high reversible capacity and excellent recyclability, which could be originated from the unique hierarchical structure of the bristlegrass. After 80 cycles, the nanocomposite still maintained a higher reversible capacity of 329.4 mA h g-1 at a current density of 50 mA g-1. Therefore, the particular architecture of VO2 (B)-ZnO nanocomposite can be a promising candidate as the anode material in lithium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivanantham, Arumugam; Ganesan, Pandian; Estevez,
2018-01-11
The oxygen electrode plays a vital role in the successful commercialization of renewable energy technologies, such as fuel cells and water electrolyzers. In this study, the Prussian blue analogue-derived nitrogen-doped nanocarbon (NC) layer-trapped, cobalt-rich, core–shell nanostructured electrocatalysts (core–shell Co@NC) are reported. The electrode exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble electrodes. The core–shell Co@NC-loaded nickel foam exhibits a lower overpotential of 330 mV than that of IrO2 on nickel foam at 10 mA cm−2 and has a durability of over 400 h. The commercial Pt/C cathode-assisted, core–shell Co@NC–anode water electrolyzer delivers 10more » mA cm−2 at a cell voltage of 1.59 V, which is 70 mV lower than that of the IrO2–anode water electrolyzer. Over the long-term chronopotentiometry durability testing, the IrO2–anode water electrolyzer shows a cell voltage loss of 230 mV (14%) at 95 h, but the loss of the core–shell Co@NC–anode electrolyzer is only 60 mV (4%) even after 350 h cell-operation. The findings indicate that the Prussian blue analogue is a class of inorganic nanoporous materials that can be used to derive metal-rich, core–shell electrocatalysts with enriched active centers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivanantham, Arumugam; Ganesan, Pandian; Estevez, Luis
The oxygen electrode plays a vital role in the successful commercialization of renewable energy technologies, such as fuel cells and water electrolyzers. In this study, the Prussian blue analogue-derived nitrogen-doped nanocarbon (NC) layer-trapped, cobalt-rich, core–shell nanostructured electrocatalysts (core–shell Co@NC) are reported. The electrode exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble electrodes. The core–shell Co@NC-loaded nickel foam exhibits a lower overpotential of 330 mV than that of IrO2 on nickel foam at 10 mA cm-2 and has a durability of over 400 h. The commercial Pt/C cathode-assisted, core–shell Co@NC–anode water electrolyzer delivers 10more » mA cm-2 at a cell voltage of 1.59 V, which is 70 mV lower than that of the IrO2–anode water electrolyzer. Over the long-term chronopotentiometry durability testing, the IrO2–anode water electrolyzer shows a cell voltage loss of 230 mV (14%) at 95 h, but the loss of the core–shell Co@NC–anode electrolyzer is only 60 mV (4%) even after 350 h cell-operation. The findings indicate that the Prussian blue analogue is a class of inorganic nanoporous materials that can be used to derive metal-rich, core–shell electrocatalysts with enriched active centers.« less
NASA Astrophysics Data System (ADS)
Feng, Yangyang; Zhang, Huijuan; Li, Wenxiang; Fang, Ling; Wang, Yu
2016-01-01
In this contribution, the novel 2D sandwich-like NiO/C arrays on Ti foil are successfully designed and fabricated for the first time via simple and controllable hydrothermal process. In this strategy, we use green glucose as carbon source and ultrathin Ni(OH)2 nanosheet arrays as precursor for NiO nanoparticles and sacrificial templates for coupled graphitized carbon layers. This advanced sandwiched composite can not only provide large surface area for numerous active sites and continuous contact between active materials and electrolyte, but also protect the active nanoparticles from aggregation, pulverization and peeling off from conductive substrates. Furthermore, the porous structure derived from lots of substances loss under high-temperature calcinations can effectively buffer possible volume expansion and facilitate ion transfer. In this article, sandwiched NiO/C arrays, utilized as anode for LIBs, demonstrated high specific capacity (∼1458 mAh g-1 at 500 mA g-1) and excellent rate performance and cyclablity (∼95.7% retention after 300 cycles).
Structural and characteristic variation of anodic oxide on pure Ti with anodization duration
NASA Astrophysics Data System (ADS)
Mizukoshi, Yoshiteru; Ohtsu, Naofhumi; Masahashi, Naoya
2013-10-01
Change in the structural and characteristic of the anodic oxide on pure Ti with the duration of anodization time was investigated. With the progress of the anodization, the phase of the formed TiO2 successively changed from anatase phase to rutile phase. In the transition process, peak intensities of rutile TiO2 1 0 1, 1 1 1 and 2 1 1 planes of X-ray diffraction characteristically increased. The contact angles of water droplets on the anodize TiO2 were monotonously decreased with the progress of the anodization except on the characteristically oriented rutile surface. In the evaluations of acetaldehyde photocatalysis under UV illumination, the anatase TiO2 anodized for short period exhibited high activities. On the other hand, when illuminated with visible light (>422 nm), rutile-structured TiO2 formed by anodization with a long duration exhibited superior photocatalytic activities probably due to high rutile fraction and sulfur incorporation from the electrolyte.
Effects of Surface Oxygen on the Performance of Carbon as an Anode in Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Clark, Gregory W.
2001-01-01
Carbon materials with similar bulk structure but different surface oxygen were compared for their performance as anodes in lithium-ion battery. The bulk structure was such that the graphene planes were perpendicular to the surface. Three types of surfaces were examined: surface containing C=O type oxygen. surface containing -O-C type oxygen, and surface containing high concentration of active sites. The test involved cycles of lithium insertion into and release from the carbon materials, which was in the half cells of carbon/saturated LiI-50/50 (vol %) EC and DMC/lithium. During the first cycle of lithium insertion, the presence of adsorbed oxygen, -O-C type oxygen, active carbon sites, and C=O type oxygen resulted in the formation of solid-electrolyte interface (SEI) when the carbon's voltage relative to lithium metal was >1.35, 1 to 1.35, 0.5 to 1, and 0.67 to 0.7 V, respectively. An optimum -O-C type oxygen and a minimum C=O type oxygen was found to increase the reversible and decrease the irreversible capacity of carbon. Active sites on the carbon surface result in a large irreversible capacity and a second lithium insertion-release mechanism. However, this new mechanism has a short cycle life.
Ma, Chunrong; Zhang, Weimin; He, Yu-Shi; Gong, Qiang; Che, Haiying; Ma, Zi-Feng
2016-02-21
Hierarchically structured carbon coated SnO2 nanoparticles well-anchored on the surface of a CNT (C-SnO2/CNT) material were synthesized by a facile hydrothermal process and subsequent carbonization. The as-obtained C-SnO2/CNT hybrid, when applied as an anode material for lithium ion batteries (LIBs), showed a high reversible capacity up to 1572 mA h g(-1) at 200 mA g(-1) with a superior rate capability (685 mA h g(-1) at 4000 mA g(-1)). Even after 100 charge/discharge cycles at 1000 mA g(-1), a specific capacity of 1100 mA h g(-1) can still be maintained. Such impressive electrochemical performance can be mainly attributed to the hierarchical sandwiched structure and strong synergistic effects of the ultrafine SnO2 nanoparticles and the carbon coating, and thus presents this material a promising anode material for LIBs.
NASA Astrophysics Data System (ADS)
Xu, Qian-Ting; Li, Jia-Chuang; Xue, Huai-Guo; Guo, Sheng-Ping
2018-03-01
Effective utilization of energy requires the storage and conversion device with high ability. For well-developed lithium ion batteries (LIBs) and highly developing sodium ion batteries (SIBs), this ability especially denotes to high energy and power densities. It's believed that the capacity of a full cell is mainly contributed by anode materials. So, to develop inexpensive anode materials with high capacity are meaningful for various rechargeable batteries' better applications. Iron is a productive element in the crust, and its oxides, sulfides, fluorides, and oxygen acid salts are extensively investigated as electrode materials for batteries. In view of the importance of electrode materials containing iron, this review summarizes the recent achievements on various binary iron sulfides (FeS, FeS2, Fe3S4, and Fe7S8)-type electrodes for batteries. The contents are mainly focused on their crystal structures, synthetic methods, and electrochemical performance. Moreover, the challenges and some improvement strategies are also discussed.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, J.E.
1985-05-20
Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials
Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D.
2016-01-01
Abstract Research on redox‐flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of “green”, safe, and cost‐efficient energy storage, research has shifted from metal‐based materials to organic active materials in recent years. This Review presents an overview of various flow‐battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox‐active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. PMID:28070964
Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Muff, Jens
2015-02-01
For electrochemical oxidation to become applicable in water treatment outside of laboratories, a number of challenges must be elucidated. One is the formation and fate of degradation intermediates of targeted organics. In this study the degradation of the pesticide residue 2,6-dichlorobenzamide, an important groundwater pollutant, was investigated in a chloride rich solution with the purpose of studying the effect of active chlorine on the degradation pathway. To study the relative importance of the anodic oxidation and active chlorine oxidation in the bulk solution, a non-active BDD and an active Pt anode were compared. Also, the effect of the active chlorine oxidation on the total amount of degradation intermediates was investigated. We found that for 2,6-dichlorobenzamide, active chlorine oxidation was determining for the initial step of the degradation, and therefore yielded a completely different set of degradation intermediates compared to an inert electrolyte. For the Pt anode, the further degradation of the intermediates was also largely dependent on active chlorine oxidation, while for the BDD anode anodic oxidation was most important. It was also found that the presence of active chlorine led to fewer degradation intermediates compared to treatment in an inert electrolyte. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microbial Activity Influences Electrical Conductivity of Biofilm Anode
This study assessed the conductivity of a Geobacter-enriched biofilm anode along with biofilm activity in a microbial electrochemical cell (MxC) equipped with two gold anodes (25 mM acetate medium), as different proton gradients were built throughout the biofilm. There was no pH ...
Li Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiguang; Xu, Wu; Henderson, Wesley A.
Lithium (Li) metal is an ideal anode material for rechargeable batteries. With the urgent need for the “next generation” rechargeable batteries, such as Li-S, Li-air batteries as well as rechargeable Li metal batteries using Li intercalation compounds as the cathode, the use of Li metal anode has attracted significant interests in recent years. Unfortunately, rechargeable batteries based on Li metal anode have not yet been commercialized mainly due to two barriers: one is the growth of Li dendrites and associated safety hazard, and another is the low Coulombic efficiency (CE) of Li cycling and associated early battery failure due tomore » Li powdering and increasing cell impedance. To have a high CE, minimum side reactions between freshly/native deposited Li and electrolyte has to be minimized. These reactions are proportional to the chemical and electrochemical activity of native Li when they are in direct contact with surrounding electrolyte. They are also proportional to the surface area of deposited Li. This means that high CE of Li deposition/stripping always related to a low surface area Li deposition and suppressed Li dendrite growth. Therefore, the enhancement of CE is a more fundamental factors controlling long term, stable cycling of Li metal anode. In this book, we will first review the general models of the dendrite growth mechanism. The effect of SEI layer on the modeling of Li dendrite growth will also be discussed. Then we will discuss various instruments/tools that are critical for the investigation of Li dendrite growth. In the Chapter 3, various factors which affect CE of Li cycling and dendrite growth will be discussed together with an emphasize on enhancement of CE. Chapter 4 of the book will discuss the specific application of Li metal anode in several key rechargeable Li metal batteries, including Li-air batteries, Li-S batteries and Li metal batteries using intercalation compounds as cathode. At last, the perspective on the future development and application of Li metal batteries will be discussed in the Chapter 5.« less
Next Generation Anodes for Lithium Ion Batteries: Thermodynamic Understanding and Abuse Performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenton, Kyle R.; Allcorn, Eric; Nagasubramanian, Ganesan
As we develop new materials to increase performance of lithium ion batteries for electric vehicles, the impact of potential safety and reliability issues become increasingly important. In addition to electrochemical performance increases (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance behavior. Introduction of a next generation materials, such as silicon based anode, requires a full understanding of the abuse response and degradation mechanisms for these anodes. This work aims to understandmore » the breakdown of these materials during abuse conditions in order to develop an inherently safe power source for our next generation electric vehicles. The effect of materials level changes (electrolytes, additives, silicon particle size, silicon loading, etc.) to cell level abuse response and runaway reactions will be determined using several techniques. Experimentation will start with base material evaluations in coin cells and overall runaway energy will be evaluated using techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and accelerating rate calorimetry (ARC). The goal is to understand the effect of materials parameters on the runaway reactions, which can then be correlated to the response seen on larger cells (18650). Experiments conducted showed that there was significant response from these electrodes. Efforts to minimize risk during testing were taken by development of a smaller capacity cylindrical design in order to quantify materials decision and how they manifest during abuse response.« less
Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun
2015-01-01
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm−1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm−2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm−2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode. PMID:26648509
Yolk-shell structured Sb@C anodes for high energy Na-ion batteries
Song, Junhua; Yan, Pengfei; Luo, Langli; ...
2017-09-04
Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here in this paper, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb 2O 3 from carbon coated Sb 2O 3 nanoparticlesmore » can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~ 554 mAh g -1, good rate capability (315 mhA g-1 at 10 C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na 0.9[Cu0.22Fe 0.30Mn 0.48]O 2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~ 130 Wh kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0–4.0 V, ~ 1.5 times energy of full-cells with similar design using hard carbon anodes.« less
Yolk-shell structured Sb@C anodes for high energy Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Junhua; Yan, Pengfei; Luo, Langli
Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb2O3 from carbon coated Sb2O3 nanoparticles can accommodate the Sb swelling upon sodiationmore » and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~554 mAh•g-1, good rate capability (315 mhA•g-1 at 10C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~130 Wh•kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0-4.0 V, ~1.5 times energy of full-cells with similar design using hard carbon anodes.« less
Yolk-shell structured Sb@C anodes for high energy Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Junhua; Yan, Pengfei; Luo, Langli
Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here in this paper, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb 2O 3 from carbon coated Sb 2O 3 nanoparticlesmore » can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~ 554 mAh g -1, good rate capability (315 mhA g-1 at 10 C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na 0.9[Cu0.22Fe 0.30Mn 0.48]O 2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~ 130 Wh kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0–4.0 V, ~ 1.5 times energy of full-cells with similar design using hard carbon anodes.« less
NASA Astrophysics Data System (ADS)
Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun
2015-12-01
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm-1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm-2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm-2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.
Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun
2015-12-09
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm(-1) in 5% H2 and peak power densities of 1.72 and 0.54 W cm(-2) using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm(-2). To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.
NASA Astrophysics Data System (ADS)
Su, Yibo; Zhang, Hongjun; Liang, Peng; Liu, Kai; Cai, Mingyong; Huang, Zeya; Wang, Chang-An; Zhong, Minlin
2018-02-01
Although transition metal oxides anodes have attracted lots of attention, there are still many problems to be resolved. Complicated fabrication process, high cost and poor electrochemical performances are the most important ones, together hindering transition metal oxides anodes for practical use. Herein, we provide a new approach to fabricate a binder-free and conductive-additive-free TiO2/WO3-W integrative anode material through the nanosecond laser ablation and dip-coating technology, which simplifies the entire anode preparation process with no need for a conventional tape-casting procedure. Using this method, great time cost, machine cost and labor cost related to mixing and tape-casting process can be saved on the basis of good electrochemical performances. The prepared TiO2/WO3-W integrative anode realizes a first Coulombic efficiency of 75.6% and attains to a stable capacity within the first five cycles. It can still maintain a capacity of 600 mAh g-1 in the range of 0.01-3 V vs. Li+/Li at a current rate of 0.2 C after 500 cycles. This work offers a new way to achieve a fast fabrication of the integrative anode for lithium ion battery, which is universal for other transition metals (such as Fe, Cu, Ni, Co, Mo, W etc.).
The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes
NASA Astrophysics Data System (ADS)
Hays, Kevin A.
An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale arsenic particles that were synthesized on melt away carbon nanotubes by akalide reduction. The performance of these anodes proved sensitive to electrolyte composition, which was significantly improved by using fluorinated ethylene carbonate. Additionally, further gains in capacity retention can be made by limiting the loading voltage to 0.75 V vs lithium metal. The arsenic and melt away carbon nanotube composite was found to have excellent cycle life and capacity at high mass loading (80% arsenic) when the nanoparticles were directly synthesized on the melt away carbon nanotubes. Gallium arsenide is well known for its semiconducting properties, but its performance as in Li-ion battery anodes is first reported here. Gallium is a metal with a low melting point that has been touted as a possible self-healing material for lithium ion anodes. Alone, gallium proves to be unstable as a lithium ion battery anode, but when synthesized as gallium arsenide nanoparticles and mixed with melt away carbon nanotubes it can charge and discharge in a battery 100 times with approximately twice the capacity of graphite anodes. This first study of gallium arsenide shows dramatic cycle life improvements by using nanoscale rather that micron size gallium arsenide.
Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.
Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun
2014-04-23
Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.
NASA Astrophysics Data System (ADS)
Quang-Tuyen, Tran; Kaida, Taku; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke
2015-06-01
Mg/Al-hydrotalcite (HDT)-dispersed paper-structured catalyst (PSC) was prepared by a simple paper-making process. The PSC exhibited excellent catalytic activity for the steam reforming of model biodiesel fuel (BDF), pure oleic acid methyl ester (oleic-FAME, C19H36O2) which is a mono-unsaturated component of practical BDFs. The PSC exhibited fuel conversion comparable to a pelletized catalyst material, here, conventional Ni-zirconia cermet anode for solid oxide fuel cell (SOFC) with less than one-hundredth Ni weight. Performance of electrolyte-supported cell connected with the PSC was evaluated in the feed of oleic-FAME, and stable operation was achieved. After 60 h test, coking was not observed in both SOFC anode and PSC.
Development of Li-Metal Battery Cell Chemistries at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lvovich, Vadim F.
2015-01-01
State-of-the-Art lithium-ion battery technology is limited by specific energy and thus not sufficiently advanced to support the energy storage necessary for aerospace needs, such as all-electric aircraft and many deep space NASA exploration missions. In response to this technological gap, our research team at NASA Glenn Research Center has been active in formulating concepts and developing testing hardware and components for Li-metal battery cell chemistries. Lithium metal anodes combined with advanced cathode materials could provide up to five times the specific energy versus state-of-the-art lithium-ion cells (1000 Whkg versus 200 Whkg). Although Lithium metal anodes offer very high theoretical capacity, they have not been shown to successfully operate reversibly.
NASA Technical Reports Server (NTRS)
Kamenetzky, R. R.; Vaughn, J. A.; Finckenor, M. M.; Linton, R. C.
1995-01-01
Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5 eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon-impregnated fiberglass cloth. Aluminum anodizations tested were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glassy black paint and Z-93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar, bulk PEEK, and silverized FEP Teflon. Aluminized and nonaluminized Chemfab 250 beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectroreflectometer and like measurements made using an AZ Technology-developed laboratory portable spectroreflectometer.
Effects of Zn-In-Sn elements on the electric properties of magnesium alloy anode materials.
Yu, Zhan; Ju, Dongying; Zhao, Hongyang; Hu, Xiaodong
2011-06-01
A new magnesium alloy anode is based on an environmentally friendly electrode that contains none of mercury, lead and chromate, but it can enhance the electric properties of alloy significantly. Magnesium alloy adding eco-friendly elements Zn-In-Sn which was developed by orthogonal design were obtained by two casting methods. The effect of additive elements on performance of electrode material was studied. The effects of elements addition and casting method on electric properties and corrosive properties of Mg-Zn-In-Sn alloys were investigated by using electrochemical measurements, corrosive tests and observation of surface structure. The results show that Mg-Zn-In-Sn alloy anode has higher electromotive force and more stable work potential than that commercial magnesium alloy AZ91. It is suitable for anode material of magnesium battery for its small hydrogen evolution, less self-corrosion rate and easy to shed corrosive offspring off. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sakai, Joe; Luais, Erwann; Wolfman, Jérôme; Tillocher, Thomas; Dussart, Rémi; Tran-Van, Francois; Ghamouss, Fouad
2017-10-01
Micro- or nano-structuring is essential in order to use Si as an anode material for lithium ion batteries. In the present study, we attempted to use Si wafers with a spiky microstructure (SMS), the so-called black-Si, prepared by a cryogenic reactive ion etching process with an SF6/O2 gas mixture, for Li half-cells. The SMS with various sizes of spikes from 2.0 μm (height) × 0.2 μm (width) to 21 μm × 1.0 μm was etched by varying the SF6/O2 gas flow ratio. An anode of SMS of 11 μm-height in average showed stable charge/discharge capacity and Coulombic efficiency higher than 99% for more than 300 cycles, causing no destruction to any part of the Si wafer. The spiky structure turned columnar after cycles, suggesting graded lithiation levels along the length. The present results suggest a strategy to utilize a wafer-based Si material for an anode of a lithium ion battery durable against repetitive lithiation/delithiation cycles.
A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Teng, Xiaoling; Qin, Youzhi; Wang, Xia; Li, Hongsen; Shang, Xiantao; Fan, Shuting; Li, Qiang; Xu, Jie; Cao, Derang; Li, Shandong
2018-02-01
Nanocrystalline Fe2O3 thin films are deposited directly on the conduct substrates by pulsed laser deposition as anode materials for lithium-ion batteries. We demonstrate the well-designed Fe2O3 film electrodes are capable of excellent high-rate performance (510 mAh g- 1 at high current density of 15,000 mA g- 1) and superior cycling stability (905 mAh g- 1 at 100 mA g- 1 after 200 cycles), which are among the best reported state-of-the-art Fe2O3 anode materials. The outstanding lithium storage performances of the as-synthesized nanocrystalline Fe2O3 film are attributed to the advanced nanostructured architecture, which not only provides fast kinetics by the shortened lithium-ion diffusion lengths but also prolongs cycling life by preventing nanosized Fe2O3 particle agglomeration. The electrochemical performance results suggest that this novel Fe2O3 thin film is a promising anode material for all-solid-state thin film batteries.