Science.gov

Sample records for active anticancer agents

  1. Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma

    PubMed Central

    Kwak, Tae Won; Shin, Hee Jae; Jeong, Young-Il; Han, Myoung-Eun; Oh, Sae-Ock; Kim, Hyun-Jung; Kim, Do Hyung; Kang, Dae Hwan

    2015-01-01

    Background The aim of this study is to investigate the anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma. Methods The anticancer activity of streptochlorin was evaluated in vitro in various cholangiocarcinoma cell lines for apoptosis, proliferation, invasiveness, and expression of various protein levels. A liver metastasis model was prepared by splenic injection of HuCC-T1 cholangiocarcinoma cells using a BALB/c nude mouse model to study the systemic antimetastatic efficacy of streptochlorin 5 mg/kg at 8 weeks. The antitumor efficacy of subcutaneously injected streptochlorin was also assessed using a solid tumor xenograft model of SNU478 cells for 22 days in the BALB/c nude mouse. Results Streptochlorin inhibited growth and secretion of vascular endothelial growth factor by cholangiocarcinoma cells in a dose-dependent manner and induced apoptosis in vitro. In addition, streptochlorin effectively inhibited invasion and migration of cholangiocarcinoma cells. Secretion of vascular endothelial growth factor and activity of matrix metalloproteinase-9 in cholangiocarcinoma cells were also suppressed by treatment with streptochlorin. Streptochlorin effectively regulated metastasis of HuCC-T1 cells in a mouse model of liver metastasis. In a tumor xenograft study using SNU478 cells, streptochlorin significantly inhibited tumor growth without changes in body weight when compared with the control. Conclusion These results reveal that streptochlorin is a promising chemotherapeutic agent to the treatment of cholangiocarcinoma. PMID:25931814

  2. Salinomycin: A Novel Anti-Cancer Agent with Known Anti-Coccidial Activities

    PubMed Central

    Zhou, Shuang; Wang, Fengfei; Wong, Eric T.; Fonkem, Ekokobe; Hsieh, Tze-Chen; Wu, Joseph M.; Wu, Erxi

    2014-01-01

    Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed. PMID:23931281

  3. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    PubMed

    Bao, Jiaolin; Huang, Borong; Zou, Lidi; Chen, Shenghui; Zhang, Chao; Zhang, Yulin; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer. PMID:26421434

  4. Anticancer agents from marine sponges.

    PubMed

    Ye, Jianjun; Zhou, Feng; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine sponges are currently one of the richest sources of anticancer active compounds found in the marine ecosystems. More than 5300 different known metabolites are from sponges and their associated microorganisms. To survive in the complicated marine environment, most of the sponge species have evolved chemical means to defend against predation. Such chemical adaptation produces many biologically active secondary metabolites including anticancer agents. This review highlights novel secondary metabolites in sponges which inhibited diverse cancer species in the recent 5 years. These natural products of marine sponges are categorized based on various chemical characteristics. PMID:25402340

  5. Some Anticancer Agents Act on Human Serum Paraoxonase-1 to Reduce Its Activity.

    PubMed

    Alim, Zuhal; Beydemir, Şükrü

    2016-08-01

    Human serum paraoxonase (hPON1) is an important antioxidant enzyme. It protects low-density lipoproteins against oxidative stress and prevents atherosclerosis development. Anticancer agents have cardiotoxic effects, and this situation can lead to significant complications. Our aim was to evaluate the in vitro effects of some of the anticancer agents such as cetuximab, paclitaxel, etoposide, docetaxel, and ifosfamide on the activity of hPON1 in this study. For this reason, PON1 was purified from human serum with a specific activity of 3654.2 EU/mg and 16.84% yield using simple chromatographic methods. The five chemotherapeutic agents dose dependently decreased in vitro hPON1 activity. IC50 values for cetuximab, paclitaxel, etoposide, docetaxel, and ifosfamide were 0.0111, 0.042, 0.226, 0.665, and 23.3 mm, respectively. Ki constants were 0.0194, 0.0165, 0.131, 0.291, and 8.973 mm, respectively. The inhibition mechanisms of cetuximab, etoposide, docetaxel, and ifosfamide were non-competitive, and for paclitaxel was competitive. Consequently, inhibition of hPON1 by these anticancer agents may explain some of the cardiotoxic actions of these drugs. PMID:26873069

  6. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  7. Copper complexes as anticancer agents.

    PubMed

    Marzano, Cristina; Pellei, Maura; Tisato, Francesco; Santini, Carlo

    2009-02-01

    Metal-based antitumor drugs play a relevant role in antiblastic chemotherapy. Cisplatin is regarded as one of the most effective drugs, even if severe toxicities and drug resistance phenomena limit its clinical use. Therefore, in recent years there has been a rapid expansion in research and development of novel metal-based anticancer drugs to improve clinical effectiveness, to reduce general toxicity and to broaden the spectrum of activity. The variety of metal ion functions in biology has stimulated the development of new metallodrugs other than Pt drugs with the aim to obtain compounds acting via alternative mechanisms of action. Among non-Pt compounds, copper complexes are potentially attractive as anticancer agents. Actually, since many years a lot of researches have actively investigated copper compounds based on the assumption proposal that endogenous metals may be less toxic. It has been established that the properties of copper-coordinated compounds are largely determined by the nature of ligands and donor atoms bound to the metal ion. In this review, the most remarkable achievements in the design and development of copper(I, II) complexes as antitumor agents are discussed. Special emphasis has been focused on the identification of structure-activity relationships for the different classes of copper(I,II) complexes. This work was motivated by the observation that no comprehensive surveys of copper complexes as anticancer agents were available in the literature. Moreover, up to now, despite the enormous efforts in synthesizing different classes of copper complexes, very few data concerning the molecular basis of the mechanisms underlying their antitumor activity are available. This overview, collecting the most significant strategies adopted in the last ten years to design promising anticancer copper(I,II) compounds, would be a help to the researchers working in this field. PMID:19199864

  8. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-01

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells. PMID:27551077

  9. Nrf2 activity as a potential biomarker for the pan-epigenetic anticancer agent, RRx-001

    PubMed Central

    Ning, Shoucheng; Sekar, Thillai Veerapazham; Scicinski, Jan; Oronsky, Bryan; Peehl, Donna M.; Knox, Susan J.; Paulmurugan, Ramasamy

    2015-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulatory transcription factor that plays an important role in the antioxidant response pathway against anticancer drug-induced cytotoxic effects. RRx-001 is a new anticancer agent that generates reactive oxygen and nitrogen species, and leads to epigenetic alterations in cancer cells. Here we report the RRx-001 mediated nuclear translocation of Nrf2 and the activation of expression of its downstream enzymes HO-1 and NQO1 in tumor cells. Inhibition of intrinsic Nrf2 expression by Nrf2-specific siRNA increased cell sensitivity to RRx-001. Molecular imaging of tumor cells co-expressing pARE-Firefly luciferase and pCMV-Renilla luciferase-mRFP in vitro and in vivo in mice revealed that RRx-001 significantly increased ARE-FLUC signal in cells in a dose- and time-dependent manner, suggesting that RRx-001 is an effective activator of the Nrf2-ARE signaling pathway. The pre-treatment level of ARE-FLUC signal in cells, reflecting basal activity of Nrf2, negatively correlated with the tumor response to RRx-001. The results support the concept that RRx-001 activates Nrf2-ARE antioxidant signaling pathways in tumor cells. Hence measurement of Nrf2-mediated activation of downstream target genes through ARE signaling may constitute a useful molecular biomarker for the early prediction of response to RRx-001 treatment, and thereby guide therapeutic decision-making. PMID:26280276

  10. Novel anticancer agent, SQAP, binds to focal adhesion kinase and modulates its activity

    PubMed Central

    Izaguirre-Carbonell, Jesus; Kawakubo, Hirofumi; Murata, Hiroshi; Tanabe, Atsushi; Takeuchi, Toshifumi; Kusayanagi, Tomoe; Tsukuda, Senko; Hirakawa, Takeshi; Iwabata, Kazuki; Kanai, Yoshihiro; Ohta, Keisuke; Miura, Masahiko; Sakaguchi, Kengo; Matsunaga, Sachihiro; Sahara, Hiroeki; Kamisuki, Shinji; Sugawara, Fumio

    2015-01-01

    SQAP is a novel and promising anticancer agent that was obtained by structural modifications from a natural compound. SQAP inhibits angiogenesis in vivo resulting in increased hypoxia and reduced tumor volume. In this study, the mechanism by which SQAP modifies the tumor microenvironment was revealed through the application of a T7 phage display screening. This approach identified five SQAP-binding proteins including sterol carrier protein 2, multifunctional enzyme type 2, proteasomal ubiquitin receptor, UV excision repair protein and focal adhesion kinase (FAK). All the interactions were confirmed by surface plasmon resonance analysis. Since FAK plays an important role in cell turnover and angiogenesis, the influence of SQAP on FAK was the principal goal of this study. SQAP decreased FAK phosphorylation and cell migration in human umbilical vein endothelial cells and A549 cancer cells. These findings suggest that inhibition of FAK phosphorylation works as the mechanism for the anti-angiogenesis activity of SQAP. PMID:26456697

  11. Isatin Derived Spirocyclic Analogues with α-Methylene-γ-butyrolactone as Anticancer Agents: A Structure-Activity Relationship Study.

    PubMed

    Rana, Sandeep; Blowers, Elizabeth C; Tebbe, Calvin; Contreras, Jacob I; Radhakrishnan, Prakash; Kizhake, Smitha; Zhou, Tian; Rajule, Rajkumar N; Arnst, Jamie L; Munkarah, Adnan R; Rattan, Ramandeep; Natarajan, Amarnath

    2016-05-26

    Design, synthesis, and evaluation of α-methylene-γ-butyrolactone analogues and their evaluation as anticancer agents is described. SAR identified a spirocyclic analogue 19 that inhibited TNFα-induced NF-κB activity, cancer cell growth and tumor growth in an ovarian cancer model. A second iteration of synthesis and screening identified 29 which inhibited cancer cell growth with low-μM potency. Our data suggest that an isatin-derived spirocyclic α-methylene-γ-butyrolactone is a suitable core for optimization to identify novel anticancer agents. PMID:27077228

  12. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  13. Structure-activity relationships of novel substituted naphthalene diimides as anticancer agents.

    PubMed

    Milelli, Andrea; Tumiatti, Vincenzo; Micco, Marialuisa; Rosini, Michela; Zuccari, Guendalina; Raffaghello, Lizzia; Bianchi, Giovanna; Pistoia, Vito; Fernando Díaz, J; Pera, Benet; Trigili, Chiara; Barasoain, Isabel; Musetti, Caterina; Toniolo, Marianna; Sissi, Claudia; Alcaro, Stefano; Moraca, Federica; Zini, Maddalena; Stefanelli, Claudio; Minarini, Anna

    2012-11-01

    Novel 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) derivatives were synthesized and evaluated for their antiproliferative activity on a wide number of different tumor cell lines. The prototypes of the present series were derivatives 1 and 2 characterized by interesting biological profiles as anticancer agents. The present investigation expands on the study of structure-activity relationships of prototypes 1 and 2, namely, the influence of the different substituents of the phenyl rings on the biological activity. Derivatives 3-22, characterized by a different substituent on the aromatic rings and/or a different chain length varying from two to three carbon units, were synthesized and evaluated for their cytostatic and cytotoxic activities. The most interesting compound was 20, characterized by a linker of three methylene units and a 2,3,4-trimethoxy substituent on the two aromatic rings. It displayed antiproliferative activity in the submicromolar range, especially against some different cell lines, the ability to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Its theoretical recognition against duplex and quadruplex DNA structures have been compared to experimental thermodynamic measurements and by molecular modeling investigation leading to putative binding modes. Taken together these findings contribute to define this compound as potential Multitarget-Directed Ligands interacting simultaneously with different biological targets. PMID:22819507

  14. Design, synthesis and biological activity of piperlongumine derivatives as selective anticancer agents.

    PubMed

    Wu, Yuelin; Min, Xiao; Zhuang, Chunlin; Li, Jin; Yu, Zhiliang; Dong, Guoqiang; Yao, Jiangzhong; Wang, Shengzheng; Liu, Yang; Wu, Shanchao; Zhu, Shiping; Sheng, Chunquan; Wei, Yunyang; Zhang, Huojun; Zhang, Wannian; Miao, Zhenyuan

    2014-07-23

    In an effort to expand the structure-activity relationship of the natural anticancer compound piperlongumine, we have prepared sixteen novel piperlongumine derivatives with halogen or morpholine substituents at C2 and alkyl substituents at C7. Most of 2-halogenated piperlongumines showed potent in vitro activity against four cancer cells and modest selectivity for lung normal cells. The highly active anticancer compound 11h exhibited obvious ROS elevation and excellent in vivo antitumor potency with suppressed tumor growth by 48.58% at the dose of 2 mg/kg. The results indicated that halogen substituents as electrophilic group at C2 played an important role in increasing cytotoxicity. PMID:24937186

  15. Sesterterpenoids with Anticancer Activity.

    PubMed

    Evidente, Antonio; Kornienko, Alexander; Lefranc, Florence; Cimmino, Alessio; Dasari, Ramesh; Evidente, Marco; Mathieu, Véronique; Kiss, Robert

    2015-01-01

    Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review. PMID:26295461

  16. Sesterterpenoids with Anticancer Activity

    PubMed Central

    Evidente, Antonio; Kornienko, Alexander; Lefranc, Florence; Cimmino, Alessio; Dasari, Ramesh; Evidente, Marco; Mathieu, Véronique; Kiss, Robert

    2016-01-01

    Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review. PMID:26295461

  17. Development of anticancer agents: wizardry with osmium.

    PubMed

    Hanif, Muhammad; Babak, Maria V; Hartinger, Christian G

    2014-10-01

    Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action. PMID:24955838

  18. Apoptins: selective anticancer agents.

    PubMed

    Rollano Peñaloza, Oscar M; Lewandowska, Magdalena; Stetefeld, Joerg; Ossysek, Karolina; Madej, Mariusz; Bereta, Joanna; Sobczak, Mateusz; Shojaei, Shahla; Ghavami, Saeid; Łos, Marek J

    2014-09-01

    Therapies that selectively target cancer cells for death have been the center of intense research recently. One potential therapy may involve apoptin proteins, which are able to induce apoptosis in cancer cells leaving normal cells unharmed. Apoptin was originally discovered in the Chicken anemia virus (CAV); however, human gyroviruses (HGyV) have recently been found that also harbor apoptin-like proteins. Although the cancer cell specific activity of these apoptins appears to be well conserved, the precise functions and mechanisms of action are yet to be fully elucidated. Strategies for both delivering apoptin to treat tumors and disseminating the protein inside the tumor body are now being developed, and have shown promise in preclinical animal studies. PMID:25164066

  19. Structure-activity relationship for Fe(III)-salen-like complexes as potent anticancer agents.

    PubMed

    Ghanbari, Zahra; Housaindokht, Mohammad R; Izadyar, Mohammad; Bozorgmehr, Mohammad R; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R; Matin, Maryam M; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R (2) train = 0.99, RMSE = 0.138, and Q (2) LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  20. Structure-Activity Relationship for Fe(III)-Salen-Like Complexes as Potent Anticancer Agents

    PubMed Central

    Ghanbari, Zahra; Housaindokht, Mohammad R.; Izadyar, Mohammad; Bozorgmehr, Mohammad R.; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R.; Matin, Maryam M.; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R2train = 0.99, RMSE = 0.138, and Q2LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  1. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  2. Phenylpropiophenone derivatives as potential anticancer agents: synthesis, biological evaluation and quantitative structure-activity relationship study.

    PubMed

    Ivković, Branka M; Nikolic, Katarina; Ilić, Bojana B; Žižak, Željko S; Novaković, Radmila B; Čudina, Olivera A; Vladimirov, Sote M

    2013-05-01

    Series of twelve chalcone and propafenone derivatives has been synthesized and evaluated for anticancer activities against HeLa, Fem-X, PC-3, MCF-7, LS174 and K562 cell lines. The 2D-QSAR and 3D-QSAR studies were performed for all compounds with cytotoxic activities against each cancer cell line. Partial least squares (PLS) regression has been applied for selection of the most relevant molecular descriptors and QSAR models building. Predictive potentials of the created 2D-QSAR and 3D-QSAR models for each cell line were compared, by use of leave-one-out cross-validation and external validation, and optimal QSAR models for each cancer cell line were selected. The QSAR studies have selected the most significant molecular descriptors and pharmacophores of the chalcone and propafenone derivatives and proposed structures of novel chalcone and propafenone derivatives with enhanced anticancer activity on the HeLa, Fem-X, PC-3, MCF-7, LS174 and K562 cells. PMID:23501110

  3. Novel antibodies as anticancer agents.

    PubMed

    Zafir-Lavie, I; Michaeli, Y; Reiter, Y

    2007-05-28

    In recent years antibodies, whether generated by traditional hybridoma technology or by recombinant DNA strategies, have evolved from Paul Ehrlich's 'magic bullets' to a modern age 'guided missile'. In the recent years of immunologic research, we are witnessing development in the fields of antigen screening and protein engineering in order to create specific anticancer remedies. The developments in the field of recombinant DNA, protein engineering and cancer biology have let us gain insight into many cancer-related mechanisms. Moreover, novel techniques have facilitated tools allowing unique distinction between malignantly transformed cells, and regular ones. This understanding has paved the way for the rational design of a new age of pharmaceuticals: monoclonal antibodies and their fragments. Antibodies can select antigens on both a specific and a high-affinity account, and further implementation of these qualities is used to target cancer cells by specifically identifying exogenous antigens of cancer cell populations. The structure of the antibody provides plasticity resonating from its functional sites. This review will screen some of the many novel antibodies and antibody-based approaches that are being currently developed for clinical applications as the new generation of anticancer agents. PMID:17530025

  4. Synthesis, cytotoxic activity evaluation and HQSAR study of novel isosteviol derivatives as potential anticancer agents.

    PubMed

    Liu, Cong-Jun; Yu, Shu-Ling; Liu, Yan-Ping; Dai, Xing-Jie; Wu, Ya; Li, Rui-Jun; Tao, Jing-Chao

    2016-06-10

    A series of novel isosteviol derivatives bearing amino alcohol and thiourea fragments have been stereo-selectively synthesized and screened for their in vitro cytotoxic activities against three human cancer cell lines (HCT-116, HGC-27 and JEKO-1). The results demonstrated that these compounds exhibited prominent cytotoxicities. Especially, the compound Iw displayed the most potent anticancer activities against HCT-116 cell with IC50 value of 1.450 μM. On the basis of this bioassay results, these derivatives were further investigated by the hologram quantitative structure-activity relationship (HQSAR) technique. The optimal HQSAR model with q(2) = 0.663, r(2) = 0.895, SEE = 0.179 was generated using A/B/H/Ch as fragment distinction parameters and 4-7 as fragment size. This model was employed to predict the cytotoxic activities of test set compounds, and the predicted values were in good agreement with the experimental results. The contribution maps derived from the optimal model explained the individual atomic contribution to the total activity of single molecule. PMID:26994841

  5. Heterocyclic chalcone analogues as potential anticancer agents.

    PubMed

    Sharma, Vikas; Kumar, Vipin; Kumar, Pradeep

    2013-03-01

    Chalcones, aromatic ketones and enones acting as the precursor for flavonoids such as Quercetin, are known for their anticancer effects. Although, parent chalcones consist of two aromatic rings joined by a three-carbon α,β-unsaturated carbonyl system, various synthetic compounds possessing heterocyclic rings like pyrazole, indole etc. are well known and proved to be effective anticancer agents. In addition to their use as anticancer agents in cancer cell lines, heterocyclic analogues are reported to be effective even against resistant cell lines. In this connection, we hereby highlight the potential of various heterocyclic chalcone analogues as anticancer agents with a brief summary about therapeutic potential of chalcones, mechanism of anticancer action of various chalcone analogues, and current and future prospects related to the chalcones-derived anticancer research. Furthermore, some key points regarding chalcone analogues have been reviewed by analyzing their medicinal properties. PMID:22721390

  6. Spirooxindoles: Promising scaffolds for anticancer agents.

    PubMed

    Yu, Bin; Yu, De-Quan; Liu, Hong-Min

    2015-06-01

    The search for novel anticancer agents with more selectivity and lower toxicity continues to be an area of intensive investigation. The unique structural features of spirooxindoles together with diverse biological activities have made them privileged structures in new drug discovery. Among them, spiro-pyrrolidinyl oxindoles have been extensively studied as potent inhibitors of p53-MDM2 interaction, finally leading to the identification of MI-888, which could achieve rapid, complete and durable tumor regression in xenograft models of human cancer with oral administration and is in advanced preclinical research for cancer therapy. This review highlights recent progress of biologically active spirooxindoles for their anticancer potentials, mainly focusing on the discussions of SARs and modes of action. This article also aims to discuss potential further directions on the development of more potent analogues for cancer therapy. PMID:24994707

  7. Organoiridium Complexes: Anticancer Agents and Catalysts

    PubMed Central

    2014-01-01

    Conspectus Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar IrI complexes, such as Crabtree’s hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl IrIII complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d6 IrIII centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C∧C-chelating ligands can even stabilize IrIV and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar IrI complexes because of their structural and electronic similarity to PtII anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich IrIII anticancer complexes. These complexes with the formula [(Cpx)Ir(L∧L′)Z]0/n+ (with Cp* or extended Cp* and L∧L′ = chelated C∧N or N∧N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form IrIII-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium

  8. A modified HSP70 inhibitor shows broad activity as an anticancer agent

    PubMed Central

    Balaburski, Gregor M.; Leu, Julia I-Ju; Beeharry, Neil; Hayik, Seth; Andrake, Mark D.; Zhang, Gao; Herlyn, Meenhard; Villanueva, Jessie; Dunbrack, Roland L.; Yen, Tim; George, Donna L.; Murphy, Maureen E.

    2013-01-01

    The stress-induced heat shock protein 70 (HSP70) is an ATP-dependent molecular chaperone that plays a key role in refolding misfolded proteins and promoting cell survival following stress. HSP70 is marginally expressed in non-transformed cells, but is greatly overexpressed in tumor cells. Silencing HSP70 is uniformly cytotoxic to tumor but not normal cells; therefore, there has been great interest in the development of HSP70 inhibitors for cancer therapy. Here we report that the HSP70 inhibitor 2-phenylethynesulfonamide (PES) binds to the substrate-binding domain of HSP70, and requires the C-terminal helical ‘lid’ of this protein (amino acids 573-616) in order to bind. Using molecular modeling and in silico docking, we have identified a candidate binding site for PES in this region of HSP70, and we identify point mutants that fail to interact with PES. A preliminary structure-activity relationship analysis has revealed a derivative of PES, 2-(3-chlorophenyl) ethynesulfonamide (PES-Cl), which shows increased cytotoxicity and ability to inhibit autophagy, along with significantly improved ability to extend the life of mice with pre-B cell lymphoma, compared to the parent compound (p=0.015). Interestingly, we also show that these HSP70 inhibitors impair the activity of the Anaphase Promoting Complex/Cyclosome (APC/C) in cell-free extracts, and induce G2/M arrest and genomic instability in cancer cells. PES-Cl is thus a promising new anti-cancer compound with several notable mechanisms of action. PMID:23303345

  9. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity. PMID:24144199

  10. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  11. Designed TPR Modules as Novel Anticancer Agents

    SciTech Connect

    Cortajarena,A.; Yi, F.; Regan, L.

    2008-01-01

    Molecules specifically designed to modulate protein-protein interactions have tremendous potential as novel therapeutic agents. One important anticancer target is the chaperone Hsp90, whose activity is essential for the folding of many oncogenic proteins, including HER2, IGFIR, AKT, RAF-1, and FLT-3. Here we report the design and characterization of new tetratricopeptide repeat modules, which bind to the C-terminus of Hsp90 with higher affinity and with greater specificity than natural Hsp90-binding co-chaperones. Thus, when these modules are introduced into the cell, they out-compete endogenous co-chaperones for binding, thereby inhibiting Hsp90 function. The effect of Hsp90 inhibition in this fashion is dramatic; HER2 levels are substantially decreased and BT474 HER2 positive breast cancer cells are killed. Our designs thus provide new tools with which to dissect the mechanism of Hsp90-mediated protein folding and also open the door to the development of an entirely new class of anticancer agents.

  12. [Effect of anticancer agents on rat prostate. Evaluation of organ weight, histological finding and 5 alpha-reductase activities].

    PubMed

    Takeda, M; Hosaka, M; Kitajima, N; Noguchi, K; Fujii, H; Oshima, H; Harada, M

    1985-01-01

    To evaluate the effect of anticancer chemotherapeutic antigens on rat prostate, ten kinds of anticancer agents corresponding to the dose generally used for humans were intraperitoneally injected to 63-day-old Wistar rats. The anticancer agents were administered as follows: Cyclophosphamide (CPM) was used at the dose of 8 mg/kg for 7 days. Methotrexate (MTX), actinomycin-D (ACD) and cis-platinum (CDDP), 163 micrograms/kg, 8 micrograms/kg and 833 micrograms/kg for 5 days, respectively. Nitrogen mustard (NM), bleomycin (BLM), peplomycin (PLM), adriamycin (ADM), vincristine (VCR), and vinblastine (VBL), 500 micrograms/kg, 250 micrograms/kg, 170 micrograms/kg, 2.5 mg/kg, 33 micrograms/kg and 83 micrograms/kg, twice in a week, respectively. The rats were killed on the fifth day after completion of the schedule. Then, the weight of the body, the prostate, the epididymis and the adrenal gland were measured. In addition, 5 alpha-reductase activities and histological findings in the prostate were examined. For determination of 5 alpha-reductase activities, cell-free homogenate obtained from the rat ventral prostate was incubated with C14-testosterone at 37 degrees C for 30 minutes in an atmosphere of 95% of O2 and 5% of CO2. Subsequently, the metabolites from testosterone were separated and purified with thin layer chromatography using the solvent system with benzene acetone, 4:1 (v/v). 5 alpha-Reductase activity was determined with the sum of dihydrotestosterone (DHT) and androstanediol converted from testosterone and indicated as pmol product/mg protein. The 5 alpha-reductase activity was employed as a biological marker for the degree of androgenic dependency in the prostate. The results were summarized as follows. CDDP significantly reduced the weight of the body (p less than 0.001, n = 7), but not the activity of 5 alpha-reductase. NM and VBL had a specific action to reduce the weight of the prostate (p less than 0.01, n = 8) without causing loss of body weight. NM and

  13. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  14. Renal toxicity of anticancer agents targeting HER2 and EGFR.

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Porta, Camillo

    2015-12-01

    EGFR and HER2 are found overexpressed and/or activated in many different human malignancies (e.g. breast and colon cancer), and a number of drugs specifically targeting these two tyrosine kinases have been developed over the years as anticancer agents. In the present review, the renal safety profile of presently available agents targeting either HER2 or EGFR will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, even though renal toxicity is not so common with these agents, it may nevertheless happen, especially when these agents are combined with traditional chemotherapeutic agents. As a whole, kidney impairment or dialysis should not be regarded per se as reasons not to administer or to stop an active anti-HER or anti-EGFR anticancer treatment, especially given the possibility of significantly improving the life expectancy of many cancer patients with the use of these agents. PMID:26341657

  15. Tocotrienol as a potential anticancer agent.

    PubMed

    Ling, Ming T; Luk, Sze U; Al-Ejeh, Fares; Khanna, Kum K

    2012-02-01

    Vitamin E is composed of two structurally similar compounds: tocopherols (TPs) and tocotrienols (T3). Despite being overshadowed by TP over the past few decades, T3 is now considered to be a promising anticancer agent due to its potent effects against a wide range of cancers. A growing body of evidence suggests that in addition to its antioxidative and pro-apoptotic functions, T3 possesses a number of anticancer properties that make it superior to TP. These include the inhibition of epithelial-to-mesenchymal transitions, the suppression of vascular endothelial growth factor tumor angiogenic pathway and the induction of antitumor immunity. More recently, T3, but not TP, has been shown to have chemosensitization and anti-cancer stem cell effects, further demonstrating the potential of T3 as an effective anticancer therapeutic agent. With most of the previous clinical studies on TP producing disappointing results, research has now focused on testing T3 as the next generation vitamin E for chemoprevention and cancer treatment. This review will summarize recent developments in the understanding of the anticancer effects of T3. We will also discuss current progress in clinical trials involving T3 as an adjuvant to conventional cancer therapy. PMID:22095072

  16. Polymeric Thioxanthones as Potential Anticancer and Radiotherapy Agents.

    PubMed

    Yilmaz, Gorkem; Guler, Emine; Barlas, Firat Baris; Timur, Suna; Yagci, Yusuf

    2016-07-01

    Thioxanthone (TX) and its derivatives, which are widely used as photoinitiators in UV curing technology, hold promising research interest in biological applications. In particular, the use of TXs as anticancer agent has recently been manifested as an outstanding additional property of this class of molecules. Incorporation of TX molecules into specially designed polymers widens their practical use in such applications. In this study, two water-soluble, biocompatible, and stable polymers, namely poly(vinyl alcohol) and poly(ethylene glycol), possessing TX moieties at the side chains and chain ends, respectively, are prepared and used as anticancer and radiotherapy agents. The findings confirm that both polymers are potential candidates for therapeutic agents as they possess useful features including water-solubility, radiosensitizer effect, and anticancer activity in a polymeric scaffold. PMID:27168378

  17. Discovery of novel heteroarylmethylcarbamodithioates as potent anticancer agents: Synthesis, structure-activity relationship analysis and biological evaluation.

    PubMed

    Li, Ying-Bo; Yan, Xu; Li, Ri-Dong; Liu, Peng; Sun, Shao-Qian; Wang, Xin; Cui, Jing-Rong; Zhou, De-Min; Ge, Ze-Mei; Li, Run-Tao

    2016-04-13

    A series of new analogs based on the structure of lead compound 10 were designed, synthesized and evaluated for their in vitro anti-cancer activities against four selected human cancer cell lines (HL-60, Bel-7402, SK-BR-3 and MDA-MB-468). Several synthesized compounds exhibited improved anti-cancer activities comparing with lead compound 10. Among them, 1,3,4-oxadiazole analogs 17o showed highest bioactivity with IC50 values of 1.23, 0.58 and 4.29 μM against Bel-7402, SK-BR-3 and MDA-MB-468 cells, respectively. It is noteworthy that 17o has potent anti-proliferation activity toward a panel of cancer cells with relatively less cytotoxicity to nonmalignant cells. The further mechanistic study showed that it induced apoptosis and cell cycle arrest through disrupting spindle assembly in mitotic progression, indicating these synthesized dithiocarbamates represented a novel series of anti-cancer compounds targeting mitosis. PMID:26900655

  18. Radiation recall with anticancer agents.

    PubMed

    Burris, Howard A; Hurtig, Jane

    2010-01-01

    Radiation recall is an acute inflammatory reaction confined to previously irradiated areas that can be triggered when chemotherapy agents are administered after radiotherapy. It remains a poorly understood phenomenon, but increased awareness may aid early diagnosis and appropriate management. A diverse range of drugs used in the treatment of cancer has been associated with radiation recall. As most data come from case reports, it is not possible to determine the true incidence, but to date the antineoplastic drugs for which radiation recall reactions have been most commonly reported include the anthracycline doxorubicin, the taxanes docetaxel and paclitaxel, and the antimetabolites gemcitabine and capecitabine. Radiation recall is drug-specific for any individual patient; it is not possible to predict which patients will react to which drugs, and rechallenge does not uniformly induce a reaction. There are no identifiable characteristics of drugs that cause radiation recall, and thus, it is a possibility that must be kept in mind with use of any drug after radiotherapy, including those from new drug classes. Although it is not yet possible to design treatment regimens to eliminate the risk of radiation recall, it seems likely that risks can be minimized by prolonging the interval between completion of radiotherapy and initiation of chemotherapy. PMID:21045191

  19. Anticancer agent-based marine natural products and related compounds.

    PubMed

    Chen, Jian-Wei; Wu, Qi-Hao; Rowley, David C; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine natural products constitute a huge reservoir of anticancer agents. Consequently during the past decades, several marine anticancer compounds have been isolated, identified, and approved for anticancer treatment or are under trials. In this article the sources, structure, bioactivities, mode of actions, and analogs of some promising marine and derived anticancer compounds have been discussed. PMID:25559315

  20. Characterization of the biological activity of gamma-glutamyl-Se-methylselenocysteine: a novel, naturally occurring anticancer agent from garlic.

    PubMed

    Dong, Y; Lisk, D; Block, E; Ip, C

    2001-04-01

    Gamma-glutamyl-Se-methylselenocysteine (GGMSC) has recently been identified as the major Se compound in natural garlic and selenized garlic. Our working hypothesis is that GGMSC serves primarily as a carrier of Se-methylselenocysteine (MSC), which has been demonstrated in past research to be a potent cancer chemopreventive agent in animal carcinogenesis bioassays. The present study was designed to examine the in vivo responses to GGMSC or MSC using a variety of biochemical and biological end points, including (a) urinary Se excretion as a function of bolus dose; (b) tissue Se accumulation profile; (c) anticancer efficacy; and (d) gene expression changes as determined by cDNA array analysis. Our results showed that like MSC, GGMSC was well absorbed p.o., with urinary excretion as the major route for eliminating excess Se. When fed chronically, the profile of Se accumulation in various tissues was very comparable after treatment with either GGMSC or MSC. In rats that had been challenged with a carcinogen, supplementation with either GGMSC or MSC resulted in a lower prevalence of premalignant lesions in the mammary gland, and fewer mammary carcinomas when these early lesions were allowed to progress. More importantly, we found that a short term GGMSC/MSC treatment schedule of 4 weeks immediately after carcinogen dosing was sufficient to provide significant cancer protection, even in the absence of a sustained exposure past the initial 4-week period. With the use of the Clontech Atlas Rat cDNA Array, we further discovered that the gene expression changes induced in mammary epithelial cells of rats that were given either GGMSC or MSC showed a high degree of concordance. On the basis of the collective biology, biochemistry, and molecular biology data, we conclude that GGMSC is an effective anticancer agent with a mechanism of action very similar to that of MSC. PMID:11306469

  1. [Mecanisms of pharmacokinetic interactions involving oral anticancer agents].

    PubMed

    Levêque, Dominique; Duval, Céline; Poulat, Charlotte; Palas, Benjamin; El Aatmani, Anne; Dory, Anne; Becker, Guillaume; Gourieux, Bénédicte

    2015-01-01

    Oral anticancer agents and particularly kinase inhibitors are subject to pharmacokinetic drug interactions in relation to absorption and elimination phases. Interacting factors are food, fruit juices, cigarette smoke, acid-reducing agents and inducers/inhibitors. Some anticancer agents are inducers and/or inhibitors and can also perpetrate drug interactions. This review emphasizes the mechanisms of pharmacokinetic drug interactions involving oral anticancer agents. PMID:25609481

  2. Synthesis and anticancer activity of some novel indolo[3,2-b]andrographolide derivatives as apoptosis-inducing agents.

    PubMed

    Song, Yaping; Xin, Zhengyuan; Wan, Yumeng; Li, Jiabin; Ye, Boping; Xue, Xiaowen

    2015-01-27

    A series of novel indolo[3,2-b]andrographolide derivatives were designed, synthesized and screened in vitro against three human cancer cell lines MCF7 (human breast cancer), HCT116 (human colon cancer), and DU145 (human prostate cancer). Fourteen compounds 6b, 6e, 6i, 6j, 6l, 6m, 6n, 12a, 12b, 13a, 13b, 15a, 17a, and 17b exhibited better anti-cancer activities than andrographolide for all three human cancer lines, with compound 6l displaying best activity with IC50 values of 1.85, 1.22 and 1.24 μM against MCF7, HCT116 and DU145 respectively. Preliminary anti-cancer mechanistic investigation was performed in terms of the cell cycle arrest and cell apoptosis assays of compound 6l against HCT116 using flow cytometry, and the results suggested that compound 6l inhibited tumor proliferation through inducing early and late cellular apoptosis in a concentration-dependent manner and causing cell cycle arrest in the S-phase. PMID:25506809

  3. Oral anticancer agent medication adherence by outpatients.

    PubMed

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence. PMID:25295117

  4. Oral anticancer agent medication adherence by outpatients

    PubMed Central

    KIMURA, MICHIO; USAMI, EISEKI; IWAI, MINA; NAKAO, TOSHIYA; YOSHIMURA, TOMOAKI; MORI, HIROMI; SUGIYAMA, TADASHI; TERAMACHI, HITOMI

    2014-01-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21–85 years) and 73 years (range, 30–90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3–3,585 days) and 219 days (24–3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4–5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence. PMID:25295117

  5. New imidazo[1,2-b]pyrazoles as anticancer agents: synthesis, biological evaluation and structure activity relationship analysis.

    PubMed

    Grosse, Sandrine; Mathieu, Véronique; Pillard, Christelle; Massip, Stéphane; Marchivie, Mathieu; Jarry, Christian; Bernard, Philippe; Kiss, Robert; Guillaumet, Gérald

    2014-09-12

    Synthesis and functionalization strategies of the imidazo[1,2-b]pyrazole core were developed giving a rapid access to three series of novel imidazo[1,2-b]pyrazole type derivatives: C-2/C-6/C-7 trisubstituted, C-2/C-3/C-6 tri(hetero)arylated and C-2/C-3/C-6/C-7 tetrasubstituted imidazo[1,2-b]pyrazoles. 39 of the synthetized products were evaluated for in vitro anticancer activity using the MTT colorimetric assay against 5 human and 1 murine cancer cell lines. Promising in vitro growth inhibitory activities were exhibited by some of the target compounds. Of the 39 evaluated products, 4 displayed an IC50 ≤ 10 μM in the 6 cell lines analyzed (compounds 4d, 4g, 9a, 11a). A structure activity relationship analysis is also reported in this paper. PMID:25064349

  6. Synthesis, anticancer activity and molecular docking studies on a series of heterocyclic trans-cyanocombretastatin analogues as antitubulin agents

    PubMed Central

    Penthala, Narsimha Reddy; Zong, Hongliang; Ketkar, Amit; Madadi, Nikhil Reddy; Janganati, Venumadav; Eoff, Robert L.; Guzman, Monica L.; Crooks, Peter A.

    2015-01-01

    A series of heterocyclic combretastatin analogues have been synthesized and evaluated for their anticancer activity against a panel of 60 human cancer cell lines. The most potent compounds were two 3,4,5-trimethoxy phenyl analogues containing either an (Z)-indol-2-yl (8) or (Z)-benzo[b]furan-2-yl (12) moiety; these compounds exhibited GI50 values of <10 nM against 74% and 70%, respectively, of the human cancer cell lines in the 60-cell panel. Compounds 8, and 12 and two previously reported compounds in the same structural class, i.e. 29 and 31, also showed potent anti-leukemic activity against leukemia MV4-11 cell lines with LD50 values = 44 nM, 47 nM, 18 nM, and 180 nM, respectively. From the NCI anti-cancer screening results and the data from the in vitro toxicity screening on cultured AML cells, seven compounds: 8, 12, 21, 23, 25, 29 and 31 were screened for their in vitro inhibitory activity on tubulin polymerization in MV4-11 AML cells; at 50 nM, 8 and 29 inhibited polymerization of tubulin by >50%. The binding modes of the three most active compounds (8, 12 and 29) to tubulin were also investigated utilizing molecular docking studies. All three molecules were observed to bind in the same hydrophobic pocket at the interface of α- and β-tubulin that is occupied by colchicine, and were stablized by van der Waals’ interactions with surrounding tubulin residues. The results from the tubulin polymerization and molecular docking studies indicate that compounds 8 and 29 are the most potent anti-leukemic compounds in this structural class, and are considered lead compounds for further development as anti-leukemic drugs. PMID:25557492

  7. Discovery of Potent Anticancer Agent HJC0416, an Orally Bioavailable Small Molecule Inhibitor of Signal Transducer and Activator of Transcription 3 (STAT3)

    PubMed Central

    Chen, Haijun; Yang, Zhengduo; Ding, Chunyong; Xiong, Ailian; Wild, Christopher; Wang, Lili; Ye, Na; Cai, Guoshuai; Flores, Rudolfo M.; Ding, Ye; Shen, Qiang; Zhou, Jia

    2014-01-01

    In a continuing effort to develop orally bioavailable small-molecule STAT3 inhibitors as potential therapeutic agents for human cancer, a series of novel diversified analogues based on our identified lead compound HJC0149 (1) (5-chloro-N-(1,1-dioxo-1H-1λ6-benzo[b]thiophen-6-yl)-2-hydroxybenzamide, Eur. J. Med. Chem. 2013, 62, 498–507) have been rationally designed, synthesized, and pharmacologically evaluated. Molecular docking studies and biological characterization supported our earlier findings that the O-alkylamino-tethered side chain on the hydroxyl group is an effective and essential structural determinant for improving biological activities and druglike properties of these molecules. Compounds with such modifications exhibited potent antiproliferative effects against breast and pancreatic cancer cell lines with IC50 values from low micromolar to nanomolar range. Among them, the newly discovered STAT3 inhibitor 12 (HJC0416) displayed an intriguing anticancer profile both in vitro and in vivo (i.p. & p.o.). More importantly, HJC0416 is an orally bioavailable anticancer agent as a promising candidate for further development. PMID:24904966

  8. Redesigning the DNA-Targeted Chromophore in Platinum–Acridine Anticancer Agents: A Structure–Activity Relationship Study

    PubMed Central

    Pickard, Amanda J.; Liu, Fang; Bartenstein, Thomas F.; Haines, Laura G.; Levine, Keith E.; Kucera, Gregory L.; Bierbach, Ulrich

    2014-01-01

    Platinum–acridine hybrid agents show low-nanomolar potency in chemoresistant non-small cell lung cancer (NSCLC), but high systemic toxicity in vivo. To reduce the promiscuous genotoxicity of these agents and improve their pharmacological properties, a modular build–click–screen approach was used to evaluate a small library of twenty hybrid agents containing truncated and extended chromophores of varying basicities. Selected derivatives were resynthesized and tested in five NSCLC cell lines representing large cell, squamous cell, and adenocarcinomas. 7-Aminobenz[c]acridine was identified as a promising scaffold in a hybrid agent (P1–B1) that maintained submicromolar activity in several of the DNA-repair proficient and p53-mutant cancer models, while showing improved tolerability in mice by 32-fold compared to the parent platinum–acridine (P1–A1). The distribution and DNA/RNA adduct levels produced by the acridine- and benz[c]acridine-based analogues in NCI-H460 cells (confocal microscopy, ICP-MS), and their ability to bind G-quadruplex forming DNA sequences (CD spectroscopy, HR-ESMS) were studied. P1–B1 emerges as a less genotoxic, more tolerable, and potentially more target-selective hybrid agent than P1–A1. PMID:25302716

  9. New promising anticancer agents in development: what comes next?

    PubMed

    Verweij, J

    1996-01-01

    Anticancer drug development has recently shifted in part to development of more innovative anticancer agents. The increasing knowledge of the pathogenetic mechanisms involved in cancer cell growth has enabled the introduction of drug screening that is more mechanism-based. The realization that new targets should be preferentially evaluated as sites for anticancer drug treatment has led to the introduction of drugs such as the taxanes. Following this logic, several new drugs are being developed. Minor groove-binding agents such as carzelesin and oral platins lacking organ toxicity, such as JM216, have recently entered clinical studies. The activity of gemcitabine is a result of its being a cytidine analogue and being competitively incorporated by DNA; the drug has shown interesting activity in non-small-cell lung cancer and, although registration is imminent, issues regarding the optimal dose and administration schedule have yet to be resolved. Tomudex is a thymidylate synthase inhibitor with interesting activity in colorectal cancer. Activity in colorectal cancer is also of interest for irinotecan, the first clinically applied topoisomerase I inhibitor, an enzyme that is another example of a new target for anticancer drugs. Irinotecan has produced consistent response rates of 20-30% in six different studies in colorectal cancer. The other topoisomerase I inhibitor that is in the advanced stage of development is topotecan. This drug has shown activity in second-line chemotherapy for ovarian cancer and small-cell lung cancer. Another interesting feature of topotecan is the availability of an oral formulation with consistent bioavailability. Drugs interfering with cellular signal transduction, such as the protein kinase C inhibitors, are in the development spotlight. Finally, the use of old drugs in new ways, such as immunoconjugates of doxorubicin, holds promise for the near future. PMID:8765408

  10. Anti-cancer agents counteracting tumor glycolysis

    PubMed Central

    Granchi, Carlotta

    2012-01-01

    Can we consider cancer as a “metabolic disease”? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have to deal with increased needs for both energy and biosynthetic intermediates, in order to support their growth and invasiveness. However, their high proliferation rate often generates regions that are not sufficiently oxygenated. Therefore, their carbohydrate metabolism has to rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the “Warburg Effect”, constitutes a fundamental adaptation of the tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that anti-glycolytic agents may cause serious side effects on normal cells. Actually, the key for a selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anti-cancer drugs showing minimal toxicity. In fact, there is growing evidence that supports many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant anti-glycolytic agents that have been investigated so far for the treatment of cancer. PMID:22684868

  11. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  12. Current developments of coumarin-based anti-cancer agents in medicinal chemistry.

    PubMed

    Emami, Saeed; Dadashpour, Sakineh

    2015-09-18

    Cancer is one of the leading health hazards and the prominent cause of death in the world. A number of anticancer agents are currently in clinical practice and used for treatment of various kinds of cancers. There is no doubt that the existing arsenal of anticancer agents is insufficient due to the high incidence of side effects and multidrug resistance. In the efforts to develop suitable anticancer drugs, medicinal chemists have focused on coumarin derivatives. Coumarin is a naturally occurring compound and a versatile synthetic scaffold possessing wide spectrum of biological effects including potential anticancer activity. This review article covers the current developments of coumarin-based anticancer agents and also discusses the structure-activity relationship of the most potent compounds. PMID:26318068

  13. Natural compounds as anticancer agents: Experimental evidence

    PubMed Central

    Wang, Jiao; Jiang, Yang-Fu

    2012-01-01

    Cancer prevention research has drawn much attention worldwide. It is believed that some types of cancer can be prevented by following a healthy life style. Cancer chemoprevention by either natural or synthetic agents is a promising route towards lowering cancer incidence. In recent years, the concept of cancer chemoprevention has evolved greatly. Experimental studies in animal models demonstrate that the reversal or suppression of premalignant lesions by chemopreventive agents is achievable. Natural occurring agents such as dietary phytochemicals, tea polyphenols and resveratrol show chemopreventive activity in animal models. Moreover, clinical trials for testing the safety and efficacy of a variety of natural agents in preventing or treating human malignancy have been ongoing. Here, we summarize experimental data on the chemopreventive or tumor suppressive effects of several natural compounds including curcumin, (-)-epigallocatechin-3-gallate, resveratrol, indole-3-carbinol, and vitamin D. PMID:24520533

  14. Anticancer Activity of Amauroderma rude

    PubMed Central

    Yang, Xiangling; Li, Haoran; Li, Xiang-Min; Pan, Hong-Hui; Cai, Mian-Hua; Zhong, Hua-Mei; Yang, Burton B.

    2013-01-01

    More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities. PMID:23840494

  15. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents.

    PubMed

    Galluzzi, Lorenzo; Buqué, Aitziber; Kepp, Oliver; Zitvogel, Laurence; Kroemer, Guido

    2015-12-14

    The tremendous clinical success of checkpoint blockers illustrates the potential of reestablishing latent immunosurveillance for cancer therapy. Although largely neglected in the clinical practice, accumulating evidence indicates that the efficacy of conventional and targeted anticancer agents does not only involve direct cytostatic/cytotoxic effects, but also relies on the (re)activation of tumor-targeting immune responses. Chemotherapy can promote such responses by increasing the immunogenicity of malignant cells, or by inhibiting immunosuppressive circuitries that are established by developing neoplasms. These immunological "side" effects of chemotherapy are desirable, and their in-depth comprehension will facilitate the design of novel combinatorial regimens with improved clinical efficacy. PMID:26678337

  16. A p53 growth arrest protects fibroblasts from anticancer agents.

    PubMed

    McCormack, E S; Bruskin, A M; Borzillo, G V

    1997-01-01

    Reversible inhibitors of the cell cycle such as the TGF-betas have been exploited to protect dividing cells from exposure to anticancer drugs and radiation. Here, rat embryo fibroblast (REF) lines expressing different p53 mutations were used to test whether the p53 growth arrest could also chemoprotect cells from high doses of anticancer drugs. Whereas the doubling times of the different REF lines at 37 degrees C were similar, cells bearing temperature-sensitive mutations (mouse 135V or human 143A) were growth arrested at 31 degrees C. Temperature-dependent p53 activity was associated with increased levels of MDM2 and p21/WAF1, and the induction of an integrated p53-responsive luciferase gene. The REF lines exhibited similar sensitivities to common anticancer drugs when grown at 37 degrees C. However, when exposed to the same agents following transient incubation at 31 degrees C, the p53-arrested cells exhibited a marked survival advantage as shown by colony-forming assays. Chemoprotection was not universal, in that colony formation was not enhanced significantly after treatment with cisplatin or 5-fluorouracil, two drugs which can cause cellular damage throughout the cell cycle. Like other negative growth regulators, an activated p53 checkpoint may mediate the survival of cells exposed to drugs that target DNA synthesis or mitosis. PMID:9351895

  17. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent. PMID:18066762

  18. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    SciTech Connect

    Li, Jason Z.; Ke, Yuebin; Misra, Hara P.; Trush, Michael A.; Li, Y. Robert; Zhu, Hong; Jia, Zhenquan

    2014-12-15

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  19. Ferrocene incorporated selenoureas as anticancer agents.

    PubMed

    Hussain, Raja Azadar; Badshah, Amin; Pezzuto, John M; Ahmed, Nadeem; Kondratyuk, Tamara P; Park, Eun-Jung

    2015-07-01

    For a compound to be a best chemopreventive agent it should be a descent DNA binder and at the same time should be active against any of the three stages of carcinogenesis i.e. cancer initiation, cancer propagation and tumor growth. Most of the problems associated with chemotherapy can be overcome if the chemopreventive agent is active against all the three stages of cancer development. Cancer may be initiated by higher concentration of free radicals, inflammating agents and phase I enzymes (Cytochrome P450) in the body. Cancer propagation can be very efficiently controlled by inducing the phase II enzymes (glutathione S-transferases (GSTs), UDP-glucuronosyl transferases, and quinone reductases) in the body and cancer termination depends on the killing of the faulty cells i.e. cytotoxic actions. This article reports comprehensively the comparative DNA binding studies (with, cyclic voltammetry, UV-vis spectroscopy and viscometry), antioxidant activities (DPPH scavenging), anti-inflammatory activities (nitrite inhibition), phase I enzyme inhibition activities (aromatase inhibition), phase II enzyme induction studies (quinone reductase induction) and cytotoxic studies against neuroblastoma (MYCN2 and SK-N-SH), liver cancer (Hepa 1c1c7) and breast cancer (MCF-7) of seventeen ferrocene incorporated selenoureas. PMID:25966308

  20. Studies on Anticancer Activities of Antimicrobial Peptides

    PubMed Central

    Hoskin, David W.; Ramamoorthy, Ayyalusamy

    2008-01-01

    In spite of great advances in cancer therapy, there is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. A growing number of studies have shown that some of the cationic antimicrobial peptides (AMPs), which are toxic to bacteria but not to normal mammalian cells, exhibit a broad spectrum of cytotoxic activity against cancer cells. Such studies have considerably enhanced the significance of AMPs, both synthetic and from natural sources, which have been of importance both for an increased understanding of the immune system and for their potential as clinical antibiotics. The electrostatic attraction between the negatively charged components of bacterial and cancer cells and the positively charged AMPs is believed to play a major role in the strong binding and selective disruption of bacterial and cancer cell membranes, respectively. However, it is unclear why some host defense peptides are able to kill cancer cells when others do not. In addition, it is not clear whether the molecular mechanism(s) underlying the antibacterial and anticancer activities of AMPs are the same or different. In this article, we review various studies on different AMPs that exhibit cytotoxic activity against cancer cells. The suitability of cancer cell-targeting AMPs as cancer therapeutics is also discussed. PMID:18078805

  1. Comprehensive Review on Betulin as a Potent Anticancer Agent

    PubMed Central

    Kiełbus, Michał; Stepulak, Andrzej

    2015-01-01

    Numerous plant-derived substances, and their derivatives, are effective antitumour and chemopreventive agents. Yet, there are also a plethora of tumour types that do not respond, or become resistant, to these natural substances. This requires the discovery of new active compounds. Betulin (BE) is a pentacyclic triterpene and secondary metabolite of plants abundantly found in the outer bark of the birch tree Betulaceae sp. BE displays a broad spectrum of biological and pharmacological properties, among which the anticancer and chemopreventive activity attract most of the attention. In this vein, BE and its natural and synthetic derivatives act specifically on cancer cells with low cytotoxicity towards normal cells. Although the antineoplastic mechanism of action of BE is not well understood yet, several interesting aspects of BE's interactions are coming to light. This review will summarize the anticancer and chemopreventive potential of BE in vitro and in vivo by carefully dissecting and comparing the doses and tumour lines used in previous studies, as well as focusing on mechanisms underlying its activity at cellular and molecular level, and discuss future prospects. PMID:25866796

  2. Monofunctional and Higher-Valent Platinum Anticancer Agents

    PubMed Central

    Johnstone, Timothy C.; Wilson, Justin J.

    2013-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called “non-traditional” platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with an historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo. PMID:23738524

  3. Azaindenoisoquinolines as Topoisomerase I Inhibitors and Potential Anticancer Agents: A Systematic Study of Structure-Activity Relationships

    PubMed Central

    Kiselev, Evgeny; Agama, Keli; Pommier, Yves; Cushman, Mark

    2012-01-01

    A comprehensive study of a series of azaindenoisoquinoline topoisomerase I (Top1) inhibitors is reported. The synthetic pathways have been developed to prepare 7-, 8-, 9-, and 10-azaindenoisoquinolines. The present study shows that 7-azaindenoisoquinolines possess the greatest Top1 inhibitory activity and cytotoxicity. Additionally, the introduction of a methoxy group into the D-ring of 7-azaindenoisoquinolines improved their biological activities, leading to new lead molecules for further development. A series of QM calculations were performed on the model “sandwich” complexes of azaindenoisoquinolines with flanking DNA base pairs from the Drug–Top1–DNA ternary complex. The results of these calculations demonstrate how changes in two forces contributing to the π–π stacking, dispersion and charge-transfer interactions, affect the binding of the drug to the Top1–DNA cleavage complex and thus modulate the drug’s Top1 inhibitory activity. PMID:22329436

  4. Total Synthesis and Biological Studies of TMC-205 and Analogues as Anticancer Agents and Activators of SV40 Promoter

    PubMed Central

    2014-01-01

    TMC-205 is a natural fungal metabolite with antiproliferative activity against cancer cell lines. The light- and air-sensitivity prevented in-depth exploitation of this novel indole derivative. Herein, we report the first synthesis of TMC-205. On the basis of its reactivity with reactive oxygen species, we developed air-stable analogues of TMC-205. These analogues are 2–8-fold more cytotoxic than TMC-205 against HCT-116 colon cancer cell line. Importantly, at noncytotoxic dose levels, these analogues activated the transcription of luciferase reporter gene driven by simian virus 40 promoter (SV40). Further, these small molecules also inhibit firefly luciferase, presumably by direct interaction. PMID:25147604

  5. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products are rich source of gene modulators for prevention and treatment of cancer. In recent days, nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) has been focused as a new target of diverse cancers like colorectal, pancreatic, prostate, and breast. A variety of natural...

  6. Synthesis and structure-activity relationships of novel furazan-3,4-diamide analogs as potent anti-cancer agents.

    PubMed

    Li, Wen-Shan; More, Shivaji V; Wang, Chie-Hong; Jen, Ya Ching; Yao, Ching-Fa; Wang, Tein-Fu; Hung, Chin-Chun; Jao, Shu-Chuan

    2010-02-01

    This study describes the synthesis and structure-activity relationships of a series of furazan-3,4-diamide analogs. 1,2,5-Oxadiazole ring and electron-withdrawing substituent on the phenyl ring are proposed to be the important elements which contribute to a significant extent maximal potency of anti-proliferation effect. PMID:20022505

  7. Synthesis and antimicrobial activity of guanylhydrazones. Synthesis of 2-(2-methylthio-2-aminovinyl)-1-methylpyridinium iodides and 2-(2-methylthio-2-aminovinyl)-1-methylquinolinium iodides as potential radioprotective and anticancer agents

    SciTech Connect

    Almassian, B.

    1985-01-01

    The finding of appreciable antileukemic activity in a series of 2-(2-methylthio-2-amino)vinyl-1-methylquinolinium iodides (Foye et al., 1980, 1983) suggested that greater basicity, as compared with the corresponding dithioacetic acids, was contributing to the increase in activity. The addition of a greater degree of basicity in the design of anticancer possibilities in this series was considered worth investigation, particularly in view of the activity of a series of bis(quanylhydrazones) synthesized at Lederle Laboratories. Accordingly, a series of guanylhydrazones of 4-pyridine-,2-pyridine- and 4-quinolinecarboxyaldehydes was synthesized for anticancer as well as antibacterial screening. Also, substitution of additional basic functions in the 2-(2-methylthio-2-amino) vinyl-1-methylquinolinium and pyridinium iodide series has been made. Appreciable antimicrobial activities have been found with both 2-pyridine and 4-quinolinealdehyde guanylhydrazones, as well as with 2-(2-methylthio-2-amino)vinyl-1-methyl-pyridinium iodides. The overall approach to the synthesis of potential anticancer agents in this project is thus to observe the effect of increasing basicity of these compounds on DNA binding and anticancer activity.

  8. Hydrogen Peroxide Inducible DNA Cross-Linking Agents: Targeted Anticancer Prodrugs

    PubMed Central

    Kuang, Yunyan; Balakrishnan, Kumudha; Gandhi, Varsha; Peng, Xiaohua

    2011-01-01

    The major concern for anticancer chemotherapeutic agents is the host toxicity. The development of anti-cancer prodrugs targeting the unique biochemical alterations in cancer cells is an attractive approach to achieve therapeutic activity and selectivity. We designed and synthesized a new type of nitrogen mustard prodrug that can be activated by high level of reactive oxygen species (ROS) found in cancer cells to release the active chemotherapy agent. The activation mechanism was determined by NMR analysis. The activity and selectivity of these prodrugs towards ROS was determined by measuring DNA interstrand crosslinks and/or DNA alkylations. These compounds showed 60–90% inhibition toward various cancer cells, while normal lymphocytes were not affected. To the best of our knowledge, this is the first example of H2O2-activated anticancer prodrugs. PMID:22035519

  9. Imidazoquinolines: Recent Developments in Anticancer Activity.

    PubMed

    Patil, Shivaputra A; Patil, Siddappa A; Patil, Renukadevi; Hashizume, Rintaro

    2016-01-01

    Cancer remains one of the unsolved diseases of today's advanced drug discovery world even though it is known to humans for centuries. There is continued effort to discover new chemotherapeutic agents to improve the outcome of cancer patients. Small-molecule agonists at tolllike receptor 7 and 8 (TLR7/8) have recently generated renewed interest in cancer research owing to their profound antitumoral activity. TLR-7/8 agonist imidazoquinolines (Imiquimod, and Resiquimod) and dual inhibitor of phosphoinositide 3-kinase and mammalian target of rapamycin (NVP-BEZ235) have emerged as clinically important candidates for treating cancers. This article reviews briefly the synthesis, structure-activity relationship (SAR) and biological activities of clinically studied imidazoquinolines along with novel emerging preclinical imidazoquinolines for the anticancer activity. PMID:26675675

  10. Quinones as mutagens, carcinogens, and anticancer agents: introduction and overview

    SciTech Connect

    Smith, M.T.

    1985-01-01

    Quinones are widespread in the environment, occurring both naturally and as pollutants. Human exposure to them is, therefore, extensive. Quinones also form an important class of toxic metabolites generated as a result of the metabolism of phenols and related compounds, including phenol itself, 1-naphthol, and diethylstilbesterol. The mechanisms by which quinones exert their toxic effects are complex, but two processes appear to be centrally involved: the direct arylation of sulfhydryls, and the generation of active oxygen species via redox cycling. Certain quinones have been shown to be mutagenic via the formation of active oxygen species and others via their conversion to DNA-binding semiquinone free radicals. Paradoxically, quinones are not only mutagenic and therefore potentially carcinogenic, they are also effective anticancer agents. Classic examples are Adriamycin (doxorubicin hydrochloride) and mitomycin C, but other less complex quinones also show effective antitumor activity. The design of novel quinones that are more selective in their toxicity to human tumor cells and whose mechanism of action if understood seems a promising approach in cancer treatment, especially if host toxicity can be prevented via the use of chemoprotective agents.

  11. Insight into the reactive form of the anticancer agent iproplatin.

    PubMed

    Volckova, Erika; Weaver, Evelyne; Bose, Rathindra N

    2008-05-01

    The reaction of iproplatin with reduced glutathione at different mole ratios yielded cis-di(isopropylamine)chloro-glutathionatoplatinum(II), not the expected cis-dichloro- species, indicating a mode of action of this anticancer agent that is different from that of cis-diamminedichloroplatinum(II). PMID:17707553

  12. Dioxol and dihydrodioxin analogs of 2- and 3-phenylacetonitriles as potent anti-cancer agents with nanomolar activity against a variety of human cancer cells.

    PubMed

    Madadi, Nikhil R; Ketkar, Amit; Penthala, Narsimha R; Bostian, April C L; Eoff, Robert L; Crooks, Peter A

    2016-05-01

    A small library of (Z)-2-(benzo[d][1,3]dioxol-5-yl) and (Z)-2,3-dihydrobenzo[b][1,4]dioxin-6-yl analogs of 2- and 3-phenylacetonitriles has been synthesized and evaluated for their anti-cancer activities against a panel of 60 human cancer cell lines. The dihydrodioxin analog 3j and dioxol analogs 5e and 7e exhibited the most potent anti-cancer activity of all the analogs synthesized in this study, with GI50 values of <100nM against almost all of the cell lines in the human cancer cell panel. Of these three, only compound 3j inhibited tubulin polymerization to any degree in vitro. The binding modes of 3j and the structurally related tubulin-inhibitor DMU-212 were determined by virtual docking studies with tubulin dimer. Compound 3j docked at the colchicine-binding site at the dimer interface of tubulin. The Full-Fitness (FF) score of 3j was observed to be substantially higher than DMU-212, which agrees well with the observed anti-cancer potency (GI50 values). The mechanism by which dioxol analogs 5e and 7e exert their cytotoxic effects remains unknown at this stage, but it is unlikely that they affect tubulin dynamics. Nevertheless, these findings suggest that both dioxol and dihydrodioxin analogs of phenylacrylonitrile may have potential for development as clinical candidates to treat a variety of human cancers. PMID:27017113

  13. Alkaloids Isolated from Natural Herbs as the Anticancer Agents

    PubMed Central

    Lu, Jin-Jian; Bao, Jiao-Lin; Chen, Xiu-Ping; Huang, Min; Wang, Yi-Tao

    2012-01-01

    Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made. PMID:22988474

  14. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells.

    PubMed

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  15. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  16. 3-Hydrazinoindolin-2-one derivatives: Chemical classification and investigation of their targets as anticancer agents.

    PubMed

    Ibrahim, Hany S; Abou-Seri, Sahar M; Abdel-Aziz, Hatem A

    2016-10-21

    Isatin is a well acknowledged pharmacophore in many clinically approved drugs used for treatment of cancer. 3-Hydrazinoindolin-2-one, as a derivative of isatin, represents a pharmacophore of an important class of biologically active pharmaceutical agents by virtue of their diverse biological activities. In this review, anticancer activity will be on focus for compounds derived from 3-hydrazinoindolin-2-one. They are classified according to their chemical structure into nine different classes. In each class, different compounds were browsed, showing their anticancer activity and their potential targets. Moreover, crystallographic data or docking studies were highlighted for some compounds, when available, to provide a deep understanding of their mechanisms of action. PMID:27391135

  17. Therapeutic efficacy of ferrofluid bound anticancer agent

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Arnold, W.; Hulin, P.; Klein, R.; Schmidt, A.; Bergemannand, Ch.; Parak, F. G.

    2001-09-01

    Ferrofluids coated with starch polymers can be used as biocompatible carriers in a new field of locoregional tumor therapy called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment using an external magnetic field. In the present study, we confirm the concentration of ferrofluids in VX2 squamous cell carcinoma tissue of the rabbit using histological investigations and MR imaging. The therapeutic efficacy of "magnetic drug targeting" was studied using the rabbit VX2 squamous cell carcinoma model. Mitoxantrone coupled ferrofluids were injected intraarterially into the artery supplying the tumor (femoral artery). The magnetic field (1.7 Tesla) was focused to the tumor placed at the medial portion of the hind limb of New Zealand White rabbits. Complete tumor remissions could be seen without any negative side effects by using only 20% of the normal systemic dosage of the chemotherapeutic agent mitoxantrone. Figs 3, Refs 14.

  18. Lycopene: a review of its potential as an anticancer agent.

    PubMed

    Bhuvaneswari, V; Nagini, S

    2005-11-01

    Dietary chemoprevention has emerged as a cost effective approach to control most prevalent chronic diseases including cancer. In particular, tomato and tomato products are recognised to confer a wide range of health benefits. Epidemiological studies have provided evidence that high consumption of tomatoes effectively lowers the risk of reactive oxygen species (ROS)-mediated diseases such as cardiovascular disease and cancer by improving the antioxidant capacity. Tomatoes are rich sources of lycopene, an antioxidant carotenoid reported to be a more stable and potent singlet oxygen quenching agent compared to other carotenoids. In addition to its antioxidant properties, lycopene shows an array of biological effects including cardioprotective, anti-inflammatory, antimutagenic and anticarcinogenic activities. The anticancer activity of lycopene has been demonstrated both in in vitro and in vivo tumour models. The mechanisms underlying the inhibitory effects of lycopene on carcinogenesis could involve ROS scavenging, upregulation of detoxification systems, interference with cell proliferation, induction of gap-junctional communication, inhibition of cell cycle progression and modulation of signal transduction pathways. This review outlines the sources, structure, absorption, metabolism, bioavailability and pharmacological properties of lycopene with special reference to its antioxidant and anticarcinogenic effects. PMID:16305484

  19. Diaryl Urea: A Privileged Structure in Anticancer Agents.

    PubMed

    Garuti, Laura; Roberti, Marinella; Bottegoni, Giovanni; Ferraro, Mariarosaria

    2016-01-01

    The diaryl urea is an important fragment/pharmacophore in constructing anticancer molecules due to its near-perfect binding with certain acceptors. The urea NH moiety is a favorable hydrogen bond donor, while the urea oxygen atom is regarded as an excellent acceptor. Many novel compounds have been synthesized and evaluated for their antitumor activity with the successful development of sorafenib. Moreover, this structure is used to link alkylating pharmacophores with high affinity DNA binders. In addition, the diaryl urea is present in several kinase inhibitors, such as RAF, KDR and Aurora kinases. Above all, this moiety is used in the type II inhibitors: it usually forms one or two hydrogen bonds with a conserved glutamic acid and one with the backbone amide of the aspartic acid in the DFG motif. In addition, some diaryl urea derivatives act as Hedgehog (Hh) ligands, binding and inhibiting proteins involved in the homonymous Hh signaling pathway. In this review we provide some of the methodologies adopted for the synthesis of diaryl ureas and a description of the most representative antitumor agents bearing the diaryl urea moiety, focusing on their mechanisms bound to the receptors and structure-activity relationships (SAR). An increased knowledge of these derivatives could prompt the search to find new and more potent compounds. PMID:27063259

  20. Synthesis and Evaluation of Flavanones as Anticancer Agents

    PubMed Central

    Murti, Y.; Mishra, P.

    2014-01-01

    A few flavanones were synthesised by cyclisation of corresponding 3-(heteroaryl)-1(2-hydroxyphenyl) prop-2-en-1-one with sodium acetate in alcohol–water and evaluated for activity. Synthesised compounds were assayed for their in vitro anticancer activity against three human cancer cell lines, mammary adenocarcinoma (MCF7), human colon adenocarcinoma (HT29) and human kidney adenocarcinoma (A498) using sulforhodamine B dye. Results indicated that most of the compounds exhibited significant in vitro anticancer potential. Among them, compound having furan ring showed most potent activity against all the tested cell lines. PMID:24843190

  1. Development of advanced macrosphelides: potent anticancer agents.

    PubMed

    Paek, Seung-Mann

    2015-01-01

    Synthetic approaches to macrosphelide derivatives, based on medicinal chemistry, are summarized. This review contains conventional medicinal chemistry approaches, combinatorial chemistry, fluorous tagging techniques and affinity chromatography preparation. In addition, advances in their apoptosis-inducing activities are also included. PMID:25764486

  2. Selective anticancer agents suppress aging in Drosophila.

    PubMed

    Danilov, Anton; Shaposhnikov, Mikhail; Plyusnina, Ekaterina; Kogan, Valeria; Fedichev, Peter; Moskalev, Alexey

    2013-09-01

    Mutations of the PI3K, TOR, iNOS, and NF-κB genes increase lifespan of model organisms and reduce the risk of some aging-associated diseases. We studied the effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-κB (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: PI3K (wortmannin) and TOR (rapamycin), NF-κB (pyrrolidin dithiocarbamates) and PI3K (wortmannin), NF-κB (pyrrolidine dithiocarbamates) and TOR (rapamycin) on Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-κB, and iNOS increases lifespan of Drosophila without decreasing quality of life. The greatest lifespan expanding effect was achieved by a combination of rapamycin (5 μM) and wortmannin (5 μM) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, consistent with experimental data. PMID:24096697

  3. Ligands for cannabinoid receptors, promising anticancer agents.

    PubMed

    Nikan, Marjan; Nabavi, Seyed Mohammad; Manayi, Azadeh

    2016-02-01

    Cannabinoid compounds are unique to cannabis and provide some interesting biological properties. These compounds along with endocannabinoids, a group of neuromodulator compounds in the body especially in brain, express their effects by activation of G-protein-coupled cannabinoid receptors, CB1 and CB2. There are several physiological properties attributed to the endocannabinoids including pain relief, enhancement of appetite, blood pressure lowering during shock, embryonic development, and blocking of working memory. On the other hand, activation of endocannabinoid system may be suppresses evolution and progression of several types of cancer. According to the results of recent studies, CB receptors are over-expressed in cancer cell lines and application of multiple cannabinoid or cannabis-derived compounds reduce tumor size through decrease of cell proliferation or induction of cell cycle arrest and apoptosis along with desirable effect on decrease of tumor-evoked pain. Therefore, modulation of endocannabinoid system by inhibition of fatty acid amide hydrolase (FAAH), the enzyme, which metabolized endocannabinoids, or application of multiple cannabinoid or cannabis-derived compounds, may be appropriate for the treatment of several cancer subtypes. This review focuses on how cannabinoid affect different types of cancers. PMID:26764235

  4. Selective anticancer agents suppress aging in Drosophila

    PubMed Central

    Danilov, Anton; Shaposhnikov, Mikhail; Plyusnina, Ekaterina; Kogan, Valeria; Fedichev, Peter; Moskalev, Alexey

    2013-01-01

    Mutations of the PI3K, TOR, iNOS, and NF-κB genes increase lifespan of model organisms and reduce the risk of some aging-associated diseases. We studied the effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-κB (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: PI3K (wortmannin) and TOR (rapamycin), NF-κB (pyrrolidin dithiocarbamates) and PI3K (wortmannin), NF-κB (pyrrolidine dithiocarbamates) and TOR (rapamycin) on Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-κB, and iNOS increases lifespan of Drosophila without decreasing quality of life. The greatest lifespan expanding effect was achieved by a combination of rapamycin (5 μM) and wortmannin (5 μM) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, consistent with experimental data. PMID:24096697

  5. Recent developments of C-4 substituted coumarin derivatives as anticancer agents.

    PubMed

    Dandriyal, Jyoti; Singla, Ramit; Kumar, Manvendra; Jaitak, Vikas

    2016-08-25

    Cancer is a prominent cause of death in global. Currently, the numbers of drugs that are in clinical practice are having a high prevalence of side effect and multidrug resistance. Researchers have made an attempt to expand a suitable anticancer drug that has no MDR and side effect. Coumarin scaffold became an attractive subject due to their broad spectrum of pharmacological activities. Coumarin derivatives extensively explored for anticancer activities as it possesses minimum side effect along with multi-drug reversal activity. Coumarin derivatives can act by various mechanisms on different tumor cell lines depending on substitution pattern of the core structure of coumarin. Substitution on coumarin nucleus leads to the search for more potent compounds. In this review, we have made an effort to give a synthetic strategy for the preparation of C-4 substituted coumarin derivatives as anticancer agents based on their mechanism of action and also discuss the SAR of the most active compound. PMID:27155469

  6. Ferrocene Functionalized Endocrine Modulators as Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Hillard, Elizabeth A.; Vessières, Anne; Jaouen, Gerard

    We present here some of our studies on the synthesis and behaviour of ferrocenyl selective endocrine receptor modulators against cancer cells, particularly breast and prostate cancers. The proliferative/anti-proliferative effects of compounds based on steroidal and non-steroidal endocrine modulators have been extensively explored in vitro. Structure-activity relationship studies of such molecules, particularly the hydroxyferrocifens and ferrocene phenols, have shown the effect of (1) the presence and the length of the N,N-dimethylamino side chain, (2) the presence and position of the phenol group, (3) the role of the ferrocenyl moiety, (4) that of conjugation, (5) phenyl functionalisation and (6) the placement of the phenyl group. Compounds possessing a ferrocene moiety linked to a p-phenol by a conjugated π-system are among the most potent of the series, with IC50 values ranging from 0.090 to 0.6µM on hormone independent breast cancer cells. Based on the SAR data and electrochemical studies, we have proposed an original mechanism to explain the unusual behaviour of these bioorganometallic species and coin the term "kronatropic" to qualify this effect, involving ROS production and bio-oxidation. In addition, the importance of formulation is underlined. We also discuss the behaviour of ferrocenyl androgens and anti-androgens for possible use against prostate cancers. In sum, ferrocene has proven to be a fascinating substituent due to its vast potential for oncology.

  7. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    SciTech Connect

    Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A. K.; Kumar, R.; Wang, J.; O'Malley, J.; Boland, P. M.; Jayanthi, S.; Kumar, T. K. S.; Yadava, N.; Chandra, D.

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  8. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE PAGESBeta

    Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A. K.; Kumar, R.; Wang, J.; O'Malley, J.; Boland, P. M.; Jayanthi, S.; Kumar, T. K. S.; et al

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS

  9. Expression of sulfotransferase SULT1A1 in cancer cells predicts susceptibility to the novel anticancer agent NSC-743380

    PubMed Central

    Wang, Li; Wu, Shuhong; Liu, Xiaoying; Li, Hongyu; Zhang, Hui; Wang, Rui-Yu; Sun, Xiaoping; Wei, Caimiao; Baggerly, Keith A.; Roth, Jack A.; Wang, Michael; Swisher, Stephen G.; Fang, Bingliang

    2015-01-01

    The small molecule anticancer agent NSC-743380 modulates functions of multiple cancer-related pathways and is highly active in a subset of cancer cell lines in the NCI-60 cell line panel. It also has promising in vivo anticancer activity. However, the mechanisms underlying NSC-743380's selective anticancer activity remain uncharacterized. To determine biomarkers that may be used to identify responders to this novel anticancer agent, we performed correlation analysis on NSC-743380's anticancer activity and the gene expression levels in NCI-60 cell lines and characterized the functions of the top associated genes in NSC-743380–mediated anticancer activity. We found sulfotransferase SULT1A1 is causally associated with NSC-743380's anticancer activity. SULT1A1 was expressed in NSC-743380–sensitive cell lines but was undetectable in resistant cancer cells. Ectopic expression of SULT1A1 in NSC743380 resistant cancer cells dramatically sensitized the resistant cells to NSC-743380. Knockdown of the SULT1A1 in the NSC-743380 sensitive cancer cell line rendered it resistance to NSC-743380. The SULT1A1 protein levels in cell lysates from 18 leukemia cell lines reliably predicted the susceptibility of the cell lines to NSC-743380. Thus, expression of SULT1A1 in cancer cells is required for NSC-743380's anticancer activity and can be used as a biomarker for identification of NSC-743380 responders. PMID:25514600

  10. Monitoring of occupational exposure to cytostatic anticancer agents.

    PubMed

    Sorsa, M; Anderson, D

    1996-08-17

    Many anticancer agents have been shown to be carcinogenic, mutagenic and teratogenic in experimental animals and in in vitro test systems. Epidemiological data on the association of second neoplasms with a specific chemotherapy treatment is available on some 30 agents, and in the case of 10 compounds the overall evidence on human carcinogenicity has been evaluated to be conclusive (Group 1: IARC, 1987 and 1990). The primary source of human exposure to anticancer drugs is from their use in therapy of cancer. However, persons employed in the manufacture, preparation and administration of the drugs to patients and in nursing patients may also be exposed. Safe handling of anticancer drugs, since the introduction of various general handling guidelines, is now good practice in hospitals, pharmacies and drug manufacturing companies of most developed countries. Careless handling of cancer chemotherapeutic agents may lead to exposure of the personnel in amounts detectable with chemical or biological methods in the body fluids or cell samples of the subjects. The exposure is typically to mixed compounds over long-term and to low exposure levels with accidental peaks. Therefore, the use of biological exposure markers is appropriate for the monitoring of such exposure patterns. The biological markers/methods for exposure assessment are either non-specific (e.g., cytogenetic damage, point mutations or 32P-post-labelling adducts in peripheral blood lymphocytes, urinary mutagenicity) or specific for a given compound (immunological methods for DNA adducts, specific analytical methods). Studies have revealed minor amounts of cyclophosphamide in the urine of pharmacy technicians and nurses handling the drug even when taking special safety precautions (Sessink et al. (1994a) J. Occup. Med., 36, 79; Sessink et al. (1994b) Arch. Env. Health, 49, 165). Another study showed surface wipe samples with measurable cyclophosphamide even away from the handling site (McDevitt et al. (1993) J

  11. Coumarin-appended phosphorescent cyclometalated iridium(iii) complexes as mitochondria-targeted theranostic anticancer agents.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2016-08-16

    Theranostic anticancer agents incorporating anticancer properties with capabilities for real-time treatment assessment are appealing candidates for chemotherapy. The design of mitochondria-targeted cytotoxic drugs represents a promising approach to target tumors selectively and overcome resistance to current anticancer therapies. In this work, three coumarin-appended phosphorescent cyclometalated iridium(iii) complexes 1-3 have been explored as mitochondria-targeted theranostic anticancer agents. These complexes display rich photophysical properties, which facilitate the study of their intracellular fate. All three complexes can specifically target mitochondria and show much higher antiproliferative activities than cisplatin against various cancer cells including cisplatin-resistant cells. 1-3 can penetrate into human cervical carcinoma (HeLa) cells quickly and efficiently, and they can carry out theranostic functions by simultaneously inducing and monitoring the morphological changes in mitochondria. Mechanism studies show that 1-3 exert their anticancer efficacy by initiating a cascade of events related to mitochondrial dysfunction. Genome-wide transcriptional and Connectivity Map analyses reveal that the cytotoxicity of complex 3 is associated with pathways involved in mitochondrial dysfunction and apoptosis. PMID:27139504

  12. Anticancer activity assessment of two novel binuclear platinum (II) complexes.

    PubMed

    Shahsavani, Mohammad Bagher; Ahmadi, Shamseddin; Aseman, Marzieh Dadkhah; Nabavizadeh, S Masoud; Rashidi, Mehdi; Asadi, Zahra; Erfani, Nasrollah; Ghasemi, Atiyeh; Saboury, Ali Akbar; Niazi, Ali; Bahaoddini, Aminollah; Yousefi, Reza

    2016-08-01

    In the current study, two binuclear Pt (II) complexes, containing cis, cis-[Me2Pt (μ-NN) (μ-dppm) PtMe2] (1), and cis,cis-[Me2Pt(μ-NN)(μ dppm) Pt((CH2)4)] (2) in which NN=phthalazine and dppm=bis (diphenylphosphino) methane were evaluated for their anticancer activities and DNA/purine nucleotide binding properties. These Pt (II) complexes, with the non-classical structures, demonstrated a significant anticancer activity against Jurkat and MCF-7 cancer cell lines. The results of ethidium bromide/acridine orange staining and Caspase-III activity suggest that these complexes were capable to stimulate an apoptotic mechanism of cell death in the cancer cells. Using different biophysical techniques and docking simulation analysis, we indicated that these complexes were also capable to interact efficiently with DNA via a non-intercalative mechanism. According to our results, substitution of cyclopentane (in complex 2) with two methyl groups (in complex 1) results in significant improvement of the complex ability to interact with DNA and subsequently to induce the anticancer activity. Overall, these binuclear Pt (II) complexes are promising group of the non-classical potential anticancer agents which can be considered as molecular templates in designing of highly efficient platinum anticancer drugs. PMID:27289447

  13. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    PubMed Central

    Aminin, Dmitry L.; Menchinskaya, Ekaterina S.; Pisliagin, Evgeny A.; Silchenko, Alexandra S.; Avilov, Sergey A.; Kalinin, Vladimir I.

    2015-01-01

    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics. PMID:25756523

  14. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed

    Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-06-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  15. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic.

    PubMed

    Pace, Jennifer R; DeBerardinis, Albert M; Sail, Vibhavari; Tacheva-Grigorova, Silvia K; Chan, Kelly A; Tran, Raymond; Raccuia, Daniel S; Wechsler-Reya, Robert J; Hadden, M Kyle

    2016-04-28

    Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold. PMID:27014922

  16. Cinnamomum verum Component 2-Methoxycinnamaldehyde: A Novel Anticancer Agent with Both Anti-Topoisomerase I and II Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo.

    PubMed

    Wong, Ho-Yiu; Tsai, Kuen-daw; Liu, Yi-Heng; Yang, Shu-mei; Chen, Ta-Wei; Cherng, Jonathan; Chou, Kuo-Shen; Chang, Chen-Mei; Yao, Belen T; Cherng, Jaw-Ming

    2016-02-01

    Cinnamomum verum is used to make the spice cinnamon and has been used as a traditional Chinese herbal medicine. We evaluated the anticancer effect of 2-methoxycinnamaldehyde (2-MCA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human lung adenocarcinoma A549 cells. The results show that 2-MCA suppressed proliferation and induced apoptosis as indicated by an upregulation of pro-apoptotic Bax and Bak genes and downregulation of anti-apoptotic Bcl-2 and Bcl-XL genes, mitochondrial membrane potential loss, cytochrome c release, activation of caspase-3 and -9, and morphological characteristics of apoptosis, including plasma membrane blebbing and long comet tail. In addition, 2-MCA also induced lysosomal vacuolation with increased volume of acidic compartment (VAC) and suppressions of nuclear transcription factors nuclear factor-κB (NF-κB) and both topoisomerase I and II activities. Further study reveals that the growth-inhibitory effect of 2-MCA was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of 2-MCA against A549 cells is accompanied by downregulations of NF-κB binding activity and proliferative control involving apoptosis and both topoisomerase I and II activities, together with an upregulation of lysosomal vacuolation and VAC. Our data suggest that 2-MCA could be a potential agent for anticancer therapy. PMID:26676220

  17. Potential Role of Garcinol as an Anticancer Agent

    PubMed Central

    Saadat, Nadia; Gupta, Smiti V.

    2012-01-01

    Garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Although the fruit has been consumed traditionally over centuries, its biological activities, specifically its anticancer potential is a result of recent scientific investigations. The anticarcinogenic properties of garcinol appear to be moderated via its antioxidative, anti-inflammatory, antiangiogenic, and proapoptotic activities. In addition, garcinol displays effective epigenetic influence by inhibiting histone acetyltransferases (HAT 300) and by possible posttranscriptional modulation by mi RNA profiles involved in carcinogenesis. In vitro as well as some in vivo studies have shown the potential of this compound against several cancers types including breast, colon, pancreatic, and leukemia. Although this is a promising molecule in terms of its anticancer properties, investigations in relevant animal models, and subsequent human trials are warranted in order to fully appreciate and confirm its chemopreventative and/or therapeutic potential. PMID:22745638

  18. Structure–activity relationship studies of naphthol AS-E and its derivatives as anticancer agents by inhibiting CREB-mediated gene transcription

    PubMed Central

    Li, Bingbing X.; Yamanaka, Kinrin; Xiao, Xiangshu

    2012-01-01

    CREB (cyclic AMP-response element binding protein) is a downstream transcription factor of a multitude of signaling pathways emanating from receptor tyrosine kinases or G-protein coupled receptors. CREB is not activated until it is phosphorylated at Ser133 and its subsequent binding to CREB-binding protein (CBP) through kinase-inducible domain (KID) in CREB and KID-interacting (KIX) domain in CBP. Tumor tissues from various organs present higher level of expression and activation of CREB. Thus CREB has been proposed as a promising cancer drug target. We previously described naphthol AS-E (1a) as a small molecule inhibitor of CREB-mediated gene transcription in living cells. Here we report the structure–activity relationship (SAR) studies of 1a by modifying the appendant phenyl ring. All the compounds were evaluated for in vitro inhibition of KIX–KID interaction, cellular inhibition of CREB-mediated gene transcription and inhibition of proliferation of four cancer cell lines (A549, MCF-7, MDA-MB-231 and MDA-MB-468). SAR indicated that a small and electron-withdrawing group was preferred at the para-position for KIX–KID interaction inhibition. Compound 1a was selected for further biological characterization and it was found that 1a down-regulated the expression of endogenous CREB target genes. Expression of a constitutively active CREB mutant, VP16-CREB in MCF-7 cells rendered the cells resistant to 1a, suggesting that CREB was critical in mediating its anticancer activity. Furthermore, 1a was not toxic to normal human cells. Collectively, these data support that 1a represents a structural template for further development into potential cancer therapeutics with a novel mechanism of action. PMID:23102993

  19. Nanomicellar carriers for targeted delivery of anticancer agents

    PubMed Central

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10–100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors’ recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  20. Anticancer activity of Carica papaya: a review.

    PubMed

    Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K

    2013-01-01

    Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. PMID:23212988

  1. S9, a Novel Anticancer Agent, Exerts Its Anti-Proliferative Activity by Interfering with Both PI3K-Akt-mTOR Signaling and Microtubule Cytoskeleton

    PubMed Central

    Yang, Chun-hao; Ding, Hua-sheng; Luo, Cheng; Zhang, Yu; Wu, Mao-jiang; Zhang, Xiong-wen; Shen, Xu; Jiang, Hua-liang; Meng, Ling-hua; Ding, Jian

    2009-01-01

    xenografts. Conclusions/Significance Taken together, S9 targets both PI3K-Akt-mTOR signaling and microtubule cytoskeleton, which combinatorially contributes its antitumor activity and provides new clues for anticancer drug design and development. PMID:19293927

  2. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants

    PubMed Central

    Ntie-Kang, Fidele; Simoben, Conrad Veranso; Karaman, Berin; Ngwa, Valery Fuh; Judson, Philip Neville; Sippl, Wolfgang; Mbaze, Luc Meva’a

    2016-01-01

    Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner–Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa’s expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space. PMID:27445461

  3. Discovery and development of natural product oridonin-inspired anticancer agents.

    PubMed

    Ding, Ye; Ding, Chunyong; Ye, Na; Liu, Zhiqing; Wold, Eric A; Chen, Haiying; Wild, Christopher; Shen, Qiang; Zhou, Jia

    2016-10-21

    Natural products have historically been, and continue to be, an invaluable source for the discovery of various therapeutic agents. Oridonin, a natural diterpenoid widely applied in traditional Chinese medicines, exhibits a broad range of biological effects including anticancer and anti-inflammatory activities. To further improve its potency, aqueous solubility and bioavailability, the oridonin template serves as an exciting platform for drug discovery to yield better candidates with unique targets and enhanced drug properties. A number of oridonin derivatives (e.g. HAO472) have been designed and synthesized, and have contributed to substantial progress in the identification of new agents and relevant molecular mechanistic studies toward the treatment of human cancers and other diseases. This review summarizes the recent advances in medicinal chemistry on the explorations of novel oridonin analogues as potential anticancer therapeutics, and provides a detailed discussion of future directions for the development and progression of this class of molecules into the clinic. PMID:27344488

  4. [Clinical pharmacology of anticancer agents. (Part 1) Introduction, alkylating agents and platinum compounds].

    PubMed

    Fujita, H

    1991-11-01

    Pharmacokinetic concepts as to absorption, distribution, metabolism and excretion of anticancer agents, and how drugs reach to the site of action were reviewed. Then, roles of the liver and kidney to the excretion and metabolism, intracellular pharmacokinetics, and relationships between drug response and cell proliferation kinetics or cell cycle phase were explained. Drug development, mode of action and pharmacokinetics of alkylating agents and platinum compounds were reviewed. This includes: alkylating agents: nitrogen mustard, phenylalanine mustard, estracyte, cyclophosphamide, carboquone, busulfan, nitrosourea, etc., and platinum compounds: cisplatin, carboplatin, 254-S, DWA-2114 R, NK-121. PMID:1952967

  5. Semi-synthetic mithramycin SA derivatives with improved anticancer activity.

    PubMed

    Scott, Daniel; Chen, Jhong-Min; Bae, Younsoo; Rohr, Jürgen

    2013-05-01

    Mithramycin (MTM) is a potent anti-cancer agent that has recently garnered renewed attention. This manuscript describes the design and development of mithramycin derivatives through a combinational approach of biosynthetic analogue generation followed by synthetic manipulation for further derivatization. Mithramycin SA is a previously discovered analogue produced by the M7W1 mutant strain alongside the improved mithramycin analogues mithramycin SK and mithramycin SDK. Mithramycin SA shows decreased anti-cancer activity compared to mithramycin and has a shorter, two carbon aglycon side chain that is terminated in a carboxylic acid. The aglycon side chain is responsible for an interaction with the DNA-phosphate backbone as mithramycin interacts with its target DNA. It was therefore decided to further functionalize this side chain through reactions with the terminal carboxylic acid in an effort to enhance the interaction with the DNA phosphate backbone and improve the anti-cancer activity. This side chain was modified with a variety of molecules increasing the anti-cancer activity to a comparable level to mithramycin SK. This work shows the ability to transform the previously useless mithramycin SA into a valuable molecule and opens the door to further functionalization and semi-synthetic modification for the development of molecules with increased specificity and/or drug formulation. PMID:23331575

  6. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  7. T-oligo as an anticancer agent in colorectal cancer

    SciTech Connect

    Wojdyla, Luke; Stone, Amanda L.; Sethakorn, Nan; Uppada, Srijayaprakash B.; Devito, Joseph T.; Bissonnette, Marc; Puri, Neelu

    2014-04-04

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.

  8. New 1,4-anthracene-9,10-dione derivatives as potential anticancer agents.

    PubMed

    Zagotto, G; Supino, R; Favini, E; Moro, S; Palumbo, M

    2000-01-01

    The amino-substituted anthracene-9,10-dione (9,10-anthraquinone) derivatives represent one of the most important classes of potential anticancer agents. To better understand the basic rules governing DNA sequence specificity, we have recently synthesized a new class of D- and L-aminoacyl-anthraquinone derivatives. We have tested these new compounds as cytotoxic agents, and we have correlated their activity with the configuration of the chiral aminoacyl moiety. Molecular modeling studies have been performed to compare the test drugs in terms of steric overlapping. PMID:10755224

  9. (-)-Arctigenin as a lead compound for anticancer agent.

    PubMed

    Chen, Gui-Rong; Li, Hong-Fu; Dou, De-Qiang; Xu, Yu-Bin; Jiang, Hong-Shuai; Li, Fu-Rui; Kang, Ting-Guo

    2013-01-01

    (-)-Arctigenin, an important active constituent of the traditional Chinese herb Fructus Arctii, was found to exhibit various bioactivities, so it can be used as a good lead compound for further structure modification in order to find a safer and more potent medicine. (-)-Arctigenin derivatives 1-5 of (-)-arctingen were obtained by modifying with ammonolysis at the lactone ring and sulphonylation at C (6') and C (6″) and O-demethylation at CH3O-C (3'), CH3O-C (3″) and CH3O-C (4″), and their anticancer bioactivities were examined. PMID:23962054

  10. Quinonaphthothiazines, syntheses, structures and anticancer activities

    NASA Astrophysics Data System (ADS)

    Jeleń, M.; Pluta, K.; Suwińska, K.; Morak-Młodawska, B.; Latocha, M.; Shkurenko, A.

    2015-11-01

    Two new types of pentacyclic azaphenothiazines being quinonaphthothiazines were obtaining from the reactions of dichlorodiquinolinyl disulfide with 1- and 2-naphthylamines. As the reactions could proceed in many ways, the proper structure elucidation was crucial. The structure determination was based on the 2D NMR spectra (NOESY, HSQC and HMBC) of the methyl derivatives. The final structure evidences came from X-ray analysis of the monocrystals. The new quinonaphthothiazines represent angularly fused pentacyclic ring systems which is folded along the N-S axis. The parent NH-compounds were transformed into the N-derivatives. Some quinonaphthothiazines exhibited promising anticancer activity against glioblastoma SNB-19, melanoma C-32 and human ductal breast epithelial tumor T47D cell lines. The anticancer activity dependent on the nature of the substituents and the ring fusion between the thiazine and naphthalene moieties. Two compounds were more active than the reference drug, cisplatin.

  11. Discovery of a novel anticancer agent with both anti-topoisomerase I and II activities in hepatocellular carcinoma SK-Hep-1 cells in vitro and in vivo: Cinnamomum verum component 2-methoxycinnamaldehyde

    PubMed Central

    Perng, Daw-Shyong; Tsai, Yu-Hsin; Cherng, Jonathan; Wang, Jeng-Shing; Chou, Kuo-Shen; Shih, Chia-Wen; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum is used to make the spice cinnamon and has been used as a traditional Chinese herbal medicine for various applications. We evaluated the anticancer effect of 2-methoxycinnamaldehyde (2-MCA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human hepatocellular carcinoma SK-Hep-1 cell line. The results show that 2-MCA suppressed proliferation and induced apoptosis as indicated by mitochondrial membrane potential loss, activation of caspase-3 and caspase-9, increase in the DNA content in sub-G1, and morphological characteristics of apoptosis, including blebbing of plasma membrane, nuclear condensation, fragmentation, apoptotic body formation, and long comet tail. In addition, 2-MCA also induced lysosomal vacuolation with increased volume of acidic compartments, suppressions of nuclear transcription factors NF-κB, cyclooxygenase-2, prostaglandin E2 (PGE2), and both topoisomerase I and II activities in a dose-dependent manner. Further study reveals the growth-inhibitory effect of 2-MCA was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of 2-MCA against SK-Hep-1 cells is accompanied by downregulations of NF-κB-binding activity, inflammatory responses involving cyclooxygenase-2 and PGE2, and proliferative control involving apoptosis, both topoisomerase I and II activities, together with an upregulation of lysosomal vacuolation and volume of acidic compartments. Similar effects (including all of the above-mentioned effects) were found in other tested cell lines, including human hepatocellular carcinoma Hep 3B, lung adenocarcinoma A549, squamous cell carcinoma NCI-H520, colorectal adenocarcinoma COLO 205, and T-lymphoblastic MOLT-3 (results not shown). Our data suggest that 2-MCA could be a potential agent for anticancer therapy. PMID:26792981

  12. Discovery of a novel anticancer agent with both anti-topoisomerase I and II activities in hepatocellular carcinoma SK-Hep-1 cells in vitro and in vivo: Cinnamomum verum component 2-methoxycinnamaldehyde.

    PubMed

    Perng, Daw-Shyong; Tsai, Yu-Hsin; Cherng, Jonathan; Wang, Jeng-Shing; Chou, Kuo-Shen; Shih, Chia-Wen; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum is used to make the spice cinnamon and has been used as a traditional Chinese herbal medicine for various applications. We evaluated the anticancer effect of 2-methoxycinnamaldehyde (2-MCA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human hepatocellular carcinoma SK-Hep-1 cell line. The results show that 2-MCA suppressed proliferation and induced apoptosis as indicated by mitochondrial membrane potential loss, activation of caspase-3 and caspase-9, increase in the DNA content in sub-G1, and morphological characteristics of apoptosis, including blebbing of plasma membrane, nuclear condensation, fragmentation, apoptotic body formation, and long comet tail. In addition, 2-MCA also induced lysosomal vacuolation with increased volume of acidic compartments, suppressions of nuclear transcription factors NF-κB, cyclooxygenase-2, prostaglandin E2 (PGE2), and both topoisomerase I and II activities in a dose-dependent manner. Further study reveals the growth-inhibitory effect of 2-MCA was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of 2-MCA against SK-Hep-1 cells is accompanied by downregulations of NF-κB-binding activity, inflammatory responses involving cyclooxygenase-2 and PGE2, and proliferative control involving apoptosis, both topoisomerase I and II activities, together with an upregulation of lysosomal vacuolation and volume of acidic compartments. Similar effects (including all of the above-mentioned effects) were found in other tested cell lines, including human hepatocellular carcinoma Hep 3B, lung adenocarcinoma A549, squamous cell carcinoma NCI-H520, colorectal adenocarcinoma COLO 205, and T-lymphoblastic MOLT-3 (results not shown). Our data suggest that 2-MCA could be a potential agent for anticancer therapy. PMID:26792981

  13. Chrysin-benzothiazole conjugates as antioxidant and anticancer agents.

    PubMed

    Mistry, Bhupendra M; Patel, Rahul V; Keum, Young-Soo; Kim, Doo Hwan

    2015-12-01

    7-(4-Bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one, obtained from chrysin with 1,4-dibromobutane, was combined with a wide range of 6-substituted 2-aminobenzthiazoles, which had been prepared from the corresponding anilines with potassium thiocyanate. Free radical scavenging efficacies of newer analogues were measured using DPPH and ABTS assays, in addition to the assessment of their anticancer activity against cervical cancer cell lines (HeLa and CaSki) and ovarian cancer cell line (SK-OV-3) implementing the SRB assay. Cytotoxicity of titled compounds was checked using Madin-Darby canine kidney (MDCK) non-cancer cell line. Overall, 6a-r indicated remarkable antioxidant power as DPPH and ABTS(+) scavengers; particularly the presence of halogen(s) (6g, 6h, 6j-6l) was favourable with IC50 values comparable to the control ascorbic acid. Unsubstituted benzothiazole ring favored the activity of resultant compounds (6a and 6r) against HeLa cell line, whereas presence of chlorine (6g) or a di-fluoro group (6k) was a key to exert strong action against CaSki. Moreover, a mono-fluoro (6j) and a ketonic functionality (6o) were beneficial to display anticipated anticancer effects against ovarian cancer cell line SK-OV-3. The structural assignments of the new products were done on the basis of IR, (1)H NMR, (13)C NMR spectroscopy and elemental analysis. PMID:26514745

  14. T-oligo as an anticancer agent in colorectal cancer

    PubMed Central

    Stone, Amanda L.; Sethakorn, Nan; Uppada, Srijayaprakash B.; Devito, Joseph T.; Bissonnette, Marc

    2016-01-01

    In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3'-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC. PMID:24632202

  15. Synthesis of Some Benzimidazole Derivatives Bearing 1,3,4-Oxadiazole Moiety as Anticancer Agents

    PubMed Central

    MAZZIO, ELIZABETH; GANGAPURUM, MADHAVEI; MATEEVA, NELLY; REDDA, K. K.

    2015-01-01

    In an effort to establish new benzimidazole related structural leads with improved anticancer activity, several new benzimidazole derivatives (5a–i) with 1,3,4-oxadiazole scaffold incorporated were synthesized and studied for their anticancer activity. The anticancer screening against MDA-MB-231 breast cancer cell lines showed that compound (5c) exhibited moderate cytotoxicity. PMID:26451350

  16. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents.

    PubMed

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  17. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    PubMed Central

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  18. In vitro synergistic anticancer activity of the combination of T-type calcium channel blocker and chemotherapeutic agent in A549 cells.

    PubMed

    Byun, Joon Seok; Sohn, Joo Mi; Leem, Dong Gyu; Park, Byeongyeon; Nam, Ji Hye; Shin, Dong Hyun; Shin, Ji Sun; Kim, Hyoung Ja; Lee, Kyung-Tae; Lee, Jae Yeol

    2016-02-01

    As a result of our continuous research, new 3,4-dihydroquinazoline derivative containing ureido group, KCP10043F was synthesized and evaluated for T-type Ca(2+) channel (Cav3.1) blockade, cytotoxicity, and cell cycle arrest against human non-small cell lung (A549) cells. KCP10043F showed both weaker T-type Ca(2+) channel blocking activity and less cytotoxicity against A549 cells than parent compound KYS05090S [4-(benzylcarbamoylmethyl)-3-(4-biphenylyl)-2-(N,N',N'-trimethyl-1,5-pentanediamino)-3,4-dihydroquinazoline 2 hydrochloride], but it exhibited more potent G1-phase arrest than KYS05090S in A549 cells. This was found to be accompanied by the downregulations of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D2, cyclin D3, and cyclin E at the protein levels. However, p27(KIP1) as a CDK inhibitor was gradually upregulated at the protein levels and increased recruitment to CDK2, CDK4 and CDK6 after KCP10043F treatment. Based on the strong G1-phase cell cycle arrest of KCP10043F in A549 cells, the combination of KCP10043F with etoposide (or cisplatin) resulted in a synergistic cell death (combination index=0.2-0.8) via the induction of apoptosis compared with either agent alone. Taken together with these overall results and the favorable in vitro ADME (absorption, distribution, metabolism, and excretion) profiles of KCP10043F, therefore, it could be used as a potential agent for the combination therapy on human lung cancer. PMID:26739776

  19. Synthesis, anti-cancer evaluation of benzenesulfonamide derivatives as potent tubulin-targeting agents.

    PubMed

    Yang, Jun; Yang, Simin; Zhou, Shanshan; Lu, Dongbo; Ji, Liyan; Li, Zhongjun; Yu, Siwang; Meng, Xiangbao

    2016-10-21

    A series of benzenesulfonamide derivatives were synthesized and evaluated for their anti-proliferative activity and interaction with tubulin. These new derivatives showed significant activities against cellular proliferative and tubulin polymerization. Compound BA-3b proved to be the most potent compound with IC50 value ranging from 0.007 to 0.036 μM against seven cancer cell lines, and three drug-resistant cancer cell lines, which indicated a promising anti-cancer agent. The target tubulin was also verified by dynamic tubulin polymerization assay and tubulin intensity assay. PMID:27423028

  20. Anticancer, Anti-Inflammatory, and Analgesic Activities of Synthesized 2-(Substituted phenoxy) Acetamide Derivatives

    PubMed Central

    Pal, Dilipkumar; Hegde, Rahul Rama; Hashim, Syed Riaz

    2014-01-01

    The aphorism was to develop new chemical entities as potential anticancer, anti-inflammatory, and analgesic agents. The Leuckart synthetic pathway was utilized in development of novel series of 2-(substituted phenoxy)-N-(1-phenylethyl)acetamide derivatives. The compounds containing 1-phenylethylamine as basic moiety attached to substituted phenols were assessed for their anticancer activity against MCF-7 (breast cancer), SK-N-SH (neuroblastoma), anti-inflammatory activity, and analgesic activity. These investigations revealed that synthesized products 3a–j with halogens on the aromatic ring favors as the anticancer and anti-inflammatory activity. Among all, compound 3c N-(1-(4-chlorophenyl)ethyl)-2-(4-nitrophenoxy)acetamide exhibited anticancer, anti-inflammatory, and analgesic activities. In conclusion, 3c may have potential to be developed into a therapeutic agent. PMID:25197642

  1. Anticancer, anti-inflammatory, and analgesic activities of synthesized 2-(substituted phenoxy) acetamide derivatives.

    PubMed

    Rani, Priyanka; Pal, Dilipkumar; Hegde, Rahul Rama; Hashim, Syed Riaz

    2014-01-01

    The aphorism was to develop new chemical entities as potential anticancer, anti-inflammatory, and analgesic agents. The Leuckart synthetic pathway was utilized in development of novel series of 2-(substituted phenoxy)-N-(1-phenylethyl)acetamide derivatives. The compounds containing 1-phenylethylamine as basic moiety attached to substituted phenols were assessed for their anticancer activity against MCF-7 (breast cancer), SK-N-SH (neuroblastoma), anti-inflammatory activity, and analgesic activity. These investigations revealed that synthesized products 3a-j with halogens on the aromatic ring favors as the anticancer and anti-inflammatory activity. Among all, compound 3c N-(1-(4-chlorophenyl)ethyl)-2-(4-nitrophenoxy)acetamide exhibited anticancer, anti-inflammatory, and analgesic activities. In conclusion, 3c may have potential to be developed into a therapeutic agent. PMID:25197642

  2. In vitro anticancer activity of Anemopsis californica

    PubMed Central

    KAMINSKI, CATHERINE N.; FERREY, SETH L.; LOWREY, TIMOTHY; GUERRA, LEO; VAN SLAMBROUCK, SEVERINE; STEELANT, WIM F.A.

    2010-01-01

    Three different extract conditions (aqueous, EtOH and EtOAc) of four different parts (bracts, leaves, roots and stems) of the plant Anemopsis californica (A. californica) were evaluated for their effect on the growth and migration of human colon cancer cells, HCT-8, and the breast cancer cell lines Hs 578T and MCF-7/AZ. Our aim was to identify potential anticancer activity in crude A. californica extracts, given that this plant is used by Native Americans to treat a variety of diseases, including cancer. Our results demonstrated that for each of the cell lines tested, the majority of ethyl acetate extracts of all the plant parts are more toxic than the aqueous and ethanol extracts. Furthermore, significant growth inhibitory activity against the three cell lines was found for the ethyl acetate extract of the roots, while the aqueous extract of the roots influenced the migratory capacity of the three cell lines. This study provides evidence for the anticancer properties of A. californica when extracted in water and ethyl acetate, and supports the importance for further purification of the crude extracts and isolation of potential new anticancer compounds through bio-guided fractionation. PMID:21941602

  3. Design and synthesis of novel 4'-demethyl-4-deoxypodophyllotoxin derivatives as potential anticancer agents.

    PubMed

    Zhu, Xiong; Fu, Junjie; Tang, Yan; Gao, Yuan; Zhang, Shijin; Guo, Qinglong

    2016-02-15

    A group of podophyllotoxin (PPT) derivatives (7a-j) were synthesized by conjugating aryloxyacetanilide moieties to the 4'-hydroxyl of 4'-demethyl-4-deoxypodophyllotoxin (DDPT), and their anticancer activity was evaluated. It was found that the most potent compound 7d inhibited the proliferation of three cancer cell lines with sub to low micromolar IC50 values. Furthermore, it was demonstrated that 7d induced cell cycle arrest in G2/M phase in MGC-803 cells, and regulated the expression of cell cycle check point proteins, such as cyclin A, cyclin B, CDK1, cdc25c, and p21. Finally, 4 mg/kg of 7d reduced the weights and volumes of HepG2 xenografts in mice. Our findings suggest that 7d might be a potential anticancer agent. PMID:26804229

  4. Chrysin-piperazine conjugates as antioxidant and anticancer agents.

    PubMed

    Patel, Rahul V; Mistry, Bhupendra; Syed, Riyaz; Rathi, Anuj K; Lee, Yoo-Jung; Sung, Jung-Suk; Shinf, Han-Seung; Keum, Young-Soo

    2016-06-10

    Synthesis of 7-(4-bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one intermediate treating chrysin with 1,4-dibromobutane facilitated combination of chrysin with a wide range of piperazine moieties which were equipped via reacting the corresponding amines with bis(2-chloroethyl)amine hydrochloride in diethylene glycol monomethyl ether solvent. Free radical scavenging potential of prepared products was analyzed in vitro adopting DPPH and ABTS bioassay in addition to the evaluation of in vitro anticancer efficacies against cervical cancer cell lines (HeLa and CaSki) and an ovarian cancer cell line SK-OV-3 using SRB assay. Bearable toxicity of 7a-w was examined employing Madin-Darby canine kidney (MDCK) cell line. In addition, cytotoxic nature of the presented compounds was inspected utilizing Human bone marrow derived mesenchymal stem cells (hBM-MSCs). Overall, 7a-w indicated remarkable antioxidant power in scavenging DPPH(·) and ABTS(·+), particularly analogs 7f, 7j, 7k, 7l, 7n, 7q, 7v, 7w have shown promising free radical scavenging activity. Analogs 7j and 7o are identified to be highly active candidates against HeLa and CaSki cell lines, whereas 7h and 7l along with 7j proved to be very sensitive towards ovarian cancer cell line SKOV-3. None of the newly prepared scaffolds showed cytotoxic nature toward hBM-MSCs cells. From the structure-activity point of view, nature and position of the electron withdrawing and electron donating functional groups on the piperazine core may contribute to the anticipated antioxidant and anticancer action. Different spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, Mass) and elemental analysis (CHN) were utilized to confirm the desired structure of final compounds. PMID:26924226

  5. Preparation and evaluation of tributyrin emulsion as a potent anti-cancer agent against melanoma.

    PubMed

    Kang, Sung Nam; Lee, Eunmyong; Lee, Mi-Kyung; Lim, Soo-Jeong

    2011-02-01

    Histone deacetylase inhibitors such as butyrate are known to exhibit anti-cancer activities in a wide range of cancer including melanoma. In spite of these potencies, butyrate is not practically used for cancer treatment due to its rapid metabolism and very short plasma half-life. Tributyrin, a triglyceride analog of butyrate, can act as a pro-drug of butyrate after being cleaved by intracellular enzymes. The present study sought to investigate a possibility to develop tributyrin emulsion as a potent anti-cancer agent against melanoma. Mixture of Tween80 and 1, 2-dimyristoyl-sn-glycero-3-phosphocholine as a surfactant to disperse tributyrin produced homogeneous emulsions with nanometer sizes, even without a harsh homogenization procedure. Tributyrin emulsion was more potent than butyrate in inhibiting the growth of B16-F10 melanoma cells. Accumulation of cells at sub G(0)/G(1) phase and the DNA fragmentation induced by tributyrin emulsion treatment revealed that tributyrin emulsion inhibited the growth of B16-F10 cells by inducing apoptosis. Treatment with tributyrin emulsion suppressed the colony formation of melanoma cells in a dose-dependent manner. Furthermore, after intraperitoneal administration into mice, tributyrin emulsion inhibited the formation of tumor colonies in the lung following intravenous injection of melanoma cells. Taken together, our data suggests that tributyrin emulsion may be developed as a potent anti-cancer agent against melanoma. PMID:20946006

  6. Essential Oils and Their Constituents as Anticancer Agents: A Mechanistic View

    PubMed Central

    Mantha, Anil K.

    2014-01-01

    Exploring natural plant products as an option to find new chemical entities as anticancer agents is one of the fastest growing areas of research. Recently, in the last decade, essential oils (EOs) have been under study for their use in cancer therapy and the present review is an attempt to collect and document the available studies indicating EOs and their constituents as anticancer agents. This review enlists nearly 130 studies of EOs from various plant species and their constituents that have been studied so far for their anticancer potential and these studies have been classified as in vitro and in vivo studies for EOs and their constituents. This review also highlights in-depth various mechanisms of action of different EOs and their constituents reported in the treatment strategies for different types of cancer. The current review indicates that EOs and their constituents act by multiple pathways and mechanisms involving apoptosis, cell cycle arrest, antimetastatic and antiangiogenic, increased levels of reactive oxygen and nitrogen species (ROS/RNS), DNA repair modulation, and others to demonstrate their antiproliferative activity in the cancer cell. The effect of EOs and their constituents on tumour suppressor proteins (p53 and Akt), transcription factors (NF-κB and AP-1), MAPK-pathway, and detoxification enzymes like SOD, catalase, glutathione peroxidase, and glutathione reductase has also been discussed. PMID:25003106

  7. Virtual screening strategies: recent advances in the identification and design of anti-cancer agents.

    PubMed

    Kumar, Vikash; Krishna, Shagun; Siddiqi, Mohammad Imran

    2015-01-01

    Virtual screening (VS) is a well-established technique, which is now routinely employed in computer aided drug designing process. VS can be broadly classified into two categories, i.e., ligand-based and structure-based approach. In recent years, VS has emerged as a time saving and cost effective technique, capable of screening millions of compounds in a user friendly manner. In the area of cancer drug design, VS methods have been widely used and helped in identifying novel molecules as potential anti-cancer agents. Both ligand-based VS (LBVS) structure-based VS (SBVS) methods have been highly useful in the identification of a number of potential anti-cancer agents exhibiting activities in nanomolar range. In tune with the rapid progress in the enhancement of computational power, VS has witnessed significant change in terms of speed and hit rate and in future it is expected that VS will be a preferential alternative to high throughput screening (HTS). This review, discusses recent trends and contribution of VS in the area of anti-cancer drug discovery. PMID:25171960

  8. Tubulin-Interactive Natural Products as Anticancer Agents1

    PubMed Central

    Kingston, David G. I.

    2009-01-01

    This review provides an overview of the discovery, structures, and biological activities of anticancer natural products which act by inhibiting or promoting the assembly of tubulin to microtubules. The emphasis is on providing recent information on those compounds in clinical use or in advanced clinical trials. The vinca alkaloids, the combretastatins, NPI-2358, the halichondrin B analog eribulin, dolastatin 10, noscapine, hemiasterlin, and rhizoxin are discussed as tubulin polymerization inhibitors, while the taxanes and the epothilones are the major classes of tubulin polymerization promoters presented, with brief treatments of discodermolide, eleutherobin, and laulimalide. The challenges and future directions of tubulin-interactive natural products-based drug discovery programs are also discussed briefly. PMID:19125622

  9. Pegylated arginine deiminase: a novel anticancer enzyme agent

    PubMed Central

    Feun, Lynn; Savaraj, Niramol

    2011-01-01

    Pegylated arginine deiminase (ADI-PEG20) is a novel anticancer enzyme that produces depletion of arginine, which is a nonessential amino acid in humans. Certain tumours, such as malignant melanoma and hepatocellular carcinoma, are auxotrophic for arginine. These tumours that are sensitive to arginine depletion do not express argininosuccinate synthetase, a key enzyme in the synthesis of arginine from citrulline. ADI-PEG20 inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Phase I – II trials in patients with melanoma and hepatocellular carcinomas have shown the drug to have antitumour activity and tolerable side effects. Large Phase II trials and randomised, controlled Phase III trials are needed to determine its overall efficacy in the treatment of these malignancies and others. PMID:16787144

  10. Selective anti-cancer agents as anti-aging drugs

    PubMed Central

    Blagosklonny, Mikhail V

    2013-01-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease. PMID:24345884

  11. Clinically relevant drug interactions between anticancer drugs and psychotropic agents.

    PubMed

    Yap, K Y-L; Tay, W L; Chui, W K; Chan, A

    2011-01-01

    Drug interactions are commonly seen in the treatment of cancer patients. Psychotropics are often indicated for these patients since they may also suffer from pre-existing psychological disorders or experience insomnia and anxiety associated with cancer therapy. Thus, the risk of anticancer drug (ACD)-psychotropic drug-drug interactions (DDIs) is high. Drug interactions were compiled from the British National Formulary (53rd edn), Lexi-Comp's Drug Information Handbook (15th edn), Micromedex (v5.1), Hansten & Horn's Drug Interactions (2000) and Drug Interaction Facts (2008 edn). Product information of the individual drugs, as well as documented literature on ACD-psychotropic interactions from PubMed and other databases was also incorporated. This paper identifies clinically important ACD-psychotropic DDIs that are frequently observed. Pharmacokinetic DDIs were observed for tyrosine kinase inhibitors, corticosteroids and antimicrotubule agents due to their inhibitory or inductive effects on cytochrome P450 isoenzymes. Pharmacodynamic DDIs were identified for thalidomide with central nervous system depressants, procarbazine with antidepressants, myelosuppressive ACDs with clozapine and anthracyclines with QT-prolonging psychotropics. Clinicians should be vigilant when psychotropics are prescribed concurrently with ACDs. Close monitoring of plasma drug levels should be carried out to avoid toxicity in the patient, as well as to ensure adequate chemotherapeutic and psychotropic coverage. PMID:20030690

  12. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy.

    PubMed

    González-Vallinas, Margarita; Reglero, Guillermo; Ramírez de Molina, Ana

    2015-01-01

    Cancer remains an important cause of mortality nowadays and, therefore, new therapeutic approaches are still needed. Rosemary (Rosmarinus officinalis L.) has been reported to possess antitumor activities both in vitro and in animal studies. Some of these activities were attributed to its major components, such as carnosic acid, carnosol, ursolic acid, and rosmarinic acid. Initially, the antitumor effects of rosemary were attributed to its antioxidant activity. However, in recent years, a lack of correlation between antioxidant and antitumor effects exerted by rosemary was reported, and different molecular mechanisms were related to its tumor inhibitory properties. Moreover, supported by the U.S. Food and Drug Administration and the European Food and Safety Authority, specific compositions of rosemary extract were demonstrated to be safe for human health and used as antioxidant additive in foods, suggesting the potential easy application of this agent as a complementary approach in cancer therapy. In this review, we aim to summarize the reported anticancer effects of rosemary, the demonstrated molecular mechanisms related to these effects and the interactions between rosemary and currently used anticancer agents. The possibility of using rosemary extract as a complementary agent in cancer therapy in comparison with its isolated components is discussed. PMID:26452641

  13. Design and synthesis of 2,3-dihydro- and 5-chloro-2,3-dihydro-naphtho-[1,2-b]furan-2-carboxylic acid N-(substitutedphenyl)amide analogs and their biological activities as inhibitors of NF-κB activity and anticancer agents.

    PubMed

    Choi, Minho; Jo, Hyeju; Kim, Dayoung; Yun, Jieun; Kang, Jong-Soon; Kim, Youngsoo; Jung, Jae-Kyung; Hong, Jin Tae; Cho, Jungsook; Kwak, Jae-Hwan; Lee, Heesoon

    2016-05-01

    A series of 2,3-dihydro- and 5-chloro-2,3-dihydro-naphtho-[1,2-b]furan-2-carboxylic acid N-(substitutedphenyl)amide analogs (1a-k and 2a-i) were designed and synthesized for developing novel naphthofuran scaffolds as anticancer agents and inhibitors of NF-κB activity. Compound 1d, which had a 4'-chloro group on the N-phenyl ring, exhibited inhibitory activity of NF-κB. Compound 2g, which had a 5'-chloro group on the naphthofuran ring and a 3',5'-bistrifluoromethane group on the N-phenyl ring, had the best NF-κB inhibitory activity. In addition, the novel analogs exhibited potent cytotoxicity at low concentrations against HCT-116, NCI-H23, and PC-3 cell lines. The two electron-withdrawing groups, especially at the 3',5'-position on the N-phenyl ring, increased anticancer activity and NF-κB inhibitory activity. However, only 5-chloro-2,3-dihydronaphtho[1,2-b]furan-2-carboxylic N-(3',5'-bis(trifluoromethyl)phenyl)amide (2g) exhibited both outstanding cytotoxicity and NF-κB inhibitory activities. This novel lead scaffold may be helpful for investigation of new anticancer agents by inactivation of NF-κB. PMID:27021311

  14. Design, Synthesis, and In Vitro Evaluation of Novel 3, 7-Disubstituted Coumarin Derivatives as Potent Anticancer Agents.

    PubMed

    Wang, Yubin; Liu, Haitao; Lu, Peng; Mao, Rui; Xue, Xiaojian; Fan, Chen; She, Jinxiong

    2015-10-01

    Twenty-seven 3, 7-disubstituted coumarin derivatives were designed, synthesized, and evaluated in vitro as anticancer agents. Most of the compounds showed moderate-to-potent antiproliferative activity against K562 cells. Compounds 7b and 7d were chosen to evaluate the concentration of 50% growth inhibition (GI50 ) against SN12C, OVCAR, BxPC-3, KATO-III, T24, SNU-1, WiDr, HeLa, K562, and AGS cell lines. The most potent compound 7d was selected for further cell cycle arrest assay in the AGS cell line. The in vitro data indicated that methylation of benzimidazole moiety at the 3-position of coumarin exhibited significant enhancement of anticancer activity. This study should provide important information for further modification and optimization of coumarin derivatives as anticancer agents. PMID:25626768

  15. Nanodelivery of Parthenolide Using Functionalized Nanographene Enhances its Anticancer Activity

    PubMed Central

    Karmakar, A.; Mustafa, T.; Kannarpady, G.; Bratton, S.M.; Radominska-Pandya, A.; Crooks, P.A.

    2014-01-01

    Advances in anticancer chemotherapy have been hindered by the lack of biocompatibility of new prospective drugs. One significant challenge concerns water insolubility, which compromises the bioavailability of the drugs leading to increased dosage and higher systemic toxicity. To overcome these problems, nanodelivery has been established as a promising approach for increasing the efficacy and lowering the required dosage of chemotherapeutics. The naturally derived compound, parthenolide (PTL), is known for its anti-inflammatory and anticancer activity, but its poor water solubility limits its clinical value. In the present study, we have used carboxyl-functionalized nanographene (fGn) delivery to overcome the extreme hydrophobicity of this drug. A water-soluble PTL analog, dimethylamino parthenolide (DMAPT), was also examined for comparison with the anticancer efficacy of our PTL-fGn complex. Delivery by fGn was found to increase the anticancer/apoptotic effects of PTL (but not DMAPT) when delivered to the human pancreatic cancer cell line, Panc-1. The IC50 value for PTL decreased from 39 µM to 9.5 µM when delivered as a mixture with fGn. The IC50 of DMAPT did not decrease when delivered as DMAPT-fGn and was significantly higher than that for PTL-fGn. There were significant increases in ROS formation and in mitochondrial membrane disruption in Panc-1 cells after PTL-fGn treatment as compared to PTL treatment, alone. Increases in toxicity were also seen with apoptosis detection assays using flow cytometry, ethidium bromide/acridine orange/DAPI staining, and TUNEL. Thus, fGn delivery was successfully used to overcome the poor water solubility of PTL, providing a strategy for improving the effectiveness of this anticancer agent. PMID:25574376

  16. Synthesis and SAR Study of the Novel Thiadiazole-Imidazole Derivatives as a New Anticancer Agents.

    PubMed

    Gomha, Sobhi Mohamed; Abdel-Aziz, Hassan Mohamed; Khalil, Khaled Dessouky

    2016-01-01

    In the present study, a novel series of 2-(2-(3-aryl-5-substituted-1,3,4-thiadiazol-2(3H)-ylidene)hydrazinyl)-4,4-diphenyl-1H-imidazol-5(4H)-one derivatives were designed and prepared via the reaction of the most versatile, hitherto unreported 2-(5-oxo-4,4-diphenyl-4,5-dihydro-1H-imidazol-2-yl)-N-phenylhydrazinecarbothioamide with the appropriate hydrazonoyl halides. In addition, some thiazole derivatives were prepared. The structures of the newly synthesized compounds were established based on spectroscopic evidences and their alternative syntheses. Some of the newly synthesized compounds have been evaluated for their anticancer activity against a liver carcinoma cell line HEPG2-1. Moreover, their structure-activity relationship (SAR) was explored for further development in this area. The results indicated that many of the tested compounds showed moderate to high anticancer activity with respective to doxorubicin as a reference drug. Consequently, the new synthesized series of thiadiazole-imidazole derivatives are considered as powerful anticancer agents. PMID:27581640

  17. Xanthones from Mangosteen Extracts as Natural Chemopreventive Agents: Potential Anticancer Drugs

    PubMed Central

    Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E.

    2011-01-01

    Despite decades of research, the treatment and management of malignant tumors still remain a formidable challenge for public health. New strategies for cancer treatment are being developed, and one of the most promising treatment strategies involves the application of chemopreventive agents. The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds. Xanthones, from the pericarp, whole fruit, heartwood, and leaf of mangosteen (Garcinia mangostana Linn., GML), are known to possess a wide spectrum of pharmacologic properties, including anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities. The potential chemopreventive and chemotherapeutic activities of xanthones have been demonstrated in different stages of carcinogenesis (initiation, promotion, and progression) and are known to control cell division and growth, apoptosis, inflammation, and metastasis. Multiple lines of evidence from numerous in vitro and in vivo studies have confirmed that xanthones inhibit proliferation of a wide range of human tumor cell types by modulating various targets and signaling transduction pathways. Here we provide a concise and comprehensive review of preclinical data and assess the observed anticancer effects of xanthones, supporting its remarkable potential as an anticancer agent. PMID:21902651

  18. Thiosemicarbazone Cu(II) and Zn(II) complexes as potential anticancer agents: syntheses, crystal structure, DNA cleavage, cytotoxicity and apoptosis induction activity.

    PubMed

    Shao, Jia; Ma, Zhong-Ying; Li, Ang; Liu, Ya-Hong; Xie, Cheng-Zhi; Qiang, Zhao-Yan; Xu, Jing-Yuan

    2014-07-01

    Four novel thiosemicarbazone metal complexes, [Cu(Am4M)(OAc)]·H2O (1), [Zn(HAm4M)Cl2] (2), [Zn2(Am4M)2Br2] (3) and [Zn2(Am4M)2(OAc)2]·2MeOH (4) [HAm4M=(Z)-2-(amino(pyridin-2-yl)methylene)-N-methylhydrazinecarbothioamide], have been synthesized and characterized by X-ray crystallography, elemental analysis, ESI-MS and IR. X-ray analysis revealed that complexes 1 and 2 are mononuclear, which possess residual coordination sites for Cu(II) ion in 1 and good leaving groups (Cl(-)) for Zn(II) ion in 2. Both 3 and 4 displayed dinuclear units, in which the metal atoms are doubly bridged by S atoms of two Am4M(-) ligands in 3 and by two acetate ions in bi- and mono-dentate forms, respectively, in 4. Their antiproliferative activities on human epithelial cervical cancer cell line (HeLa), human liver hepatocellular carcinoma cell line (HepG-2) and human gastric cancer cell line (SGC-7901) were screened. Inspiringly, IC50 value (11.2±0.9 μM) of complex 1 against HepG-2 cells was nearly 0.5 fold of that against human hepatic cell lines LO2, showing a lower toxicity to human liver cells. Additionally, it displayed a stronger inhibition on the viability of HepG-2 cells than cisplatin (IC50=25±3.1 μM), suggesting complex 1 might be a potential high efficient antitumor agent. Furthermore, fluorescence microscopic observation and flow cytometric analysis revealed that complex 1 could significantly suppress HepG-2 cell viability and induce apoptosis. Several indexes, such as DNA cleavage, reactive oxygen species (ROS) generation, comet assay and cell cycle analysis indicated that the antitumor mechanism of complex 1 on HepG-2 cells might be via ROS-triggered apoptosis pathway. PMID:24690556

  19. Amino acid esters substituted phosphorylated emtricitabine and didanosine derivatives as antiviral and anticancer agents.

    PubMed

    Sekhar, Kuruva Chandra; Janardhan, Avilala; Kumar, Yellapu Nanda; Narasimha, Golla; Raju, Chamarthi Naga; Ghosh, S K

    2014-07-01

    Owing to the promising antiviral activity of amino acid ester-substituted phosphorylated nucleosides in the present study, a series of phosphorylated derivatives of emtricitabine and didanosine substituted with bioactive amino acid esters at P-atom were synthesized. Initially, molecular docking studies were screened to predict their molecular interactions with hemagglutinin-neuraminidase protein of Newcastle disease virus and E2 protein of human papillomavirus. The title compounds were screened for their antiviral ability against Newcastle disease virus (NDV) by their in ovo study in embryonated chicken eggs. Compounds 5g and 9c exposed well mode of interactions with HN protein and also exhibited potential growth of NDV inhibition. The remaining compounds exhibited better growth of NDV inhibition than their parent molecules, i.e., emtricitabine (FTC) and didanosine (ddI). In addition, the in vitro anticancer activity of all the title compounds were screenedagainst HeLa cell lines at 10 and 100 μg/mL concentrations. The compounds 5g and 9c showed an effective anticancer activity than that of the remaining title compounds with IC50 values of 40 and 60 μg/mL, respectively. The present in silico and in ovo antiviral and in vitro anticancer results of the title compounds are suggesting that the amino acid ester-substituted phosphorylated FTC and ddI derivatives, especially 5g and 9c, can be used as NDV inhibitors and anticancer agents for the control and management of viral diseases with cancerous condition. PMID:24789416

  20. Synthesis of New 3-Heteroarylindoles as Potential Anticancer Agents.

    PubMed

    Abdelhamid, Abdou O; Gomha, Sobhi M; Abdelriheem, Nadia A; Kandeel, Saher M

    2016-01-01

    2-(3-(1H-Indol-3-yl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-substituted-5-(substituted diazenyl)thiazoles and 2-(1H-indol-3-yl)-9-substituted-4,7-disubstituted pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(7H)-ones were synthesized via reaction of hydrazonoyl halides with each of 3-(1H-indol-2-yl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide and 7-(1H-indol-3-yl)-2- thioxo-5-substituted-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones, respectively. Also, hydrazonoyl halides were reacted with N'-(1-(1H-indol-3-yl)ethylidene)-2-cyanoacetohydrazide to afford 1,3,4-thiadiazole derivatives. Structures of the new synthesis were elucidated on the basis of elemental analysis, spectral data, and alternative synthetic routes whenever possible. Fifteen of the new compounds have been evaluated for their antitumor activity against the MCF-7 human breast carcinoma cell line. The results indicated that many of the tested compounds showed moderate to high anticancer activity when compared with doxorubicin as a reference drug. PMID:27438822

  1. Plant-derived anticancer agents - curcumin in cancer prevention and treatment.

    PubMed

    Creţu, Elena; Trifan, Adriana; Vasincu, Al; Miron, Anca

    2012-01-01

    Nowadays cancer is still a major public health issue. Despite all the progresses made in cancer prevention, diagnosis and treatment, mortality by cancer is on the second place after the one caused by cardiovascular diseases. The high mortality and the increasing incidence of certain cancers (lung, prostate, colorectal) justify a growing interest for the identification of new pharmacological agents efficient in cancer prevention and treatment. In the last fifty years many plant-derived agents (vinblastine, vincristine, vindesine, paclitaxel, docetaxel, topotecan, irinotecan, elliptinium) played a major role in cancer treatment. Other very promising plant-derived anticancer agents (combrestatins, betulinic acid, roscovitine, purvalanols, indirubins) are in clinical or preclinical trials. Curcumin, a liposoluble polyphenolic pigment isolated from the rhizomes of Curcuma longa L. (Zingiberaceae), is another potential candidate for new anticancer drug development. Curcumin has been reported to influence many cell-signaling pathways involved in tumor initiation and proliferation. Curcumin inhibits COX-2 activity, cyclin D1 and MMPs overexpresion, NF-kB, STAT and TNF-alpha signaling pathways and regulates the expression of p53 tumor suppressing gene. Curcumin is well-tolerated but has a reduced systemic bioavailability. Polycurcumins (PCurc 8) and curcumin encapsulated in biodegradable polymeric nanoparticles (NanoCurc) showed higher bioavailability than curcumin together with a significant tumor growth inhibition in both in vitro and in vivo studies. BILITY. PMID:23700916

  2. The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions.

    PubMed

    Śliwka, Lidia; Wiktorska, Katarzyna; Suchocki, Piotr; Milczarek, Małgorzata; Mielczarek, Szymon; Lubelska, Katarzyna; Cierpiał, Tomasz; Łyżwa, Piotr; Kiełbasiński, Piotr; Jaromin, Anna; Flis, Anna; Chilmonczyk, Zdzisław

    2016-01-01

    Multiple in vitro tests are widely applied to assess the anticancer activity of new compounds, including their combinations and interactions with other drugs. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay is one of the most commonly used assays to assess the efficacy and interactions of anticancer agents. However, it can be significantly influenced by compounds that modify cell metabolism and reaction conditions. Therefore, several assays are sometimes used to screen for potential anticancer drugs. However, the majority of drug interactions are evaluated only with this single method. The aim of our studies was to verify whether the choice of an assay has an impact on determining the type of interaction and to identify the source of discrepancies. We compared the accuracy of MTT and CVS (crystal violet staining) assays in the interaction of two compounds characterized by similar anticancer activity: isothiocyanates (ITCs) and Selol. Confocal microscopy studies were carried out to assess the influence of these compounds on the reactive oxygen species (ROS) level, mitochondrial membrane potential, dead-to-live cell ratio and MTT-tetrazolium salt reduction rate. The MTT assay was less reliable than CVS. The MTT test of Selol and 2-oxoheptyl ITC, which affected the ROS level and MTT reduction rate, gave false negative (2-oxoheptyl ITC) or false positive (Selol) results. As a consequence, the MTT assay identified an antagonistic interaction between Selol and ITC, while the metabolism-independent CVS test identified an additive or synergistic interaction. In this paper, we show for the first time that the test assay may change the interpretation of the compound interaction. Therefore, the test method should be chosen with caution, considering the mechanism of action of the compound. PMID:27196402

  3. The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions

    PubMed Central

    Śliwka, Lidia; Wiktorska, Katarzyna; Suchocki, Piotr; Milczarek, Małgorzata; Mielczarek, Szymon; Lubelska, Katarzyna; Cierpiał, Tomasz; Łyżwa, Piotr; Kiełbasiński, Piotr; Jaromin, Anna; Flis, Anna; Chilmonczyk, Zdzisław

    2016-01-01

    Multiple in vitro tests are widely applied to assess the anticancer activity of new compounds, including their combinations and interactions with other drugs. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay is one of the most commonly used assays to assess the efficacy and interactions of anticancer agents. However, it can be significantly influenced by compounds that modify cell metabolism and reaction conditions. Therefore, several assays are sometimes used to screen for potential anticancer drugs. However, the majority of drug interactions are evaluated only with this single method. The aim of our studies was to verify whether the choice of an assay has an impact on determining the type of interaction and to identify the source of discrepancies. We compared the accuracy of MTT and CVS (crystal violet staining) assays in the interaction of two compounds characterized by similar anticancer activity: isothiocyanates (ITCs) and Selol. Confocal microscopy studies were carried out to assess the influence of these compounds on the reactive oxygen species (ROS) level, mitochondrial membrane potential, dead-to-live cell ratio and MTT-tetrazolium salt reduction rate. The MTT assay was less reliable than CVS. The MTT test of Selol and 2-oxoheptyl ITC, which affected the ROS level and MTT reduction rate, gave false negative (2-oxoheptyl ITC) or false positive (Selol) results. As a consequence, the MTT assay identified an antagonistic interaction between Selol and ITC, while the metabolism-independent CVS test identified an additive or synergistic interaction. In this paper, we show for the first time that the test assay may change the interpretation of the compound interaction. Therefore, the test method should be chosen with caution, considering the mechanism of action of the compound. PMID:27196402

  4. Anticancer Agent Shikonin Is an Incompetent Inducer of Cancer Drug Resistance

    PubMed Central

    Wu, Hao; Xie, Jiansheng; Pan, Qiangrong; Wang, Beibei; Hu, Danqing; Hu, Xun

    2013-01-01

    Purpose Cancer drug resistance is a major obstacle for the success of chemotherapy. Since most clinical anticancer drugs could induce drug resistance, it is desired to develop candidate drugs that are highly efficacious but incompetent to induce drug resistance. Numerous previous studies have proven that shikonin and its analogs not only are highly tumoricidal but also can bypass drug-transporter and apoptotic defect mediated drug resistance. The purpose of this study is to investigate if or not shikonin is a weak inducer of cancer drug resistance. Experimental Design Different cell lines (K562, MCF-7, and a MDR cell line K562/Adr), after repeatedly treated with shikonin for 18 months, were assayed for drug resistance and gene expression profiling. Results After 18-month treatment, cells only developed a mere 2-fold resistance to shikonin and a marginal resistance to cisplatin and paclitaxel, without cross resistance to shikonin analogs and other anticancer agents. Gene expression profiles demonstrated that cancer cells did strongly respond to shikonin treatment but failed to effectively mobilize drug resistant machineries. Shikonin-induced weak resistance was associated with the up-regulation of βII-tubulin, which physically interacted with shikonin. Conclusion Taken together, apart from potent anticancer activity, shikonin and its analogs are weak inducers of cancer drug resistance and can circumvent cancer drug resistance. These merits make shikonin and its analogs potential candidates for cancer therapy with advantages of avoiding induction of drug resistance and bypassing existing drug resistance. PMID:23300986

  5. Monocarboxylate Transporter 1 Inhibitors as Potential Anticancer Agents

    PubMed Central

    2015-01-01

    Potent monocarboxylate transporter 1 inhibitors (MCT1) have been developed based on α-cyano-4-hydroxycinnamic acid template. Structure–activity relationship studies demonstrate that the introduction of p-N, N-dialkyl/diaryl, and o-methoxy groups into cyanocinnamic acid has maximal MCT1 inhibitory activity. Systemic toxicity studies in healthy ICR mice with few potent MCT1 inhibitors indicate normal body weight gains in treated animals. In vivo tumor growth inhibition studies in colorectal adenocarcinoma (WiDr cell line) in nude mice xenograft models establish that compound 27 exhibits single agent activity in inhibiting the tumor growth. PMID:26005533

  6. Evaluation of 2-(methylaminosulfonyl)-1-(arylsulfonyl)-1-methylhydrazines as anticancer agents.

    PubMed

    Sanyal, U; De, R; Dutta, S; Das, H; Ghost, M

    1993-01-01

    Seven new 2-(methylaminosulfonyl)-1-(arylsulfonyl)-1-methylhydrazines were prepared. The anticancer activity of these compounds was assessed in murine Ehrlich ascites carcinoma (EAC) by in vivo screening. Moderate in vivo activity in EAC was exhibited by three compounds. All of them were screened in vitro against a battery of human tumor cell lines at the National Cancer Institute (NCI), USA. One of them, compound 3a has displayed highly significant specificity in the renal tumor cell line RXF 393. These three compounds were also assessed for in vitro anti-HIV activity at the NCI, however, they have not reached the criteria of significant activity. The alkylating activity of the compounds was determined by measuring the absorbance of the alkylated product of 4-(4-nitrobenzyl)pyridine. It has been found that they are capable of acting as chemical alkylating agents. PMID:8272148

  7. Potential use of Folate-appended Methyl-β-Cyclodextrin as an Anticancer Agent

    PubMed Central

    Onodera, Risako; Motoyama, Keiichi; Okamatsu, Ayaka; Higashi, Taishi; Arima, Hidetoshi

    2013-01-01

    To obtain a tumor cell-selectivity of methyl-β-cyclodextrin (M-β-CyD), we newly synthesized folate-appended M-β-CyD (FA-M-β-CyD), and evaluated the potential of FA-M-β-CyD as a novel anticancer agent in vitro and in vivo. Potent antitumor activity and cellular association of FA-M-β-CyD were higher than those of M-β-CyD in KB cells, folate receptor (FR)-positive cells. FA-M-β-CyD drastically inhibited the tumor growth after intratumoral or intravenous injection to FR-positive Colon-26 cells-bearing mice. The antitumor activity of FA-M-β-CyD was comparable and superior to that of doxorubicin after both intratumoral and intravenous administrations, respectively, at the same dose, in the tumor-bearing mice. All of the tumor-bearing mice after an intravenous injection of FA-M-β-CyD survived for at least more than 140 days. Importantly, an intravenous administration of FA-M-β-CyD to tumor-bearing mice did not show any significant change in blood chemistry values. These results strongly suggest that FA-M-β-CyD has the potential as a novel anticancer agent. PMID:23346361

  8. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    PubMed

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  9. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of

  10. Anticancer activities of Nigella sativa (black cumin).

    PubMed

    Khan, Md Asaduzzaman; Chen, Han-chun; Tania, Mousumi; Zhang, Dian-zheng

    2011-01-01

    Nigella sativa has been used as traditional medicine for centuries. The crude oil and thymoquinone (TQ) extracted from its seeds and oil are effective against many diseases like cancer, cardiovascular complications, diabetes, asthma, kidney disease etc. It is effective against cancer in blood system, lung, kidney, liver, prostate, breast, cervix, skin with much safety. The molecular mechanisms behind its anticancer role is still not clearly understood, however, some studies showed that TQ has antioxidant role and improves body's defense system, induces apoptosis and controls Akt pathway. Although the anti-cancer activity of N. sativa components was recognized thousands of years ago but proper scientific research with this important traditional medicine is a history of last 2∼3 decades. There are not so many research works done with this important traditional medicine and very few reports exist in the scientific database. In this article, we have summarized the actions of TQ and crude oil of N. sativa against different cancers with their molecular mechanisms. PMID:22754079

  11. Synthesis and anticancer activity of 6-heteroarylcoumarins.

    PubMed

    Galayev, Olexandr; Garazd, Yana; Garazd, Myroslav; Lesyk, Roman

    2015-11-13

    A series of novel 7-hydroxy-8-methyl-coumarins with indole, pyrimidine, pyrazole, pyran, tetrazolo[1,5-a]pyrimidine, pyrimido[1,2-a]benzimidazol, 2-oxo-1,2-dihydropyridine and dihydropyrazolo[3,4-b]pyridine moieties at C6 position of heterocyclic core have been synthesized. Anticancer activity screening on NCI60 cell lines allowed identification of 6-(6-fluoro-1H-indol-2-yl)-7-hydroxy-4,8-dimethyl-2H-chromen-2-one (23) with the highest level of antimitotic activity with mean GI50/TGI values of 3.28/13.24 μM and certain sensitivity profile towards the Non-Small Cell Lung Cancer cell line НОР-92 (GI50/TGI/LC50 values 0.95/4.17/29.9 μM). PMID:26491980

  12. Mechanism of Action of Phenethylisothiocyanate and Other Reactive Oxygen Species-Inducing Anticancer Agents

    PubMed Central

    Jutooru, Indira; Guthrie, Aaron S.; Chadalapaka, Gayathri; Pathi, Satya; Kim, KyoungHyun; Burghardt, Robert; Jin, Un-Ho

    2014-01-01

    Reactive oxygen species (ROS)-inducing anticancer agents such as phenethylisothiocyanate (PEITC) activate stress pathways for killing cancer cells. Here we demonstrate that PEITC-induced ROS decreased expression of microRNA 27a (miR-27a)/miR-20a:miR-17-5p and induced miR-regulated ZBTB10/ZBTB4 and ZBTB34 transcriptional repressors, which, in turn, downregulate specificity protein (Sp) transcription factors (TFs) Sp1, Sp3, and Sp4 in pancreatic cancer cells. Decreased expression of miR-27a/miR-20a:miR-17-5p by PEITC-induced ROS is a key step in triggering the miR-ZBTB Sp cascade leading to downregulation of Sp TFs, and this is due to ROS-dependent epigenetic effects associated with genome-wide shifts in repressor complexes, resulting in decreased expression of Myc and the Myc-regulated miRs. Knockdown of Sp1 alone by RNA interference also induced apoptosis and decreased pancreatic cancer cell growth and invasion, indicating that downregulation of Sp transcription factors is an important common mechanism of action for PEITC and other ROS-inducing anticancer agents. PMID:24732804

  13. New synthetic aliphatic sulfonamido-quaternary ammonium salts as anticancer chemotherapeutic agents.

    PubMed

    Song, Doona; Yang, Jee Sun; Oh, Changmok; Cui, Shuolin; Kim, Bo-Kyung; Won, Misun; Lee, Jang-ik; Kim, Hwan Mook; Han, Gyoonhee

    2013-11-01

    RhoB is expressed during tumor cell proliferation, survival, invasion, and metastasis. In malignant progression, the expression levels of RhoB are commonly attenuated. RhoB is known to be linked to the regulation of the PI3K/Akt survival pathways. Based on aliphatic amido-quaternary ammonium salts that induce apoptosis via up-regulation of RhoB, we synthesized novel aliphatic sulfonamido-quaternary ammonium salts. These new synthetic compounds were evaluated for their biological activities using an in vitro RhoB promoter assay in HeLa cells, and in a growth inhibition assay using human cancer cell lines including PC-3, NUGC-3, MDA-MB-231, ACHN, HCT-15, and NCI-H23. Compound 5b (ethyl-dimethyl-{3-[methyl-(tetradecane-1-sulfonyl)-amino]-propyl}-ammonium; iodide) was the most promising anticancer agent in the series, based upon the potency of growth inhibition and RhoB promotion. These new aliphatic sulfonamido-quaternary ammonium salts could be a valuable series for development of new anticancer chemotherapeutic agents. PMID:24095759

  14. Novel C6-substituted 1,3,4-oxadiazinones as potential anti-cancer agents

    PubMed Central

    Jung, Yujin; Yun, Hye Jeong; Min, Hye-Young; Lee, Ho Jin; Pham, Phuong Chi; Moon, Jayoung; Kwon, Dah In; Lim, Bumhee; Suh, Young-Ger; Lee, Jeeyeon; Lee, Ho-Young

    2015-01-01

    The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents. PMID:26515601

  15. Nature promises new anticancer agents: Interplay with the apoptosis-related BCL2 gene family.

    PubMed

    Christodoulou, Maria-Ioanna; Kontos, Christos K; Halabalaki, Maria; Skaltsounis, Alexios-Leandros; Scorilas, Andreas

    2014-03-01

    Natural products display special attributes in the treatment and prevention of a variety of human disorders including cancer. Their therapeutic capacities along with the fact that nature comprises a priceless pool of new compounds have attracted the interest of researchers worldwide. A significant number of organic compounds from terrestrial and marine organisms exhibit anticancer properties as attested by both in vitro and in vivo studies. Emerging evidence supporting the antineoplastic activity of natural compounds has rendered them promising agents in the fight against cancer. As a result, numerous natural compounds or their derivatives have entered clinical practice and are currently in the forefront of chemotherapeutics, showing beneficial effects for cancer patients. Induction of apoptosis seems to be the major mechanism of action induced by these natural agents in the race against cancer. This is mainly achieved through modulations of the expression of B-cell CLL/lymphoma 2 (BCL2) family members. These molecules appear to be the pivotal players determining cellular fate. In the current review, we provide a comprehensive overview of the major alterations in the gene and/or protein levels of BCL2-family members evoked in cancer cells after treatment with a gamut of natural compounds. The data cited suggest the need for exploitation of newly discovered natural products that, along with the improvement of currently employed chemotherapeutics, will significantly enrich the anticancer armamentarium. PMID:23848203

  16. ER maleate is a novel anticancer agent in oral cancer: implications for cancer therapy

    PubMed Central

    Fu, Guodong; Somasundaram, Raj Thani; Jessa, Fatima; Srivastava, Gunjan; MacMillan, Christina; Witterick, Ian; Walfish, Paul G.; Ralhan, Ranju

    2016-01-01

    ER maleate [10-(3-Aminopropyl)-3, 4-dimethyl-9(10H)-acridinone maleate] identified in a kinome screen was investigated as a novel anticancer agent for oral squamous cell carcinoma (OSCC). Our aim was to demonstrate its anticancer effects, identify putative molecular targets and determine their clinical relevance and investigate its chemosensitization potential for platinum drugs to aid in OSCC management. Biologic effects of ER maleate were determined using oral cancer cell lines in vitro and oral tumor xenografts in vivo. mRNA profiling, real time PCR and western blot revealed ER maleate modulated the expression of polo-like kinase 1 (PLK1) and spleen tyrosine kinase (Syk). Their clinical significance was determined in oral SCC patients by immunohistochemistry and correlated with prognosis by Kaplan-Meier survival and multivariate Cox regression analyses. ER maleate induced cell apoptosis, inhibited proliferation, colony formation, migration and invasion in oral cancer cells. Imagestream analysis revealed cell cycle arrest in G2/M phase and increased polyploidy, unravelling deregulation of cell division and cell death. Mechanistically, ER maleate decreased expression of PLK1 and Syk, induced cleavage of PARP, caspase9 and caspase3, and increased chemosensitivity to carboplatin; significantly suppressed tumor growth and increased antitumor activity of carboplatin in tumor xenografts. ER maleate treated tumor xenografts showed reduced PLK1 and Syk expression. Clinical investigations revealed overexpression of PLK1 and Syk in oral SCC patients that correlated with disease prognosis. Our in vitro and in vivo findings provide a strong rationale for pre-clinical efficacy of ER maleate as a novel anticancer agent and chemosensitizer of platinum drugs for OSCC. PMID:26934445

  17. Non-covalent carriage of anticancer agents by humanized antibody trastuzumab.

    PubMed

    Yadav, Arpita; Sharma, Sweta; Yadav, Veejendra Kumar

    2016-05-01

    This article explores the internalization and non-covalent carriage of small molecule anticancer agents like vinca alkaloids by humanized monoclonal antibody trastuzumab. Such carriage is marked by significant reduction in side effects and increased therapeutic value of these anticancer agents. This study is coherent with few clinical observations of enhanced efficiency of these anticancer agents when co-administered with therapeutic antibodies. This study will also serve as the foundation for screening a database of anticancer agents for possible compounds that may be co-delivered alongwith the antibody. Based on this study vincristine conformation inside antibody and its charge environment may be used as descriptors for screening purposes. Graphical Abstract This article describes the use of immunotherapeutic agents for enhancing the bioavailability and efficacy of small molecule anticancer agents. The internalization and non-covalent carriage of vinca alkaloids by humanized antibody trastuzumab has been investigated utilizing flexible ligand molecular docking and molecular dynamics simulation studies coupled with MMGBSA binding energy calculations. The study concludes efficient non-covalent carriage without probability of premature expulsion. It is recommended that vincristine conformation and charge distribution may be used for screening library of compounds for possible mAb cargo. PMID:27109707

  18. Biological and therapeutic activities, and anticancer properties of curcumin

    PubMed Central

    PERRONE, DONATELLA; ARDITO, FATIMA; GIANNATEMPO, GIOVANNI; DIOGUARDI, MARIO; TROIANO, GIUSEPPE; LO RUSSO, LUCIO; DE LILLO, ALFREDO; LAINO, LUIGI; LO MUZIO, LORENZO

    2015-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis. PMID:26640527

  19. Investigation of Vietnamese plants for potential anticancer agents

    PubMed Central

    Pérez, Lynette Bueno; Still, Patrick C.; Naman, C. Benjamin; Ren, Yulin; Pan, Li; Chai, Hee-Byung; Carcache de Blanco, Esperanza J.; Ninh, Tran Ngoc; Van Thanh, Bui; Swanson, Steven M.; Soejarto, Djaja D.

    2014-01-01

    Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities. PMID:25395897

  20. Improved Total Synthesis and Biological Evaluation of Potent Apratoxin S4 Based Anticancer Agents with Differential Stability and Further Enhanced Activity

    PubMed Central

    2015-01-01

    Apratoxins are cytotoxic natural products originally isolated from marine cyanobacteria that act by preventing cotranslational translocation early in the secretory pathway to downregulate receptor levels and inhibit growth factor secretion, leading to potent antiproliferative activity. Through rational design and total synthesis of an apratoxin A/E hybrid, apratoxin S4 (1a), we have previously improved the antitumor activity and tolerability in vivo. Compound 1a and newly designed analogues apratoxins S7–S9 (1b–d), with various degrees of methylation at C34 (1b,c) or epimeric configuration at C30 (1d), were efficiently synthesized utilizing improved procedures. Optimizations have been applied to the synthesis of key intermediate aldehyde 7 and further include the application of Leighton’s silanes and modifications of Kelly’s methods to induce thiazoline ring formation in other crucial steps of the apratoxin synthesis. Apratoxin S9 (1d) exhibited increased activity with subnanomolar potency. Apratoxin S8 (1c) lacks the propensity to be deactivated by dehydration and showed efficacy in a human HCT116 xenograft mouse model. PMID:24660812

  1. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models.

    PubMed

    Ito, Ken; Hamamichi, Shusei; Asano, Makoto; Hori, Yusaku; Matsui, Junji; Iwata, Masao; Funahashi, Yasuhiro; Umeda, Izumi O; Fujii, Hirofumi

    2016-01-01

    Liposomal anticancer agents can effectively deliver drugs to tumor lesions, but their therapeutic effects are enhanced in only limited number of patients. Appropriate biomarkers to identify responder patients to these liposomal agents will improve their treatment efficacies. We carried out pharmacological and histopathological analyses of mouse xenograft models bearing human ovarian cancers (Caov-3, SK-OV-3, KURAMOCHI, and TOV-112D) to correlate the therapeutic effects of doxorubicin-encapsulated liposome (Doxil(®) ) and histological characteristics linked to the enhanced permeability and retention effect. We next generated (111) In-encapsulated liposomes to examine their capacities to determine indications for Doxil(®) treatment by single-photon emission computed tomography (SPECT)/CT imaging. Antitumor activities of Doxil(®) were drastically enhanced in Caov-3, moderately in SK-OV-3, and minimally in KURAMOCHI and TOV-112D when compared to doxorubicin. Microvessel density and vascular perfusion were high in Caov-3 and SK-OV-3, indicating a close relation with the enhanced antitumor effects. Next, (111) In-encapsulated liposomes were given i.v. to the animals. Their tumor accumulation and area under the curve values over 72 h were high in Caov-3, relatively high in SK-OV-3, and low in two other tumors. Importantly, as both Doxil(®) effects and liposomal accumulation varied in the SK-OV-3 group, we individually obtained SPECT/CT images of SK-OV-3-bearing mouse (n = 11) before Doxil(®) treatment. Clear correlation between liposomal tumor accumulation and effects of Doxil(®) was confirmed (R(2) = 0.73). Taken together, our experiments definitely verified that enhanced therapeutic effects through liposomal formulations of anticancer agents depend on tumor accumulation of liposomes. Tumor accumulation of the radiolabeled liposomes evaluated by SPECT/CT imaging is applicable to appropriately determine indications for liposomal antitumor agents. PMID:26509883

  2. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes

    PubMed Central

    Yang, Xuewei; Yang, Shuang; Chai, Hongyu; Yang, Zhaogang; Lee, Robert J.; Liao, Weiwei; Teng, Lesheng

    2015-01-01

    We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation. PMID:26309138

  3. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles

    PubMed Central

    Lin, Jun; Huang, Zhihai; Wu, Hao; Zhou, Wei; Jin, Peipei; Wei, Pengfei; Zhang, Yunjiao; Zheng, Fang; Zhang, Jiqian; Xu, Jing; Hu, Yi; Wang, Yanhong; Li, Yajuan; Gu, Ning; Wen, Longping

    2014-01-01

    Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy. PMID:25484080

  4. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles.

    PubMed

    Lin, Jun; Huang, Zhihai; Wu, Hao; Zhou, Wei; Jin, Peipei; Wei, Pengfei; Zhang, Yunjiao; Zheng, Fang; Zhang, Jiqian; Xu, Jing; Hu, Yi; Wang, Yanhong; Li, Yajuan; Gu, Ning; Wen, Longping

    2014-01-01

    Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy. PMID:25484080

  5. First synthesis and anticancer activity of novel naphthoquinone amides.

    PubMed

    Pradidphol, Narathip; Kongkathip, Ngampong; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Boonsong

    2012-03-01

    Sixteen novel naphthoquinone aromatic amides were synthesized by a new route starting from 1-hydroxy-2-naphthoic acid in nine or ten steps with good to excellent yield. Amide formation reaction was carried out by using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as an efficient condensing agent leading to carboxamides in high yield. The key step for converting naphthol to 3-hydroxynaphthoquinone was the Fremy's salt oxidation followed by hydroxylation with tert-butyl hydroperoxide and triton B. Anticancer activity of these new naphthoquinone amides were evaluated and benzamide 22 showed potent inhibition against NCI-H187 cell lines while naphthamides 23 and 43 were the most potent inhibition against KB cells. The decatenation assay revealed that compounds 24 and 43 at 20 μM can inhibit hTopoIIα activity while three other compounds, namely compounds 22, 23, and 45, exhibited hTopoIIα inhibitory activity at final concentration of 50 μM. Docking experiment revealed the same trend as the cytotoxicity and decatenation assay. Therefore, naphthamides 24 and 43 can be promising target molecules for anticancer drug development. PMID:22280818

  6. Design, synthesis and biological evaluation of arylcinnamide hybrid derivatives as novel anticancer agents

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Chayah, Mariem; Camacho, M. Encarnacion; Prencipe, Filippo; Hamel, Ernest; Consolaro, Francesca; Basso, Giuseppe; Viola, Giampietro

    2014-01-01

    The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. A series of novel antiproliferative agents designed by a pharmacophore hybridization approach, combining the arylcinnamide skeleton and an α-bromoacryloyl moiety, was synthesized and evaluated for its antiproliferative activity against a panel of seven human cancer cell lines. In addition, the new derivatives were also active on multidrug-resistant cell lines over-expressing P-glycoprotein. The biological effects of various substituents on the N-phenyl ring of the benzamide portion were also described. In order to study the possible mechanism of action, we observed that 4p slightly increased the Reactive Oxygen Species (ROS) production in HeLa cells, but, more importantly, a remarkable decrease of intracellular reduced glutathione content was detected in treated cells compared with controls. These results were confirmed by the observation that only thiol-containing antioxidants were able to significantly protect the cells from induced cell death. Altogether our results indicate that the new derivatives are endowed with good anticancer activity in vitro, and their properties may result in the development of new cancer therapeutic strategies. PMID:24858544

  7. Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P

    2015-01-01

    Itraconazole, a common triazole anti-fungal drug in widespread clinical use, has evidence of clinical activity that is of interest in oncology. There is evidence that at the clinically relevant doses, itraconazole has potent anti-angiogenic activity, and that it can inhibit the Hedgehog signalling pathway and may also induce autophagic growth arrest. The evidence for these anticancer effects, in vitro, in vivo, and clinical are summarised, and the putative mechanisms of their action outlined. Clinical trials have shown that patients with prostate, lung, and basal cell carcinoma have benefited from treatment with itraconazole, and there are additional reports of activity in leukaemia, ovarian, breast, and pancreatic cancers. Given the evidence presented, a case is made that itraconazole warrants further clinical investigation as an anti- cancer agent. Additionally, based on the properties summarised previously, it is proposed that itraconazole may synergise with a range of other drugs to enhance the anti-cancer effect, and some of these possible combinations are presented in the supplementary materials accompanying this paper. PMID:25932045

  8. Photosensitization with anticancer agents. 17. EPR studies of photodynamic action of hypericin: formation of semiquinone radical and activated oxygen species on illumination.

    PubMed

    Diwu, Z; Lown, J W

    1993-02-01

    When hypericin was illuminated with 580 nm light in aqueous solution, the semiquinone radical, singlet oxygen, and superoxide anion radical were detected. The formation of the semiquinone radical and activated oxygen species and the transformation and competition between them depend on the quinone and oxygen concentrations, irradiation time and intensity, and the nature of substrate. In anaerobic solution containing a high concentration of the quinone, the semiquinone radical was predominantly photoproduced. In contrast, in aerobic solution, singlet oxygen is the principal product in the photosensitization of hypericin. Besides singlet oxygen, superoxide anion radical is generated by the quinone on illumination in aerobic solution via the reduction of oxygen by the semiquinone radical, but to a lesser extent than singlet oxygen. The generation of superoxide anion radical is significantly enhanced by the presence of electron donors. PMID:8381107

  9. Quinones derived from plant secondary metabolites as anti-cancer agents.

    PubMed

    Lu, Jin-Jian; Bao, Jiao-Lin; Wu, Guo-Sheng; Xu, Wen-Shan; Huang, Ming-Qing; Chen, Xiu-Ping; Wang, Yi-Tao

    2013-03-01

    Quinones are plant-derived secondary metabolites that present some anti-proliferation and anti-metastasis effects in various cancer types both in vitro and in vivo. This review focuses on the anti-cancer prospects of plant-derived quinones, namely, aloe-emodin, juglone, β-lapachol, plumbagin, shikonin, and thymoquinone. We intend to summarize their anti-cancer effects and investigate the mechanism of actions to promote the research and development of anti-cancer agents from quinones. PMID:22931417

  10. Recent advances in the discovery of heparanase inhibitors as anti-cancer agents.

    PubMed

    Jia, Li; Ma, Shutao

    2016-10-01

    Heparanase, an only endo-β-d-glucuronidase capable of cleaving heparan sulfate (HS) side chains at specific sites, contributes to remodeling of the extracellular matrix (ECM) and releasing of HS-linked growth factors, cytokines and signaling proteins. In addition, heparanase also plays an indispensable role in tumor angiogenesis, invasion and metastasis, indicating that it is a promising target for the development of antitumor drugs. Recent progress leads to three classes of heparanase inhibitors, including active analogs of endogenous substance, synthetic small molecule compounds and natural products. In this review, following an outline on the heparanase structure and function, an overview of the advancement of heparanase inhibitors as novel and potent anti-cancer agents will be given, especially introducing various existing heparanase inhibitors, as well as their inhibitory activities and mechanisms of action. PMID:27240275

  11. Discovery of anticancer agents of diverse natural origin*

    PubMed Central

    Kinghorn, A. Douglas; Carcache de Blanco, Esperanza J.; Chai, Hee-Byung; Orjala, Jimmy; Farnsworth, Norman R.; Soejarto, D. Doel; Oberlies, Nicholas H.; Wani, Mansukh C.; Kroll, David J.; Pearce, Cedric J.; Swanson, Steven M.; Kramer, Robert A.; Rose, William C.; Fairchild, Craig R.; Vite, Gregory D.; Emanuel, Stuart; Jarjoura, David; Cope, Frederick O.

    2009-01-01

    A collaborative multidisciplinary research project is described in which new natural product anticancer drug leads are obtained from a diverse group of organisms, constituted by tropical plants, aquatic cyanobacteria, and filamentous fungi. Information is provided on how these organisms are collected and processed. The types of bioassays are indicated in which crude extracts of these acquisitions are tested. Progress made in the isolation of lead bioactive secondary metabolites from three tropical plants is discussed. PMID:20046887

  12. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    PubMed

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications. PMID:26035332

  13. New oleyl glycoside as anti-cancer agent that targets on neutral sphingomyelinase.

    PubMed

    Romero-Ramírez, Lorenzo; García-Álvarez, Isabel; Casas, Josefina; Barreda-Manso, M Asunción; Yanguas-Casás, Natalia; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso

    2015-09-15

    We designed and synthesized two anomeric oleyl glucosaminides as anti-cancer agents where the presence of a trifluoroacetyl group close to the anomeric center makes them resistant to hydrolysis by hexosaminidases. The oleyl glycosides share key structural features with synthetic and natural oleyl derivatives that have been reported to exhibit anti-cancer properties. While both glycosides showed antiproliferative activity on cancer cell lines, only the α-anomer caused endoplasmic reticulum (ER) stress and cell death on C6 glioma cells. Analysis of sphingolipids and glycosphingolipds in cells treated with the glycosides showed that the α-anomer caused a drastic accumulation of ceramide and glucosylceramide and reduction of lactosylceramide and GM3 ganglioside at concentrations above a threshold of 20 μM. In order to understand how ceramide levels increase in response to α-glycoside treatment, further investigations were done using specific inhibitors of sphingolipid metabolic pathways. The pretreatment with 3-O-methylsphingomyelin (a neutral sphingomyelinase inhibitor) restored sphingomyelin levels together with the lactosylceramide and GM3 ganglioside levels and prevented the ER stress and cell death caused by the α-glycoside. The results indicated that the activation of neutral sphingomyelinase is the main cause of the alterations in sphingolipids that eventually lead to cell death. The new oleyl glycoside targets a key enzyme in sphingolipid metabolism with potential applications in cancer therapy. PMID:26206186

  14. Nucleotide Binding Preference of the Monofunctional Platinum Anticancer-Agent Phenanthriplatin.

    PubMed

    Riddell, Imogen A; Johnstone, Timothy C; Park, Ga Young; Lippard, Stephen J

    2016-05-23

    The monofunctional platinum anticancer agent phenanthriplatin generates covalent adducts with the purine bases guanine and adenine. Preferential nucleotide binding was investigated by using a polymerase stop assay and linear DNA amplification with a 163-base pair DNA double helix. Similarly to cisplatin, phenanthriplatin forms the majority of adducts at guanosine residues, but significant differences in both the number and position of platination sites emerge when comparing results for the two complexes. Notably, the monofunctional complex generates a greater number of polymerase-halting lesions at adenosine residues than does cisplatin. Studies with 9-methyladenine reveal that, under abiological conditions, phenanthriplatin binds to the N(1) or N(7) position of 9-methyladenine in approximately equimolar amounts. By contrast, comparable reactions with 9-methylguanine afforded only the N(7) -bound species. Both of the 9-methyladenine linkage isomers (N(1) and N(7) ) exist as two diastereomeric species, arising from hindered rotation of the aromatic ligands about their respective platinum-nitrogen bonds. Eyring analysis of rate constants extracted from variable-temperature NMR spectroscopic data revealed that the activation energies for ligand rotation in the N(1) -bound platinum complex and the N(7) -linkage isomers are comparable. Finally, a kinetic analysis indicated that phenanthriplatin reacts more rapidly, by a factor of eight, with 9-methylguanine than with 9-methyladenine, suggesting that the distribution of lesions formed on double-stranded DNA is kinetically controlled. In addition, implications for the potent anticancer activity of phenanthriplatin are discussed herein. PMID:27111128

  15. Fenugreek: a naturally occurring edible spice as an anticancer agent.

    PubMed

    Shabbeer, Shabana; Sobolewski, Michelle; Anchoori, Ravi Kumar; Kachhap, Sushant; Hidalgo, Manuel; Jimeno, Antonio; Davidson, Nancy; Carducci, Michael A; Khan, Saeed R

    2009-02-01

    In recent years, various dietary components that can potentially be used for the prevention and treatment of cancer have been identified. In this study, we demonstrate that extract (FE) from the seeds of the plant Trigonella foenum graecum, commonly called fenugreek, are cytotoxic in vitro to a panel of cancer but not normal cells. Treatment with 10-15 ug/mL of FE for 72 h was growth inhibitory to breast, pancreatic and prostate cancer cell lines (PCa). When tested at higher doses (15-20 ug/mL), FE continued to be growth inhibitory to PCa cell lines but not to either primary prostate or hTert-immortalized prostate cells. At least part of the growth inhibition is due to induction of cell death, as seen by incorporation of Ethidium Bromide III into cancer cells exposed to FE. Molecular changes induced in PCa cells are: in DU-145 cells: downregulation of mutant p53, and in PC-3 cells upregulation of p21 and inhibition of TGFbeta induced phosphorylation of Akt. The surprising finding of our studies is that death of cancer cells occurs despite growth stimulatory pathways being simultaneously upregulated (phosphorylated) by FE. Thus, these studies add another biologically active agent to our armamentarium of naturally occurring agents with therapeutic potential. PMID:19197146

  16. Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells

    PubMed Central

    Wolfram, Joy; Suri, Krishna; Huang, Yi; Molinaro, Roberto; Borsoi, Carlotta; Scott, Bronwyn; Boom, Kathryn; Paolino, Donatella; Fresta, Massimo; Wang, Jianghua; Ferrari, Mauro

    2014-01-01

    Context Celastrol, a natural compound derived from the herb Tripterygium wilfordii, is known to have anticancer activity, but is not soluble in water. Objective Formation of celastrol liposomes, to avoid the use of toxic solubilizing agents. Materials and methods Two different formulations of pegylated celastrol liposomes were fabricated. Liposomal characteristics and serum stability were determined using dynamic light scattering. Drug entrapment efficacy and drug release were measured spectrophotometrically. Cellular internalization and anticancer activity was measured in prostate cancer cells. Results Liposomal celastrol displayed efficient serum stability, cellular internalization and anticancer activity, comparable to that of the free drug reconstituted in dimethyl sulfoxide. Discussion and conclusion Liposomal celastrol can decrease the viability of prostate cancer cells, while eliminating the need for toxic solubilizing agents. PMID:24654943

  17. Anticancer activity of Aristolochia ringens Vahl. (Aristolochiaceae)

    PubMed Central

    Akindele, Abidemi James; Wani, Zahoor; Mahajan, Girish; Sharma, Sadhana; Aigbe, Flora Ruth; Satti, Naresh; Adeyemi, Olufunmilayo Olaide; Mondhe, Dilip Manikrao

    2014-01-01

    Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs especially from plants. The sulforhodamine B (SRB) in vitro cytotoxicity assay, sarcoma-180 (S-180) ascites and solid tumor, and L1210 lymphoid leukemia in vivo models were used to investigate the anticancer activity of root extracts of Aristolochia ringens Vahl. (Aristolochiaceae; 馬兜鈴 mǎ dōu líng). AR-A001 (IC50 values of 20 μg/mL, 22 μg/mL, 3 μg/mL, and 24 μg/mL for A549, HCT-116, PC3, and THP-1 cell lines, respectively), and AR-A004 (IC50 values of 26 μg/mL, 19.5 μg/mL, 12 μg/mL, 28 μg/mL, 30 μg/mL, and 22 μg/mL for A549, HCT-116, PC3, A431, HeLa, and THP-1, respectively), were observed to be significantly active in vitro. Potency was highest with AR-A001 and AR-A004 for PC3 with IC50 values of 3 μg/mL and 12 μg/mL, respectively. AR-A001 and AR-A004 produced significant (p < 0.05–0.001) dose-dependent inhibition of tumor growth in the S-180 ascites model with peak effects produced at the highest dose of 120 mg/kg. Inhibition values were 79.51% and 89.98% for AR-A001 and AR-A004, respectively. In the S-180 solid tumor model, the inhibition of tumor growth was 29.45% and 50.50% for AR-A001 (120 mg/kg) and AR-A004 (110 mg/kg), respectively, compared to 50.18% for 5-fluorouracil (5-FU; 20 mg/kg). AR-A001 and AR-A004 were also significantly active in the leukemia model with 211.11% and 155.56% increase in mean survival time (MST) compared to a value of 211.11% for 5-FU. In conclusion, the ethanolic (AR-A001) and dichloromethane:methanol (AR-A004) root extracts of AR possess significant anticancer activities in vitro and in vivo. PMID:26151007

  18. Second annual progress report on introduction and use of investigational anticancer agents in Australia, 1984-1985. Anticancer Subcommittee of the Australian Drug Evaluation Committee.

    PubMed

    1986-03-31

    Since the publication of its first report, the Anticancer Subcommittee of the Australian Drug Evaluation Committee (ADEC) has provided advice to ADEC and to the Commonwealth Department of Health on investigational anticancer agents in all stages of development. This second report outlines the progress in 1984-1985. PMID:3515139

  19. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi).

    PubMed

    Moradali, Mohammad-Fata; Mostafavi, Hossein; Ghods, Shirin; Hedjaroude, Ghorban-Ali

    2007-06-01

    Nowadays macrofungi are distinguished as important natural resources of immunomodulating and anticancer agents and with regard to the increase in diseases involving immune dysfunction, cancer, autoimmune conditions in recent years, applying such immunomodulator agents especially with the natural original is vital. These compounds belong mainly to polysaccharides especially beta-d-glucan derivates, glycopeptide/protein complexes (polysaccharide-peptide/protein complexes), proteoglycans, proteins and triterpenoids. Among polysaccharides, beta(1-->3)-d-glucans and their peptide/protein derivates and among proteins, fungal immunomodulatory proteins (Fips) have more important role in immunomodulating and antitumor activities. Immunomodulating and antitumor activity of these metabolites related to their effects to act of immune effecter cells such as hematpoietic stem cells, lymphocytes, macrophages, T cells, dendritic cells (DCs), and natural killer (NK) cells involved in the innate and adaptive immunity, resulting in the production of biologic response modifiers. In this review we have introduced the medicinal mushrooms' metabolites with immunomoduling and antitumor activities according to immunological evidences and then demonstrated their effects on innate and adaptive immunity and also the mechanisms of activation of immune responses and signaling cascade. In addition, their molecular structure and their relation to these activities have been shown. The important instances of these metabolites along with their immunomodulating and/or antitumor activities isolated from putative medicinal mushrooms are also introduced. PMID:17466905

  20. Anticancer activity of selected Colocasia gigantia fractions.

    PubMed

    Pornprasertpol, Apichai; Sereemaspun, Amornpun; Sooklert, Kanidta; Satirapipatkul, Chutimon; Sukrong, Suchada

    2015-01-01

    The objective of this study is to investigate the anticancer potential of the extract of Colocasia gigantea C. gigantea), a plant member of the Araceae family. In the present study, we investigated the cytotoxic activity of C. gigantea extract on cervical cancer (Hela) and human white blood cells (WBC) in vitro. The authors then identified the bioactive ingredients that demonstrated cytotoxicity on tested cells and evaluated those bioactive ingredients using the bioassay-guided fractionation method. The results showed that not all parts of C. gigantea promote cytotoxic activity. The dichloromethane leaf fraction showed significant cell proliferation effect on Hela cells, but not on WBCs. Only the n-hexane tuber fraction (Fr. 1T) exhibited significant cytotoxicity on Hela cells (IC50 = 585 μg/ml) and encouraged WBC cell proliferation. From GC-Mass spectrometry, 4,22-Stigmastadiene-3-one, Diazoprogesterone, 9-Octadecenoic acid (Z)-, hexyl ester and Oleic Acid were the components of Fr 1T that demonstrated cytotoxic potential. In conclusion, C. gigantea's Fr 1T shows potential for cervical cancer treatment. PMID:25764620

  1. Synthesis of xanthone derivatives based on α-mangostin and their biological evaluation for anti-cancer agents.

    PubMed

    Fei, Xiang; Jo, Minmi; Lee, Bit; Han, Sang-Bae; Lee, Kiho; Jung, Jae-Kyung; Seo, Seung-Yong; Kwak, Young-Shin

    2014-05-01

    A xanthone-derived natural product, α-mangostin is isolated from various parts of the mangosteen, Garcinia mangostana L. (Clusiaceae), a well-known tropical fruit. Novel xanthone derivatives based on α-mangostin were synthesized and evaluated as anti-cancer agents by cytotoxicity activity screening using 5 human cancer cell lines. Some of these analogs had potent to moderate inhibitory activities. The structure-activity relationship studies revealed that phenol groups on C3 and C6 are critical to anti-proliferative activity and C4 modification is capable to improve both anti-cancer activity and drug-like properties. Our findings provide new possibilities for further explorations to improve potency. PMID:24717154

  2. New water soluble pyrroloquinoline derivatives as new potential anticancer agents.

    PubMed

    Ferlin, Maria Grazia; Marzano, Christine; Dalla Via, Lisa; Chilin, Adriana; Zagotto, Giuseppe; Guiotto, Adriano; Moro, Stefano

    2005-08-01

    A new class of water soluble 3H-pyrrolo[3,2-f]quinoline derivatives has been synthesized and investigated as potential anticancer drugs. Water solubility profiles have been used to select the most promising derivatives. The novel compound 10, having two (2-diethylamino-ethyl) side chains linked through positions 3N and 9O, presents a suitable water solubility profile, and it was shown to exhibit cell growth inhibitory properties when tested against the in-house panel of cell lines, in particular those obtained from melanoma. PMID:15936202

  3. Novel capsaicin analogues as potential anticancer agents: synthesis, biological evaluation, and in silico approach.

    PubMed

    Damião, Mariana C F C B; Pasqualoto, Kerly F M; Ferreira, Adilson K; Teixeira, Sarah F; Azevedo, Ricardo A; Barbuto, José A M; Palace-Berl, Fanny; Franchi-Junior, Gilberto C; Nowill, Alexandre E; Tavares, Maurício T; Parise-Filho, Roberto

    2014-12-01

    A novel class of benzo[d][1,3]dioxol-5-ylmethyl alkyl/aryl amide and ester analogues of capsaicin were designed, synthesized, and evaluated for their cytotoxic activity against human and murine cancer cell lines (B16F10, SK-MEL-28, NCI-H1299, NCI-H460, SK-BR-3, and MDA-MB-231) and human lung fibroblasts (MRC-5). Three compounds (5f, 6c, and 6e) selectively inhibited the growth of aggressive cancer cells in the micromolar (µM) range. Furthermore, an exploratory data analysis pointed at the topological and electronic molecular properties as responsible for the discrimination process regarding the set of investigated compounds. The findings suggest that the applied designing strategy, besides providing more potent analogues, indicates the aryl amides and esters as well as the alkyl esters as interesting scaffolds to design and develop novel anticancer agents. PMID:25283529

  4. Inhibition of Mitochondrial Complex II by the Anticancer Agent Lonidamine.

    PubMed

    Guo, Lili; Shestov, Alexander A; Worth, Andrew J; Nath, Kavindra; Nelson, David S; Leeper, Dennis B; Glickson, Jerry D; Blair, Ian A

    2016-01-01

    The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism. PMID:26521302

  5. Inhibition of Mitochondrial Complex II by the Anticancer Agent Lonidamine*

    PubMed Central

    Guo, Lili; Shestov, Alexander A.; Worth, Andrew J.; Nath, Kavindra; Nelson, David S.; Leeper, Dennis B.; Glickson, Jerry D.; Blair, Ian A.

    2016-01-01

    The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism. PMID:26521302

  6. Cysteine-modifying agents: a possible approach for effective anticancer and antiviral drugs.

    PubMed Central

    Casini, Angela; Scozzafava, Andrea; Supuran, Claudiu T

    2002-01-01

    Modification of cysteine residues in proteins, due to a) the participation of the thiol moiety of this amino acid in oxido-reduction reactions, b) its ability to strongly coordinate transition metal ions, or c) its nucleophilic nature and facile reaction with electrophiles, may be critically important for the design of novel types of pharmacological agents. Application of such procedures recently led to the design of novel antivirals, mainly based on the reaction of zinc finger proteins with disulfides and related derivatives. This approach was particularly successful for developing novel antiviral agents for human immunodeficiency virus and human papilloma virus. Several new anticancer therapeutic approaches, mainly targeting tubulin, have also been reported. Thus, this unique amino acid offers very interesting possibilities for developing particularly useful pharmacological agents, which generally possess a completely different mechanism of action compared with classic agents in clinical use, thus avoiding major problems such as multidrug resistance (for antiviral and anticancer agents) or high toxicity. PMID:12426135

  7. Transportan 10 improves the anticancer activity of cisplatin.

    PubMed

    Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić

    2016-05-01

    The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a

  8. Synthesis and evaluation of naphthalene-based thiosemicarbazone derivatives as new anticancer agents against LNCaP prostate cancer cells.

    PubMed

    Altintop, Mehlika Dilek; Sever, Belgin; Özdemir, Ahmet; Kuş, Gökhan; Oztopcu-Vatan, Pinar; Kabadere, Selda; Kaplancikli, Zafer Asim

    2016-01-01

    Fourteen new naphthalene-based thiosemicarbazone derivatives were designed as anticancer agents against LNCaP human prostate cancer cells and synthesized. MTT assay indicated that compounds 6, 8 and 11 exhibited inhibitory effect on LNCaP cells. Among these compounds, 4-(naphthalen-1-yl)-1-[1-(4-hydroxyphenyl)ethylidene)thiosemicarbazide (6), which caused more than 50% death on LNCaP cells, was chosen for flow cytometric analysis of apoptosis. Flow cytometric analysis pointed out that compound 6 also showed apoptotic effect on LNCaP cells. Compound 6 can be considered as a promising anticancer agent against LNCaP cells owing to its potent cytotoxic activity and apoptotic effect. PMID:25826149

  9. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis.

    PubMed

    Nakamura, Kazuki; Shinozuka, Kazumasa; Yoshikawa, Noriko

    2015-01-01

    Cordyceps sinensis, a fungus that parasitizes on the larva of Lepidoptera, has been used as a valued traditional Chinese medicine. We investigated the effects of water extracts of Cordyceps sinensis (WECS), and particularly focused on its anticancer and antimetastatic actions. Based on in vitro studies, we report that WECS showed an anticancer action, and this action was antagonized by an adenosine A3 receptor antagonist. Moreover, this anticancer action of WECS was promoted by an adenosine deaminase inhibitor. These results suggest that one of the components of WECS with an anticancer action might be an adenosine or its derivatives. Therefore, we focused on cordycepin (3'-deoxyadenosine) as one of the active ingredients of WECS. According to our experiments, cordycepin showed an anticancer effect through the stimulation of adenosine A3 receptor, followed by glycogen synthase kinase (GSK)-3β activation and cyclin D1 suppression. Cordycepin also showed an antimetastatic action through inhibiting platelet aggregation induced by cancer cells and suppressing the invasiveness of cancer cells via inhibiting the activity of matrix metalloproteinase (MMP)-2 and MMP-9, and accelerating the secretion of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 from cancer cells. In conclusion, cordycepin, an active component of WECS, might be a candidate anticancer and antimetastatic agent. PMID:25704018

  10. Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anticancer agents

    PubMed Central

    Al-Balas, Qosay A; Hassan, Mohammad A; Al-Shar’i, Nizar A; Mhaidat, Nizar M; Almaaytah, Ammar M; Al-Mahasneh, Fatima M; Isawi, Israa H

    2016-01-01

    Background The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I) and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs. Methods Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I. Results Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM. Conclusion We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may be efficiently employed in future optimization steps. PMID:27574401

  11. Novel walnut peptide–selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity

    PubMed Central

    Liao, Wenzhen; Zhang, Rong; Dong, Chenbo; Yu, Zhiqiang; Ren, Jiaoyan

    2016-01-01

    This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer. PMID:27143875

  12. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity.

    PubMed

    Liao, Wenzhen; Zhang, Rong; Dong, Chenbo; Yu, Zhiqiang; Ren, Jiaoyan

    2016-01-01

    This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer. PMID:27143875

  13. Hepatocellular carcinoma detected by iodized oil: use of anticancer agents

    SciTech Connect

    Ohishi, H.; Uchida, H.; Yoshimura, H.; Ohue, S.; Ueda, J.; Katsuragi, M.; Matsuo, N.; Hosogi, Y.

    1985-01-01

    Transcatheter arterial embolization (TAE) was performed in 97 patients with hepatocellular carcinoma. Ethiodol (iodized oil) containing an anticancer drug was infused via the hepatic artery followed by Gelfoam particles. The Ethiodol emulsion was selectively retained in the tumor vessels and also remained in the small daughter nodules that could not be detected by angiography or computed tomography (CT) prior to TAE. In most patients there was a reduction in the tumor size following TAE, and serum alpha-fetoprotein levels were reduced in all patients whose initial levels had exceeded 400 ng/ml. This method is considered to be effective not only for treatment of hepatic tumor but also useful for evaluation of post-TAE changes in the tumor and diagnosis of small daughter nodules, due to the long-term accumulation of Ethiodol in tumor vessels.

  14. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.

    PubMed

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV-vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. PMID:25280701

  15. Anticancer molecule AS1411 exhibits low nanomolar antiviral activity against HIV-1.

    PubMed

    Métifiot, Mathieu; Amrane, Samir; Mergny, Jean-Louis; Andreola, Marie-Line

    2015-11-01

    During clinical trials, a number of fully characterized molecules are dropped along the way because they do not provide enough benefit for the patient. Some of them show limited side effects and might be of great use for other applications. AS1411 is a nucleolin-targeting aptamer that underwent phase II clinical trials as anticancer agent. Here, we show that AS1411 exhibits extremely potent antiviral activity and is therefore an attractive new lead as anti-HIV agent. PMID:26363100

  16. Molecular modeling based synthesis and evaluation of in vitro anticancer activity of indolyl chalcones.

    PubMed

    Gaur, Rashmi; Yadav, Dharmendra K; Kumar, Shiv; Darokar, Mahendra P; Khan, Feroz; Bhakuni, Rajendra Singh

    2015-01-01

    A series of twenty one chalcone derivatives having indole moiety were synthesized and were evaluated against four human cancer cell lines. Indolyl chalcones 1a, 1b, 1d, 1f-1j, 2c, 2e, 2i showed good anticancer activity. Chalcones 1b and 1d were the most active and selective anticancer agents with IC50 values <1μg/ml and 1.51μg/ml, against WRL-68 cell line, respectively. Molecular mechanism was explored through in silico docking & ADMET studies. PMID:25860176

  17. Parthenium hysterophorus: A Probable Source of Anticancer, Antioxidant and Anti-HIV Agents

    PubMed Central

    Kumar, Shashank; Chashoo, Gousia; Saxena, Ajit K.; Pandey, Abhay K.

    2013-01-01

    The present work reports the anticancer, antioxidant, lipo-protective, and anti-HIV activities of phytoconstituents present in P. hysterophorus leaf. Dried leaf samples were sequentially extracted with nonpolar and polar solvents. Ethanol fraction showed noticeable cytotoxic activity (81–85%) in SRB assay against MCF-7 and THP-1 cancer cell lines at 100 μg/ml concentration, while lower activity was observed with DU-145 cell line. The same extract exhibited 17–98% growth inhibition of HL-60 cancer cell lines in MTT assay, showing concentration dependent response. Ethanol extract caused 12% reduction in mitochondrial membrane potential and 10% increment in sub G1 population of HL-60 cell lines. Several leaf fractions, namely, ethyl acetate, ethanol, and aqueous fractions exhibited considerable reducing capability at higher concentrations. Most of the extracts demonstrated appreciable (>75%) metal ion chelating and hydroxyl radical scavenging activities at 200 µg/ml. All the extracts except aqueous fraction accounted for about 70–80% inhibition of lipid peroxidation in rat liver homogenate indicating protective response against membrane damage. About 40% inhibition of reverse transcriptase (RT) activity was observed in hexane fraction in anti-HIV assay at 6.0 µg/ml concentration. The study showed that phytochemicals present in P. hysterophorus leaf have considerable potential as cytotoxic and antioxidant agents with low to moderate anti-HIV activity. PMID:24350290

  18. Anticancer activity studies of cubebin isolated from Piper cubeba and its synthetic derivatives.

    PubMed

    Rajalekshmi, Dhanya S; Kabeer, Farha A; Madhusoodhanan, Arya R; Bahulayan, Arun K; Prathapan, Remani; Prakasan, Nisha; Varughese, Sunil; Nair, Mangalam S

    2016-04-01

    (-)-Cubebin, isolated from the seeds of Piper cubeba, and its five different types of derivatives (a total of 17), with varying functionalities, were tested for their in vitro anticancer activity against six human cancer cell lines (A549, K562, SiHa, KB, HCT116 and HT29) using MTT assay. Cubebin as well as its derivatives containing lactone and amide groups showed significant anticancer activity. In some of the tested cell lines, the amide derivatives showed higher activity. Morphological analysis indicated that these compounds act through apoptosis mediated pathway of cell death and we expect that these results will pave new paths in the development of novel anticancer agents by the derivatization of (-)-cubebin. PMID:26916436

  19. Anti-cancer activity of bromelain nanoparticles by oral administration.

    PubMed

    Bhatnagar, Priyanka; Patnaik, Soma; Srivastava, Amit K; Mudiam, Mohan K R; Shukla, Yogeshwer; Panda, Amulya K; Pant, Aditya B; Kumar, Pradeep; Gupta, Kailash C

    2014-12-01

    Oral administration of anti-cancer drugs is an effective alternative to improve their efficacy and reduce undesired toxicity. Bromelain (BL) is known as an effective anti-cancer phyto-therapeutic agent, however, its activity is reduced upon oral administration. In addressing the issue, BL was encapsulated in Poly(lactic-co-glycolic acid) (PLGA) to formulate nanoparticles (NPs). Further, the NPs were coated with Eudragit L30D polymer to introduce stability against the gastric acidic conditions. The resultant coated NPs were characterized for BL entrapment, proteolytic activity and mean particle size. The stability and release pattern of NPs were evaluated under simulated gastrointestinal tract (GIT) pH conditions. Cytotoxicity studies carried out in human cell lines of diverse origin have shown significant dose advantage (-7-10 folds) with NPs in reducing the IC50 values compared with free BL. The cellular uptake of NPs in MCF-7, HeLa and Caco-2 cells monolayer was significantly enhanced several folds as compared to free BL. Altered expression of marker proteins associated with apoptosis and cell death (P53, P21, Bcl2, Bax) also confirmed the enhanced anti-carcinogenic potential of formulated NPs. Oral administration of NPs reduced the tumor burden of Ehrlich ascites carcinoma (EAC) in Swiss albino mice and also increased their life-span (160.0 ± 5.8%) when compared with free BL (24 ± 3.2%). The generation of reactive oxygen species, induction of apoptosis and impaired mitochondrial membrane potential in EAC cells treated with NPs confirmed the suitability of Eudragit coated BL-NPs as a promising candidate for oral chemotherapy. PMID:26000370

  20. Double layered hydroxides as potential anti-cancer drug delivery agents.

    PubMed

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed. PMID:23170959

  1. Design of enzymatically cleavable prodrugs of a potent platinum-containing anticancer agent.

    PubMed

    Ding, Song; Pickard, Amanda J; Kucera, Gregory L; Bierbach, Ulrich

    2014-12-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum-acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the prodrug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  2. Design of Enzymatically Cleavable Prodrugs of a Potent Platinum-Containing Anticancer Agent

    PubMed Central

    Ding, Song; Pickard, Amanda J.; Kucera, Gregory L.

    2014-01-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum–acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the pro-drug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  3. Design, Synthesis, and Biological Evaluation of Novel Selenium (Se-NSAID) Molecules as Anticancer Agents.

    PubMed

    Plano, Daniel; Karelia, Deepkamal N; Pandey, Manoj K; Spallholz, Julian E; Amin, Shantu; Sharma, Arun K

    2016-03-10

    The synthesis and anticancer evaluation of novel selenium-nonsteroidal anti-inflammatory drug (Se-NSAID) hybrid molecules are reported. The Se-aspirin analogue 8 was identified as the most effective agent in reducing the viability of different cancer cell lines, particularly colorectal cancer (CRC) cells, was more selective toward cancer cells than normal cells, and was >10 times more potent than 5-FU, the current therapy for CRC. Compound 8 inhibits CRC growth via the inhibition of the cell cycle in G1 and G2/M phases and reduces the cell cycle markers like cyclin E1 and B1 in a dose dependent manner; the inhibition of the cell cycle may be dependent on the ability of 8 to induce p21 expression. Furthermore, 8 induces apoptosis by activating caspase 3/7 and PARP cleavage, and its longer exposure causes increase in intracellular ROS levels in CRC cells. Taken together, 8 has the potential to be developed further as a chemotherapeutic agent for CRC. PMID:26750401

  4. Bioassay-Guided Isolation of Sesquiterpene Coumarins from Ferula narthex Bioss: A New Anticancer Agent

    PubMed Central

    Alam, Mahboob; Khan, Ajmal; Wadood, Abdul; Khan, Ayesha; Bashir, Shumaila; Aman, Akhtar; Jan, Abdul Khaliq; Rauf, Abdur; Ahmad, Bashir; Khan, Abdur Rahman; Farooq, Umar

    2016-01-01

    The main objective of cancer management with chemotherapy (anticancer drugs) is to kill the neoplastic (cancerous) cell instead of a normal healthy cell. The bioassay-guided isolation of two new sesquiterpene coumarins (compounds 1 and 2) have been carried out from Ferula narthex collected from Chitral, locally known as “Raw.” Anticancer activity of crude and all fractions have been carried out to prevent carcinogenesis by using MTT assay. The n-hexane fraction showed good activity with an IC50 value of 5.434 ± 0.249 μg/mL, followed by crude MeFn extract 7.317 ± 0.535 μg/mL, and CHCl3 fraction 9.613 ± 0.548 μg/mL. Compounds 1 and 2 were isolated from chloroform fraction. Among tested pure compounds, compound 1 showed good anticancer activity with IC50 value of 14.074 ± 0.414 μg/mL. PASS (Prediction of Activity Spectra) analysis of the compound 1 was carried out, in order to predicts their binding probability with anti-cancer target. As a results the compound 1 showed binding probability with human histone acetyltransferase with Pa (probability to be active) value of 0.303. The compound 1 was docked against human histone acetyltransferase (anti-cancer drug target) by using molecular docking simulations. Molecular docking results showed that compound 1 accommodate well in the anti-cancer drug target. Moreover the activity support cancer chemo preventive activity of different compounds isolated from the genus Ferula, in accordance with the previously reported anticancer activities of the genus. PMID:26909039

  5. Development of anticancer agents targeting the Wnt/β-catenin signaling

    PubMed Central

    Zhang, Xiangqian; Hao, Jijun

    2015-01-01

    Wnt/β-catenin signaling plays indispensable roles in both embryonic development and adult homeostasis. Abnormal regulation of this pathway is implicated in many types of cancer. Consequently, substantial efforts have made to develop therapeutic agents as anticancer drugs by specifically targeting the Wnt/β-catenin pathway. Here we systematically review the potential therapeutic agents that have been developed to date for inhibition of the Wnt/β-catenin cascade as well as current status of clinical trials of some of these agents. PMID:26396911

  6. Unconventional Anticancer Agents: A Systematic Review of Clinical Trials

    PubMed Central

    Vickers, Andrew J.; Kuo, Joyce; Cassileth, Barrie R.

    2006-01-01

    Purpose A substantial number of cancer patients turn to treatments other than those recommended by mainstream oncologists in an effort to sustain tumor remission or halt the spread of cancer. These unconventional approaches include botanicals, high-dose nutritional supplementation, off-label pharmaceuticals, and animal products. The objective of this study was to review systematically the methodologies applied in clinical trials of unconventional treatments specifically for cancer. Methods MEDLINE 1966 to 2005 was searched using approximately 200 different medical subject heading terms (eg, alternative medicine) and free text words (eg, laetrile). We sought prospective clinical trials of unconventional treatments in cancer patients, excluding studies with only symptom control or nonclinical (eg, immune) end points. Trial data were extracted by two reviewers using a standardized protocol. Results We identified 14,735 articles, of which 214, describing 198 different clinical trials, were included. Twenty trials were phase I, three were phase I and II, 70 were phase II, and 105 were phase III. Approximately half of the trials investigated fungal products, 20% investigated other botanicals, 10% investigated vitamins and supplements, and 10% investigated off-label pharmaceuticals. Only eight of the phase I trials were dose-finding trials, and a mere 20% of phase II trials reported a statistical design. Of the 27 different agents tested in phase III, only one agent had a prior dose-finding trial, and only for three agents was the definitive study initiated after the publication of phase II data. Conclusion Unconventional cancer treatments have not been subject to appropriate early-phase trial development. Future research on unconventional therapies should involve dose-finding and phase II studies to determine the suitability of definitive trials. PMID:16382123

  7. Synthesis and screening of ursolic acid-benzylidine derivatives as potential anti-cancer agents.

    PubMed

    Dar, Bilal Ahmad; Lone, Ali Mohd; Shah, Wajaht Amin; Qurishi, Mushtaq Ahmad

    2016-03-23

    Ursolic acid present abundantly in plant kingdom is a well-known compound with various promising biological activities including, anti-cancer, anti-inflammatory, hepatoprotective, antiallergic and anti-HIV properties. Herein, a library of ursolic acid-benzylidine derivatives have been designed and synthesized using Claisen Schmidt condensation of ursolic acid with various aromatic aldehydes in an attempt to develop potent antitumor agents. The compounds were evaluated against a panel of four human carcinoma cell lines including, A-549 (lung), MCF-7 (breast), HCT-116 (colon), THP-1 (leukemia) and a normal human epithelial cell line (FR-2). The results from MTT assay revealed that all the compounds displayed high level of antitumor activities compared with the triazole analogs (previously reported) and the parent ursolic acid. However, compound 3b, the most active derivative was subjected to mechanistic studies to understand the underlying mechanism. The results revealed that compound 3b induced apoptosis in HCT-116 cell lines, arrest cell cycle in the G1 phase, caused accumulation of cytochrome c in the cytosol and increased the expression levels of caspase-9 and caspase-3 proteins. Therefore, compound 3b induces apoptosis in HCT-116 cells through mitochondrial pathway. PMID:26854375

  8. 1-Piperazinylphthalazines as potential VEGFR-2 inhibitors and anticancer agents: Synthesis and in vitro biological evaluation.

    PubMed

    Abou-Seri, Sahar M; Eldehna, Wagdy M; Ali, Mamdouh M; Abou El Ella, Dalal A

    2016-01-01

    In our endeavor towards the development of effective VEGFR-2 inhibitors, three novel series of phthalazine derivatives based on 1-piperazinyl-4-arylphthalazine scaffold were synthesized. All the newly prepared phthalazines 16a-k, 18a-e and 21a-g were evaluated in vitro for their inhibitory activity against VEGFR-2. In particular, compounds 16k and 21d potently inhibited VEGFR-2 at sub-micromolar IC50 values 0.35 ± 0.03 and 0.40 ± 0.04 μM, respectively. Moreover, seventeen selected compounds 16c-e, 16g, 16h, 16j, 16k, 18c-e and 21a-g were evaluated for their in vitro anticancer activity according to US-NCI protocol, where compounds 16k and 21d proved to be the most potent anticancer agents. While, compound 16k exhibited potent broad spectrum anticancer activity with full panel GI50 (MG-MID) value of 3.62 μM, compound 21d showed high selectivity toward leukemia and prostate cancer subpanels [subpanel GI50 (MG-MID) 3.51 and 5.15 μM, respectively]. Molecular docking of compounds16k and 21d into VEGFR-2 active site was performed to explore their potential binding mode. PMID:26590508

  9. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    PubMed Central

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  10. Molecular aspects of vitamin D anticancer activity.

    PubMed

    Picotto, Gabriela; Liaudat, Ana C; Bohl, Luciana; Tolosa de Talamoni, Nori

    2012-10-01

    Environment may influence the development and prevention of cancer. Calcitriol has been associated with calcium homeostasis regulation. Many epidemiological, biochemical, and genetic studies have shown non-classic effects of vitamin D, such as its involvement in the progression of different cancers. Although vitamin D induces cellular arrest, triggers apoptotic pathways, inhibits angiogenesis, and alters cellular adhesion, the precise mechanisms of its action are still not completely established. This article will present a revision about the molecular aspects proposed to be involved in the anticancer action of calcitriol. Adequate levels of vitamin D to prevent cancer development will also be discussed. PMID:22963190

  11. Anticancer Activity of Apaziquone in Oral Cancer Cells and Xenograft Model: Implications for Oral Cancer Therapy

    PubMed Central

    Srivastava, Gunjan; Somasundaram, Raj Thani; Walfish, Paul G.; Ralhan, Ranju

    2015-01-01

    Oral squamous cell carcinoma (OSCC) patients diagnosed in late stages have limited chemotherapeutic options underscoring the great need for development of new anticancer agents for more effective disease management. We aimed to investigate the anticancer potential of Apaziquone, [EOquin, USAN, E09, 3-hydroxy-5- aziridinyl-1-methyl-2(1H-indole-4,7-dione)–prop-β-en-α-ol], a pro-drug belonging to a class of anti-cancer agents called bioreductive alkylating agents, for OSCC. Apaziquone treatment inhibited cell proliferation and induced apoptosis in OSCC cells in vitro. Apaziquone treated OSCC cells showed increased activation of Caspase 9 and Caspase 3, and Poly (ADP ribose) polymerase (PARP) cleavage suggesting induction of apoptosis by apaziquone in oral cancer cells. Importantly, apaziquone treatment significantly reduced oral tumor xenograft volume in immunocompromised NOD/SCID/Crl mice without causing apparent toxicity to normal tissues. In conclusion, our in vitro and in vivo studies identified and demonstrated the pre-clinical efficacy of Apaziquone, as a potential novel anti-cancer therapeutic candidate for oral cancer management. PMID:26208303

  12. Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation

    NASA Astrophysics Data System (ADS)

    Pili, Barbara; ReddyCurrent Address: Sanofi-Aventis, 13 Quai Jules-Guesdes, 94403, Vitry-Sur-Seine, France., L. Harivardhan; Bourgaux, Claudie; Lepêtre-Mouelhi, Sinda; Desmaële, Didier; Couvreur, Patrick

    2010-08-01

    A new prodrug of gemcitabine, based on the covalent coupling of squalene to gemcitabine (GemSQ), has been designed to enhance the anticancer activity of gemcitabine, a nucleoside analogue active against a wide variety of tumors. In the present study, the feasibility of encapsulating GemSQ into liposomes either PEGylated or non-PEGylated has been investigated. The in vivo anticancer activity of these formulations has been tested on subcutaneous grafted L1210wt leukemia model and compared to that of free gemcitabine. The liposomal GemSQ appears to be a potential delivery system for the effective treatment of tumors.

  13. Diversity-oriented synthesis of α-aminophosphonates: a new class of potential anticancer agents.

    PubMed

    Bhattacharya, Asish K; Raut, Dnyaneshwar S; Rana, Kalpeshkumar C; Polanki, Innaiah K; Khan, Mohd Sajid; Iram, Sana

    2013-08-01

    A small library of structurally diverse α-aminophosphonates has been synthesized by reacting alkyl/aryl aldehydes, alkyl/aryl amines and alkyl/aryl phosphites in one-pot catalyzed by Amberlite-IR 120 resin (acidic). All the synthesized α-aminophosphonates were assayed for their in vitro cytotoxic activities against a panel of five human cancer cell lines including A-549, NCI-H23 (Lung), Colo 320DM (Colon), MG-63 (Bone marrow) and Jurkat (Blood T lymphocytes). Compound 4n having (R)-1-phenylethanamine was found to be the most active amongst all the synthesized α-aminophosphonates against all the five cancer cell lines, most prominent being against Jurkat cell line with an IC50 value of 4 μM. Surprisingly, compound 4o having (S)-1-phenylethanamine was found to be devoid of any cytotoxicity. Our finding suggests that these chemical entities could further serve as interesting template for the design of potential anticancer agents. PMID:23792352

  14. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    SciTech Connect

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-11

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  15. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents

    PubMed Central

    Gurova, Katerina

    2010-01-01

    Most of the anticancer chemotherapeutic drugs that are broadly and successfully used today are DNA-damaging agents. Targeting of DNA has been proven to cause relatively potent and selective destruction of tumor cells. However, the clinical potential of DNA-damaging agents is limited by the adverse side effects and increased risk of secondary cancers that are consequences of the agents' genotoxicity. In this review, we present evidence that those agents capable of targeting DNA without inducing DNA damage would not be limited in these ways, and may be as potent as DNA-damaging agents in the killing of tumor cells. We use as an example literature data and our own research of the well-known antimalarial drug quinacrine, which binds to DNA without inducing DNA damage, yet modulates a number of cellular pathways that impact tumor cell survival. PMID:20001804

  16. Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis

    PubMed Central

    2011-01-01

    Background The aim of this study is to investigate in vitro antioxidant, antimicrobial and anticancer activity of the acetone extracts of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. Methods Antioxidant activity was evaluated by five separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds and determination of total flavonoid content. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method against six species of bacteria and ten species of fungi. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. Results Of the lichens tested, Lecanora atra had largest free radical scavenging activity (94.7% inhibition), which was greater than the standard antioxidants. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. Extract of Cladonia furcata was the most active antimicrobial agent with minimum inhibitory concentration values ranging from 0.78 to 25 mg/mL. All extracts were found to be strong anticancer activity toward both cell lines with IC50 values ranging from 8.51 to 40.22 μg/mL. Conclusions The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial and anticancer effects. That suggest that lichens may be used as as possible natural antioxidant, antimicrobial and anticancer agents to control various human, animal and plant diseases. PMID:22013953

  17. [Establishment and characterization of human ovarian fibrosarcoma cell line and its sensitivity to anticancer agents].

    PubMed

    Kiyozuka, Y; Nishimura, H; Iwanaga, S; Yakushiji, M; Ito, K; Nakano, S; Tamori, N; Adachi, S; Noda, T; Imai, S

    1992-04-01

    We succeeded in establishing a cell line (KEN-3) for subculture from a fibrosarcoma which originated in the ovary in a girl aged 17 years. Its characteristics and sensitivity to anticancer agents are reported in this paper. 1. Characteristics of established cell line. Lined cells consist of multinucleated giant cells mixed among many spindle-shaped cells. They grow in small colonies and have none of the pavement-like arrangement characteristic of epithelial tumor cells. The number of chromosomes ranged from 45 to 128 (mode: pseudo-triploidy region, 65). The doubling time, cellular density and plating efficiency were 76.9 hours, 5.4 x 10(5)/cm2 and 30.2%, respectively. Concerning tumor markers, CEA and sialyl SSEA-1 were only produced in small quantities. Subculture was possible subcutaneously in the nude mouse with no capacity for the production of ascites. 2. Susceptibility to anticancer agents and GP170 expression. The in vitro susceptibility to about 12 types of anticancer agents was investigated with the MTT assay. IC50/PPC was shown to be less than 1 for Adriamycin only. The sensitivity to CDDP (IC50/PPC: 4.8) was low, and no sensitivity was observed at all to DTIC, which is used frequently for mesenchymal tumors. GP170 (mdr-1 products) was positive in established cells in immunohistochemical stain. PMID:1351514

  18. Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer – a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation

    PubMed Central

    Chang, Wei-Ling; Hsu, Lih-Ching; Leu, Wohn-Jenn; Chen, Ching-Shih; Guh, Jih-Hwa

    2015-01-01

    Nitroxoline is an antibiotic by chelating Zn2+ and Fe2+ from biofilm matrix. In this study, nitroxoline induced G1 arrest of cell cycle and subsequent apoptosis in prostate cancer cells through ion chelating-independent pathway. It decreased protein levels of cyclin D1, Cdc25A and phosphorylated Rb, but activated AMP-activated protein kinase (AMPK), a cellular energy sensor and signal transducer, leading to inhibition of downstream mTOR-p70S6K signaling. Knockdown of AMPKα significantly rescued nitroxoline-induced inhibition of cyclin D1-Rb-Cdc25A axis indicating AMPK-dependent mechanism. However, cytoprotective autophagy was simultaneously evoked by nitroxoline. Comet assay and Western blot analysis demonstrated DNA damaging effect and activation of Chk2 other than Chk1 to nitroxoline action. Instead of serving as a DNA repair transducer, nitroxoline-mediated Chk2 activation was identified to function as a pro-apoptotic inducer. In conclusion, the data suggest that nitroxoline induces anticancer activity through AMPK-dependent inhibition of mTOR-p70S6K signaling pathway and cyclin D1-Rb-Cdc25A axis, leading to G1 arrest of cell cycle and apoptosis. AMPK-dependent activation of Chk2, at least partly, contributes to apoptosis. The data suggest the potential role of nitroxoline for therapeutic development against prostate cancers. PMID:26447757

  19. Evaluation of bishexadecyltrimethyl ammonium palladium tetrachloride based dual functional colloidal carrier as an antimicrobial and anticancer agent.

    PubMed

    Kaur, Gurpreet; Kumar, Sandeep; Dilbaghi, Neeraj; Kaur, Baljinder; Kant, Ravi; Guru, Santosh Kumar; Bhushan, Shashi; Jaglan, Sundeep

    2016-04-12

    We have developed a dual function carrier using bishexadecyltrimethyl ammonium palladium tetrachloride, which has anticancer as well as antibacterial activity, using a ligand insertion method with a simple and easy work procedure. The complex is prepared by a simple and cost effective method using hexadecyltrimethyl ammonium chloride and palladium chloride under controlled stoichiometry. Herein, we report the aggregation (self assembly) of the metallosurfactant having palladium as a counter ion, in aqueous medium along with its binding affinity with bovine serum albumin. The palladium surfactant has exhibited excellent antimicrobial efficacy against fungus and bacteria (both Gram-positive and Gram-negative bacteria). Cytotoxicity of palladium surfactant against cancerous (Human leukemia HL-60, pancreatic MIA-Pa-Ca-2 and prostate cancer PC-3) and healthy cells (fR2 human breast epithelial cells) was also evaluated using MTT assay. The present dual functional moiety shows a low IC50 value and has potential to be used as an anticancer agent. Our dual function carrier which itself possesses antimicrobial and anticancer activity represents a simple and effective system and can also be utilized as a drug carrier in the future. PMID:26961498

  20. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem".

    PubMed

    Gomes, Nelson G M; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-05-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  1. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  2. Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities.

    PubMed

    Wang, Changhao; Carter-Cooper, Brandon; Du, Yixuan; Zhou, Jie; Saeed, Musabbir A; Liu, Jinbing; Guo, Min; Roembke, Benjamin; Mikek, Clinton; Lewis, Edwin A; Lapidus, Rena G; Sintim, Herman O

    2016-08-01

    G-quadruplex ligands have been touted as potential anticancer agents, however, none of the reported G-quadruplex-interactive small molecules have gone past phase II clinical trials. Recently it was revealed that diminazene (berenil, DMZ) actually binds to G-quadruplexes 1000 times better than DNA duplexes, with dissociation constants approaching 1 nM. DMZ however does not have strong anticancer activities. In this paper, using a panel of biophysical tools, including NMR, FRET melting assay and FRET competition assay, we discovered that monoamidine analogues of DMZ bearing alkyne substitutes selectively bind to G-quadruplexes. The lead DMZ analogues were shown to be able to target c-MYC G-quadruplex both in vitro and in vivo. Alkyne DMZ analogues display respectable anticancer activities (single digit micromolar GI50) against ovarian (OVCAR-3), prostate (PC-3) and triple negative breast (MDA-MB-231) cancer cell lines and represent interesting new leads to develop anticancer agents. PMID:27132164

  3. Synthesis and biological evaluation of new rhodanine analogues bearing 2-chloroquinoline and benzo[h]quinoline scaffolds as anticancer agents.

    PubMed

    Ramesh, Vadla; Ananda Rao, Boddu; Sharma, Pankaj; Swarna, B; Thummuri, Dinesh; Srinivas, Kolupula; Naidu, V G M; Jayathirtha Rao, Vaidya

    2014-08-18

    Several rhodanine derivatives (9-39) were synthesized for evaluation of their potential as anticancer agents. Villsmeier cyclization to synthesize aza-aromatic aldehydes, rhodanine derivatives preparation and Knoevenagel type of condensation between the rhodanines and aza-aromatic aldehydes are key steps used for the synthesis of 31 compounds. In vitro antiproliferative activity of the synthesized rhodanine derivatives (9-39) was studied on a panel of six human tumor cell lines viz. HGC, MNK-74, MCF-7, MDAMB-231, DU-145 and PC-3 cell lines. Some of the compounds were capable of inhibiting the proliferation of cancer cell lines at a micromolar concentration. Six compounds are found to be potent against HGC cell lines; compound 15 is found to be active against HGC - Gastric, MCF7 - Breast Cancer and DU145 - Prostate Cancer cell lines; compound 39 is potent against MNK-74; four compounds are found to be potent against MCF-7 cell lines; three compounds are active against MDAMB-231; nine compounds are found to be potent against DU-145; three compounds are active against PC-3 cell lines. These compounds constitute a promising starting point for the development of novel and more potent anticancer agents in future. PMID:24996143

  4. Spectral and electrochemical detection of protonated triplex formation by a small-molecule anticancer agent

    NASA Astrophysics Data System (ADS)

    Feng, Lingyan; Li, Xi; Peng, Yinghua; Geng, Jie; Ren, Jinsong; Qu, Xiaogang

    2009-10-01

    Triplex helical formation has been the focus of considerable interest because of possible applications in developing new molecular biology tools as well as therapeutic agents and the possible relevance of H-DNA structures in biology system. We report here that a small-molecule anticancer agent, coralyne, has binding preference to the less stable protonated triplex d(C +-T) 6:d(A-G) 6·d(C-T) 6 over duplex d(A-G) 6·d(C-T) 6 and shows different spectral and electrochemical characteristics when binding to triplex and duplex DNA, indicating that electrochemical technique can detect the less stable protonated triplex formation.

  5. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs.

    PubMed

    Singh, Ravina; Nalwa, Hari Singh

    2011-08-01

    This article reviews the applications of nanotechnology in the fields of medical and life sciences. Nanoparticles have shown promising applications from diagnosis to treatment of various types of diseases including cancer. In this review, we discuss the applications of nanostructured materials such as nanoparticles, quantum dots, nanorods, nanowires, and carbon nanotubes in diagnostics, biomarkers, cell labeling, contrast agents for biological imaging, antimicrobial agents, drug delivery systems, and anticancer nanodrugs for treatment of cancer and other infectious diseases. The adverse affects of nanoparticles on human skin from daily use in cosmetics and general toxicology of nanoscale materials are also reviewed. PMID:21870454

  6. Extracts from black carrot tissue culture as potent anticancer agents.

    PubMed

    Sevimli-Gur, Canan; Cetin, Burcu; Akay, Seref; Gulce-Iz, Sultan; Yesil-Celiktas, Ozlem

    2013-09-01

    Black carrots contain anthocyanins possessing enhanced physiological activities. Explants of young black carrot shoots were cultured in Murashige and Skoog (MS) medium for callus initiation and were transferred to new MS medium supplemented with four different combinations of 2,4-dichlorophenoxyacetic acid and kinetin. Subsequently, the lyophilized calli and black carrot harvested from fields were subjected to ultrasound extraction with ethanol at a ratio of 1:15 (w:v). Obtained extracts were applied to various human cancer cell lines including MCF-7 SK-BR-3 and MDA-MB-231 (human breast adenocarcinomas), HT-29 (human colon adenocarcinoma), PC-3 (human prostate adenocarcinoma), Neuro 2A (Musmusculus neuroblastoma) cancer cell lines and VERO (African green monkey kidney) normal cell line by MTT assay. The highest cytotoxic activity was achieved against Neuro-2A cell lines exhibiting viability of 38-46% at 6.25 μg/ml concentration for all calli and natural extracts. However, a significantly high IC50 value of 170.13 μg/ml was attained in normal cell line VERO indicating that its natural counterpart is an ideal candidate for treatment of brain cancer without causing negative effects to normal healthy cells. PMID:23828497

  7. Repurposing Drugs in Oncology (ReDO)—diclofenac as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P

    2016-01-01

    Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper. PMID:26823679

  8. Repurposing Drugs in Oncology (ReDO)-diclofenac as an anti-cancer agent.

    PubMed

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P

    2016-01-01

    Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper. PMID:26823679

  9. Novel quinolines carrying pyridine, thienopyridine, isoquinoline, thiazolidine, thiazole and thiophene moieties as potential anticancer agents.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; Al-Dosari, Mohammed S; Ragab, Fatma A; Al-Mishari, Abdullah A; Almoqbil, Abdulaziz N

    2016-06-01

    As a part of ongoing studies in developing new anticancer agents, novel 1,2-dihydropyridine 4, thienopyridine 5, isoquinolines 6-20, acrylamide 21, thiazolidine 22, thiazoles 23-29 and thiophenes 33-35 bearing a biologically active quinoline nucleus were synthesized. The structure of newly synthesized compounds was confirmed on the basis of elemental analyses and spectral data. All the newly synthesized compounds were evaluated for their cytotoxic activity against the breast cancer cell line MCF7. 2,3-Dihydrothiazole-5-carboxamides 27, 25, 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (34), 1,2-dihydroisoquinoline-7-carbonitrile (7), 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide (35), 1,2-dihydroisoquinoline-7-carbonitrile (6), 2-cyano-3-(dimethylamino)-N-(quinolin-3-yl)acrylamide (21), 1,2-dihydroisoquinoline-7-carbonitriles (11) and (8) exhibited higher activity (IC50 values of 27-45 μmol L-1) compared to doxorubicin (IC50 47.9 μmol L-1). LQ quinolin-3-yl)-1,2-dihydroisoquinoline-7-carbonitrile (12), 2-thioxo-2,3-dihydrothiazole-5-carboxamide (28) and quinolin-3-yl)-1,2-dihydroisoquinoline-7-carbonitrile (15) show activity comparable to doxorubicin, while (quinolin-3-yl)-1,2-dihydroisoquinoline-7-carbonitrile (9), 2,3-dihydrothiazole-5-carboxamide (24), thieno [3,4-c] pyridine-4(5H)-one (5), cyclopenta[b]thiophene-3-carboxamide (33) and (quinolin-3-yl)-6-stryl-1,2-dihydroisoquinoline-7-carbonitrile (10) exhibited moderate activity, lower than doxorubicin. PMID:27279061

  10. Design, Synthesis and Biological Evaluation of N-Acetyl-S-(pchlorophenylcarbamoyl)cysteine and Its Analogs as a Novel Class of Anticancer Agents

    PubMed Central

    Chen, Wei; Seefeldt, Teresa; Young, Alan; Zhang, Xiaoying; Guan, Xiangming

    2010-01-01

    N-Acetyl-S-(p-chlorophenylcarbamoyl)cysteine (NACC) was identified as a metabolite of sulofenur. Sulofenur was demonstrated to have broad activity against solid tumors in preclinical studies but exhibited disappointing clinical responses due to its high protein binding related adverse effects. NACC exhibited low protein binding and excellent activity against a sulofenur sensitive human colon cancer cell line. In this study, analogs of NACC were synthesized and evaluated with four human cancer cell lines. Two of the NACC analogs showed excellent activity against two human melanoma cell lines, while NACC remains the most potent of the series. All three compounds were more potent than dacarbazine, which is used extensively in treating melanoma. NACC was shown to induce apoptosis without affecting the cell cycle. Further, NACC exhibited low toxicity against monkey kidney cells. The selective anticancer activity, low toxicity, an unknown yet but unique anticancer mechanism and ready obtainability through synthesis make NACC and its analogs promising anticancer agents. PMID:21131205

  11. Oncolytic Measles Virus Strains as Novel Anticancer Agents

    PubMed Central

    Msaouel, Pavlos; Opyrchal, Mateusz; Domingo Musibay, Evidio; Galanis, Evanthia

    2013-01-01

    Introduction Replication-competent oncolytic measles virus (MV) strains preferentially infect and destroy a wide variety of cancer tissues. Clinical translation of engineered attenuated MV vaccine derivatives is demonstrating the therapeutic potential and negligible pathogenicity of these strains in humans. Areas covered The present review summarizes the mechanisms of MV tumor selectivity and cytopathic activity as well as the current data on the oncolytic efficacy and preclinical testing of MV strains. Investigational strategies to reprogram MV selectivity, escape antiviral immunity and modulate the immune system to enhance viral delivery and tumor oncolysis are also discussed. Expert Opinion Clinical viral kinetic data derived from non-invasive monitoring of reporter transgene expression will guide future protocols to enhance oncolytic MV efficacy. Anti-measles immunity is a major challenge of measles-based therapeutics and various strategies are being investigated to modulate immunity. These include the combination of MV therapy with immunosuppressive drugs such as cyclophosphamide, the use of cell carriers and the introduction of immunomodulatory transgenes and wild-type virulence genes. Available MV retargeting technologies can address safety considerations that may arise as more potent oncolytic MV vectors are being developed. PMID:23289598

  12. DNA binding and anticancer activity of novel cyclometalated platinum (II) complexes.

    PubMed

    Mohammadi, Roghayeh; Yousefi, Reza; Aseman, Marzieh Dadkhah; Nabavizadeh, S Masoud; Rashidi, Mehdi

    2015-01-01

    This study describes anticancer activity and DNA binding properties of two cyclometalated platinum (II) complexes with non-leaving lipophilic ligands; deprotonated 2-phenylpryidine (ppy): C1 and deprotonated benzo[h] quinolone (bhq): C2. Both complexes demonstrate significant anticancer activity and were capable to stimulate Caspase-III activity in Jurkat cancer cells. The results of Acridine orange/Ethidium bromide(AO/EtB), along with those of Caspase-III activity suggest that these complexes can induce apoptosis in the cancer cells. Moreover, C1 with flexible chemical structure indicates considerably higher anticancer activity than C2 which possesses a higher structural rigidity. Additionally, C2 represents a complex which is in part inducing cancer cell death due to the cell injury (necrosis). The absorption spectra of DNA demonstrate a hypochromic effect in the presence of increasing concentration of these complexes, reflecting DNA structural alteration after drug binding. Also, EtB competition assay and docking results revealed partial intercalation and DNA groove binding for the metal complexes. Overall, from the therapeutic point of view, ppy containing platinum complex (C1) is a favored anticancer agent, because it induces signaling cell death (apoptosis) in cancer cells, and lacks the necrotic effect. PMID:25482721

  13. Design, Synthesis, and Biological Evaluation of Potential Prodrugs Related to the Experimental Anticancer Agent Indotecan (LMP400).

    PubMed

    Lv, Peng-Cheng; Elsayed, Mohamed S A; Agama, Keli; Marchand, Christophe; Pommier, Yves; Cushman, Mark

    2016-05-26

    Indenoisoquinoline topoisomerase I (Top1) inhibitors are a novel class of anticancer agents with two compounds in clinical trials. Recent metabolism studies of indotecan (LMP400) led to the discovery of the biologically active 2-hydroxylated analogue and 3-hydroxylated metabolite, thus providing strategically placed functional groups for the preparation of a variety of potential ester prodrugs of these two compounds. The current study details the design and synthesis of two series of indenoisoquinoline prodrugs, and it also reveals how substituents on the O-2 and O-3 positions of the A ring, which are next to the cleaved DNA strand in the drug-DNA-Top1 ternary cleavage complex, affect Top1 inhibitory activity and cytotoxicity. Many of the indenoisoquinoline prodrugs were very potent antiproliferative agents with GI50 values below 10 nM in a variety of human cancer cell lines. PMID:27097152

  14. Design, Synthesis, and Evaluation of Genistein Analogues as Anti-Cancer Agents

    PubMed Central

    Xiong, Pahoua; Wang, Rubing; Zhang, Xiaojie; Torre, Eduardo DeLa; Leon, Francisco; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2016-01-01

    Genistein is a bioactive isoflavone derived from soybeans. The tie-in between the intake of genistein and the decreased incidence of some solid tumors (including prostate cancer) has been demonstrated by epidemiological studies. The potential of genistein in treating prostate cancer has also been displayed by in vitro cell-based and in vivo animal experiments. Genistein has entered clinical trials for both chemoprevention and potential treatment of prostate cancer. Even though the low oral bioavailability has presented the major challenges to genistein’s further clinical development, chemical modulation of genistein holds the promise to generate potential anti-prostate cancer agents with enhanced potency and/or better pharmacokinetic profiles than genistein. As part of our ongoing project to develop natural products-based anti-prostate cancer agents, the current study was undertaken to synthesize eight genistein analogues for cytotoxic evaluation in three prostate cancer cell lines (PC-3, DU-145, LNCaP; both androgen-sensitive and androgen-refractory cell lines), as well as one aggressive cervical cancer cell line (HeLa). Eight genistein analogues have been successfully synthesized with Suzuki-Miyaura coupling reaction as a key step. Their in vitro anti-cancer potential was evaluated by trypan blue exclusion assay and WST-1 cell proliferation assay against a panel of four human cancer cell lines. The acquired data suggest i) that the C-5 and C-7 hydroxyl groups in genistein are very important for the cytotoxicity and anti-proliferative activity; and ii) that 1-alkyl-1H-pyrazol-4-yl and pyridine-3-yl might act as good bioisosteres for the 4'-hydroxyphenyl moiety in genistein. PMID:25991428

  15. Design, Synthesis, and Evaluation of Genistein Analogues as Anti-Cancer Agents.

    PubMed

    Xiong, Pahoua; Wang, Rubing; Zhang, Xiaojie; DeLa Torre, Eduardo; Leon, Francisco; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2015-01-01

    Genistein is a bioactive isoflavone derived from soybeans. The tie-in between the intake of genistein and the decreased incidence of some solid tumors (including prostate cancer) has been demonstrated by epidemiological studies. The potential of genistein in treating prostate cancer has also been displayed by in vitro cell-based and in vivo animal experiments. Genistein has entered clinical trials for both chemoprevention and potential treatment of prostate cancer. Even though the low oral bioavailability has presented the major challenges to genistein's further clinical development, chemical modulation of genistein holds the promise to generate potential anti-prostate cancer agents with enhanced potency and/or better pharmacokinetic profiles than genistein. As part of our ongoing project to develop natural products-based anti-prostate cancer agents, the current study was undertaken to synthesize eight genistein analogues for cytotoxic evaluation in three prostate cancer cell lines (PC-3, DU-145, LNCaP; both androgen-sensitive and androgen-refractory cell lines), as well as one aggressive cervical cancer cell line (HeLa). Eight genistein analogues have been successfully synthesized with Suzuki-Miyaura coupling reaction as a key step. Their in vitro anti-cancer potential was evaluated by trypan blue exclusion assay and WST-1 cell proliferation assay against a panel of four human cancer cell lines. The acquired data suggest i) that the C-5 and C-7 hydroxyl groups in genistein are very important for the cytotoxicity and anti-proliferative activity; and ii) that 1-alkyl-1H-pyrazol-4-yl and pyridine-3-yl might act as good bioisosteres for the 4'-hydroxyphenyl moiety in genistein. PMID:25991428

  16. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  17. Synthesis and anticancer activity of a hydroxytolan series.

    PubMed

    Lin, Boren; McGuire, Karen; Liu, Bo; Jamison, James; Tsai, Chun-Che

    2016-09-15

    This paper describes the development of novel anticancer poly-hydroxylated tolans. Based on structural similarity to resveratrol, a series of hydroxytolans were synthesized and evaluated for their antitumor capability against three tumor cell lines and one fibroblast cell line for selectivity comparisons. The 4,4'-dihydroxytolan (KST-201) exhibited the most significant anticancer activity with increased selectivity when compared to resveratrol and other hydroxytolans. Unlike resveratrol, KST-201 can boost hydrogen peroxide in tumor cells, which are often at high basal level of reactive oxygen species, to cause cell death by overwhelming the cellular tolerance of oxidative stress. PMID:27515319

  18. Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents.

    PubMed

    Huang, Wei-Chun; Tseng, Ting-Yuan; Chen, Ying-Ting; Chang, Cheng-Chung; Wang, Zi-Fu; Wang, Chiung-Lin; Hsu, Tsu-Ning; Li, Pei-Tzu; Chen, Chin-Tin; Lin, Jing-Jer; Lou, Pei-Jen; Chang, Ta-Chau

    2015-12-01

    G-quadruplex (G4) is a promising target for anti-cancer treatment. In this paper, we provide the first evidence supporting the presence of G4 in the mitochondrial DNA (mtDNA) of live cells. The molecular engineering of a fluorescent G4 ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC), can change its major cellular localization from the nucleus to the mitochondria in cancer cells, while remaining primarily in the cytoplasm of normal cells. A number of BMVC derivatives with sufficient mitochondrial uptake can induce cancer cell death without damaging normal cells. Fluorescence studies of these anti-cancer agents in live cells and in isolated mitochondria from HeLa cells have demonstrated that their major target is mtDNA. In this study, we use fluorescence lifetime imaging microscopy to verify the existence of mtDNA G4s in live cells. Bioactivity studies indicate that interactions between these anti-cancer agents and mtDNA G4 can suppress mitochondrial gene expression. This work underlines the importance of fluorescence in the monitoring of drug-target interactions in cells and illustrates the emerging development of drugs in which mtDNA G4 is the primary target. PMID:26487635

  19. Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent.

    PubMed

    Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu

    2016-07-19

    The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure. PMID:27249025

  20. Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus.

    PubMed

    Ahsan, Mohamed Jawed; Ahsan, Mohamed Jawed

    2016-01-01

    We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration 10 μM) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and 100 μM) and three dose related parameters GI50, TGI and LC50 were calculated for each (3a-g) in micro molar drug concentrations (μM). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a GI50 of 0.03 μM. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with GI50 values between 0.23 and 2.67 μM. PMID:27221847

  1. Design, synthesis, molecular modeling and biological evaluation of novel 1H-pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents.

    PubMed

    Eissa, Ibrahim H; El-Naggar, Abeer M; El-Hashash, Maher A

    2016-08-01

    In trying to develop new anticancer agents, a series of 1H-pyrazolo[3,4-b]pyridine derivatives was designed and synthesized. Fifteen compounds were evaluated in vitro for their anti-proliferative activity against HePG-2, MCF-7, HCT-116, and PC-3 cell lines. Additionally, DNA binding affinity of the synthesized derivatives was investigated as a potential mechanism for the anticancer activity using DNA/methyl green assay and association constants assay. Compounds 19, 20, 21, 24 and 25 exhibited good activity against the four cancer cells comparable to that of doxorubicin. Interestingly, DNA binding assay results were in agreement with that of the cytotoxicity assays where the most potent anticancer compounds showed good DNA binding affinity comparable to that of doxorubicin and daunorubicin. Furthermore, a molecular docking of the tested compounds was carried out to investigate their binding pattern with the prospective target, DNA (PDB-code: 152d). PMID:27253830

  2. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities

    PubMed Central

    Shanab, Sanaa MM; Mostafa, Soha SM; Shalaby, Emad A; Mahmoud, Ghada I

    2012-01-01

    Objective To investigate the antioxidant and anticancer activities of aqueous extracts of nine microalgal species. Methods Variable percentages of major secondary metabolites (total phenolic content, terpenoids and alkaloids) as well as phycobiliprotein pigments (phycocyanin, allophycocyanin and phycoerythrin) in the aqueous algal extracts were recorded. Antioxidant activity of the algal extracts was performed using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) test and 2,2′- azino-bis (ethylbenzthiazoline-6-sulfonic acid (ABTS.+) radical cation assay. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma cell (EACC) and Human hepatocellular cancer cell line (HepG2). Results Antioxidant activity of the algal extracts was performed using DPPH test and ABTS.+ radical cation assays which revealed 30.1-72.4% and 32.0-75.9% respectively. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma Cell (EACC) and Human Hepatocellular cancer cell line (HepG2) with an activity ranged 87.25% and 89.4% respectively. Culturing the promising cyanobacteria species; Nostoc muscorum and Oscillatoria sp. under nitrogen stress conditions (increasing and decreasing nitrate content of the normal BG11 medium, 1.5 g/L), increased nitrate concentration (3, 6 and 9 g/L) led to a remarkable increase in phycobilin pigments followed by an increase in both antioxidant and anticancer activities in both cyanobacterial species. While the decreased nitrate concentration (0.75, 0.37 and 0.0 g/L) induced an obvious decrease in phycobilin pigments with complete absence of allophycocyanin in case of Oscillatoria sp. Conclusions Nitrogen starvation (0.00 g/L nitrate) induced an increase and comparable antioxidant and anticancer activities to those cultured in the highest nitrate content. PMID:23569980

  3. Preclinical Investigations of PM01183 (Lurbinectedin) as a Single Agent or in Combination with Other Anticancer Agents for Clear Cell Carcinoma of the Ovary

    PubMed Central

    Takahashi, Ryoko; Mabuchi, Seiji; Kawano, Mahiru; Sasano, Tomoyuki; Matsumoto, Yuri; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Sawada, Kenjiro; Kimura, Tadashi

    2016-01-01

    Objective The objective of this study was to evaluate the antitumor effects of lurbinectedin as a single agent or in combination with existing anticancer agents for clear cell carcinoma (CCC) of the ovary, which is regarded as an aggressive, chemoresistant, histological subtype. Methods Using human ovarian CCC cell lines, the antitumor effects of lurbinectedin, SN-38, doxorubicin, cisplatin, and paclitaxel as single agents were assessed using the MTS assay. Then, the antitumor effects of combination therapies involving lurbinectedin and 1 of the other 4 agents were evaluated using isobologram analysis to examine whether these combinations displayed synergistic effects. The antitumor activity of each treatment was also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines. Finally, we determined the effects of mTORC1 inhibition on the antitumor activity of lurbinectedin-based chemotherapy. Results Lurbinectedin exhibited significant antitumor activity toward chemosensitive and chemoresistant CCC cells in vitro. An examination of mouse CCC cell xenografts revealed that lurbinectedin significantly inhibits tumor growth. Among the tested combinations, lurbinectedin plus SN-38 resulted in a significant synergistic effect. This combination also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Everolimus significantly enhanced the antitumor activity of lurbinectedin-based chemotherapies. Conclusions Lurbinectedin, a new agent that targets active transcription, exhibits antitumor activity in CCC when used as a single agent and has synergistic antitumor effects when combined with irinotecan. Our results indicate that lurbinectedin is a promising agent for treating ovarian CCC, both as a first-line treatment and as a salvage treatment for recurrent lesions that develop after platinum-based or paclitaxel treatment. PMID:26986199

  4. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities

    PubMed Central

    Zhang, Yong; Jiang, Peixin; Ye, Min; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2012-01-01

    Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones. PMID:23202971

  5. Cucurbitacins: A Systematic Review of the Phytochemistry and Anticancer Activity.

    PubMed

    Cai, Yuee; Fang, Xiefan; He, Chengwei; Li, Peng; Xiao, Fei; Wang, Yitao; Chen, Meiwan

    2015-01-01

    Cucurbitacins are highly oxidized tetracyclic triterpenoids that are widely present in traditional Chinese medicines (Cucurbitaceae family), possess strong anticancer activity, and are divided into 12 classes from A to T with over 200 derivatives. The eight most active cucurbitacin components against cancer are cucurbitacin B, D, E, I, IIa, L glucoside, Q, and R. Their mechanisms of action include antiproliferation, inhibition of migration and invasion, proapoptosis, and cell cycle arrest promotion. Cucurbitacins are also found to be the inhibitors of JAK-STAT3, Wnt, PI3K/Akt, and MAPK signaling pathways, which play important roles in the apoptosis and survival of cancer cells. Recently, new studies have discovered synergistic anticancer effects by using cucurbitacins together with clinically approved chemotherapeutic drugs, such as docetaxel and methotrexate. This paper provides a summary of recent research progress on the anticancer property of cucurbitacins and the various intracellular signaling pathways involved in the regulation of cancer cell proliferation, death, invasion, and migration. Therefore, cucurbitacins are a class of promising anticancer drugs to be used alone or be intergraded in current chemotherapies and radiotherapies to treat many types of cancers. PMID:26503558

  6. Inner conflict in patients receiving oral anticancer agents: a qualitative study

    PubMed Central

    Komatsu, Hiroko; Takahashi, Tsunehiro

    2015-01-01

    Objectives To explore the experiences of patients receiving oral anticancer agents. Design A qualitative study using semistructured interviews with a grounded theory approach. Setting A university hospital in Japan. Participants 14 patients with gastric cancer who managed their cancer with oral anticancer agents. Results Patients with cancer experienced inner conflict between rational belief and emotional resistance to taking medication due to confrontation with cancer, doubt regarding efficacy and concerns over potential harm attached to use of the agent. Although they perceived themselves as being adherent to medication, they reported partial non-adherent behaviours. The patients reassessed their lives through the experience of inner conflict and, ultimately, they recognised their role in medication therapy. Conclusions Patients with cancer experienced inner conflict, in which considerable emotional resistance to taking their medication affected their occasional non-adherent behaviours. In patient-centred care, it is imperative that healthcare providers understand patients’ inner conflict and inconsistency between their subjective view and behaviour to support patient adherence. PMID:25872938

  7. Designing piperlongumine-directed anticancer agents by an electrophilicity-based prooxidant strategy: A mechanistic investigation.

    PubMed

    Yan, Wen-Jing; Wang, Qi; Yuan, Cui-Hong; Wang, Fu; Ji, Yuan; Dai, Fang; Jin, Xiao-Ling; Zhou, Bo

    2016-08-01

    Piperlongumine (PL), a natural electrophilic alkaloid bearing two α, β-unsaturated imides, is a promising anticancer molecule by targeting the stress response to reactive oxygen species (ROS). Considering that ROS generation depends on electrophilicity of PL, PL-CL was designed as its analog by introducing the α-substituent chlorine on the lactam ring to increase moderately its electrophilicity. In comparison with the parent molecule, this molecule was identified as a stronger ROS (O2(∙-) and H2O2) inducer and cytotoxic agent, and manifested more than 15-fold selectivity toward A549 cells over normal WI-38 cells. Mechanistic study uncovers for the first time that the selenoprotein thioredoxin reductase (TrxR) is one of the targets by which PL-CL promotes the ROS generation. Stronger intracellular TrxR inhibition and higher accumulation of ROS (O2(∙-) and H2O2) are responsible for more effective S-phase arrest and mitochondria-mediated apoptotic induction of A549 cells by PL-CL than PLvia p53-p21-cyclinA/CDK2 and ASK1-JNK/p38 signaling cascade pathways, respectively. This work provides an example of successfully designing PL-directed anticancer agent by an electrophilicity-based prooxidant (ROS-generating agent) strategy and gives added confidence for extending this strategy to other natural products. PMID:27233942

  8. Adherence and awareness of the therapeutic intent of oral anticancer agents in an outpatient setting

    PubMed Central

    KIMURA, MICHIO; NAKASHIMA, KEIJI; USAMI, EISEKI; IWAI, MINA; NAKAO, TOSHIYA; YOSHIMURA, TOMOAKI; MORI, HIROMI; TERAMACHI, HITOMI

    2015-01-01

    The aim of the present study was to clarify the adherence and awareness of oral anticancer agents by type and therapeutic purpose in outpatients prescribed with tegafur/gimeracil/oteracil potassium (S-1) or capecitabine. Outpatients undergoing treatment with the S-1 or capecitabine oral anticancer agents at Ogaki Municipal Hospital (Ogaki, Japan) in June 2013 completed a questionnaire survey and the survey findings were evaluated. No significant differences in medication adherence were identified between the patients administered S-1 and the patients administered capecitabine (P=0.4586). In addition, no significant differences were identified in therapeutic purpose between adjuvant therapy, and advanced and recurrent therapies. However, for S-1 and capecitabine, medication adherence was significantly higher in those undergoing combination therapy compared with those undergoing monotherapy (P=0.0046). In addition, for patients taking S-1, the median age for good adherence was significantly lower than that for insufficient adherence (66.1±10.5 vs. 72.1±7.9 years, respectively; P=0.0035). Furthermore, a significant negative correlation was identified between the awareness score of research regarding the medication and age (n=109; P=0.0045). In conclusion, for patients treated with S-1 or capecitabine, the type and therapeutic purpose of oral anticancer agents did not affect medication adherence. Elderly patients expressed a low interest in medications and typically exhibited insufficient medication adherence. Therefore, patient guidance by pharmacists is important, as it may result in improved medication adherence and an improved understanding of the treatment side-effects in patients self-administering prescribed drugs. PMID:26137068

  9. [Quod medicina aliis, aliis est acre venenum**--venoms as a source of anticancer agents].

    PubMed

    Kucińska, Małgorzata; Ruciński, Piotr; Murias, Marek

    2013-01-01

    Natural product derived from plants and animals were used in folk medicine for centuries. The venoms produced by animals for hunting of self-defence are rich in bioactive compounds with broad spectrum of biological activity. The papers presents the most promising compounds isolated from venoms of snakes, scorpions and toads. For these compounds both: mechanism of anticancer activity as well as possibilities of clinical use are presented. PMID:24466712

  10. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line.

    PubMed

    Salahuddin, H; Mansoor, Q; Batool, R; Farooqi, A A; Mahmood, T; Ismail, M

    2016-01-01

    Bioactive chemicals isolated from plants have attracted considerable attention over the years and overwhelmingly increasing laboratory findings are emphasizing on tumor suppressing properties of these natural agents in genetically and chemically induced animal carcinogenesis models. We studied in vitro anticancer activity of organic extracts of Cynodon dactylon and Oxalis corniculata on Hep2 cell line and it was compared with normal human corneal epithelial cells (HCEC) by using MTT assay. Real Time PCR was conducted for p53 and PTEN genes in treated cancer cell line. DNA fragmentation assay was also carried out to note DNA damaging effects of the extracts. The minimally effective concentration of ethanolic extract of Cynodon dactylon and methanolic extract of Oxalis corniculata that was nontoxic to HCEC but toxic to Hep2 was recorded (IC50) at a concentration of 0.042mg/ml (49.48 % cell death) and 0.048mg/ml (47.93% cell death) respectively, which was comparable to the positive control. Our results indicated dose dependent increase in cell death. P53 and PTEN did not show significant increase in treated cell line. Moreover, DNA damaging effects were also not detected in treated cancer cell line. Anticancer activity of these plants on the cancer cell line showed the presence of anticancer components which should be characterized to be used as anticancer therapy. PMID:27188871

  11. Design, synthesis, biological evaluation and molecular docking studies of novel benzofuran-pyrazole derivatives as anticancer agents.

    PubMed

    Abd El-Karim, Somaia S; Anwar, Manal M; Mohamed, Neama A; Nasr, Tamer; Elseginy, Samia A

    2015-12-01

    This study deals with design and synthesis of novel benzofuran-pyrazole hybrids as anticancer agents. Eight compounds were chosen by National Cancer Institute (NCI), USA to evaluate their in vitro antiproliferative activity at 10(-5)M in full NCI 60 cell panel. The preliminary screening of the tested compounds showed promising broad-spectrum anticancer activity. Compound 4c was further assayed for five dose molar ranges in full NCI 60 cell panel and exhibited remarkable growth inhibitory activity pattern against Leukemia CCRF-CEM, MOLT-4, Lung Cancer HOP-92, Colon Cancer HCC-2998, CNS Cancer SNB-75, Melanoma SK-MEL-2, Ovarian Cancer IGROV1, Renal Cancer 786-0, RXF 393, Breast Cancer HS 578T and T-47D (GI50: 1.00-2.71μM). Moreover, enzyme assays were carried out to investigate the possible antiproliferative mechanism of action of compound 4c. The results revealed that compound 4c has good c-Src inhibitory activity at 10μM. In addition, molecular docking studies showed that 4c could bind to the ATP Src pocket sites. Fulfilling the Lipinskiís rule of five in addition to its ADME profile and the biological results, all strongly suggest that 4c is a promising Src kinase inhibitor. PMID:26368040

  12. Discovery and Development of the Anticancer Agent Salinosporamide A (NPI-0052)

    PubMed Central

    Fenical, William; Jensen, Paul R.; Palladino, Michael A.; Lam, Kin S.; Lloyd, G. Kenneth; Potts, Barbara C.

    2009-01-01

    The discovery of the anticancer agent salinosporamide A (NPI-0052) resulted from the exploration of new marine environments and a commitment to the potential of the ocean to yield new natural products for drug discovery and development. Driving the success of this process was the linkage of academic research together with the ability and commitment of industry to undertake drug development and provide the resources and expertise to advance the entry of salinosporamide A (NPI-0052) into human clinical trials. This paper offers a chronicle of the important events that facilitated the rapid clinical development of this exciting molecule. PMID:19022674

  13. Anticancer activity of Arkeshwara Rasa - A herbo-metallic preparation

    PubMed Central

    Nafiujjaman, Md; Nurunnabi, Md; Saha, Samir Kumar; Jahan, Rownak; Lee, Yong-kyu; Rahmatullah, Mohammed

    2015-01-01

    Introduction: Though metal based drugs have been prescribed in Ayurveda for centuries to treat various diseases, such as rheumatoid arthritis and cancer, toxicity of these drugs containing heavy metal is a great drawback for practical application. So, proper scientific validation of herbo-metallic drugs like Arkeshwara Rasa (AR) have become one of the focused research arena of new drugs against cancers. Aim: To investigate the in vitro anticancer effects of AR. Materials and Methods: Anticancer activity of AR was investigated on two human cancer cell lines, which represent two different tissues (pancreas and skin). Lactate dehydrogenase (LDH) assay for enzyme activity and trypan blue assay for cell morphology were performed for further confirmation. Results: AR showed potent activity against pancreatic cancer cells (MIA-PaCa-2). LDH activity confirmed that AR was active against pancreatic cancer cells. Finally, it was observed that AR exhibited significant effects on cancer cells due to synergistic effects of different compounds of AR. Conclusion: The study strongly suggests that AR has the potential to be an anticancer drug against pancreatic cancer. PMID:27313425

  14. Xanthorrhizol: a review of its pharmacological activities and anticancer properties.

    PubMed

    Oon, Seok Fang; Nallappan, Meenakshii; Tee, Thiam Tsui; Shohaimi, Shamarina; Kassim, Nur Kartinee; Sa'ariwijaya, Mohd Shazrul Fazry; Cheah, Yew Hoong

    2015-01-01

    Xanthorrhizol (XNT) is a bisabolane-type sesquiterpenoid compound extracted from Curcuma xanthorrhiza Roxb. It has been well established to possess a variety of biological activities such as anticancer, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, antihypertensive, antiplatelet, nephroprotective, hepatoprotective, estrogenic and anti-estrogenic effects. Since many synthetic drugs possess toxic side effects and are unable to support the increasing prevalence of disease, there is significant interest in developing natural product as new therapeutics. XNT is a very potent natural bioactive compound that could fulfil the current need for new drug discovery. Despite its importance, a comprehensive review of XNT's pharmacological activities has not been published in the scientific literature to date. Here, the present review aims to summarize the available information in this area, focus on its anticancer properties and indicate the current status of the research. This helps to facilitate the understanding of XNT's pharmacological role in drug discovery, thus suggesting areas where further research is required. PMID:26500452

  15. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1

    PubMed Central

    Potter, G A; Patterson, L H; Wanogho, E; Perry, P J; Butler, P C; Ijaz, T; Ruparelia, K C; Lamb, J H; Farmer, P B; Stanley, L A; Burke, M D

    2002-01-01

    Resveratrol is a cancer preventative agent that is found in red wine. Piceatannol is a closely related stilbene that has antileukaemic activity and is also a tyrosine kinase inhibitor. Piceatannol differs from resveratrol by having an additional aromatic hydroxy group. The enzyme CYP1B1 is overexpressed in a wide variety of human tumours and catalyses aromatic hydroxylation reactions. We report here that the cancer preventative agent resveratrol undergoes metabolism by the cytochrome P450 enzyme CYP1B1 to give a metabolite which has been identified as the known antileukaemic agent piceatannol. The metabolite was identified by high performance liquid chromatography analysis using fluorescence detection and the identity of the metabolite was further confirmed by derivatisation followed by gas chromatography–mass spectrometry studies using authentic piceatannol for comparison. This observation provides a novel explanation for the cancer preventative properties of resveratrol. It demonstrates that a natural dietary cancer preventative agent can be converted to a compound with known anticancer activity by an enzyme that is found in human tumours. Importantly this result gives insight into the functional role of CYP1B1 and provides evidence for the concept that CYP1B1 in tumours may be functioning as a growth suppressor enzyme. British Journal of Cancer (2002) 86, 774–778. DOI: 10.1038/sj/bjc/6600197 www.bjcancer.com © 2002 Cancer Research UK PMID:11875742

  16. The prince and the pauper. A tale of anticancer targeted agents

    PubMed Central

    Dueñas-González, Alfonso; García-López, Patricia; Herrera, Luis Alonso; Medina-Franco, Jose Luis; González-Fierro, Aurora; Candelaria, Myrna

    2008-01-01

    Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited

  17. The prince and the pauper. A tale of anticancer targeted agents.

    PubMed

    Dueñas-González, Alfonso; García-López, Patricia; Herrera, Luis Alonso; Medina-Franco, Jose Luis; González-Fierro, Aurora; Candelaria, Myrna

    2008-01-01

    Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited

  18. Toad Glandular Secretions and Skin Extractions as Anti-Inflammatory and Anticancer Agents

    PubMed Central

    Tan, C. K.; Hashimi, Saeed M.; Zulfiker, Abu Hasanat Md.; Wei, Ming Q.

    2014-01-01

    Toad glandular secretions and skin extractions contain many natural agents which may provide a unique resource for novel drug development. The dried secretion from the auricular and skin glands of Chinese toad (Bufo bufo gargarizans) is named Chansu, which has been used in Traditional Chinese Medicine (TCM) for treating infection and inflammation for hundreds of years. The sterilized hot water extraction of dried toad skin is named Huachansu (Cinobufacini) which was developed for treating hepatitis B virus (HBV) and several types of cancers. However, the mechanisms of action of Chansu, Huachansu, and their constituents within are not well reported. Existing studies have suggested that their anti-inflammation and anticancer potential were via targeting Nuclear Factor (NF)-κB and its signalling pathways which are crucial hallmarks of inflammation and cancer in various experimental models. Here, we review some current studies of Chansu, Huachansu, and their compounds in terms of their use as both anti-inflammatory and anticancer agents. We also explored the potential use of toad glandular secretions and skin extractions as alternate resources for treating human cancers in combinational therapies. PMID:24734105

  19. Nano-Fenton Reactors as a New Class of Oxidative Stress Amplifying Anticancer Therapeutic Agents.

    PubMed

    Kwon, Byeongsu; Han, Eunji; Yang, Wonseok; Cho, Wooram; Yoo, Wooyoung; Hwang, Junyeon; Kwon, Byoung-Mog; Lee, Dongwon

    2016-03-01

    Cancer cells, compared to normal cells, are under oxidative stress associated with an elevated level of reactive oxygen species (ROS) and are more vulnerable to oxidative stress induced by ROS generating agents. Thus, manipulation of the ROS level provides a logical approach to kill cancer cells preferentially, without significant toxicity to normal cells, and great efforts have been dedicated to the development of strategies to induce cytotoxic oxidative stress for cancer treatment. Fenton reaction is an important biological reaction in which irons convert hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals that escalate ROS stress. Here, we report Fenton reaction-performing polymer (PolyCAFe) micelles as a new class of ROS-manipulating anticancer therapeutic agents. Amphiphilic PolyCAFe incorporates H2O2-generating benzoyloxycinnamaldehyde and iron-containing compounds in its backbone and self-assembles to form micelles that serve as Nano-Fenton reactors to generate cytotoxic hydroxyl radicals, killing cancer cells preferentially. When intravenously injected, PolyCAFe micelles could accumulate in tumors preferentially to remarkably suppress tumor growth, without toxicity to normal tissues. This study demonstrates the tremendous translatable potential of Nano-Fenton reactors as a new class of anticancer drugs. PMID:26888039

  20. PEG conjugates in clinical development or use as anticancer agents: an overview.

    PubMed

    Pasut, Gianfranco; Veronese, Francesco M

    2009-11-12

    During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented. PMID:19671438

  1. Highly Adaptable Triple-Negative Breast Cancer Cells as a Functional Model for Testing Anticancer Agents

    PubMed Central

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R.; Milligan, Ryan D.; Cady, Amanda M.; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance. PMID:25279830

  2. Enhancement of Selectivity of an Organometallic Anticancer Agent by Redox Modulation.

    PubMed

    Romero-Canelón, Isolda; Mos, Magdalena; Sadler, Peter J

    2015-10-01

    Combination with redox modulators can potentiate the anticancer activity and maximize the selectivity of organometallic complexes with redox-based mechanisms of action. We show that nontoxic doses of l-buthionine sulfoximine increase the selectivity of organo-Os complex FY26 for human ovarian cancer cells versus normal lung fibroblasts to 63-fold. This increase is not due to changes in the mechanism of action of FY26 but to the decreased response of cancer cells to oxidative stress. PMID:26397305

  3. Enhancement of Selectivity of an Organometallic Anticancer Agent by Redox Modulation

    PubMed Central

    2015-01-01

    Combination with redox modulators can potentiate the anticancer activity and maximize the selectivity of organometallic complexes with redox-based mechanisms of action. We show that nontoxic doses of l-buthionine sulfoximine increase the selectivity of organo-Os complex FY26 for human ovarian cancer cells versus normal lung fibroblasts to 63-fold. This increase is not due to changes in the mechanism of action of FY26 but to the decreased response of cancer cells to oxidative stress. PMID:26397305

  4. Curcumin-I Knoevenagel's condensates and their Schiff's bases as anticancer agents: synthesis, pharmacological and simulation studies.

    PubMed

    Ali, Imran; Haque, Ashanul; Saleem, Kishwar; Hsieh, Ming Fa

    2013-07-01

    Pyrazolealdehydes (4a-d), Knoevenagel's condensates (5a-d) and Schiff's bases (6a-d) of curcumin-I were synthesized, purified and characterized. Hemolysis assays, cell line activities, DNA bindings and docking studies were carried out. These compounds were lesser hemolytic than standard drug doxorubicin. Minimum cell viability (MCF-7; wild) observed was 59% (1.0 μg/mL) whereas the DNA binding constants ranged from 1.4×10(3) to 8.1×10(5) M(-1). The docking energies varied from -7.30 to -13.4 kcal/mol. It has been observed that DNA-compound adducts were stabilized by three governing forces (Van der Wall's, H-bonding and electrostatic attractions). It has also been observed that compounds 4a-d preferred to enter minor groove while 5a-d and 6a-d interacted with major grooves of DNA. The anticancer activities of the reported compounds might be due to their interactions with DNA. These results indicated the bright future of the reported compounds as anticancer agents. PMID:23643901

  5. Characterization of novel MPS1 inhibitors with preclinical anticancer activity.

    PubMed

    Jemaà, M; Galluzzi, L; Kepp, O; Senovilla, L; Brands, M; Boemer, U; Koppitz, M; Lienau, P; Prechtl, S; Schulze, V; Siemeister, G; Wengner, A M; Mumberg, D; Ziegelbauer, K; Abrieu, A; Castedo, M; Vitale, I; Kroemer, G

    2013-11-01

    synergistic interaction between paclitaxel and MPS1 inhibitors could also be demonstrated in vivo, as the combination of these agents efficiently reduced the growth of tumor xenografts and exerted superior antineoplastic effects compared with either compound employed alone. Altogether, these results suggest that MPS1 inhibitors may exert robust anticancer activity, either as standalone therapeutic interventions or combined with microtubule-targeting chemicals. PMID:23933817

  6. Novel Antimicrobial Peptides with High Anticancer Activity and Selectivity

    PubMed Central

    Chen, Kuan-Hao; Yu, Hui-Yuan; Chih, Ya-Han; Cheng, Hsi-Tsung; Chou, Yu-Ting; Cheng, Jya-Wei

    2015-01-01

    We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics. PMID:25970292

  7. Neem Limonoids as Anticancer Agents: Modulation of Cancer Hallmarks and Oncogenic Signaling.

    PubMed

    Nagini, Siddavaram

    2014-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile medicinal plants, widely distributed in the Indian subcontinent. Neem is a rich source of limonoids that are endowed with potent medicinal properties predominantly antioxidant, anti-inflammatory, and anticancer activities. Azadirachtin, gedunin, and nimbolide are more extensively investigated relative to other neem limonoids. Accumulating evidence indicates that the anticancer effects of neem limonoids are mediated through the inhibition of hallmark capabilities of cancer such as cell proliferation, apoptosis evasion, inflammation, invasion, and angiogenesis. The neem limonoids have been demonstrated to target oncogenic signaling kinases and transcription factors chiefly, NF-κB, Wnt/β-catenin, PI3K/Akt, MAPK, and JAK/STAT signaling pathways. Neem limonoids that target multiple pathways that are aberrant in cancer are ideal candidates for cancer chemoprevention and therapy. PMID:27102702

  8. Anticancer Activity of Methyl-Substituted Oxaliplatin Analogs†

    PubMed Central

    Jungwirth, Ute; Xanthos, Dimitris N.; Gojo, Johannes; Bytzek, Anna K.; Körner, Wilfried; Heffeter, Petra; Abramkin, Sergey A.; Jakupec, Michael A.; Hartinger, Christian G.; Windberger, Ursula; Galanski, Markus; Keppler, Bernhard K.; Berger, Walter

    2012-01-01

    Oxaliplatin is successfully used in systemic cancer therapy. However, resistance development and severe adverse effects are limiting factors for curative cancer treatment with oxaliplatin. The purpose of this study was to comparatively investigate in vitro and in vivo anticancer properties as well as the adverse effects of two methyl-substituted enantiomerically pure oxaliplatin analogs [[(1R,2R,4R)-4-methyl-1,2-cyclohexanediamine] oxalatoplatinum(II) (KP1537), and [(1R,2R,4S)-4-methyl-1,2-cyclohexanediamine]oxalatoplatinum(II) (KP1691)] and to evaluate the impact of stereoisomerism. Although the novel oxaliplatin analogs demonstrated in multiple aspects activities comparable with those of the parental compound, several key differences were discovered. The analogs were characterized by reduced vulnerability to resistance mechanisms such as p53 mutations, reduced dependence on immunogenic cell death induction, and distinctly attenuated adverse effects including weight loss and cold hyperalgesia. Stereoisomerism of the substituted methyl group had a complex and in some aspects even contradictory impact on drug accumulation and anticancer activity both in vitro and in vivo. To summarize, methyl-substituted oxaliplatin analogs harbor improved therapeutic characteristics including significantly reduced adverse effects. Hence, they might be promising metal-based anticancer drug candidates for further (pre)clinical evaluation. PMID:22331606

  9. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    SciTech Connect

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A.

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereas Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.

  10. In vitro anticancer activity of extracts of Mentha Spp. against human cancer cells.

    PubMed

    Sharma, Vikas; Hussain, Shabir; Gupta, Moni; Saxena, Ajit Kumar

    2014-10-01

    In vitro anticancer potential of methanolic and aqueous extracts of whole plants of Mentha arvensis, M. longifolia, M. spicata and M. viridis at concentration of 100 μg/ml was evaluated against eight human cancer cell lines--A-549, COLO-205, HCT-116, MCF-7, NCI-H322, PC-3, THP-1 and U-87MG from six different origins (breast, colon, glioblastoma, lung, leukemia and prostate) using sulphorhodamine blue (SRB) assay. Methanolic extracts of above-mentioned Mentha Spp. displayed anti-proliferative effect in the range of 70-97% against four human cancer cell lines, namely COLO-205, MCF-7, NCI-H322 and THP-1; however, aqueous extracts were found to be active against HCT-116 and PC-3. The results indicate that Mentha Spp. contain certain constituents with cytotoxic properties which may find use in developing anticancer agents. PMID:25630112

  11. Design, synthesis and anti-cancer activity evaluation of podophyllotoxin-norcantharidin hybrid drugs.

    PubMed

    Han, Hong-Wei; Qiu, Han-Yue; Hu, Cui; Sun, Wen-Xue; Yang, Rong-Wu; Qi, Jin-Liang; Wang, Xiao-Ming; Lu, Gui-Hua; Yang, Yong-Hua

    2016-07-15

    In this study, we designed and synthesized eighteen podophyllotoxin-norcantharidin hybrid drugs which could exhibit more potent anti-cancer activity than the parent drugs. Through the anti-proliferation assay, the most potent anti-cancer agent was screened out, namely Q9 (IC50=0.88±0.18μM against MCF-7 cell line), and it showed lower cytotoxicity against non-cancer cells, human embryonic kidney cells (293T) (IC50=54.38±3.78μM). Additionally, based on the flow cytometry analysis result, it can cause a remarkable cell cycle arrest at G2/M phase and induce apoptosis in MCF-7 cells more significantly than podophyllotoxin or norcantharidin per se. Moreover, the expression of cell cycle relative protein CDK1 was up regulated while a protein required for mitotic initiation, Cyclin B1 was down regulated. Furthermore, according to the confocal microscopy observation results, it was shown that Q9 was a potent tubulin polymerization inhibitor and the effect is comparable to that of colchicine. For further investigation on the aforementioned mechanisms, we performed western blot experiments, thus finding the increase of the cleavage of PARP. Consistent with these new findings, molecular docking observations suggested that compound Q9 could be developed as a potential anticancer agent. PMID:27262599

  12. Anticancer activity of flavane gallates isolated from Plicosepalus curviflorus

    PubMed Central

    Fawzy, Ghada Ahmed; Al-Taweel, Areej Mohammad; Perveen, Shagufta

    2014-01-01

    Background: Previous investigation of the methanol extract of Plicosepalus curviflorus leaves led to the isolation of two new flavane gallates (1, 2), together with other compounds including quercetin (3). The stems of P. curviflorus are used traditionally for the treatment of cancer in Yemen. Objective: The aim of this study was to evaluate the anticancer activity of the plant methanol extract as well as isolated compounds (1-3). Materials and Methods: The human cancer cell lines used were; MCF-7, HepG-2, HCT-116, Hep-2, HeLa and normal, Vero cell line using the Crystal Violet Staining method (CVS). Results: Quercetin (3) possessed the highest anticancer effect against all five cell lines (IC50 ranging from 3.6 to 16.2 μg/ml). It was followed by 2S, 3R-3, 3′, 4′, 5, 7-pentahydroxyflavane-5-O-gallate (1), with IC50 ranging from 11.6 to 38.8 μg/ml. The weakest anticancer activity was given by 2S, 3R-3,3′,4′,5,5′,7-hexahydroxyflavane-3′,5-di-O-gallate (2) with IC50 ranging from 39.8 to above 50 μg/ml, compared to vinblastine sulphate as reference drug. Colon, liver and breast cell lines seemed to be more sensitive to the tested compounds than the cervical and laryngeal cell lines. Concerning the cytotoxic effect on Vero cell line, the pentahydroxyflavane-5-O-gallate (1) showed the highest IC50 ( 138.2 μg/ml), while quercetin exhibited the lowest IC50 to Vero cells (30.5 μg/ml), compared to vinblastine sulphate as reference drug (IC50: 39.7 μg/ml). Conclusion: The results suggest the possible use of compounds 1 and 3 as anticancer drugs especially against colon and liver cancers. PMID:25298669

  13. New testosterone derivatives as semi-synthetic anticancer agents against prostate cancer: synthesis and preliminary biological evaluation.

    PubMed

    Morin, Nathalie; Bruneau, Julie; Fortin, Sebastien; Brasseur, Kevin; Leblanc, Valerie; Asselin, Eric; Berube, Gervais

    2015-01-01

    Prostate cancer (PC) is a major health issue in the world. Treatments of localized PC are quite efficient and usually involve surgery, radiotherapy and/or hormonal therapy. Metastatic PC is however rarely curable to this day. Treatments of metastatic PC involve radiotherapy, chemotherapy and hormonal treatment such as orchiectomy, antiandrogens and luteinizing hormone-releasing hormone agonists. The suppression of tumor growth by hormonal treatment is efficient but overtime resistance still occurs and the disease progresses. Thus, more urgently than ever there is a need for discovery of new treatment options for castration-resistant PC (CRPC). Hence, we designed and tested a series of amide derivatives located at position 7α of testosterone as prospective "natural" or "semisynthetic" anticancer agents against CRPC with the goal of discovering therapeutic alternatives for the disease. This manuscript describes an efficient path towards the target molecules that are made in only 6 or 7 chemical steps from testosterone in good overall yields. This strategy can be used to make several compounds of interest that present higher biological activity than the classic antiandrogen; cyproterone acetate (3). The best testosterone-7α-amide was the N-2-pyridylethylamide (25) which was as active as the antiandrogen cyproterone acetate (3) on androgen-dependent LNCaP cells and 2.7 times more active on androgen-independent PC3 prostate cancer cells. The results obtained show the synthetic feasibility and the potential for future development of this unique class of semi-synthetic anticancer agents that offer the premise of new treatment modalities for patients afflicted with CRPC. PMID:25675439

  14. Curcumin-albumin conjugates as an effective anti-cancer agent with immunomodulatory properties.

    PubMed

    Aravind, S R; Krishnan, Lissy K

    2016-05-01

    the drug form has the potential to be used as an anticancer agent in affected human subjects. PMID:26927614

  15. Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase.

    PubMed

    Brück, Thomas B; Brück, Dieter W

    2011-02-01

    Mitoxantrone (MH(2)X), an anthraquinone-type anti-cancer agent used clinically in the treatment of human malignancies, is oxidatively activated by the peroxidase/H(2)O(2) enzyme system. In contrast to the enzymatic mechanisms of drug oxidation, the chemical transformations of MH(2)X are not well described. In this study, MH(2)X metabolites, produced by the horseradish, lacto- or lignin peroxidase (respectively HRP, LPO and LIP)/H(2)O(2) system, were investigated by steady-state spectrokinetic and HPLC-MS methods. At an equimolar mitoxantrone/H(2)O(2) ratio, the efficacy of the enzyme-catalyzed oxidation of mitoxantrone decreased in the following order: LPO > HRP > LIP, which accorded with the decreasing size of the substrate access channel in the enzyme panel examined. In all cases, the central drug oxidation product was the redox-active cyclic metabolite, hexahydronaphtho-[2,3-f]-quinoxaline-7,12-dione (MH(2)), previously identified in the urine of mitoxantrone-treated patients. As the reaction progressed, data gathered in this study suggests that further oxidation of the MH(2) side-chains occurred, yielding the mono- and dicarboxylic acid derivatives respectively. Based on the available data a further MH(2) derivative is proposed, in which the amino-alkyl side-chain(s) are cyclised. With increasing H(2)O(2) concentrations, these novel MH(2) derivatives were oxidised to additional metabolites, whose spectral properties and MS data indicated a stepwise destruction of the MH(2) chromophore due to an oxidative cleavage of the 9,10-anthracenedione moiety. The novel metabolites extend the known sequence of peroxidase-induced mitoxantrone metabolism, and may contribute to the cytotoxic effects of the drug in vivo. Based on the structural features of the proposed MH(2) oxidation products we elaborate on various biochemical mechanisms, which extend the understanding of mitoxantrone's pharmaceutical action and its clinical effectiveness with a particular focus on

  16. Discovery of Pyrazolo[1,5-a]pyrimidine TTK Inhibitors: CFI-402257 is a Potent, Selective, Bioavailable Anticancer Agent.

    PubMed

    Liu, Yong; Laufer, Radoslaw; Patel, Narendra Kumar; Ng, Grace; Sampson, Peter B; Li, Sze-Wan; Lang, Yunhui; Feher, Miklos; Brokx, Richard; Beletskaya, Irina; Hodgson, Richard; Plotnikova, Olga; Awrey, Donald E; Qiu, Wei; Chirgadze, Nickolay Y; Mason, Jacqueline M; Wei, Xin; Lin, Dan Chi-Chia; Che, Yi; Kiarash, Reza; Fletcher, Graham C; Mak, Tak W; Bray, Mark R; Pauls, Henry W

    2016-07-14

    This work describes a scaffold hopping exercise that begins with known imidazo[1,2-a]pyrazines, briefly explores pyrazolo[1,5-a][1,3,5]triazines, and ultimately yields pyrazolo[1,5-a]pyrimidines as a novel class of potent TTK inhibitors. An X-ray structure of a representative compound is consistent with 1(1)/2 type inhibition and provides structural insight to aid subsequent optimization of in vitro activity and physicochemical and pharmacokinetic properties. Incorporation of polar moieties in the hydrophobic and solvent accessible regions modulates physicochemical properties while maintaining potency. Compounds with enhanced oral exposure were identified for xenograft studies. The work culminates in the identification of a potent (TTK K i = 0.1 nM), highly selective, orally bioavailable anticancer agent (CFI-402257) for IND enabling studies. PMID:27437075

  17. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent

    PubMed Central

    Yokoo, Masako; Kubota, Yasushi; Motoyama, Keiichi; Higashi, Taishi; Taniyoshi, Masatoshi; Tokumaru, Hiroko; Nishiyama, Rena; Tabe, Yoko; Mochinaga, Sakiko; Sato, Akemi; Sueoka-Aragane, Naoko; Sueoka, Eisaburo; Arima, Hidetoshi; Irie, Tetsumi; Kimura, Shinya

    2015-01-01

    2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML), acute lymphoblastic leukemia and chronic myeloid leukemia (CML). HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors), and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics. PMID:26535909

  18. The Anticancer Agent Chaetocin Is a Competitive Substrate and Inhibitor of Thioredoxin Reductase

    PubMed Central

    Tibodeau, Jennifer D.; Benson, Linda M.; Isham, Crescent R.; Owen, Whyte G.

    2009-01-01

    Abstract We recently reported that the antineoplastic thiodioxopiperazine natural product chaetocin potently induces cellular oxidative stress, thus selectively killing cancer cells. In pursuit of underlying molecular mechanisms, we now report that chaetocin is a competitive and selective substrate for the oxidative stress mitigation enzyme thioredoxin reductase-1 (TrxR1) with lower Km than the TrxR1 native substrate thioredoxin (Trx; chaetocin Km = 4.6 ± 0.6 μM, Trx Km = 104.7 ± 26 μM), thereby attenuating reduction of the critical downstream ROS remediation substrate Trx at achieved intracellular concentrations. Consistent with a role for TrxR1 targeting in the anticancer effects of chaetocin, overexpression of the TrxR1 downstream effector Trx in HeLa cells conferred resistance to chaetocin-induced, but not to doxorubicin-induced, cytotoxicity. As the TrxR/Trx pathway is of central importance in limiting cellular reactive oxygen species (ROS)—and as chaetocin exerts its selective anticancer effects via ROS imposition—the inhibition of TrxR1 by chaetocin has potential to explain its selective anticancer effects. These observations have important implications not just with regard to the mechanism of action and clinical development of chaetocin and related thiodioxopiperazines, but also with regard to the utility of molecular targets within the thioredoxin reductase/thioredoxin pathway in the development of novel candidate antineoplastic agents. Antioxid. Redox Signal. 11, 1097–1106. PMID:18999987

  19. Photodynamic Anticancer Activities of Multifunctional Cobalt Ferrite Nanoparticles in Various Cancer Cells.

    PubMed

    Park, Bong Joo; Choi, Kyong-Hoon; Nam, Ki Chang; Ali, Anser; Min, Joe Eun; Son, Hyungbin; Uhm, Han S; Kim, Ho-Joong; Jung, Jin-Seung; Choi, Eun Ha

    2015-02-01

    To develop novel multifunctional magnetic nanoparticles (MNPs) with good magnetic properties, biocompatibility, and anticancer activities by photodynamic therapy (PDT), we synthesized multifunctional cobalt ferrite (CoFe2O4) nanoparticles (CoFe2O4-HPs-FAs) functionalized by coating them with hematoporphyrin (HP) for introducing photo-functionality and by conjugating with folic acid (FA) for targeting cancer cells. We evaluated the activities of the CoFe2O4-HPs-FAs by checking magnetic resonance imaging (MRI) in vitro, its biocompatibility, and photodynamic anticancer activities on FA receptor (FR)-positive and FR-negative cancer cell lines, Hela, KB, MCF-7, and PC-3 cells, to use for clinical applications. In this study, we have demonstrated that the CoFe2O4-HPs-FAs have good MRI and biocompatibility with non-cytotoxicity, and remarkable photodynamic anticancer activities at very low concentrations regardless of cell types. Particularly, the photo-killing abilities in 3.13 μg/mL of CoFe2O4-HPs-FAs were measured to be 91.8% (p < 0.002) for Hela, 94.5% (p < 0.007) for KB, 79.1% (p < 0.003) for MCF-7, and 71.3% (p < 0.006) for PC-3. The photodynamic anticancer activities in 6.25 and 12.5 μg/mL of CoFe2O4-HPs-FAs were measured to be over 95% (p < 0.004) to almost 100% regardless of cell types. The newly developed multifunctional CoFe2O4-HPs-FAs are effective for PDT and have potential as therapeutic agents for MRI-based PDT, because they have a high saturation value of magnetization and superparamagnetism. PMID:26349298

  20. M2L4 coordination capsules with tunable anticancer activity upon guest encapsulation.

    PubMed

    Ahmedova, Anife; Mihaylova, Rositsa; Momekova, Denitsa; Shestakova, Pavletta; Stoykova, Silviya; Zaharieva, Joana; Yamashina, Masahiro; Momekov, Georgi; Akita, Munetaka; Yoshizawa, Michito

    2016-08-16

    Metallosupramolecular cages and capsules have gained increasing popularity as both molecular containers and anticancer agents. For successful combination of these properties a thorough analysis of the effect of guest encapsulation on the host's cytotoxic properties is highly required. Here we report on the cytotoxicity modulation of Pt(ii) and Pd(ii)-linked M2L4 coordination capsules upon encapsulation of guest molecules such as pyrene and caffeine. The anticancer activity of the capsules against various human cancer cells (HT-29, T-24, HL-60 and its resistant counterparts HL-60/Dox and HL-60/CDDP) significantly altered upon the guest encapsulation. The encapsulation of pyrene molecules causes a decrease in the cytotoxicity of the Pt(ii) capsule, which is stronger than that of the Pd(ii) capsule. The cytotoxicities of the caffeine containing capsules are lower than that of the empty capsules (except for HL-60), but still superior to cisplatin under the same conditions. The observed trends in the anticancer activity of the capsules and their host-guest complexes correlate with their different stabilities toward glutathione, estimated by NMR-based kinetic experiments. Mechanistic insights into the observed cytotoxicities are obtained by fluorescence microscopy imaging of tumor cells treated with the capsules and their pyrene complexes. The data suggest the glutathione-triggered disassembly of the capsular structures as a potential activation pathway for their cytotoxicities. PMID:27488015

  1. Development History and Concept of an Oral Anticancer Agent S-1 (TS-1®): Its Clinical Usefulness and Future Vistas

    PubMed Central

    Shirasaka, Tetsuhiko

    2009-01-01

    Dushinsky et al. left a great gift to human beings with the discovery of 5-fluorouracil (5-FU). Approximately 50 years have elapsed from that discovery to the development of S-1 (TS-1®). The concept of developing an anticancer agent that simultaneously possesses both efficacy-enhancing and adverse reaction-reducing effects could be achieved only with a three-component combination drug. S-1 is an oral anticancer agent containing two biochemical modulators for 5-FU and tegafur (FT), a metabolically activated prodrug of 5-FU. The first modulator, 5-chloro-2,4-dihydroxypyridine (CDHP), enhances the pharmacological actions of 5-FU by potently inhibiting its degradation. The second modulator, potassium oxonate (Oxo), localizing in mucosal cells of the gastrointestinal (GI) tract after oral administration, reduces the incidence of GI toxicities by suppressing the activation of 5-FU in the GI tract. Thus, S-1 combines FT, CDHP and Oxo at a molar ratio of 1:0.4:1. In 1999–2007, S-1 was approved for the treatment of the following seven cancers: gastric, head and neck, colorectal, non-small cell lung, breast, pancreatic and biliary tract cancers. ‘S-1 and low-dose cisplatin therapy’ without provoking Grade 3 non-hematologic toxicities was proposed to enhance its clinical usefulness. Furthermore, ‘alternate-day S-1 regimen’ may improve the dosing schedule for 5-FU by utilizing its strongly time-dependent mode of action; the former is characterized by the low incidences of myelotoxicity and non-hematologic toxicities (e.g. ≤Grade 1 anorexia, fatigue, stomatitis, nausea, vomiting and taste alteration). These two approaches are considered to allow long-lasting therapy with S-1. PMID:19052037

  2. The Potent Oxidant Anticancer Activity of Organoiridium Catalysts**

    PubMed Central

    Liu, Zhe; Romero-Canelón, Isolda; Qamar, Bushra; Hearn, Jessica M; Habtemariam, Abraha; Barry, Nicolas P E; Pizarro, Ana M; Clarkson, Guy J; Sadler, Peter J

    2014-01-01

    Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C∧N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. PMID:24616129

  3. Withaferin-A—A Natural Anticancer Agent with Pleitropic Mechanisms of Action

    PubMed Central

    Lee, In-Chul; Choi, Bu Young

    2016-01-01

    Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A. PMID:26959007

  4. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action.

    PubMed

    Lee, In-Chul; Choi, Bu Young

    2016-01-01

    Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A. PMID:26959007

  5. The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo

    PubMed Central

    2011-01-01

    Background The initial pharmacokinetic study of a new anticancer agent (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum (IV) (LA-12) was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring. Methods Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis. Results We identified Retinol-binding protein 4 (RBP4) whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials. Conclusions RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs. PMID:22040120

  6. Aplidine: a paradigm of how to handle the activity and toxicity of a novel marine anticancer poison.

    PubMed

    Le Tourneau, C; Raymond, E; Faivre, S

    2007-01-01

    The marine ecosystem that has contributed to the discovery of cytarabine and its fluorinated derivative gemcitabine is now considered the most productive toll to acquire new natural derived anticancer entities. Few marine anticancer agents have entered clinical development, including bryostatin-1, dolastatin 10, LU103793, ET-743, kahalalide F, didemnin B and aplidine. The marine plitidepsin aplidine derived from the mediterranean tunicate Aplidium albicans is a synthetically produced anticancer agent that is structurally related to didemnins. Aplidine's mechanism of action involves several pathways, including cell cycle arrest, inhibition of protein synthesis and antiangiogenic activity. Phase I studies have been reported for a number of several schedules including 1-hour, 3-hour and 24-hour infusion. Evidences of antitumor activity and clinical benefit of aplidine in several tumor types were noted across phase I trials, particularly in advanced medullar thyroid carcinoma. Phase II studies are underway. Within the entire phase I program, dose-limiting toxicities of aplidine were neuromuscular toxicity, asthenia, skin toxicity, and diarrhea. Interestingly, no hematological toxicity was observed. Aplidine displayed a very peculiar delayed neuromuscular toxicity that was found to be closely related to the symptoms described in the adult form of carnitine palmitoyl transferase deficiency type 2, which is a genetic disease treated with L-carnitine. Consistently, concomitant administration of L-carnitine allowed to improve aplidine-induce neuromuscular toxicity. In summary, aplidine is a novel marine anticancer agent with a very particular delayed neuromuscular toxicity that requires careful follow-up with promising antitumor activity. PMID:18045196

  7. Structural analogues of diosgenyl saponins: synthesis and anticancer activity.

    PubMed

    Kaskiw, Matthew J; Tassotto, Mary Lynn; Mok, Mac; Tokar, Stacey L; Pycko, Roxanne; Th'ng, John; Jiang, Zi-Hua

    2009-11-15

    Saponins display various biological activities including anti-tumor activity. Recently intensive research has been focused on developing saponins for tumor therapies. The diosgenyl saponin dioscin is one of the most common steroidal saponins and exhibits potent anticancer activity in several human cancer cells through apoptosis-inducing pathways. In this paper, we describe the synthesis of several diosgenyl saponin analogues containing either a 2-amino-2-deoxy-beta-d-glucopyranosyl residue or an alpha-l-rhamnopyranosyl-(1-->4)-2-amino-2-deoxy-beta-d-glucopyranosyl residue with different acyl substituents on the amino group. The cytotoxic activity of these compounds was evaluated in MCF-7 breast cancer cells and HeLa cervical cancer cells. Structure-activity relationship studies show that the disaccharide saponin analogues are in general less active than their corresponding monosaccharide analogues. The incorporation of an aromatic nitro functionality into these saponin analogues does not exhibit significant effect on their cytotoxic activity. PMID:19819703

  8. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells

    PubMed Central

    2012-01-01

    Background Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Methods Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. Results The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Conclusion Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL. PMID:23351440

  9. Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer.

    PubMed

    Ma, Liang; Sato, Fuminori; Sato, Ryuta; Matsubara, Takanori; Hirai, Kenichi; Yamasaki, Mutsushi; Shin, Toshitaka; Shimada, Tatsuo; Nomura, Takeo; Mori, Kenichi; Sumino, Yasuhiro; Mimata, Hiromitsu

    2014-06-01

    Heat shock proteins (HSPs), which are molecular chaperones that stabilize numerous vital proteins, may be attractive targets for cancer therapy. The aim of the present study was to investigate the possible anticancer effect of single or dual targeting of HSP90 and HSP70 and the combination treatment with HSP inhibitors and chemotherapeutic agents in bladder cancer cells. The expression of HSP90 and the anticancer effect of the HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) coupled with cisplatin, docetaxel, or gemcitabine were examined using immunohistochemistry, quantitative real-time PCR, cell growth, flow cytometry, immunoblots and caspase-3/7 assays. The expression of HSP70 under HSP90 inhibition and the additive effect of HSP70 inhibitor pifithrin-μ (PFT-μ) were examined by the same assays and transmission electron microscopy. HSP90 was highly expressed in bladder cancer tissues and cell lines. 17-AAG enhanced the antiproliferative and apoptotic effects of each chemotherapeutic agent. 17-AAG also suppressed Akt activity but induced the upregulation of HSP70. PFT-μ enhanced the effect of 17-AAG or chemotherapeutic agents; the triple combination of 17-AAG, PFT-μ and a chemotherapeutic agent showed the most significant anticancer effect on the T24 cell line. The combination of 17-AAG and PFT-μ markedly suppressed Akt and Bad activities. With HSP90 suppression, HSP70 overexpression possibly contributes to the avoidance of cell death and HSP70 may be a key molecule for overcoming resistance to the HSP90 inhibitor. The dual targeting of these two chaperones and the combination with conventional anticancer drugs could be a promising therapeutic option for patients with advanced bladder cancer. PMID:24718854

  10. Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer

    PubMed Central

    MA, LIANG; SATO, FUMINORI; SATO, RYUTA; MATSUBARA, TAKANORI; HIRAI, KENICHI; YAMASAKI, MUTSUSHI; SHIN, TOSHITAKA; SHIMADA, TATSUO; NOMURA, TAKEO; MORI, KENICHI; SUMINO, YASUHIRO; MIMATA, HIROMITSU

    2014-01-01

    Heat shock proteins (HSPs), which are molecular chaperones that stabilize numerous vital proteins, may be attractive targets for cancer therapy. The aim of the present study was to investigate the possible anticancer effect of single or dual targeting of HSP90 and HSP70 and the combination treatment with HSP inhibitors and chemotherapeutic agents in bladder cancer cells. The expression of HSP90 and the anticancer effect of the HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) coupled with cisplatin, docetaxel, or gemcitabine were examined using immunohistochemistry, quantitative real-time PCR, cell growth, flow cytometry, immunoblots and caspase-3/7 assays. The expression of HSP70 under HSP90 inhibition and the additive effect of HSP70 inhibitor pifithrin-μ (PFT-μ) were examined by the same assays and transmission electron microscopy. HSP90 was highly expressed in bladder cancer tissues and cell lines. 17-AAG enhanced the antiproliferative and apoptotic effects of each chemotherapeutic agent. 17-AAG also suppressed Akt activity but induced the upregulation of HSP70. PFT-μ enhanced the effect of 17-AAG or chemotherapeutic agents; the triple combination of 17-AAG, PFT-μ and a chemotherapeutic agent showed the most significant anticancer effect on the T24 cell line. The combination of 17-AAG and PFT-μ markedly suppressed Akt and Bad activities. With HSP90 suppression, HSP70 overexpression possibly contributes to the avoidance of cell death and HSP70 may be a key molecule for overcoming resistance to the HSP90 inhibitor. The dual targeting of these two chaperones and the combination with conventional anticancer drugs could be a promising therapeutic option for patients with advanced bladder cancer. PMID:24718854

  11. Potential anticancer activity of carvone in N2a neuroblastoma cell line.

    PubMed

    Aydın, Elanur; Türkez, Hasan; Keleş, Mevlüt Sait

    2015-08-01

    Carvone (CVN) is a monocyclic monoterpene found in the essential oils of Mentha spicata var. crispa (Lamiaceae) and Carum carvi L. (Apiaceae) plants and has been reported to have antioxidant, antimicrobial, anticonvulsant, and antitumor activities. The beneficial health properties of CVN have encouraged us to look into its anticancer activity. To the best of our knowledge, reports are not available on the anticancer activity of CVN in cultured primary rat neuron and N2a neuroblastoma (NB) cells. Therefore, the present study is an attempt toward exploring the potential anticancer activity of CVN, if any, in cultured primary rat neuron and N2a NB cells. Our results indicated that CVN (only at 25 mg/L) treatment led to an increase in the total antioxidant capacity levels in cultured primary rat neuron cells compared with control cells. Also, CVN (at concentrations higher than 100 mg/L) treatment led to an increase in the total oxidative stress levels in both cell types. The mean values of the total scores of cells showing DNA damage (for comet assay) were not found to be significantly different from the control values in both cells (p > 0.05). On the other hand, after 24 h treatment with CVN, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay showed that CVN application significantly reduced the cell viability rates in both cell types at concentrations higher than 100 mg/L. Summarizing, our data suggest that CVN represents little potential for promising anticancer agent to improve brain tumors therapy. PMID:23552268

  12. Investigation of Degradation Properties of Poly(lactide-co-glycolide) Matrix for Anticancer Agent Delivery

    SciTech Connect

    Ghani, S. M.; Mohamed, M. S. W.; Yahya, A. F.; Noorsal, K.

    2010-03-11

    Poly(lactide-co-glycolide)(PLA{sub 50}GA{sub 50}) is a biodegradable and biocompatible polymer. It offers tremendous potential as a basis for drug delivery, either as drug delivery system alone or in conjugate with a medical device. The PLA{sub 50}GA{sub 50} is the material of choice for relatively shorter-duration applications, while the homopolymer PLA (poly-L-lactide) and PGA (polyglycolide) are preferred for longer term delivery of drugs. This paper discusses the degradation properties of poly(lactide-co-glycolide)(PLA{sub 50}GA{sub 50}) at inherent viscosity of 0.89 dL/g as preliminary studies for anticancer agent delivery.

  13. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs.

    PubMed

    Murray, Michael; Hraiki, Adam; Bebawy, Mary; Pazderka, Curtis; Rawling, Tristan

    2015-06-01

    Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of ω-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of ω-3 PUFAs impair particular tumorigenic pathways. For example, the ω-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer. PMID:25603423

  14. A Mn(II) complex of boradiazaindacene (BODIPY) loaded graphene oxide as both LED light and H2O2 enhanced anticancer agent.

    PubMed

    Xu, Xiao-Lei; Shao, Jian; Chen, Qiu-Yun; Li, Cheng-Hao; Kong, Meng-Yun; Fang, Fang; Ji, Ling; Boison, Daniel; Huang, Tao; Gao, Jing; Feng, Chang-Jian

    2016-06-01

    Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments. PMID:26901626

  15. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity.

    PubMed

    McMillin, Douglas W; Delmore, Jake; Weisberg, Ellen; Negri, Joseph M; Geer, D Corey; Klippel, Steffen; Mitsiades, Nicholas; Schlossman, Robert L; Munshi, Nikhil C; Kung, Andrew L; Griffin, James D; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2010-04-01

    Conventional anticancer drug screening is typically performed in the absence of accessory cells of the tumor microenvironment, which can profoundly alter antitumor drug activity. To address this limitation, we developed the tumor cell-specific in vitro bioluminescence imaging (CS-BLI) assay. Tumor cells (for example, myeloma, leukemia and solid tumors) stably expressing luciferase are cultured with nonmalignant accessory cells (for example, stromal cells) for selective quantification of tumor cell viability, in presence versus absence of stromal cells or drug treatment. CS-BLI is high-throughput scalable and identifies stroma-induced chemoresistance in diverse malignancies, including imatinib resistance in leukemic cells. A stroma-induced signature in tumor cells correlates with adverse clinical prognosis and includes signatures for activated Akt, Ras, NF-kappaB, HIF-1alpha, myc, hTERT and IRF4; for biological aggressiveness; and for self-renewal. Unlike conventional screening, CS-BLI can also identify agents with increased activity against tumor cells interacting with stroma. One such compound, reversine, shows more potent activity in an orthotopic model of diffuse myeloma bone lesions than in conventional subcutaneous xenografts. Use of CS-BLI, therefore, enables refined screening of candidate anticancer agents to enrich preclinical pipelines with potential therapeutics that overcome stroma-mediated drug resistance and can act in a synthetic lethal manner in the context of tumor-stroma interactions. PMID:20228816

  16. Lasallia pustulata lichen as possible natural antigenotoxic, antioxidant, antimicrobial and anticancer agent.

    PubMed

    Kosanić, Marijana; Ranković, Branislav; Stanojković, Tatjana; Stošić, Ivana; Grujičić, Darko; Milošević-Djordjević, Olivera

    2016-08-01

    The methanol extract of the lichen Lasallia pustulata was tested for genotoxic, antioxidant, antimicrobial and anticancer activities. We did this using a cytokinesis block micronucleus (MN) assay on peripheral blood lymphocytes, by measuring free radical and superoxide anion scavenging activity, reducing power, determining of total phenolic compounds and determining the total flavonoid content, measuring the minimal inhibitory concentration by the broth microdilution method against five species of bacteria and five species of fungi and by using the microculture tetrazolium test on FemX (human melanoma) and LS174 (human colon carcinoma) cell lines. As a result of this study, we found that the methanol extract of L. pustulata did not modify the frequency of the MN and nuclear division index in comparison to untreated cells (p > 0.05). These results revealed that the methanol extract had moderate free radical scavenging activity with IC50 values of 395.56 μg/mL. Moreover, the extract tested had effective reducing power and superoxide anion radical scavenging. The values of the minimum inhibitory concentration against the tested microorganisms ranged from 0.625 to 20 mg/mL. In addition, the extract tested had strong anticancer activity against both cell lines with IC50 values of 46.67 and 71.71 μg/mL. PMID:25682053

  17. Anticancer Therapy: Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy (Adv. Mater. 17/2016).

    PubMed

    Qian, Chenggen; Yu, Jicheng; Chen, Yulei; Hu, Quanyin; Xiao, Xuanzhong; Sun, Wujin; Wang, Chao; Feng, Peijian; Shen, Qun-Dong; Gu, Zhen

    2016-05-01

    A light-activated hypoxia-responsive drug-delivery vehicle is described by Q.-D. Shen, Z. Gu, and co-workers on page 3313. This conjugated-polymer-based nanocarrier can be activated by photoirradiation, producing singlet oxygen ((1) O2 ) and inducing hypoxia to promote release of its cargo inside tumor cells for enhanced anticancer efficacy. PMID:27122110

  18. New 3'-O-aromatic acyl-5-fluoro-2'-deoxyuridine derivatives as potential anticancer agents.

    PubMed

    Szymańska-Michalak, Agnieszka; Wawrzyniak, Dariusz; Framski, Grzegorz; Kujda, Marta; Zgoła, Paulina; Stawinski, Jacek; Barciszewski, Jan; Boryski, Jerzy; Kraszewski, Adam

    2016-06-10

    New aromatic and aliphatic 3'-O-acyl-5-fluoro-2'-deoxyuridine derivatives were synthesized and evaluated as candidates for prodrugs against various cancer cell lines. As the most promising candidate for antimalignant therapeutics was found a dual-acting acyl derivative 7h, which apparently released not only the known anticancer nucleoside, 5-fluoro-2'-deoxyuridine (FdU), but also an additional active metabolite, acetylsalicylic acid, reinforcing thus therapeutic effect of FdU. Promising therapeutic indices showed also some aromatic dicarboxylic acids derivatives decorated with FdU esters (11 and 12). PMID:26994842

  19. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents, an update (2013-2015).

    PubMed

    Patil, Renukadevi; Patil, Siddappa A; Beaman, Kenneth D; Patil, Shivaputra A

    2016-07-01

    Discovery of new indole-based tubulin polymerization inhibitors will continue to dominate the synthetic efforts of many medicinal chemists working in the field. The indole ring system is an essential part of several tubulin inhibitors identified in the recent years. The present review article will update the synthesis, anticancer and tubulin inhibition activities of several important new indole classes such as 2-phenylindoles (28, 29 & 30), oxindoles (35 & 38), indole-3-acrylamides (44), indolines (46), aroylindoles (49), carbozoles (75, 76 & 82), azacarbolines (87) and annulated indoles (100-105). PMID:27476704

  20. Rapid Access to Orthogonally Functionalized Naphthalenes: Application to the Total Synthesis of the Anticancer Agent Chartarin.

    PubMed

    Unzner, Teresa A; Grossmann, Adriana S; Magauer, Thomas

    2016-08-01

    We report the synthesis of orthogonally functionalized naphthalenes from simple, commercially available indanones in four steps. The developed method proceeds through a two-step process that features a thermally induced fragmentation of a cyclopropane indanone with simultaneous 1,2-chloride shift. Migration of the chloride substituent occurs in a regioselective manner to preferentially afford the para-chloronaphthol substitution pattern. The obtained naphthols are versatile building blocks that can be selectively modified and used for the efficient construction of biologically active molecules. This has enabled the total synthesis of the potent anticancer natural product chartarin through a highly convergent retrosynthetic bond disconnection. PMID:27355517

  1. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    PubMed Central

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz; Sęczyk, Łukasz; Złotek, Urszula; Różyło, Renata; Kaszuba, Kinga; Ryszawy, Damian; Czyż, Jarosław

    2014-01-01

    This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention. PMID:25050366

  2. Heteroaromatic analogs of the resveratrol analog DMU-212 as potent anti-cancer agents.

    PubMed

    Penthala, Narsimha Reddy; Thakkar, Shraddha; Crooks, Peter A

    2015-07-15

    Heteroaromatic analogs of DMU-212 (8-15) have been synthesized and evaluated for their anti-cancer activity against a panel of 60 human cancer cell lines. These novel analogs contain a trans-3,4,5-trimethoxystyryl moiety attached to the C2 position of indole, benzofuran, benzothiazole or benzothiophene ring (8, 11, 13 and 14, respectively) and showed potent growth inhibition in 85% of the cancer cell lines examined, with GI50 values <1 μM. Interestingly, trans-3,4- and trans-3,5-dimethoxystyryl DMU-212 analogs 9, 10, 12 and 15 exhibited significantly less growth inhibition than their 3,4,5-trimethoxystyryl counterparts, suggesting that the trans-3,4,5-trimethoxystyryl moiety is an essential structural element for the potent anti-cancer activity of these heterocyclic DMU-212 analogs. Molecular modeling studies showed that the four most active compounds (8, 11, 13 and 14) all bind to the colchicine binding site on tubulin, and that their binding modes are similar to that of DMU-212. PMID:26022840

  3. Coumarin carboxylic acids as monocarboxylate transporter 1 inhibitors: In vitro and in vivo studies as potential anticancer agents.

    PubMed

    Gurrapu, Shirisha; Jonnalagadda, Sravan K; Alam, Mohammad A; Ronayne, Conor T; Nelson, Grady L; Solano, Lucas N; Lueth, Erica A; Drewes, Lester R; Mereddy, Venkatram R

    2016-07-15

    Novel N,N-dialkyl carboxy coumarins have been synthesized as potential anticancer agents via inhibition of monocarboxylate transporter 1 (MCT1). These coumarin carboxylic acids have been evaluated for their in vitro MCT1 inhibition, MTT cancer cell viability, bidirectional Caco-2 cell permeability, and stability in human and liver microsomes. These results indicate that one of the lead candidate compounds 4a has good absorption, metabolic stability, and a low drug efflux ratio. Systemic toxicity studies with lead compound 4a in healthy mice demonstrate that this inhibitor is well tolerated based on zero animal mortality and normal body weight gains compared to the control group. In vivo tumor growth inhibition studies in mice show that the candidate compound 4a exhibits significant single agent activity in MCT1 expressing GL261-luc2 syngraft model but doesn't show significant activity in MCT4 expressing MDA-MB-231 xenograft model, indicating the selectivity of 4a for MCT1 expressing tumors. PMID:27241692

  4. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    PubMed

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent. PMID:27080177

  5. Analysis of FDA-Approved Anti-Cancer Agents in the NCI60 Panel of Human Tumor Cell Lines

    PubMed Central

    Holbeck, Susan L.; Collins, Jerry M.; Doroshow, James H.

    2010-01-01

    Since the early 1990's the Developmental Therapeutics Program (DTP) of the National Cancer Institute (NCI) has utilized a panel of 60 human tumor cell lines representing 9 tissue types to screen for potential new anti-cancer agents. To date, about 100,000 compounds and 50,000 natural product extracts have been screened. Early in this program it was discovered that the pattern of growth inhibition in these cell lines was similar for compounds of similar mechanism. The development of the COMPARE algorithm provided a means by which investigators, starting with a compound of interest, could identify other compounds whose pattern of growth inhibition was similar. With extensive molecular characterization of these cell lines, COMPARE and other user-defined algorithms have been used to link patterns of molecular expression and drug sensitivity. We describe here results of screening current FDA-approved anti-cancer agents in the NCI60 screen, with an emphasis on those agents that target signal transduction. We have analyzed results from agents with mechanisms of action presumed to be similar; we have also performed hierarchical clustering of all of these agents. The addition of data from recently approved anti-cancer agents will increase the utility of the NCI60 databases to the cancer research community. These data are freely accessible to the public on the DTP web site (http://dtp.cancer.gov/). The FDA-approved anti-cancer agents are themselves available from the NCI as a plated set of compounds for research use. PMID:20442306

  6. Cultivation and utility of Piptoporus betulinus fruiting bodies as a source of anticancer agents.

    PubMed

    Pleszczyńska, Małgorzata; Wiater, Adrian; Siwulski, Marek; Lemieszek, Marta K; Kunaszewska, Justyna; Kaczor, Józef; Rzeski, Wojciech; Janusz, Grzegorz; Szczodrak, Janusz

    2016-09-01

    Piptoporus betulinus is a wood-rotting basidiomycete used in medicine and biotechnology. However, to date, no indoor method for cultivation of this mushroom fruiting bodies has been developed. Here we present the first report of successful production of P. betulinus mature fruiting bodies in artificial conditions. Four P. betulinus strains were isolated from natural habitats and their mycelia were inoculated into birch sawdust substrate supplemented with organic additives. All the strains effectively colonized the medium but only one of them produced fruiting bodies. Moisture and organic supplementation of the substrate significantly determined the fruiting process. The biological efficiency of the P. betulinus PB01 strain cultivated on optimal substrate (moisture and organic substance content of 55 and 65 and 25 or 35 %, respectively) ranged from 12 to 16 %. The mature fruiting bodies reached weight in the range from 50 to 120 g. Anticancer properties of water and ethanol extracts isolated from both cultured and nature-derived fruiting bodies of P. betulinus were examined in human colon adenocarcinoma, human lung carcinoma and human breast cancer cell lines. The studies revealed antiproliferative and antimigrative properties of all the investigated extracts. Nevertheless the most pronounced effects demonstrated the ethanol extracts, obtained from fruiting bodies of cultured P. betulinus. Summarizing, our studies proved that P. betulinus can be induced to fruit in indoor artificial culture and the cultured fruiting bodies can be used as a source of potential anticancer agents. In this respect, they are at least as valuable as those sourced from nature. PMID:27465851

  7. Preparation, characterization and in vitro evaluation of sterically stabilized liposome containing a naphthalenediimide derivative as anticancer agent.

    PubMed

    Parise, Amelia; Milelli, Andrea; Tumiatti, Vincenzo; Minarini, Anna; Neviani, Paolo; Zuccari, Guendalina

    2015-01-01

    The aim of this study was to incorporate a new naphthalenediimide derivative (AN169) with a promising anticancer activity into pegylated liposomes to an extent that allows its in vitro and in vivo testing without use of toxic solvent. AN169-loaded liposomes were prepared using the thin-film hydration method and characterized for size, polydispersity index, drug content and drug release. We examined their lyophilization ability in the presence of cryoprotectants (trehalose, sucrose and lysine) and the long-term stability of the lyophilized products stored at 4 °C for 3 and 6 months by particle size changes and drug leakage. AN169 was successfully loaded into liposomes with an entrapment efficiency of 87.3 ± 2.5%. The hydrodynamic diameter of these liposomes after sonication was ∼ 145 nm with a high degree of monodispersity. Trehalose was found to be superior to the other lyoprotectants. In particular, trehalose 1:10 lipid:cryoprotectant molar ratio may provide stable lyophilized liposomes with the conservation of physicochemical properties upon freeze-drying and long-term storage conditions. We also assessed their in vitro antitumor activity in human cancer cell lines (HTLA-230 neuroblastoma, Mel 3.0 melanoma, OVCAR-3 ovarian carcinoma and SV620 prostate cancer cells). However, only after 72 h incubation, loaded liposomes showed almost the same IC50 as free AN169. In conclusion, we developed a stable lyophilized liposomal formulation for intravenous administration of AN169 as anticancer drug, with the advantage of avoiding the use of potentially toxic solubilizing agents for future in vivo experiments. PMID:24286206

  8. Evaluation on the inhibition of pyrrol-2-yl ethanone derivatives to lactate dehydrogenase and anticancer activities

    NASA Astrophysics Data System (ADS)

    Lu, Na-Na; Weng, Zhao-Yue; Chen, Qiu-Yun; Boison, Daniel; Xiao, Xin-Xin; Gao, Jing

    2016-08-01

    Lactate dehydrogenase A (LDH-A) is a potentially important metabolic target for the inhibition of the highly activated glycolysis pathway in cancer cells. In order to develop bifunctional compounds as inhibitor of LDH-A and anticancer agents, two pyrrol-2-yl methanone (or ethanone) derivatives (PM1 and PM2) were synthesized and evaluated as inhibitors of LDH-A based on the enzyme assay and cell assay by spectroscopy analysis. Fluorescence and CD spectra results demonstrated that both the change of second structure of LDH-A and the affinity interaction for compounds to LDH-A gave great effect on the activity of LDH-A. In particular, low concentration of compounds (1 μμ-25 μμ) could change the level of pyruvate in cancer cells. Moreover, the in vitro assay results demonstrated that pyrrol-2-yl ethanone derivatives can inhibit the proliferation of cancer cells. Therefore, pyrrol-2-yl ethanone derivatives (PM2) can be both LDH-A inhibitor and anticancer agents.

  9. Photodynamic Anticancer Activity of CoFe2O4 Nanoparticles Conjugated with Hematoporphyrin.

    PubMed

    Park, Bong Joo; Choi, Kyong-Hoon; Nam, Ki Chang; Min, Jeeeun; Lee, Kyu-Dong; Uhm, Han Sup; Choi, Eun Ha; Kim, Ho-Joong; Jung, Jin-Seung

    2015-10-01

    This work reports the synthesis and the characterization of water-soluble and biocompatible photosensitizer (PS)-conjugated magnetic nanoparticles composed of a cobalt ferrite (CoFe2O4) magnetic core coated with a biocompatible hematoporphyrin (HP) shell. The photo-functional cobalt ferrite magnetic nanoparticles (CoFe2O4@HP) were uniform in size, stable against PS leaching, and highly efficient in the photo-generation of cytotoxic singlet oxygen under visible light. With the CoFe2O4@HP, we acquired in vitro MR images of cancer cells (PC-3) and confirmed good biocompatibility of the CoFe2O4@HP in both normal and cancer cells. In addition, we confirmed the potential of the CoFe2O4@HP as an agent for photodynamic therapy (PDT) applications. The photodynamic anticancer activities in 25, 50, and 100 μg/mL of CoFe2O4@HP were measured and found to exceed 99% (99.0, 99.4, and 99.5%) (p < 0.002). The photodynamic anticancer activity was 81.8% (p < 0.003). From these results, we suggest that our CoFe2O4@HP can be used safely as a type of photodynamic cancer therapy with potential as a therapeutic agent having good biocompatibility. Moreover, these photo-functional magnetic nanoparticles are highly promising for applications in versatile imaging diagnosis and as a therapy tool in biomedical engineering. PMID:26726437

  10. Evaluation on the inhibition of pyrrol-2-yl ethanone derivatives to lactate dehydrogenase and anticancer activities.

    PubMed

    Lu, Na-Na; Weng, Zhao-Yue; Chen, Qiu-Yun; Boison, Daniel; Xiao, Xin-Xin; Gao, Jing

    2016-08-01

    Lactate dehydrogenase A (LDH-A) is a potentially important metabolic target for the inhibition of the highly activated glycolysis pathway in cancer cells. In order to develop bifunctional compounds as inhibitor of LDH-A and anticancer agents, two pyrrol-2-yl methanone (or ethanone) derivatives (PM1 and PM2) were synthesized and evaluated as inhibitors of LDH-A based on the enzyme assay and cell assay by spectroscopy analysis. Fluorescence and CD spectra results demonstrated that both the change of second structure of LDH-A and the affinity interaction for compounds to LDH-A gave great effect on the activity of LDH-A. In particular, low concentration of compounds (1μμ-25μμ) could change the level of pyruvate in cancer cells. Moreover, the in vitro assay results demonstrated that pyrrol-2-yl ethanone derivatives can inhibit the proliferation of cancer cells. Therefore, pyrrol-2-yl ethanone derivatives (PM2) can be both LDH-A inhibitor and anticancer agents. PMID:27104676

  11. Effect of Cellular Location of Human Carboxylesterase 2 on CPT-11 Hydrolysis and Anticancer Activity

    PubMed Central

    Hsieh, Yuan-Ting; Lin, Hsuan-Pei; Chen, Bing-Mae; Huang, Ping-Ting; Roffler, Steve R.

    2015-01-01

    CPT-11 is an anticancer prodrug that is clinically used for the treatment of metastatic colorectal cancer. Hydrolysis of CPT-11 by human carboxylesterase 2 (CE2) generates SN-38, a topoisomerase I inhibitor that is the active anti-tumor agent. Expression of CE2 in cancer cells is under investigation for the tumor-localized activation of CPT-11. CE2 is normally expressed in the endoplasmic reticulum of cells but can be engineered to direct expression of active enzyme on the plasma membrane or as a secreted form. Although previous studies have investigated different locations of CE2 expression in cancer cells, it remains unclear if CE2 cellular location affects CPT-11 anticancer activity. In the present study, we directly compared the influence of CE2 cellular location on substrate hydrolysis and CPT-11 cytotoxicity. We linked expression of CE2 and enhanced green fluorescence protein (eGFP) via a foot-and-mouth disease virus 2A (F2A) peptide to facilitate fluorescence-activated cell sorting to achieve similar expression levels of ER-located, secreted or membrane-anchored CE2. Soluble CE2 was detected in the medium of cells that expressed secreted and membrane-anchored CE2, but not in cells that expressed ER-retained CE2. Cancer cells that expressed all three forms of CE2 were more sensitive to CPT-11 as compared to unmodified cancer cells, but the membrane-anchored and ER-retained forms of CE2 were consistently more effective than secreted CE2. We conclude that expression of CE2 in the ER or on the membrane of cancer cells is suitable for enhancing CPT-11 anticancer activity. PMID:26509550

  12. Steamed American ginseng berry: ginsenoside analyses and anticancer activities.

    PubMed

    Wang, Chong-Zhi; Zhang, Bin; Song, Wen-Xin; Wang, Anbao; Ni, Ming; Luo, Xiaoji; Aung, Han H; Xie, Jing-Tian; Tong, Robin; He, Tong-Chuan; Yuan, Chun-Su

    2006-12-27

    This study was designed to determine the changes in saponin content in American ginseng berries after treatment by heating and to assess the anticancer effects of the extracts. After steaming treatment (100-120 degrees C for 1 h, and 120 degrees C for 0.5-4 h), the content of seven ginsenosides, Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased; the content of five ginsenosides, Rh1, Rg2, 20R-Rg2, Rg3, and Rh2, increased. Rg3, a previously identified anticancer ginsenoside, increased significantly. Two hours of steaming at 120 degrees C increased the content of ginsenoside Rg3 to a greater degree than other tested ginsenosides. When human colorectal cancer cells were treated with 0.5 mg/mL steamed berry extract (120 degrees C 2 h), the antiproliferation effects were 97.8% for HCT-116 and 99.6% for SW-480 cells. At the same treatment concentration, the effects of unsteamed berry extract were 34.1% for HCT-116 and 4.9% for SW-480 cells. After staining with Hoechst 33258, apoptotic cells increased significantly by treatment with steamed berry extract compared with unheated extracts. Induction of apoptosis activity was confirmed by flow cytometry after staining with annexin V/PI. The steaming of American ginseng berries augments ginsenoside Rg3 content and increases the antiproliferative effects on two human colorectal cancer cell lines. PMID:17177524

  13. "Ziziphus jujuba": A red fruit with promising anticancer activities.

    PubMed

    Tahergorabi, Zoya; Abedini, Mohammad Reza; Mitra, Moodi; Fard, Mohammad Hassanpour; Beydokhti, Hossein

    2015-01-01

    Ziziphus jujuba Mill. (Z. jujuba) is a traditional herb with a long history of use for nutrition and the treatment of a broad spectrum of diseases. It grows mostly in South and East Asia, as well as in Australia and Europe. Mounting evidence shows the health benefits of Z. jujuba, including anticancer, anti-inflammation, antiobesity, antioxidant, and hepato- and gastrointestinal protective properties, which are due to its bioactive compounds. Chemotherapy, such as with cis-diamminedichloroplatinium (CDDP, cisplatin) and its derivatives, is widely used in cancer treatment. It is an effective treatment for human cancers, including ovarian cancer; however, drug resistance is a major obstacle to successful treatment. A better understanding of the mechanisms and strategies for overcoming chemoresistance can greatly improve therapeutic outcomes for patients. In this review article, the bioactive compounds present in Z. jujuba are explained. The high prevalence of many different cancers worldwide has recently attracted the attention of many researchers. This is why our research group focused on studying the anticancer activity of Z. jujuba as well as its impact on chemoresistance both in vivo and in vitro. We hope that these studies can lead to a promising future for cancer patients. PMID:26392706

  14. Cardenolides from the Apocynaceae family and their anticancer activity.

    PubMed

    Wen, Shiyuan; Chen, Yanyan; Lu, Yunfang; Wang, Yuefei; Ding, Liqin; Jiang, Miaomiao

    2016-07-01

    Cardenolides, as a group of natural products that can bind to Na(+)/K(+)-ATPase with an inhibiting activity, are traditionally used to treat congestive heart failure. Recent studies have demonstrated that the strong tumor cytotoxicities of cardenolides are mainly due to inducing the tumor cells apoptosis through different expression and cellular location of Na(+)/K(+)-ATPase α-subunits. The leaves, flesh, seeds and juices of numerous plants from the genera of Nerium, Thevetia, Cerbera, Apocynum and Strophanthus in Apocynaceae family, are the major sources of natural cardenolides. So far, 109 cardenolides have been isolated and identified from this family, and about a quarter of them are reported to exhibit the capability to regulate cancer cell survival and death through multiple signaling pathways. In this review, we compile the phytochemical characteristics and anticancer activity of the cardenolides from this family. PMID:27167183

  15. Oligonucleotide conjugate GRN163L targeting human telomerase as potential anticancer and antimetastatic agent.

    PubMed

    Gryaznov, Sergei M; Jackson, Shalmica; Dikmen, Gunnur; Harley, Calvin; Herbert, Brittney-Shea; Wright, Woodring E; Shay, Jerry W

    2007-01-01

    Telomerase is one of the key enzymes responsible for the proliferative immortality of the majority of cancer cells. We recently introduced a new telomerase inhibitor, a 13-mer oligonucleotide N3' --> P5'-thio-phosphoramidate lipid conjugate, designated as GRN163L. This compound inhibits telomerase activity in various tumor cell lines with IC(50) values of 3-300 nM without any cellular uptake enhancers. GRN163L demonstrated potent and sequence specific anti-cancer activity in vivo in multiple animal models. This compound was able to significantly affect not only the growth of primary tumors, but also the spread and proliferation of metastases. GRN163L is currently in Phase I and Phase I/II clinical studies in patients with solid tumors and CLL, respectively. PMID:18066830

  16. Synthesis and characterization of 2-substituted benzimidazoles and their evaluation as anticancer agent

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I.; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal

    2015-05-01

    In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, 1H- and 13C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity.

  17. Characterization of the Phytochemical Constituents of Taif Rose and Its Antioxidant and Anticancer Activities

    PubMed Central

    Abdel-Hameed, El-Sayed S.; Bazaid, Salih A.; Salman, Mahmood S.

    2013-01-01

    Ward Taifi (Taif rose) is considered one of the most important economic products of Taif, Saudi Arabia. In this study both fresh and dry Taif rose were biologically and phytochemically investigated. The 80% methanol extracts and n-butanol fractions of dry and fresh Taif rose had high radical scavenging activity toward artificial 1,1-diphenyl picrylhydrazyl (DPPH)• radical with SC50 values range 5.86−12.24 µg/ml whereas the aqueous fractions showed weak activity. All samples had in vitro anticancer activity toward HepG2 with IC50 < 20 µg/ml which fall within the criteria of the American Cancer Institute. High positive correlation appeared between the antioxidant activity and total phenolics whereas there is no correlation between total phenolics and anticancer activity. The LC-ESI(− ve)-MS analysis of all extracts indicate the presence of phenolic compounds belonging to hydrolysable tannins and flavonol glycosides. In conclusion, the presence of this is considered to be the first phytochemical report that identifies the major compounds in dry and fresh roses using HPLC-ESI-MS. The methanol extracts and its n-butanol and aqueous fractions for both fresh and dry Taif rose could be used as preventive and therapeutic effective natural agents for diseases in which free radicals involved after more in vitro and in vivo studies. PMID:24282813

  18. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets.

    PubMed

    Farrell, N P

    2015-12-21

    This tutorial review summarizes chemical, biophysical and cellular biological properties of formally substitution-inert "non-covalent" polynuclear platinum complexes (PPCs). We demonstrate how modulation of the pharmacological factors affecting platinum compound cytotoxicity such as cellular accumulation, reactivity toward extracellular and intracellular sulfur-ligand nucleophiles and consequences of DNA binding is achieved to afford a profile of biological activity distinct from that of covalently-binding agents. The DNA binding of substitution-inert complexes is achieved by molecular recognition through minor groove spanning and backbone tracking of the phosphate clamp. In this situation, the square-planar tetra-am(m)ine Pt(ii) coordination units hydrogen bond to phosphate oxygen OP atoms to form bidentate N-O-N motifs. The modular nature of the polynuclear compounds results in high-affinity binding to DNA and very efficient nuclear condensation. These combined effects distinguish the phosphate clamp as a third mode of ligand-DNA binding, discrete from intercalation and minor-groove binding. The cellular consequences mirror those of the biophysical studies and a significant portion of nuclear DNA is compacted, a unique effect different from mitosis, senescence or apoptosis. Substitution-inert PPCs display cytotoxicity similar to cisplatin in a wide range of cell lines, and sensitivity is indifferent to p53 status. Cellular accumulation is mediated through binding to heparan sulfate proteoglycans (HSPG) allowing for possibilities of tumor selectivity as well as disruption of HSPG function, opening new targets for platinum antitumor agents. The combined properties show that covalently-binding chemotypes are not the unique arbiters of cytotoxicity and antitumor activity and meaningful antitumor profiles can be achieved even in the absence of Pt-DNA bond formation. These dual properties make the substitution-inert compounds a unique class of inherently dual

  19. Kinetics and thermochemistry of hydrolysis mechanism of a novel anticancer agent trans-[PtCl2(dimethylamine)(isopropylamine)]: A DFT study

    NASA Astrophysics Data System (ADS)

    Hussain, Iftikar; Gour, N. K.; Deka, Ramesh Ch.

    2016-05-01

    Theoretical investigation has been made on the hydrolysis mechanism of a novel transplatin anticancer agent trans-[PtCl2(dimethylamine)(isopropylamine)] in gas as well as aqueous phases using DFT method. The transition state geometries along with other stationary points on potential energy surface are optimized and characterized. The calculated activation barrier and the predicted relative free energies for the two successive steps are in good agreement with the experimental data reported in the literature. The rate constants are calculated using Eyring equation and results show that the second step is the rate-limiting process having higher activation energy compared to that of the first step.

  20. Synthesis and in vitro evaluation of novel triazine analogues as anticancer agents and their interaction studies with bovine serum albumin.

    PubMed

    Singla, Prinka; Luxami, Vijay; Paul, Kamaldeep

    2016-07-19

    A novel series of triazine-benzimidazole analogs has been designed and synthesized for their in vitro anticancer activities. Four compounds (6, 16, 17 and 20) were identified as highly potent anticancer agents against 60 human cancer cell lines with GI50 in the nanomolar range. To improve the drug applications toward cancer cells, there is a need to couple these compounds to some carrier macromolecules. Following this approach, the interaction between triazine-benzimidazole analogues and bovine serum albumin (BSA) has been investigated with UV-Visible and fluorescence spectroscopic methods under physiological conditions. The observed fluorescence quenching indicates that these compounds could efficiently bind with BSA and be transported to the target site. PMID:27089212

  1. Synthesis of 1-benzyl-3-(5-hydroxymethyl-2-furyl)selenolo[3,2-c]pyrazole derivatives as new anticancer agents.

    PubMed

    Chou, Li-Chen; Huang, Li-Jiau; Hsu, Mei-Hua; Fang, Mei-Chi; Yang, Jai-Sing; Zhuang, Shi-Hong; Lin, Hui-Yi; Lee, Fang-Yu; Teng, Che-Ming; Kuo, Sheng-Chu

    2010-04-01

    As part of our continuing search for potential anticancer drug candidates among YC-1 analogs, 1, 3-disubstituted selenolo[3,2-c]pyrazole derivatives were synthesized and evaluated for their cytotoxicity against NCI-H226 non-small cell lung cancer and A-498 renal cancer cell lines. Significant cytotoxicity was observed in 3-(5-hydroxymethyl-2-furyl) derivatives (2, 33, 36 and 37). Among them, compound 2 was found to have the most potent activity. The mode of action of compound 2 seems to differ from those of the 175 anticancer agents listed in NCI's standard database and resembles that of YC-1. Thus, we recommend that compound 2 should be developed further as new drug candidate for treatment of non-small cell lung cancer and renal cancer. PMID:20097456

  2. Lappaol F, a novel anticancer agent isolated from plant arctium Lappa L.

    PubMed

    Sun, Qing; Liu, Kanglun; Shen, Xiaoling; Jin, Weixin; Jiang, Lingyan; Sheikh, M Saeed; Hu, Yingjie; Huang, Ying

    2014-01-01

    In an effort to search for new cancer-fighting therapeutics, we identified a novel anticancer constituent, Lappaol F, from plant Arctium Lappa L. Lappaol F suppressed cancer cell growth in a time- and dose-dependent manner in human cancer cell lines of various tissue types. We found that Lappaol F induced G(1) and G(2) cell-cycle arrest, which was associated with strong induction of p21 and p27 and reduction of cyclin B1 and cyclin-dependent kinase 1 (CDK1). Depletion of p21 via genetic knockout or short hairpin RNA (shRNA) approaches significantly abrogated Lappaol F-mediated G(2) arrest and CDK1 and cyclin B1 suppression. These results suggest that p21 seems to play a crucial role in Lappaol F-mediated regulation of CDK1 and cyclin B1 and G(2) arrest. Lappaol F-mediated p21 induction was found to occur at the mRNA level and involved p21 promoter activation. Lappaol F was also found to induce cell death in several cancer cell lines and to activate caspases. In contrast with its strong growth inhibitory effects on tumor cells, Lappaol F had minimal cytotoxic effects on nontumorigenic epithelial cells tested. Importantly, our data also demonstrate that Lappaol F exhibited strong growth inhibition of xenograft tumors in nude mice. Lappaol F was well tolerated in treated animals without significant toxicity. Taken together, our results, for the first time, demonstrate that Lappaol F exhibits antitumor activity in vitro and in vivo and has strong potential to be developed as an anticancer therapeutic. PMID:24222662

  3. Discovery and optimization of novel dual dithiocarbamates as potent anticancer agents.

    PubMed

    Li, Ri-Dong; Wang, Hui-Ling; Li, Ying-Bo; Wang, Zhong-Qing; Wang, Xin; Wang, Yi-Tao; Ge, Ze-Mei; Li, Run-Tao

    2015-03-26

    A series of dual dithiocarbamates were synthesized and evaluated for their in-vitro anticancer activities on human non-small cell lung cancer cell line H460. Nine compounds exhibited significant antiproliferative activities with IC50 less than 1 μM. Among them, compound 14m showed the highest inhibitory activity against H460 cell and inhibited the growth of nine types of tumor cells with IC50 values less than 1 μM. It also achieved IC50 of 54 nM and 23 nM against HepG2 and MCF-7 cell lines, respectively. Preliminary structure-activity relationship study indicated that: a) when the methyl group (region A) is substituted with benzene rings, ortho substitution on the benzene ring is favored for activity; b) substitution with heterocyclic structures at region A exhibited greater impact on the anti-tumor activity of compounds, in which pyridine ring, thiazole ring, coumarin and benzo[b]thiophene are favored and quinoline ring is the most favored; c) substitution with different amines (region B) also showed marked effect on the activity of compounds and dimethylamine and morpholine are preferred to other tested amines. PMID:25725374

  4. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents

    PubMed Central

    Modica-Napolitano, Josephine S.; Weissig, Volkmar

    2015-01-01

    Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy. PMID:26230693

  5. Synthesis and biological evaluation of new naphthalene substituted thiosemicarbazone derivatives as potent antifungal and anticancer agents.

    PubMed

    Altıntop, Mehlika Dilek; Atlı, Özlem; Ilgın, Sinem; Demirel, Rasime; Özdemir, Ahmet; Kaplancıklı, Zafer Asım

    2016-01-27

    New thiosemicarbazone derivatives (1-10) were obtained via the reaction of 4-(naphthalen-1-yl)thiosemicarbazide with fluoro-substituted aromatic aldehydes. The synthesized compounds were evaluated for their in vitro antifungal effects against pathogenic yeasts and molds using broth microdilution assay. Ames and umuC assays were carried out to determine the genotoxicity of the most effective antifungal derivatives. Furthermore, all compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cell lines using XTT test. Among these derivatives, 4-(naphthalen-1-yl)-1-(2,3-difluorobenzylidene)thiosemicarbazide (1) and 4-(naphthalen-1-yl)-1-(2,5-difluorobenzylidene)thiosemicarbazide (3) can be identified as the most promising antifungal derivatives due to their notable inhibitory effects on Candida species and no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cell line. According to Ames and umuC assays, compounds 1 and 3 were classified as non-mutagenic compounds. On the other hand, 4-(naphthalen-1-yl)-1-(2,4-difluorobenzylidene)thiosemicarbazide (2) can be considered as the most promising anticancer agent against A549 cell line owing to its notable inhibitory effect on A549 cells with an IC50 value of 31.25 μg/mL when compared with cisplatin (IC50 = 16.28 μg/mL) and no cytotoxicity against NIH/3T3 cells. PMID:26706351

  6. Recent Development of Copolymeric Delivery System for Anticancer Agents Based on Cyclodextrin Derivatives.

    PubMed

    Feng, Runliang; Deng, Peizong; Teng, Fangfang; Song, Zhimei

    2016-01-01

    Core-shell structured aggregates of amphiphilic block copolymer are hopefully drug delivery system because of their ability to encapsulate hydrophobic drugs, and their hydrophilic shell can prolong retention time of drugs in the blood circulation system. Cyclodextrin is a kind of hydrophilic polysaccharide containing multiple hydroxyl groups, providing an inner hole that can load small molecule through host-guest interaction. These hydroxyl groups or their derived functional ones are utilized in conjugation with polymeric chains to form block copolymers. These copolymers can not only encapsulate hydrophobic drugs, but also encapsulate hydrophilic drugs (like DNA, protein, etc) through hydrophobic, host-guest or electrostatic interactions, which strengthen interaction between drugs and materials compared with general copolymers, indicating that formed drug delivery systems are more stable. By introduction of target molecule, they also achieve selective delivery of drugs to specific tissues or organs. So, several researchers are stimulated to carry out many studies for the development of cyclodextrin copolymeric drug delivery systems in recent. In this review, we focus the cyclodextrin copolymers' application in the anticancer agents' delivery. PMID:26349814

  7. Microencapsulation of lectin anti-cancer agent and controlled release by alginate beads, biosafety approach.

    PubMed

    El-Aassar, M R; Hafez, Elsayed E; El-Deeb, Nehal M; Fouda, Moustafa M G

    2014-08-01

    Hepatocellular carcinoma (HCC) is considered as one of the most aggressive cancer worldwide. In Egypt, the prevalence of HCC is increasing during last years. Recently, drug-loaded microparticles were used to improve the efficiency of various medical treatments. This study is designed to evaluate the anticancer potentialities of lectins against HCC while hinting to its safety usage. The aim is also extended to encapsulate lectins in alginate microbeads for oral drug delivery purposes. The extracted lectins showed anti-proliferative effect against HCC with a percentage of 60.76% by using its nontoxic dose with an up-regulation of P53 gene expression. Concerning the handling of lectin alginate microbeads for oral drug delivery, the prepared lectin alginate beads were ∼100μm in diameter. The efficiency of the microcapsules was checked by scanning electron microscopy, the SEM showed the change on the alginate beads surface revealing the successful lectin encapsulation. The release of lectins from the microbeads depended on a variety of factors as the microbeads forming carriers and the amount-encapsulated lectins. The Pisum sativum extracted lectins may be considered as a promising agent in controlling HCC and this solid dosage form could be suitable for oral administration complemented with/or without the standard HCC drugs. PMID:24857870

  8. Recent developments in L-asparaginase discovery and its potential as anticancer agent.

    PubMed

    Shrivastava, Abhinav; Khan, Abdul Arif; Khurshid, Mohsin; Kalam, Mohd Abul; Jain, Sudhir K; Singhal, Pradeep K

    2016-04-01

    L-Asparaginase (EC3.5.1.1) is an enzyme, which is used for treatment of acute lymphoblastic leukaemia (ALL) and other related blood cancers from a long time. This enzyme selectively hydrolyzes the extracellular amino acid L-asparagine into L-aspartate and ammonia, leading to nutritional deficiencies, protein synthesis inhibition, and ultimately death of lymphoblastic cells by apoptosis. Currently, bacterial asparaginases are used for treatment purpose but offers scepticism due to a number of toxicities, including thrombosis, pancreatitis, hyperglycemia, and hepatotoxicity. Resistance towards bacterial asparaginase is another major disadvantage during cancer management. This situation attracted attention of researchers towards alternative sources of L-asparaginase, including plants and fungi. Present article discusses about potential of L-asparaginase as an anticancer agent, its mechanism of action, and adverse effects related to current asparaginase formulations. This article also provides an outlook for recent developments in L-asparaginase discovery from alternative sources and their potential as a less toxic alternative to current formulations. PMID:25630663

  9. Rescuing chemotaxis of the anticancer agent Salmonella enterica serovar Typhimurium VNP20009.

    PubMed

    Broadway, Katherine M; Denson, Elizabeth A P; Jensen, Roderick V; Scharf, Birgit E

    2015-10-10

    The role of chemotaxis and motility in Salmonella enterica serovar Typhimurium tumor colonization remains unclear. We determined through swim plate assays that the well-established anticancer agent S. Typhimurium VNP20009 is deficient in chemotaxis, and that this phenotype is suppressible. Through genome sequencing, we revealed that VNP20009 and four selected suppressor mutants had a single nucleotide polymorphism (SNP) in cheY causing a mutation in the conserved proline residue at position 110. CheY is the response regulator that interacts with the flagellar motor-switch complex and modulates rotational bias. The four suppressor mutants additionally carried non-synonymous SNPs in fliM encoding a flagellar switch protein. The CheY-P110S mutation in VNP20009 likely rendered the protein unable to interact with FliM, a phenotype that could be suppressed by mutations in FliM. We replaced the mutated cheY in VNP20009 with the wild-type copy and chemotaxis was partially restored. The swim ring of the rescued strain, VNP20009 cheY(+), was 46% the size of the parental strain 14028 swim ring. When tested in capillary assays, VNP20009 cheY(+) was 69% efficient in chemotaxis towards the attractant aspartate as compared to 14028. Potential reasons for the lack of complete restoration and implications for bacterial tumor colonization will be discussed. PMID:26200833

  10. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents

    PubMed Central

    Matter, Alex

    2015-01-01

    This review starts with a brief history of drug discovery & development, and the place of Asia in this worldwide effort discussed. The conditions and constraints of a successful translational R&D involving academic basic research and clinical research are discussed and the Singapore model for pursuit of open R&D described. The importance of well-characterized, validated drug targets for the search for novel targeted anti-cancer agents is emphasized, as well as a structured, high quality translational R&D. Furthermore, the characteristics of an attractive preclinical development drug candidate are discussed laying the foundation of a successful preclinical development. The most frequent sources of failures are described and risk management at every stage is highly recommended. Organizational factors are also considered to play an important role. The factors to consider before starting a new drug discovery & development project are described, and an example is given of a successful clinical project that has had its roots in local universities and was carried through preclinical development into phase I clinical trials. PMID:26779369

  11. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents.

    PubMed

    Modica-Napolitano, Josephine S; Weissig, Volkmar

    2015-01-01

    Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy. PMID:26230693

  12. In Vitro Anticancer Activity of a Nonpolar Fraction from Gynostemma pentaphyllum (Thunb.) Makino

    PubMed Central

    Li, Yantao; Huang, Jiajun; Lin, Wanjun; Yuan, Zhongwen; Feng, Senling; Xie, Ying; Ma, Wenzhe

    2016-01-01

    Gynostemma pentaphyllum (Thunb.) Makino (GpM) has been widely used in traditional Chinese medicine (TCM) for the treatment of various diseases including cancer. Most previous studies have focused primarily on polar fractions of GpM for anticancer activities. In this study, a nonpolar fraction EA1.3A from GpM showed potent growth inhibitory activities against four cancer cell lines with IC50 ranging from 31.62 μg/mL to 38.02 μg/mL. Furthermore, EA1.3A also inhibited the growth of breast cancer cell MDA-MB-453 time-dependently, as well as its colony formation ability. EA1.3A induced apoptosis on MDA-MB-453 cells both dose-dependently and time-dependently as analyzed by flow cytometry and verified by western blotting analysis of apoptosis marker cleaved nuclear poly(ADP-ribose) polymerase (cPARP). Additionally, EA1.3A induced cell cycle arrest in G0/G1 phase. Chemical components analysis of EA1.3A by GC-MS revealed that this nonpolar fraction from GpM contains 10 compounds including four alkaloids, three organic esters, two terpenes, and one catechol substance, and all these compounds have not been reported in GpM. In summary, the nonpolar fraction EA1.3A from GpM inhibited cancer cell growth through induction of apoptosis and regulation of cell cycle progression. Our study shed light on new chemical bases for the anticancer activities of GpM and feasibilities to develop new anticancer agents from this widely used medicinal plant. PMID:27034692

  13. In Vitro Anticancer Activity of a Nonpolar Fraction from Gynostemma pentaphyllum (Thunb.) Makino.

    PubMed

    Li, Yantao; Huang, Jiajun; Lin, Wanjun; Yuan, Zhongwen; Feng, Senling; Xie, Ying; Ma, Wenzhe

    2016-01-01

    Gynostemma pentaphyllum (Thunb.) Makino (GpM) has been widely used in traditional Chinese medicine (TCM) for the treatment of various diseases including cancer. Most previous studies have focused primarily on polar fractions of GpM for anticancer activities. In this study, a nonpolar fraction EA1.3A from GpM showed potent growth inhibitory activities against four cancer cell lines with IC50 ranging from 31.62 μg/mL to 38.02 μg/mL. Furthermore, EA1.3A also inhibited the growth of breast cancer cell MDA-MB-453 time-dependently, as well as its colony formation ability. EA1.3A induced apoptosis on MDA-MB-453 cells both dose-dependently and time-dependently as analyzed by flow cytometry and verified by western blotting analysis of apoptosis marker cleaved nuclear poly(ADP-ribose) polymerase (cPARP). Additionally, EA1.3A induced cell cycle arrest in G0/G1 phase. Chemical components analysis of EA1.3A by GC-MS revealed that this nonpolar fraction from GpM contains 10 compounds including four alkaloids, three organic esters, two terpenes, and one catechol substance, and all these compounds have not been reported in GpM. In summary, the nonpolar fraction EA1.3A from GpM inhibited cancer cell growth through induction of apoptosis and regulation of cell cycle progression. Our study shed light on new chemical bases for the anticancer activities of GpM and feasibilities to develop new anticancer agents from this widely used medicinal plant. PMID:27034692

  14. Anti-Cancer Activity of Nitrones and Observations on Mechanism of Action

    PubMed Central

    Floyd, Robert A.; Chandru, Hema K.; He, Ting; Towner, Rheal

    2011-01-01

    The nitrone compound PBN, α-phenyl-tert-butylnitrone, and closely related nitrones have anti-cancer activity in several experimental cancer models. The three experimental models most extensively studied include A) the rat choline deficiency liver cancer model, B) the rat C6 glioma model and C) the mouse APCMin/+ colon cancer model. The two PBN-nitrones mostly studied are PBN and a PBN derivative 2,4-disulfophenyl-tert-butylnitrone, referred as OKN-007. OKN-007 is a proprietary compound that has had extensive commercial development (designated as NXY-059) for another indication, acute ischemic stroke, and after extensive clinical studies was shown to lack efficacy for this indication but was shown to be very safe for human use. This compound administered orally in the rat glioma model has potent activity in treating fully formed gliomas. In this report observations made on the PBN-nitrones in experimental cancer models will be summarized. In addition the experimental results will be discussed in the general framework of the properties of the compounds with a view to try to understand the mechanistic basis of how the PBN-nitrones act as anti-cancer agents. Possible mechanisms related to the suppression of NO production, S-nitrosylation of critical proteins and inhibition of NF-κB activation are discussed. PMID:21651461

  15. Tea nanoparticle, a safe and biocompatible nanocarrier, greatly potentiates the anticancer activity of doxorubicin.

    PubMed

    Wang, Yi-Jun; Huang, Yujian; Anreddy, Nagaraju; Zhang, Guan-Nan; Zhang, Yun-Kai; Xie, Meina; Lin, Derrick; Yang, Dong-Hua; Zhang, Mingjun; Chen, Zhe-Sheng

    2016-02-01

    An infusion-dialysis based procedure has been developed as an approach to isolate organic nanoparticles from green tea. Tea nanoparticle (TNP) can effectively load doxorubicin (DOX) via electrostatic and hydrophobic interactions. We established an ABCB1 overexpressing tumor xenograft mouse model to investigate whether TNP can effectively deliver DOX into tumors and bypass the efflux function of the ABCB1 transporter, thereby increasing the intratumoral accumulation of DOX and potentiating the anticancer activity of DOX. MTT assays suggested that DOX-TNP showed higher cytotoxicity toward CCD-18Co, SW620 and SW620/Ad300 cells than DOX. Animal study revealed that DOX-TNP resulted in greater inhibitory effects on the growth of SW620 and SW620/Ad300 tumors than DOX. In pharmacokinetics study, DOX-TNP greatly increased the SW620 and SW620/Ad300 intratumoral concentrations of DOX. But DOX-TNP had no effect on the plasma concentrations of DOX. Furthermore, TNP is a safe nanocarrier with excellent biocompatibility and minimal toxicity. Ex vivo IHC analysis of SW620 and SW620/Ad300 tumor sections revealed evidence of prominent antitumor activity of DOX-TNP. In conclusion, our findings suggested that natural nanomaterials could be useful in combating multidrug resistance (MDR) in cancer cells and potentiating the anticancer activity of chemotherapeutic agents in cancer treatment. PMID:26716507

  16. Tea nanoparticle, a safe and biocompatible nanocarrier, greatly potentiates the anticancer activity of doxorubicin

    PubMed Central

    Wang, Yi-Jun; Huang, Yujian; Anreddy, Nagaraju; Zhang, Guan-Nan; Zhang, Yun-Kai; Xie, Meina; Lin, Derrick; Yang, Dong-Hua; Zhang, Mingjun; Chen, Zhe-Sheng

    2016-01-01

    An infusion-dialysis based procedure has been developed as an approach to isolate organic nanoparticles from green tea. Tea nanoparticle (TNP) can effectively load doxorubicin (DOX) via electrostatic and hydrophobic interactions. We established an ABCB1 overexpressing tumor xenograft mouse model to investigate whether TNP can effectively deliver DOX into tumors and bypass the efflux function of the ABCB1 transporter, thereby increasing the intratumoral accumulation of DOX and potentiating the anticancer activity of DOX. MTT assays suggested that DOX-TNP showed higher cytotoxicity toward CCD-18Co, SW620 and SW620/Ad300 cells than DOX. Animal study revealed that DOX-TNP resulted in greater inhibitory effects on the growth of SW620 and SW620/Ad300 tumors than DOX. In pharmacokinetics study, DOX-TNP greatly increased the SW620 and SW620/Ad300 intratumoral concentrations of DOX. But DOX-TNP had no effect on the plasma concentrations of DOX. Furthermore, TNP is a safe nanocarrier with excellent biocompatibility and minimal toxicity. Ex vivo IHC analysis of SW620 and SW620/Ad300 tumor sections revealed evidence of prominent antitumor activity of DOX-TNP. In conclusion, our findings suggested that natural nanomaterials could be useful in combating multidrug resistance (MDR) in cancer cells and potentiating the anticancer activity of chemotherapeutic agents in cancer treatment. PMID:26716507

  17. Synthesis and biological evaluation of 12-N-p-chlorobenzyl sophoridinol derivatives as a novel family of anticancer agents.

    PubMed

    Bi, Chongwen; Ye, Cheng; Li, Yinghong; Zhao, Wuli; Shao, Rongguang; Song, Danqing

    2016-05-01

    Taking 12-N-p-chlorobenzyl sophoridinol 2 as a lead, a series of novel sophoridinic derivatives with various 3'-substituents at the 11-side chain were synthesized and evaluated for their anticancer activity from sophoridine (1), a natural antitumor medicine. Among them, the sophoridinic ketones 5a-b, alkenes 7a-b and sophoridinic amines 14a-b displayed reasonable antiproliferative activity with IC50 values ranging from 3.8 to 5.4 μmol/L. Especially, compounds 5a and 7b exhibited an equipotency in both adriamycin (AMD)-susceptible and resistant MCF-7 breast carcinoma cells, indicating a different mechanism from AMD. The primary mechanism of action of 5a was to arrest the cell cycle at the G0/G1 phase, consistent with that of parent compound 1. Thus, we consider 12-chlorobenzyl sophoridinic derivatives with a tricyclic scaffold to be a new class of promising antitumor agents with an advantage of inhibiting drug-resistant cancer cells. PMID:27175333

  18. A transesterification reaction is implicated in the covalent binding of benzo[b]acronycine anticancer agents with DNA and glutathion.

    PubMed

    David-Cordonnier, Marie Hélène; Laine, William; Kouach, Mostafa; Briand, Gilbert; Vezin, Hervé; Gaslonde, Thomas; Michel, Sylvie; Doan Thi Mai, Huong; Tillequin, Francois; Koch, Michel; Léonce, Stéphane; Pierré, Alain; Bailly, Christian

    2004-01-01

    The benzo[b]acronycine derivative S23906-1 has been recently identified as a promising antitumor agent, showing remarkable in vivo activities against a panel of solid tumors. The anticancer activity is attributed to the capacity of the drug to alkylate DNA, selectively at the exocyclic 2-amino group of guanine residues. Hydrolysis of the C-1 and C-2 acetate groups of S23906-1 provides the diol compound S28907-1 which is inactive whereas the intermediate C-2 monoacetate derivative S28687-1 is both highly reactive toward DNA and cytotoxic. The reactivity of this later compound S28687-1 toward two bionucleophiles, DNA and the tripeptide glutathion, has been investigated by mass spectrometry to identify the nature of the (type II) covalent adducts characterized by the loss of the acetate group at position 2. On the basis of NMR and molecular modeling analyses, the reaction mechanism is explained by a transesterification process where the acetate leaving group is transferred from position C-2 to C-1. Altogether, the study validates the reaction scheme of benzo[b]acronycine derivative with its target. PMID:14697766

  19. Synthesis and biological evaluation of 12-N-p-chlorobenzyl sophoridinol derivatives as a novel family of anticancer agents

    PubMed Central

    Bi, Chongwen; Ye, Cheng; Li, Yinghong; Zhao, Wuli; Shao, Rongguang; Song, Danqing

    2016-01-01

    Taking 12-N-p-chlorobenzyl sophoridinol 2 as a lead, a series of novel sophoridinic derivatives with various 3′-substituents at the 11–side chain were synthesized and evaluated for their anticancer activity from sophoridine (1), a natural antitumor medicine. Among them, the sophoridinic ketones 5a–b, alkenes 7a–b and sophoridinic amines 14a–b displayed reasonable antiproliferative activity with IC50 values ranging from 3.8 to 5.4 μmol/L. Especially, compounds 5a and 7b exhibited an equipotency in both adriamycin (AMD)-susceptible and resistant MCF-7 breast carcinoma cells, indicating a different mechanism from AMD. The primary mechanism of action of 5a was to arrest the cell cycle at the G0/G1 phase, consistent with that of parent compound 1. Thus, we consider 12-chlorobenzyl sophoridinic derivatives with a tricyclic scaffold to be a new class of promising antitumor agents with an advantage of inhibiting drug-resistant cancer cells. PMID:27175333

  20. Immune mechanisms regulating pharmacokinetics and pharmacodynamics of PEGylated liposomal anticancer agents

    NASA Astrophysics Data System (ADS)

    Song, Gina

    integrated approaches, we were able to identify the immunological mechanisms at the molecular, tissue, and clinical levels that may contribute to inter-individual variability in PK and PD of PLD. This dissertation research has a potential to make an impact on development of future NP-based anticancer therapeutics as well as on clinical use of PLD (DoxilRTM) and other PEGylated liposomal anticancer agents.

  1. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents.

    PubMed

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    toxicological evaluation. Treatment of mice with a daily dose of 300 mg/kg and a single dose of 600 mg/kg indicates that the compound does not induce detectable pathological abnormalities in normal tissues. Also there were no significant differences in hematological parameters between the treated and untreated groups. Hence, the newly designed noscapinoid, 5e is an orally bioavailable, safe and effective anticancer agent with a potential for the treatment of cancer and might be a candidate for clinical evaluation. PMID:25481458

  2. Screening of anticancer activity from agarwood essential oil

    PubMed Central

    Hashim, Yumi Zuhanis Has-Yun; Phirdaous, Abbas; Azura, Amid

    2014-01-01

    Background: Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved. Objective: The aim of this current study was therefore to investigate the potential anticancer properties of agarwood essential oil obtained from distillation of agarwood (resin) towards MCF-7 breast cancer cells. Materials and Methods: The essential oil was subjected to screening assays namely cell viability, cell attachment and sulforhodamine B (SRB)-based cytotoxicity assay to determine the IC50 value. Results: The agarwood essential oil caused reduction of the cell number in both the cell viability and attachment assay suggesting a cumulative effect of the cell killing, inhibition of the cell attachment and or causing cells to detach. The agarwood essential oil showed IC50 value of 900 μg/ml towards the cancer cells. Conclusion: The agarwood essential oil exhibited anticancer activity which supports the traditional use against the inflammatory-associated diseases. This warrants further investigation towards the development of alternative remedy towards cancer. PMID:25002797

  3. Contemporary pre-clinical development of anticancer agents--what are the optimal preclinical models?

    PubMed

    Damia, Giovanna; D'Incalci, Maurizio

    2009-11-01

    The successful identification of novel effective anticancer drugs is largely dependent on the use of appropriate preclinical experimental models that should possibly mimic the complexity of different cancer diseases. The huge number of targets suitable for the design of new anticancer drugs is producing hundreds of novel molecules that require appropriate experimental models to investigate their mode of action and antitumour activity in order to select for clinical investigation the ones with higher chances of being clinically effective. However, our ability to predict the clinical efficacy of a new compound in the clinic based on preclinical data is still limited. This paper overviews the in vitro/in vivo preclinical systems that are currently used to test either compounds with an unknown mechanism of action or compounds designed to hit cancer-specific or cancer-related molecular targets. Examples of experimental models successfully used to identify novel compounds are provided. Xenografts are still the most commonly used in vivo models in drug development due to their high degree of reproducibility and because, in some cases, particularly when orthotopically transplanted, they maintain several biological properties of the human tumours they derive from. Genetic models are very useful for target validation, but are often not sufficiently reproducible to be used for drug evaluation. The variety of animal models can be effectively used to optimally test drugs that presumably act by a defined mode of action, but final success is highly dependent on the ability of drug development teams to integrate different expertises such as biology, chemistry, pharmacology, toxicology and clinical oncology into a clever and well orchestrated plan that keeps in consideration both the complexity of cancer diseases, involving alterations of different pathways, and the complexity of drugs whose pharmacological properties are crucial to obtain the desired effects. PMID:19762228

  4. Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships

    PubMed Central

    Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G.; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Šimůnek, Tomáš; Richardson, Des R.; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized “soft” donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination. PMID:25329549

  5. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships.

    PubMed

    Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination. PMID:25329549

  6. Design, synthesis and biological evaluation of novel pyridine derivatives as anticancer agents and phosphodiesterase 3 inhibitors

    PubMed Central

    Abadi, Ashraf H.; Ibrahim, Tamer M.; Abouzid, Khaled M.; Lehmann, Jochen; Tinsley, Heather N.; Gary, Bernard D.; Piazza, Gary A.

    2016-01-01

    Two series of 4,6-diaryl-2-imino-1,2-dihydropyridine-3-carbonitriles and their isosteric 4,6-diaryl-2- oxo-1,2-dihydropyridine-3-carbonitriles were synthesized through a combinatorial approach. The prepared analogues were evaluated for their in vitro capacity to inhibit PDE3A and the growth of the human HT-29 colon adenocarcinoma tumor cell line. Compound 6-(4-bromophenyl)-4-(2-ethoxyphenyl)-2- imino-1,2-dihydropyridine-3-carbonitrile (Id) exhibited the strongest PDE3 inhibition when cGMP but not cAMP is the substrate with a IC50of 27 μM, which indicates a highly selective mechanism of enzyme inhibition. On the other hand, compound 6-(1,3-benzodioxol-5-yl)-4-(2-ethoxyphenyl)-2-imino-1,2- dihydropyridine-3-carbonitrile (Ii) was the most active in inhibiting colon tumor cell growth with a IC50 of 3 μM. The electronic effects, steric effects and conformational aspects of Id seem to be the most crucial for the PDE3 inhibition. Meanwhile, steric factors and the H-bonding capability seem to be the most important factors for tumor cell growth inhibitory activity. Conversely, there is no direct correlation between PDE3 inhibition and anticancer activity for the prepared compounds. An in silico docking experiment indicates the potential involvement of other potential molecular targets such as PIM-1 kinase to explain its tumor cell growth inhibitory activity. PMID:19628397

  7. Impediments to Enhancement of CPT-11 Anticancer Activity by E. coli Directed Beta-Glucuronidase Therapy

    PubMed Central

    Hsieh, Yuan-Ting; Chen, Kai-Chuan; Cheng, Chiu-Min; Cheng, Tian-Lu; Tao, Mi-Hua; Roffler, Steve R.

    2015-01-01

    CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti

  8. Impediments to enhancement of CPT-11 anticancer activity by E. coli directed beta-glucuronidase therapy.

    PubMed

    Hsieh, Yuan-Ting; Chen, Kai-Chuan; Cheng, Chiu-Min; Cheng, Tian-Lu; Tao, Mi-Hua; Roffler, Steve R

    2015-01-01

    CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti

  9. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-he; Sun, Jin; Wang, Shan; Bu, Wei; Yao, Min-na; Gao, Kai; Song, Ying; Zhao, Jin-yi; Lu, Cheng-tao; Zhang, En-hu; Yang, Zhi-fu; Wen, Ai-dong

    2016-03-01

    A novel adamantyl nitroxide derivatives has been synthesized and characterized by IR, ESI-MS and elemental analysis. Quantum chemical calculations have also been performed to calculate the molecular geometry using density functional theory (B3LYP) with the 6-31G (d,p) basis set. The calculated results showed that the optimized geometry can well reproduce the crystal structure. The antioxidant and antiproliferative activity were evaluated by superoxide (NBT) and MTT assay. The adamantyl nitroxide derivatives exhibited stronger scavenging ability towards O2· - radicals when compared to Vitamin C, and demonstrated a remarked anticancer activity against all the tested cell lines, especially Bel-7404 cells with IC50 of 43.3 μM, compared to the positive control Sorafenib (IC50 = 92.0 μM). The results of molecular docking within EGFR using AutoDock confirmed that the titled compound favorably fitted into the ATP binding site of EGFR and would be a potential anticancer agent.

  10. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase.

    PubMed

    Merlot, Angelica M; Shafie, Nurul H; Yu, Yu; Richardson, Vera; Jansson, Patric J; Sahni, Sumit; Lane, Darius J R; Kovacevic, Zaklina; Kalinowski, Danuta S; Richardson, Des R

    2016-06-01

    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment. PMID:27059255

  11. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  12. Anti-cancer activity of carbamate derivatives of melampomagnolide B

    PubMed Central

    Janganati, Venumadhav; Penthala, Narsimha Reddy; Madadi, Nikhil Reddy; Chen, Zheng; Crooks, Peter A.

    2015-01-01

    Melampomagnolide B (MMB) is a natural sesquiterpene structurally related to parthenolide (PTL). We have shown that MMB exhibits anti-leukemic properties similar to PTL. Unlike PTL, the presence of a primary hydroxyl group in the MMB molecule allows the opportunity for examining the biological activity of a variety of conjugated analogs of MMB. We have now synthesized a series of carbamate analogs of MMB and evaluated these derivatives for anti-cancer activity against a panel of sixty human cancer cell lines. Analogs 6a and 6e exhibited promising anti-leukemic activity against human leukemia cell line CCRF-CEM with GI50 values of 680 and 620 nM, respectively. 6a also showed GI50 values of 1.98 and 1.38 µM respectively, against RPMI-8226 and SR leukemia cell lines and GI50 values of 460 and 570 nM against MDA-MB-435 melanoma and MDA-MB-468 breast cancer cell lines, respectively. 6e had GI50 values of 650 nM and 900 nM against HOP-92 non-small cell lung and RXF 393 renal cancer cell lines. PMID:24928404

  13. Synthesis and evaluation of polymeric gold glyco-conjugates as anti-cancer agents.

    PubMed

    Ahmed, Marya; Mamba, Saul; Yang, Xiao-Hong; Darkwa, James; Kumar, Piyush; Narain, Ravin

    2013-06-19

    The antitumor activity of organo-gold compounds is a focus of research from the past two decades. A variety of gold stabilizing ligands such as vitamins and xanthanes have been prepared and explored for their 'chelating effect' as well as for their antitumor activity. Dithiocarbamates (DTC) compounds and their metallic conjugates have been well explored for their antiproliferative activities. In this study, glycopolymer based DTC-conjugates are prepared by reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequently modified with gold(I) phosphine. These polymer-DTC derivatives and their gold compounds are tested for their in vitro toxicity in both normal and cancer cell lines. The Au(I) phosphine conjugated cationic glycopolymers of 10 kDa and 30 kDa are evaluated for their cytotoxicity profiles using MTT assay. Au(I) compounds are well-known for their mitochondrial toxicity, hence hypoxic cell lines bearing unusually enlarged mitochondria are subjected to these anticancer compounds. It is concluded that these polymeric DTC derivatives and their gold conjugates indeed show higher accumulation as well as cytotoxicity to cancer cells under hypoxic conditions in comparison to the normoxic ones. Hypoxic MCF-7 cells showed significant sensitivity toward the low molecular weight (10 kDa) glycopolymer-Au(I) complexes. PMID:23631753

  14. Application of computer assisted combinatorial chemistry in antivirial, antimalarial and anticancer agents design

    NASA Astrophysics Data System (ADS)

    Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.

    Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.

  15. Evaluation of 2-(methylaminosulfonyl)-1-(arylsulfonyl)hydrazines as anticancer agents.

    PubMed

    Ghosh, M; Dutta, S; Sanyal, U

    1999-01-01

    Seven new 2-(methylaminosulfonyl)- 1-(arylsulfonyl)hydrazines were prepared and evaluated as potential antitumor agents in vivo against murine Ehrlich ascites carcinoma (EAC). Borderline in vivo activity in EAC was exhibited by two compounds. All of them were screened in vitro against a battery of human tumor cell lines at the National Cancer Institute (NCI), USA. One of them, namely compound 2f(NSC No. 649 752) displayed highly significant specificity in two different cell lines as non-small cell lung cancer line HOP-18 and in CNS cancer line SNB-19. The compounds assessed in vitro for anti-HIV activity also at the NCI, however, have not reached the criteria of significant activity. The alkylating activity of the compounds was determined by measuring the absorbance of the alkylated product of 4-(4-nitrobenzyl)pyridine. It was found that they are capable of acting as chemical alkylating agents. PMID:10613605

  16. Targeted Delivery of Anticancer Agents via a Dual Function Nanocarrier with an Interfacial Drug-Interactive Motif

    PubMed Central

    2015-01-01

    We have developed a dual-function drug carrier, polyethylene glycol (PEG)-derivatized farnesylthiosalicylate (FTS). Here we report that incorporation of a drug-interactive motif (Fmoc) into PEG5k–FTS2 led to further improvement in both drug loading capacity and formulation stability. Doxorubicin (DOX) formulated in PEG5k–Fmoc–FTS2 showed sustained release kinetics slower than those of DOX loaded in PEG5k–FTS2. The maximum tolerated dose of DOX- or paclitaxel (PTX)-loaded PEG5k–Fmoc–FTS2 was significantly higher than that of the free drug. Pharmacokinetics and biodistribution studies showed that DOX/PEG5k–Fmoc–FTS2 mixed micelles were able to retain DOX in the bloodstream for a significant amount of time and efficiently deliver the drug to tumor sites. More importantly, drug (DOX or PTX)-loaded PEG5k–Fmoc–FTS2 led to superior antitumor activity over other treatments including drugs formulated in PEG5k–FTS2 in breast cancer and prostate cancer models. Our improved dual function carrier with a built-in drug-interactive motif represents a simple and effective system for targeted delivery of anticancer agents. PMID:25325795

  17. Anticancer activity of the iron facilitator LS081

    PubMed Central

    2011-01-01

    Background Cancer cells have increased levels of transferrin receptor and lower levels of ferritin, an iron deficient phenotype that has led to the use of iron chelators to further deplete cells of iron and limit cancer cell growth. As cancer cells also have increased reactive oxygen species (ROS) we hypothesized that a contrarian approach of enhancing iron entry would allow for further increased generation of ROS causing oxidative damage and cell death. Methods A small molecule library consisting of ~11,000 compounds was screened to identify compounds that stimulated iron-induced quenching of intracellular calcein fluorescence. We verified the iron facilitating properties of the lead compound, LS081, through 55Fe uptake and the expression of the iron storage protein, ferritin. LS081-induced iron facilitation was correlated with rates of cancer cell growth inhibition, ROS production, clonogenicity, and hypoxia induced factor (HIF) levels. Results Compound LS081 increased 55Fe uptake in various cancer cell lines and Caco2 cells, a model system for studying intestinal iron uptake. LS081 also increased the uptake of Fe from transferrin (Tf). LS081 decreased proliferation of the PC-3 prostate cancer cell line in the presence of iron with a lesser effect on normal prostate 267B1 cells. In addition, LS081 markedly decreased HIF-1α and -2α levels in DU-145 prostate cancer cell line and the MDA-MB-231 breast cancer cell lines, stimulated ROS production, and decreased clonogenicity. Conclusions We have developed a high through-put screening technique and identified small molecules that stimulate iron uptake both from ferriTf and non-Tf bound iron. These iron facilitator compounds displayed properties suggesting that they may serve as anti-cancer agents. PMID:21453502

  18. Molecular modelling, synthesis, cytotoxicity and anti-tumour mechanisms of 2-aryl-6-substituted quinazolinones as dual-targeted anti-cancer agents

    PubMed Central

    Hour, M J; Lee, K H; Chen, T L; Lee, K T; Zhao, Yu; Lee, H Z

    2013-01-01

    Background and Purpose Our previous study demonstrated that 6-(pyrrolidin-1-yl)-2-(3-methoxyphenyl)quinazolin-4-one (HMJ38) was a potent anti-tubulin agent. Here, HMJ38 was used as a lead compound to develop more potent anti-cancer agents and to examine the anti-cancer mechanisms. Experimental Approach Using computer-aided drug design, 2-aryl-6-substituted quinazolinones (MJ compounds) were designed and synthesized by introducing substituents at C-2 and C-6 positions of HMJ38. The cytotoxicity of MJ compounds towards human cancer cells was examined by Trypan blue exclusion assay. Microtubule distribution was visualized using TubulinTracker™ Green reagent. Protein expression of cell cycle regulators and JNK was assessed by Western blot analysis. Key Results Compounds MJ65–70 exhibited strong anti-proliferative effects towards melanoma M21, lung squamous carcinoma CH27, lung non-small carcinoma H460, hepatoma Hep3B and oral cancer HSC-3 cells, with one compund MJ66 (6-(pyrrolidin-1-yl)-2-(naphthalen-1-yl)quinazolin-4-one) highly active against M21 cells (IC50 about 0.033 μM). Treatment of CH27 or HSC-3 cells with MJ65–70 resulted in significant mitotic arrest accompanied by increasing multiple asters of microtubules. JNK protein expression was involved in the MJ65–70-induced CH27 and M21 cell death. Consistent with the cell cycle arrest at G2/M phase, marked increases in cyclin B1 and Bcl-2 phosphorylation were also observed, after treatment with MJ65–70. Conclusions and Implication MJ65–70 are dual-targeted, tubulin- and JNK-binding, anti-cancer agents and induce cancer cell death through up-regulation of JNK and interfering in the dynamics of tubulin. Our work provides a new strategy and mechanism for developing dual-targeted anti-cancer drugs, contributing to clinical anti-cancer drug discovery and application. PMID:23638624

  19. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-κB besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and

  20. ZnO nanopellets have selective anticancer activity.

    PubMed

    Gopala Krishna, Prashanth; Paduvarahalli Ananthaswamy, Prashanth; Yadavalli, Tejabhiram; Bhangi Mutta, Nagabhushana; Sannaiah, Ananda; Shivanna, Yogisha

    2016-05-01

    This research work presents the synthesis of ZnO nanopellets (ZNPs) by low temperature hydrothermal approach and evaluation of their antibacterial activity, cytotoxicity in vitro and in vivo. Structural and morphological studies conducted on the sample reveal hexagonal ZNPs in the size range of 250-500nm. Surface area measurements showed high porosity of the sample compared to conventional ZnO nanoparticles. Antimicrobial studies revealed their bactericidal nature against both Gram-negative and Gram-positive bacteria. Furthermore, to better understand the parameters that affect the interactions between our ZNPs and mammalian cells, and thus their biocompatibility, we have examined the impact of cell culture conditions as well as of material properties on cytotoxicity by DPPH, blood hemolysis and MTT assay. The results showed good antioxidant capacity and biocompatibility of ZNPs at higher concentrations. MTT assay revealed the anticancer activity of ZNPs against prostate and breast cancer cell lines. Acute toxicity tests on Swiss albino mice showed no evident toxicity over a 14 days period. PMID:26952499

  1. Nanoemulsion formulations for anti-cancer agent piplartine--Characterization, toxicological, pharmacokinetics and efficacy studies.

    PubMed

    Fofaria, Neel M; Qhattal, Hussaini Syed Sha; Liu, Xinli; Srivastava, Sanjay K

    2016-02-10

    Piplartine (PL) is an alkaloid found in black-pepper and known for its anticancer activity, however, due to poor solubility and lack of proper formulation, its use for oral administration is a challenge. The objective of this study was to formulate PL into nanoemulsion drug delivery system for oral delivery and thereafter evaluate toxicity, pharmacokinetics and therapeutic efficacy. Optimized nanoemulsions were formulated by self-emulsification as well as by homogenization-sonication method. Two nanoemulsions enhanced the solubility of PL with low polydispersity index and high stability. Both PL loaded nanoemulsions exhibited enhanced dissolution, cellular permeability and cytotoxic effects as compared to pure PL. Formulation of PL into nanoemulsions did not obstruct its cellular uptake in cancer cells. Blank or PL loaded nanoemulsions did not exhibited toxicity in mice upon daily oral administration for 60 days. Pharmacokinetics of PL followed a two-compartment model after intravenous administration. PL loaded nanoemulsions showed 1.5-fold increase in oral bioavailability as compared to free PL. Finally, PL loaded nanoemulsions showed marked anti-tumor activity at a dose of 10mg/kg in melanoma tumor bearing mice. In conclusion, for the first time we have developed a stable nanoemulsion delivery system for oral administration of PL, which enhanced its solubility, oral bioavailability and anti-tumor efficacy. PMID:26642946

  2. Synthesis, biological evaluation and modeling studies of terphenyl topoisomerase IIα inhibitors as anticancer agents.

    PubMed

    Qiu, Jin; Zhao, Baobing; Zhong, Wanxia; Shen, Yuemao; Lin, Houwen

    2015-04-13

    We report the synthesis and evaluation of a series of novel terphenyls. Compound 17 had the most potent anticancer activity, indicating that the phenolic hydroxyl was a key group. A DNA relaxation test showed that compound 17 had a strong inhibitory effect on TOP2α, but not on TOP1, which was consistent with the docking analysis results. We performed a 3D-QSAR study using CoMFA and CoMSIA to determine, for the first time, the chemical-biological relationship in the inhibition of TOP by terphenyls. The CoMFA and CoMSIA model had good modeling statistics: leave-one-out q(2) of 0.605 and 0.622, r(2) of 0.998 and 0.994, and r(2)pred (test set) of 0.742 and 0.660. These results suggest that the ortho-phenolic hydroxyl on ring A is important for producing terphenyls with more efficacious activity. PMID:25800514

  3. Polygonum cuspidatum extracts as bioactive antioxidaion, anti-tyrosinase, immune stimulation and anticancer agents.

    PubMed

    Lee, Chih-Chen; Chen, Yen-Ting; Chiu, Chien-Chih; Liao, Wei-Ting; Liu, Yung-Chuan; David Wang, Hui-Min

    2015-04-01

    In our study, it was applied for the technology of supercritical fluid carbon dioxide extraction to achieve biological constitutes from a Taiwan native plant, Polygonum cuspidatum. We developed bioactive effects of P. cuspidatum extracts via multiple examinations that established bio-purposes at a range of dosage ranges. The research of P. cuspidatum extracts indicated that they possessed anti-oxidative properties on radical-scavenging abilities, reducing activities and metal chelating powers in dose-dependant manners. The extracts also had minor in vitro mushroom tyrosinase suppression and decreased cellular tyrosinase activities and melanin production in B16-F10 cells. Immunologically, P. cuspidatum extracts enhanced the release of tumor necrosis factor α (TNF-α) induced by THP-1 macrophage cell line. In addition, the cell proliferation showed anti-proliferation in dose-dependent manner on human skin melanoma cells, A375 and A375.S2, of the extracts suggesting biological constitutes employed the anti-cancer possessions. This is the first statement presenting bioactivities on P. cuspidatum extracts including anti-oxidation, immune stimulation, anti-tyrosinase and anti-melanoma as far as we know. PMID:25311751

  4. Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents.

    PubMed

    Aldawsari, Fahad S; Aguayo-Ortiz, Rodrigo; Kapilashrami, Kanishk; Yoo, Jakyung; Luo, Minkui; Medina-Franco, José L; Velázquez-Martínez, Carlos A

    2016-10-01

    Resveratrol is a natural polyphenol with plethora of biological activities. Resveratrol has previously shown to decrease DNA-methyltransferase (DNMT) enzymes expression and to reactivate silenced tumor suppressor genes. Currently, it seems that no resveratrol analogs have been developed as DNMT inhibitors. Recently, we reported the synthesis of resveratrol-salicylate derivatives and by examining the chemical structure of these analogs, we proposed that these compounds could exhibit DNMT inhibition especially that they resembled NSC 14778, a compound we previously identified as a DNMT inhibitor by virtual screening. Indeed, using in vitro DNMT inhibition assay, some of the resveratrol-salicylate analogs we screened in this work that showed selective inhibition against DNMT3 enzymes which were greater than resveratrol. A molecular docking study revealed key binding interactions with DNMT3A and DNMT3B enzymes. In addition, the most active analog, 10 showed considerable cytotoxicity against three human cancer cells; HT-29, HepG2 and SK-BR-3, which was greater than resveratrol. Further studies are needed to understand the anticancer mechanisms of these derivatives. PMID:26118420

  5. The Use of 1α,25-Dihydroxyvitamin D₃ as an Anticancer Agent.

    PubMed

    Marcinkowska, Ewa; Wallace, Graham R; Brown, Geoffrey

    2016-01-01

    The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D₃ (1,25D) has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues. PMID:27187375

  6. The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent

    PubMed Central

    Marcinkowska, Ewa; Wallace, Graham R.; Brown, Geoffrey

    2016-01-01

    The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D3 (1,25D) has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues. PMID:27187375

  7. Anticancer activity of Panax notoginseng extract 20(S)-25-OCH3-PPD: Targetting beta-catenin signalling.

    PubMed

    Bi, Xiuli; Zhao, Yuqing; Fang, Wenfeng; Yang, Wancai

    2009-11-01

    1. The Wnt/beta-catenin pathway plays a critical role in carcinogenesis and so agents that target Wnt/beta-catenin may have potential in cancer prevention and therapy. The aim of the present study was to evaluate the anticancer activity of the novel natural product dammarane-type triterpene sapogenin (20(S)-25-OCH3-PPD; PPD25) isolated from the leaves of Panax notoginseng. 2. The anticancer activity of PPD25 was evaluated in three colon cancer cell lines and in one lung cancer cell line. The effects of PPD25 to inhibit proliferation and to induce apoptosis were evaluated. In addition, the potential mechanisms underlying the effects of PPD25 were investigated. 3. It was found that the addition of 5 or 25 micromol/L PPD25 to the culture medium significantly inhibited cell proliferation and induced apoptosis in all four cancer cell lines. Mechanistic studies revealed that PPD25 significantly reduced the expression of beta-catenin, a key mediator in the Wnt pathway, as well as transcriptional targets of beta-catenin, namely c-myc, cyclin D1, cdk4 and T cell factor (TCF)-4. In addition, beta-catenin/TCF transcriptional activity was significantly suppressed by PPD25. 4. The data demonstrate that the PPD25 exerts its anticancer effect by targetting beta-catenin signalling, suggesting that PPD25 may have potential as a chemotherapeutic and/or chemopreventive agent for colon and lung cancer. PMID:19413587

  8. Design, synthesis, and biological evaluation of benzofuran- and 2,3-dihydrobenzofuran-2-carboxylic acid N-(substituted)phenylamide derivatives as anticancer agents and inhibitors of NF-κB.

    PubMed

    Choi, Minho; Jo, Hyeju; Park, Hyun-Jung; Sateesh Kumar, Arepalli; Lee, Joonkwang; Yun, Jieun; Kim, Youngsoo; Han, Sang-Bae; Jung, Jae-Kyung; Cho, Jungsook; Lee, Kiho; Kwak, Jae-Hwan; Lee, Heesoon

    2015-06-15

    With the aim of developing novel scaffolds as anticancer agents and inhibitors of NF-κB activity, 60 novel benzofuran- and 2,3-dihydrobenzofuran-2-carboxylic acid N-(substituted)phenylamide derivatives (1a-s, 2a-k, 3a-s, and 4a-k) were designed and synthesized from the reference lead compound KL-1156, which is an inhibitor of NF-κB translocation to the nucleus in LPS-stimulated RAW 264.7 macrophage cells. The novel benzofuran- and 2,3-dihydrobenzofuran-2-carboxamide derivatives exhibited potent cytotoxic activities (measured by the sulforhodamine B assay) at low micromolar concentrations against six human cancer cell lines: ACHN (renal), HCT15 (colon), MM231 (breast), NUGC-3 (gastric), NCI-H23 (lung), and PC-3 (prostate). In addition, these compounds also inhibited LPS-induced NF-κB transcriptional activity. The +M effect and hydrophobic groups on the N-phenyl ring potentiated the anticancer activity and NF-κB inhibitory activity, respectively. However, according to the results of structure-activity relationship studies, only benzofuran-2-carboxylic acid N-(4'-hydroxy)phenylamide (3m) was the lead scaffold with both an outstanding anticancer activity and NF-κB inhibitory activity. This novel lead scaffold may be helpful for investigation of new anticancer agents that act through inactivation of NF-κB. PMID:25953156

  9. Synergistic anticancer activity of photo- and chemoresponsive nanoformulation based on polylysine-functionalized graphene.

    PubMed

    Wu, Chunhui; He, Qiuming; Zhu, Anni; Li, Dan; Xu, Min; Yang, Hong; Liu, Yiyao

    2014-12-10

    Multimodal therapeutic agents based on nanomaterials for cancer combination therapy have attracted increasing attention. In this report, a novel photo- and chemoactive nanohybrid was fabricated by assembling photosensitizer Zn(II)-phthalocyanine (ZnPc) and anticancer drug doxorubicin (DOX) on the biocompatible poly-l-lysine (PLL)-grafted graphene (G-PLL). This nanocomplex of G-PLL/DOX/ZnPc showed excellent physiochemical properties, including high solubility and stability in biological solutions, high drug loading efficiency, pH-triggered drug release, and ability to generalize (1)O2 under light excitation. Compared to free drug molecules, cells treated with G-PLL/DOX/ZnPc showed a higher cellular uptake. In particular, G-PLL/DOX/ZnPc elicited a remarkable synergistic anticancer activity owing to combined photodynamic and chemotherapeutic effects. The combination dose reduction indexes revealed that combining DOX with ZnPc provided strong synergistic effects (combination index < 0.1) against three cancer cell lines tested (HeLa, MCF-7, and B16). Thus, this study demonstrates programmable dual-modality therapy exemplified by G-PLL/DOX/ZnPc to synergistically treat cancers. PMID:25370358

  10. Anticancer and anti-inflammatory activities of some dietary cucurbits.

    PubMed

    Sharma, Dhara; Rawat, Indu; Goel, H C

    2015-04-01

    In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine. PMID:26011982

  11. Progress Toward the Development of Noscapine and Derivatives as Anticancer Agents.

    PubMed

    DeBono, Aaron; Capuano, Ben; Scammells, Peter J

    2015-08-13

    Many nitrogen-moiety containing alkaloids derived from plant origins are bioactive and play a significant role in human health and emerging medicine. Noscapine, a phthalideisoquinoline alkaloid derived from Papaver somniferum, has been used as a cough suppressant since the mid 1950s, illustrating a good safety profile. Noscapine has since been discovered to arrest cells at mitosis, albeit with moderately weak activity. Immunofluorescence staining of microtubules after 24 h of noscapine exposure at 20 μM elucidated chromosomal abnormalities and the inability of chromosomes to complete congression to the equatorial plane for proper mitotic separation ( Proc. Natl. Acad. Sci. U. S. A. 1998 , 95 , 1601 - 1606 ). A number of noscapine analogues possessing various modifications have been described within the literature and have shown significantly improved antiprolific profiles for a large variety of cancer cell lines. Several semisynthetic antimitotic alkaloids are emerging as possible candidates as novel anticancer therapies. This perspective discusses the advancing understanding of noscapine and related analogues in the fight against malignant disease. PMID:25811651

  12. Synthesis of novel 1,2,4-triazoles, triazolothiadiazines and triazolothiadiazoles as potential anticancer agents.

    PubMed

    Kamel, Mona M; Megally Abdo, Nadia Y

    2014-10-30

    A series of new N-substituted-3-mercapto-1,2,4-triazoles (3a,b and 7a-d), triazolo[1,3,4]thiadiazines (5a,b) and triazolo[1,3,4]thiadiazoles (4a-d, 6 and 8a-d) have been synthesized starting from isonicotinic acid hydrazide. The structure of the newly synthesized compounds was confirmed on the basis of their spectral data and elemental analyses. All the compounds were screened for their in vitro anticancer activity against 6 human cancer cell lines and normal fibroblasts. Seven of the tested compounds (3a,b, 4c, 5a and 8b-d) exhibited significant cytotoxicity against most cell lines. Among these derivatives compound 4c exhibited equivalent cytotoxic effect to the standard CHS 828 against gastric cancer cell line (IC50 = 25 nM). Normal fibroblast cells (WI38) were affected to a much lesser extent (IC50 > 10,000 nM). PMID:25147148

  13. Four-Component Synthesis of 1,2-Dihydropyridine Derivatives and their Evaluation as Anticancer Agents

    PubMed Central

    Abdelf-Fattah, Mohamed A. O.; El-Naggar, Mahmoud A. M.; Rashied, Rasha M. H.; Gary, Bernard D.; Piazza, Gary A.; Abadi, Ashraf H.

    2016-01-01

    Two series of compounds with the general formula of 4,6-diaryl-2-oxo-1,2 dihydropyridine-3-carbonitriles and their isosteric imino derivatives were synthesized through a one pot reaction of acetophenone, aldehyde and ammonium acetate with ethyl cyanoacetate or malononitrile, respectively. The synthesized compounds were evaluated for tumor cell growth inhibitory using the human HT-29 colon and MDA-MB-231 breast tumor cell lines. Compound 4-(2-Ethoxyphenyl)-2-imino-6-(4-fluorophenyl)-1,2-dihydropyridine-3 carbonitrile (6) showed IC50 value of 0.70 μM versus HT-29. Meanwhile, compound 4-(2-Hydroxyphenyl)-2-imino-6-(4-fluorophenyl)-1,2-dihydropyridine-3-carbonitrile (4) showed IC50 value of 4.6 μM versus MDA-MB-231. Docking compound 10 to possible molecular targets, survivin and PIM1 kinase showed appreciable interactions with both, which suggest possible targets for the antitumor activity of this novel class of anticancer compounds. PMID:22530887

  14. The anti-cancer agent nemorosone is a new potent protonophoric mitochondrial uncoupler.

    PubMed

    Pardo-Andreu, Gilberto L; Nuñez-Figueredo, Yanier; Tudella, Valeria G; Cuesta-Rubio, Osmany; Rodrigues, Fernando P; Pestana, Cezar R; Uyemura, Sérgio A; Leopoldino, Andréia M; Alberici, Luciane C; Curti, Carlos

    2011-03-01

    Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 μM) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells. PMID:21044702

  15. Dioscin restores the activity of the anticancer agent adriamycin in multidrug-resistant human leukemia K562/adriamycin cells by down-regulating MDR1 via a mechanism involving NF-κB signaling inhibition.

    PubMed

    Wang, Lijuan; Meng, Qiang; Wang, Changyuan; Liu, Qi; Peng, Jinyong; Huo, Xiaokui; Sun, Huijun; Ma, Xiaochi; Liu, Kexin

    2013-05-24

    The purpose of this study was to investigate the ameliorating effect of dioscin (1) on multidrug resistance (MDR) in adriamycin (ADR)-resistant erythroleukemic cells (K562/adriamycin, K562/ADR) and to clarify the molecular mechanisms involved. High levels of multidrug resistance 1 (MDR1) mRNA and protein and reduced ADR retention were found in K562/ADR cells compared with parental cells (K562). Dioscin (1), a constituent of plants in the genus Discorea, significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in K562/ADR cells. MDR1 mRNA and protein suppression resulted in the subsequent recovery of intracellular drug accumulation. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by 1. Dioscin (1) reversed ADR-induced MDR by down-regulating MDR1 expression by a mechanism that involves the inhibition of the NF-κB signaling pathway. These findings provide evidence to support the further investigation of the clinical application of dioscin (1) as a chemotherapy adjuvant. PMID:23621869

  16. Anticancer chemotherapy

    SciTech Connect

    Weller, R.E.

    1988-10-01

    Despite troubled beginnings, anticancer chemotherapy has made significant contribution to the control of cancer in man, particularly within the last two decades. Early conceptual observations awakened the scientific community to the potentials of cancer chemotherapy. There are now more than 50 agents that are active in causing regression of clinical cancer. Chemotherapy's major conceptual contributions are two-fold. First, there is now proof that patients with overt metastatic disease can be cured, and second, to provide a strategy for control of occult metastases. In man, chemotherapy has resulted in normal life expectancy for some patients who have several types of metastatic cancers, including choriocarcinoma, Burkitt's lymphomas, Wilm's tumor, acute lymphocytic leukemia, Hodgkins disease, diffuse histiocytic lymphoma and others. Anticancer chemotherapy in Veterinary medicine has evolved from the use of single agents, which produce only limited remissions, to the concept of combination chemotherapy. Three basic principles underline the design of combination chemotherapy protocols; the fraction of tumor cell killed by one drug is independent of the fraction killed by another drug; drugs with different mechanisms of action should be chosen so that the antitumor effects will be additive; and since different classes of drugs have different toxicities the toxic effects will not be additive.

  17. Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939

    PubMed Central

    Sumanadasa, Subathdrage D. M.; Goodman, Christopher D.; Lucke, Andrew J.; Skinner-Adams, Tina; Sahama, Ishani; Haque, Ashraful; Do, Tram Anh; McFadden, Geoffrey I.; Fairlie, David P.

    2012-01-01

    Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, the in vitro and in vivo antiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth of Plasmodium falciparum asexual-stage parasites in vitro (50% inhibitory concentration [IC50], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited the in vitro growth of exoerythrocytic-stage Plasmodium parasites in liver cells (IC50, ∼150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimental in vivo murine model of cerebral malaria, orally administered SB939 significantly inhibited P. berghei ANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria. PMID:22508312

  18. Chemopreventive and Anticancer Activities of Allium victorialis var. platyphyllum Extracts

    PubMed Central

    Kim, Hyun-Jeong; Park, Min Jeong; Park, Hee-Juhn; Chung, Won-Yoon; Kim, Ki-Rim; Park, Kwang-Kyun

    2014-01-01

    Background: Allium victorialis var. platyphyllum is an edible perennial herb and has been used as a vegetable or as a Korean traditional medicine. Allium species have received much attention owing to their diverse pharmacological properties, including antioxidative, anti-inflammatory, and anticancer activities. However, A. victorialis var. platyphyllum needs more study. Methods: The chemopreventive potential of A. victorialis var. platyphyllum methanol extracts was examined by measuring 12-O-tetra-decanoylphorbol 13-acetate (TPA)-induced superoxide anion production in the differentiated HL-60 cells, TPA-induced mouse ear edema, and Ames/Salmonella mutagenicity. The apoptosis-inducing capabilities of the extracts were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 4’,6-diamidino-2-phenylindole staining, and the DNA fragmentation assay in human colon cancer HT-29 cells. Antimetastatic activities of the extracts were also investigated in an experimental mouse lung metastasis model. Results: The methanol extracts of A. victorialis var. platyphyllum rhizome (AVP-R) and A. victorialis var. platyphyllum stem (AVP-S) dose-dependently inhibited the TPA-induced generation of superoxide anion in HL-60 cells and TPA-induced ear edema in mice, as well as 7,12-dimethylbenz[a]anthracene (DMBA) and tert-butyl hydroperoxide (t-BOOH) -induced bacterial mutagenesis. AVP-R and AVP-S reduced cell viability in a dose-related manner and induced apoptotic morphological changes and internucleosomal DNA fragmentation in HT-29 cells. In the experimental mouse lung metastasis model, the formation of tumor nodules in lung tissue was significantly inhibited by the treatment of the extracts. Conclusions: AVP-R and AVP-S possess antioxidative, anti-inflammatory, antimutagenic, proapoptotic, and antimetastatic activities. Therefore, these extracts can serve as a beneficial supplement for the prevention and treatment of cancer. PMID:25337587

  19. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents

    PubMed Central

    Morash, Michael G.; Douglas, Susan E.; Robotham, Anna; Ridley, Christina M.; Gallant, Jeffrey W.; Soanes, Kelly H.

    2011-01-01

    SUMMARY The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of action. Cytotoxicities were assessed in vitro using cell-based assays and in vivo using zebrafish embryos. Morphological changes were assessed by both transmission and scanning electron microscopy, and functional assays were performed on zebrafish embryos to investigate the mechanism of cell death. A total of 14 peptides were virtually inactive against HL60 human leukemia cells, whereas 12 caused >50% death at ≤32 μg/ml. Morphological changes characteristic of oncosis were evident by electron microscopy after only 1 minute of treatment with 32 μg/ml of variant NRC-03. Only two peptides were hemolytic. Four peptides showed no toxicity towards zebrafish embryos at the highest concentration tested (25 μM; ∼64 μg/ml) and one peptide was highly toxic, killing 4-hour-post-fertilization (hpf) embryos immediately after exposure to 1 μM peptide. Four other peptides killed embryos after 24 hours of exposure at 1 μM. Most peptides caused mortality at one or more developmental stages only after continuous exposure (24 hours) with higher lethal doses (≥5 μM). Pleurocidin NRC-03 bound to embryos and induced the release of superoxide, caused an increase in the number of TUNEL-positive nuclei, and caused membrane damage and the loss of embryonic epithelial integrity, marked by the exclusion of cells from the outer epithelium and the appearance of F-actin within the circumferential cells of the repair site. Our results indicate that specific pleurocidin variants are attractive cancer

  20. Selective inhibitors of nuclear export (SINE)--a novel class of anti-cancer agents.

    PubMed

    Parikh, Kaushal; Cang, Shundong; Sekhri, Arunabh; Liu, Delong

    2014-01-01

    Dysregulation of the nucleo-cytoplasmic transport of proteins plays an important role in carcinogenesis. The nuclear export of proteins depends on the activity of transport proteins, exportins. Exportins belong to the karyopherin β superfamily. Exportin-1 (XPO1), also known as chromosomal region maintenance 1 (CRM1), mediates transport of around 220 proteins. In this review, we summarized the development of a new class of antitumor drugs, collectively known as selective inhibitors of nuclear export (SINE). KPT-330 (selinexor) as an oral agent is showing activities in early clinical trials in both solid tumors and hematological malignancies. PMID:25316614

  1. Organometallic Palladium Complexes with a Water-Soluble Iminophosphorane Ligand as Potential Anticancer Agents

    PubMed Central

    Carreira, Monica; Calvo-Sanjuán, Rubén; Sanaú, Mercedes; Marzo, Isabel; Contel, María

    2012-01-01

    The synthesis and characterization of a new water-soluble iminophosphorane ligand TPA=N-C(O)-2BrC6H4 (C,N-IM; TPA = 1,3,5-triaza-7-phosphaadamantane) 1 is reported. Oxidative addition of 1 to Pd2(dba)3 affords the orthopalladated dimer [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) as a mixture of cis and trans isomers (1:1 molar ratio) where the iminophosphorane moeity behaves as a C,N-pincer ligand. By addition of different neutral or monoanionic ligands to 2, the bridging bromide can be cleaved and a variety of hydrophilic or water-soluble mononuclear organometallic palladium(II) complexes of the type [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L-L)] (L-L = acac (3); S2CNMe2 (4); 4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid disodium salt C12H6N2(C6H4SO3Na)2 (5)); [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L)Br] (L = P(mC6H4SO3Na)3 (6); P(3-Pyridyl)3 (7)) and, [Pd(C6H4(C(O)N=TPA)-2}(TPA)2Br] (8) are obtained as single isomers. All new complexes were tested as potential anticancer agents and their cytotoxicity properties were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells, normal T-lymphocytes (PBMC) and DU-145 human prostate cancer cells. Compounds [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) and [Pd{C6H4(C(O)N=TPA-kC,N)-2}(acac)] 3 (which has been crystallographically characterized) display the higher cytotoxicity against the above mentioned cancer cell lines while being less toxic to normal T-lymphocytes (peripheral blood mononuclear cells: PBMC). In addition, 3 is very toxic to cisplatin resistant Jurkat shBak indicating a cell death pathway that may be different to that of cisplatin. The interaction of 2 and 3 with plasmid (pBR322) DNA is much weaker than that of cisplatin pointing to an alternative biomolecular target for these cytotoxic compounds. All the compounds show an interaction with human serum albumin (HSA) faster than that of cisplatin. PMID:23066172

  2. Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone

    PubMed Central

    Lin, Xuejing; Peng, Zhangxiao; Su, Changqing

    2015-01-01

    Costunolide (CE) and dehydrocostuslactone (DE) are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application. PMID:25984608

  3. Zampanolide and dactylolide: cytotoxic tubulin-assembly agents and promising anticancer leads

    PubMed Central

    2014-01-01

    Covering: through January 2014 Zampanolide is a marine natural macrolide and a recent addition to the family of microtubule-stabilizing cytotoxic agents. Zampanolide exhibits unique effects on tubulin assembly and is more potent than paclitaxel against several multi-drug resistant cancer cell lines. A high-resolution crystal structure of αβ-tubulin in complex with zampanolide explains how taxane-site microtubule-stabilizing agents promote microtubule assemble and stability. This review provides an overview of current developments of zampanolide and its related but less potent analogue dactylolide, covering their natural sources and isolation, structure and conformation, cytotoxic potential, structure–activity studies, mechanism of action, and syntheses. PMID:24945566

  4. Anticancer activities of artemisinin and its bioactive derivatives.

    PubMed

    Firestone, Gary L; Sundar, Shyam N

    2009-01-01

    Artemisinin, a sesquiterpene lactone derived from the sweet wormwood plant Artemisia annua, and its bioactive derivatives exhibit potent anticancer effects in a variety of human cancer cell model systems. The pleiotropic response in cancer cells includes growth inhibition by cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. These effects of artemisinin and its derivatives result from perturbations of many cellular signalling pathways. This review provides a comprehensive discussion of these cellular responses, and considers the ramifications for the potential development of artemisinin-based compounds in anticancer therapeutic and preventative strategies. PMID:19883518

  5. The design, synthesis and anticancer activity of new nitrogen mustard derivatives of natural indole phytoalexin 1-methoxyspirobrassinol.

    PubMed

    Mezencev, R; Kutschy, P; Salayova, A; Updegrove, T; McDonald, J F

    2009-01-01

    Nitrogen mustards cis-1-methoxy-2-deoxy-2-[N,N-bis(2 -chloroethyl)amino]spirobrassinol (4) and trans-1-methoxy-2-deoxy-2-[N,N-bis(2 -chloroethyl)amino]spirobrassinol (5) derived from 1-methoxyspirobrassinol, an indole phytoalexin produced by the Japanese radish Raphanus sativus var. hortensis were designed as prospective dual-action compounds with DNA-alkylating effect and glutathione-depleting effects that may sensitize cancer cells to alkylating agents. Both new compounds demonstrated cytostatic/cytotoxic effects on various leukemia and ovarian cancer cell lines and dsDNA-destabilizing effects in vitro. Compound 4, the more promising of the two compounds, exerts earlier onset of anticancer effects on Jurkat cells via induction of apoptosis compared to the traditional alkylating anticancer agent melphalan. In addition, it demonstrated higher potency on ovarian cancer OVCAR-3 cell line and lower fold resistance between Jurkat and Jurkat-M cells selected for the resistance to melphalan. Therefore, compound 4 may be less affected by certain cancer drug resistance mechanisms than melphalan and it may become a prototype of a new class of anticancer active nitrogen mustards that combine DNA-damaging and DNA-damage-sensitizing properties. PMID:19473057

  6. [Response of Pharmaceutical Companies to the Crisis of Post-Marketing Clinical Trials of Anti-Cancer Agents -- Results of Questionnaires to Pharmaceutical Companies].

    PubMed

    Nakajima, Toshifusa

    2016-04-01

    Investigator-oriented post-marketing clinical trials of anti-cancer agents are faced to financial crisis due to drastic decrease in research-funds from pharmaceutical companies caused by a scandal in 2013. In order to assess the balance of research funds between 2012 and 2014, we made queries to 26 companies manufacturing anti-cancer agents, and only 10 of 26 responded to our queries. Decrease in the fund was observed in 5 of 10, no change in 1, increase in 3 and no answer in 1. Companies showed passive attitude to carry out doctor-oriented clinical trials of off-patent drugs or unapproved drugs according to advanced medical care B program, though some companies answered to proceed approved routines of these drugs if clinical trials showed good results. Most companies declined to make comments on the activity of Japan Agency for Medical Research and Development (AMED), but some insisted to produce good corroboration between AMED and pharmaceutical companies in order to improve the quality of trials. Further corroboration must be necessary for this purpose among researchers, governmental administrative organs, pharmaceutical companies, patients' groups, and mass-media. PMID:27220801

  7. Design, Synthesis and Biological Evaluation of (E)-N-Aryl-2-arylethene-sulfonamide Analogues as Potent and Orally Bioavailable Microtubule-targeted Anticancer Agents

    PubMed Central

    Ramana Reddy, M. V.; Mallireddigari, Muralidhar R.; Pallela, Venkat R.; Cosenza, Stephen C.; Billa, Vinay K.; Akula, Balaiah; Venkata Subbaiah, D. R. C.; Bharathi, E. Vijaya; Padgaonkar, Amol; Lv, Hua; Gallo, James M.; Reddy, E. Premkumar

    2013-01-01

    A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-Amino-4-methoxyphenyl)-2-(2′,4′,6′-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used anti-mitotic agents. Mechanistic studies indicate that 6t and some other analogs disrupted microtubule formation, formation of mitotic spindles and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin indicating its binding site on tubulin. PMID:23750455

  8. Identification of anticancer agents based on the thieno[2,3-b]pyridine and 1H-pyrazole molecular scaffolds.

    PubMed

    Eurtivong, Chatchakorn; Reynisdóttir, Inga; Kuczma, Stephanie; Furkert, Daniel P; Brimble, Margaret A; Reynisson, Jóhannes

    2016-08-15

    Structural similarity search of commercially available analogues of thieno[2,3-b]pyridine and 1H-pyrazole derivatives, known anticancer agents, resulted in 717 hits. These were docked into the phosphoinositide specific-phospholipase C (PLC) binding pocket, the putative target of the compounds, to further focus the selection. Thirteen derivatives of the thieno[2,3-b]pyridines were identified and tested against the NCI60 panel of human tumour cell lines. The most active derivative 1 was most potent against the MDA-MB-435 melanoma cell line with GI50 at 30nM. Also, it was found that a piperidine moiety is tolerated on the thieno[2,3-b]pyridine scaffold with GI50=296nM (MDA-MB-435) for derivative 10 considerably expanding the structure activity relationship for the series. For the 1H-pyrazoles four derivatives were identified using the in silico approach and additionally ten were synthesised with various substituents on the phenyl moiety to extend the structural activity relationship but only modest anticancer activity was found. PMID:27288184

  9. Structural and mechanistic bases of the anticancer activity of natural aporphinoid alkaloids.

    PubMed

    Liu, Yanjuan; Liu, Junxi; Di, Duolong; Li, Min; Fen, Yan

    2013-01-01

    Aporphinoid alkaloids, which encompass a large number of complicated structures, are an important group of natural products. The anticancer activity of aporphinoid alkaloids has become a hot pharmaceutical research area in recent years. Recent studies on the anticancer activity of these compounds are reviewed. The structure activity relationships (SARs) and anticancer mechanisms of aporphinoid alkaloids, as well as simple aporphine, oxoaporphine, dehydroaporphine and dimeric aporphine, have been summarized. The presence of a 1,2-methylenedioxy group and methylation of nitrogen are key features to the cytotoxicity of aporphinoid alkaloids. Oxidation and dehydrogenation of C7 could improve the anticancer activity. The contributions of chirality of hydrogen at C6a and the substitution pattern of other positions about aporphinoid alkaloids for anticancer activity remain unknown. Induced cancer cells apoptosis, prevention of cell proliferation, DNA topoisomerase inhibition, reducing the drug-resistant cellular side population (SP) or cancer stem cells (CSCs) and inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase seem to play important roles in the molecular mechanisms of anticancer activity about aporphinoid alkaloids. PMID:23978138

  10. Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents.

    PubMed

    Taşdemir, Demet; Karaküçük-İyidoğan, Ayşegül; Ulaşli, Mustafa; Taşkin-Tok, Tuğba; Oruç-Emre, Emİne Elçİn; Bayram, Hasan

    2015-02-01

    A series of new chiral thiosemicarbazones derived from homochiral amines in both enantiomeric forms were synthesized and evaluated for their in vitro antiproliferative activity against A549 (human alveolar adenocarcinoma), MCF-7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), and HGC-27 (human stomach carcinoma) cell lines. Some of compounds showed inhibitory activities on the growth of cancer cell lines. Especially, compound exhibited the most potent activity (IC50 4.6 μM) against HGC-27 as compared with the reference compound, sindaxel (IC50 10.3 μM), and could be used as a lead compound to search new chiral thiosemicarbazone derivatives as antiproliferative agents. PMID:25399965

  11. Comparison of the crystal structures of the potent anticancer and anti-angiogenic agent regorafenib and its monohydrate.

    PubMed

    Sun, Meng Ying; Wu, Su Xiang; Zhou, Xin Bo; Gu, Jian Ming; Hu, Xiu Rong

    2016-04-01

    Regorafenib {systematic name: 4-[4-({[4-chloro-3-(trifluoromethy)phenyl]carbamoyl}amino)-3-fluorophenoxy]-1-methylpyridine-2-carboxamide}, C21H15ClF4N4O3, is a potent anticancer and anti-angiogenic agent that possesses various activities on the VEGFR, PDGFR, raf and/or flt-3 kinase signaling molecules. The compound has been crystallized as polymorphic form I and as the monohydrate, C21H15ClF4N4O3·H2O. The regorafenib molecule consists of biarylurea and pyridine-2-carboxamide units linked by an ether group. A comparison of both forms shows that they differ in the relative orientation of the biarylurea and pyridine-2-carboxamide units, due to different rotations around the ether group, as measured by the C-O-C bond angles [119.5 (3)° in regorafenib and 116.10 (15)° in the monohydrate]. Meanwhile, the conformational differences are reflected in different hydrogen-bond networks. Polymorphic form I contains two intermolecular N-H...O hydrogen bonds, which link the regorafenib molecules into an infinite molecular chain along the b axis. In the monohydrate, the presence of the solvent water molecule results in more abundant hydrogen bonds. The water molecules act as donors and acceptors, forming N-H...O and O-H...O hydrogen-bond interactions. Thus, R4(2)(28) ring motifs are formed, which are fused to form continuous spiral ring motifs along the a axis. The (trifluoromethyl)phenyl rings protrude on the outside of these motifs and interdigitate with those of adjacent ring motifs, thereby forming columns populated by halogen atoms. PMID:27045179

  12. Photoactive platinum(ii) β-diketonates as dual action anticancer agents.

    PubMed

    Raza, Md Kausar; Mitra, Koushambi; Shettar, Abhijith; Basu, Uttara; Kondaiah, Paturu; Chakravarty, Akhil R

    2016-08-16

    Platinum(ii) complexes, viz. [Pt(L)(cur)] (1), [Pt(L)(py-acac)] (2) and [Pt(L)(an-acac)] (3), where HL is 4,4'-bis-dimethoxyazobenzene, Hcur is curcumin, Hpy-acac and Han-acac are pyrenyl and anthracenyl appended acetylacetone, were prepared, characterized and their anticancer activities were studied. Complex [Pt(L)(acac)] (4) was used as a control. Complex 1 showed an absorption band at 430 nm (ε = 8.8 × 10(4) M(-1) cm(-1)). The anthracenyl and pyrenyl complexes displayed bands near 390 nm (ε = 3.7 × 10(4) for 3 and 4.4 × 10(4) M(-1) cm(-1) for 2). Complex 1 showed an emission band at 525 nm (Φ = 0.017) in 10% DMSO-DPBS (pH, 7.2), while 2 and 3 were blue emissive (λem = 440 and 435, Φ = 0.058 and 0.045). There was an enhancement in emission intensity on glutathione (GSH) addition indicating diketonate release. The platinum(ii) species thus formed acted as a transcription inhibitor. The released β-diketonate base showed photo-chemotherapeutic activity. The complexes photocleaved plasmid DNA under blue light of 457 nm forming ∼75% nicked circular (NC) DNA with hydroxyl radicals and singlet oxygen as the ROS. Complexes 1-3 were photocytotoxic in skin keratinocyte HaCaT cells giving IC50 of 8-14 μM under visible light (400-700 nm, 10 J cm(-2)), while being non-toxic in the dark (IC50: ∼60 μM). Complex 4 was inactive. Complexes 1-3 generating cellular ROS caused apoptotic cell death under visible light as evidenced from DCFDA and annexin-V/FITC-PI assays. This work presents a novel way to deliver an active platinum(ii) species and a phototoxic β-diketone species to the cancer cells. PMID:27488950

  13. Design, Synthesis and Biological Evaluation of Novel Bromophenol Derivatives Incorporating Indolin-2-One Moiety as Potential Anticancer Agents

    PubMed Central

    Wang, Li-Jun; Wang, Shuai-Yu; Jiang, Bo; Wu, Ning; Li, Xiang-Qian; Wang, Bao-Cheng; Luo, Jiao; Yang, Meng; Jin, Shui-Hua; Shi, Da-Yong

    2015-01-01

    A series of bromophenol derivatives containing indolin-2-one moiety were designed and evaluated that for their anticancer activities against A549, Bel7402, HepG2, HeLa and HCT116 cancer cell lines using MTT assay in vitro. Among them, seven compounds (4g–4i, 5h, 6d, 7a, 7b) showed potent activity against the tested five human cancer cell lines. Wound-healing assay demonstrated that compound 4g can be used as a potent compound for inactivating invasion and metastasis by inhibiting the migration of cancer cells. The structure–activity relationships (SARs) of bromophenol derivatives had been discussed, which were useful for exploring and developing bromophenol derivatives as novel anticancer drugs. PMID:25648512

  14. Flavopiridol: pleiotropic biological effects enhance its anti-cancer activity.

    PubMed

    Newcomb, Elizabeth W

    2004-06-01

    Flavopiridol has potent anti-proliferative properties due to its direct action of binding to the ATP-binding pocket of cyclin-dependent kinases (cdks), and due to its indirect action reducing levels of other cyclins and cdk inhibitors, contributing to its pleiotropic effects. Flavopiridol is a potent apoptotic agent due to its ability to cause cell death in cycling as well as non-cycling tumor cells; to down-regulate important cell survival proteins, such as survivin, through inhibition of the phosphorylation of Thr34; to increase sensitivity for S phase cells to drug treatment by modulating E2F-1 transcription factor activity in tumor cells; to induce both caspase-dependent and -independent mitochondrial cell death pathways; and to inhibit the activation of p-Akt which in turn inhibits activation of NF-kappaB. Flavopiridol possesses several important anti-angiogenic activities including induction of apoptosis of endothelial cells; inhibition of the hypoxic induction of vascular endothelial growth factor and/or its production under hypoxic conditions through inhibition of HIF-1alpha transcription; and decreased secretion of matrix metalloproteinases that is linked with significant inhibition of invasive potential in Matrigel assays. Taken together, the anti-proliferative and anti-angiogenic properties of flavopiridol may contribute to its anti-tumor activities observed in several preclinical animal models of human cancers including prostate, lymphoid, head and neck, colon, and glioma. These promising preclinical observations opened the way for phase I and II clinical trials. Given the low toxicity profile of flavopiridol used as a single agent in patients, combination therapy now offers numerous opportunities in the near future to improve the efficacy of flavopiridol in the treatment of refractory cancers. PMID:15166614

  15. Docking studies, synthesis, characterization of some novel oxazine substituted 9-anilinoacridine derivatives and evaluation for their antioxidant and anticancer activities as topoisomerase II inhibitors.

    PubMed

    Kalirajan, R; Kulshrestha, Vivek; Sankar, S; Jubie, S

    2012-10-01

    A series of 9-anilinoacridines substituted with oxazine derivatives were synthesized to evaluate their antioxidant and anticancer activity against Daltons Lymphoma Ascites (DLA) cell growth by in vitro method. It was revealed that these conjugates exhibited significant antioxidant and anticancer activity (inhibition of DLA cell proliferation). Among these agents, compounds 5a, 5h, 5i, 5j were the most cytotoxic with CTC(50) value of 140-250 μg/mL. The docking studies of the synthesized compounds were performed towards the key Topoisomerase II (1QZR) by using Schrodinger Maestro 9.2 version. The oxazine substituted 9-anilinoacridine derivatives 5a, 5h, 5i, 5j have significant anticancer activity as topoisomerase II inhibitors. PMID:22982526

  16. Synthesis and Anticancer Activity of N-Aryl-5-substituted-1,3,4-oxadiazol-2-amine Analogues

    PubMed Central

    Ahsan, Mohamed Jawed; Sharma, Jyotika; Singh, Monika; Jadav, Surender Singh; Yasmin, Sabina

    2014-01-01

    In continuance of our search for anticancer agents, we report herein the synthesis and anticancer activity of some novel oxadiazole analogues. The compounds were screened for anticancer activity as per National Cancer Institute (NCI US) protocol on leukemia, melanoma, lung, colon, CNS, ovarian, renal, prostate, and breast cancers cell lines. N-(2,4-Dimethylphenyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-amine (4s) showed maximum activity with mean growth percent (GP) of 62.61 and was found to be the most sensitive on MDA-MB-435 (melanoma), K-562 (leukemia), T-47D (breast cancer), and HCT-15 (colon cancer) cell lines with GP of 15.43, 18.22, 34.27, and 39.77, respectively. Maximum GP was observed on MDA-MB-435 (melanoma) cell line (GP = 6.82) by compound N-(2,4-dimethylphenyl)-5-(4-hydroxyphenyl)-1,3,4-oxadiazol-2-amine (4u). PMID:24977160

  17. The Comparison of Anticancer Activity of Thymoquinone and Nanothymoquinone on Human Breast Adenocarcinoma

    PubMed Central

    Dehghani, Hossein; Hashemi, Mehrdad; Entezari, Maliheh; Mohsenifar, Afshin

    2015-01-01

    Cancer is one of the main causes of mortality in the world which is created by the effect of enviromental physico-chemical mutagen and carcinogen agents. The identification of new cytotoxic drugs with low side effects on immune system has developed as important area in new studies of pharmacology. Thymoquinone (TQ), derived from the medicinal spice Nigella sativa (also calledt black cumin) exhibit anti-inflammatory and anti-cancer activities. In this study we employed nanogel-based nanoparticle approach to improve upon its effectiveness. Myristic acid-chitosan (MA-chitosan) nanogels were prepared by the technique of self-assembly. Thymoquinone was loaded into the nanogels. The surface morphology of the prepared nanoparticles was determined using SEM and TEM. The other objective of this study was to examine the in-vitro cytotoxic activity of cell death of Thymoquinone and nanothymoquinone on human breast adenocarcinoma cell line (MCF7). Cytotoxicity and viability of Thymoquinone and nanothymoquinone were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. Transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. Proliferation of MCF7 cells was significantly inhibited by Thymoquinone and nanothymoquinone in a concentration-dependent manner in defined times. There were significant differences in IC50 Thymoquinone and nanothymoquinone. TQ-loaded nanoparticles proved more effective compared to TQ solution. The high drug-targeting potential and efficiency demonstrates the significant role of the anticancer properties of TQ-loaded nanoparticles. PMID:25901162

  18. The comparison of anticancer activity of thymoquinone and nanothymoquinone on human breast adenocarcinoma.

    PubMed

    Dehghani, Hossein; Hashemi, Mehrdad; Entezari, Maliheh; Mohsenifar, Afshin

    2015-01-01

    Cancer is one of the main causes of mortality in the world which is created by the effect of enviromental physico-chemical mutagen and carcinogen agents. The identification of new cytotoxic drugs with low side effects on immune system has developed as important area in new studies of pharmacology. Thymoquinone (TQ), derived from the medicinal spice Nigella sativa (also calledt black cumin) exhibit anti-inflammatory and anti-cancer activities. In this study we employed nanogel-based nanoparticle approach to improve upon its effectiveness. Myristic acid-chitosan (MA-chitosan) nanogels were prepared by the technique of self-assembly. Thymoquinone was loaded into the nanogels. The surface morphology of the prepared nanoparticles was determined using SEM and TEM. The other objective of this study was to examine the in-vitro cytotoxic activity of cell death of Thymoquinone and nanothymoquinone on human breast adenocarcinoma cell line (MCF7). Cytotoxicity and viability of Thymoquinone and nanothymoquinone were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. Transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. Proliferation of MCF7 cells was significantly inhibited by Thymoquinone and nanothymoquinone in a concentration-dependent manner in defined times. There were significant differences in IC50 Thymoquinone and nanothymoquinone. TQ-loaded nanoparticles proved more effective compared to TQ solution. The high drug-targeting potential and efficiency demonstrates the significant role of the anticancer properties of TQ-loaded nanoparticles. PMID:25901162

  19. Novel hederagenin-triazolyl derivatives as potential anti-cancer agents.

    PubMed

    Rodríguez-Hernández, Diego; Demuner, Antonio J; Barbosa, Luiz C A; Heller, Lucie; Csuk, René

    2016-06-10

    A series of novel aryl-1H-1,2,3-triazol-4-yl methylester and amide derivatives of the natural product hederagenin was synthesized aiming to develop new antitumor agents, using Huisgen 1,3-dipolar cycloaddition reactions, with yields between 35% and 95%. The structures of all derivatives (2-31) were confirmed by MS, IR, (1)H NMR and (13)C NMR spectroscopic data. The cytotoxic activities of all compounds were screened against a panel of six human cancer cell lines using SRB assay. It was found that most of the compounds displayed higher levels of antitumor activities as compared to parent hederagenin. Compounds 4, 8 and 15 were the most potent against all human cancer cell lines. Furthermore, compound 11 was the most cytotoxic against cell HT29 showing EC50 = 1.6 μM and a selectivity index of 5.4. PMID:27017553

  20. Metabolic disposition of the anti-cancer agent [(14)C]laromustine in male rats.

    PubMed

    Nassar, Ala F; Wisnewski, Adam; King, Ivan

    2015-01-01

    1. Laromustine (VNP40101M, also known as Cloretazine) is a novel sulfonylhydrazine alkylating (anticancer) agent. This article describes the use of quantitative whole-body autoradiography (QWBA) and mass balance to study the tissue distribution, the excretion mass balance and pharmacokinetics after intravenous administration of [(14)C]VNP40101M to rats. A single 10 mg/kg IV bolus dose of [(14)C]VNP40101M was given to rats. 2. The recovery of radioactivity from the Group 1 animals over a 7-day period was an average of 92.1% of the administered dose, which was accounted for in the excreta and carcass. Most of the radioactivity was eliminated within 48 h via urine (48%), with less excreted in feces (5%) and expired air accounted for (11%). The plasma half-life of [(14)C]laromustine was approximately 62 min and the peak plasma concentration (Cmax) averaged 8.3 μg/mL. 3. The QWBA study indicated that the drug-derived radioactivity was widely distributed to tissues through 7 days post-dose after a single 10 mg/kg IV bolus dose of [(14)C]VNP40101M to male pigmented Long-Evans rats. The maximum concentrations were observed at 0.5 or 1 h post-dose for majority tissues (28 of 42). The highest concentrations of radioactivity were found in the small intestine contents at 0.5 h (112.137 µg equiv/g), urinary bladder contents at 3 h (89.636 µg equiv/g) and probably reflect excretion of drug and metabolites. The highest concentrations in specific organs were found in the renal cortex at 1 h (28.582 µg equiv/g), small intestine at 3 h (16.946 µg equiv/g), Harderian gland at 3 h (12.332 µg equiv/g) and pancreas at 3 h (12.635 µg equiv/g). Concentrations in the cerebrum (1.978 µg equiv/g), cerebellum (2.109 µg equiv/g), medulla (1.797 µg equiv/g) and spinal cord (1.510 µg equiv/g) were maximal at 0.5 h post-dose and persisted for 7 days. 4. The predicted total body and target organ exposures for humans given a single

  1. Biochemical characterization and molecular dynamic simulation of β-sitosterol as a tubulin-binding anticancer agent.

    PubMed

    Mahaddalkar, Tejashree; Suri, Charu; Naik, Pradeep Kumar; Lopus, Manu

    2015-08-01

    Βeta-sitosterol (β-SITO), a phytosterol present in pomegranate, peanut, corn oil, almond, and avocado, has been recognized to offer health benefits and potential clinical uses. β-SITO is orally bioavailable and, as a constituent of edible natural products, is considered to have no undesired side effects. It has also been considered as a potent anticancer agent. However, the molecular mechanism of action of β-SITO as a tubulin-binding anticancer agent and its binding site on tubulin are poorly understood. Using a combination of biochemical analyses and molecular dynamic simulation, we investigated the molecular details of the binding interactions of β-SITO with tubulin. A polymer mass assay comparing the effects of β-SITO and of taxol and vinblastine on tubulin assembly showed that this phytosterol stabilized microtubule assembly in a manner similar to taxol. An 8-anilino-1-naphthalenesulfonic acid assay confirmed the direct interaction of β-SITO with tubulin. Although β-SITO did not show direct binding to the colchicine site on tubulin, it stabilized the colchicine binding. Interestingly, no sulfhydryl groups of tubulin were involved in the binding interaction of β-SITO with tubulin. Based on the results from the biochemical assays, we computationally modeled the binding of β-SITO with tubulin. Using molecular docking followed by molecular dynamic simulations, we found that β-SITO binds tubulin at a novel site (which we call the 'SITO site') adjacent to the colchicine and noscapine sites. Our data suggest that β-SITO is a potent anticancer compound that interferes with microtubule assembly dynamics by binding to a novel site on tubulin. PMID:25912799

  2. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity.

    PubMed

    Gupta, Deepa; Jain, D K

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent. PMID:26317075

  3. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

    PubMed

    Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella

    2013-12-01

    Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications. PMID:24099646

  4. Synthesis and anti-cancer screening of novel heterocyclic-(2H)-1,2,3-triazoles as potential anti-cancer agents

    PubMed Central

    Penthala, Narsimha Reddy; Madhukuri, Leena; Thakkar, Shraddha; Madadi, Nikhil Reddy; Lamture, Gauri; Eoff, Robert L.; Crooks, Peter A.

    2015-01-01

    trans-Cyanocombretastatin A-4 (trans-CA-4) analogues have been structurally modified to afford their more stable CA-4-(2H)-1,2,3-triazole analogues. Fifteen novel, stable 4-heteroaryl-5-aryl-(2H)-1,2,3-triazole CA-4 analogues (8a–i, 9 and 11a–e) were evaluated for anti-cancer activity against a panel of 60 human cancer cell lines. These analogues displayed potent cytotoxic activity against both hematological and solid tumor cell lines with GI50 values in the low nanomolar range. The most potent compound, 8a, was a benzothiophen-2-yl analogue that incorporated a 3,4,5-trimethoxyphenyl moiety connected to the (2H)-1,2,3-triazole ring system. Compound 8a exhibited GI50 values of <10 nM against 80% of the cancer cell lines in the panel. Three triazole analogues, 8a, 8b and 8g, showed particularly potent growth inhibition against the triple negative Hs578T breast cancer cell line with GI50 values of 10.3 nM, 66.5 nM and 20.3 nM, respectively. Molecular docking studies suggest that these compounds bind to the same hydrophobic pocket at the interface of α- and β-tubulin that is occupied by colchicine and cis-CA-4, and are stabilized by Van der Waals’ interactions with surrounding amino acid residues. Compound 8a was found to inhibit tubulin polymerization in vitro with an IC50 value of 1.7 µM. The potent cytotoxicity of these novel compounds and their inhibition of tubulin dynamics make these triazole analogues promising candidates for development as anti-cancer drugs. PMID:27066215

  5. Amide Coupling Reaction for the Synthesis of Bispyridine-based Ligands and Their Complexation to Platinum as Dinuclear Anticancer Agents

    PubMed Central

    Apps, Michael G.; Johnson, Ben W.; Sutcliffe, Oliver B.; Brown, Sarah D.; Wheate, Nial J.

    2014-01-01

    Amide coupling reactions can be used to synthesize bispyridine-based ligands for use as bridging linkers in multinuclear platinum anticancer drugs. Isonicotinic acid, or its derivatives, are coupled to variable length diaminoalkane chains under an inert atmosphere in anhydrous DMF or DMSO with the use of a weak base, triethylamine, and a coupling agent, 1-propylphosphonic anhydride. The products precipitate from solution upon formation or can be precipitated by the addition of water. If desired, the ligands can be further purified by recrystallization from hot water. Dinuclear platinum complex synthesis using the bispyridine ligands is done in hot water using transplatin. The most informative of the chemical characterization techniques to determine the structure and gross purity of both the bispyridine ligands and the final platinum complexes is 1H NMR with particular analysis of the aromatic region of the spectra (7-9 ppm). The platinum complexes have potential application as anticancer agents and the synthesis method can be modified to produce trinuclear and other multinuclear complexes with different hydrogen bonding functionality in the bridging ligand. PMID:24893964

  6. Photophysical characterization of anticancer drug valrubicin in rHDL nanoparticles and its use as an imaging agent.

    PubMed

    Shah, Sunil; Chib, Rahul; Raut, Sangram; Bermudez, Jaclyn; Sabnis, Nirupama; Duggal, Divya; Kimball, Joseph D; Lacko, Andras G; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2016-02-01

    Nanoparticles are target-specific drug delivery agents that are increasingly used in cancer therapy to enhance bioavailability and to reduce off target toxicity of anti-cancer agents. Valrubicin is an anti-cancer drug, currently approved only for vesicular bladder cancer treatment because of its poor water solubility. On the other hand, valrubicin carrying reconstituted high density lipoprotein (rHDL) nanoparticles appear ideally suited for extended applications, including systemic cancer chemotherapy. We determined selected fluorescence properties of the free (unencapsulated) drug vs. valrubicin incorporated into rHDL nanoparticles. We have found that upon encapsulation into rHDL nanoparticles the quantum yield of valrubicin fluorescence increased six fold while its fluorescence lifetime increased about 2 fold. Accordingly, these and potassium iodide (KI) quenching data suggest that upon incorporation, valrubicin is localized deep in the interior of the nanoparticle, inside the lipid matrix. Fluorescence anisotropy of the rHDL valrubicin nanoparticles was also found to be high along with extended rotational correlation time. The fluorescence of valrubicin could also be utilized to assess its distribution upon delivery to prostate cancer (PC3) cells. Overall the fluorescence properties of the rHDL: valrubicin complex reveal valuable novel characteristics of this drug delivery vehicle that may be particularly applicable when used in systemic (intravenous) therapy. PMID:26735001

  7. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents.

    PubMed

    Chen, Jia-Nian; Wang, Xian-Fu; Li, Ting; Wu, De-Wen; Fu, Xiao-Bo; Zhang, Guang-Ji; Shen, Xing-Can; Wang, Heng-Shan

    2016-01-01

    Through a structure-based molecular hybridization approach, a series of novel quinazolinyl-diaryl urea derivatives were designed, synthesized, and screened for their in vitro antiproliferative activities against three cancer cell lines (HepG2, MGC-803, and A549). Six compounds (7 g, 7 m, 7 o, 8 e, 8 g, and 8 m) showed stronger activity against a certain cell line compared with the positive reference drugs sorafenib and gefitinib. Among the six compounds, 8 g exhibited the strongest activity. In particular, compound 8 g induced A549 apoptosis, arrested cell cycle at the G0/G1 phase, elevated intracellular reactive oxygen species level, and decreased mitochondrial membrane potential. This compound can also effectively regulate the expression of apoptosis- and cell cycle-related proteins, and influence the Raf/MEK/ERK pathway. Molecular docking and structure-activity relationship analyses revealed that it can bind well to the active site of the receptor c-Raf, which was consistent with the biological data. Therefore, compound 8 g may be a potent antitumor agent, representing a promising lead for further optimization. PMID:26560049

  8. Synthesis of Rapamycin Derivatives Containing the Triazole Moiety Used as Potential mTOR-Targeted Anticancer Agents.

    PubMed

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-06-01

    Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers. PMID:27150260

  9. Design, Synthesis and Evaluation of Dibenzo[c,h][1,6]naphthyridines as Topoisomerase I Inhibitors and Potential Anticancer Agents

    PubMed Central

    Kiselev, Evgeny; Dexheimer, Thomas; Pommier, Yves; Cushman, Mark

    2010-01-01

    Indenoisoquinoline topoisomerase I (Top1) inhibitors are a novel class of anticancer agents. Modifications of the indenoisoquinoline A, B and D rings have been extensively studied in order to optimize Top1 inhibitory activity and cytotoxicity. To improve understanding of the forces that stabilize drug-Top1-DNA ternary complexes, the five-membered cyclopentadienone C-ring of the indenoisoquinoline system was replaced by six-membered nitrogen heterocyclic rings, resulting in dibenzo[c,h][1,6]naphthyridines that were synthesized by a novel route and tested for Top1 inhibition. This resulted in several compounds that have unique DNA cleavage site selectivities and potent antitumor activities in a number of cancer cell lines. PMID:21090809

  10. Repurposing drugs in oncology (ReDO)—cimetidine as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vidula; Sukhatme, Vikas P

    2014-01-01

    Cimetidine, the first H2 receptor antagonist in widespread clinical use, has anti-cancer properties that have been elucidated in a broad range of pre-clinical and clinical studies for a number of different cancer types. These data are summarised and discussed in relation to a number of distinct mechanisms of action. Based on the evidence presented, it is proposed that cimetidine would synergise with a range of other drugs, including existing chemotherapeutics, and that further exploration of the potential of cimetidine as an anti-cancer therapeutic is warranted. Furthermore, there is compelling evidence that cimetidine administration during the peri-operative period may provide a survival benefit in some cancers. A number of possible combinations with other drugs are discussed in the supplementary material accompanying this paper. PMID:25525463

  11. Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities.

    PubMed

    Kumar, Ankit; Kumar Singh, Umesh; Chaudhary, Anurag

    2013-05-01

    Honokiol (3,5-di-(2-propenyl)-1,1-biphenyl-2,2-diol) is a natural bioactive neolignan isolated from the genus Magnolia. In recent studies, honokiol has been observed to have anti-angiogenic, anticancer, anti-inflammatory, neuroprotective and GABA-modulating properties in vitro and in preclinical models. Honokiol and its analogs target multiple signaling pathways including NF-κB, STAT3, EGFR, mTOR and caspase-mediated common pathway, which regulate cancer initiation and progression. Honokiol and its targets of action may be helpful in the development of effective analogs and targeted cancer therapy. In this review, recent data describing the molecular targets of honokiol and its analogs with anticancer and some other bioactivities are discussed. PMID:23651094

  12. N-Phenyl-2-p-tolylthiazole-4-carboxamide derivatives: Synthesis and cytotoxicity evaluation as anticancer agents

    PubMed Central

    Mohammadi-Farani, Ahmad; Foroumadi, Alireza; Kashani, Monireh Rezvani; Aliabadi, Alireza

    2014-01-01

    Objective(s): According to the prevalence of neoplastic diseases, there is a deep necessity for discovery of novel anticancer drugs in the field of medicinal chemistry. In the current study, a new series of phenylthiazole derivatives (compounds 4a-4f) was synthesized and their anticancer activity was assessed in vitro. Materials and Methods: All synthesized derivatives were evaluated towards three human cancerous cell lines of SKNMC (Neuroblastoma), Hep-G2 (Human hepatocarcinoma) and MCF-7 cell (Breast cancer) using MTT assay and obtained values (IC50 ± SD) were compared with doxorubicin. Results: Unfortunately, none of the synthesized compounds showed superior activity than doxorubicin against cancerous cell lines. MCF-7 cell line was the most resistant cell line against tested compounds. Compounds 4c with para nitro (IC50 = 10.8 ± 0.08 µM) and 4d with meta chlorine (IC50 = 11.6 ± 0.12 µM) moieties exerted the highest cytotoxic effects towards SKNMC and Hep-G2 cell lines respectively. Conclusion: A new series of phenylthiazole derivatives were synthesized and their anticancer activity was assessed against cancerous cell lines. More structural modifications and derivatization is necessary to achieve to the more potent compounds. PMID:25429341

  13. Ferns and lycopods--a potential treasury of anticancer agents but also a carcinogenic hazard.

    PubMed

    Tomšík, Pavel

    2014-06-01

    Many species of seedless vascular plants-ferns and lycopods-have been used as food and folk medicine since ancient times. Some of them have become the focus of intensive research concerning their anticancer properties. Studies on the anticancer effect of crude extracts are being increasingly replaced by bioactivity-guided fractionation, as well as detailed assessment of the mechanism of action. Numerous compounds-especially flavonoids such as amentoflavone and protoapigenone, and also simpler phenolic compounds, steroids, alkaloids and terpenoids-were isolated and found to be cytotoxic, particularly pro-apoptotic, or to induce cell cycle arrest in cancer cell lines in vitro. In in vivo experiments, some fern-derived compounds inhibited tumour growth with little toxicity. On the other hand, many ferns-not only the well-known Bracken (Pteridium)-may pose a significant hazard to human health due to the fact that they contain carcinogenic sesquiterpenoids and their analogues. The objective of this review is to summarise the recent state of research on the anticancer properties of ferns and lycopods, with a focus on their characteristic bioactive constituents. The carcinogenic hazard posed by ferns is also mentioned. PMID:24123573

  14. Scaffold-hopping of bioactive flavonoids: Discovery of aryl-pyridopyrimidinones as potent anticancer agents that inhibit catalytic role of topoisomerase IIα.

    PubMed

    Priyadarshani, Garima; Amrutkar, Suyog; Nayak, Anmada; Banerjee, Uttam C; Kundu, Chanakya N; Guchhait, Sankar K

    2016-10-21

    A strategy of scaffold-hopping of bioactive natural products, flavones and isoflavones, leading to target-based discovery of potent anticancer agents has been reported for the first time. Scaffold-hopped flavones, 2-aryl-4H-pyrido[1,2-a]pyrimidin-4-ones and the scaffold-hopped isoflavones, 3-aryl-pyrido[1,2-a]pyrimidin-4-ones were synthesized via Pd-catalyzed activation-arylation methods. Most of the compounds were found to exhibit pronounced human topoisomerase IIα (hTopoIIα) inhibitory activities and several compounds were found to be more potent than etoposide (a hTopoIIα-inhibiting anticancer drug). These classes of compounds were found to be hTopoIIα-selective catalytic inhibitors while not interfering with topoisomerase I and interacted with DNA plausibly in groove domain. Cytotoxicities against various cancer cells, low toxicity in normal cells, and apoptotic effects were observed. Interestingly, compared to parent flavones/isoflavones, their scaffold-hopped analogs bearing alike functionalities showed significant/enhanced hTopoIIα-inhibitory and cytotoxic properties, indicating the importance of a natural product-based scaffold-hopping strategy in the drug discovery. PMID:27343852

  15. Synthesis, biological evaluation, drug-likeness, and in silico screening of novel benzylidene-hydrazone analogues as small molecule anticancer agents.

    PubMed

    Alam, Mohammad Sayed; Lee, Dong-Ung

    2016-02-01

    A series of fifteen benzylidene-hydrazone analogues (3a-o), including eight new compounds, were synthesized and evaluated for their cytotoxic activities in four human cancer cell lines and for their antioxidant activities using DPPH. Of the tested compounds 3e, which possesses two methoxy substituents in its benzylidene phenyl ring, was found to be potently cytotoxic to all cancer cell lines tested with IC50 values of 0.12 (lung), 0.024 (ovarian), 0.097 (melanoma), and 0.05 μM (colon), and these IC50 values were comparable to those of the doxorubicin standard (IC50 = 0.021, 0.074, 0.001, and 0.872 μM, respectively). DPPH assay showed compounds 3f, 3i, and 3g had IC50 values of 0.60, 0.99, and 1.30 μM, respectively, which were comparable to that of ascorbic acid (IC50 = 0.87 μM). Computational parameters such as, drug-likeness, ADME properties, toxicity effects, and drug scores were evaluated, and none of the fifteen compounds violated Lipinski's rule of five or Veber's rule, and thus they demonstrated good drug-likeness properties. In addition, all fifteen compounds had a higher drug score than the doxorubicin and BIBR1532. In silico screening was also conducted by docking of the active compounds on the active site of telomerase reverse transcriptase catalytic subunit, an important therapeutic target of anticancer agents, to determine the probable binding properties. The total binding energies of docked compounds are correlated well with cytotoxic potencies (pIC50) against lung, ovarian, melanoma, and colon cancer cell lines indicating that the benzylidene-hydrazones could use for the development of new anticancer agents as a telomerase inhibitor. PMID:26694484

  16. Psoralea glandulosa as a Potential Source of Anticancer Agents for Melanoma Treatment

    PubMed Central

    Madrid, Alejandro; Cardile, Venera; González, César; Montenegro, Ivan; Villena, Joan; Caggia, Silvia; Graziano, Adriana; Russo, Alessandra

    2015-01-01

    With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1), 3-hydroxy-bakuchiol (2) and 12-hydroxy-iso-bakuchiol (3)) against melanoma cells (A2058). In addition, the effect in cancer cells of bakuchiol acetate (4), a semi-synthetic derivative of bakuchiol, was examined. The results obtained show that the resinous exudate inhibited the growth of cancer cells with IC50 value of 10.5 μg/mL after 48 h of treatment, while, for pure compounds, the most active was the semi-synthetic compound 4. Our data also demonstrate that resin is able to induce apoptotic cell death, which could be related to an overall action of the meroterpenes present. In addition, our data seem to indicate that the apoptosis correlated to the tested products appears, at least in part, to be associated with an increase of reactive oxygen species (ROS) production. In summary, our study provides the first evidence that P. glandulosa may be considered a source of useful molecules in the development of analogues with more potent efficacy against melanoma cells. PMID:25860949

  17. Anticancer activity of 7,8-dihydroxyflavone in melanoma cells via downregulation of α-MSH/cAMP/MITF pathway.

    PubMed

    Sim, Deok Yong; Sohng, Jae Kyung; Jung, Hye Jin

    2016-07-01

    Malignant melanoma is one of the most aggressive skin cancer and highly resistant to most conventional treatment. In the present study, we aimed to investigate the anticancer effects and mechanisms of action of 7,8-dihydroxyflavone (7,8-DHF), a monophenolic flavone, in melanoma cells. At concentrations not exhibiting cytotoxicity, 7,8-DHF potently inhibited growth and clonogenic survival of alpha-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells. Furthermore, it significantly blocked migration and invasion of the metastatic melanoma cells. We also observed that 7,8-DHF exhibits anti-melanogenic activity through inhibition of tyrosinase activity in α-MSH-stimulating condition. Notably, the suppressive activities of 7,8-DHF on melanoma progression were associated with the downregulation of microphthalmia-associated transcription factor (MITF) and its main downstream transcription targets, including hypoxia-inducible factor 1α (HIF1α) and c-MET, by a decrease in cyclic adenosine monophosphate (cAMP) level. In addition, combination treatment with 7,8-DHF and resveratrol, a known therapeutic agent against melanoma, had greater anticancer activities and MITF inhibition than treatment with each single agent in α-MSH-treated B16F10 cells. Collectively, these findings may contribute to the potential application of 7,8-DHF in the prevention and treatment of malignant melanoma. PMID:27220989

  18. Vitamin E succinate-conjugated F68 micelles for mitoxantrone delivery in enhancing anticancer activity

    PubMed Central

    Liu, Yuling; Xu, Yingqi; Wu, Minghui; Fan, Lijiao; He, Chengwei; Wan, Jian-Bo; Li, Peng; Chen, Meiwan; Li, Hui

    2016-01-01

    Mitoxantrone (MIT) is a chemotherapeutic agent with promising anticancer efficacy. In this study, Pluronic F68-vitamine E succinate (F68-VES) amphiphilic polymer micelles were developed for delivering MIT and enhancing its anticancer activity. MIT-loaded F68–VES (F68–VES/MIT) micelles were prepared via the solvent evaporation method with self-assembly under aqueous conditions. F68–VES/MIT micelles were found to be of optimal particle size with the narrow size distribution. Transmission electron microscopy images of F68–VES/MIT micelles showed homogeneous spherical shapes and smooth surfaces. F68–VES micelles had a low critical micelle concentration value of 3.311 mg/L, as well as high encapsulation efficiency and drug loading. Moreover, F68–VES/MIT micelles were stable in the presence of fetal bovine serum for 24 hours and maintained sustained drug release in vitro. Remarkably, the half maximal inhibitory concentration (IC50) value of F68–VES/MIT micelles was lower than that of free MIT in both MDA-MB-231 and MCF-7 cells (two human breast cancer cell lines). In addition, compared with free MIT, there was an increased trend of apoptosis and cellular uptake of F68–VES/MIT micelles in MDA-MB-231 cells. Taken together, these results indicated that F68–VES polymer micelles were able to effectively deliver MIT and largely improve its potency in cancer therapy. PMID:27471384

  19. Molecular Dynamics Guided Receptor Independent 4D QSAR Studies of Substituted Coumarins as Anticancer Agents.

    PubMed

    Patil, Rajesh; Sawant, Sanjay

    2015-01-01

    The search for newer cytotoxic agents has taken many paths in the recent years and in fact some of these efforts led to the discovery of some potent cytotoxic agents. Though the vast number of targets of tumor progression has been identified recently, kinases remained key targets in drug design. It is well established that inhibition of JNK1, a serine/threonine protein kinase delays tumor formation. Poly hydroxylated chromenone analog, quescetagetin, inhibits JNK1. As a part of design of coumarin based JNK1 inhibitors, docking studies and 4D QSAR studies were carried out. 3- pyrazolyl substituted coumarin derivatives were chosen for these studies. Docking studies revealed that 3-pyrazolyl substituted coumarins make key interactions with residues at active site of JNK1. In order to investigate the structural features required in these inhibitors, 4D QSAR studies using LQTAgrid module were carried out. The 4D QSAR model built with PLS regression on the matrix of variables specific for interaction energies at each grid point around the molecular dynamics generated conformations of individual compounds shows good predictive abilities. The squared correlation coefficient, R(2) for the model is 0.785, R(2) cross-validated (Q(2)) is 0.698, R(2) predicted is 0.701. Most of the descriptors contributing to 4D QSAR model are Coulombic potential energy based descriptors which highlight the importance of specific atoms in coumarin derivatives in generating these electrostatic potential at specific grid points with the -NH3 probe. We rationalize that solvent accessible van der Waals surface area around such compounds is good measure of this Coulombic potential energy and can be exploited in designing more active compounds. PMID:26081557

  20. From COX-2 inhibitor nimesulide to potent anti-cancer agent: synthesis, in vitro, in vivo and pharmacokinetic evaluation

    PubMed Central

    Chennamaneni, Snigdha; Yi, Xin; Liu, lili; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2014-01-01

    Cyclooxygenase-2 (COX-2) inhibitor nimesulide inhibits the proliferation of various types of cancer cells mainly via COX-2 independent mechanisms, which makes it a good lead compound for anti-cancer drug development. In the presented study, a series of new nimesulide analogs were synthesized based on the structure–function analysis generated previously. Some of them displayed very potent anti-cancer activity with IC50s around 100nM to 200nM to inhibit SKBR-3 breast cancer cell growth. CSUOH0901 (NSC751382) from the compound library also inhibits the growth of the 60 cancer cell lines used at National Cancer Institute Developmental therapeutics Program (NCIDTP) with IC50s around 100nM to 500nM. Intraperitoneal injection with a dosage of 5mg/kg/d of CSUOH0901 to nude mice suppresses HT29 colorectal xenograft growth. Pharmacokinetic studies demonstrate the good bioavailability of the compound. PMID:22119125

  1. Anticancer activity of Cyathula prostrata (Linn) Blume against Dalton's lymphomae in mice model.

    PubMed

    Mayakrishnan, Vijayakumar; Kannappan, Priya; Shanmugasundaram, Krishnakumari; Abdullah, Noorlidah

    2014-11-01

    Cyathula prostrata (Linn) Blume herbs are commonly used for the treatment of inflammatory and pain in Nigeria. The objective of the present study was to assess the antitumor and antioxidant activity of Cyathula prostrata (Linn) Blume in mice model. The treatment of Dalton's lymphoma ascites cells induced tumor by the methanolic extract of Cyathula prostrata was determined at concentration of 100 mg/ kg body weight given orally for 11 days, antitumor activity was assessed by monitoring the mean survival time, body weight, effect on hematological parameters, antioxidant enzyme levels and histopathological evidence. The results showed that the methanolic extract of Cyathula prostrata increased the survival period of animals, decreased the body weight and also altered many hematological markers and also restored the antioxidant enzymes when compared to the mice of the DLA control group. These findings indicate that the methanolic extract of C. prostrata has anti-tumor activity by preventing the lipid peroxidation and thereby promoting the antioxidant systems in Dalton's lymphoma ascites induced mice. So, these extract could be a natural anticancer agent for human health. PMID:25362615

  2. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  3. A translational study "case report" on the small molecule "energy blocker" 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside.

    PubMed

    Ko, Y H; Verhoeven, H A; Lee, M J; Corbin, D J; Vogl, T J; Pedersen, P L

    2012-02-01

    The small alkylating molecule, 3-bromopyruvate (3BP), is a potent and specific anticancer agent. 3BP is different in its action from most currently available chemo-drugs. Thus, 3BP targets cancer cells' energy metabolism, both its high glycolysis ("Warburg Effect") and mitochondrial oxidative phosphorylation. This inhibits/ blocks total energy production leading to a depletion of energy reserves. Moreover, 3BP as an "Energy Blocker", is very rapid in killing such cells. This is in sharp contrast to most commonly used anticancer agents that usually take longer to show a noticeable effect. In addition, 3BP at its effective concentrations that kill cancer cells has little or no effect on normal cells. Therefore, 3BP can be considered a member, perhaps one of the first, of a new class of anticancer agents. Following 3BP's discovery as a novel anticancer agent in vitro in the Year 2000 (Published in Ko et al. Can Lett 173:83-91, 2001), and also as a highly effective and rapid anticancer agent in vivo shortly thereafter (Ko et al. Biochem Biophys Res Commun 324:269-275, 2004), its efficacy as a potent anticancer agent in humans was demonstrated. Here, based on translational research, we report results of a case study in a young adult cancer patient with fibrolamellar hepatocellular carcinoma. Thus, a bench side discovery in the Department of Biological Chemistry at Johns Hopkins University, School of Medicine was taken effectively to bedside treatment at Johann Wolfgang Goethe University Frankfurt/Main Hospital, Germany. The results obtained hold promise for 3BP as a future cancer therapeutic without apparent cyto-toxicity when formulated properly. PMID:22328020

  4. Combination therapies improve the anticancer activities of retinoids in neuroblastoma

    PubMed Central

    Cheung, Belamy B

    2015-01-01

    Most therapeutic protocols for child cancers use cytotoxic agents which have a narrow therapeutic index, and resulting in severe acute and chronic toxicities to normal tissues. Despite the fact that most child cancer patients achieve complete remission after chemotherapy, death still occurs due to relapse of persistent minimal residual disease (MRD) which remaining after initial cytotoxic chemotherapy. Advanced neuroblastoma (NB) is a leading cause of cancer deaths in young children. Retinoids are an important component of advanced NB therapy at the stage of MRD, yet half of all patients treated with 13-cis-retinoic acid still relapse and die. More effective combination therapies, with a lower side-effect profile, are required to improve outcomes for NB. Fenretinide or N-4-hydroxyphenyl retinamide is a synthetic derivative of retinoic acid which works on cancer cells through nuclear receptor-dependent and -independent signalling mechanisms. Moreover, several histone deacetylase inhibitors have entered early phase trials, and, suberoylanilide hydroxamic acid has been approved for use in adult cutaneous T cell lymphoma. A number of studies suggest that retinoid signal activation is necessary for histone deacetylase inhibitor activity. A better understanding of their mechanism of actions will lead to more evidence-based retinoid combination therapies. PMID:26677433

  5. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells.

    PubMed

    Rajan, Thangavelu Soundara; De Nicola, Gina Rosalinda; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2016-04-01

    Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells. PMID:26882972

  6. Identification of potent anticancer activity in Ximenia americana aqueous extracts used by African traditional medicine

    SciTech Connect

    Voss, Cristina; Eyol, Erguel; Berger, Martin R. . E-mail: m.berger@dkfz.de

    2006-03-15

    The antineoplastic activity of a plant powder used in African traditional medicine for treating cancer was investigated by analyzing the activity of various extracts in vitro. The most active, aqueous extract was subsequently subjected to a detailed investigation in a panel of 17 tumor cell lines, showing an average IC{sub 5} of 49 mg raw powder/ml medium. The sensitivity of the cell lines varied by two orders of magnitude, from 1.7 mg/ml in MCF7 breast cancer cells to 170 mg/ml in AR230 chronic-myeloid leukemia cells. Immortalized, non-tumorigenic cell lines showed a marginal sensitivity. In addition, kinetic and recovery experiments performed in MCF7 and U87-MG cells and a comparison with the antineoplastic activity of miltefosine, gemcitabine, and cisplatinum in MCF7, U87-MG, HEp2, and SAOS2 cells revealed no obvious similarity between the sensitivity profiles of the extract and the three standard agents, suggesting a different mechanism of cytotoxicity. The in vivo antitumor activity was determined in the CC531 colorectal cancer rat model. Significant anticancer activity was found following administration of equitoxic doses of 100 (perorally) and 5 (intraperitoneally) mg raw powder/kg, indicating a 95% reduced activity following intestinal absorption. By sequencing the mitochondrial gene for the large subunit of the ribulose bis-phosphate carboxylase (rbcL) in DNA from the plant material, the source plant was identified as Ximenia americana. A physicochemical characterization showed that the active antineoplastic component(s) of the plant material are proteins with galactose affinity. Moreover, by mass spectrometry, one of these proteins was shown to contain a stretch of 11 amino acids identical to a tryptic peptide from the ribosome-inactivating protein ricin.

  7. Anticancer Activity of Garcinia morella on T-Cell Murine Lymphoma Via Apoptotic Induction.

    PubMed

    Choudhury, Bhaswati; Kandimalla, Raghuram; Bharali, Rupjyoti; Monisha, Javadi; Kunnumakara, Ajaikumar B; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Traditional knowledge (TK) based medicines have gained worldwide attention and presently the scientific community is focussing on proper pharmacological validation and identification of lead compounds for the treatment of various diseases. The North East region of India is the home of valuable traditional herbal remedies. Garcinia morella Desr. (Guttiferae) is one such medicinal plant used by traditional healers for the treatment of inflammatory disorders. The present study was aimed to evaluate the antioxidant and anticancer activity of methanol extracts of the leaf, bark and fruit of G. morella (GM) in different in vitro and in vivo experimental conditions. The results of this study showed that GM methanol extracts possessed in vitro antioxidant and anticancer properties, where the fruit extract (GF) showed maximum activity. The anticancer activity was further confirmed by the results of in vivo administration of GF (200 mg/kg) for ten days to Dalton's lymphoma (DLA) induced mice. GF extract significantly increased the mean survival time (MST) of the animals, decreased the tumor volume and restored the hematological and biochemical parameters. The present study for the first time reported the anticancer property of GF on DLA. Further from the experiments conducted to elucidate the mechanism of action of GF on DLA, it can be concluded that GF exerts its anticancer effect through induction of caspases and DNA fragmentation that ultimately leads to apoptosis. However, further experimentation is required to elucidate the active principle and validate these findings in various in vivo settings. PMID:26858645

  8. Anticancer Activity of Garcinia morella on T-Cell Murine Lymphoma Via Apoptotic Induction

    PubMed Central

    Choudhury, Bhaswati; Kandimalla, Raghuram; Bharali, Rupjyoti; Monisha, Javadi; Kunnumakara, Ajaikumar B.; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Traditional knowledge (TK) based medicines have gained worldwide attention and presently the scientific community is focussing on proper pharmacological validation and identification of lead compounds for the treatment of various diseases. The North East region of India is the home of valuable traditional herbal remedies. Garcinia morella Desr. (Guttiferae) is one such medicinal plant used by traditional healers for the treatment of inflammatory disorders. The present study was aimed to evaluate the antioxidant and anticancer activity of methanol extracts of the leaf, bark and fruit of G. morella (GM) in different in vitro and in vivo experimental conditions. The results of this study showed that GM methanol extracts possessed in vitro antioxidant and anticancer properties, where the fruit extract (GF) showed maximum activity. The anticancer activity was further confirmed by the results of in vivo administration of GF (200 mg/kg) for ten days to Dalton’s lymphoma (DLA) induced mice. GF extract significantly increased the mean survival time (MST) of the animals, decreased the tumor volume and restored the hematological and biochemical parameters. The present study for the first time reported the anticancer property of GF on DLA. Further from the experiments conducted to elucidate the mechanism of action of GF on DLA, it can be concluded that GF exerts its anticancer effect through induction of caspases and DNA fragmentation that ultimately leads to apoptosis. However, further experimentation is required to elucidate the active principle and validate these findings in various in vivo settings. PMID:26858645

  9. Imperatorin exhibits anticancer activities in human colon cancer cells via the caspase cascade.

    PubMed

    Zheng, Yi Mei; Lu, Amy Xiaoxu; Shen, James Zheng; Kwok, Amy Ho Yan; Ho, Wing Shing

    2016-04-01

    Despite advances in medical treatments for colon cancer, it remains one of the leading causes of cancer-related mortality among men. Thus, more efficacious treatment strategies for colon cancer are needed. Imperatorin is one of the major ingredients present in the root of Angelica dahurica, and has been used in herbal formulations for the treatment of hypertension and cardiovascular diseases. However, the medical properties of imperatorin remain unclear. In the present study, the anti‑proliferative activities of imperatorin were investigated in the HT‑29 colon cancer cell line. The results showed that imperatorin significantly inhibited HT‑29 colon cancer cell growth with an IC50 value of 78 µM. Imperatorin induced the apoptosis of colon cancer cells through upregulation of p53 and the caspase cascade. Our findings revealed that imperatorin induced cell cycle arrest in the G1 phase. The apoptotic index showed a steady increment when the imperatorin concentration was increased. The results suggest that imperatorin exerts considerable anti‑proliferative activities in HT‑29 colon cancer cells and highlight the potential of imperatorin as an anticancer agent for colon cancer. PMID:26794238

  10. Ligand substitutions between ruthenium–cymene compounds can control protein versus DNA targeting and anticancer activity

    PubMed Central

    Adhireksan, Zenita; Davey, Gabriela E.; Campomanes, Pablo; Groessl, Michael; Clavel, Catherine M.; Yu, Haojie; Nazarov, Alexey A.; Yeo, Charmian Hui Fang; Ang, Wee Han; Dröge, Peter; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2014-01-01

    Ruthenium compounds have become promising alternatives to platinum drugs by displaying specific activities against different cancers and favourable toxicity and clearance properties. Nonetheless, their molecular targeting and mechanism of action are poorly understood. Here we study two prototypical ruthenium-arene agents—the cytotoxic antiprimary tumour compound [(η6-p-cymene)Ru(ethylene-diamine)Cl]PF6 and the relatively non-cytotoxic antimetastasis compound [(η6-p-cymene)Ru(1,3,5-triaza-7-phosphaadamantane)Cl2]—and discover that the former targets the DNA of chromatin, while the latter preferentially forms adducts on the histone proteins. Using a novel ‘atom-to-cell’ approach, we establish the basis for the surprisingly site-selective adduct formation behaviour and distinct cellular impact of these two chemically similar anticancer agents, which suggests that the cytotoxic effects arise largely from DNA lesions, whereas the protein adducts may be linked to the other therapeutic activities. Our study shows promise for developing new ruthenium drugs, via ligand-based modulation of DNA versus protein binding and thus cytotoxic potential, to target distinguishing epigenetic features of cancer cells. PMID:24637564

  11. Anticancer activity of bicalutamide-loaded PLGA nanoparticles in prostate cancers

    PubMed Central

    GUO, JUN; WU, SHU-HONG; REN, WEI-GUO; WANG, XIN-LI; YANG, AI-QING

    2015-01-01

    Prostate cancer is the most commonly diagnosed non-cutaneous malignancy in men in western and most developing countries. Bicalutamide (BLT) is an antineoplastic hormonal agent primarily used in the treatment of locally advanced and metastatic prostate cancers. In the present study, the aim was to develop a nanotechnology-based delivery system to target prostate cancer cells. This involved the development of a BLT-loaded poly(D,L-lactide-co-glycolide) PLGA (PLGA-BLT) nanoparticulate system in an attempt to improve the therapeutic efficacy of BLT in prostate cancer and to mitigate its toxicity. Nanosized particles with a uniform size distribution and spherical shape were developed. PLGA-BLT showed a pronounced cytotoxic effect on LNCaP and C4-2 cancer cells. The superior cell-killing effect of the nanoparticles may be attributable to their sustained drug-release characteristics and high cellular internalization. PLGA-BLT was also found to significantly inhibit colony formation in the two cell lines. Furthermore, the caspase-3 activity of PLGA-BLT treated cancer cells was enhanced, indicating the cell apoptosis-inducing potential of PLGA-BLT. Overall, these results suggest that nanotechnology-based formulations of BLT exhibit superior anticancer activity and have enormous potential in the treatment of prostate cancers. PMID:26668633

  12. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  13. Repurposing Drugs in Oncology (ReDO)—nitroglycerin as an anti-cancer agent

    PubMed Central

    Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P; Pantziarka, Pan

    2015-01-01

    Nitroglycerin (NTG), a drug that has been in clinical use for more than a century, has a range of actions which make it of particular interest in an oncological setting. It is generally accepted that the main mechanism of action of NTG is via the production of nitric oxide (NO), which improves cardiac oxygenation via multiple mechanisms including improved blood flow (vasodilation), decreased platelet aggregation, increased erythrocyte O2 release and decreased mitochondrial utilization of oxygen. Its vasoactive properties mean that it has the potential to exploit more fully the enhanced permeability and retention effect in delivering anti-cancer drugs to tumour tissues. Moreover NTG can reduce HIF-1α levels in hypoxic tumour tissues and this may have anti-angiogenic, pro-apoptotic and anti-efflux effects. Additionally NTG may enhance anti-tumour immunity. Pre-clinical and clinical data on these anti-cancer properties of NTG are summarised and discussed. While there is evidence of a positive action as a monotherapy in prostate cancer, there are mixed results in NSCLC where initially positive results have yet to be fully replicated. Based on the evidence presented, a case is made that further exploration of the clinical benefits that may accrue to cancer patients is warranted. Additionally, it is proposed that NTG may synergise with a number of other drugs, including other repurposed drugs, and these are discussed in the supplementary material appended to this paper. PMID:26435741

  14. Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA.

    PubMed

    Maji, Basudeb; Bhattacharya, Santanu

    2014-06-21

    Telomerases are an attractive drug target to develop new generation drugs against cancer. A telomere appears from the chromosomal termini and protects it from double-stranded DNA degradation. A short telomere promotes genomic instability, like end-to-end fusion and regulates the over-expression of the telomere repairing enzyme, telomerase. The telomerase maintains the telomere length, which may lead to genetically abnormal situations, leading to cancer. Thus, the design and synthesis of an efficient telomerase inhibitor is a viable strategy toward anticancer drugs development. Accordingly, small molecule induced stabilization of the G-quadruplex structure, formed by the human telomeric DNA, is an area of contemporary scientific art. Several such compounds efficiently stabilize the G-quadruplex forms of nucleic acids, which often leads to telomerase inhibition. This Feature article presents the discovery and development of the telomere structure, function and evolution in telomere targeted anticancer drug design and incorporates the recent advances in this area, in addition to discussing the advantages and disadvantages in the methods, and prospects for the future. PMID:24695755

  15. Down-regulation of telomerase activity by anticancer drugs in human ovarian cancer cells.

    PubMed

    Kunifuji, Yasumasa; Gotoh, Sadao; Abe, Tetsuya; Miura, Masayoshi; Karasaki, Yuji

    2002-07-01

    Maintenance of telomere length is crucial for survival of cells. Telomerase, an enzyme that is responsible for elongation of shortened telomeres, is active in human germ cells as well as most tumor tissues and experimentally immortalized cells. In contrast, most mature somatic cells in human tissues express undetectable or low telomerase activity, implying the existence of a stringent and negative regulatory mechanism. In this study we report the effects of anticancer drugs on telomerase activity in human cancer cells. In assaying for telomerase activity, we basically followed the original TRAP assay system, but with some modifications. A down-regulation of telomerase activity was found when cells of a human ovarian cancer cell line, A2780, were treated with;cis-diamminedichloroplatinum(II) (CDDP; cisplatin). However, down-regulation of telomerase activity was not found in cells of a cisplatin-resistant cell line, A2780CP, treated with cisplatin. On the other hand, telomerase activity in both the cell lines A2780 and A2780CP was reduced when A2780 or A2780CP was treated with adriamycin, an anthracycline antibiotic having a broad spectrum of antineoplastic activity. The different effects on the telomerase activity of the two types of anticancer drugs may be due the distinct chemical functions of these drugs. The present results may indicate a positive relationship between anticancer effects and down-regulation of telomerase activity by anticancer drugs. PMID:12172504

  16. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms

    PubMed Central

    Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil

    2016-01-01

    Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape. PMID:27491007

  17. Cutaneous reactions to anticancer agents targeting the epidermal growth factor receptor: a dermatology-oncology perspective.

    PubMed

    Lacouture, M E; Melosky, B L

    2007-01-01

    The epidermal growth factor receptor (EGFR) is often overexpressed or dysregulated in solid tumors. Targeting the EGFR-mediated signaling pathway has become routine practice in the treatment of lung, pancreatic, head and neck, and colon carcinomas. Available agents with selected activity towards the EGFR include low molecular weight tyrosine kinase inhibitors, e.g., erlotinib (Tarceva, Genentech BioOncology/ OSI Pharmaceuticals/ F. Hoffmann-La Roche) and monoclonal antibodies, such as cetuximab (Erbitux, Bristol-Myers Squibb/ ImClone Systems/ Merck) and panitumumab (Vectibix, Amgen). Their use is anticipated to increase for treating other solid tumors that are dependent on this pathway for growth and proliferation. Health Canada and the US FDA have approved erlotinib for the treatment of advanced non-small cell lung carcinoma (NSCLC). It has also been approved in the US for use against pancreatic cancer in combination with gemcitabine (Gemzar, Eli Lilly). Cetuximab and most recently panitumumab (Vectibix, Amgen/ Abgenix) were approved by the US FDA for metastatic colorectal carcinoma. Cetuximab is also approved in the US for head and neck squamous cell carcinoma. The safety profile for this class of drugs is unique, with virtually no hematological toxicity, but frequent cutaneous and gastrointestinal side-effects. Although there is a dearth of randomized trials addressing treatment of the dermatological side-effects, some basic principles of management have been agreed upon and can likely improve patient compliance and decrease inappropriate dose reduction, which may negatively influence the antitumor effect. PMID:17762902

  18. Design and synthesis of novel hydroxyanthraquinone nitrogen mustard derivatives as potential anticancer agents via a bioisostere approach

    PubMed Central

    Zhao, Li-Ming; Ma, Feng-Yan; Jin, Hai-Shan; Zheng, Shilong; Zhong, Qiu; Wang, Guangdi

    2016-01-01

    A series of hydroxyanthraquinones having an alkylating N-mustard pharmacophore at 1′-position were synthesized via a bioisostere approach to evaluate their cytotoxicity against four tumor cell lines (MDA-MB-231, HeLa, MCF-7 and A549). These compounds displayed significant in vitro cytotoxicity against MDA-MB-231 and MCF-7 cells, reflecting the excellent selectivity for the human breast cancer. Among them, compound 5k was the most cytotoxic with IC50 value of 0.263 nM and is more potent than DXR (IC50 = 0.294 nM) in inhibiting the growth of MCF-7 cells. The excellent cytotoxicity and good selectivity of compound 5k suggest that it could be a promising lead for further design and development of anticancer agents, especially for breast cancer. PMID:26291039

  19. Iron Chelators with Topoisomerase-Inhibitory Activity and Their Anticancer Applications

    PubMed Central

    2013-01-01

    Abstract Significance: Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. Recent Advances: The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. Critical Issues: While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. Future Directions: Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed. Antioxid. Redox Signal. 00, 000–000. PMID:22900902

  20. Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells.

    PubMed

    Seo, Yo-Seob; Yim, Min-Ji; Kim, Bok-Hee; Kang, Kyung-Rok; Lee, Sook-Young; Oh, Ji-Su; You, Jae-Seek; Kim, Su-Gwan; Yu, Sang-Joun; Lee, Gyeong-Je; Kim, Do Kyung; Kim, Chun Sung; Kim, Jin-Soo; Kim, Jae-Sung

    2015-12-01

    In the present study, we investigated berberine‑induced apoptosis and the signaling pathways underlying its activity in FaDu head and neck squamous cell carcinoma cells. Berberine did not affect the viability of primary human normal oral keratinocytes. In contrast, the cytotoxicity of berberine was significantly increased in FaDu cells stimulated with berberine for 24 h. Furthermore, berberine increased nuclear condensation and apoptosis rates in FaDu cells than those in untreated control cells. Berberine also induced the upregulation of apoptotic ligands, such as FasL and TNF-related apoptosis-inducing ligand, and triggered the activation of caspase-8, -7 and -3, and poly(ADP ribose) polymerase, characteristic of death receptor-dependent extrinsic apoptosis. Moreover, berberine activated the mitochondria‑dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bax, Bad, Apaf-1, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. In addition, berberine increased the expression of the tumor suppressor p53 in FaDu cells. The pan-caspase inhibitor Z-VAD-fmk suppressed the activation of caspase-3 and prevented cytotoxicity in FaDu cells treated with berberine. Interestingly, berberine suppressed cell migration through downregulation of vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, and MMP-9. Moreover, the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and p38, components of the mitogen-activated protein kinase pathway that are associated with the expression of MMP and VEGF, was suppressed in FaDu cells treated with berberine for 24 h. Therefore, these data suggested that berberine exerted anticancer effects in FaDu cells through induction of apoptosis and suppression of migration. Berberine may have potential applications as a chemotherapeutic agent for the management of head and neck squamous carcinoma. PMID:26503508

  1. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    PubMed Central

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y.; Fung, Kar-Ming; Towner, Rheal A.

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  2. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts.

    PubMed

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y; Fung, Kar-Ming; Towner, Rheal A

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  3. Design and synthesis of diamide-coupled benzophenones as potential anticancer agents.

    PubMed

    Zabiulla; Shamanth Neralagundi, H G; Bushra Begum, A; Prabhakar, B T; Khanum, Shaukath Ara

    2016-06-10

    A series of diamide-coupled benzophenone, 2-(4-benzoyl-phenoxy)-N-{2-[2-(4-benzoyl-phenoxy)-acetylamino]-phenyl}-acetamide analogues (9a-l) were synthesized by multistep reactions and all compounds were well characterized. Among the series (9a-l), compound 9k with three methyl groups at ortho position in rings A, B, and D and bromo group at the para position in ring E was selected as a lead compound by screening through multiple cancer cell types by in-vitro cytotoxic and antiproliferative assay systems. Also, the cytotoxic nature of the compound 9k resulted the regression of the tumor growth in-vivo, which could be due to decreased vascularisation in the peritoneum lining of the mice which regress the tumor growth. The results were reconfirmed in-vivo chorioallantoic membrane model which indicates a scope of developing 9k into potent anticancer drug in near future. PMID:27027818

  4. Horner-Wadsworth-Emmons approach to piperlongumine analogues with potent anti-cancer activity.

    PubMed

    Han, Li-Chen; Stanley, Paul A; Wood, Paul J; Sharma, Pallavi; Kuruppu, Anchala I; Bradshaw, Tracey D; Moses, John E

    2016-08-21

    Natural products with anti-cancer activity play a vital role in lead and target discovery. We report here the synthesis and biological evaluation of the plant-derived alkaloid, piperlongumine and analogues. Using a Horner-Wadsworth-Emmons coupling approach, a selection of piperlongumine-like compounds were prepared in good overall yield from a novel phosphonoacetamide reagent. A number of the compounds displayed potent anti-cancer activity against colorectal (HCT 116) and ovarian (IGROV-1) carcinoma cell lines, via a mechanism of action which may involve ROS generation. Contrary to previous reports, no selective action in cancer cell (MRC-5) was observed for piperlongumine analogues. PMID:27443386

  5. In vitro bioassays for anticancer drug screening: effects of cell concentration and other assay parameters on growth inhibitory activity.

    PubMed

    Lieberman, M M; Patterson, G M; Moore, R E

    2001-11-01

    In vitro growth inhibition assays were performed using human cancer cell lines at various concentrations with experimental anticancer drugs such as the cryptophycins and other cytotoxins. The effect of variations in assay parameters on the observed growth inhibition of these anticancer therapeutic agents was determined. The results demonstrated that the observed inhibitory activity of these compounds varied inversely with the cell concentrations used. The observed differences in activity between different cytotoxins were not necessarily proportionate. Thus, the relative activities of two toxins also varied with cell concentration. Furthermore, the sensitivity of these cell lines to the cytostatic purine analog, 6-mercaptopurine (used as a control), varied with cell concentration as well. The activity of this compound was dependent on the medium used for cell growth, yielding good activity in Eagle's minimum essential medium, but not in Ham's F-12 (Kaigin) medium. Moreover, growth inhibition by cryptophycin as well as 6-mercaptopurine was also dependent on the serum concentration in the medium. Finally, the sensitivity of the cancer cell lines to various organic solvents commonly used as drug vehicles for in vitro testing, such as ethanol, dimethylformamide, and dimethylsulfoxide, was likewise found to vary inversely with cell concentration. PMID:11578805

  6. Synthesis and biological evaluation of novel N-phenyl ureidobenzenesulfonate derivatives as potential anticancer agents. Part 2. Modulation of the ring B.

    PubMed

    Gagné-Boulet, Mathieu; Moussa, Hanane; Lacroix, Jacques; Côté, Marie-France; Masson, Jean-Yves; Fortin, Sébastien

    2015-10-20

    DNA double strand-breaks (DSBs) are the most deleterious lesions that can affect the genome of living beings and are lethal if not quickly and properly repaired. Recently, we discovered a new family of anticancer agents designated as N-phenyl ureidobenzenesulfonates (PUB-SOs) that are blocking the cells cycle progression in S-phase and inducing DNA DSBs. Previously, we have studied the effect of several modifications on the molecular scaffold of PUB-SOs on their cytocidal properties. However, the effect of the nature and the position of substituents on the aromatic ring B is still poorly studied. In this study, we report the preparation and the biological evaluation of 45 new PUB-SO derivatives substituted by alkyl, alkoxy, halogen and nitro groups at different positions on the aromatic ring B. All PUB-SOs were active in the submicromolar to low micromolar range (0.24-20 μM). The cell cycle progression analysis showed that PUB-SOs substituted at position 2 by alkyl, halogen or nitro groups or substituted at position 4 by a hydroxyl group arrest the cell cycle progression in S-phase. Interestingly, all others PUB-SOs substituted at positions 3 and 4 arrested the cell cycle in G2/M-phase. PUB-SOs arresting the cell cycle progression in S-phase also induced the phosphorylation of H2AX (γH2AX) which is indicating the generation of DNA DSBs. We evidenced that few modifications on the ring B of PUB-SOs scaffold lead to cytocidal derivatives arresting the cell cycle in S-phase and inducing γH2AX and DSBs. In addition, this study shows that these new anticancer agents are promising and could be used as alternative to circumvent some of the biopharmaceutical complications that might be encountered during the development of PUB-SOs. PMID:26408815

  7. Specific Design of Titanium(IV) Phenolato Chelates Yields Stable and Accessible, Effective and Selective Anticancer Agents.

    PubMed

    Meker, Sigalit; Braitbard, Ori; Hall, Matthew D; Hochman, Jacob; Tshuva, Edit Y

    2016-07-11

    Octahedral titanium(IV) complexes of phenolato hexadentate ligands were developed and showed very high stability for days in water solutions. In vitro cytotoxicity studies showed that, whereas tetrakis(phenolato) systems are generally of low activity presumably due to inaccessibility, smaller bis(phenolato)bis(alkoxo) complexes feature high anticancer activity and accessibility even without formulations, also toward a cisplatin-resistant cell line. An all-aliphatic control complex was unstable and inactive. A leading phenolato complex also revealed: 1) high durability in fully aqueous solutions; accordingly, negligible loss of activity after preincubation for three days in medium or in serum; 2) maximal cellular accumulation and induction of apoptosis following 24-48 h of administration; 3) reduced impact on noncancerous fibroblast cells; 4) in vivo efficacy toward lymphoma cells in murine model; 5) high activity in NCI-60 panel, with average GI50 of 4.6±2 μm. This newly developed family of Ti(IV) complexes is thus of great potential for anticancer therapy. PMID:27320784

  8. Two preclinical tests to evaluate anticancer activity and to help validate drug candidates for clinical trials

    PubMed Central

    López-Lázaro, Miguel

    2015-01-01

    Current approaches to assessing preclinical anticancer activity do not reliably predict drug efficacy in cancer patients. Most of the compounds that show remarkable anticancer effects in preclinical models actually fail when tested in clinical trials. We blame these failures on the complexity of the disease and on the limitations of the preclinical tools we require for our research. This manuscript argues that this lack of clinical response may also be caused by poor in vitro and in vivo preclinical designs, in which cancer patients' needs are not fully considered. Then, it proposes two patient-oriented tests to assess in vitro and in vivo anticancer activity and to help validate drug candidates for clinical evaluation. PMID:25859551

  9. Structure elucidation, anticancer and antioxidant activities of a novel polysaccharide from Gomphus clavatus Gray.

    PubMed

    Ding, Xiang; Hou, Yiling; Zhu, Yuanxiu; Wang, Panpan; Fu, Lei; Zhu, Hongqing; Zhang, Nan; Qin, Hang; Qu, Wei; Wang, Fang; Hou, Wanru

    2015-06-01

    A novel heteropolysaccharide from the fruiting bodies of Gomphus clavatus Gray was isolated through Sephadex G-200 and DEAE-cellulose columns. The Gomphus clavatus Gray polysaccharide (GCG-1) was mainly composed of β-D-glucosepyranose (β-D-Glu) and α-D-galactopyranose (α-D-Gal) in a ratio of 3:2 and had a molecular weight of ~50,000 Da. The structure of GCG-1 was investigated by a combination of total hydrolysis, gas chromatography-mass spectrometry, methylation analysis, nuclear magnetic resonance spectroscopy and infrared spectra. The results indicated that GCG-1 had a backbone of (1 → 4)-β-D-glucosepyranose residues with branches at O-6 and the branches consisted of two with (1 → 3)-α-D-galactopyranose residue. Antioxidation test in vitro showed that it possessed strong free radical scavenging activity, which may be comparable to vitamin C and butylated hydroxytoluene. GCG-1 also induced the apoptosis of HepG-2 cells and affected the mRNA expression of various housekeeping genes in the HepG-2 cells. The results indicated that Gomphus clavatus Gray may be an ideal sources for antioxidant and anticancer agents. PMID:25901792

  10. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity.

    PubMed

    Petiwala, Sakina M; Johnson, Jeremy J

    2015-10-28

    Recently, rosemary extracts standardized to diterpenes (e.g. carnosic acid and carnosol) have been approved by the European Union (EU) and given a GRAS (Generally Recognized as Safe) status in the United States by the Food and Drug Administration (FDA). Incorporation of rosemary into our food system and through dietary selection (e.g. Mediterranean Diet) has increased the likelihood of exposure to diterpenes in rosemary. In consideration of this, a more thorough understanding of rosemary diterpenes is needed to understand its potential for a positive impact on human health. Three agents in particular have received the most attention that includes carnosic acid, carnosol, and rosmanol with promising results of anti-cancer activity. These studies have provided evidence of diterpenes to modulate deregulated signaling pathways in different solid and blood cancers. Rosemary extracts and the phytochemicals therein appear to be well tolerated in different animal models as evidenced by the extensive studies performed for approval by the EU and the FDA as an antioxidant food preservative. This mini-review reports on the pre-clinical studies performed with carnosic acid, carnosol, and rosmanol describing their mechanism of action in different cancers. PMID:26170168

  11. Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1.

    PubMed

    Myeong, Nu Ri; Seong, Hoon Je; Kim, Hye-Jin; Sul, Woo Jun

    2016-04-10

    Massilia sp. NR 4-1 was a violacein producing strain newly isolated from topsoil under nutmeg tree, Torreya nucifera in Korean national monument Bijarim Forest. Violacein is a novel class of drug exhibiting anticancer and antibiotic activities originated from l-tryptophan. Here, we present the complete genome of Massilia sp. strain NR 4-1 of 6,361,416bp and total 5285 coding sequences (CDSs) including a complete violacein biosynthesis pathway, vioABCDE. The genome sequence of Massilia sp. NR 4-1 will provide stable and efficient biotechnological applications of violacein production. PMID:26916415

  12. Linker design for the modular assembly of multifunctional and targeted platinum(ii)-containing anticancer agents.

    PubMed

    Ding, S; Bierbach, U

    2016-08-16

    A versatile and efficient modular synthetic platform was developed for assembling multifunctional conjugates and targeted forms of platinum-(benz)acridines, a class of highly cytotoxic DNA-targeted hybrid agents. The synthetic strategy involved amide coupling between succinyl ester-modified platinum compounds (P1, P2) and a set of 11 biologically relevant primary and secondary amines (N1-N11). To demonstrate the feasibility and versatility of the approach, a structurally and functionally diverse range of amines was introduced. These include biologically active molecules, such as rucaparib (a PARP inhibitor), E/Z-endoxifen (an estrogen receptor antagonist), and a quinazoline-based tyrosine kinase inhibitor. Micro-scale reactions in Eppendorf tubes or on 96-well plates were used to screen for optimal coupling conditions in DMF solution with carbodiimide-, uronium-, and phosphonium-based compounds, as well as other common coupling reagents. Reactions with the phosphonium-based coupling reagent PyBOP produced the highest yields and gave the cleanest conversions. Furthermore, it was demonstrated that the chemistry can also be performed in aqueous media and is amenable to parallel synthesis based on multiple consecutive reactions in DMF in a "one-tube" format. In-line LC-MS was used to assess the stability of the conjugates in physiologically relevant buffers. Hydrolysis of the conjugates occurs at the ester moiety and is facilitated by the aquated metal moiety under low-chloride ion conditions. The rate of ester cleavage greatly depends on the nature of the amine component. Potential applications of the linker technology are discussed. PMID:27251881

  13. Proof of concept for inhibiting metastasis: circulating tumor cell-triggered localized release of anticancer agent via a structure-switching aptamer.

    PubMed

    Chen, Nandi; Yang, Xiaohai; Wang, Qing; Jian, Lixin; Shi, Hui; Qin, Shiya; Wang, Kemin; Huang, Jin; Liu, Wenjing

    2016-05-21

    Existing drug delivery systems were not suitable for killing cells in the circulatory system specifically. Herein, we developed a novel localized drug delivery strategy, in which the release of anticancer agents was specifically triggered by circulating tumor cells. Meanwhile, damage to non-target cells was avoided. PMID:27121864

  14. Conjugation of Docetaxel with Multiwalled Carbon Nanotubes and Codelivery with Piperine: Implications on Pharmacokinetic Profile and Anticancer Activity.

    PubMed

    Raza, Kaisar; Kumar, Dinesh; Kiran, Chanchal; Kumar, Manish; Guru, Santosh Kumar; Kumar, Pramod; Arora, Shweta; Sharma, Gajanand; Bhushan, Shashi; Katare, O P

    2016-07-01

    Nanotechnology-based drug products are emerging as promising agents to enhance the safety and efficacy of established chemotherapeutic molecules. Carbon nanotubes (CNTs), especially multiwalled CNTs (MWCNTs), have been explored for this potential owing to their safety and other desired attributes. Docetaxel (DTX) is an indispensable anticancer agent, which has wide applicability in variety of cancers. However, the potential of DTX is still not completely harvested due to problems like poor aqueous solubility, low tissue permeability, poor bioavailability, high first pass metabolism, and dose-related toxicity. Hence, it was proposed to attach DTX to MWCNTs and coadminister it along with piperine with an aim to enhance the tissue permeation, anticancer activity, and bioavailability. The Fourier transform infrared, UV, and NMR spectroscopic data confirmed successful conjugation of DTX to MWCNTs and adsorption of piperine onto MWCNTs. The codelivery MWCNT-based system offered drug release moderation and better cancer cell toxicity than that of plain DTX as well as DTX-CNT conjugate. The pharmacokinetic profile of DTX was exceptionally improved by the conjugation, in general, and coadministration with piperine, in specific vis-à-vis plain drug. Hence, the dual approach of MWCNTs conjugation and piperine coadministration can serve as a beneficial option for enhancement of the performance of DTX in cancer chemotherapy. PMID:27182646

  15. The root bark of Paeonia moutan is a potential anticancer agent in human oral squamous cell carcinoma cells.

    PubMed

    Li, Chunnan; Yazawa, Kazunaga; Kondo, Seiji; Mukudai, Yoshiki; Sato, Daisuke; Kurihara, Yuji; Kamatani, Takaaki; Shintani, Satoru

    2012-07-01

    Currently there is growing use of complementary and alternative anticancer medicines worldwide, and considerable interest in finding anticancer drugs among Chinese medicinal herbs. The aim of this study was to determine the antitumor activity of the root bark of Paeonia moutan (RBPM) in human squamous cell carcinoma (OSCC) cells. Cell lines derived from human oral squamous cell carcinoma (HSC2, 3, 4, SAS) were tested with different concentrations of RBPM (1-100 μg/ml) using a series of in vitro assay systems. RBPM at a concentration of 100 μg/ml inhibited monolayer and anchorage-independent growth, and interrupted coordinated migration. RBPM activated the phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine kinase AKT in 30 min; then, at a later stage (after 6 hours) exhibited potent cytostatic, pro-apoptotic effects through the down-regulation of the expression of cyclin-dependent kinase 4 and its partner cyclin D1, and poly(ADP-ribose) polymerase cleavage. We found direct evidence that RBPM induces apoptotic cell death via DNA fragmentation. Taken together, the antitumor activity of RBPM was demonstrated through antiproliferative and apoptotic effects. PMID:22753719

  16. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity.

    PubMed

    Magalhaes, Luma G; Marques, Fernando B; da Fonseca, Marina B; Rogério, Kamilla R; Graebin, Cedric S; Andricopulo, Adriano D

    2016-01-01

    Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497

  17. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity

    PubMed Central

    Magalhaes, Luma G.; Marques, Fernando B.; da Fonseca, Marina B.; Rogério, Kamilla R.; Graebin, Cedric S.; Andricopulo, Adriano D.

    2016-01-01

    Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497

  18. Nelfinavir and other protease inhibitors in cancer: mechanisms involved in anticancer activity

    PubMed Central

    Koltai, Tomas

    2015-01-01

    Objective: To review the mechanisms of anti-cancer activity of nelfinavir and other protease inhibitors (PIs) based on evidences reported in the published literature. Methods: We extensively reviewed the literature concerning nelfinavir (NFV) as an off target anti-cancer drug and other PIs. A classification of PIs based on anti-cancer mode of action was proposed. Controversies regarding nelfinavir mode of action were also addressed. Conclusions: The two main mechanisms involved in anti-cancer activity are endoplasmic reticulum stress-unfolded protein response pathway and Akt inhibition. However there are many other effects, partially dependent and independent of those mentioned, that may be useful in cancer treatment, including MMP-9 and MMP-2 inhibition, down-regulation of CDK-2, VEGF, bFGF, NF-kB, STAT-3, HIF-1 alfa, IGF, EGFR, survivin, BCRP, androgen receptor, proteasome, fatty acid synthase (FAS), decrease in cellular ATP concentration and upregulation of TRAIL receptor DR5, Bax, increased radiosensitivity, and autophagy. The end result of all these effects is slower growth, decreased angiogenesis, decreased invasion and increased apoptosis, which means reduced proliferation and increased cancer cells death. PIs may be classified according to their anticancer activity at clinically achievable doses, in AKT inhibitors, ER stressors and Akt inhibitors/ER stressors. Beyond the phase I trials that have been recently completed, adequately powered and well-designed clinical trials are needed in the various cancer type settings, and specific trials where NFV is tested in association with other known anti-cancer pharmaceuticals should be sought, in order to find an appropriate place for NFV in cancer treatment. The analysis of controversies on the molecular mechanisms of NFV hints to the possibility that NFV works in a different way in tumor cells and in hepatocytes and adipocytes. PMID:26097685

  19. Plant derived substances with anti-cancer activity: from folklore to practice.

    PubMed

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity. PMID:26483815

  20. Plant derived substances with anti-cancer activity: from folklore to practice

    PubMed Central

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70–95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity. PMID:26483815

  1. Relationship of spontaneous chemical transformation of arylsulfonylhydrazones of 2-pyridinecarboxaldehyde 1-oxide to anticancer activity.

    PubMed

    Shiba, D A; May, J A; Sartorelli, A C

    1983-05-01

    The arylsulfonyl-hydrazones of 2-pyridinecarboxaldehyde 1-oxide represent a relatively new class of antineoplastic agents with the potential for clinical usefulness. The requirement for spontaneous chemical transformation of these agents to exert anticancer activity was evaluated using as the prototype the most potent member of this class synthesized to date, the 3,4-dimethoxybenzene sulfonylhydrazone of 2-pyridinecarboxaldehyde 1-oxide (3,4-DSP. 3,4-DSP was chemically unstable, decomposing with a half-life of 19 min in 0.01 M potassium phosphate buffer (pH 7.4) at 37 degrees. The major chemical decomposition product was identified as 2-pyridylcarbinol 1-oxide by comparison with the authentic compound. This carbinol is hypothesized to be formed via the intramolecular abstraction of hydrogen from the arylsulfonyl-hydrazone, a process that leads to the release of 3,4-dimethoxybenzenesulfinic acid and the formation of 1-oxidopyridin-2-yldiazomethane, which subsequently reacts with water. The diazomethane intermediate is a potent alkylating agent which, if generated in cells, would have the potential to alkylate nucleophilic groups of biologically important macromolecules. The proposed reactive species was trapped using both 4-(4-nitrobenzyl)pyridine (NBP) and morpholine, and the latter product was characterized by mass spectroscopy. The importance of the chemical formation of an alkylating species to cytotoxicity was demonstrated by studies in which solutions of 3,4-DSP were "aged" prior to addition to L1210 leukemia cells in culture and prior to incubation with NBP. The "aging" of 3,4-DSP for 20 min resulted in a 4-fold decrease in cytotoxicity, and aging for 1 to 3 hr led to complete loss of cytotoxicity. Correspondingly, a 20-min aging period decreased alkylation of NBP by 51%, and 3-hr aging resulted in essentially no alkylation of the nucleophile. Further support for the above proposed chemical activation pathway was provided by correlations between in vitro

  2. Anticancer Activity of the Antimicrobial Peptide Scolopendrasin VII Derived from the Centipede, Scolopendra subspinipes mutilans.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2015-08-01

    Previously, we performed de novo RNA sequencing of Scolopendra subspinipes mutilans using high-throughput sequencing technology and identified several antimicrobial peptide candidates. Among them, a cationic antimicrobial peptide, scolopendrasin VII, was selected based on its physicochemical properties, such as length, charge, and isoelectric point. Here, we assessed the anticancer activities of scolopendrasin VII against U937 and Jurkat leukemia cell lines. The results showed that scolopendrasin VII decreased the viability of the leukemia cells in MTS assays. Furthermore, flow cytometric analysis and acridine orange/ethidium bromide staining revealed that scolopendrasin VII induced necrosis in the leukemia cells. Scolopendrasin VII-induced necrosis was mediated by specific interaction with phosphatidylserine, which is enriched in the membrane of cancer cells. Taken together, these data indicated that scolopendrasin VII induced necrotic cell death in leukemia cells, probably through interaction with phosphatidylserine. The results provide a useful anticancer peptide candidate and an efficient strategy for new anticancer peptide development. PMID:25907065

  3. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action

    PubMed Central

    Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A.; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-01-01

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention. PMID:26041888

  4. Selective inhibitors of glutathione transferase P1 with trioxane structure as anticancer agents.

    PubMed

    Bräutigam, Maria; Teusch, Nicole; Schenk, Tobias; Sheikh, Miriam; Aricioglu, Rocky Z; Borowski, Swantje H; Neudörfl, Jörg-Martin; Baumann, Ulrich; Griesbeck, Axel G; Pietsch, Markus

    2015-04-01

    The response to chemotherapy in cancer patients is frequently compromised by drug resistance. Although chemoresistance is a multifactorial phenomenon, many studies have demonstrated that altered drug metabolism through the expression of phase II conjugating enzymes, including glutathione transferases (GSTs), in tumor cells can be directly correlated with resistance against a wide range of marketed anticancer drugs. In particular, overexpression of glutathione transferase P1 (GSTP1) appears to be a factor for poor prognosis during cancer therapy. Former and ongoing clinical trials have confirmed GSTP1 inhibition as a principle for antitumor therapy. A new series of 1,2,4-trioxane GSTP1 inhibitors were designed via a type II photooxygenation route of allylic alcohols followed by acid-catalyzed peroxyacetalization with aldehydes. A set of novel inhibitors exhibit low micromolar to high nanomolar inhibition of GSTP1, revealing preliminary SAR for further lead optimization. Importantly, high selectivity over another two human GST classes (GSTA1 and GSTM2) has been achieved. The trioxane GSTP1 inhibitors may therefore serve as a basis for the development of novel drug candidates in overcoming chemoresistance. PMID:25694385

  5. Potential anticancer heterometallic Fe-Au and Fe-Pd agents: initial mechanistic insights.

    PubMed

    Lease, Nicholas; Vasilevski, Vadim; Carreira, Monica; de Almeida, Andreia; Sanaú, Mercedes; Hirva, Pipsa; Casini, Angela; Contel, María

    2013-07-25

    A series of gold(III) and palladium(II) heterometallic complexes with new iminophosphorane ligands derived from ferrocenylphosphanes [{Cp-P(Ph2)═N-Ph}2Fe] (1), [{Cp-P(Ph2)═N-CH2-2-NC5H4}2Fe] (2), and [{Cp-P(Ph2)═N-CH2-2-NC5H4}Fe(Cp)] (3) have been synthesized and structurally characterized. Ligands 2 and 3 afford stable coordination complexes [AuCl2(3)]ClO4, [{AuCl2}2(2)](ClO4)2, [PdCl2(3)], and [{PdCl2}2(2)]. The complexes have been evaluated for their antiproliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), in human breast cancer cells (MCF7) and in a nontumorigenic human embryonic kidney cell line (HEK-293T). The highly cytotoxic trimetallic derivatives M2Fe (M = Au, Pd) are more cytotoxic to cancer cells than their corresponding monometallic fragments. Moreover, these complexes were significantly more cytotoxic than cisplatin in the resistant A2780R and the MCF7 cell lines. Studies of the interactions of the trimetallic compounds with DNA and the zinc-finger protein PARP-1 indicate that they exert anticancer effects in vitro based on different mechanisms of actions with respect to cisplatin. PMID:23786413

  6. Potential Anticancer Heterometallic Fe-Au and Fe-Pd Agents: Initial Mechanistic Insights

    PubMed Central

    Lease, Nicholas; Vasilevski, Vadim; Carreira, Monica; de Almeida, Andreia; Sanaú, Mercedes; Hirva, Pipsa; Casini, Angela; Contel, Maria

    2013-01-01

    A series of gold(III) and palladium(II) heterometallic complexes with new iminophosphorane ligands derived from ferrocenyl-phosphanes [{Cp-P(Ph2)=N-Ph}2Fe] (1), [{Cp-P(Ph2)=N-CH2-2-NC5H4}2Fe] (2) and [{Cp-P(Ph2)=N-CH2-2-NC5H4}Fe(Cp)] (3) have been synthesized and structurally characterized. Ligands 2 and 3 afford stable coordination complexes [AuCl2(3)]ClO4, [{AuCl2}2(2)](ClO4)2, [PdCl2(3)] and [{PdCl2}2(2)]. The complexes have been evaluated for their antripoliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), in human breast cancer cells (MCF7) and in a non-tumorigenic human embryonic kidney cell line (HEK-293T). The highly cytotoxic trimetallic derivatives M2Fe (M = Au, Pd) are more cytotoxic to cancer cells than their corresponding monometallic fragments. Moreover, these complexes were significantly more cytotoxic than cisplatin in the resistant A2780R and the MCF7 cell lines. Studies of the interactions of the trimetallic compounds with DNA and the zinc-finger protein PARP-1 indicate that they exert anticancer effects in vitro based on different mechanisms of actions with respect to cisplatin. PMID:23786413

  7. Synthesis and evaluation of a series of resveratrol analogues as potent anti-cancer agents that target tubulin

    PubMed Central

    Madadi, Nikhil R.; Zong, Hongliang; Ketkar, Amit; Zheng, Chen; Penthala, Narsimha R.; Janganati, Venumadhav; Bommagani, Shobanbabu; Eoff, Robert L.; Guzman, Monica L.; Crooks, Peter A.

    2015-01-01

    A series of novel diarylacrylonitrile and trans-stilbene analogues of resveratrol has been synthesized and evaluated for their anticancer activities against a panel of 60 human cancer cell lines. The diarylacrylonitrile analogues 3b and 4a exhibited the most potent anticancer activity of all the analogues synthesized in this study, with GI50 values of < 10 nM against almost all the cell lines in the human cancer cell panel. Compounds 3b and 4a were also screened against the acute myeloid leukemia (AML) cell line, MV4-11, and were found to have potent cytotoxic properties that are likely mediated through inhibition of tubulin polymerization. Results from molecular docking studies indicate a common binding site for 4a and 3b on the 3,3-tubulin heterodimer, with a slightly more favorable binding for 3b compared to 4a; this is consistent with the results from the microtubule assays, which demonstrate that 4a is more potent than 3b in inhibiting tubulin polymerization in MV4-11 cells. Taken together, these data suggest that diarylacrylonitriles 3b and 4a may have potential as antitubulin therapeutics for treatment of both solid and hematological tumors. PMID:26257861

  8. Synthesis and biological evaluation of novel 2,3-dihydrochromeno[3,4-d]imidazol-4(1H)-one derivatives as potent anticancer cell proliferation and migration agents.

    PubMed

    Han, Xuan; Luo, Jiang; Wu, Feng; Hou, XueYan; Yan, Guoyi; Zhou, Meng; Zhang, Mengqi; Pu, Chunlan; Li, Rui

    2016-05-23

    In this study, a series of novel molecules containing chromeno [3,4-d] imidazol-4(1H)-one was synthesized and their biological activities were evaluated. Among them, compound 35 showed a dramatic anticancer activity against HCT116 and MCF-7, and the flow cytometry assays demonstrated that it could arrest G0/G1 cell-cycle and induce apoptosis of SW620 cells in a dose-dependent manner. Besides, it also blocked MCF-7 cancer cell migration. Moreover, it inhibited tumor growth in HCT116 subcutaneously implanted xenografted mice. Taken together, compound 35 may be a promising candidate for anti-cancer agent as well as metastatic one. PMID:26994691

  9. The Anti-cancer Activity of Vernonia divaricata Sw against Leukaemia, Breast and Prostate Cancers In Vitro

    PubMed Central

    Lowe, HIC; Daley-Beckford, D; Toyang, NJ; Watson, C; Hartley, S; Bryant, J

    2014-01-01

    Background: Vernonia divaricata is one of five endemic Vernonia species of Jamaica. The ethnomedicinal uses of other species have been established, however, scientific validation of this species has not yet been done and as such this paper is aimed at identifying the anti-cancer activity of V divaricata against leukaemia, breast and prostate cancer cell lines. Methods: Leaves and stems of V divaricata were dried and milled into powder. The crude hexane and methanol extracts of the leaves and stems were obtained and bio-assayed using WST-1 cell proliferation assay against leukaemia, breast and prostate cancer cell lines. Results: The crude hexane and methanol extracts of V divaricata were able to significantly retard the growth of the MCF-7 (breast), HL-60 (leukaemia) and the PC-3 (prostate) cancer cell lines. The crude methanol extract of the stem was the strongest, exhibiting anti-proliferation activity with IC50 values of 10.14, 12.63 and 9.894 μg/ml for the HL-60, MCF-7 and PC-3 cancer cell lines, respectively, with the most potent toward prostate cancer. Conclusion: The medicinal use of V divaricata as an anti-cancer agent was corroborated as the crude hexane and methanol extracts demonstrated potent anti-proliferation activity and as such hold potential for further research and development into a drug to prevent or treat various cancers. PMID:25429469

  10. Synthesis and Preclinical Evaluation of a Highly Improved Anticancer Prodrug Activated by Histone Deacetylases and Cathepsin L

    PubMed Central

    Ueki, Nobuhide; Wang, Wei; Swenson, Cooper; McNaughton, Caroline; Sampson, Nicole S.; Hayman, Michael J.

    2016-01-01

    Lack of absolute selectivity against cancer cells is a major limitation for current cancer therapies. In the previous study, we developed a prodrug strategy for selective cancer therapy using a masked cytotoxic agent puromycin [Boc-Lys(Ac)-Puromycin], which can be sequentially activated by histone deacetylases (HDACs) and cathepsin L (CTSL) to kill cancer cells expressing high levels of both enzymes. Despite the promise as a selective cancer therapy, its requirement of relatively high dosage could be a potential issue in the clinical setting. To address this issue, we aimed to further improve the overall efficacy of our prodrug strategy. Since the proteolytic cleavage by CTSL is the rate-limiting step for the drug activation, we sought to improve the substrate structure for CTSL activity by modifying the α-amino protecting group of lysine. Here we show that protection with Fmoc [Fmoc-Lys(Ac)-Puromycin] exhibits a marked improvement in overall anticancer efficacy compared to the original Boc-Lys(Ac)-Puromycin and this is mainly due to the highly efficient cellular uptake besides its improved substrate structure. Furthermore, to address a concern that the improved drug efficacy might direct high toxicity to the normal cells, we confirmed that Fmoc-Lys(Ac)-Puromycin still retains excellent cancer selectivity in vitro and no obvious systemic off-target toxicity in vivo. Thus our preclinical evaluation data presented here demonstrate that the Fmoc-Lys(Ac)-Puromycin exhibits substantially improved anticancer efficacy, further supporting our approach for the selective cancer therapy. PMID:27162551

  11. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    DOEpatents

    Gakh, Andrei A; Vovk, Mykhaylo V; Mel& #x27; nychenko, Nina V; Sukach, Volodymyr A

    2012-10-23

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  12. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    DOEpatents

    Gakh, Andrei A.; Vovk, Mykhaylo V.; Mel'nychenko, Nina V.; Sukach, Volodymyr A.

    2012-08-14

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  13. In vitro and in vivo evaluation of organometallic gold(I) derivatives as anticancer agents.

    PubMed

    García-Moreno, Elena; Tomás, Alejandro; Atrián-Blasco, Elena; Gascón, Sonia; Romanos, Eduardo; Rodriguez-Yoldi, Mary Jesus; Cerrada, Elena; Laguna, Mariano

    2016-02-14

    Alkyne gold(I) derivatives with the water soluble phosphanes PTA (1,3,5-triaza-7-phosphaadamantane) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) were described and their anticancer potential against the colon cancer cell line Caco-2 (PD7 and TC7 clones) was studied. Strong antiproliferative effects are found, for all the new complexes, to be even more pronounced than for the reference drug cisplatin, and similar to auranofin. The interaction of these derivatives with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. The types of quenching and binding constants were determined by a fluorescence quenching method. Moderate values of the binding constants are calculated for the tested derivatives indicating that these complexes can be stored and carried easily by this protein in the body. The study of the thermodynamic parameters in the case of [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] points out to the presence of van der Waals interactions or hydrogen bonding between the metallic complex and the protein. In addition, the complex [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] has shown inhibition in colon cancer proliferation of HTC-116-luc2 cell lines via the apoptotic pathway and S-phase arrest of the cell cycle. Intraperitoneal injection of this derivative in athymic nude mice inoculated with HTC-116-luc2 cells prolonged their survival and displayed moderate inhibition of the tumour growth with no subsequent organ (kidney and liver) damage after treatment. PMID:26469679

  14. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning.

    PubMed

    Almajhdi, Fahad N; Fouad, H; Khalil, Khalil Abdelrazek; Awad, Hanem M; Mohamed, Sahar H S; Elsarnagawy, T; Albarrag, Ahmed M; Al-Jassir, Fawzi F; Abdo, Hany S

    2014-04-01

    In the present work, a series of 0, 1 and 7 wt% silver nano-particles (Ag NPs) incorporated poly lactic-co-glycolic acid (PLGA) nano-fibers were synthesized by the electrospinning process. The PLGA/Ag nano-fibers sheets were characterized using SEM, TEM and DSC analyses. The three synthesized PLGA/silver nano-fiber composites were screened for anticancer activity against liver cancer cell line using MTT and LDH assays. The anticancer activity of PLGA nano-fibers showed a remarkable improvement due to increasing the concentration of the Ag NPs. In addition to the given result, PLGA nano-fibers did not show any cytotoxic effect. However, PLGA nano-fibers that contain 1 % nano silver showed anticancer activity of 8.8 %, through increasing the concentration of the nano silver to 7 % onto PLGA nano-fibers, the anticancer activity was enhanced to a 67.6 %. Furthermore, the antibacterial activities of these three nano-fibers, against the five bacteria strains namely; E.coli o157:H7 ATCC 51659, Staphylococcus aureus ATCC 13565, Bacillus cereus EMCC 1080, Listeria monocytogenes EMCC 1875 and Salmonella typhimurium ATCC25566 using the disc diffusion method, were evaluated. Sample with an enhanced inhibitory effect was PLGA/Ag NPs (7 %) which inhibited all strains (inhibition zone diameter 10 mm); PLGA/Ag NPs (1 %) sample inhibited only one strain (B. cereus) with zone diameter 8 mm. The PLGA nano-fiber sample has not shown any antimicrobial activity. Based on the anticancer as well as the antimicrobial results in this study, it can be postulated that: PLGA nanofibers containing 7 % nano silver are suitable as anticancer- and antibiotic-drug delivery systems, as they will increase the anticancer as well as the antibiotic drug potency without cytotoxicity effect on the normal cells. These findings also suggest that Ag NPs, of the size (5-10 nm) evaluated in the present study, are appropriate for therapeutic application from a safety standpoint. PMID:24375170

  15. Synthesis and anticancer activities of amphiphilic 5-fluoro-2'-deoxyuridylic acid prodrugs.

    PubMed

    Ludwig, Peter S; Schwendener, Reto A; Schott, Herbert

    2005-05-01

    Amphiphilic anticancer prodrugs of 5'-fluoro-2'-deoxyuridine-5'-monophosphate (5-FdUMP) were synthesized according to the hydrogen phosphonate method by coupling lipophilic cytosine derivatives or a phospholipid with 5-fluoro-2'-deoxyuridine (5-FdU). Studies within the in vitro Anticancer Screen Program of the National Cancer Institute have demonstrated high anticancer activities of the heterodinucleoside phosphates: N4-palmitoyl-2'-deoxycytidylyl-(3' --> 5')-3'-O-acetyl-5-fluoro-2'-deoxyuridine (dC(pam)-5-FdU(Ac), N4-palmitoyl-2',3'-dideoxycytidylyl-(5' --> 5')-3'-O-acetyl-5-fluoro-2'-deoxyuridine (ddC(pam)-(5' --> 5')-5-FdU(Ac), 5-fluoro-2'-deoxyuridylyl-(3' --> 5')-5-fluoro-N4-hexadecyl-2'-deoxycytidine (5-FdU-5-FdC(hex)), and of the new liponucleotide 1-O-octadecyl-rac-glycerylyl-(3 --> 5')-5-fluoro-2'-deoxyuridine (Oct1Gro-(3 --> 5')-5-FdU). The anticancer activities of these prodrugs are comparable to those of 5-FdU and the tumor specificities are modulated by their structures. The highest cytotoxic activity being even superior to 5-FdU was expressed by the dimer 5-FdU-5-FdC(hex). PMID:15893023

  16. From COX-2 inhibitor nimesulide to potent anti-cancer agent: synthesis, in vitro, in vivo and pharmacokinetic evaluation.

    PubMed

    Zhong, Bo; Cai, Xiaohan; Chennamaneni, Snigdha; Yi, Xin; Liu, Lili; Pink, John J; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2012-01-01

    Cyclooxygenase-2 (COX-2) inhibitor nimesulide inhibits the proliferation of various types of cancer cells mainly via COX-2 independent mechanisms, which makes it a good lead compound for anti-cancer drug development. In the presented study, a series of new nimesulide analogs were synthesized based on the structure-function analysis generated previously. Some of them displayed very potent anti-cancer activity with IC(50)s around 100 nM-200 nM to inhibit SKBR-3 breast cancer cell growth. CSUOH0901 (NSC751382) from the compound library also inhibits the growth of the 60 cancer cell lines used at National Cancer Institute Developmental therapeutics Program (NCIDTP) with IC(50)s around 100 nM-500 nM. Intraperitoneal injection with a dosage of 5  mg/kg/d of CSUOH0901 to nude mice suppresses HT29 colorectal xenograft growth. Pharmacokinetic studies demonstrate the good bioavailability of the compound. PMID:22119125

  17. Fluorine-Containing Taxoid Anticancer Agents and Their Tumor-Targeted Drug Delivery.

    PubMed

    Seitz, Joshua; Vineberg, Jacob G; Zuniga, Edison S; Ojima, Iwao

    2013-08-01

    A long-standing problem of conventional chemotherapy is the lack of tumor-specific treatments. Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing undesirable severe side effects. Consequently, various "molecularly targeted cancer therapies" have been developed for use in specific cancers, including tumor-targeting drug delivery systems. In general, such a drug delivery system consists of a tumor recognition moiety and a cytotoxic "warhead" connected through a "smart" linker to form a conjugate. When a multi-functionalized nanomaterial is used as the vehicle, a "Trojan Horse" approach can be used for mass delivery of cytotoxic "warheads" to maximize the efficacy. Exploitation of the special properties of fluorine has proven successful in the development of new and effective biochemical tools as well as therapeutic agents. Fluorinated congeners can also serve as excellent probes for the investigation of biochemical mechanisms. (19)F-NMR can provide unique and powerful tools for mechanistic investigations in chemical biology. This account presents our recent progress, in perspective, on the molecular approaches to the design and development of novel tumor-targeted drug delivery systems for new generation chemotherapy by exploiting the unique nature of fluorine. PMID:23935213

  18. Synthesis of novel hydrazone and azole functionalized pyrazolo[3,4-b]pyridine derivatives as promising anticancer agents.

    PubMed

    Nagender, P; Naresh Kumar, R; Malla Reddy, G; Krishna Swaroop, D; Poornachandra, Y; Ganesh Kumar, C; Narsaiah, B

    2016-09-15

    A series of novel pyrazolo[3,4-b]pyridine based target compounds were synthesized starting from the key intermediate ethyl 2-(3-amino-6-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-1-yl)acetate 5 on reaction with hydrazine hydrate followed by reaction with different aldehydes, acid chlorides and isothiocyanates to form hydrazones 7, oxadiazoles 8, 1,2,4 triazoles 10 and thiadiazoles 11 respectively in high yield. All the final compounds were screened for anticancer activity against four human cancer cell lines. Among them, 1,2,4 triazole derivatives showed promising activity and compound 10d is identified as a lead molecule. PMID:27528432

  19. Azide derivatized anticancer agents of Vitamin K 3: X-ray structural, DSC, resonance spectral and API studies

    NASA Astrophysics Data System (ADS)

    Badave, Kirti; Patil, Yogesh; Gonnade, Rajesh; Srinivas, Darbha; Dasgupta, Rajan; Khan, Ayesha; Rane, Sandhya

    2011-12-01

    Compound 1 [1-imino (acetyl hydrazino)-Vitamin K 3], displays valence tautomerically related electronic isomers as Form I and Form II. Form I exhibits 2D packing fragment with 1D ribbon chains of N-H⋯O hydrogen bonds and shows EPR silent features. While Form II is EPR active and exhibits biradical nature with double quantum transitions at g = 2.0040. 1H NMR of compound 2, [1-imino (hydrazino carboxylate)-Vitamin K 3] and Form II exhibit π delocalization via resonance assisted H-bonding [RAHB] effect compared to Form I. Molecular interactions in Form I and II are visualized by DSC. The electronic structures of compounds 1 and 2 have been correlated to their API values by measuring anticancer activities, mitochondrial potentials and DNA shearing patterns. Form II and compound 2 indicate mitochondria mediated apoptosis (˜75% cell death) while Form I causes 35% cell death.

  20. Anticancer activity and chemoprevention of xenobiotic organosulfurs in preclinical model systems

    PubMed Central

    Click, Robert E.

    2014-01-01

    There seems to be little doubt that xenobiotic and plant derived organosulfur compounds have enormous benefits for in vitro cellular functions and for a multitude of diseases, including cancer. Since there are numerous reviews on anticancer activities of plant organosulfurs, the focus herein will be on alterations associated with xenobiotic organosulfurs. Benefits of 2-mercaptoethanol (2-Me), N-Acetyl-cysteine, cysteamine, thioproline, piroxicam, disulfiram, amifostine, sulindac, celecoxib, oltipraz and their derivates on transplanted homologous tumors and on autochthonous cancers with a viral-, radiation-, chemical carcinogen-, and undefined-etiology are assessed. Because all organosulfurs were not tested for activity in each of the etiology categories, comparative evaluations are restricted. In general, all ‘appeared’ to lower the incidence of cancer irrespective of etiology; however, since most of these values were determined at ages much younger than at a natural-end-of-life-age, differences most likely, instead, reflect a delayed initiation and/or a slowed progression of tumorigenesis. The poorest, long-term benefits of early intervention protocols occurred for viral- and chemical carcinogen-induced cancers. In addition, once tumorigenesis was beyond the initiation stage, outcomes of organosulfur therapies were extremely poor, indicating that they will not be of significant value as stand alone treatments. More importantly, except for the lifetime prevention of spontaneous and radiation-induced mammary tumors by daily dietary 2-Me, similar life long prevention of tumorigenesis was not achieved with other xenobiotics or any of nature’s plant organosulfurs. These results raise an interesting question: Is the variability in incidence found for different organosulfurs associated with (a) their structure, (b) the length of the untreated latency period, (c) treatment duration/dose, and/or (d) the etiology-inducing agent? PMID:25383193

  1. A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities.

    PubMed

    Hoshyar, Reyhane; Khayati, Gholam Reza; Poorgholami, Maliheh; Kaykhaii, Massoud

    2016-06-01

    Functionalized nanoparticles are specifically designed to deliver drugs at tumor cells and can potentially enhance anticancer activity of drugs such as crocin. In the present study, we have applied antioxidant crocin as a reducing agent for one pot green synthesis of controlled size gold nanoparticles (AuNPs). Spherical, stable and uniform AuNPs were synthesized using crocin. These AuNPs are characterized by UV-Vis, TEM and XRD techniques. The prepared AuNPs showed surface plasm on resonance centered at 520nm with the average particle size of about 4-10nm. The anti-cancer effect of AuNPs was determined using MTT and LDH tests. The cellular data showed that these AuNPs significantly decreased cancerous cells' growth after 24 and 48hours in a time- and dose-dependent manner (P<0.05). The results suggest that such AuNPs can be synthesized simply and quickly with invaluable clinical as well as pharmaceutical activities which can help to treat human breast cancer. PMID:27085640

  2. Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent.

    PubMed

    Tavakolifard, Sara; Biazar, Esmaeil; Pourshamsian, Khalil; Moslemin, Mohammad H

    2016-08-01

    Single-wall carbon nanotubes (SWCNT) represent a novel nanomaterial applied in various nanotechnology fields because of their surface chemistry properties and high drug cargo capacity. In this study, SWCNT are pre-functionalized covalently with paclitaxel (PTX) - an anticancer drug, and folic acid (FA), as a targeting agent for many tumors. The samples are investigated and evaluated by different analyses such as Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), absorption spectroscopic measurements (UV-Visible), elemental analysis, and cell analyses with cancer cell line cultures. The results show good conjugation of the targeting molecule and the anticancer drug on the surface of the carbon nanotubes (CNT). This work demonstrates that the SWCNT-PTX-FA system is a potentially useful system for the targeted delivery of anticancer drugs. PMID:25783856

  3. A Review on the Synthesis and Anti-cancer Activity of 2-substituted Quinolines.

    PubMed

    Gopaul, Kaalin; Shintre, Suhas A; Koorbanally, Neil A

    2015-01-01

    Quinolines substituted at C-2 on the quinoline scaffold have shown interesting anticancer activity in a number of anticancer assays such as breast (MCF-7, MDA-MB 231), human cervical epithelioid (HeLa), oral squamous cell carcinoma (SAS), human stomach adenocarcinoma (AGS, MKN45), hepatocellular (SKHep, HepG-2, Hep-3B), prostate (PC-3, DU145), lung (A549, H-460), gastric (HGC, MNK-74), leukemia (K562, U937, REH, NALM6, CEM/ADR 5000), colon (Colo-205, HCT 116, SW620, Caco-2, HT29), neuroblastoma (IMR32), CNS (SF-268), oesophageal (EAC) and melanoma (A-375). They have been synthesised by a number of strategies starting with isatin, anilines, nitrobenzenes and benzamides and some even with cyclohexanone and cyclohexa-1,3-diones with ammonium acetate. Many of the synthetic strategies employ the derivatisation of quinoline precursors itself. We review here the synthesis of 145 bioactive anticancer quinolines substituted at the 2-position and their anticancer activity. PMID:25511516

  4. Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019.

    PubMed

    Heffeter, P; Riabtseva, A; Senkiv, Y; Kowol, C R; Körner, W; Jungwith, U; Mitina, N; Keppler, B K; Konstantinova, T; Yanchuk, I; Stoika, R; Zaichenko, A; Berger, W

    2014-05-01

    Ruthenium anticancer drugs belong to the most promising non-platinum anticancer metal compounds in clinical evaluation. However, although the clinical results are promising regarding both activity and very low adverse effects, the clinical application is currently hampered by the limited solubility and stability of the drug in aqueous solution. Here, we present a new nanoparticle formulation based on polymer-based micelles loaded with the anticancer lead ruthenium compound KP1019. Nanoprepared KP1019 was characterised by enhanced stability in aqueous solutions. Moreover, the nanoparticle formulation facilitated cellular accumulation of KP1019 (determined by ICP-MS measurements) resulting in significantly lowered IC50 values. With regard to the mode of action, increased cell cycle arrest in G2/M phase (PI-staining), DNA damage (Comet assay) as well as enhanced levels of apoptotic cell death (caspase 7 and PARP cleavage) were found in HCT116 cells treated with the new nanoformulation of KP1019. Summarizing, we present for the first time evidence that nanoformulation is a feasible strategy for improving the stability as well as activity of experimental anticancer ruthenium compounds. PMID:24734541

  5. Could valproic acid be an effective anticancer agent? The evidence so far.

    PubMed

    Brodie, Seth A; Brandes, Johann C

    2014-10-01

    Valproic acid is an inhibitor of class I histone deacetylases. Epigenetic therapies in cancer have been focus of a keen interest and histone deacetylase inhibitors, in particular, have been approved for certain types of hematologic malignancies. Valproic acid is an attractive candidate for cancer therapy due to its mechanism of action, its low cost and generally good clinical tolerability. In the following editorial, we will review its role as monotherapy for cancer, its place in combination epigenetic therapy, and its role as chemosensitizer, and cancer preventative agent. PMID:25017212

  6. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink

    PubMed Central

    Wilson, Maxwell Z.; Wang, Rurun; Gitai, Zemer; Seyedsayamdost, Mohammad R.

    2016-01-01

    While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal–bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA’s cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed. PMID:26802120

  7. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink.

    PubMed

    Wilson, Maxwell Z; Wang, Rurun; Gitai, Zemer; Seyedsayamdost, Mohammad R

    2016-02-01

    While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal-bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA's cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed. PMID:26802120

  8. Development and validation of a rapid HPLC method for quantitation of SP-141, a novel pyrido[b]indole anticancer agent, and an initial pharmacokinetic study in mice

    PubMed Central

    Nag, Subhasree; Qin, Jiang-Jiang; Voruganti, Sukesh; Wang, Ming-Hai; Sharma, Horrick; Patil, Shivaputra; Buolamwini, John K.; Wang, Wei; Zhang, Ruiwen

    2015-01-01

    There is an increasing interest in targeting the MDM2 oncogene for cancer therapy. SP-141, a novel designed small molecule MDM2 inhibitor, exerts excellent in vitro and in vivo anticancer activity. To facilitate the preclinical development of this candidate anticancer agent, we have developed an HPLC method for the quantitative analysis of SP-141. The method was validated to be precise, accurate, and specific, with a linear range of 16.2–32,400 ng/mL in plasma, 16.2–6480 ng/mL in homogenates of brain, heart, liver, kidneys, lungs, muscle and tumor, and 32.4–6480 ng/mL in spleen homogenates. The lower limit of quantification was 16.2 ng/mL in plasma and all the tissue homogenates, except for spleen homogenates, where it was 32.4 ng/mL. The intra- and inter-assay precisions (coefficient of variation) were between 0.86 and 13.39%, and accuracies (relative errors) ranged from −8.50 to 13.92%. The relative recoveries were 85.6–113.38%. SP-141 was stable in mouse plasma, modestly plasma bound and metabolized by S9 microsomal enzymes. We performed an initial pharmacokinetic study in tumor-bearing nude mice, demonstrating that SP-141 has a short half-life in plasma and wide tissue distribution. In summary, this HPLC method can be used in future preclinical and clinical investigations of SP-141. PMID:25294254

  9. Theoretical research into anticancer activity of diterpenes isolated from the paraiban flora.

    PubMed

    Ishiki, Hamilton; Junior, Francisco J B Mendonça; Santos, Paula F; Tavares, Josean F; Tavares, Josean F; Silva, Marcelo S; Scotti, Marcus T

    2014-07-01

    Many studies of the scientific literature discuss the anticancer activity of diterpenes inhibiting the Akt/IKK/NF-kappaB pro-survival signaling cascade, mainly by the activation of serine/threonine phosphatase PP2A. The aim of this work was to evaluate and compare the anticancer potential of three atisane, three kaurane and three trachylobane diterpenes extracted from the roots of Xylopia langsdorffiana. Thus, we investigated the reactivity (H-L(GAP) parameter), HOMO atmosphere favorable to neutralize the radical reactivity, and the docking of compounds with PP2A. With all approaches, this theoretical study showed that atisane diterpenes have favorable characteristics for antitumor activity, like electron donating ability and greater hydrophilic interactions with the enzyme, by inhibition of Akt/IKK/NF-kappaB, and activation of PP2A. PMID:25230491

  10. Challenges in preclinical to clinical translation for anticancer carrier-mediated agents.

    PubMed

    Lucas, Andrew T; Madden, Andrew J; Zamboni, William C

    2016-09-01

    Major advances in carrier-mediated agents (CMAs), which include nanoparticles and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages over their small-molecule counterparts, there is substantial variability in how individual CMA formulations and patient characteristics affect the pharmacology, pharmacokinetics (PK), and pharmacodynamics (PD) (efficacy and toxicity) of these agents. Development or selection of animal models is used to predict the effects within a particular human disease. A breadth of studies have begun to emphasize the importance of preclinical animal models in understanding and evaluating the interaction between CMAs and the immune system and tumor matrix, which ultimately influences CMA PK (clearance and distribution) and PD (efficacy and toxicity). It is fundamental to study representative preclinical tumor models that recapitulate patients with diseases (e.g., cancer) and evaluate the interplay between CMAs and the immune system, including the mononuclear phagocyte system (MPS), chemokines, hormones, and other immune modulators. Furthermore, standard allometric scaling using body weight does not accurately predict drug clearance in humans. Future studies are warranted to better understand the complex pharmacology and interaction of CMA carriers within individual preclinical models and their biological systems, such as the MPS and tumor microenvironment, and their application to allometric scaling across species. WIREs Nanomed Nanobiotechnol 2016, 8:642-653. doi: 10.1002/wnan.1394 For further resources related to this article, please visit the WIREs website. PMID:26846457