Science.gov

Sample records for active antimicrobial agents

  1. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  2. In vitro antimicrobial activity of peroxide-based bleaching agents.

    PubMed

    Napimoga, Marcelo Henrique; de Oliveira, Rogério; Reis, André Figueiredo; Gonçalves, Reginaldo Bruno; Giannini, Marcelo

    2007-06-01

    Antibacterial activity of 4 commercial bleaching agents (Day White, Colgate Platinum, Whiteness 10% and 16%) on 6 oral pathogens (Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis, Candida albicans, Lactobacillus casei, and Lactobacillus acidophilus) and Staphylococcus aureus were evaluated. A chlorhexidine solution was used as a positive control, while distilled water was the negative control. Bleaching agents and control materials were inserted in sterilized stainless-steel cylinders that were positioned under inoculated agar plate (n = 4). After incubation according to the appropriate period of time for each microorganism, the inhibition zones were measured. Data were analyzed by 2-way analysis of variance and Tukey test (a = 0.05). All bleaching agents and the chlorhexidine solution produced antibacterial inhibition zones. Antimicrobial activity was dependent on peroxide-based bleaching agents. For most microorganisms evaluated, bleaching agents produced inhibition zones similar to or larger than that observed for chlorhexidine. C albicans, L casei, and L acidophilus were the most resistant microorganisms. PMID:17625621

  3. In vitro antimicrobial activity of peroxide-based bleaching agents.

    PubMed

    Napimoga, Marcelo Henrique; de Oliveira, Rogério; Reis, André Figueiredo; Gonçalves, Reginaldo Bruno; Giannini, Marcelo

    2007-06-01

    Antibacterial activity of 4 commercial bleaching agents (Day White, Colgate Platinum, Whiteness 10% and 16%) on 6 oral pathogens (Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis, Candida albicans, Lactobacillus casei, and Lactobacillus acidophilus) and Staphylococcus aureus were evaluated. A chlorhexidine solution was used as a positive control, while distilled water was the negative control. Bleaching agents and control materials were inserted in sterilized stainless-steel cylinders that were positioned under inoculated agar plate (n = 4). After incubation according to the appropriate period of time for each microorganism, the inhibition zones were measured. Data were analyzed by 2-way analysis of variance and Tukey test (a = 0.05). All bleaching agents and the chlorhexidine solution produced antibacterial inhibition zones. Antimicrobial activity was dependent on peroxide-based bleaching agents. For most microorganisms evaluated, bleaching agents produced inhibition zones similar to or larger than that observed for chlorhexidine. C albicans, L casei, and L acidophilus were the most resistant microorganisms.

  4. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics

    PubMed Central

    Tan, Honglue; Ma, Rui; Lin, Chucheng; Liu, Ziwei; Tang, Tingting

    2013-01-01

    Chitosan (CS) is a linear polysaccharide with good biodegradability, biocompatibility and antimicrobial activity, which makes it potentially useful for biomedical applications, including an antimicrobial agent either alone or blended with other polymers. However, the poor solubility of CS in most solvents at neutral or high pH substantially limits its use. Quaternary ammonium CS, which was prepared by introducing a quaternary ammonium group on a dissociative hydroxyl group or amino group of the CS, exhibited improved water solubility and stronger antibacterial activity relative to CS over an entire range of pH values; thus, this quaternary modification increases the potential biomedical applications of CS in the field of anti-infection. This review discusses the current findings on the antimicrobial properties of quaternized CS synthesized using different methods and the mechanisms of its antimicrobial actions. The potential antimicrobial applications in the orthopedic field and perspectives regarding future studies in this field are also considered. PMID:23325051

  5. Biological activity assessment of a novel contraceptive antimicrobial agent.

    PubMed

    Garg, A; Anderson, R A; Zaneveld, L J D; Garg, S

    2005-01-01

    Microbicides are a new category of compounds being developed as a prophylactic approach for the prevention of transmission of sexually transmitted diseases (STDs), including the human immunodeficiency virus (HIV). These are primarily being developed as women-controlled methods, with the target of designing new compounds or formulations that can be used without the knowledge of a male partner. Microbicide screening can be initially based on their hyaluronidase-inhibiting (HI) activity, as this enzyme plays a major role in the sperm and microbe penetration into the substrate. Derivatives of hesperidin, a citrus flavonoid glycoside, have been reported in the literature for their HI effects. Hesperidin was thereby sulphonated under strictly controlled conditions and the active fraction isolated and characterized, based on its HI activity. This derivative was screened for antimicrobial and enzyme-inhibitory activities, specifically for the reproductive tract. Sulphonated hesperidin (SH) was found to completely inhibit the sperm enzymes hyaluronidase, giving an indication toward its contraceptive effects. It was also been found to inhibit various sexually transmitted pathogens, including Chlamydia trachomatis, Neisseria gonorrhoea, HIV, and Herpes Simplex virus type 2 (HSV-2). Its safety assessment was based on its noninterference in sperm motility and its penetration through the cervical mucus, and no effect on the growth of lactobacilli, the normal vaginal flora. It was also found to be nontoxic to the HIV substrate cells (MT2 cells). The study concludes that sulphonated hesperidin can be developed as a potential microbicide for a dual prophylaxis of contraception and transmission of STDs and AIDS. PMID:15867010

  6. Antimicrobials for bacterial bioterrorism agents.

    PubMed

    Sarkar-Tyson, Mitali; Atkins, Helen S

    2011-06-01

    The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

  7. Synthesis and Biological Activities of Organotin(IV) Complexes as Antitumoral and Antimicrobial Agents. A Review.

    PubMed

    Shah, Syed Shoaib Ahmad; Ashfaq, Muhammad; Waseem, Amir; Ahmed, M Mehboob; Najam, Tayyaba; Shaheen, Salma; Rivera, Gildardo

    2015-01-01

    Advances in the use of organotin(IV) compounds have gained relevant interest in both the chemical and pharmaceutical industry. Tin(IV) form stable complexes with a unique structure and physicochemical properties that are used in organic synthesis as heat stabilizers and catalysts, in drug development as biologically active agents, and in other areas. This review focuses on recent progress in the classical and convenient synthesis procedure, on their mechanism of action, and biological activities as antitumoral and antimicrobial agents.

  8. Amphiphilic cationic β(3R3)-peptides: membrane active peptidomimetics and their potential as antimicrobial agents.

    PubMed

    Mosca, Simone; Keller, Janos; Azzouz, Nahid; Wagner, Stefanie; Titz, Alexander; Seeberger, Peter H; Brezesinski, Gerald; Hartmann, Laura

    2014-05-12

    We introduce a novel class of membrane active peptidomimetics, the amphiphilic cationic β(3R3)-peptides, and evaluate their potential as antimicrobial agents. The design criteria, the building block and oligomer synthesis as well as a detailed structure-activity relationship (SAR) study are reported. Specifically, infrared reflection absorption spectroscopy (IRRAS) was employed to investigate structural features of amphiphilic cationic β(3R3)-peptide sequences at the hydrophobic/hydrophilic air/liquid interface. Furthermore, Langmuir monolayers of anionic and zwitterionic phospholipids have been used to model the interactions of amphiphilic cationic β(3R3)-peptides with prokaryotic and eukaryotic cellular membranes in order to predict their membrane selectivity and elucidate their mechanism of action. Lastly, antimicrobial activity was tested against Gram-positive M. luteus and S. aureus as well as against Gram-negative E. coli and P. aeruginosa bacteria along with testing hemolytic activity and cytotoxicity. We found that amphiphilic cationic β(3R3)-peptide sequences combine high and selective antimicrobial activity with exceptionally low cytotoxicity in comparison to values reported in the literature. Overall, this study provides further insights into the SAR of antimicrobial peptides and peptidomimetics and indicates that amphiphilic cationic β(3R3)-peptides are strong candidates for further development as antimicrobial agents with high therapeutic index.

  9. Study of in vitro antibacterial activity of 19 antimicrobial agents against Pseudomonas aeruginosa.

    PubMed

    Wang, R; Sun, X D; Cai, Q M

    1989-04-01

    The in vitro antibacterial activity of 19 antimicrobial agents against 40 strains of P aeruginosa was studied. The 19 antimicrobial agents included 7 semisynthetic penicillins, 6 third generation cephalosporins, 5 aminoglycosides and 1 quinolone agent. The minimal inhibition concentrations (MIGs) were measured by the serial dilution on solid agar. Ceftazidime was the most active in 19 antimicrobial agents again P aeruginosa (MIC50: 1 microgram/ml, MIC90: 2 micrograms/ml) Amikacin and ofloxaxin followed it in activity. Acylureido-penicillins, such as azlocillin, furbenicillin and piperacillin were highly active against P aeruginosa, which could inhibit, 92.5%, 90% and 85% of these strains at a concentration of 8 micrograms/ml. Cefsulodine and cefoperazone were also active against the same strains, inhibiting 92.5% and 99% of the strains at a concentration of 8 micrograms/ml. The potency of the agents mentioned above against P. aeruginosa was similar to that of aminoglycosides. The drug susceptibility of 10 strains isolated in our hospital was compared with that of 29 strains of other hospitals in Beijing. The MICS of 5 penicillins and 3 cephalosporins against the isolates of our hospital was higher than that of other hospitals, suggesting that the susceptibility of beta-lactam antibiotics against isolates of our hospital was lower. The effects of combined use of azlocillin with oxacillin and piperacillin with ofloxacin against 4 strains of carbenicillin-resistant P aeruginosa was studied using check-board testing. The synergy and partial synergy were observed in both combinations.

  10. The in vitro activity of 15 antimicrobial agents against bacterial isolates from dogs.

    PubMed

    Awji, Elias Gebru; Damte, Dereje; Lee, Seung-Jin; Lee, Joong-Su; Kim, Young-Hoan; Park, Seung-Chun

    2012-08-01

    The in vitro activity of 15 antimicrobial agents against clinical isolates of Staphylococcus pseudintermedius, Staphylococcus aureus, Escherichia coli, Pasteurella spp. and Streptococcus canis from dogs was investigated. For Staphylococcus spp., the highest frequency of resistance was observed for penicillin, followed by ampicillin, tetracycline and chloramphenicol. The highest frequency of resistance in E. coli isolates was recorded for tetracycline and streptomycin. Pasteurella spp. and S. canis had the highest resistance rate for tetracycline and chloramphenicol. Most isolates showed full susceptibility to low-level resistance to colistin, florfenicol and fluoroquinolones. Further studies using larger number of isolates from both healthy and diseased dogs would provide a broader picture of antimicrobial resistance at a national level and promote prudent use of antimicrobial agents in companion animals. PMID:22516694

  11. Fluoroquinolone antimicrobial agents.

    PubMed Central

    Wolfson, J S; Hooper, D C

    1989-01-01

    The fluoroquinolones, a new class of potent orally absorbed antimicrobial agents, are reviewed, considering structure, mechanisms of action and resistance, spectrum, variables affecting activity in vitro, pharmacokinetic properties, clinical efficacy, emergence of resistance, and tolerability. The primary bacterial target is the enzyme deoxyribonucleic acid gyrase. Bacterial resistance occurs by chromosomal mutations altering deoxyribonucleic acid gyrase and decreasing drug permeation. The drugs are bactericidal and potent in vitro against members of the family Enterobacteriaceae, Haemophilus spp., and Neisseria spp., have good activity against Pseudomonas aeruginosa and staphylococci, and (with several exceptions) are less potent against streptococci and have fair to poor activity against anaerobic species. Potency in vitro decreases in the presence of low pH, magnesium ions, or urine but is little affected by different media, increased inoculum, or serum. The effects of the drugs in combination with a beta-lactam or aminoglycoside are often additive, occasionally synergistic, and rarely antagonistic. The agents are orally absorbed, require at most twice-daily dosing, and achieve high concentrations in urine, feces, and kidney and good concentrations in lung, bone, prostate, and other tissues. The drugs are efficacious in treatment of a variety of bacterial infections, including uncomplicated and complicated urinary tract infections, bacterial gastroenteritis, and gonorrhea, and show promise for therapy of prostatitis, respiratory tract infections, osteomyelitis, and cutaneous infections, particularly when caused by aerobic gram-negative bacilli. Fluoroquinolones have also proved to be efficacious for prophylaxis against travelers' diarrhea and infection with gram-negative bacilli in neutropenic patients. The drugs are effective in eliminating carriage of Neisseria meningitidis. Patient tolerability appears acceptable, with gastrointestinal or central nervous

  12. Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent

    PubMed Central

    2009-01-01

    Background One of the limitations of antibiotic therapy is that even after successful killing of the infecting microorganism, virulence factors may still be present and cause significant damage to the host. Light-activated antimicrobials show potential for the treatment of topical infections; therefore if these agents can also inactivate microbial virulence factors, this would represent an advantage over conventional antibiotic therapy. Staphylococcus aureus produces a wide range of virulence factors that contribute to its success as a pathogen by facilitating colonisation and destruction of host tissues. Results In this study, the ability of the light-activated antimicrobial agent methylene blue in combination with laser light of 665 nm to inactivate staphylococcal virulence factors was assessed. A number of proteinaceous virulence factors were exposed to laser light in the presence of methylene blue and their biological activities re-determined. The activities of V8 protease, α-haemolysin and sphingomyelinase were shown to be inhibited in a dose-dependent manner by exposure to laser light in the presence of methylene blue. Conclusion These results suggest that photodynamic therapy could reduce the harmful impact of preformed virulence factors on the host. PMID:19804627

  13. In vitro activities of antimicrobial agents against clinical isolates of Flavimonas oryzihabitans obtained from patients with cancer.

    PubMed

    Rolston, K V; Ho, D H; LeBlanc, B; Bodey, G P

    1993-11-01

    We evaluated the in vitro activities of 21 different antimicrobial agents against nine clinical isolates of Flavimonas oryzihabitans obtained from patients with cancer. The organisms were susceptible to most agents commonly used for the empiric therapy (aminoglycosides, ureidopenicillins, extended-spectrum cephalosporins, monobactams, and carbapenems) and prevention of infections (quinolones and trimethoprim-sulfamethoxazole) in this patient population.

  14. In vitro activities of antimicrobial agents against clinical isolates of Flavimonas oryzihabitans obtained from patients with cancer.

    PubMed

    Rolston, K V; Ho, D H; LeBlanc, B; Bodey, G P

    1993-11-01

    We evaluated the in vitro activities of 21 different antimicrobial agents against nine clinical isolates of Flavimonas oryzihabitans obtained from patients with cancer. The organisms were susceptible to most agents commonly used for the empiric therapy (aminoglycosides, ureidopenicillins, extended-spectrum cephalosporins, monobactams, and carbapenems) and prevention of infections (quinolones and trimethoprim-sulfamethoxazole) in this patient population. PMID:8285645

  15. [Resistance to antimicrobial agents, hemolytic activity and plasmids in Aeromonas species].

    PubMed

    Morita, K; Watanabe, N; Kanamori, M

    1990-06-01

    A total of 174 Aeromonas isolates consisting of 100 strains from patients with diarrhea being mainly overseas travellers nd healthy subjects, and 74 strains from environmental sources including foods, fish, fresh water, sea water and river soil collected in the area of Tokyo Metropolis and Kanagawa Prefecture was examined for the antimicrobial resistance, presence of plasmids and hemolytic activity. Almost all the isolates (99.4%) were resistant to aminobenzyl penicillin. The isolation frequency of chloramphenicol- or tetracycline-resistant strain was low. Most environmental isolates of A. hydrophila were resistant to multiple antimicrobial agents. Thirty-seven percent of environmental isolates and 39% of human fecal ones carried plasmids. In environmental isolates, seven A. hydrophila and three A. sobria strains carried 63- to 150-kilobase pair (kb) conjugative R plasmids. Two A. hydrophila strains from both the healthy subject and domestic case with diarrhea carried 58- to 90-kb conjugative R plasmids, respectively. None of the isolates from the feces of overseas traveller's diarrhea carried the plasmid. Irrespective of the sources. A. hydrophila showed the highest hemolytic activity among three Aeromonas species. Eighty percent or more of A. hydrophila isolates were of hemolysin positive. The hemolytic titer of A. hydrophila strains from human feces was higher than that of the strains from environmental sources. PMID:2401817

  16. In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent

    PubMed Central

    2009-01-01

    Background The widespread problem of antibiotic resistance in pathogens such as Staphylococcus aureus has prompted the search for new antimicrobial approaches. In this study we report for the first time the use of a light-activated antimicrobial agent, methylene blue, to kill an epidemic methicillin-resistant Staphylococcus aureus (EMRSA-16) strain in two mouse wound models. Results Following irradiation of wounds with 360 J/cm2 of laser light (670 nm) in the presence of 100 μg/ml of methylene blue, a 25-fold reduction in the number of viable EMRSA was seen. This was independent of the increase in temperature of the wounds associated with the treatment. Histological examination of the wounds revealed no difference between the photodynamic therapy (PDT)-treated wounds and the untreated wounds, all of which showed the same degree of inflammatory infiltration at 24 hours. Conclusion The results of this study demonstrate that PDT is effective at reducing the total number of viable EMRSA in a wound. This approach has promise as a means of treating wound infections caused by antibiotic-resistant microbes as well as for the elimination of such organisms from carriage sites. PMID:19193212

  17. In Vitro Activities of Polycationic Peptides Alone and in Combination with Clinically Used Antimicrobial Agents against Rhodococcus equi

    PubMed Central

    Giacometti, A.; Cirioni, O.; Ancarani, F.; Del Prete, M. S.; Fortuna, M.; Scalise, G.

    1999-01-01

    The in vitro activities of magainin II, nisin, and ranalexin alone and in combination with other antimicrobial agents against six clinical isolates of Rhodococcus equi were investigated by MIC and time-kill studies. All isolates were more susceptible to nisin. A positive interaction was observed when the peptides were combined with ampicillin, ceftriaxone, rifabutin, rifampin, azithromycin, clarithromycin, and vancomycin. PMID:10428947

  18. In vitro activities of polycationic peptides alone and in combination with clinically used antimicrobial agents against Rhodococcus equi.

    PubMed

    Giacometti, A; Cirioni, O; Ancarani, F; Del Prete, M S; Fortuna, M; Scalise, G

    1999-08-01

    The in vitro activities of magainin II, nisin, and ranalexin alone and in combination with other antimicrobial agents against six clinical isolates of Rhodococcus equi were investigated by MIC and time-kill studies. All isolates were more susceptible to nisin. A positive interaction was observed when the peptides were combined with ampicillin, ceftriaxone, rifabutin, rifampin, azithromycin, clarithromycin, and vancomycin. PMID:10428947

  19. Comparative in vitro activity of faropenem and 11 other antimicrobial agents against 250 invasive Streptococcus pneumoniae isolates from France.

    PubMed

    Decousser, J W; Pina, P; Picot, F; Allouch, P Y

    2003-09-01

    The aim of the study presented here was to evaluate the in vitro activity of faropenem, a new member of the penem class intended for oral administration, compared with 11 other antimicrobial agents against a large number of Streptococcus pneumoniae strains isolated from adults and children with bloodstream infections in France. The minimum inhibitory concentration of faropenem against 90% of the pediatric strains tested was generally one to two dilutions lower than the most potent beta-lactam agents (i.e., 0.5 micro g/ml for faropenem vs. 1 for amoxicillin, 1 for cefotaxime and 0.5 micro g/ml for ceftriaxone). Against the adult strains, only moxifloxacin had a MIC(90) value similar to faropenem (i.e., 0.25 micro g/ml for both agents). Faropenem seems to be a promising antimicrobial agent for the treatment of adult and pediatric Streptococcus pneumoniae infections. PMID:12942341

  20. Pharmacogenomics of antimicrobial agents.

    PubMed

    Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J

    2014-01-01

    Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use.

  1. Pharmacogenomics of antimicrobial agents

    PubMed Central

    Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J

    2015-01-01

    Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use. PMID:25495412

  2. In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Fortuna, M; Scalise, G

    1999-11-01

    The in-vitro activity of cecropin P1, indolicidin, magainin II, nisin and ranalexin alone and in combination with nine clinically used antimicrobial agents was investigated against a control strain, Pseudomonas aeruginosa ATCC 27853 and 40 clinical isolates of P. aeruginosa. Antimicrobial activities were measured by MIC, MBC and viable count. In the combination study, the clinically used antibiotics were used at concentrations close to their mean serum level in humans in order to establish the clinical relevance of the results. To select peptide-resistant mutants, P. aeruginosa ATCC 27853 was treated with consecutive cycles of exposure to each peptide at 1 x MIC. The peptides had a varied range of inhibitory values: all isolates were more susceptible to cecropin P1, while ranalexin showed the lowest activity. Nevertheless, synergy was observed when the peptides were combined with polymyxin E and clarithromycin. Consecutive exposures to each peptide at 1 x MIC resulted in the selection of stable resistant mutants. Cationic peptides might be valuable as new antimicrobial agents. Our findings show that they are effective against P. aeruginosa, and that their activity is enhanced when they are combined with clinically used antimicrobial agents, particularly with polymyxin E and clarithromycin. PMID:10552980

  3. ['In vitro' activity of different antimicrobial agents on Gram-negative nonfermentative bacilli, excluding Pseudomonas aeruginosa and Acinetobacter spp].

    PubMed

    Vay, C A; Almuzara, M N; Rodríguez, C H; Pugliese, M L; Lorenzo Barba, F; Mattera, J C; Famiglietti, A M R

    2005-01-01

    Gram-negative nonfermentative bacilli (NFB) are widely spread in the environment. Besides of difficulties for identification, they often have a marked multiresistance to antimicrobial agents, including those active against Pseudomonas aeruginosa. The objective of this study was to evaluate the 'in vitro' activity of different antimicrobial agents on 177 gram-negative nonfermentative bacilli isolates (excluding Pseudomonas aeruginosa and Acinetobacter spp.) isolated from clinical specimens. Minimum inhibitory concentrations (MIC) were determined according to the Mueller Hinton agar dilution method against the following antibacterial agents: ampicillin, piperacillin, piperacillin-tazobactam, sulbactam, cefoperazone, cefoperazone-sulbactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, colistin, gentamicin, amikacin, trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, rifampin, norfloxacin, ciprofloxacin and minocycline. Seven isolates: Sphingobacterium multivorum (2), Sphingobacteriumspiritivorum (1), Empedobacterbrevis (1), Weeksella virosa (1), Bergeyella zoohelcum (1) and Oligella urethralis (1), were tested for amoxicillin-clavulanic acid and ampicillin-sulbactam susceptibility, and susceptibility to cefoperazone or sulbactam was not determined. Multiresistance was generally found in Stenotrophomonas maltophilia, Burkholderia cepacia, Chryseobacterium spp., Myroides spp., Achromobacter xylosoxidans, and Ochrobactrum anthropi isolates. On the other hand, Pseudomonas stutzeri, Shewanella putrefaciens-algae, Sphingomonas paucimobilis, and Pseudomonas oryzihabitans, Bergeyella zoohelcum, Weeksella virosa and Oligella urethralis were widely susceptible to the antibacterial agents tested. As a result of the wide variation in antimicrobial susceptibility shown by different species, a test on susceptibility to different antibacterial agents is essential in order to select an adequate therapy. The marked multiresistance evidenced by some species

  4. ['In vitro' activity of different antimicrobial agents on Gram-negative nonfermentative bacilli, excluding Pseudomonas aeruginosa and Acinetobacter spp].

    PubMed

    Vay, C A; Almuzara, M N; Rodríguez, C H; Pugliese, M L; Lorenzo Barba, F; Mattera, J C; Famiglietti, A M R

    2005-01-01

    Gram-negative nonfermentative bacilli (NFB) are widely spread in the environment. Besides of difficulties for identification, they often have a marked multiresistance to antimicrobial agents, including those active against Pseudomonas aeruginosa. The objective of this study was to evaluate the 'in vitro' activity of different antimicrobial agents on 177 gram-negative nonfermentative bacilli isolates (excluding Pseudomonas aeruginosa and Acinetobacter spp.) isolated from clinical specimens. Minimum inhibitory concentrations (MIC) were determined according to the Mueller Hinton agar dilution method against the following antibacterial agents: ampicillin, piperacillin, piperacillin-tazobactam, sulbactam, cefoperazone, cefoperazone-sulbactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, colistin, gentamicin, amikacin, trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, rifampin, norfloxacin, ciprofloxacin and minocycline. Seven isolates: Sphingobacterium multivorum (2), Sphingobacteriumspiritivorum (1), Empedobacterbrevis (1), Weeksella virosa (1), Bergeyella zoohelcum (1) and Oligella urethralis (1), were tested for amoxicillin-clavulanic acid and ampicillin-sulbactam susceptibility, and susceptibility to cefoperazone or sulbactam was not determined. Multiresistance was generally found in Stenotrophomonas maltophilia, Burkholderia cepacia, Chryseobacterium spp., Myroides spp., Achromobacter xylosoxidans, and Ochrobactrum anthropi isolates. On the other hand, Pseudomonas stutzeri, Shewanella putrefaciens-algae, Sphingomonas paucimobilis, and Pseudomonas oryzihabitans, Bergeyella zoohelcum, Weeksella virosa and Oligella urethralis were widely susceptible to the antibacterial agents tested. As a result of the wide variation in antimicrobial susceptibility shown by different species, a test on susceptibility to different antibacterial agents is essential in order to select an adequate therapy. The marked multiresistance evidenced by some species

  5. Effect of mixed antimicrobial agents and flavors in active packaging films.

    PubMed

    Gutiérrez, Laura; Escudero, Ana; Batlle, Ramón; Nerín, Cristina

    2009-09-23

    Active packaging is an emerging food technology to improve the quality and safety of food products. Many works have been developed to study the antimicrobial activity of essential oils. Essential oils have been traditionally used as flavorings in food, so they have an important odor impact but they have as well antimicrobial properties that could be used to protect the food. Recent developments in antimicrobial active packaging showed the efficiency of essential oils versus bread and bakery products among other applications. However, one of the main problems to face is the odor and taste they could provide to the packaged food. Using some aromas to mask the odor could be a good approach. That is why the main objective of this paper is to develop an antimicrobial packaging material based on the combination of the most active compounds of essential oils (hydrocinnamaldehyde, oregano essential oil, cinnamaldehyde, thymol, and carvacrol) together with some aromas commonly used in the food industry. A study of the concentration required to get the antimicrobial properties, the organoleptic compatibility with typical aroma present in many food systems (vanilla, banana, and strawberry), and the right combination of both systems has been carried out. Antimicrobial tests of both the mentioned aromas, the main components of some essential oils, and the combination of both groups were carried out against bacteria (Enterococcus faecalis, Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonella choleraesuis, Yersinia enterocolitica, Escherichia coli), yeasts (Candida albicans, Debaryomyces hansenii, Zygosaccharomyces rouxii), and molds (Botrytis cinerae, Aspergillus flavus, Penicillium roqueforti, Eurotium repens, Penicillium islandicum, Penicillium commune, Penicillium nalgiovensis). The sensory properties of the combinations were evaluated with a triangular test and classification was by an order test; the odor threshold of the aroma compounds was also

  6. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  7. In vitro activities of enoxacin, ticarcillin plus clavulanic acid, aztreonam, piperacillin, and imipenem and comparison with commonly used antimicrobial agents.

    PubMed Central

    Henry, D; Skidmore, A G; Ngui-Yen, J; Smith, A; Smith, J A

    1985-01-01

    A total of 745 gram-negative and 313 gram-positive clinical isolates were tested against enoxacin, ticarcillin plus clavulanic acid, aztreonam, imipenem, and piperacillin and compared with commonly used antimicrobial agents. Ticarcillin plus clavulanic acid, imipenem, and piperacillin were active against Pseudomonas aeruginosa and Acinetobacter spp. and most Pseudomonas spp. Aztreonam was active against members of the family Enterobacteriaceae but was less effective against the nonfermenters. Enoxacin was active against the Enterobacteriaceae, P. aeruginosa, the staphylococci, and most Acinetobacter spp. but was less active against Pseudomonas spp. and streptococci. Imipenem was very active against all gram-positive and -negative organisms tested except for Pseudomonas maltophilia. PMID:3869433

  8. In vitro susceptibility of Bordetella parapertussis to various antimicrobial agents.

    PubMed Central

    Watanabe, M; Haraguchi, Y

    1989-01-01

    The in vitro activity of 18 antimicrobial agents against 32 strains of Bordetella parapertussis isolated from whooping cough patients was studied. The most active antimicrobial agents were piperacillin and minocycline, followed (in descending order of activity) by moxalactam, erythromycin, cefoperazone, tetracycline, ampicillin, cefotaxime, chloramphenicol, josamycin, sulfamethoxazole, and nalidixic acid. Isolates were resistant to benzylpenicillin, cephalothin, cefatrizine, cefaclor, streptomycin, and cephalexin. PMID:2764546

  9. Lipid composition and sensitivity of Prototheca wickerhamii to membrane-active antimicrobial agents.

    PubMed Central

    Sud, I J; Feingold, D S

    1979-01-01

    The lipid composition of Prototheca wickerhamii ATCC 16529 is presented and discussed in relation to the unique susceptibility of the organism to drugs of three membrane-active antimicrobial classes: the polyenes, the polymyxins, and the imidazoles. The presence of ergosterol in the neutral lipid fraction of the membrane is likely responsible for the exquisite susceptibility to amphotericin B. The presence of a large quantity of free fatty acids in the membrane appears responsible for imidazole susceptibility. The membrane determinants of polymyxin B susceptibility are less well defined. PMID:518077

  10. Spectrum of antimicrobial activity and user acceptability of the hand disinfectant agent Sterillium Gel.

    PubMed

    Kampf, G; Rudolf, M; Labadie, J-C; Barrett, S P

    2002-10-01

    The antimicrobial efficacy of alcohol-based hand gels has been shown to be significantly less than liquid hand rubs probably because of a lower concentration of alcohol. Sterillium Gel is the first hand gel with 85% ethanol. Its antimicrobial efficacy and user acceptability was studied. Bactericidal activity was tested according to prEN 12054 against Staphylococcus aureus, Enterococcus hirae, Pseudomonas aeruginosa and Escherichia coli (suspension test) and EN 1500 (15 volunteers; four replicates), fungicidal activity according to EN 1275 against Candida albicans and spores of Aspergillus niger (suspension test) and tuberculocidal activity against Mycobacterium terrae using the DGHM suspension test. Virucidal activity was determined in suspension tests based on reduction of infectivity with and without interfering substances (10% fetal calf serum; 0.3% erythrocytes and 0.3% bovine serum albumin). Ninety-six healthcare workers in hospitals in France and the UK used the gel for four weeks and assessed it by filling out a questionnaire. The gel was bactericidal (a reduction factor of > 10(5)-fold), tuberculocidal (reduction factor > 10(5)) and fungicidal (reduction factor > 10(4)) in 30 s. Irrespective of interfering substances the gel inactivated orthopoxvirus and herpes simplex virus type 1 and 2 in 15 s, adenovirus in 2 min, poliovirus in 3 min and papovavirus in 15 min by a factor of > 10(4)-fold. Rotavirus and human immunodeficiency virus were inactivated in 30 s (without interfering substances). Under practical use conditions it was as effective in 30 s as the reference alcohol in 60 s. Most users described the tackiness, aggregation, skin feeling after use and smell as positive or acceptable. A total of 65.6% assessed the new gel to be better than a comparator irrespective of its type (gel or liquid). Overall Sterillium Gel had a unique spectrum of antimicrobial activity. It is probably the first alcohol-based hand gel to pass EN 1500 in 30 s. Due to the

  11. Spectrum of antimicrobial activity and user acceptability of the hand disinfectant agent Sterillium Gel.

    PubMed

    Kampf, G; Rudolf, M; Labadie, J-C; Barrett, S P

    2002-10-01

    The antimicrobial efficacy of alcohol-based hand gels has been shown to be significantly less than liquid hand rubs probably because of a lower concentration of alcohol. Sterillium Gel is the first hand gel with 85% ethanol. Its antimicrobial efficacy and user acceptability was studied. Bactericidal activity was tested according to prEN 12054 against Staphylococcus aureus, Enterococcus hirae, Pseudomonas aeruginosa and Escherichia coli (suspension test) and EN 1500 (15 volunteers; four replicates), fungicidal activity according to EN 1275 against Candida albicans and spores of Aspergillus niger (suspension test) and tuberculocidal activity against Mycobacterium terrae using the DGHM suspension test. Virucidal activity was determined in suspension tests based on reduction of infectivity with and without interfering substances (10% fetal calf serum; 0.3% erythrocytes and 0.3% bovine serum albumin). Ninety-six healthcare workers in hospitals in France and the UK used the gel for four weeks and assessed it by filling out a questionnaire. The gel was bactericidal (a reduction factor of > 10(5)-fold), tuberculocidal (reduction factor > 10(5)) and fungicidal (reduction factor > 10(4)) in 30 s. Irrespective of interfering substances the gel inactivated orthopoxvirus and herpes simplex virus type 1 and 2 in 15 s, adenovirus in 2 min, poliovirus in 3 min and papovavirus in 15 min by a factor of > 10(4)-fold. Rotavirus and human immunodeficiency virus were inactivated in 30 s (without interfering substances). Under practical use conditions it was as effective in 30 s as the reference alcohol in 60 s. Most users described the tackiness, aggregation, skin feeling after use and smell as positive or acceptable. A total of 65.6% assessed the new gel to be better than a comparator irrespective of its type (gel or liquid). Overall Sterillium Gel had a unique spectrum of antimicrobial activity. It is probably the first alcohol-based hand gel to pass EN 1500 in 30 s. Due to the

  12. Stability of antimicrobial agents in peritoneal dialysate.

    PubMed Central

    Sewell, D L; Golper, T A

    1982-01-01

    The stability of cephapirin, gentamicin, penicillin G, nafcillin, ticarcillin, and vancomycin was tested in peritoneal dialysate at 25 degrees C for 24 h. All of the antimicrobial agents were stable except penicillin G, which lost 25% of activity over 24 h (P less than 0.01). The once-daily preparation of drug-dialysate solution is feasible for the treatment of peritonitis in patients on continuous ambulatory peritoneal dialysis. PMID:7103451

  13. Development of flexible antimicrobial films using essential oils as active agents.

    PubMed

    López, P; Sánchez, C; Batlle, R; Nerín, C

    2007-10-17

    The antimicrobial activity in the vapor-phase of laboratory-made flexible films of polypropylene (PP) and polyethylene/ethylene vinyl alcohol copolymer (PE/EVOH) incorporating essential oil of cinnamon ( Cinnamomum zeylanicum), oregano ( Origanum vulgare), clove ( Syzygium aromaticum), or cinnamon fortified with cinnamaldehyde was evaluated against a wide range of microorganisms: the Gram-negative bacteria Escherichia coli, Yersinia enterocolitica, Pseudomonas aeruginosa, and Salmonella choleraesuis; the Gram-positive bacteria Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis; the molds Penicillium islandicum, Penicillium roqueforti, Penicillium nalgiovense, Eurotium repens, and A spergillus flavus and the yeasts Candida albicans, Debaryomyces hansenii, and Zigosaccharomyces rouxii. Films with a nominal concentration of 4% (w/w) of fortified cinnamon or oregano essential oil completely inhibited the growth of the fungi; higher concentrations were required to inhibit the Gram-positive bacteria (8 and 10%, respectively), and higher concentrations still were necessary to inhibit the Gram-negative bacteria. PP films were more effective than PE/EVOH films. The atmospheres generated by the antimicrobial films inside Petri dishes were quantitatively analyzed using headspace-single drop microextraction (HS-SDME) in combination with gas chromatography-mass spectrometry (GC-MS). The analyses showed that the oregano-fortified PP films released higher levels of carvacrol and thymol, and the cinnamon-fortified PP films released higher levels of cinnamaldehyde, during the first 3-6 h of incubation, than the corresponding PE/EVOH films. Shelf-life tests were also performed, demonstrating that the antifungal activities of the films persisted for more than two months after their manufacture. In addition, migration tests (overall and specific) were performed, using both aqueous and fatty simulants, to ensure that the films meet EU regulations

  14. Screening of natural products for antimicrobial agents.

    PubMed

    Silver, L; Bostian, K

    1990-07-01

    Antimicrobial research is geared toward the discovery and development of novel chemical structures such as therapeutic antimicrobial agents. The continuing problem of development of resistance to existing antibacterial agents and the dearth of good antifungal agents motivates this effort toward innovation. Selection of possible new enzyme targets for antibiotic inhibition may be made on theoretical grounds, but it appears premature to select any single, previously unvalidated target for the intensive study required for rational drug design. Instead, a broad screen of chemical entities can be undertaken, dedicated to the discovery of novel antimicrobial inhibitors. A number of target areas are under investigation, including fungal mRNA splicing and bacterial DNA synthesis. A major part of the endeavor is in the historically productive area of natural product screening. To make the best use of natural product resources for the discovery of novel antibiotics, a balance is struct between screening for inhibitors of rationally chosen targets for which clinically useful inhibitors are not yet available, and screening more broadly to ensure that rare activities of unanticipated mode-of-action are not missed.

  15. Antimicrobial activities of squalamine mimics.

    PubMed

    Kikuchi, K; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-07-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and fungi. Some had little or no hemolytic activity. The hydrophobicity of the sterol backbone and the length and the cationic charge of the side chains appeared to be critical determinants of activity. One of the squalamine mimics, SM-7, was bactericidal against Escherichia coli, Pseudomonas aeruginosa, and S. aureus; its activity was decreased by divalent or monovalent cations and by bovine serum albumin. Subinhibitory concentrations of SM-7 markedly enhanced the antimicrobial activity of rifampin against gram-negative rods. These results suggest that the compounds may disrupt an outer membrane of gram-negative rods. Squalamine mimics are a new class of broad-spectrum antimicrobial agents. The antagonism of their activity by serum and albumin and their hemolytic properties may limit their use as systemic agents. The squalamine mimics, because of their potencies, broad spectra of antimicrobial activity, and potential for systemic toxicity, appear to be good candidates for development as topical antimicrobial agents. PMID:9210661

  16. Repurposing celecoxib as a topical antimicrobial agent

    PubMed Central

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N.

    2015-01-01

    There is an urgent need for new antibiotics and alternative strategies to combat multidrug-resistant bacterial pathogens, which are a growing clinical issue. Repurposing existing approved drugs with known pharmacology and toxicology is an alternative strategy to accelerate antimicrobial research and development. In this study, we show that celecoxib, a marketed inhibitor of cyclooxygenase-2, exhibits broad-spectrum antimicrobial activity against Gram-positive pathogens from a variety of genera, including Staphylococcus, Streptococcus, Listeria, Bacillus, and Mycobacterium, but not against Gram-negative pathogens. However, celecoxib is active against all of the Gram-negative bacteria tested, including strains of, Acinetobacter, and Pseudomonas, when their intrinsic resistance is artificially compromised by outer membrane permeabilizing agents such as colistin. The effect of celecoxib on incorporation of radioactive precursors into macromolecules in Staphylococcus aureus was examined. The primary antimicrobial mechanism of action of celecoxib was the dose-dependent inhibition of RNA, DNA, and protein synthesis. Further, we demonstrate the in vivo efficacy of celecoxib in a methicillin-resistant S. aureus (MRSA) infected Caenorhabditis elegans whole animal model. Topical application of celecoxib (1 and 2%) significantly reduced the mean bacterial count in a mouse model of MRSA skin infection. Further, celecoxib decreased the levels of all inflammatory cytokines tested, including tumor necrosis factor-α, interleukin-6, interleukin-1 beta, and monocyte chemo attractant protein-1 in wounds caused by MRSA infection. Celecoxib also exhibited synergy with many conventional antimicrobials when tested against four clinical isolates of S. aureus. Collectively, these results demonstrate that celecoxib alone, or in combination with traditional antimicrobials, has a potential to use as a topical drug for the treatment of bacterial skin infections. PMID:26284040

  17. Discovery and development of new antimicrobial agents.

    PubMed Central

    Gootz, T D

    1990-01-01

    The unprecedented growth in the number of new antibiotics over the past two decades has been the result of extensive research efforts that have exploited the growing body of knowledge describing the interactions of antibiotics with their targets in bacterial cells. Information gained from one class of antimicrobial agents has often been used to advance the development of other classes. In the case of beta-lactams, information on structure-activity relationships gleaned from penicillins and cephalosporins was rapidly applied to the cephamycins, monobactams, penems, and carbapenems in order to discover broad-spectrum agents with markedly improved potency. These efforts have led to the introduction of many new antibiotics that demonstrate outstanding clinical efficacy and improved pharmacokinetics in humans. The current review discusses those factors that have influenced the rapid proliferation of new antimicrobial agents, including the discovery of new lead structures from natural products and the impact of bacterial resistance development in the clinical setting. The development process for a new antibiotic is discussed in detail, from the stage of early safety testing in animals through phase I, II, and III clinical trials. PMID:2404566

  18. Analyses comparing the antimicrobial activity and safety of current antiseptic agents: a review.

    PubMed

    Hibbard, John S

    2005-01-01

    This article reviews the results and conclusions from four pivotal and two comparative clinical trials. The six randomized, controlled, single-blinded, parallel-group clinical trials were conducted to determine which antiseptic is best for use as a patient preoperative skin preparation. The objective of these studies was to compare the immediate, persistent (residual), and cumulative antimicrobial efficacy and safety of 2% chlorhexidine gluconate (CHG) combined with 70% isopropyl alcohol (IPA) (ChloraPrep); another combination CHG and IPA antiseptic (CHG+IPA) and 2% aqueous CHG alone; 4% CHG (Hibiclens) alone; 70% isopropyl alcohol (IPA) alone; and an iodine-containing solution, 10% povidone-iodine (Betadine) alone as preoperative skin topical antiseptics for potential prevention of nosocomial infections.

  19. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent

    PubMed Central

    Zorec, Maša; Stopar, David

    2016-01-01

    Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria. PMID:27612193

  20. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent.

    PubMed

    Danevčič, Tjaša; Borić Vezjak, Maja; Zorec, Maša; Stopar, David

    2016-01-01

    Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria. PMID:27612193

  1. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent.

    PubMed

    Danevčič, Tjaša; Borić Vezjak, Maja; Zorec, Maša; Stopar, David

    2016-01-01

    Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria.

  2. Antimicrobial Activity of Lippia Species from the Brazilian Semiarid Region Traditionally Used as Antiseptic and Anti-Infective Agents

    PubMed Central

    Pinto, Cristiana da Purificação; Rodrigues, Velize Dias; Pinto, Fernanda da Purificação; Pinto, Renata da Purificação; Uetanabaro, Ana Paula Trovatti; Pinheiro, Carla Santos Ribeiro; Gadea, Suzana Ferreira Magalhães; Silva, Tânia Regina dos Santos; Lucchese, Angélica Maria

    2013-01-01

    Lippia origanoides Kunth, Lippia alnifolia Schauer, and Lippia thymoides Martius and Schauer are shrubs used in the traditional Brazilian medicine as antiseptics, as well as in the treatment of infectious diseases. This study was designed to investigate the antibacterial and antifungal activities of the methanolic extracts of these species, as new potential sources of antimicrobial drugs. The antimicrobial activity of methanolic extracts was investigated against resistant yeasts and bacteria by agar disk diffusion. Then, the MIC determination of the most active species and its fractions in hexane, dichloromethane, ethyl acetate, and water was performed. By the agar diffusion assay, all species were active against at least two microorganisms, giving evidence to support their use in the popular medicine. L. origanoides leaves exhibited the widest antimicrobial action, inhibiting the growth of two Gram-positive bacteria and two yeasts; this activity was also confirmed by the MIC evaluation. The fractionation of L. origanoides crude extracts improved the activity in spectrum and intensity. The results obtained in this study indicate that L. origanoides may be a promising alternative in the treatment of bacterial and fungal infections and in the seeking of new antimicrobial drugs. PMID:24109492

  3. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  4. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  5. The comparative activity of pefloxacin, enoxacin, ciprofloxacin and 13 other antimicrobial agents against enteropathogenic microorganisms.

    PubMed

    Vanhoof, R; Hubrechts, J M; Roebben, E; Nyssen, H J; Nulens, E; Leger, J; De Schepper, N

    1986-01-01

    In this study, we compared the activity of pefloxacin, enoxacin and ciprofloxacin against 269 enteropathogenic strains (Campylobacter jejuni, enteropathogenic Escherichia coli, Salmonella typhi, Shigella spp., Vibrio cholerae and Yersinia enterocolitica) with that of rosoxacin, flumequin, nifuroxazide, erythromycin, chloramphenicol, ampicillin, cefotaxime, tetracycline, amikacin, netilmicin, sulfamethoxazole, trimethoprim and co-trimoxazole. Pefloxacin, enoxacin and ciprofloxacin were always among the most active compounds. Furthermore, resistant strains or strains with elevated MIC values were not found. The MIC90 value for these three compounds was less than or equal to 0.25 mg/l, except for C. jejuni where it was 0.3 mg/l and 1.4 mg/l for pefloxacin and enoxacin, respectively. PMID:3546145

  6. Structural activity relationship studies of zebra mussel antifouling and antimicrobial agents from verongid sponges.

    PubMed

    Diers, Jeffrey A; Pennaka, Hari Kishore; Peng, Jiangnan; Bowling, John J; Duke, Stephen O; Hamann, Mark T

    2004-12-01

    Several dibromotyramine derivatives including moloka'iamine were selected as potential zebra mussel (Dreissena polymorpha) antifoulants due to the noteworthy absence of fouling observed on sponges of the order Verongida. Sponges of the order Verongida consistently produce these types of bromotyrosine-derived secondary metabolites. Previously reported antifouling data for the barnacle Balanus amphitrite(EC50 = 12.2 microM) support the results reported here that the compound moloka'iamine may be a potential zebra mussel antifoulant compound (EC50 = 10.4 microM). The absence of phytotoxic activity of the compound moloka'iamine toward Lemna pausicostata and, most importantly, the compound's significant selectivity against macrofouling organisms such as zebra mussels suggest the potential utility of this compound as a naturally derived antifoulant lead.

  7. Structural Activity Relationship Studies of Zebra Mussel Antifouling and Antimicrobial Agents from Verongid Sponges

    PubMed Central

    Diers, Jeffrey A.; Pennaka, Hari Kishore; Peng, Jiangnan; Bowling, John J.; Duke, Stephen O.; Hamann, Mark T.

    2016-01-01

    Several dibromotyramine derivatives including moloka’iamine were selected as potential zebra mussel (Dreissena polymorpha) antifoulants due to the noteworthy absence of fouling observed on sponges of the order Verongida. Sponges of the order Verongida consistently produce these types of bromotyrosine-derived secondary metabolites. Previously reported antifouling data for the barnacle Balanus amphitrite (EC50 = 12.2 μM) support the results reported here that the compound moloka’iamine may be a potential zebra mussel antifoulant compound (EC50 = 10.4 μM). The absence of phytotoxic activity of the compound moloka’iamine toward Lemna pausicostata and, most importantly, the compound’s significant selectivity against macrofouling organisms such as zebra mussels suggest the potential utility of this compound as a naturally derived antifoulant lead. PMID:15620267

  8. Plant Products as Antimicrobial Agents

    PubMed Central

    Cowan, Marjorie Murphy

    1999-01-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and “leads” which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations. PMID:10515903

  9. Antimicrobial peptides: Possible anti-infective agents.

    PubMed

    Lakshmaiah Narayana, Jayaram; Chen, Jyh-Yih

    2015-10-01

    Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents.

  10. Synthesis and Biological Evaluation of N- Pyrazolyl Derivatives and Pyrazolopyrimidine Bearing a Biologically Active Sulfonamide Moiety as Potential Antimicrobial Agent.

    PubMed

    Hafez, Hend N; El-Gazzar, Abdel-Rhman B A

    2016-01-01

    A series of novel pyrazole-5-carboxylate containing N-triazole derivatives 3,4; different heterocyclic amines 7a-b and 10a-b; pyrazolo[4,3-d]pyrimidine containing sulfa drugs 14a,b; and oxypyrazolo[4,3-d]pyrimidine derivatives 17, 19, 21 has been synthesized. The structure of the newly synthesized compounds was elucidated on the basis of analytical and spectral analyses. All compounds have been screened for their in vitro antimicrobial activity against three gram-positive and gram-negative bacteria as well as three fungi. The results revealed that compounds 14b and 17 had more potent antibacterial activity against all bacterial strains than reference drug Cefotaxime. Moreover compounds 4, 7b, and 12b showed excellent antifungal activities against Aspergillus niger and Candida albicans in low inhibitory concentrations but slightly less than the reference drug miconazole against Aspergillus flavus. PMID:27589717

  11. Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity

    PubMed Central

    Patil, Vaibhav; Khade, Monika; Goshi, Ekta; Sharon, Madhuri

    2014-01-01

    A novel report on microwave assisted synthesis of bright carbon dots (C-dots) using gum arabic (GA) and its use as molecular vehicle to ferry ciprofloxacin hydrochloride, a broad spectrum antibiotic, is reported in the present work. Density gradient centrifugation (DGC) was used to separate different types of C-dots. After careful analysis of the fractions obtained after centrifugation, ciprofloxacin was attached to synthesize ciprofloxacin conjugated with C-dots (Cipro@C-dots conjugate). Release of ciprofloxacin was found to be extremely regulated under physiological conditions. Cipro@C-dots were found to be biocompatible on Vero cells as compared to free ciprofloxacin (1.2 mM) even at very high concentrations. Bare C-dots (∼13 mg mL−1) were used for microbial imaging of the simplest eukaryotic model—Saccharomyces cerevisiae (yeast). Bright green fluorescent was obtained when live imaging was performed to view yeast cells under fluorescent microscope suggesting C-dots incorporation inside the cells. Cipro@C-dots conjugate also showed enhanced antimicrobial activity against both model gram positive and gram negative microorganisms. Thus, the Cipro@C-dots conjugate paves not only a way for bioimaging but also an efficient new nanocarrier for controlled drug release with high antimicrobial activity, thereby serving potential tool for theranostics. PMID:24744921

  12. Diphosphonium Ionic Liquids as Broad Spectrum Antimicrobial Agents

    PubMed Central

    O’Toole, George A.; Wathier, Michel; Zegans, Michael E.; Shanks, Robert M.Q.; Kowalski, Regis; Grinstaff, Mark W.

    2011-01-01

    Purpose One of the most disturbing trends in recent years is the growth of resistant strains of bacteria with the simultaneous dearth of new antimicrobial agents. Thus, new antimicrobial agents for use on the ocular surface are needed. Methods We synthesized a variety of ionic liquid compounds, which possess two positively charged phosphonium groups separated by ten methylene units in a “bola” type configuration. We tested these compounds for antimicrobial activity versus a variety of ocular pathogens, as well as their cytoxicity in vitro in a corneal cell line and in vivo in mice. Results The ionic liquid Di-Hex C10 demonstrated broad in vitro antimicrobial activity at the low micromolar concentrations versus Gram-negative and Gram-positive organisms, including methicillin-resistant Staphylococcus aureus strains, as well as ocular fungal pathogens. Treatment with Di-Hex C10 resulted in bacterial killing in as little as 15 minutes in vitro. Di-Hex C10 showed little cytotoxicity at 1 μM versus a corneal epithelial cell line or at 10 μM in a mouse corneal wound model. We also show that this bis-phosphonium ionic liquid structure is key, as a comparable mono phosphonium ionic liquid is cytotoxic to both bacteria and corneal epithelial cells. Conclusions Here we report the first use of dicationic bis-phosphonium ionic liquids as antimicrobial agents. Our data suggest that diphosphonium ionic liquids may represent a new class of broad-spectrum antimicrobial agents for use on the ocular surface. PMID:22236790

  13. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice

    PubMed Central

    Niska, Karolina; Knap, Narcyz; Kędzia, Anna; Jaskiewicz, Maciej; Kamysz, Wojciech; Inkielewicz-Stepniak, Iwona

    2016-01-01

    Objectives: In dentistry, silver nanoparticles (AgNPs) have drawn particular attention because of their wide antimicrobial activity spectrum. However, controversial information on AgNPs toxicity limited their use in oral infections. Therefore, the aim of the present study was to evaluate the antibacterial activities against a panel of oral pathogenic bacteria and bacterial biofilms together with potential cytotoxic effects on human gingival fibroblasts of 10 nm AgNPs: non-functionalized - uncapped (AgNPs-UC) as well as surface-functionalized with capping agent: lipoic acid (AgNPs-LA), polyethylene glycol (AgNPs-PEG) or tannic acid (AgNPs-TA) using silver nitrate (AgNO3) as control. Methods: The interaction of AgNPs with human gingival fibroblast cells (HGF-1) was evaluated using the mitochondrial metabolic potential assay (MTT). Antimicrobial activity of AgNPs was tested against anaerobic Gram-positive and Gram-negative bacteria isolated from patients with oral cavity and respiratory tract infections, and selected aerobic Staphylococci strains. Minimal inhibitory concentration (MIC) values were determined by the agar dilution method for anaerobic bacteria or broth microdilution method for reference Staphylococci strains and Streptococcus mutans. These strains were also used for antibiofilm activity of AgNPs. Results: The highest antimicrobial activities at nontoxic concentrations were observed for the uncapped AgNPs and the AgNPs capped with LA. It was found that AgNPs-LA and AgNPs-PEG demonstrated lower cytotoxicity as compared with the AgNPs-TA or AgNPs-UC in the gingival fibroblast model. All of the tested nanoparticles proved less toxic and demonstrated wider spectrum of antimicrobial activities than AgNO3 solution. Additionally, AgNPs-LA eradicated Staphylococcus epidermidis and Streptococcus mutans 1-day biofilm at concentration nontoxic to oral cells. Conclusions: Our results proved that a capping agent had significant influence on the antibacterial

  14. Antimicrobial activity of borate-buffered solutions.

    PubMed Central

    Houlsby, R D; Ghajar, M; Chavez, G O

    1986-01-01

    A minimal salts medium adjusted to physiological pH and osmolality was buffered with either 0.3% phosphate or 1.2% borate and evaluated for antimicrobial activity. The borate-buffered medium, either with or without a carbon source, exhibited significant antimicrobial activity against 15 Pseudomonas strains, 12 strains of enteric bacteria, and 7 strains of staphylococci. The borate-buffered system appears suitable for use as a generic vehicle for ophthalmic pharmaceutical agents. PMID:3729341

  15. Synthesis of riccardin D derivatives as potent antimicrobial agents.

    PubMed

    Sun, Bin; Zhang, Ming; Li, Ying; Hu, Qing-Wen; Zheng, Hong-Bo; Chang, Wen-Qiang; Lou, Hong-Xiang

    2016-08-01

    We describe the synthesis and biological evaluation of riccardin D derivatives, a novel class of antimicrobial molecules. Structural diversification of these derivatives was achieved by introducing hydroxy, methoxy, and bromine into the aromatic rings of riccardin D. The antimicrobial evaluation of these compounds was performed as in vitro assays against clinically isolated bacteria and fungi. The introduction of bromine atom into the arene B of riccardin D led to several strongly active antibacterial compounds with a MIC value ranging from 0.5 to 4μg/mL for Staphylococcus aureus, both methicillin-sensitive and -resistant strains. Antifungal tests found compound 34 was the most potent molecule with a MIC value of 2μg/mL against Candida albicans. This initial biological evaluation suggests that these novel molecules merit further investigation as potential antimicrobial agents. PMID:27297569

  16. Activity of telavancin and comparator antimicrobial agents tested against Staphylococcus spp. isolated from hospitalised patients in Europe (2007-2008).

    PubMed

    Mendes, Rodrigo E; Sader, Helio S; Jones, Ronald N

    2010-10-01

    The activity of telavancin was evaluated against Staphylococcus spp. collected from European hospitals as part of an international surveillance study (2007-2008). A total of 7534 staphylococcal clinical isolates [5726 Staphylococcus aureus and 1808 coagulase-negative staphylococci (CoNS)] were included. Isolates were tested for susceptibility according to reference methods and minimum inhibitory concentration (MIC) values were interpreted based on Clinical and Laboratory Standards Institute (CLSI) 2010 and European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2009 criteria. Telavancin breakpoints approved by the US Food and Drug Administration (FDA) were applied. Telavancin activity was evaluated against meticillin-resistant S. aureus (MRSA) displaying several antibiogram resistance patterns, including multidrug-resistant isolates. Telavancin was active against S. aureus [MIC(50/90) values (MICs for 50% and 90% of the isolates, respectively)=0.12/0.25mg/L; 100.0% susceptible] and CoNS (MIC(50/90)=0.12/0.25mg/L), inhibiting all isolates at < or =0.5mg/L. Similar results were observed when S. aureus were stratified by year or country of origin (MIC(50/90)=0.12/0.25mg/L). When MRSA isolates were clustered according to 48 different resistance patterns, telavancin showed consistent MIC(90) values (0.25mg/L) regardless of multidrug resistance. Amongst CoNS, telavancin was slightly more active against Staphylococcus capitis, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus lugdunensis and Staphylococcus xylosus (MIC(50)=0.12 mg/L) compared with Staphylococcus haemolyticus, Staphylococcus saprophyticus and Staphylococcus warneri (MIC(50)=0.25mg/L). Overall, telavancin exhibited MIC(90) results two- to eight-fold lower than comparators (daptomycin, quinupristin/dalfopristin, vancomycin and linezolid). Based upon MIC(90) values, telavancin demonstrated potent in vitro activity against a contemporary (2007-2008) collection of Staphylococcus spp

  17. Plant antimicrobial peptides as potential anticancer agents.

    PubMed

    Guzmán-Rodríguez, Jaquelina Julia; Ochoa-Zarzosa, Alejandra; López-Gómez, Rodolfo; López-Meza, Joel E

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy.

  18. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  19. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake.

    PubMed

    Santi, E; Facchin, G; Faccio, R; Barroso, R P; Costa-Filho, A J; Borthagaray, G; Torre, M H

    2016-02-01

    Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed.

  20. Current and future challenges in the development of antimicrobial agents.

    PubMed

    Rennie, Robert P

    2012-01-01

    Micro-organisms exist to survive. Even in the absence of antimicrobial agents, many have determinants of resistance that may be expressed phenotypically, should the need arise. With the advent of the antibiotic age, as more and more drugs were developed to treat serious infections, micro-organisms (particularly bacteria) rapidly developed resistance determinants to prevent their own demise.The most important determinants of resistance have been in the Gram-positive and Gram-negative bacteria. Among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP) have taxed researchers and pharmaceutical companies to develop new agents that are effective against these resistant strains. Among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBL) enzymes, carbapenemases (CREs) and the so-called amp-C enzymes that may be readily transferred between species of enterobacteriaceae and other facultative species have created multi-drug resistant organisms that are difficult to treat. Other resistance determinants have been seen in other clinically important bacterial species such as Neisseria gonorrhoeae, Clostridium difficile, Haemophilus influenzae and Mycobacterium tuberculosis. These issues have now spread to fungal agents of infection.A variety of modalities have been used to stem the tide of resistance. These include the development of niche compounds that target specific resistance determinants. Other approaches have been to find new targets for antimicrobial activity, use of combination agents that are effective against more than one target in the cell, or new delivery mechanism to maximize the concentration of antimicrobial agents at the site of infection without causing toxicity to the host. It is important that such new modalities have been proved effective for clinical therapy. Animal models and non-mammalian systems have been developed to

  1. Development of non-natural flavanones as antimicrobial agents.

    PubMed

    Fowler, Zachary L; Shah, Karan; Panepinto, John C; Jacobs, Amy; Koffas, Mattheos A G

    2011-01-01

    With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells.

  2. Essential oil nanoemulsions as antimicrobial agents in food.

    PubMed

    Donsì, Francesco; Ferrari, Giovanna

    2016-09-10

    The crescent interest in the use of essential oils (EOs) as natural antimicrobials and preservatives in the food industry has been driven in the last years by the growing consumers' demand for natural products with improved microbial safety, and fresh-like organoleptic properties. Nanoemulsions efficiently contribute to support the use of EOs in foods by increasing their dispersibility in the food areas where microorganisms grow and proliferate, by reducing the impact on the quality attributes of the product, as well as by enhancing their antimicrobial activity. Understanding how nanoemulsions intervene on the mass transfer of EOs to the cell membrane and on the mechanism of antimicrobial action will support the engineering of more effective delivery systems and foster the application of EOs in real food systems. This review focuses on the enabling contribution of nanoemulsions to the use of EOs as natural preservative agents in food, (a) specifically addressing the formulation and fabrication of stable EO nanoemulsions, (b) critically analyzing the reported antimicrobial activity data, both in vitro and in product, to infer the impact of the delivery system on the mechanisms of action of EOs, as well as (c) discussing the regulatory issues associated with their use in food systems. PMID:27416793

  3. Essential oil nanoemulsions as antimicrobial agents in food.

    PubMed

    Donsì, Francesco; Ferrari, Giovanna

    2016-09-10

    The crescent interest in the use of essential oils (EOs) as natural antimicrobials and preservatives in the food industry has been driven in the last years by the growing consumers' demand for natural products with improved microbial safety, and fresh-like organoleptic properties. Nanoemulsions efficiently contribute to support the use of EOs in foods by increasing their dispersibility in the food areas where microorganisms grow and proliferate, by reducing the impact on the quality attributes of the product, as well as by enhancing their antimicrobial activity. Understanding how nanoemulsions intervene on the mass transfer of EOs to the cell membrane and on the mechanism of antimicrobial action will support the engineering of more effective delivery systems and foster the application of EOs in real food systems. This review focuses on the enabling contribution of nanoemulsions to the use of EOs as natural preservative agents in food, (a) specifically addressing the formulation and fabrication of stable EO nanoemulsions, (b) critically analyzing the reported antimicrobial activity data, both in vitro and in product, to infer the impact of the delivery system on the mechanisms of action of EOs, as well as (c) discussing the regulatory issues associated with their use in food systems.

  4. The antimicrobial efficiency of silver activated sorbents

    NASA Astrophysics Data System (ADS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-12-01

    This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  5. Efficacies of various antimicrobial agents in treatment of Staphylococcus aureus abscesses and correlation with in vitro tests of antimicrobial activity and neutrophil killing.

    PubMed Central

    Bamberger, D M; Fields, M T; Herndon, B L

    1991-01-01

    A rabbit perforated-capsule model was utilized to study antimicrobial efficacy in treating 2-week-old Staphylococcus aureus abscesses. Animals received either ciprofloxacin (30 mg/kg), cefazolin (100 mg/kg), or ciprofloxacin (30 mg/kg) plus rifampin (20 mg/kg) every 8 h for 8 days or no antibiotic. Antibiotic levels within the abscess exceeded the MIC for the test organism. At the end of treatment, ciprofloxacin was no more effective than the control, animals receiving cefazolin had a mean log10 fall of 2.41 CFU/ml, and animals receiving ciprofloxacin plus rifampin had a mean log10 reduction of 5.06 CFU/ml (P = less than 0.01). Six days after completion of therapy, all abscesses in animals receiving ciprofloxacin plus rifampin were culture negative. Surviving organisms in animals receiving ciprofloxacin or rifampin did not develop resistance to the treatment antibiotics. In vitro time-kill curves performed with logarithmic- and stationary-phase organisms in broth, serum, and abscess fluid supernatants did not correlate with the in vivo results. Neutrophil killing studies of S. aureus pretreated with antibiotics revealed greater killing of organisms pretreated with ciprofloxacin plus rifampin than of those pretreated with cefazolin or ciprofloxacin alone. In conclusion, ciprofloxacin plus rifampin was effective therapy in this staphylococcal abscess model, compared with the moderate efficacy of cefazolin and no effect observed with ciprofloxacin alone. Enhanced neutrophil killing of S. aureus pretreated with antibiotics may be an important mechanism by which bacteria are killed in suppurative infections. PMID:1804006

  6. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  7. Use of antimicrobial agents in aquaculture.

    PubMed

    Park, Y H; Hwang, S Y; Hong, M K; Kwon, K H

    2012-04-01

    The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria.

  8. In Vitro Susceptibility of Equine-Obtained Isolates of Corynebacterium pseudotuberculosis to Gallium Maltolate and 20 Other Antimicrobial Agents

    PubMed Central

    Batista, M.; Lawhon, S. D.; Zhang, S.; Kuskie, K. R.; Swinford, A. K.; Bernstein, L. R.; Cohen, N. D.

    2014-01-01

    This study's objective was to determine the in vitro antimicrobial activities of gallium maltolate (GaM) and 20 other antimicrobial agents against clinical equine isolates of Corynebacterium pseudotuberculosis. The growth of cultured isolates was not inhibited by any concentration of GaM. MIC data revealed susceptibility to commonly used antimicrobials. PMID:24829243

  9. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology.

    PubMed

    Khelaifia, S; Drancourt, M

    2012-09-01

    We herein review the state of knowledge regarding the in vitro and in vivo susceptibility of archaea to antimicrobial agents, including some new molecules. Indeed, some archaea colonizing the human microbiota have been implicated in diseases such as periodontopathy. Archaea are characterized by their broad-spectrum resistance to antimicrobial agents. In particular, their cell wall lacks peptidoglycan, making them resistant to antimicrobial agents interfering with peptidoglycan biosynthesis. Archaea are, however, susceptible to the protein synthesis inhibitor fusidic acid and imidazole derivatives. Also, squalamine, an antimicrobial agent acting on the cell wall, proved effective against human methanogenic archaea. In vitro susceptibility data could be used to design protocols for the decontamination of complex microbiota and the selective isolation of archaea in anaerobic culture. PMID:22748132

  10. In vitro activity of antimicrobial agents against streptococcus pyogenes isolated from different regions of Khyber Pakhtun Khwa Pakistan.

    PubMed

    Rizwan, Muhammad; Bakht, Jehan; Bacha, Nafees; Ahmad, Bashir

    2016-01-01

    The present study investigates the antibiotic resistance of S. pyogenes of 600 isolates collected from different body parts including throat and sputum were analyzed for their antimicrobial susceptibility to 5 antibiotics using the Kirby Bauer disc diffusion method. Based on different identification tests including, gram staining, beta hemolysis, catalase test and bacitracin sensitivity test, a total of 138 isolates were confirmed as S. pyogenes. The prevalence of S. pyogenes was 80% in sore throat and 29% in sputum samples. These isolates were further tested for antibiotics resistance using disk diffusion method. Out of 138 isolates, 49.27% isolates showed resistance towards cefixime, 28.98% towards cefotaxime and 17.39% towards ciprofloxacin, 17.39% towards ampicillin, 17.39% towards erythromycin, 15.94% towards streptomycin, 0.724% isolates towards chloromphenicol and 0% towards penicillin. Among the resistant isolates of S. pyogenes, 60.71% showed resistance towards cefixime, 57.14% towards ciprofloxacin, 57.14% towards streptomycin, 50% towards erythromycin and 25% towards cefotaxime. PMID:26826819

  11. Synergistic activities of a silver(I) glutamic acid complex and reactive oxygen species (ROS): a novel antimicrobial and chemotherapeutic agent.

    PubMed

    Batarseh, K I; Smith, M A

    2012-01-01

    The antimicrobial and chemotherapeutic activities of a silver(I) glutamic acid complex with the synergistic concomitant generation of reactive oxygen species (ROS) were investigated here. The ROS generation system employed was via Fenton chemistry. The antimicrobial and chemotherapeutic activities were investigated on Staphylococcus aureus ATCC 43300 and Escherichia coli bacteria, and Vero and MCF-7 tumor cell lines, respectively. Antimicrobial activities were conducted by determining minimum inhibitory concentration (MIC), while chemotherapeutic efficacies were done by serial dilution using standard techniques to determine the half maximal inhibitory concentration (IC50). The antimicrobial and chemotherapeutic results obtained were compared with positive control drugs gentamicin, oxacillin, penicillin, streptomycin and cisplatin, a ubiquitously used platinum-based antitumor drug, and with the silver(I) glutamic acid complex and hydrogen peroxide separately. Based on MIC and IC50 values, it was determined that this synergistic approach was very effective at extremely low concentrations, especially when compared with the other drugs evaluated here. This finding might be of great significance regarding metronomic dosing when this synergistic approach is clinically implemented. Since silver at low concentrations exhibits no toxic, mutagenic and carcinogenic activities, this might offer an alternative approach for the development of safer silver-based antimicrobial and chemotherapeutic drugs, thereby reducing or even eliminating the toxicity associated with current drugs. Accordingly, the present approach might be integrated into the systemic clinical treatment of infectious diseases and cancer. PMID:22680634

  12. Protease Inhibitors from Plants with Antimicrobial Activity

    PubMed Central

    Kim, Jin-Young; Park, Seong-Cheol; Hwang, Indeok; Cheong, Hyeonsook; Nah, Jae-Woon; Hahm, Kyung-Soo; Park, Yoonkyung

    2009-01-01

    Antimicrobial proteins (peptides) are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides). Plants produce a variety of proteins (peptides) that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins). Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides) with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents. PMID:19582234

  13. Dual evaluation of some novel 2-amino-substituted coumarinylthiazoles as anti-inflammatory-antimicrobial agents and their docking studies with COX-1/COX-2 active sites.

    PubMed

    Chandak, Navneet; Kumar, Pawan; Kaushik, Pawan; Varshney, Parul; Sharma, Chetan; Kaushik, Dhirender; Jain, Sudha; Aneja, Kamal R; Sharma, Pawan K

    2014-08-01

    Synthesis of total eighteen 2-amino-substituted 4-coumarinylthiazoles including sixteen new compounds (3a-o and 5b) bearing the benzenesulfonamide moiety is described in the present report. All the synthesized target compounds were examined for their in vivo anti-inflammatory (AI) activity and in vitro antimicrobial activity. Results revealed that six compounds (3 d, 3 f, 3 g, 3 h, 3 j and 3 n) exhibited pronounced anti-inflammatory activity comparable to the standard drug indomethacin. AI results were further confirmed by the docking studies of the most active (3n) and the least active compound (3a) with COX-1 and COX-2 active sites. In addition, most of the compounds exhibited moderate antimicrobial activity against Gram-positive bacteria as well as fungal yeast, S. cervisiae. Comparison between 3 and 5 indicated that incorporation of additional substituted pyrazole nucleus into the scaffold significantly enhanced AI activity. PMID:23777557

  14. The Three Bacterial Lines of Defense against Antimicrobial Agents

    PubMed Central

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  15. [Antimicrobial activity exerted by sodium dichloroisocyanurate].

    PubMed

    D'Auria, F D; Simonetti, G; Strippoli, V

    1989-01-01

    Sodium dichloroisocyanurate is a chlorinated cleaner. It was used for swimming pool sanitation and for the sterilisation of linen. Not recently ago sodium dichloroisocyanurate has substituted hypochlorite for the sterilisation of infant feeding bottles and teats. Sodium dichloroisocyanurate is soluble in water; this condition causes the hydrolysis of sodium dichloroisocyanurate in hypochlorous acid, that is the active agent, isocyanurate and isocyanurate chlorine. These compounds form a chlorine protein that carry out microbicidal activity. In a toxicology study has been shown that no severe changes in the normal metabolic function occurred, furthermore sodium dichloroisocyanurate has not shown teratogenic effects at the concentration of 200 mg/kg. The antimicrobial activity of sodium dichloroisocyanurate was evaluated against Gram negative bacteria such as E. coli or Salmonella typhimurium and against some fungi. This study illustrates a rapid antimicrobial activity using concentrations. Our study concentrated on the antimicrobial activity of sodium dichloroisocyanurate in some experimental conditions. We tested 66 strains of fungi, 28 Gram positive bacteria and 29 Gram negative bacteria. We also evaluated the antimicrobial activity of sodium dichloroisocyanurate against protozoa such as Trichomonas vaginalis. The antimicrobial activity was evaluated in cultural conditions and non cultural conditions; in these experiments we observed similar action in both the commercial product and pure substance. In cultural conditions sodium dichloroisocyanurate shows a good activity against fungi and bacteria, moreover it can be observed that the serum didn't interfere with its activity. In a non cultural condition the Candida was killed rapidly by the sodium dichloroisocyanurate but this activity is influenced by the growth phase of the yeast. Against mycelial form such as Penicillium and Aspergillus the sodium dichloroisocyanurate needs a longer contact time than yeast form

  16. Comparative activity in vitro of 16 antimicrobial agents against penicillin-susceptible meningococci and meningococci with diminished susceptibility to penicillin.

    PubMed Central

    Pérez Trallero, E; Garcia Arenzana, J M; Ayestaran, I; Muñoz Baroja, I

    1989-01-01

    Broad-spectrum cephalosporins were very active against strains of Neisseria meningitidis with both penicillin susceptibility and diminished penicillin susceptibility. Ceftriaxone was the most active antibiotic. Increases in MIC for 90% of meningococci with diminished susceptibility to penicillin of greater than or equal to 16-fold were observed for amdinocillin, cefuroxime, aztreonam, and imipenem; 2-fold increases were observed for ceftazidime, mezlocillin, and piperacillin. No differences were observed for non-beta-lactam antibiotics. PMID:2510596

  17. Antimicrobial activity of Pseudognaphalium moritzianum.

    PubMed

    Rangel, D; Garcia, I; Velasco, J; Buitrago, D; Velazco, E

    2002-12-01

    The antimicrobial activity of ethanol, acetone and aqueous extracts of the aerial parts of Pseudognaphalium moritzianum was evaluated. Ethanol and acetone extracts showed activity against Staphlococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa. The aqueous extract was active against S. aureus and P. aeruginosa.

  18. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis

    PubMed Central

    Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  19. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    PubMed

    Machado, Diana; Pires, David; Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  20. Evaluation of the in vitro activity of six broad-spectrum beta-lactam antimicrobial agents tested against over 2,000 clinical isolates from 22 medical centers in Japan. Japan Antimicrobial Resistance Study Group.

    PubMed

    Yamaguchi, K; Mathai, D; Biedenbach, D J; Lewis, M T; Gales, A C; Jones, R N

    1999-06-01

    Numerous broad-spectrum beta-lactam antimicrobial agents have been introduced into medical practice since 1985. Although several of these compounds have advanced, infectious disease therapy resistances to them has also emerged world-wide. In 1997, a Japanese 22 medical center investigation was initiated to assess the continued utility of these agents (oxacillin or piperacillin, ceftazidime, cefepime, cefpirome, cefoperazone/sulbactam [C/S], imipenem). The participating medical centers represented a wide geographic distribution, and a common protocol and reagents were applied. Three control strains and a set of challenge organisms were provided to participant centers. Etest (AB BIODISK, Solna, Sweden) strips were used in concurrent tests of these organisms and a qualitative determination of participant skills in the identification of resistant and susceptible phenotypes was established. The quantitative controls demonstrated 97.7-99.2% of MIC values within established QC limits, and the qualitative (susceptibility category) controls documented a 97.3% agreement of participant results with that of reference values (1,320 total results). Only 0.2% of values were false-susceptible errors. After the participant quality was assured, a total of 2,015 clinical strains were tested (10 strains from 10 different organism groups including methicillin-susceptible Staphylococcus aureus and coagulase-negative staphylococci [CoNS], Escherichia coli, Klebsiella spp., Citrobacter freundii, Enterobacter spp., indole-positive Proteae, Serratia spp., Acinetobacter spp., and Pseudomonas aeruginosa). The staphylococci were uniformly susceptible to all drugs tested except ceftazidime (MIC90, 24 micrograms/ml) that had a potency six- to 12-fold less than either cefepime or cefpirome. Only 3.7 and 45.1% of S. aureus and CoNS were susceptible to ceftazidime, respectively. Among E. coli and Klebsiella spp. the rank order of antimicrobial spectrum was imipenem = "fourth

  1. In vitro activity against Staphylococcus aureus of a novel antimicrobial agent, PRF-119, a recombinant chimeric bacteriophage endolysin.

    PubMed

    Idelevich, Evgeny A; von Eiff, Christof; Friedrich, Alexander W; Iannelli, Domenico; Xia, Guoqing; Peters, Georg; Peschel, Andreas; Wanninger, Ingrid; Becker, Karsten

    2011-09-01

    Antistaphylococcal activity of the novel chimeric endolysin PRF-119 was evaluated with the microdilution method. The MIC(50) and MIC(90) of 398 methicillin-susceptible Staphylococcus aureus isolates were 0.098 μg/ml and 0.391 μg/ml, respectively (range, 0.024 to 0.780 μg/ml). Both the MIC(50) and MIC(90) values of 776 methicillin-resistant S. aureus isolates were 0.391 μg/ml (range, 0.024 to 1.563 μg/ml). All 192 clinical isolates of coagulase-negative staphylococci exhibited MIC values of >50 μg/ml. In conclusion, PRF-119 exhibited very good activity specifically against S. aureus.

  2. Synthesis and Structure-Activity Relationship of Some New Thiophene-Based Heterocycles as Potential Antimicrobial Agents.

    PubMed

    Mabkhot, Yahia Nasser; Alatibi, Fatima; El-Sayed, Nahed Nasser E; Kheder, Nabila Abdelshafy; Al-Showiman, Salim S

    2016-01-01

    Several new pyrazole, pyridine, [1,2,4]triazolo[1,5-α]pyrimidine, benzimidazo[1,2-a]pyrimidine and 1,2,4-triazolo[3,4-c][1,2,4]triazine derivatives incorporating a thiophene moiety were synthesized from (E)-ethyl 5-(3-(dimethylamino)acryloyl)-4-phenyl-2-(phenylamino)thiophene-3-carboxylate (1). The structures of the newly synthesized compounds were confirmed by IR, ¹H-, (13)C-NMR, mass spectral data and elemental analysis. The antibacterial and antifungal activities of all the synthesized compounds were evaluated. The results indicated that compounds 9, 12, and 19 were found to be more potent than the standard drug Amphotericin B against Aspergillus fumigates. Additionally, compound 12 exhibited higher activity than the standard drug Amphotericin B against Syncephalastrum racemosum. PMID:27517888

  3. In Vitro Activity against Staphylococcus aureus of a Novel Antimicrobial Agent, PRF-119, a Recombinant Chimeric Bacteriophage Endolysin▿†

    PubMed Central

    Idelevich, Evgeny A.; von Eiff, Christof; Friedrich, Alexander W.; Iannelli, Domenico; Xia, Guoqing; Peters, Georg; Peschel, Andreas; Wanninger, Ingrid; Becker, Karsten

    2011-01-01

    Antistaphylococcal activity of the novel chimeric endolysin PRF-119 was evaluated with the microdilution method. The MIC50 and MIC90 of 398 methicillin-susceptible Staphylococcus aureus isolates were 0.098 μg/ml and 0.391 μg/ml, respectively (range, 0.024 to 0.780 μg/ml). Both the MIC50 and MIC90 values of 776 methicillin-resistant S. aureus isolates were 0.391 μg/ml (range, 0.024 to 1.563 μg/ml). All 192 clinical isolates of coagulase-negative staphylococci exhibited MIC values of >50 μg/ml. In conclusion, PRF-119 exhibited very good activity specifically against S. aureus. PMID:21746950

  4. Antimicrobial activity of quaternized heteroxylans.

    PubMed

    Ebringerová, A; Belicová, A; Ebringer, L

    1994-11-01

    A series of quaternized D-xylan polysaccharides, differing in the structural features of their macromolecular backbone, were tested for antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens and Saccharomyces cerevisiae. Activity was comparable with that of the cationic surfactant, cetyltrimethylammonium bromide, and depended on the degree of quaternization and the structural backbone of the derivatives.

  5. Antimicrobial activity of Securidaca longipedunculata.

    PubMed

    Ajali, U; Chukwurah, B K C

    2004-11-01

    The folk herbal uses of Securidaca longipedunculata in the treatment of diarrhea, boils, gonorrhea, and cough prompted phytochemical analyses and antimicrobial activity screening of extracts of the root. Some flavonoids isolated showed activity against many micro-organisms. These flavonoids were isolated using chromatographic methods. PMID:15636189

  6. Scope of Hydrolysable Tannins as Possible Antimicrobial Agent.

    PubMed

    Ekambaram, Sanmuga Priya; Perumal, Senthamil Selvan; Balakrishnan, Ajay

    2016-07-01

    Hydrolysable tannins (HTs) are secondary metabolites from plants, which are roughly classified into gallotannins and ellagitannins having gallic acid and ellagic acid residues respectively attached to the hydroxyl group of glucose by ester linkage. The presence of hexahydroxydiphenoyl and nonahydroxyterphenoyl moieties is considered to render antimicrobial property to HTs. HTs also show considerable synergy with antibiotics. Nevertheless, they have low pharmacokinetic property. The present review presents the scope of HTs as future antimicrobial agent. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27062587

  7. Squalamine as an example of a new potent antimicrobial agents class: a critical review.

    PubMed

    Alhanout, K; Rolain, J M; Brunel, J M

    2010-01-01

    An important strategy to circumvent the problem of antimicrobial resistance is to search for new compounds with antimicrobial activity. In this context, aminosterols, which include squalamine-like compounds and ceragenins, have gained interest due to their wide spectrum of antibacterial and antifungal properties. In light of recently reported data, we decided to analyze the mechanism of action of these compounds as well as their antimicrobial properties. Aminosterols are active against both bacterial reference strains and multidrug-resistant antibiotics as they disrupt the integrity of the bacterial membrane. Thus, these compounds could be useful in the development of new topical decontaminants or disinfecting agents. PMID:20858213

  8. New triazole and triazolothiadiazine derivatives as possible antimicrobial agents.

    PubMed

    Kaplancikli, Zafer Asim; Turan-Zitouni, Gülhan; Ozdemir, Ahmet; Revial, Gilbert

    2008-01-01

    Triazole and triazoles fused with six-membered ring systems are found to possess diverse applications in the fields of medicine, agriculture and industry. The new 1,2,4-triazole and 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine derivatives were synthesized as novel antimicrobial agents. The reaction of 1H-indol-3-acetic acid with thiocarbohydrazide gave the 4-amino-3-mercapto-5-[(1H-indol-3-yl)methyl]-4H-1,2,4-triazole. The reaction of triazole with arylaldehydes in ethanol gave the 4-arylideneamino-3-mercapto-5-[(1H-indol-3-yl)methyl]-4H-1,2,4-triazoles (I). The 3-[(1H-indol-3-yl)methyl]-6-aryl-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines (II) were obtained by condensing triazole with phenacyl bromides in absolute ethanol . The chemical structures of the compounds were elucidated by IR, (1)H NMR and FAB(+)-MS spectral data. Their antimicrobial activities against Micrococcus luteus (NRLL B-4375), Bacillus cereus (NRRL B-3711), Proteus vulgaris (NRRL B-123), Salmonella typhimurium (NRRL B-4420), Staphylococcus aureus (NRRL B-767), Escherichia coli (NRRL B-3704), Candida albicans and Candida glabrata (isolates obtained from Osmangazi University, Faculty of Medicine) were investigated and significant activity was obtained. PMID:17499887

  9. Controlling the release of peptide antimicrobial agents from surfaces.

    PubMed

    Shukla, Anita; Fleming, Kathleen E; Chuang, Helen F; Chau, Tanguy M; Loose, Christopher R; Stephanopoulos, Gregory N; Hammond, Paula T

    2010-03-01

    Medical conditions are often exacerbated by the onset of infection caused by hospital dwelling bacteria such as Staphylococcus aureus. Antibiotics taken orally or intravenously can require large and frequent doses, further contributing to the sharp rise in resistant bacteria observed over the past several decades. These existing antibiotics are also often ineffective in preventing biofilm formation, a common cause of medical device failure. Local delivery of new therapeutic agents that do not allow bacterial resistance to occur, such as antimicrobial peptides, could alleviate many of the problems associated with current antibacterial treatments. By taking advantage of the versatility of layer-by-layer assembly of polymer thin films, ponericin G1, an antimicrobial peptide known to be highly active against S. aureus, was incorporated into a hydrolytically degradable polyelectrolyte multilayer film. Several film architectures were examined to obtain various drug loadings that ranged from 20 to 150 microg/cm2. Release was observed over approximately ten days, with varying release profiles, including burst as well as linear release. Results indicated that film-released peptide did not suffer any loss in activity against S. aureus and was able to inhibit bacteria attachment, a necessary step in preventing biofilm formation. Additionally, all films were found to be biocompatible with the relevant wound healing cells, NIH 3T3 fibroblasts and human umbilical vein endothelial cells. These films provide the level of control over drug loading and release kinetics required in medically relevant applications including coatings for implant materials and bandages, while eliminating susceptibility to bacterial resistance.

  10. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-01-01

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity. PMID:24918540

  11. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-06-10

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity.

  12. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    PubMed Central

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents. PMID:25671195

  13. In vitro susceptibility of Capnocytophaga strains to 18 antimicrobial agents.

    PubMed Central

    Sutter, V L; Pyeatt, D; Kwok, Y Y

    1981-01-01

    Twenty-seven strains of capnocytophaga were tested for their susceptibility to 18 antimicrobial agents by an agar dilution technique. All strains were susceptible to achievable blood levels of penicillin G, cefaclor, cefoxitin, cefoperazone, moxalactam, clindamycin, chloramphenicol, and tetracycline. Most were susceptible to achievable levels of cefamandole, erythromycin, and metronidazole, and more than 10% were resistant to achievable levels of cephalexin and cephradine. With antimicrobial agents used in selective media, all strains were resistant to colistin, kanamycin, and nalidixic acid at commonly recommended concentrations of bacitracin and vancomycin. PMID:7283424

  14. Benzofuran as a promising scaffold for the synthesis of antimicrobial and antibreast cancer agents: A review

    PubMed Central

    Khodarahmi, Ghadamali; Asadi, Parvin; Hassanzadeh, Farshid; Khodarahmi, Elham

    2015-01-01

    Benzofuran as an important heterocyclic compound is extensively found in natural products as well as synthetic materials. Since benzofuran drivatives display a diverse array of pharmacological activities, an interest in developing new biologically active agents from benzofuran is still under consideration. This review highlights recent findings on biological activities of benzofuran derivatives as antimicrobial and antibreast cancer agents and lays emphasis on the importance of benzofurans as a major source for drug design and development. PMID:26941815

  15. EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care

    PubMed Central

    Finnegan, Simon; Percival, Steven L.

    2015-01-01

    Significance: Methods employed for preventing and eliminating biofilms are limited in their efficacy on mature biofilms. Despite this a number of antibiofilm formulations and technologies incorporating ethylenediaminetetraacetic acid (EDTA) have demonstrated efficacy on in vitro biofilms. The aim of this article is to critically review EDTA, in particular tetrasodium EDTA (tEDTA), as a potential antimicrobial and antibiofilm agent, in its own right, for use in skin and wound care. EDTA's synergism with other antimicrobials and surfactants will also be discussed. Recent Advances: The use of EDTA as a potentiating and sensitizing agent is not a new concept. However, currently the application of EDTA, specifically tEDTA as a stand-alone antimicrobial and antibiofilm agent, and its synergistic combination with other antimicrobials to make a “multi-pronged” approach to biofilm control is being explored. Critical Issues: As pathogenic biofilms in the wound increase infection risk, tEDTA could be considered as a potential “stand-alone” antimicrobial/antibiofilm agent or in combination with other antimicrobials, for use in both the prevention and treatment of biofilms found within abiotic (the wound dressing) and biotic (wound bed) environments. The ability of EDTA to chelate and potentiate the cell walls of bacteria and destabilize biofilms by sequestering calcium, magnesium, zinc, and iron makes it a suitable agent for use in the management of biofilms. Future Direction: tEDTA's excellent inherent antimicrobial and antibiofilm activity and proven synergistic and permeating ability results in a very beneficial agent, which could be used for the development of future antibiofilm technologies. PMID:26155384

  16. Antimicrobial activity of trout hepcidin.

    PubMed

    Alvarez, Claudio A; Guzmán, Fanny; Cárdenas, Constanza; Marshall, Sergio H; Mercado, Luis

    2014-11-01

    Hepcidin is an antimicrobial peptide and a hormone produced mostly the liver. It is a cysteine-rich peptide with a highly conserved β-sheet structure. Recently, we described the hepcidin expression in liver of rainbow trout and its inducibility by iron overloading and lipopolysaccharide (LPS). Thus, in this work, we focused in analyzing the importance of the peptide conformation associated to its oxidative state in the antimicrobial activity. This peptide showed a α-helix conformation in reduced state and the characteristic β-sheet conformation in the oxidized state. Antimicrobial activity assays showed that the oxidized peptide is more effective than the reduced peptide against Escherichia coli and the important salmon fish pathogen Piscirickettsia salmonis. In addition, confocal analysis of P. salmonis culture exposed to trout hepcidin coupled with rhodamine revealed the intracellular location of this peptide and Sytox permeation assay showed that membrane disruption is not the mechanism of its antimicrobial action. Moreover, a conserved ATCUN motif was detected in the N-terminus of this peptide. This sequence has been described as a small metal-binding site that has been implicated in DNA cleavage. In this work we proved that this peptide is able to induce DNA hydrolysis in the presence of ascorbate and CuCl2. When the same experiments were carried out using a variant with truncated N-terminus no DNA hydrolysis was observed. Our results suggest that correct folding of hepcidin is required for its antimicrobial activity and most likely the metal-binding site (ATCUN motif) present in its N-terminus is involved in the oxidative damage to macromolecules. PMID:24794583

  17. Glycosylated Nanoparticles as Efficient Antimicrobial Delivery Agents.

    PubMed

    Eissa, Ahmed M; Abdulkarim, Ali; Sharples, Gary J; Cameron, Neil R

    2016-08-01

    Synthetic polymer nanoparticles that can be tailored through multivalent ligand display on the surface, while at the same time allowing encapsulation of desired bioactive molecules, are especially useful in providing a versatile and robust platform in the design of specific delivery vehicles for various purposes. Glycosylated nanoparticles (glyco-NPs) of a poly(n-butyl acrylate) (pBA) core and poly(N-2-(β-d-glucosyloxy)ethyl acrylamide) (p(NβGlcEAM)) or poly(N-2-(β-D-galactosyloxy)ethyl acrylamide) (p(NβGalEAM)) corona were prepared via nanoprecipitation in aqueous solutions of preformed amphiphilic glycopolymers. Well-defined block copolymers of (poly(pentafluorophenyl acrylate) (pPFPA) and pBA were first prepared by RAFT polymerization followed by postpolymerization functionalization with aminoethyl glycosides to yield p(NβGlcEAM-b-BA) and p(NβGalEAM-b-BA), which were then used to form glyco-NPs (glucosylated and galactosylated NPs, Glc-NPs and Gal-NPs, respectively). The glyco-NPs were characterized by dynamic light scattering (DLS) and TEM. Encapsulation and release of ampicillin, leading to nanoparticles that we have termed "glyconanobiotics", were studied. The ampicillin-loaded glyco-NPs were found to induce aggregation of Staphylococcus aureus and Escherichia coli and resulted in antibacterial activity approaching that of ampicillin itself. This glyconanobiotics strategy represents a potential new approach for the delivery of antibiotics close to the surface of bacteria by promoting bacterial aggregation. Defined release in the proximity of the bacterial envelope may thus enhance antibacterial efficiency and potentially reduce the quantities of agent required for potency. PMID:27434596

  18. Antimicrobial Peptides as Infection Imaging Agents: Better Than Radiolabeled Antibiotics

    PubMed Central

    Akhtar, Muammad Saeed; Imran, Muhammad Babar; Nadeem, Muhammad Afzal; Shahid, Abubaker

    2012-01-01

    Nuclear medicine imaging techniques offer whole body imaging for localization of number and site of infective foci inspite of limitation of spatial resolution. The innate human immune system contains a large member of important elements including antimicrobial peptides to combat any form of infection. However, development of antibiotics against bacteria progressed rapidly and gained popularity over antimicrobial peptides but even powerful antimicrobials failed to reduce morbidity and mortality due to emergence of mutant strains of bacteria resulting in antimicrobial resistance. Differentiation between infection and inflammation using radiolabeled compounds with nuclear medicine techniques has always been a dilemma which is still to be resolved. Starting from nonspecific tracers to specific radiolabeled tracers, the question is still unanswered. Specific radiolabeled tracers included antibiotics and antimicrobial peptides which bind directly to the bacteria for efficient localization with advanced nuclear medicine equipments. However, there are merits and demerits attributed to each. In the current paper, radiolabeled antibiotics and radiolabeled peptides for infection localization have been discussed starting with the background of primitive nonspecific tracers. Radiolabeled antimicrobial peptides have certain merits compared with labeled antibiotics which make them superior agents for localization of infective focus. PMID:22675369

  19. Antimicrobial activity of Visnea mocanera leaf extracts.

    PubMed

    Hernández-Pérez, M; López-García, R E; Rabanal, R M; Darias, V; Arias, A

    1994-01-01

    A chemical study of Visnea mocanera leaves was carried out giving lupeol and beta-sitosterol fatty esters, as well as beta-sitosterol and the triterpenic betulinic, ursolic, platanic and 2 alpha,3 beta-dihydroxy-ursan-12-en-28-oic and 2 alpha,3 beta-dihydroxy-olean-12-en-28-oic acids. Studies of the antimicrobial activity of acetone and methanol extracts as well as an aqueous infusion were also performed and the good experimental results obtained justify the folk use of this species as a cicatrizant and vulnerary agent.

  20. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect.

    PubMed

    Kang, Bong Seon; Seo, Jae-Gu; Lee, Gwa-Su; Kim, Jung-Hwa; Kim, Sei Yeon; Han, Ye Won; Kang, Hoon; Kim, Hyung Ok; Rhee, Ji Hwan; Chung, Myung-Jun; Park, Young Min

    2009-02-01

    A lactic acid bacterial strain was isolated from human fecal specimen and identified as Enterococcus faecalis SL-5. The isolated strain showed antimicrobial activity against Gram-positive pathogens assayed, especially the highest activity against Propionibacterium acnes. The antimicrobial substance was purified and verified as a bacteriocin (named ESL5) of E. faecalis SL-5 by activity-staining using P. acnes as an indicator. N-terminal sequence of ESL5 was determined (MGAIAKLVAK) and sequence analysis revealed that it is almost identical to the some of enterocins including L50A/B of E. faecium L50 and MR10A/B of E. faecalis MRR 10-3. From the sequencing data of L50A/B structural genes, the nucleotide sequence showed 100% identity with that of the MR10A/B structural genes, implying that ESL5 is an equivalent of enterocin MR10. Meanwhile, we also tested the therapeutic effect of anti-P. acnes activity in patients with mild to moderate acne because of its pathogenic role to acne vulgaris. For this purpose, a concentrated powder of CBT SL-5 was prepared using cell-free culture supernatant (CFCS) of E. faecalis SL-5 and included in a lotion for application in the patients. The study showed that CBT SL-5 lotion significantly reduced the inflammatory lesions like pustules compared to the placebo lotion. Therefore our results indicate that the anti-P. acnes activity produced by E. faecalis SL-5 has potential role to the treatment of acne as an alternative to topical antibiotics.

  1. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  2. Supramolecular reactive sulphur nanoparticles: a novel and efficient antimicrobial agent.

    PubMed

    Roy Choudhury, S; Goswami, A

    2013-01-01

    Antimicrobial resistance continues to be an inexorable threat for the biomedical and biochemical researchers. Despite the novel discoveries in drug designing and delivery, high-throughput screening and surveillance data render the prospects for new antimicrobial agents as bleak as ever. The advent of nanotechnology, however, strengthens pharmacology by offering effective therapeutics to treat this aforementioned problem. Several nanoparticles of the known elements have already been reported for their antimicrobial efficacy. Nanosized fabrication of elemental sulphur with suitable surface modifications offers to retrieve the use of sulphur (man's oldest known ecofriendly microbicide) as a potential antimicrobial agent. Sulphur nanoparticles (SNPs) are effective against both conventionally sulphur-resistant and sulphur-susceptible microbes (fungi and bacteria). Moreover, biocompatible polymers present on the surface of SNPs minimize toxicity during application. Here, we focus on various aspects of physicochemical features of SNPs and their biochemical interactions with microbes. The present review also illustrates the effects of SNPs on plants and animals in terms of cytotoxicity and biocompatibility.

  3. Antimicrobial susceptibility of Leptospira isolates from dogs and rats to 12 antimicrobial agents.

    PubMed

    Suepaul, S M; Carrington, C; Campbell, M; Borde, G; Adesiyun, A A

    2015-03-01

    This study determined the antimicrobial susceptibilities of 67 isolates of Leptospira from dogs (suspect canine cases: n=7 and stray dogs: n=6) and rodents (n=54) in Trinidad to 12 antimicrobial agents using broth microdilution and macrodilution techniques. Commonly used antimicrobial agents such as the penicillin G and ceftriaxone had relatively low minimal inhibitory concentrations (MICs) while doxycycline displayed a relatively higher value but was still considered to be effective. While imipenem was the most effective with low MIC values in vitro, sulphamethoxazole-trimethoprim had the highest i.e. least effective. Based on these results, the drugs commonly used in the treatment of leptospirosis (penicillin G, penicillin-streptomycin, doxycycline and ceftriaxone) in both humans and animals in Trinidad appear to have similar MICs and MBCs in vitro when compared with published reports. The serovar of Leptospira spp. and in most cases the origin of the isolates did not significantly (P>0.05) influence their susceptibilities to the antimicrobial agents tested. PMID:25801249

  4. Essential oils as natural food antimicrobial agents: a review.

    PubMed

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

  5. Essential oils as natural food antimicrobial agents: a review.

    PubMed

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry. PMID:24915323

  6. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    PubMed

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated.

  7. Proteinase-activated receptors induce nonoxidative, antimicrobial peptides and increased antimicrobial activity in human mononuclear phagocytes.

    PubMed

    Lippuner, Nadine; Morell, Bernhard; Schaffner, Andreas; Schaer, Dominik J

    2007-02-01

    As thrombin and SFLLRNPNDKYEPF (SFLLRN-14), a synthetic ligand, mainly of the proteinase-activated receptor-1 (PAR-1), induce in monocytes the synthesis and secretion of chemokines, the PAR pathway can be viewed as a mononuclear phagocyte-activating principle. Classically, antimicrobial activity of mononuclear phagocytes is the measure for activation. Here, we investigated whether thrombin or SFLLRN-14 increases the antimicrobial activity of human monocytes and compared these effects to those of IFN-gamma. Furthermore, we measured the effects of these agents on the secretion of reactive oxygen intermediates and the antimicrobial activity of acid peptide extracts from monocytes. Human monocytes were exposed to maximally active concentrations of thrombin, SFLLRN-14, and IFN-gamma. Human monocytes treated with thrombin or SFLLRN-14 and then challenged with Salmonella enterica serovar typhimurium, including its attenuated mutant phoP, or Listeria monocytogenes killed, within 3 h, significantly more bacteria than control cells, an effect comparable with or surpassing the effect of IFN-gamma. This finding establishes the proteinase-PAR pathway as a potent, alternate activation pathway of mononuclear phagocytes. Thrombin and SFLLRN-14 had no significant effects on the amount of H(2)O(2) secreted by monocytes. This was in contrast to IFN-gamma, which as expected, increased the secretion of H(2)O(2) by approximately fourfold. Thrombin and SFLLRN-14, but not IFN-gamma, however, significantly increased the antimicrobial activity of acid peptide extracts of monocytes in a radial diffusion assay. Taken together, these findings suggest that IFN-gamma and thrombin differentially regulate oxidative and nonoxidative killing systems of human monocytes. PMID:17095611

  8. Antimicrobial activities of Barringtonia acutangula.

    PubMed

    Rahman, M Mukhlesur; Polfreman, David; MacGeachan, Jodie; Gray, Alexander I

    2005-06-01

    Crude extracts and VLC fractions from the stem bark of Barringtonia acutangula (L.) Gaertn (Fam. Lecythidaceae) were screened for their antimicrobial activities against two Gram-positive bacteria, two Gram-negative bacteria and two fungi using a microdilution titre assay. Among the crude extracts, petroleum ether extract showed good activity against all test organisms. The VLC fraction PE 16 was found to be very effective against Bacillus subtilis (MIC=25 microg/ml) and Aspergillus niger (MIC=12.5 microg/ml). The activities were compared to standard antibiotics-kanamycin and fluconazole. The major compound from PE16 was identified as 12, 20(29)-lupadien-3-ol by NMR spectroscopy. PMID:16114086

  9. The Risk of Some Veterinary Antimicrobial Agents on Public Health Associated with Antimicrobial Resistance and their Molecular Basis

    PubMed Central

    Hao, Haihong; Sander, Pascal; Iqbal, Zahid; Wang, Yulian; Cheng, Guyue; Yuan, Zonghui

    2016-01-01

    The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data, and risk assessment results of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in humans. From the selected examples, it was apparent from reviewing the published scientific literature that the ban on use of some antimicrobial agents (e.g., avoparcin, fluoroquinolone, tetracyclines) did not change drug resistance patterns and did not mitigate the intended goal of minimizing antimicrobial resistance. The use of some antimicrobial agents (e.g., virginiamycin, macrolides, and cephalosporins) in food animals may have an impact on the antimicrobial resistance in humans, but it was largely depended on the pattern of drug usage in different geographical regions. The epidemiological characteristics of resistant bacteria were closely related to molecular mechanisms involved in the development, fitness, and transmission of antimicrobial resistance. PMID:27803693

  10. Animals living in polluted environments are potential source of antimicrobials against infectious agents

    PubMed Central

    Lee, Simon; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2012-01-01

    The antimicrobials crisis is a ticking time bomb which could lead to millions of people dying from untreatable infections. With the worsening trends of antimicrobial resistance, we are heading towards a pre-antibiotic era. Thus, there is a need for newer and more powerful antibiotic agents. The search for new antibiotic compounds originating from natural resources is a promising research area. Animals living in germ-infested environments are a potent source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of bacteria, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances which show potent activity in the nervous system. We hope that the discovery of antimicrobial activity in the cockroach brain will stimulate research in finding antimicrobials from unusual sources, and has potential for the development of novel antibiotics. Nevertheless, intensive research in the next few years will be required to approach or realize these expectations. PMID:23265422

  11. Antimicrobial agents-associated with QT interval prolongation.

    PubMed

    Bril, Fernando; Gonzalez, Claudio Daniel; Di Girolamo, Guillermo

    2010-01-01

    QT interval prolongation is one of the most important causes of withdrawal of drugs from the market, due to its association with Torsades de Pointes (TdP), a potentially fatal arrhythmia. Although many antimicrobial drugs are capable of inducing this type of arrhythmia, the importance of this effect is usually underestimated. Macrolides, quinolones, azoles, pentamidine, protease inhibitors, antimalarial drugs and cotrimoxazole are the anti-infective agents more frequently associated with this adverse effect. Despite the fact that the risk of QT prolongation and TdP under single antimicrobial therapy is low, these drugs are so extensively used that sporadic cases of this arrhythmia are reported. Moreover, antimicrobial drugs are susceptible to pharmacokinetic and pharmacodynamic interactions with other drugs, which may increase the risk of this arrhythmia. Therefore, physicians must be familiar with not only the antimicrobial drugs capable of producing QT interval prolongation, but also their potential interactions. In addition, patient's specific risk factors of prolonging QT interval or producing TdP must be taken into account. This article reviews the role of anti-infective drugs in QT prolongation, focusing on QT prolongation mechanisms, potential drug interactions, and patients' predisposing factors to this arrhythmia. PMID:20210724

  12. Synthesis and structure-activity relationship of novel 1,4-diazabicyclo[2.2.2]octane derivatives as potent antimicrobial agents.

    PubMed

    Yarinich, Lyubov A; Burakova, Ekaterina A; Zakharov, Boris A; Boldyreva, Elena V; Babkina, Irina N; Tikunova, Nina V; Silnikov, Vladimir N

    2015-05-01

    A series of new quaternary 1,4-diazabicyclo[2.2.2]octane derivatives was synthesized and evaluated for activity against several strains of both Gram positive and Gram negative bacteria and one strain of fungus under different inoculum size. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six species of microorganisms were tested. Results show a clear structure-activity relationship between alkyl chain length of substitutions of 1,4-diazabicyclo[2.2.2]octane tertiary amine sites and antimicrobial activity. In the case of compounds 4a-4k, MIC was found to decrease with the increase of the alkyl chain length from ethyl to dodecyl and then to increase at higher chain length (n > 14). The MIC values were found to be low for the compounds 4f and 4g with alkyl chains ranging from 10 to 12 carbons in length (1.6 μg/ml) and were comparable to the reference drug Ciprofloxacin. Also, time-kill assay was performed to examine the bactericidal kinetics. Results indicated that 4f and 4g had rapid killing effects against Staphylococcus aureus, and eliminated 100% of the initial inoculum of bacteria in 2.5 h at the concentration of 10 μg/ml. In addition, compound 4g eliminate more than 99.9% of the initial inoculum of Ps. aeruginosa after 2.5 h of interaction but the activity of compound 4f against this species seems to be weak. Thus, 4g had strong bactericidal activity and could rapidly kill Gram positive S. aureus, as well as Gram negative Ps. aeruginosa at low and high inoculum size.

  13. In vitro potency and combination testing of antimicrobial agents against Neisseria gonorrhoeae.

    PubMed

    Bharat, Amrita; Martin, Irene; Zhanel, George G; Mulvey, Michael R

    2016-03-01

    Antimicrobial resistant Neisseria gonorrhoeae is a major concern to public health due to decreased susceptibility to frontline antimicrobials. To find agents that are active against N. gonorrhoeae, we tested antimicrobials alone or in combination by Etest gradient strips. The potencies (as assessed by minimum inhibitory concentrations) of twenty-five antimicrobials were evaluated against nine reference strains of N. gonorrhoeae (WHO F, G, K, L, M, N, O, P and ATCC 49226). Potency was greatest for netilmicin, quinupristin-dalfopristin, ceftriaxone, ertapenem and piperacillin-tazobactam. Combinations of azithromycin, moxifloxacin, or gentamicin with ceftriaxone, doripenem, or aztreonam were tested against reference isolates and the fractional inhibitory concentration index (FICI) was calculated. All nine combinations resulted in indifference (>0.5 FICI ≤ 4). Combinations with FICI < 1 were further evaluated in nine clinical isolates which supported the finding of indifference. No antagonism was observed in any of the combinations tested. This is the first report in which the six combinations of azithromycin, moxifloxacin or gentamcin in combination with doripenem or aztreonam were tested in N. gonorrhoeae. These data on antimicrobials with higher potency and combinations that did not show antagonism can help to guide larger scale susceptibility studies for antimicrobial resistant N. gonorrhoeae.

  14. Species of Genus Ganoderma (Agaricomycetes) Fermentation Broth: A Novel Antioxidant and Antimicrobial Agent.

    PubMed

    Cilerdzic, Jasmina; Kosanic, Marijana; Stajić, Mirjana; Vukojevic, Jelena; Ranković, Branislav

    2016-01-01

    The bioactivity of Ganoderma lucidum basidiocarps has been well documented, but there are no data on the medicinal properties of its submerged cultivation broth nor on the other species of the genus Ganoderma. Thus the aim of this study was to test the potential antimicrobial and antioxidant activity of fermentation broth obtained after submerged cultivation of G. applanatum, G. carnosum, and G. lucidum. DPPH· scavenging ability, total phenols, and flavonoid contents were measured to determine the antioxidative potential of Ganoderma spp. fermentation filtrates, whereas their antimicrobial potential was studied using the microdilution method. DPPH· scavenging activity of G. lucidum fermentation filtrates was significantly higher than that of G. applanatum and G. carnosum, with the maximum (39.67%) obtained from strain BEOFB 432. This filtrate also contained the highest concentrations of phenols (134.89 μg gallic acid equivalents/mL) and flavonoids (42.20 μg quercetin equivalent/mL). High correlations between the activity and phenol content in the extracts showed that these compounds were active components of the antioxidative activity. G. lucidum strain BEOFB 432 was the most effective antibacterial agent, whereas strain BEOFB 434 has proven to be the most effective antifungal agent. The study showed that Ganoderma spp. fermentation filtrates are novel potent antioxidative and antimicrobial agents that could be obtained more quickly and cheaper than basidiocarps. PMID:27649601

  15. Enabling virtual screening of potent and safer antimicrobial agents against noma: mtk-QSBER model for simultaneous prediction of antibacterial activities and ADMET properties.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2015-01-01

    Neglected diseases are infections that thrive mainly among underdeveloped countries, particularly those belonging to regions found in Asia, Africa, and America. One of the most complex diseases is noma, a dangerous health condition characterized by a polymicrobial and opportunistic nature. The search for potent and safer antibacterial agents against this disease is therefore a goal of particular interest. Chemoinformatics can be used to rationalize the discovery of drug candidates, diminishing time and financial resources. However, in the case of noma, there is no in silico model available for its use in the discovery of efficacious antibacterial agents. This work is devoted to report the first mtk-QSBER model, which integrates dissimilar kinds of chemical and biological data. The model was generated with the aim of simultaneously predicting activity against bacteria present in noma, and ADMET (absorption, distribution, metabolism, elimination, toxicity) parameters. The mtk-QSBER model was constructed by employing a large and heterogeneous dataset of chemicals and displayed accuracies higher than 90% in both training and prediction sets. We confirmed the practical applicability of the model by predicting multiple profiles of the investigational antibacterial drug delafloxacin, and the predictions converged with the experimental reports. To date, this is the first model focused on the virtual search for desirable anti-noma agents. PMID:25769968

  16. Enabling virtual screening of potent and safer antimicrobial agents against noma: mtk-QSBER model for simultaneous prediction of antibacterial activities and ADMET properties.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2015-01-01

    Neglected diseases are infections that thrive mainly among underdeveloped countries, particularly those belonging to regions found in Asia, Africa, and America. One of the most complex diseases is noma, a dangerous health condition characterized by a polymicrobial and opportunistic nature. The search for potent and safer antibacterial agents against this disease is therefore a goal of particular interest. Chemoinformatics can be used to rationalize the discovery of drug candidates, diminishing time and financial resources. However, in the case of noma, there is no in silico model available for its use in the discovery of efficacious antibacterial agents. This work is devoted to report the first mtk-QSBER model, which integrates dissimilar kinds of chemical and biological data. The model was generated with the aim of simultaneously predicting activity against bacteria present in noma, and ADMET (absorption, distribution, metabolism, elimination, toxicity) parameters. The mtk-QSBER model was constructed by employing a large and heterogeneous dataset of chemicals and displayed accuracies higher than 90% in both training and prediction sets. We confirmed the practical applicability of the model by predicting multiple profiles of the investigational antibacterial drug delafloxacin, and the predictions converged with the experimental reports. To date, this is the first model focused on the virtual search for desirable anti-noma agents.

  17. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    PubMed Central

    Fjell, Christopher D.; Waldbrook, Matt; Chongsiriwatana, Nathaniel P.; Yuen, Eddie; Hancock, Robert E. W.; Barron, Annelise E.

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents. PMID:26849681

  18. Antimicrobial Activity of Protamine against Oral Microorganisms.

    PubMed

    Kim, Yeon-Hee; Kim, Sang Moo; Lee, Si Young

    2015-01-01

    Protamine is an arginine-rich polycationic protein extracted from sperm cells of vertebrates including fishes such as salmon. The purpose of this study was to investigate the suppressive effects of protamine on the growth of oral pathogens for possible usage in dental materials. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the microdilution method. Twelve strains of oral viridans streptococci, Actinomyces naeslundii, Actinomyces odontolyticus, Enterococcus faecalis, Lactobacillus acidophilus, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis and Candida albicans were suppressed by protamine. MIC and MBC values were between 0.009 ~ 20 mg/mL and 0.019 ~ 80 mg/mL, respectively. The bactericidal activities of protamine against susceptible bacterial species were dependent on the concentration of protamine and incubation time. Based on the results of this study, protamine would be a useful compound for the development of antimicrobial agents against oral pathogens in dental materials.

  19. Essential oils and their principal constituents as antimicrobial agents for synthetic packaging films.

    PubMed

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-01-01

    Spices and herbal plant species have been recognized to possess a broad spectrum of active constituents that exhibit antimicrobial (AM) activity. These active compounds are produced as secondary metabolites associated with the volatile essential oil (EO) fraction of these plants. A wide range of AM agents derived from EOs have the potential to be used in AM packaging systems which is one of the promising forms of active packaging systems aimed at protecting food products from microbial contamination. Many studies have evaluated the AM activity of synthetic AM and/or natural AM agents incorporated into packaging materials and have demonstrated effective AM activity by controlling the growth of microorganisms. This review examines the more common synthetic and natural AM agents incorporated into or coated onto synthetic packaging films for AM packaging applications. The focus is on the widely studied herb varieties including basil, oregano, and thyme and their EOs. PMID:22416718

  20. The in vitro efficacy of antimicrobial agents against the pathogenic free-living amoeba Balamuthia mandrillaris.

    PubMed

    Ahmad, Arine F; Heaselgrave, Wayne; Andrew, Peter W; Kilvington, Simon

    2013-01-01

    The free-living amoeba Balamuthia mandrillaris causes usually fatal encephalitis in humans and animals. Only limited studies have investigated the efficacy of antimicrobial agents against the organism. Assay methods were developed to assess antimicrobial efficacy against both the trophozoite and cyst stage of B. mandrillaris (ATCC 50209). Amphotericin B, ciclopirox olamine, miltefosine, natamycin, paromomycin, pentamidine isethionate, protriptyline, spiramycin, sulconazole and telithromycin had limited activity with amoebacidal levels of > 135-500 μM. However, diminazene aceturate (Berenil(®) ) was amoebacidal at 7.8 μM and 31.3-61.5 μM for trophozoites and cysts, respectively. Assays for antimicrobial testing may improve the prognosis for infection and aid in the development of primary selective culture isolation media.

  1. Pectin functionalized with natural fatty acids as antimicrobial agent.

    PubMed

    Calce, Enrica; Mignogna, Eleonora; Bugatti, Valeria; Galdiero, Massimiliano; Vittoria, Vittoria; De Luca, Stefania

    2014-07-01

    Several pectin derivatives were prepared by chemical modifications of the polysaccharide with natural fatty acids. The obtained biodegradable pectin-based materials, pectin-linoleate, pectin-oleate and pectin-palmitate, were investigated for their antimicrobial activity against several bacterial strains, Staphylococcus aureus and Escherichia coli. Good results were obtained for pectin-oleate and pectin-linoleate, which inhibit the growth of the selected microorganisms by 50-70%. They exert the better antimicrobial activity against S. aureus. Subsequently, the pectin-oleate and the pectin-linoleate samples were coated on polyethylene films and were assessed for their capacity to capture the oxygen molecules, reducing its penetration into the polymeric support. These results confirmed a possible application of the new materials in the field of active food packaging.

  2. Minimal inhibitory concentrations of antimicrobial agents against Actinobacillus pleuropneumoniae.

    PubMed Central

    Nadeau, M; Larivière, S; Higgins, R; Martineau, G P

    1988-01-01

    Forty-five isolates of Actinobacillus pleuropneumoniae were tested for susceptibility to 12 antimicrobial agents using a microdilution method for the minimal inhibitory concentration determinations. These results confirmed the high prevalence of A. pleuropneumoniae strains resistant to antibiotics as reported earlier using the disc diffusion method (Kirby-Bauer method). While 36% of the isolates were resistant to the penicillins, 47% were resistant to chloramphenicol and 68% were resistant to tetracycline. Minimal inhibitory concentrations for the resistant isolates were approximately 32 times higher than those for the susceptible isolates to the above antibacterial agents. The isolates were in general weakly susceptible or resistant to spectinomycin, lincomycin, tiamulin and spiramycin whereas most of them were susceptible to gentamicin, trimethoprim and erythromycin. The susceptibility pattern was similar throughout the 1980 to 1984 period. The 14 serotype 5 isolates were more resistant to tetracycline but less resistant to chloramphenicol and the penicillins than the 28 serotype 1 isolates. PMID:3167716

  3. Cytotoxicity testing of topical antimicrobial agents on human keratinocytes and fibroblasts for cultured skin grafts.

    PubMed

    Boyce, S T; Warden, G D; Holder, I A

    1995-01-01

    Cultured epidermal skin has become an adjunctive therapy for treatment of major burn injuries, but its effectiveness is greatly limited because of destruction by microbial contamination. To evaluate candidate antimicrobial agents for use with cultured skin, a combined cytotoxicity-antimicrobial assay system was developed for determination of toxicity to cultured human keratinocytes and fibroblasts and for determination of susceptibility or resistance of common burn wound organisms. Candidate agents including chlorhexidine gluconate, polymyxin B, mupirocin, sparfloxacin, or nitrofurazone were tested separately for inhibition of growth of human cells and for inhibitory activity to microorganisms with the wet disk assay. The data showed that (1) chlorhexidine gluconate (0.05%) was uniformly toxic to both cultured human cells and microorganisms; (2) nitrofurazone (0.02%) had dose-dependent toxicity to human cells and limited effectiveness against gram-negative microorganisms; (3) sparfloxacin (30 micrograms/ml) had low toxicity to human cells and retained antimicrobial activity against both gram-positive and gram-negative bacteria; (4) polymyxin B (400 U/ml) was not toxic to human cells and had intermediate effectiveness on gram-negative bacteria; and (5) mupirocin (48 micrograms/ml) had no toxicity to skin cells and had uniform effectiveness against Staphylococcus aureus including methicillin-resistant Staphylococcus aureus. Selection of topical antimicrobial drugs by these assays may improve effectiveness of cultured skin for burns and may be used to control other surgical wound infections.

  4. Cytotoxicity testing of topical antimicrobial agents on human keratinocytes and fibroblasts for cultured skin grafts.

    PubMed

    Boyce, S T; Warden, G D; Holder, I A

    1995-01-01

    Cultured epidermal skin has become an adjunctive therapy for treatment of major burn injuries, but its effectiveness is greatly limited because of destruction by microbial contamination. To evaluate candidate antimicrobial agents for use with cultured skin, a combined cytotoxicity-antimicrobial assay system was developed for determination of toxicity to cultured human keratinocytes and fibroblasts and for determination of susceptibility or resistance of common burn wound organisms. Candidate agents including chlorhexidine gluconate, polymyxin B, mupirocin, sparfloxacin, or nitrofurazone were tested separately for inhibition of growth of human cells and for inhibitory activity to microorganisms with the wet disk assay. The data showed that (1) chlorhexidine gluconate (0.05%) was uniformly toxic to both cultured human cells and microorganisms; (2) nitrofurazone (0.02%) had dose-dependent toxicity to human cells and limited effectiveness against gram-negative microorganisms; (3) sparfloxacin (30 micrograms/ml) had low toxicity to human cells and retained antimicrobial activity against both gram-positive and gram-negative bacteria; (4) polymyxin B (400 U/ml) was not toxic to human cells and had intermediate effectiveness on gram-negative bacteria; and (5) mupirocin (48 micrograms/ml) had no toxicity to skin cells and had uniform effectiveness against Staphylococcus aureus including methicillin-resistant Staphylococcus aureus. Selection of topical antimicrobial drugs by these assays may improve effectiveness of cultured skin for burns and may be used to control other surgical wound infections. PMID:7775517

  5. Tests for bactericidal effects of antimicrobial agents: technical performance and clinical relevance.

    PubMed Central

    Peterson, L R; Shanholtzer, C J

    1992-01-01

    Bactericidal testing has been used for several decades as a guide for antimicrobial therapy of serious infections. Such testing is most frequently performed when bactericidal antimicrobial agent therapy is considered necessary (such as when treating infectious endocarditis or infection in an immunocompromised host). It has also been used to ensure that the infecting organism is killed by (not tolerant to) usually bactericidal compounds. However, few data are available to support the role of such tests in direct patient care. Several important variables affect the reproducibility of the test results; however, proposed reference methods are now available for performing the MBC test. With minor modifications, these can provide a standardized approach for laboratories that need to perform them. Currently, little evidence is available to support the routine use of such testing for the care of individual patients. However, testing of new (investigational) antimicrobial agents can be beneficial in determining their potential to provide bactericidal antimicrobial activity during clinical use. New methods to assess bactericidal activity are being developed, but as yet none have been rigorously tested in patient care settings; further, for most of these methods, little information is available as to which technical parameters affect their results. In clinical laboratories, all bactericidal tests must be performed with rigorously standardized techniques and adequate controls, bearing in mind the limitations of the currently available test procedures. PMID:1423219

  6. In vitro synergistic effect of Psidium guineense (Swartz) in combination with antimicrobial agents against methicillin-resistant Staphylococcus aureus strains.

    PubMed

    Fernandes, Tiago Gomes; de Mesquita, Amanda Rafaela Carneiro; Randau, Karina Perrelli; Franchitti, Adelisa Alves; Ximenes, Eulália Azevedo

    2012-01-01

    The aim of this study was to evaluate the antimicrobial activity of aqueous extract of Psidium guineense Swartz (Araçá-do-campo) and five antimicrobials (ampicillin, amoxicillin/clavulanic acid, cefoxitin, ciprofloxacin, and meropenem) against twelve strains of Staphylococcus aureus with a resistant phenotype previously determined by the disk diffusion method. Four S. aureus strains showed resistance to all antimicrobial agents tested and were selected for the study of the interaction between aqueous extract of P. guineense and antimicrobial agents, by the checkerboard method. The criteria used to evaluate the synergistic activity were defined by the fractional inhibitory concentration index (FICI). All S. aureus strains were susceptible to P. guineense as determined by the microdilution method. The combination of the P. guineense extract with the antimicrobial agents resulted in an eight-fold reduction in the MIC of these agents, which showed a FICI ranging from 0.125 to 0.5, suggesting a synergistic interaction against methicillin-resistant Staphylococcus aureus (MRSA) strains. The combination of the aqueous extract of P. guineense with cefoxitin showed the lowest FICI values. This study demonstrated that the aqueous extract of P. guineense combined with beta lactamics antimicrobials, fluoroquinolones, and carbapenems, acts synergistically by inhibiting MRSA strains.

  7. In Vitro Synergistic Effect of Psidium guineense (Swartz) in Combination with Antimicrobial Agents against Methicillin-Resistant Staphylococcus aureus Strains

    PubMed Central

    Fernandes, Tiago Gomes; de Mesquita, Amanda Rafaela Carneiro; Randau, Karina Perrelli; Franchitti, Adelisa Alves; Ximenes, Eulália Azevedo

    2012-01-01

    The aim of this study was to evaluate the antimicrobial activity of aqueous extract of Psidium guineense Swartz (Araçá-do-campo) and five antimicrobials (ampicillin, amoxicillin/clavulanic acid, cefoxitin, ciprofloxacin, and meropenem) against twelve strains of Staphylococcus aureus with a resistant phenotype previously determined by the disk diffusion method. Four S. aureus strains showed resistance to all antimicrobial agents tested and were selected for the study of the interaction between aqueous extract of P. guineense and antimicrobial agents, by the checkerboard method. The criteria used to evaluate the synergistic activity were defined by the fractional inhibitory concentration index (FICI). All S. aureus strains were susceptible to P. guineense as determined by the microdilution method. The combination of the P. guineense extract with the antimicrobial agents resulted in an eight-fold reduction in the MIC of these agents, which showed a FICI ranging from 0.125 to 0.5, suggesting a synergistic interaction against methicillin-resistant Staphylococcus aureus (MRSA) strains. The combination of the aqueous extract of P. guineense with cefoxitin showed the lowest FICI values. This study demonstrated that the aqueous extract of P. guineense combined with beta lactamics antimicrobials, fluoroquinolones, and carbapenems, acts synergistically by inhibiting MRSA strains. PMID:22619603

  8. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities.

    PubMed

    Krist, Sabine; Banovac, Daniel; Tabanca, Nurhayat; Wedge, David E; Gochev, Velizar K; Wanner, Jürgen; Schmidt, Erich; Jirovetz, Leopold

    2015-01-01

    Nerolidol and its derivatives, namely cis-nerolidol, O-methyl-nerolidol, O-ethyl-nerolidol, (-)-α-bisabolol, trans,trans-farnesol and its main natural source cabreuva essential oil, were tested for their antimicrobial activity against airborne microbes and antifungal properties against plant pathogens. Among the tested compounds, α-bisabolol was the most effective antimicrobial agent and trans,trans-farnesol showed the best antifungal activity. PMID:25920237

  9. Antimicrobial activity of Gentiana lutea L. extracts.

    PubMed

    Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora

    2009-01-01

    Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.

  10. Protocols to test the activity of antimicrobial peptides against the honey bee pathogen Paenibacillus larvae.

    PubMed

    Khilnani, Jasmin C; Wing, Helen J

    2015-10-01

    Paenibacillus larvae is the causal agent of the honey bee disease American Foulbrood. Two enhanced protocols that allow the activity of antimicrobial peptides to be tested against P. larvae are presented. Proof of principle experiments demonstrate that the honey bee antimicrobial peptide defensin 1 is active in both assays. PMID:26210039

  11. Determining Multiple Responses of Pseudomonas aeruginosa PAO1 to an Antimicrobial Agent, Free Nitrous Acid.

    PubMed

    Gao, Shu-Hong; Fan, Lu; Peng, Lai; Guo, Jianhua; Agulló-Barceló, Míriam; Yuan, Zhiguo; Bond, Philip L

    2016-05-17

    Free nitrous acid (FNA) has recently been demonstrated as an antimicrobial agent on a range of micro-organisms, especially in wastewater-treatment systems. However, the antimicrobial mechanism of FNA is largely unknown. Here, we report that the antimicrobial effects of FNA are multitargeted. The response of a model denitrifier, Pseudomnas aeruginosa PAO1 (PAO1), common in wastewater treatment, was investigated in the absence and presence of inhibitory level of FNA (0.1 mg N/L) under anaerobic denitrifying conditions. This was achieved through coupling gene expression analysis, by RNA sequencing, and with a suite of physiological analyses. Various transcripts exhibited significant changes in abundance in the presence of FNA. Respiration was likely inhibited because denitrification activity was severely depleted, and decreased transcript levels of most denitrification genes occurred. As a consequence, the tricarboxylic acid (TCA) cycle was inhibited due to the lowered cellular redox state in the FNA-exposed cultures. Meanwhile, during FNA exposure, PAO1 rerouted its carbon metabolic pathway from the TCA cycle to pyruvate fermentation with acetate as the end product as a possible survival mechanism. Additionally, protein synthesis was significantly decreased, and ribosome preservation was evident. These findings improve our understanding of PAO1 in response to FNA and contribute toward the potential application for use of FNA as an antimicrobial agent. PMID:27116299

  12. Exploring the potential of magnetic antimicrobial agents for water disinfection.

    PubMed

    Pina, Ana S; Batalha, Iris L; Fernandes, Cláudia S M; Aoki, Matheus A; Roque, Ana C A

    2014-12-01

    Industrial and urban activities yield large amounts of contaminated groundwater, which present a major health issue worldwide. Infectious diseases are the most common health risk associated with drinking-water and wastewater remediation is a major concern of our modern society. The field of wastewater treatment is being revolutionized by new nano-scale water disinfection devices which outperform most currently available technologies. In particular, iron oxide magnetic nanoparticles (MNPs) have been widely used in environmental applications due to their unique physical-chemical properties. In this work, poly(ethylene) glycol (PEG)-coated MNPs have been functionalized with (RW)3, an antimicrobial peptide, to yield a novel magnetic-responsive support with antimicrobial activity against Escherichia coli K-12 DSM498 and Bacillus subtilis 168. The magnetic-responsive antimicrobial device showed to be able to successfully disinfect the surrounding solution. Using a rapid high-throughput screening platform, the minimal inhibitory concentration (MIC) was determined to be 500 μM for both strains with a visible bactericidal effect.

  13. Synthesis and Evaluation of Ester Derivatives of 10-Hydroxycanthin-6-one as Potential Antimicrobial Agents.

    PubMed

    Zhao, Fei; Dai, Jiang-Kun; Liu, Dan; Wang, Shi-Jun; Wang, Jun-Ru

    2016-01-01

    As part of our continuing research on canthin-6-one antimicrobial agents, a new series of ester derivatives of 10-hydroxycanthin-6-one were synthesized using a simple and effective synthetic route. The structure of each compound was characterized by NMR, ESI-MS, FT-IR, UV, and elemental analysis. The antimicrobial activity of these compounds against three phytopathogenic fungi (Alternaria solani, Fusarium graminearum, and Fusarium solani) and four bacteria (Bacillus cereus, Bacillus subtilis, Ralstonia solanacearum, and Pseudomonas syringae) were evaluated using the mycelium linear growth rate method and micro-broth dilution method, respectively. The structure-activity relationship is discussed. Of the tested compounds, 4 and 7s displayed significant antifungal activity against F. graminearum, with inhibition rates of 100% at a concentration of 50 μg/mL. Compounds 5, 7s, and 7t showed the best inhibitory activity against all the tested bacteria, with minimum inhibitory concentrations (MICs) between 3.91 and 31.25 μg/mL. Thus, 7s emerged as a promising lead compound for the development of novel canthine-6-one antimicrobial agents. PMID:27007362

  14. Effects of treatment with antimicrobial agents on the human colonic microflora

    PubMed Central

    Rafii, Fatemeh; Sutherland, John B; Cerniglia, Carl E

    2008-01-01

    Antimicrobial agents are the most valuable means available for treating bacterial infections. However, the administration of therapeutic doses of antimicrobial agents to patients is a leading cause of disturbance of the normal gastrointestinal microflora. This disturbance results in diminishing the natural defense mechanisms provided by the colonic microbial ecosystem, making the host vulnerable to infection by commensal microorganisms or nosocomial pathogens. In this minireview, the impacts of antimicrobials, individually and in combinations, on the human colonic microflora are discussed. PMID:19337440

  15. Influence of topically applied antimicrobial agents on muscular microcirculation.

    PubMed

    Goertz, Ole; Hirsch, Tobias; Ring, Andrej; Steinau, Hans U; Daigeler, Adrien; Lehnhardt, Marcus; Homann, Heinz H

    2011-10-01

    Bacterial infections cause major complications in wound healing. Local antiseptics are used for daily wound care; however, their potential toxic effects on the vasculature have not yet been thoroughly investigated. The aim of this study was to assess the effects of antiseptics on microcirculation. Investigations were performed on a standardized cremaster muscle model on rats (n = 60). The arteriolar diameter and functional capillary density (FCD) were investigated using transillumination microscopy before and 60 and 120 minutes after application of each of the following antimicrobial agents: alcohol, hydrogen peroxide, imipenem, octenidine dihydrochloride, polyhexanide, and ethacridine lactate. Although polyhexanide caused a significant arteriolar dilatation (106.25 ± 3.23 vs. 88.54 ± 6.74 μm [baseline value]) and increase of FCD compared with baseline value (12.65 ± 0.82 vs. 9.10 ± 0.50 n/0.22 mm), alcohol led to a significant decrease of both parameters (90.63 ± 10.80 vs. 52.09 ± 7.69 and 5.35 ± 0.54 vs. 1.68 ± 0.48) and was the only agent that caused arteriolar thrombosis. The FCD also increased significantly after treatment with hydrogen peroxide (10.55 ± 0.33 vs. 12.30 ± 0.48) and octenidine (6.82 ± 0.63 vs. 12.32 ± 0.63). However, no positive effect on arteriolar diameter could be found. Ethacridine lactate and imipenem did not impact either parameter. In addition to reducing bacteria, an antiseptic should be nontoxic, especially to the microcirculation. Polyhexanide seems to have a positive influence on vessel diameter and capillary density, whereas alcohol reduces both parameters. If the antimicrobial efficacy is comparable, the antiseptic with less toxic effects should be chosen, especially in critically perfused wounds.

  16. Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis.

    PubMed

    Santos, A L S; Sodre, C L; Valle, R S; Silva, B A; Abi-Chacra, E A; Silva, L V; Souza-Goncalves, A L; Sangenito, L S; Goncalves, D S; Souza, L O P; Palmeira, V F; d'Avila-Levy, C M; Kneipp, L F; Kellett, A; McCann, M; Branquinha, M H

    2012-01-01

    Infections caused by resistant microorganisms often fail to respond to conventional therapy, resulting in prolonged illness, increased treatment costs and greater risk of death. Consequently, the development of novel antimicrobial drugs is becoming more demanding every day since the existing drugs either have too many side-effects or they tend to lose effectiveness due to the selection of resistant strains. In view of these facts, a number of new strategies to obstruct vital biological processes of a microbial cell have emerged; one of these is focused on the use of metal-chelating agents, which are able to selectively disturb the essential metal metabolism of the microorganism by interfering with metal acquisition and bioavailability for crucial reactions. The chelation activity is able to inhibit the biological role of metal-dependent proteins (e.g., metalloproteases and transcription factors), disturbing the microbial cell homeostasis and culminating in the blockage of microbial nutrition, growth and development, cellular differentiation, adhesion to biotic (e.g., extracellular matrix components, cell and/or tissue) and abiotic (e.g., plastic, silicone and acrylic) structures as well as controlling the in vivo infection progression. Interestingly, chelating agents also potentiate the activity of classical antimicrobial compounds. The differences between the microorganism and host in terms of the behavior displayed in the presence of chelating agents could provide exploitable targets for the development of an effective chemotherapy for these diseases. Consequently, metal chelators represent a novel group of antimicrobial agents with potential therapeutic applications. This review will focus on the anti-fungal and anti-protozoan action of the most common chelating agents, deciphering and discussing their mode of action.

  17. Nontherapeutic use of antimicrobial agents in animal agriculture: implications for pediatrics.

    PubMed

    Shea, Katherine M

    2004-09-01

    Antimicrobial resistance is widespread. Overuse or misuse of antimicrobial agents in veterinary and human medicine is responsible for increasing the crisis of resistance to antimicrobial agents. The American Academy of Pediatrics, in conjunction with the US Public Health Service, has begun to address this problem by disseminating policies on the judicious use of antimicrobial agents in humans. Between 40% and 80% of the antimicrobial agents used in the United States each year are used in food animals; many are identical or very similar to drugs used in humans. Most of this use involves the addition of low doses of antimicrobial agents to the feed of healthy animals over prolonged periods to promote growth and increase feed efficiency or at a range of doses to prevent disease. These nontherapeutic uses contribute to resistance and create health dangers for humans. This report will describe how antimicrobial agents are used in animal agriculture and review the mechanisms by which such uses contribute to resistance in human pathogens. Although therapeutic use of antimicrobial agents in agriculture clearly contributes to the development of resistance, this report will concentrate on nontherapeutic uses in healthy animals. PMID:15342867

  18. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus.

    PubMed

    Haba, Ester; Bouhdid, Samira; Torrego-Solana, Noelia; Marqués, A M; Espuny, M José; García-Celma, M José; Manresa, Angeles

    2014-12-10

    This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems.

  19. Report: Antimicrobial activity of Kalanchoe laciniata.

    PubMed

    Manan, Maria; Hussain, Liaqat; Ijaz, Hira; Qadir, Muhammad Imran

    2016-07-01

    This study was conducted to identify antimicrobial potential of Kalanchoe laciniata. The plants were extracted with 30-70% aqueous-methanol and n-hexane. The antimicrobial activities were examined using agar well diffusion method against bacteria (Staphylococcus aureus, Escherichia coli) and fungi (Candidaalbicans). Results showed that E. coli were more sensitive than Staphylococcus aureus and Candida albicans. The largest zone of inhibition (52 mm) was recorded against E. coli with the n-hexane extract of Kalanchoe laciniata.

  20. Effect of storage temperature and pH on the stability of antimicrobial agents in MIC trays.

    PubMed

    Hwang, J M; Piccinini, T E; Lammel, C J; Hadley, W K; Brooks, G F

    1986-05-01

    Twelve antimicrobial agents, ampicillin, aztreonam, cefamandole, cefazolin, cefonicid, ceforanide, ceftazidime, ceftizoxime, ceftriaxone, cefuroxime, ciprofloxacin, and norfloxacin, were prepared at pH 6.80 and 7.31 in microdilution trays for storage at 4, -10, -25, and -70 degrees C and for weekly susceptibility testing. All 12 drugs had stable biological activity when stored at -70 degrees C for 1 year. All but ampicillin and aztreonam were stable at -25 degrees C. Storage at -10 degrees C was least satisfactory. Desiccation occurred at 4 degrees C, but short-term storage at this temperature is possible since the antimicrobial agents are stable for up to several months. PMID:3711284

  1. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus *

    PubMed Central

    Zhang, Hui; Zhang, Lu; Peng, Li-juan; Dong, Xiao-wu; Wu, Di; Wu, Vivian Chi-Hua; Feng, Feng-qin

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents. PMID:22302421

  2. Evaluating bionanoparticle infused fungal metabolites as a novel antimicrobial agent

    PubMed Central

    Rajpal, Kartikeya; Aziz, Nafe; Prasad, Ram; Varma, Ramendra G.; Varma, Ajit

    2016-01-01

    Therapeutic properties of fungal metabolites and silver nanoparticles have been well documented. While fungal metabolites have been used for centuries as medicinal drugs, potential of biogenic silver nanoparticles has recently received attention. We have evaluated the antimicrobial potential of Aspergillus terreus crude extract, silver nanoparticles and an amalgamation of both against four pathogenic bacterial strains. Antimicrobial activity of the following was evaluated – A. terreus extract, biogenic silver nanoparticles, and a mixture containing extract and nanoparticles. Four pathogenic bacteria - Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Bacillus cereus were used as test organisms. Phenol, flavonoid, and alkaloid content of extract were determined to understand the chemical profile of the fungus. The extract contained significantly high amounts of phenols, flavonoids, and alkaloids. The extract and biogenic silver nanoparticle exhibited significant antibacterial activity at concentrations of 10 μg/ml and 1 μg/ml, respectively. When used in combination, the extract-nanoparticle mixture showed equally potent antibacterial activity at a much lower concentration of 2.5 μg/ml extract + 0.5 μg/ml nanoparticle. Given its high antibacterial potential, the fungal extract can be a promising source of novel drug lead compounds. The extract – silver nanoparticle mixture exhibited synergism in their antibacterial efficacy. This property can be further used to formulate new age drugs. PMID:27429931

  3. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa

    PubMed Central

    Askoura, Momen; Mottawea, Walid; Abujamel, Turki; Taher, Ibrahim

    2011-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR) and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND) plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl β-naphthylamide (PAβN) have been introduced as efflux pump inhibitors (EPIs); their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAβN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings. PMID:21594004

  4. Sensitivity of bacterial biofilms and planktonic cells to a new antimicrobial agent, Oxsil 320N.

    PubMed

    Surdeau, N; Laurent-Maquin, D; Bouthors, S; Gellé, M P

    2006-04-01

    The effective concentrations of disinfectants were determined for planktonic bacteria using the norms EN 1040 and NF T 72-150. This concentration corresponds to biocide efficacy after 5 min of contact, followed by neutralization. However, micro-organisms often colonize a substratum and form microcolonies or biofilms where they are enclosed in exopolymer matrices. Biofilms are commonly resistant to a broad range of antimicrobial agents, and resistance mechanisms involve exopolymer matrices, changes in gene expression and metabolic alterations. Due to these different resistance mechanisms, it is difficult to select and titrate antimicrobial agents to be effective against biofilms. In this context, SODIFRA developed a new disinfectant, Oxsil 320N (French patent 94 15 193). Oxsil 320N is an association of three active principles: hydrogen peroxide, acetic acid/peracetic acid and silver. This biocide was tested on planktonic bacteria and on 24-h biofilms formed on AISI 304 stainless steel surfaces. The effective concentration of Oxsil 320N was also determined on biofilms using SODIFRA recommendations (without neutralization of the biocide). Data showed that the antimicrobial efficacy measured on planktonic bacteria is not a reliable indicator of performance when biofilm is present. When biofilms were exposed to Oxsil 320N, the concentration needed to achieve a 10(5)-fold decrease in concentration was 10 times higher than that for bacterial suspensions (0.313% Oxsil 320N). An effective concentration of Oxsil 320N of 3.13% was required. PMID:16478644

  5. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory-antimicrobial agents.

    PubMed

    Khloya, Poonam; Kumar, Satish; Kaushik, Pawan; Surain, Parveen; Kaushik, Dhirender; Sharma, Pawan K

    2015-03-15

    Current Letter presents design, synthesis and biological evaluation of a novel series of pyrazolylthiazole carboxylates 1a-1p and corresponding acid derivatives 2a-2p. All 32 novel compounds were tested for their in vivo anti-inflammatory activity by carrageenan-induced rat paw edema method as well as for in vitro antimicrobial activity. All the tested compounds exhibited excellent AI activity profile. Three compounds 1p (R=Cl, R(1)=Cl), 2c (R=H, R(1)=F) and 2n (R=Cl, R(1)=OCH3) were identified as potent anti-inflammatory agents exhibiting edema inhibition of 93.06-89.59% which is comparable to the reference drug indomethacin (91.32%) after 3h of carrageenan injection while most of the other compounds displayed inhibition ⩾80%. In addition, pyrazolylthiazole carboxylic acids (2a-2p) also showed good antimicrobial profile. Compound 2h (R=OCH3, R(1)=Cl) showed excellent antimicrobial activity (MIC 6.25μg/mL) against both Gram positive bacteria comparable with the reference drug ciprofloxacin (MIC 6.25μg/mL).

  6. Appropriateness of gram-negative agent use at a tertiary care hospital in the setting of significant antimicrobial resistance.

    PubMed

    Vora, Neil M; Kubin, Christine J; Furuya, E Yoko

    2015-01-01

    Background.  Practicing antimicrobial stewardship in the setting of widespread antimicrobial resistance among gram-negative bacilli, particularly in urban areas, is challenging. Methods.  We conducted a retrospective cross-sectional study at a tertiary care hospital with an established antimicrobial stewardship program in New York, New York to determine appropriateness of use of gram-negative antimicrobials and to identify factors associated with suboptimal antimicrobial use. Adult inpatients who received gram-negative agents on 2 dates, 1 June 2010 or 1 December 2010, were identified through pharmacy records. Clinical data were collected for each patient. Use of gram-negative agents was deemed optimal or suboptimal through chart review and according to hospital guidelines. Data were compared using χ(2) or Fischer's exact test for categorical variables and Student t test or Mann-Whitney U test for continuous variables. Results.  A total of 356 patients were included who received 422 gram-negative agents. Administration was deemed suboptimal in 26% of instances, with the most common reason being spectrum of activity too broad. In multivariable analysis, being in an intensive care unit (adjusted odds ratio [aOR], .49; 95% confidence interval [CI], .29-.84), having an infectious diseases consultation within the previous 7 days (aOR, .52; 95% CI, .28-.98), and having a history of multidrug-resistant gram-negative bacilli within the past year (aOR, .24; 95% CI, .09-.65) were associated with optimal gram-negative agent use. Beta-lactam/beta-lactamase inhibitor combination drug use (aOR, 2.6; 95% CI, 1.35-5.16) was associated with suboptimal use. Conclusions.  Gram-negative agents were used too broadly despite numerous antimicrobial stewardship program activities.

  7. The Antimicrobial Activity of Porphyrin Attached Polymers

    NASA Astrophysics Data System (ADS)

    Thompson, Lesley

    2008-03-01

    We are interested in testing the antimicrobial activity of a porphyrin that is attached to a polymer. The porphyrin (5-(4-carboxyphenyl)-10,15,20-tris-(4-pryridyl)) was synthesized from methyl 4-formyl benzoate, 4-pyridinecarboxaldehyde, and pyrrole and attached to a copolymer of polystyrene/poly(vinyl benzyl chloride), which was synthesized by free radical polymerization. The antimicrobial activity of the polymer-attached porphyrin was then determined for gram-negative E. Coli grown to 0.80 OD. In this procedure, glass slides were coated with polymer-attached porphyrin via dip-coating, and the E. Coli bacteria were plated in Luria Broth media. The plates were subsequently exposed to light overnight before they were incubated as porphyrins act as photo-sensitizers when irradiated with light. The polymer-attached porphyrin did exhibit antimicrobial activity and parameters that affect its efficiency will be discussed.

  8. Inhibitory effects of antimicrobial agents against Fusarium species.

    PubMed

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed.

  9. Adherence of oral streptococci to an immobilized antimicrobial agent.

    PubMed

    Saito, T; Takatsuka, T; Kato, T; Ishihara, K; Okuda, K

    1997-08-01

    An antimicrobial agent, 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride, was immobilized on silica. Interaction between the material (termed) OAIS) and various oral bacterial species were then studied. Seven species of Streptococcus and two Actinomyces were investigated for their ability to adhere to this biomaterial. Cell-surface hydrophobicity and zeta-potential were examined as well. Analysis of extracted hydrophobic proteins which adhered to OAIS revealed that the adherence of these micro-organisms was closely related to the hydrophobicity of their cell surfaces. The results of zeta-potential assays indicated that negative charge on the cell surface inhibited adherence to OAIS. Gel electrophoresis revealed that OAIS could absorb cell-surface hydrophobic proteins from all bacterial species tested. Preadsorption of hydrophobic components on the cell surface inhibited adherence of the Strep. mutans strain to OAIS in a dose-dependent manner. The results indicate that OAIS adsorption of these oral bacteria was dependent on the degree of hydrophobicity of their surfaces. A major component of this adherence was hydrophobic cell-surface proteins. PMID:9347116

  10. Comparative physiological disposition of two nitrofuran anti-microbial agents.

    PubMed

    Labaune, J P; Moreau, J P; Byrne, R

    1986-01-01

    The physiological disposition of two nitrofuran derivatives used as antimicrobial agents for the treatment of acute infectious diarrhoea was evaluated in humans and animals. Upon administration of a single oral dose (600 mg) of nifurzide or nifuroxazide, no unchanged parent drug was detected in human blood or urine. In rats given 14C-nifurzide and 14C-nifuroxazide at a dose of 10 mg kg-1, 5 per cent and 17 per cent of the dose of nifurzide and nifuroxazide, respectively, were excreted in urine over a 48-hour period. None of this radioactivity was present as unchanged drug, indicating that renal excretion of both drugs occurs as metabolites. In the faeces 20 per cent of the radioactivity recovered was associated with unchanged nifuroxazide as compared with 100 per cent for nifurzide. Whole body autoradiography using rats showed that after oral administration of 14C-nifurzide and 14C-nifuroxazide, most of the radioactivity remained in the gastrointestinal lumen. PMID:3779034

  11. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents.

    PubMed Central

    Weber, D J; Saviteer, S M; Rutala, W A; Thomann, C A

    1988-01-01

    Although often dismissed as contaminants when isolated from blood cultures, Bacillus spp. are increasingly recognized as capable of causing serious systemic infections. As part of a clinical-microbiological study, 89 strains of Bacillus spp. isolated from clinical blood cultures between 1981 and 1985 had their species determined and were tested for antimicrobial agent susceptibility to 18 antibiotics. Species of isolates were determined by the API 50CH and API 20E systems. Bacillus cereus (54 strains) was the most common species isolated, followed by B. megaterium (13 strains), B. polymyxa (5 strains), B. pumilus (4 strains), B. subtilis (4 strains), B. circulans (3 strains), B. amyloliquefaciens (2 strains), B. licheniformis (1 strain), and Bacillus spp. (3 strains). Microdilution MIC susceptibility tests revealed all B. cereus strains to be susceptible to imipenem, vancomycin, chloramphenicol, gentamicin, and ciprofloxacin. Non-B. cereus strains were most susceptible to imipenem, vancomycin, LY146032, and ciprofloxacin. Disk susceptibility testing suggested that B. cereus was rarely susceptible to penicillins, semisynthetic penicillins, or cephalosporins with the exception of mezlocillin. In contrast, many non-B. cereus strains were susceptible to penicillins, semisynthetic penicillins, and cephalosporins, but marked variability was noted among species. PMID:3395100

  12. Novel food packaging systems with natural antimicrobial agents.

    PubMed

    Irkin, Reyhan; Esmer, Ozlem Kizilirmak

    2015-10-01

    A new type of packaging that combines food packaging materials with antimicrobial substances to control microbial surface contamination of foods to enhance product microbial safety and to extend shelf-life is attracting interest in the packaging industry. Several antimicrobial compounds can be combined with different types of packaging materials. But in recent years, since consumer demand for natural food ingredients has increased because of safety and availability, these natural compounds are beginning to replace the chemical additives in foods and are perceived to be safer and claimed to alleviate safety concerns. Recent research studies are mainly focused on the application of natural antimicrobials in food packaging system. Biologically derived compounds like bacteriocins, phytochemicals, enzymes can be used in antimicrobial food packaging. The aim of this review is to give an overview of most important knowledge about application of natural antimicrobial packagings with model food systems and their antimicrobial effects on food products. PMID:26396358

  13. In vitro susceptibility of Helicobacter pullorum strains to different antimicrobial agents.

    PubMed

    Ceelen, Liesbeth; Decostere, Annemie; Devriese, Luc A; Ducatelle, Richard; Haesebrouck, Freddy

    2005-01-01

    The in vitro activity of 13 antimicrobial agents against 23 Helicobacter pullorum strains from poultry (21) and human (two) origin, and one human H. canadensis strain was tested by the agar dilution method. With the H. pullorum strains, monomodal distributions of Minimum Inhibitory Concentrations (MICs) were seen with lincomycin, doxycycline, gentamicin, tobramycin, erythromycin, tylosin, metronidazole, and enrofloxacin in concentration ranges considered as indicating susceptibility in other bacteria. The normal susceptibility level for nalidixic acid was situated at or slightly above the MIC breakpoints proposed for Campylobacteriaceae. Ampicillin, ceftriaxone, and sulphamethoxazole-trimethoprim showed poor activity against H. pullorum. For the H. canadensis strain, a similar susceptibility pattern was seen, except for nalidixic acid and enrofloxacin, whose MIC of >512 and 8 microg/ml, respectively, indicated resistance of this agent. With spectinomycin, a bimodal distribution of the MICs was noted for the tested strains; eight H. pullorum isolates originating from one flock showed acquired resistance (MIC>512 microg/ml). PMID:15910225

  14. Quaternized N-substituted carboxymethyl chitosan derivatives as antimicrobial agents.

    PubMed

    Mohamed, Nadia A; Sabaa, Magdy W; El-Ghandour, Ahmed H; Abdel-Aziz, Marwa M; Abdel-Gawad, Omayma F

    2013-09-01

    Introduction of quaternary ammonium moieties into N-substituted carboxymethyl chitosan (N-substituted CMCh) derivatives enhances their biological activity. Several derivatives of CMCh having a variety of N-aryl substituents bearing either electron-donating or electron withdrawing groups have been synthesized by the reaction between amino group of CMCh with various aromatic aldehydes under acidic conditions, followed by reduction of the produced Schiff base derivatives with sodium cyanoborohydride. Each of the reduced derivatives was further quaternized using N-(3-chloro-2-hydroxy-propyl)trimethylammonium chloride (Quat-188). The resulting quaternized materials were characterized by FTIR and (1)H NMR spectroscopy. Their antibacterial activities against Streptococcus pneumoniae (S. pneumonia, RCMB 010010), Bacillis subtilis (B. subtilis, RCMB 010067), as Gram positive bacteria and against Escherichia coli (E. coli, RCMB 010052) as Gram negative bacteria and their antifungal activities against Aspergillus fumigatus (A. fumigates, RCMB 02568), Geotricum candidum (G. candidum, RCMB 05097), and Candida albicans (C. albicans, RCMB 05031) were examined using agar disk diffusion method. The results indicated that all the quaternized derivatives showed better antimicrobial activities than that of CMCh. These derivatives are highly potent against Gram positive bacteria compared to Gram negative bacteria. This is illustrated for example as the values of minimum inhibitory concentration (MIC) of Q4NO2-BzCMCh against B. subtilis and S. pneumonia were 6.25 and 12.5 μg/mL, respectively corresponded to 20.0 μg/mL against E. coli. The antimicrobial activity of quaternized N-aryl CMCh derivatives affected by not only the nature of the microorganisms but also by the nature, position and number of the substituent groups on the phenyl ring. Thus while the derivatives with groups of electron withdrawing nature show higher inhibition zone diameter and lower MIC values relative to that

  15. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  16. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    PubMed

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  17. Synergistic Antimicrobial Activity of Camellia sinensis and Juglans regia against Multidrug-Resistant Bacteria

    PubMed Central

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U.; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates.” We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens PMID:25719410

  18. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    PubMed

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens. PMID:25719410

  19. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  20. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  1. The antimicrobial activity of phenoxyethanol in vaccines.

    PubMed

    Lowe, I; Southern, J

    1994-02-01

    The activity of the antimicrobial preservatives, phenoxyethanol and thiomersal, were compared in diphtheria, tetanus and pertussis (adsorbed) vaccine. Both chemicals were equally effective in inactivating challenge doses of Gram-negative and Gram-positive micro-organisms, as well as a yeast.

  2. Antioxidant, Antimicrobial Activity and Toxicity Test of Pilea microphylla

    PubMed Central

    Modarresi Chahardehi, Amir; Ibrahim, Darah; Fariza Sulaiman, Shaida

    2010-01-01

    A total of 9 plant extracts were tested, using two different kinds of extracting methods to evaluate the antioxidant and antimicrobial activities from Pilea microphylla (Urticaceae family) and including toxicity test. Antioxidant activity were tested by using DPPH free radical scavenging, also total phenolic contents and total flavonoid contents were determined. Toxicity assay carried out by using brine shrimps. Methanol extract of method I (ME I) showed the highest antioxidant activity at 69.51 ± 1.03. Chloroform extract of method I (CE I) showed the highest total phenolic contents at 72.10 ± 0.71 and chloroform extract of method II (CE II) showed the highest total flavonoid contents at 60.14 ± 0.33. The antimicrobial activity of Pilea microphylla extract was tested in vitro by using disc diffusion method and minimum inhibitory concentration (MIC). The Pilea microphylla extract showed antibacterial activity against some Gram negative and positive bacteria. The extracts did not exhibit antifungal and antiyeast activity. The hexane extract of method I (HE I) was not toxic against brine shrimp (LC50 value was 3880 μg/ml). Therefore, the extracts could be suitable as antimicrobial and antioxidative agents in food industry. PMID:20652052

  3. Design, synthesis and biological evaluation of 5-fluorouracil-derived benzimidazoles as novel type of potential antimicrobial agents.

    PubMed

    Fang, Xue-Jie; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhou, Qian; Zhou, Cheng-He

    2016-06-01

    A series of 5-fluorouracil benzimidazoles as novel type of potential antimicrobial agents were designed and synthesized for the first time. Bioactive assay manifested that some of the prepared compounds exhibited good or even stronger antibacterial and antifungal activities against the tested strains in comparison with reference drugs norfloxacin, chloromycin and fluconazole. Noticeably, 3-fluorobenzyl benzimidazole derivative 5c gave remarkable antimicrobial activities against Saccharomyces cerevisiae, MRSA and Bacillus proteus with MIC values of 1, 2 and 4μg/mL, respectively. Experimental research revealed that compound 5c could effectively intercalate into calf thymus DNA to form compound 5c-DNA complex which might block DNA replication and thus exert antimicrobial activities. Molecular docking indicated that compound 5c should bind with DNA topoisomerase IA through three hydrogen bonds by the use of fluorine atom and oxygen atoms in 5-fluorouracil with the residue Lys 423. PMID:27117429

  4. Antimicrobial activity of Aspilia latissima (Asteraceae).

    PubMed

    Souza, Jeana M E; Chang, Marilene R; Brito, Daniela Z; Farias, Katyuce S; Damasceno-Junior, Geraldo A; Turatti, Izabel C C; Lopes, Norberto P; Santos, Edson A; Carollo, Carlos A

    2015-01-01

    We evaluated the antimicrobial activity of Aspilia latissima - an abundant plant from the Brazilian Pantanal region - against Candida albicans, Candida parapsilosis, Candida krusei, Candida tropicalis, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The crude extracts and fractions showed activity in all tested microorganisms. The chloroform fraction of the leaves and roots showed the most antimicrobial activity against S. aureus, with an MIC of 500 μg/mL. This fraction was submitted to bioautographic assays to characterize the activity of the compounds. Two bands from the leaves (L-A and L-B) and three bands from the roots (R-C, R-D and R-E) were bioactive. Within the root-derived bands, the terpene derivatives stigmasterol, kaurenoic acid and kaura-9(11), 16-dien-18-oic acid were identified. Antibiotic activity of A. latissima is reported for the first time.

  5. Antimicrobial activity of Aspilia latissima (Asteraceae)

    PubMed Central

    Souza, Jeana M.E.; Chang, Marilene R.; Brito, Daniela Z.; Farias, Katyuce S.; Damasceno-Junior, Geraldo A.; Turatti, Izabel C.C.; Lopes, Norberto P.; Santos, Edson A.; Carollo, Carlos A.

    2015-01-01

    Abstract We evaluated the antimicrobial activity of Aspilia latissima - an abundant plant from the Brazilian Pantanal region - against Candida albicans, Candida parapsilosis, Candida krusei, Candida tropicalis, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The crude extracts and fractions showed activity in all tested microorganisms. The chloroform fraction of the leaves and roots showed the most antimicrobial activity against S. aureus, with an MIC of 500 μg/mL. This fraction was submitted to bioautographic assays to characterize the activity of the compounds. Two bands from the leaves (L-A and L-B) and three bands from the roots (R-C, R-D and R-E) were bioactive. Within the root-derived bands, the terpene derivatives stigmasterol, kaurenoic acid and kaura-9(11), 16-dien-18-oic acid were identified. Antibiotic activity of A. latissima is reported for the first time. PMID:26691468

  6. Comparative in vitro activity of oral antimicrobial agents against Enterobacteriaceae from patients with community-acquired urinary tract infections in three European countries.

    PubMed

    Kresken, M; Körber-Irrgang, B; Biedenbach, D J; Batista, N; Besard, V; Cantón, R; García-Castillo, M; Kalka-Moll, W; Pascual, A; Schwarz, R; Van Meensel, B; Wisplinghoff, H; Seifert, H

    2016-01-01

    Enterobacteriaceae causing community-acquired urinary tract infections were examined in selected outpatient clinics and hospitals in Belgium, Germany and Spain using EUCAST breakpoints for susceptibility. A total of 1190 isolates were collected. Escherichia coli isolates were resistant to amoxicillin-clavulanic acid (28.1%), ciprofloxacin (23.4%) and trimethoprim-sulfamethoxazole (21.4%) compared with fosfomycin and nitrofurantoin (each, <1.5%). Ceftibuten (MIC50/90 0.25/0.5 mg/L) and ceftriaxone activity (MIC50/90 ≤0.25 mg/L) was comparable. Ceftibuten (MIC90 ≤0.25 mg/L) was also active against Proteus mirabilis and Klebsiella spp. Extended-spectrum β-lactamase phenotypes were 7.1% for E. coli, 5.6% for Klebsiella pneumoniae and 0.4% for P. mirabilis. Resistance was common among men and elderly women.

  7. Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents

    PubMed Central

    Wang, Lingyan; Luo, Jin; Shan, Shiyao; Crew, Elizabeth; Yin, Jun; Zhong, Chuan-Jian; Wallek, Brandi; Wong, Season

    2011-01-01

    The ability for silver nanoparticles to function as an antibacterial agent while being separable from the target fluids is important for bacterial inactivation in biological fluids. This report describes the analysis of the antimicrobial activities of silver-coated magnetic nanoparticles synthesized by wet chemical methods. The bacterial inactivation of several types of bacteria was analyzed, including Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli). The results have demonstrated the viability of the silver-coated magnetic nanoparticles for achieving effective bacterial inactivation efficiency comparable to and better than silver nanoparticles conventionally used. The bacteria inactivation efficiency of our MZF@Ag nanoparticles were also determined for blood platelets samples, demonstrating the potential of utilization in inactivating bacterial growth in platelets prior to transfusion to ensure blood product safety, which also has important implications for enabling the capability of effective separation, delivery and targeting of the antibacterial agents. PMID:21999710

  8. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research.

    PubMed

    Akkouh, Ouafae; Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wenliang; Ng, Charlene Cheuk Wing; Sha, Ou; Shaw, Pang Chui; Chan, Wai Yee

    2015-12-01

    Ribosome-inactivating proteins (RIPs) are enzymes which depurinate ribosomal RNA (rRNA), thus impeding the process of translation resulting in inhibition of protein synthesis. They are produced by various organisms including plants, fungi and bacteria. RIPs from plants are linked to plant defense due to their antiviral, antifungal, antibacterial, and insecticidal activities in which they can be applied in agriculture to combat microbial pathogens and pests. Their anticancer, antiviral, embryotoxic, and abortifacient properties may find medicinal applications. Besides, conjugation of RIPs with antibodies or other carriers to form immunotoxins has been found useful to research in neuroscience and anticancer therapy.

  9. Multifactorial aspects of antimicrobial activity of propolis.

    PubMed

    Scazzocchio, F; D'Auria, F D; Alessandrini, D; Pantanella, F

    2006-01-01

    We investigated the antibacterial activity of sub-inhibitory concentrations of ethanolic extract of propolis (EEP), and its effect on the antibacterial activity of some antibiotics. Some clinically isolated Gram-positive strains were used. Moreover, sub-inhibitory concentrations of EEP were used to value its action on some important virulence factors like lipase and coagulase enzymes, and on biofilm formation in Staphylococcus aureus. Our results indicated that EEP had a significant antimicrobial activity towards all tested clinical strains. Adding EEP to antibacterial tested drugs, it drastically increased the antimicrobial effect of ampicillin, gentamycin and streptomycin, moderately the one of chloramphenicol, ceftriaxon and vancomycin, while there was no effect with erithromycin. Moreover, our results pointed out an inhibitory action of EEP on lipase activity of 18 Staphylococcus spp. strains and an inhibitory effect on coagulase of 11 S. aureus tested strains. The same EEP concentrations showed a negative interaction with adhesion and consequent biofilm formation in S. aureus ATCC 6538P.

  10. Antioxidant and antimicrobial activities of Withania frutescens.

    PubMed

    El Bouzidi, Laila; Larhsini, Mustapha; Markouk, Mohamed; Abbad, Abdelaziz; Hassani, Lahcen; Bekkouche, Khalid

    2011-10-01

    In the present study, we report for the first time the antioxidant and antimicrobial activities of Withania frutescens (L.) Pauquy roots and leaves. Total phenolic content was determined using the Folin-Ciocalteu method and antioxidant activity was evaluated by the DPPH free radical scavenging and reducing power methods. Antimicrobial activity tests were carried out against ten bacterial species involved in nosocomial infections and two opportunistic clinical yeast isolates. The ethyl acetate and n-butanol leaf fractions exhibited the highest DPPH radical scavenging activity with IC50 = 4.53 +/- 0.12 and 8.49 +/- 0.46 microg/mL, respectively. The n-butanol root fraction showed the greatest reducing power comparable with that of quercetin at 0.4 mg/mL. The dichloromethane leaf fraction exhibited the highest antibacterial activity against both Gram-positive and Gram-negative bacteria with MIC values ranging between 50 and 400 microg/mL, depending on the tested bacteria. However, none of the examined extracts exhibited anticandidal activity. The polyphenol and glycowithanolide constituents appeared to be responsible for the antioxidant capacity of W. frutescens, whereas the observed antimicrobial activity may be due to the presence of withanolides.

  11. Silver-Lactoferrin Nanocomplexes as a Potent Antimicrobial Agent.

    PubMed

    Pomastowski, Paweł; Sprynskyy, Myroslav; Žuvela, Petar; Rafińska, Katarzyna; Milanowski, Maciej; Liu, J Jay; Yi, Myunggi; Buszewski, Bogusław

    2016-06-29

    The process of silver immobilization onto and/or into bovine lactoferrin (LTF), the physicochemical properties of bovine lactoferrin and obtained silver-lactoferrin complexes, as well as antibacterial activity of silver-lactoferrin complexes were investigated in this work. Kinetic study of the silver immobilization into lactoferrin was carried out using batch sorption techniques. Spectrometric (MALDI-TOF/TOF-MS, ICP-MS), spectroscopic (FTIR, SERS), electron microscopic (TEM) and electrophoretic (I-DE) techniques, as well as zeta potential measurements, were applied for characterization of LTF and binding nature of silver in Ag-LTF complexes. On the basis of the results of the kinetics study, it was established that the silver binding to LTF is a heterogeneous process involving two main stages: (i) internal diffusion and sorption onto external surface of lactoferrin globules; and (ii) internal diffusion and binding into lactoferrin globule structure. Spectroscopic techniques combined with TEM analysis confirmed the binding process. Molecular dynamics (MD) analysis was carried out in order to simulate the mechanism of the binding process, and locate potential binding sites, as well as complement the experimental findings. Quantum mechanics (QM) simulations were performed utilizing density functional theory (DFT) in order to support the reduction mechanism of silver ions to elemental silver. Antimicrobial activity of synthesized lactoferrin complexes against selected clinical bacteria was confirmed using flow cytometry and antibiograms.

  12. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies.

    PubMed

    Ashraf, Zaman; Bais, Abdul; Manir, Md Maniruzzaman; Niazi, Umar

    2015-01-01

    A number of penicillin derivatives (4a-h) were synthesized by the condensation of 6-amino penicillinic acid (6-APA) with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF) using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents.

  13. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies

    PubMed Central

    Ashraf, Zaman; Bais, Abdul; Manir, Md. Maniruzzaman; Niazi, Umar

    2015-01-01

    A number of penicillin derivatives (4a-h) were synthesized by the condensation of 6-amino penicillinic acid (6-APA) with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF) using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents. PMID:26267242

  14. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  15. IN-VITRO ANTIMICROBIAL ACTIVITY OF BRONCHOSOL.

    PubMed

    Witkowska-Banaszczak, Ewa; Michalak, Anna; Kędzia, Anna

    2015-01-01

    Bronchosol is a traditional medicinal product in the form of syrup used in cough and impeded expectoration. The active ingredients that it contains include extracts from the herb of thyme, the root of primrose and thymol. It is recommended in disorders of the respiratory tract when expectoration is impeded and secretion of liquid mucus in bronchi is insufficient. Antimicrobial activity of the components of Bronchosol, especially thyme and thymol, has frequently been reported in the literature. To date, there have not been any studies to confirm such activity of Bronchosol, though. The results of our research are the first one to point to the great activity of Bronchosol against microorganisms causing infections of the respiratory tract. It has been demonstrated that this product displayed antimicrobial activity against reference strains as well as strains of anaerobic and aerobic bacteria and fungi isolated from patients. The confirmation of the antimicrobial activity of Bronchosol provides an explanation of its effectiveness in the therapy of the respiratory tract infections. PMID:26642688

  16. ANTIMICROBIAL ACTIVITY OF EXTRACTS FROM ECUADORIAN LICHENS.

    PubMed

    Matvieieva, N A; Pasichnyk, L A; Zhytkevych, N V; Jacinto, Pabón Garcés Galo; Pidgorskyi, V S

    2015-01-01

    Antimicrobial activity of the ethanolic, isopropanolic, acetone, DMSO and aqueous extracts of the two lichen species from Ecuadorian highland, Usnea sp. and Stereocaulon sp. were explored in vitro against bacteria Bacillus subtilis, Escherichia coli and Staphylococcus aureus by the disc-diffusion method. Also the minimal inhibitory concentration (MIC) was determined. The strongest antimicrobial activity was found in DMSO extract of Usnea sp. compared to antibacterial activity of ciprfloxacin and cefazolin antibiotics. The inhibition zone was 28 mm, 30 mm, 31mm (DMSO extract, ciprfloxacin and cefazolin respectively) in case of B. subtilis usage as the test bacteria. MIC value for Usnea sp. and Stereocaulon sp. DMSO extracts was 0.4 mg/ml. E. coli was resistant to all kinds of extracts. The S. aureus sensitivity to lichen DMSO extracts was comparable to sensitivity of these microorganisms to tetracycline and vancomycin. Thereby, most kinds of extracts (ethanol, isopropanol, hexane, DMSO and acetone solvents) from Ecuadorian lichens Usnea sp. and Stereocaulon sp. with the exception of aqueous Stereocaulon sp. extracts possessed antibacterial activity against B. subtilis. DMSO lichen extracts had also antimicrobial activity against S. aureus. At the same time the extracts studied didn't demonstrate antibacterial activity against the representatives of the most common and harmful phytopathogenic bacteria tested. Further investigations of Ecuadorian lichens especially study of plants collected from extremal highland biotops can be very important in study of possibility of treatment of numerous diseases caused by pathogenic microorganisms. PMID:26214895

  17. ANTIMICROBIAL ACTIVITY OF EXTRACTS FROM ECUADORIAN LICHENS.

    PubMed

    Matvieieva, N A; Pasichnyk, L A; Zhytkevych, N V; Jacinto, Pabón Garcés Galo; Pidgorskyi, V S

    2015-01-01

    Antimicrobial activity of the ethanolic, isopropanolic, acetone, DMSO and aqueous extracts of the two lichen species from Ecuadorian highland, Usnea sp. and Stereocaulon sp. were explored in vitro against bacteria Bacillus subtilis, Escherichia coli and Staphylococcus aureus by the disc-diffusion method. Also the minimal inhibitory concentration (MIC) was determined. The strongest antimicrobial activity was found in DMSO extract of Usnea sp. compared to antibacterial activity of ciprfloxacin and cefazolin antibiotics. The inhibition zone was 28 mm, 30 mm, 31mm (DMSO extract, ciprfloxacin and cefazolin respectively) in case of B. subtilis usage as the test bacteria. MIC value for Usnea sp. and Stereocaulon sp. DMSO extracts was 0.4 mg/ml. E. coli was resistant to all kinds of extracts. The S. aureus sensitivity to lichen DMSO extracts was comparable to sensitivity of these microorganisms to tetracycline and vancomycin. Thereby, most kinds of extracts (ethanol, isopropanol, hexane, DMSO and acetone solvents) from Ecuadorian lichens Usnea sp. and Stereocaulon sp. with the exception of aqueous Stereocaulon sp. extracts possessed antibacterial activity against B. subtilis. DMSO lichen extracts had also antimicrobial activity against S. aureus. At the same time the extracts studied didn't demonstrate antibacterial activity against the representatives of the most common and harmful phytopathogenic bacteria tested. Further investigations of Ecuadorian lichens especially study of plants collected from extremal highland biotops can be very important in study of possibility of treatment of numerous diseases caused by pathogenic microorganisms.

  18. IN-VITRO ANTIMICROBIAL ACTIVITY OF BRONCHOSOL.

    PubMed

    Witkowska-Banaszczak, Ewa; Michalak, Anna; Kędzia, Anna

    2015-01-01

    Bronchosol is a traditional medicinal product in the form of syrup used in cough and impeded expectoration. The active ingredients that it contains include extracts from the herb of thyme, the root of primrose and thymol. It is recommended in disorders of the respiratory tract when expectoration is impeded and secretion of liquid mucus in bronchi is insufficient. Antimicrobial activity of the components of Bronchosol, especially thyme and thymol, has frequently been reported in the literature. To date, there have not been any studies to confirm such activity of Bronchosol, though. The results of our research are the first one to point to the great activity of Bronchosol against microorganisms causing infections of the respiratory tract. It has been demonstrated that this product displayed antimicrobial activity against reference strains as well as strains of anaerobic and aerobic bacteria and fungi isolated from patients. The confirmation of the antimicrobial activity of Bronchosol provides an explanation of its effectiveness in the therapy of the respiratory tract infections.

  19. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and

  20. Antimicrobial activity of the solvent fractions from Bulbine natalensis Tuber.

    PubMed

    Yakubu, M T; Mostafa, M; Ashafa, A O T; Afolayan, A J

    2012-01-01

    Bulbine natalensis Baker has been acclaimed to be used as an antimicrobial agent in the folklore medicine of South Africa without scientific evidence to substantiate or refute this claim. In view of this, the in vitro antimicrobial activity of solvent fractions (ethanol, ethyl acetate, n-butanol and water) from Bulbine natalensis Tuber against 4 Gram positive and 12 Gram negative bacteria as well as 3 fungal species were investigated using agar dilution. The ethanolic extract, n-butanol and ethyl acetate fractions inhibited 75, 87.5 and 100% respectively of the bacterial species in this study. The ethanolic, n-butanol and ethyl acetate fractions produced growth inhibition at MIC range of 1-10, 3-10 as well as 1 and 5 mg/ml respectively whereas the water fraction did not inhibit the growth of any of the bacterial species. Again, it was only the ethyl acetate fraction that inhibited the growth of Shigelli flexneri, Staphyloccus aureus and Escherichia coli. The ethanolic, ethyl acetate and n-butanolic fractions dose dependently inhibited the growth of Aspergillus niger and A. flavus whereas the water fraction produced 100% growth inhibition of the Aspergillus species at all the doses investigated. In contrast, no growth inhibition was produced on Candida albicans. The growth inhibition produced by the solvent fractions of B. natalensis Tuber in this study thus justifies the acclaimed use of the plant as an antimicrobial agent. The ethyl acetate fraction was the most potent. PMID:23983381

  1. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection.

    PubMed

    Melvin, Jeffrey A; Lashua, Lauren P; Kiedrowski, Megan R; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C; Bomberger, Jennifer M

    2016-01-01

    Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms formed by the

  2. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    PubMed Central

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    ABSTRACT Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms

  3. Study of the nanomaterials and their antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Ramadi, Muntaha

    In the last decade, the world faced huge problems associated with the spread of antimicrobial resistant infections that are essentially untreatable such as methicillin resistant Staphylococcus aureus (MRSA) infection. These infections have begun to occur in both hospital and community environments. Developing new antimicrobial surface coatings can hold a great promise to minimize and control various problems that associated with the spreading of infections and biofilms formation, these coatings can be used in medicine where medical devices associated with severe infections, in construction industry and the in food packaging industry. It has been established that single-walled CNTs exhibit a strong antimicrobial activity and can pierce bacterial cell walls. Recently, nanomaterial structures that made from pure carbon such as CNTs have been seen as promising candidates for many potential applications in Biotechnology and bioscience due to the combination of their extraordinary properties that arise from surface area, light weight, strength, flexibility, unique electrical conductivity and many more novel physical and chemical properties at nanoscale level. CNTs have been used widely in biomedical field including drug delivery, gene therapy and creating new biomedical devices with novel properties. Researchers have now made a first step to add carbon nanotubes to antimicrobial agents list. There are two types of CNTs have been used in biomedical research. The first one is a single-walled carbon nanotube (SWNT) and the second is a multi-walled carbon nanotube (MWNT). Recent in vitro studies suggest that carbon nanotubes have antimicrobial activity and coating CNTs with nickel nanoparticle could enhance the antimicrobial activity of cabon nanotubes. In order to test this hypothesis, nickel nanoparticles were deposited on carbon nanotubes (CNTs) by electrochemical deposition. The carbon nanotubes used in this study were XD-CNTs, SWNTs and Ni-coated CNTs. The structure and

  4. Antityrosinase and antimicrobial activities from Thai medicinal plants.

    PubMed

    Dej-Adisai, Sukanya; Meechai, Imron; Puripattanavong, Jindaporn; Kummee, Sopa

    2014-04-01

    Various dermatological disorders and microbial skin infection can cause hyperpigmentation. Therefore, screenings for whitening and antimicrobial agents from Thai medicinal plants have been of research interest. Seventy-seven ethanol plant extracts were investigated for antityrosinase activity, eleven samples showed the tyrosinase inhibition more than 50 % were further preliminary screening for antimicrobial activity by agar disc diffusion and broth micro-dilution methods. Artocarpus integer (Thunb.) Merr. (Moraceae) root extract, which showed the potential of tyrosinase inhibition with 90.57 ± 2.93 % and antimicrobial activity against Staphylococcus aureus, S. epidermidis, Propionibacterium acnes and Trichophyton mentagophytes with inhibition zone as 9.10 ± 0.00, 10.67 ± 0.09, 15.25 ± 0.05 and 6.60 ± 0.17 mm, respectively was selected for phytochemical investigation. Three pure compounds were isolated as artocarpin, cudraflavone C and artocarpanone. And artocarpanone exhibited anti-tyrosinase effect; artocarpin and cudraflavone C also showed the potential of antibacterial activity against S. aureus, S. epidermidis and P. acnes with MIC at 2, 4 and 2 μg/ml, respectively and MBC at 32 μg/ml for these bacteria. So, these pure compounds are interesting for further study in order to provide possibilities of new whitening and antibacterial development. This will be the first report of phytochemical investigation of A. integer root.

  5. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]ṡnH2O. The conductivity values between 37 and 64 ohm-1 mol-1 cm2 in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH = 7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari > bshi > bsali > bsasi > bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus

  6. Metal based pharmacologically active agents: synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates.

    PubMed

    Abdel-Rahman, Laila H; El-Khatib, Rafat M; Nassr, Lobna A E; Abu-Dief, Ahmed M; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]·nH2O. The conductivity values between 37 and 64 ohm(-1) mol(-1) cm(2) in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH=7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari>bshi>bsali>bsasi>bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus

  7. Acute kidney injury induced by antimicrobial agents in the elderly: awareness and mitigation strategies.

    PubMed

    Mizokami, Fumihiro; Mizuno, Tomohiro

    2015-01-01

    The use of antimicrobial agents has increased in recent years as treatments have diversified and resistant bacteria have appeared. With increased use of antimicrobial agents, elderly patients are prone to adverse drug reactions (ADRs) as a result of factors such as drug-drug interactions, polypharmacy, long-term use, and over- or under-dosage. In particular, elderly patients using antimicrobials are at increased risk to develop drug-induced acute kidney injury (AKI), which is the most common severe ADR in such patients. AKI is a serious problem that is associated with mortality amongst hospitalized patients. Antimicrobial-induced AKI can be classified into three different types: acute tubular necrosis (ATN), acute interstitial nephritis (AIN), and renal tubule lumen obstruction. AKI can generally be prevented by proper maintenance of fluid balance. To design dosage regimens that ensure efficient drug excretion via the kidney, it is necessary to accurately estimate renal function; however, the kidney undergoes age-dependent structural and functional alterations over time. Therefore, proper management of antimicrobial agents by an antimicrobial stewardship team may lead to decreased incidence of AKI. This article reviews antimicrobial-induced AKI and discusses potential strategies for increasing awareness of AKI and mitigating its clinical effects.

  8. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  9. Trends in the resistance to antimicrobial agents of Streptococcus suis isolates from Denmark and Sweden.

    PubMed

    Aarestrup, F M; Rasmussen, S R; Artursson, K; Jensen, N E

    1998-08-28

    This study was conducted to determine the MIC values of historical and contemporary Streptoccocus suis (serotypes 2 and 7) from Denmark and S. suis (serotype 2) from Sweden. A total of 52 isolates originating from 1967 through 1981 and 156 isolates from 1992 through 1997 in Denmark and 13 isolates from Sweden were examined for their MICs against 20 different antimicrobial agents. Most antimicrobials were active against most isolates. A frequent occurrence of resistance to sulphamethoxazole was observed, with most resistance among historic isolates of serotype 7 and least resistance among isolates from Sweden. A large number of the isolates was resistant to macrolides. However, all historic serotype 2 isolates from Denmark were susceptible, whereas 20.4% of the contemporary isolates were resistant. Among serotype 7 isolates 23.3% of the historic isolates were resistant to macrolides, whereas resistance was found in 44.8% of the contemporary isolates. All isolates from Sweden were susceptible to macrolides. Time-associated frequency of resistance to tetracycline was also found. Only a single historic isolate of serotype 2 was resistant to tetracycline, whereas 43.9% of the contemporary serotype 2 isolates and 15.5% of the contemporary serotype 7 isolates were resistant. Only one (7.7%) of the isolates from Sweden was resistant. The differences in resistance between historic and contemporary isolates from Denmark were statistically significant. This study demonstrated a significant serotype-associated difference in the susceptibility to macrolides and tetracycline and demonstrated that an increase in resistance among S. suis isolates has taken place during the last 15 years to the two most commonly used antimicrobial agents (tylosin and tetracycline) in pig production in Denmark. PMID:9810623

  10. Synthesis and characterization of siloxane sulfobetaine antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Chen, Shiguo; Chen, Shaojun; Jiang, Song; Mo, Yangmiao; Tang, Jiaoning; Ge, Zaochuan

    In this paper, we report a novel antibacterial agent siloxane sulfobetaine (SSB) with reactive siloxane groups, which can be bonded onto the glass surface, rendering excellent antibacterial activity and good durability. Their antibacterial rate against Escherichia Coli and Staphylococcus aureus reach 99.96% and 99.98%, respectively, within the 24 h contact time. Their antibacterial rates of SSB coated glass surface are still beyond 95.0% after 20 washes. Moreover, SSB does not induce a skin reaction and is nontoxic to animals. Therefore, the SSB has great applications in biomaterial applications requiring durable bacteriostasis.

  11. Antimicrobial activity of silver/starch/polyacrylamide nanocomposite.

    PubMed

    Abdel-Halim, E S; Al-Deyab, Salem S

    2014-07-01

    A novel silver/starch/polyacrylamide nanocomposite hydrogel was prepared by grafting acrylamide onto starch in presence of silver nitrate by use of ammonium persulphate as an initiator and N,N-methylene-bisacrylamide as a crosslinking agent, then reducing the silver ions enclosed in the hydrogel structure to silver nanoparticles by treating the hydrogel with sodium hydroxide solution. All factors which affect the grafting/crosslinking reaction were optimized and the concentration of silver ion was changed from 0ppm to 50ppm. The produced nanocomposite hydrogel was characterized for its nanosilver content and the UV-spectra showed similar absorption spectra at wavelength 405nm for all AgNO3 concentrations but the plasmon showed increase in the intensity of the absorption peak as AgNO3 concentration incorporated to the hydrogel structure increases. The nanocomposite hydrogel was also characterized for its antimicrobial activity toward two types of bacteria and two types of fungi. The results showed that the hydrogel with 0ppm silver content has no antimicrobial activity, and that the antimicrobial activity expressed as inhibition zone increases as the silver content increases from 5ppm to 50ppm.

  12. In vitro susceptibility testing of nonsporing anaerobes to ten antimicrobial agents.

    PubMed

    Rao, P S; Shivananda, P G

    2000-07-01

    Antibiotic susceptibility was performed on sixty clinical isolates of nonsporing anaerobes against ten antimicrobial agents. The test was performed on Muller Hinton Agar and Wilkins Chalgren blood agar by preparing suspension of freshly isolated colonies in BHI broth. Apart from Metronidazole and Chloramphenicol newer antibiotics like Minocycline, Secnidazole, Tinidazole, Clarithromycin, Roxithromycin were also tried. Antimicrobial agents like Metronidazole, Secnidazole, Tinidazole and Minocycline were 100% sensitive, followed by Chloramphenicol, Clarithromycin and Roxithromycin. These newer agents can be good alternatives for the treatment of non sporing anaerobes. PMID:11218673

  13. In vitro susceptibility testing of nonsporing anaerobes to ten antimicrobial agents.

    PubMed

    Rao, P S; Shivananda, P G

    2000-04-01

    Antibiotic Susceptibility was performed on sixty clinical isolates of nonsporing anaerobes against ten antimicrobial agents. The test was performed on Muller Hinton Agar and Wilkins Chalgren blood agar by preparing suspension of freshly isolated colonies in BHI broth. Apart from Metronidazole and Chloramphenicol newer antibiotics like Minocycline, Secnidazole, Tinidazole, Clarithromycin, Roxithromycin were also tried. Antimicrobial agents like metronidazole, Secnidazole, Tinidazole and Minocycline were 100% sensitive, followed by Chloramphenicol, Clarithromycin and Roxithromycin. These newer agents can be good alternatives for the treatment of non sporing anaerobes. PMID:11217270

  14. Terpenes with antimicrobial activity from Cretan propolis.

    PubMed

    Popova, Milena P; Chinou, Ioanna B; Marekov, Ilko N; Bankova, Vassya S

    2009-07-01

    Five terpenes, the diterpenes: 14,15-dinor-13-oxo-8(17)-labden-19-oic acid and a mixture of labda-8(17),13E-dien-19-carboxy-15-yl oleate and palmitate as well as the triterpenes, 3,4-seco-cycloart-12-hydroxy-4(28),24-dien-3-oic acid and cycloart-3,7-dihydroxy-24-en-28-oic acid were isolated from Cretan propolis. Moreover, 18 known compounds were also isolated, seven of them for the first time as propolis components. All structures were established on the basis of spectroscopic analysis and chemical evidence. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against some human pathogenic fungi showing a broad spectrum of antimicrobial activity.

  15. Preclinical screening of phyllanthus amarus ethanolic extract for its analgesic and antimicrobial activity

    PubMed Central

    Bhat, S. Sham; Hegde, K. Sundeep; Chandrashekhar, Sharath; Rao, S. N.; Manikkoth, Shyamjith

    2015-01-01

    Background: To discover a new agent which possesses dual property of analgesic and antimicrobial activity, thereby reducing the burden of polypharmacy. Phyllanthus amarus was screened for its analgesic and antimicrobial activities. Objectives: The objective was to evaluate the analgesic and antimicrobial activity, of P. amarus ethanolic extract (PAEE). Materials and Methods: The ethanolic extract of P. amarus was prepared using Soxhlet apparatus. An in vivo study using Swiss albino mice was done to screen the central and peripheral analgesic activity of P. amarus extract. The extract was administered at a dose of 100 mg/kg body weight orally. The peripheral analgesic activity was assessed using acetic acid induced writhing test. The central analgesic activity was assessed using Eddy's hot plate apparatus. An in vitro study was carried out to study the antimicrobial activity of the above extract using selected species of Streptococcus mutans, and S. salivarius. The antimicrobial activities were determined using the agar well method. Results: The ethanolic extract of P. amarus showed significant (P < 0.05) peripheral and central analgesic activity. In vitro antimicrobial screening indicated that the ethanolic extract had shown a zone of inhibition against S. mutans and S. salivarius in the agar wells. Conclusion: This study showed that PAEE exhibited significant analgesic and antimicrobial activities. PMID:26692753

  16. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms

    PubMed Central

    Debebe, Tewodros; Krüger, Monika; Huse, Klaus; Kacza, Johannes; Mühlberg, Katja; König, Brigitte; Birkenmeier, Gerd

    2016-01-01

    The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well. PMID:27658257

  17. Antimicrobial activities of selected Cyathus species.

    PubMed

    Liu, Ya-Jun; Zhang, Ke-Qin

    2004-02-01

    Twelve selected Cyathus species were tested for their abilities to produce antimicrobial metabolites. Most of them were found to produce secondary exo-metabolites that could induce morphological abnormalities of rice pathogenic fungi Pyricularia oryzae. Some extracts from the cultivated liquid obviously inhibited human pathogenic fungi Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. Activities against six human pathogenic bacteria were also obtained from some of these extracts. PMID:15119855

  18. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  19. Food Antimicrobials Nanocarriers

    PubMed Central

    Blanco-Padilla, Adriana; Soto, Karen M.; Hernández Iturriaga, Montserrat

    2014-01-01

    Natural food antimicrobials are bioactive compounds that inhibit the growth of microorganisms involved in food spoilage or food-borne illness. However, stability issues result in degradation and loss of antimicrobial activity. Nanoencapsulation allows protection of antimicrobial food agents from unfavorable environmental conditions and incompatibilities. Encapsulation of food antimicrobials control delivery increasing the concentration of the antimicrobials in specific areas and the improvement of passive cellular absorption mechanisms resulted in higher antimicrobial activity. This paper reviews the present state of the art of the nanostructures used as food antimicrobial carriers including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers. PMID:24995363

  20. Antimicrobial Activity of Indigofera suffruticosa.

    PubMed

    Leite, Sônia Pereira; Vieira, Jeymesson Raphael Cardoso; de Medeiros, Paloma Lys; Leite, Roberta Maria Pereira; de Menezes Lima, Vera Lúcia; Xavier, Haroudo Satiro; de Oliveira Lima, Edeltrudes

    2006-06-01

    Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae) obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which showed strong inhibitory activity against the Gram-positive bacteria Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 5000 microg ml(-1). The MIC values to dermatophyte strains were 2500 microg ml(-1) against Trichophyton rubrum (LM-09, LM-13) and Microsporum canis. This study suggests that aqueous extracts of leaves of I. suffruticosa obtained by infusion can be used in the treatment of skin diseases caused by dermatophytes. PMID:16786057

  1. Antimicrobial Activity of Indigofera suffruticosa

    PubMed Central

    Leite, Sônia Pereira; Vieira, Jeymesson Raphael Cardoso; de Medeiros, Paloma Lys; Leite, Roberta Maria Pereira; de Menezes Lima, Vera Lúcia; Xavier, Haroudo Satiro; de Oliveira Lima, Edeltrudes

    2006-01-01

    Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae) obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which showed strong inhibitory activity against the Gram-positive bacteria Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 5000 µg ml−1. The MIC values to dermatophyte strains were 2500 µg ml−1 against Trichophyton rubrum (LM-09, LM-13) and Microsporum canis. This study suggests that aqueous extracts of leaves of I. suffruticosa obtained by infusion can be used in the treatment of skin diseases caused by dermatophytes. PMID:16786057

  2. Antioxidant and antimicrobial activities of Bauhinia racemosa L. stem bark.

    PubMed

    Kumar, R S; Sivakumar, T; Sunderam, R S; Gupta, M; Mazumdar, U K; Gomathi, P; Rajeshwar, Y; Saravanan, S; Kumar, M S; Murugesh, K; Kumar, K A

    2005-07-01

    The present study was carried out to evaluate the antioxidant and antimicrobial activities of a methanol extract of Bauhinia racemosa (MEBR) (Caesalpiniaceae) stem bark in various systems. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, superoxide anion radical, nitric oxide radical, and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. The antioxidant activity of the methanol extract increased in a concentration-dependent manner. About 50, 100, 250, and 500 microg MEBR inhibited the peroxidation of a linoleic acid emulsion by 62.43, 67.21, 71.04, and 76.83%, respectively. Similarly, the effect of MEBR on reducing power increased in a concentration-dependent manner. In DPPH radical scavenging assays the IC50 value of the extract was 152.29 microg/ml. MEBR inhibited the nitric oxide radicals generated from sodium nitroprusside with an IC50 of 78.34 microg/ml, as opposed to 20.4 microg/ml for curcumin. Moreover, MEBR scavenged the superoxide generated by the PMS/NADH-NBT system. MEBR also inhibited the hydroxyl radical generated by Fenton's reaction, with an IC50 value of more than 1000 microg/ml, as compared to 5 microg/ml for catechin. The amounts of total phenolic compounds were also determined and 64.7 microg pyrocatechol phenol equivalents were detected in MEBR (1 mg). The antimicrobial activities of MEBR were determined by disc diffusion with five Gram-positive, four Gram-negative and four fungal species. MEBR showed broad-spectrum antimicrobial activity against all tested microorganisms. The results obtained in the present study indicate that MEBR can be a potential source of natural antioxidant and antimicrobial agents.

  3. Synthesis and antimicrobial activity of some new diphenylamine derivatives

    PubMed Central

    Kumar, Arvind; Mishra, Arun K.

    2015-01-01

    In search of new leads toward potent antimicrobial agent, an array of novel derivatives of 2-hydrazinyl–N-N, diphenyl acetamide has been synthesized from the chloroacetylation reaction of diphenylamine (DPA). For this, a series of DPA derivatives were prepared by replacing chlorine with hydrazine hydrate in alcoholic medium and 2-hydrazino-N, N-diphenylacetamide was synthesized. The 2-hydrazino-N, N-diphenylacetamide was further subjected to reaction with various aromatic aldehydes in presence of glacial acetic acid in methanol. The synthesized compounds were characterized by their IR, 1HNMR spectral data and elemental analysis. The compounds were screened for antibacterial and antifungal activity by cup plate method. 2-(2-Benzylidenehydrazinyl)-N, N-diphenylacetamide (A1); 2-(2-(3-methylbenzylidene) hydrazinyl)-N, N-diphenyl-acetamide (A5) and 2-(2-(2-nitrobenzylidine) hydrazinyl)-N, N-diphenyl-acetamide compounds (A7) showed significant antimicrobial as well as antifungal activity. Diphenylamine compounds may be explored as potent antimicrobial and antifungal compounds. PMID:25709343

  4. Kombucha fermentation and its antimicrobial activity.

    PubMed

    Sreeramulu, G; Zhu, Y; Knol, W

    2000-06-01

    Kombucha was prepared in a tea broth (0.5% w/v) supplemented with sucrose (10% w/v) by using a commercially available starter culture. The pH decreased steadily from 5 to 2.5 during the fermentation while the weight of the "tea fungus" and the OD of the tea broth increased through 4 days of the fermentation and remained fairly constant thereafter. The counts of acetic acid-producing bacteria and yeasts in the broth increased up to 4 days of fermentation and decreased afterward. The antimicrobial activity of Kombucha was investigated against a number of pathogenic microorganisms. Staphylococcus aureus, Shigella sonnei, Escherichia coli, Aeromonas hydrophila, Yersinia enterolitica, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus epidermis, Campylobacter jejuni, Salmonella enteritidis, Salmonella typhimurium, Bacillus cereus, Helicobacterpylori, and Listeria monocytogenes were found to be sensitive to Kombucha. According to the literature on Kombucha, acetic acid is considered to be responsible for the inhibitory effect toward a number of microbes tested, and this is also valid in the present study. However, in this study, Kombucha proved to exert antimicrobial activities against E. coli, Sh. sonnei, Sal. typhimurium, Sal. enteritidis, and Cm. jejuni, even at neutral pH and after thermal denaturation. This finding suggests the presence of antimicrobial compounds other than acetic acid and large proteins in Kombucha. PMID:10888589

  5. Assessing the antimicrobial activities of Ocins.

    PubMed

    Choyam, Shilja; Lokesh, Dhanashree; Kempaiah, Bettadaiah Bheemakere; Kammara, Rajagopal

    2015-01-01

    The generation of a zone of inhibition on a solid substrate indicates the bioactivity of antimicrobial peptides such as bacteriocin and enterocin. The indicator strain plays a significant role in bacteriocin assays. Other characteristics of bacteriocins, such as their dispersal ability and the different zymogram components, also affect bacteriocin assays. However, universal well diffusion assays for antimicrobials, irrespective of their ability to diffuse (bacteriocin and enterocin), do not exist. The ability of different zymography components to generate non-specific activities have rarely been explored in the literature. The purpose of the present work was to evaluate the impact of major factors (diffusion and rate of diffusion) in a solid substrate bioassay, and to document the adverse effects of sodium dodecyl sulfate in zymograms used to estimate the approximate molecular weight of bacteriocins. PMID:26441952

  6. Assessing the antimicrobial activities of Ocins

    PubMed Central

    Choyam, Shilja; Lokesh, Dhanashree; Kempaiah, Bettadaiah Bheemakere; Kammara, Rajagopal

    2015-01-01

    The generation of a zone of inhibition on a solid substrate indicates the bioactivity of antimicrobial peptides such as bacteriocin and enterocin. The indicator strain plays a significant role in bacteriocin assays. Other characteristics of bacteriocins, such as their dispersal ability and the different zymogram components, also affect bacteriocin assays. However, universal well diffusion assays for antimicrobials, irrespective of their ability to diffuse (bacteriocin and enterocin), do not exist. The ability of different zymography components to generate non-specific activities have rarely been explored in the literature. The purpose of the present work was to evaluate the impact of major factors (diffusion and rate of diffusion) in a solid substrate bioassay, and to document the adverse effects of sodium dodecyl sulfate in zymograms used to estimate the approximate molecular weight of bacteriocins. PMID:26441952

  7. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents.

    PubMed

    Valdivia-Silva, Julio; Medina-Tamayo, Jaciel; Garcia-Zepeda, Eduardo A

    2015-01-01

    Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/ chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer. PMID:26062132

  8. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents

    PubMed Central

    Valdivia-Silva, Julio; Medina-Tamayo, Jaciel; Garcia-Zepeda, Eduardo A.

    2015-01-01

    Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer. PMID:26062132

  9. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents.

    PubMed

    Valdivia-Silva, Julio; Medina-Tamayo, Jaciel; Garcia-Zepeda, Eduardo A

    2015-06-08

    Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/ chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.

  10. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents.

    PubMed

    Ramesh, Suhas; Govender, Thavendran; Kruger, Hendrik G; de la Torre, Beatriz G; Albericio, Fernando

    2016-07-01

    The emergence of multidrug resistant bacteria has a direct impact on global public health because of the reduced potency of existing antibiotics against pathogens. Hence, there is a pressing need for new drugs with different modes of action that can kill microorganisms. Antimicrobial peptides (AMPs) can be regarded as an alternative tool for this purpose because they are proven to have therapeutic effects with broad-spectrum activities. There are some hurdles in using AMPs as clinical candidates such as toxicity, lack of stability and high budgets required for manufacturing. This can be overcome by developing shorter and more easily accessible AMPs, the so-called Short AntiMicrobial Peptides (SAMPs) that contain between two and ten amino acid residues. These are emerging as an attractive class of therapeutic agents with high potential for clinical use and possessing multifunctional activities. In this review we attempted to compile those SAMPs that have exhibited biological properties which are believed to hold promise for the future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27352996

  11. Antimicrobial Activity of Nanoemulsion on Cariogenic Planktonic and Biofilm Organisms

    PubMed Central

    Amaechi, Bennett T.; Rawls, H Ralph; Valerie, A Lee

    2011-01-01

    Introduction Nanoemulsions (NE) are a unique class of disinfectants produced by mixing a water immiscible liquid phase into an aqueous phase under high shear forces. NE have antimicrobial properties and are also effective anti-biofilm agents. Materials and Methods The effectiveness of nanoemulsion and its components was determined against Streptococcus mutans and Lactobacillus casei by live/dead staining. In vitro antimicrobial effectiveness of nanoemulsion against planktonic Streptococcus mutans, Lactobacillus casei, Actinomyces viscosus, Candida albicans and mixed culture was determined by a serial dilution technique to obtain minimum inhibitory concentration and minimum bactericidal concentration (MIC/MBC). In addition, efficacy was investigated by kinetics of killing, adherence and biofilm assays. Results Compared to its components, nanoemulsion showed notable antimicrobial activity against biofilm organisms, up to 83.0% kill within 1 min. NE dilutions ranging from 243 to 19683 were effective against planktonic S. mutans, L. casei, A. viscosus, C. albicans and mixed culture of these four strains as shown through MIC/MBC assays. NE showed antimicrobial activity against planktonic cells at high dilutions, confirmed by time kill studies. The level of adhesion on glass surface was reduced by 94.2 to 99.5 % in nanoemulsion treated groups (p < 0.001). 4-day-old S. mutans, L. casei, A. viscosus, C. albicans and mixed cultures biofilms treated with NE showed reductions of bacterial counts with decreasing dilutions (p < 0.001). Conclusion These results suggest that nanoemulsion has effective anti-cariogenic activity against cariogenic microorganisms and may be a useful medication in the prevention of caries. PMID:21807359

  12. Aerosol delivery of antimicrobial agents during mechanical ventilation: current practice and perspectives.

    PubMed

    Michalopoulos, Argyris; Metaxas, Eugenios I; Falagas, Matthew E

    2011-03-01

    Critically ill patients, who develop ventilator-associated pneumonia during prolonged mechanical ventilation, often require antimicrobial agents administered through the endotracheal or the tracheotomy tube. The delivery of antibiotics via the respiratory tract has been established over the past years as an alternative route in order to deliver high concentrations of antimicrobial agents directly to the lungs and avoid systemic toxicity. Since the only formal indications for inhaled/aerosolized antimicrobial agents is for patients suffering from cystic fibrosis, consequently the majority of research and published studies concerns this group of patients. Newer devices and new antibiotic formulations are currently off-label used in ambulatory cystic fibrosis patients whereas similar data for the mechanically ventilated patients do not yet exist. PMID:21235473

  13. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry. PMID:23342511

  14. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.

  15. Evidence for antimicrobial activity associated with common house spider silk

    PubMed Central

    2012-01-01

    Background Spider silk is one of the most versatile materials in nature with great strength and flexibility. Native and synthetically produced silk has been used in a wide range of applications including the construction of artificial tendons and as substrates for human cell growth. In the literature there are anecdotal reports that suggest that native spider silk may also have antimicrobial properties. Findings In this study we compared the growth of a Gram positive and a Gram negative bacterium in the presence and absence of silk produced by the common house spider Tegenaria domestica. We demonstrate that native web silk of Tegenaria domestica can inhibit the growth of the Gram positive bacterium, Bacillus subtilis. No significant inhibition of growth was detected against the Gram negative bacterium, Escherichia coli. The antimicrobial effect against B. subtilis appears to be short lived thus the active agent potentially acts in a bacteriostatic rather than bactericidal manner. Treatment of the silk with Proteinase K appears to reduce the ability to inhibit bacterial growth. This is consistent with the active agent including a protein element that is denatured or cleaved by treatment. Tegenaria silk does not appear to inhibit the growth of mammalian cells in vitro thus there is the potential for therapeutic applications. PMID:22731829

  16. In vitro susceptibilities of rapidly growing mycobacteria to newer antimicrobial agents.

    PubMed Central

    Khardori, N; Nguyen, H; Rosenbaum, B; Rolston, K; Bodey, G P

    1994-01-01

    The in vitro antimicrobial susceptibilities of 42 isolates of rapidly growing mycobacteria (Mycobacterium fortuitum, M. chelonae, and Mycobacterium species [other than M. fortuitum and M. chelonae]) to nine quinolones, including newer agents, two new aminoglycosides, and an aminocyclitol (trospectomycin) were determined by a broth microdilution method. The new quinolones, PD 117596, PD 127391, and PD 117558, showed excellent in vitro activities against M. fortuitum (MICs for 90% of isolates [MIC90s], 0.06, 0.06, and 0.12 microgram/ml, respectively). The MIC90 of ciprofloxacin for M. fortuitum was 0.5 microgram/ml. Only 14 to 28% of isolates of M. chelonae were susceptible to various quinolones. Most isolates of all three species were susceptible to the new aminoglycosides SCH 21420 and SCH 22591. The MIC90s of trospectomycin were 8 micrograms/ml for M. chelonae, 32 micrograms/ml for Mycobacterium species, and > 64 micrograms/ml for M. fortuitum. PMID:8141567

  17. Isolation, identification and antimicrobial activity of propolis-associated fungi.

    PubMed

    de Souza, Giovanni Gontijo; Pfenning, Ludwig Heinrich; de Moura, Fabiana; Salgado, Mírian; Takahashi, Jacqueline Aparecida

    2013-01-01

    Propolis is a natural product widely known for its medicinal properties. In this work, fungi present on propolis samples were isolated, identified and tested for the production of antimicrobial metabolites. Twenty-two fungal isolates were obtained, some of which were identified as Alternaria alternata, Aspergillus flavus, Bipolaris hawaiiensis, Fusarium merismoides, Lasiodiplodia theobromae, Penicillium citrinum, Penicillium crustosum, Penicillium janthinellum, Penicillium purpurogenum, Pestalotiopsis palustris, Tetracoccosporium paxianum and Trichoderma koningii. These fungi were grown in liquid media to obtain crude extracts that were evaluated for their antibiotic activity against pathogenic bacteria, yeast and Cladosporium cladosporioides and A. flavus. The most active extract was obtained from L. theobromae (minimum inhibitory concentration = 64 μg/mL against Listeria monocitogenes). Some extracts showed to be more active than the positive control in the inhibition of Staphylococcus aureus and L. monocitogenes. Therefore, propolis is a promising source of fungi, which produces active agents against relevant food poisoning bacteria and crop-associated fungi.

  18. Antimicrobial activities of single aroma compounds.

    PubMed

    Schmidt, Erich; Bail, Stefanie; Friedl, Susanne Mirjam; Jirovetz, Leopold; Buchbauer, Gerhard; Wanner, Jürgen; Denkova, Zapryana; Slavchev, Alexander; Stoyanova, Albena; Geissler, Margit

    2010-09-01

    Commercially available aroma samples were evaluated for their olfactory quality by professional perfumers and tested for their antimicrobial activity. Agar diffusion and agar-dilution were used as test methods and a set of two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and four Gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris G, Klebsiella pneumoniae and Salmonella abony) and a yeast, Candida albicans, were the test microorganisms. All the investigated compounds were active against Gram-positive bacteria, especially beta-caryophyllene against Enterococcus faecalis (MIC 6 ppm), but only few substances showed activity towards Gram-negative bacteria, except for cinnamic acid, which was active against all (MIC 60 ppm) and Candida albicans, against which cinnamic acid and caryophyllene oxide showed high activity (MIC < 60 ppm).

  19. Free radical scavenging, antimicrobial and immunomodulatory activities of Orthosiphon stamineus.

    PubMed

    Alshawsh, Mohammed A; Abdulla, Mahmood A; Ismail, Salmah; Amin, Zahra A; Qader, Suhailah W; Hadi, Hamid A; Harmal, Nabil S

    2012-01-01

    Orthosiphon stamineus is considered an important traditional folk medicine. In this study ethanol and aqueous extracts of O. stamineus were evaluated in vitro for their antioxidant, antimicrobial as well as for their immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs). The DPPH radical scavenging method was used for the determination of antioxidant activity, while the antibacterial efficacy was investigated by both disc diffusion method and Minimum Inhibitory Concentration (MIC) against four bacterial strains (Gram-positive and Gram-negative). Furthermore, the immunomodulatory potential of the extracts was investigated through the MTT assay. Aqueous extract of O. stamineus exhibited significant free radical scavenging activity with IC₅₀ 50 9.6 µg/mL, whereas the IC₅₀ for the ethanol extract was 21.4 µg/mL. The best antimicrobial activity was shown by the aqueous extract of O. stamineus against Staphylococcus aureus, with inhibition zone of 10.5 mm and MIC value 1.56 mg/mL. Moreover, the results observed from the MTT assay showed that both plant extracts stimulated the PBMCs proliferation in vitro in a concentration-dependent manner, but the aqueous extract has remarkable activity against PBMCs. These findings indicate that O. stamineus showed high antioxidant activity and may be considered as an immunomodulatory agent.

  20. The proper use and benefits of veterinary antimicrobial agents in swine practice.

    PubMed

    Mackinnon, J D

    1993-06-01

    There are three main reasons for using antimicrobial agents in pig production: animal welfare, carcase quality and economics. The need to treat sick animals and to mitigate the effects of infection is of paramount humanitarian importance. The reduction of the pathological effects of infection is an essential aspect of carcase quality and of possible value in the control of potential zoonoses. It is beyond dispute that the judicious use of antimicrobial agents improves growth efficiency. In addition there are economic benefits to be gained from the control of infection in terms of improved carcase quality and reduced mortality. When antimicrobial agents are used, careful consideration must be given to their choice. An understanding of the disease complexes of pig herds, of pharmacokinetics and of methods of administration is necessary to achieve safe and cost-effective medication. Bacterial resistance to antimicrobial agents in pig production is of importance only in special circumstances where eradication of a disease is being attempted. Veterinarians specialising in pig production are concerned that there is a climate of restriction of use and availability of suitable agents which could jeopardize animal health and welfare.

  1. Synthesis, lipophilicity and antimicrobial activity evaluation of some new thiazolyl-oxadiazolines

    PubMed Central

    STOICA, CRISTINA IOANA; IONUȚ, IOANA; PÎRNĂU, ADRIAN; POP, CARMEN; ROTAR, ANCUȚA; VLASE, LAURIAN; ONIGA, SMARANDA; ONIGA, OVIDIU

    2015-01-01

    Background and aims Synthesis of new potential antimicrobial agents and evaluation of their lipophilicity. Methods Ten new thiazolyl-oxadiazoline derivatives were synthesized and their structures were validated by 1H-NMR and mass spectrometry. The lipophilicity of the compounds was evaluated using the principal component analysis (PCA) method. The necessary data for applying this method were obtained by reverse-phase thin-layer chromatography (RP-TLC). The antimicrobial activities were tested in vitro against four bacterial strains and one fungal strain. Results The lipophilicity varied with the structure but could not be correlated with the antimicrobial activity, since this was modest. Conclusions We have synthesized ten new heterocyclic compounds. After their physical and chemical characterization, we determined their lipophilicity and screened their antimicrobial activity. PMID:26733751

  2. Antioxidant, Antimicrobial Activity and Medicinal Properties of Grewia asiatica L.

    PubMed

    Shukla, Ritu; Sharma, Dinesh C; Baig, Mohammad H; Bano, Shabana; Roy, Sudeep; Provazník, Ivo; Kamal, Mohammad A

    2016-01-01

    Since ancient time, India is a well known subcontinent for medicinal plants where diversity of plants is known for the treatment of many human disorders. Grewia asiatica is a dicot shrub belonging to the Grewioideae family and well known for its medicinally important fruit commonly called Falsa. G. asiatica, a seasonal summer plant is distributed in the forest of central India, south India, also available in northern plains and western Himalaya up to the height of 3000 ft. Fruits of G. asiatica are traditionally used as a cooling agent, refreshing drink, anti-inflammatory agent and for the treatment of some urological disorders. Recent advancement of Falsa researches concluded its antimicrobial and anti-diabetic activity. Since ancient time medicinal plants are traditionally used for the treatment of different diseases G. asiatica fruit is the edible and tasty part of the plant, now considered as a valuable source of unique natural product for the development of medicines which are used in different disease conditions like anti-diabetic, anti-inflammatory, anti-cancerous and antimicrobial. Now a days, G. asiatica is being used in different Ayurvedic formulation for the cure of different types of diseases. Different pharmacological investigations reveal the presence of phenols, saponnins, flavonoids and tannins compound in the fruits. Present review highlights the phytopharmacological and different traditional use of G. asiatica which is mentioned in ancient Ayurvedic texts. This review stimulates the researchers and scientists for further research on G. asiatica. PMID:26516779

  3. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract

    PubMed Central

    2013-01-01

    Background In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Methods Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Results In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract

  4. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus.

    PubMed

    Haba, Ester; Bouhdid, Samira; Torrego-Solana, Noelia; Marqués, A M; Espuny, M José; García-Celma, M José; Manresa, Angeles

    2014-12-10

    This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems. PMID:25269010

  5. Antimicrobial activity of two propolis samples against human Campylobacter jejuni.

    PubMed

    Campana, Raffaella; Patrone, Vania; Franzini, Ingrid Tarsilla Maria; Diamantini, Giuseppe; Vittoria, Emanuela; Baffone, Wally

    2009-10-01

    The aim of this study was to analyze the antimicrobial activity of two ethanolic extracts of propolis (EEPs) and selected flavonoids against 16 Campylobacter jejuni clinical isolates and several Gram-positive and Gram-negative human pathogens. The antimicrobial activity of EEPs and flavonoids was evaluated by the agar well diffusion method. The EEPs inhibited the growth of C. jejuni, Enterobacter faecalis, and Staphylococcus aureus. The most active flavonoid was galangin, with the highest percentage of sensitivity among C. jejuni strains (68.8%); lower percentages of sensitivity were observed for quercetin (50%). The minimal inhibitory concentrations (MICs) of EEPs and flavonoids for C. jejuni isolates were determined by the agar dilution method. EEPs showed MIC values of 0.3125-0.156 mg/mL for all C. jejuni strains; galangin and quercetin gave MICs ranging from 0.250 to 0.125 mg/mL. Thus propolis preparations could be used as support to traditional therapy for Campylobacter infection, especially when the antibiotic agents show no activity against this microorganism.

  6. Workshop report: the 2012 antimicrobial agents in veterinary medicine: exploring the consequences of antimicrobial drug use: a 3-D approach.

    PubMed

    Martinez, M; Blondeau, J; Cerniglia, C E; Fink-Gremmels, J; Guenther, S; Hunter, R P; Li, X-Z; Papich, M; Silley, P; Soback, S; Toutain, P-L; Zhang, Q

    2014-02-01

    Antimicrobial resistance is a global challenge that impacts both human and veterinary health care. The resilience of microbes is reflected in their ability to adapt and survive in spite of our best efforts to constrain their infectious capabilities. As science advances, many of the mechanisms for microbial survival and resistance element transfer have been identified. During the 2012 meeting of Antimicrobial Agents in Veterinary Medicine (AAVM), experts provided insights on such issues as use vs. resistance, the available tools for supporting appropriate drug use, the importance of meeting the therapeutic needs within the domestic animal health care, and the requirements associated with food safety and food security. This report aims to provide a summary of the presentations and discussions occurring during the 2012 AAVM with the goal of stimulating future discussions and enhancing the opportunity to establish creative and sustainable solutions that will guarantee the availability of an effective therapeutic arsenal for veterinary species.

  7. Synergistic effects of guanidine-grafted CMC on enhancing antimicrobial activity and dry strength of paper.

    PubMed

    Liu, Kai; Xu, Yaoguang; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Li, Jian

    2014-09-22

    In order to improve the strength property and antimicrobial activity of paper simultaneously, we prepared a novel multifunctional agent based on carboxymethyl cellulose (CMC) by a simple two-stage method. The first stage was the oxidation of CMC to obtain the dialdehyde CMC (DCMC), and the second stage was the graft of guanidine hydrochloride (GH) onto DCMC to obtain DCMC-GH polymer. The strength property and antimicrobial activity of DCMC-GH-coated copy paper have been studied by the tensile test and inhibition zone method, respectively. The results showed that the dry strength index could increase about 20% after the paper was coated with DCMC-GH. The coating of DCMC-GH on paper also resulted in excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus, and the inhibition zone became larger as the GH content grafted on DCMC increased. The novel DCMC-GH polymer would be a multifunctional coating agent for food packaging paper.

  8. In vitro drug susceptibility of 40 international reference rapidly growing mycobacteria to 20 antimicrobial agents

    PubMed Central

    Pang, Hui; Li, Guilian; Wan, Li; Jiang, Yi; Liu, Haican; Zhao, Xiuqin; Zhao, Zhongfu; Wan, Kanglin

    2015-01-01

    Rapidly growing mycobacteria (RGM) are human pathogens that are relatively easily identified by acid-fast staining but are proving difficult to treat in the clinic. In this study, we performed susceptibility testing of 40 international reference RGM species against 20 antimicrobial agents using the cation-adjusted Mueller-Hinton (CAMH) broth microdilution based on the minimum inhibitory concentration (MIC) assay recommended by the guidelines of the Clinical and Laboratory Standards Institute (CLSI). The results demonstrated that RGM organisms were resistant to the majority of first-line antituberculous agents but not to second-line fluoroquinolones or aminoglycosides. Three drugs (amikacin, tigecycline and linezolid) displayed potent antimycobacterial activity against all tested strains. Capreomycin, levofloxacin and moxifloxacin emerged as promising candidates for the treatment of RGM infections, and cefoxitin and meropenem were active against most strains. Mycobacterium chelonae (M. chelonae), M. abscessus, M. bolletii, M. fortuitum, M. boenickei, M. conceptionense, M. pseudoshottsii, M. septicum and M. setense were the most resistant RGM species. These results provide significant insight into the treatment of RGM species and will assist optimization of clinical criteria. PMID:26629031

  9. Cefuroxime: antimicrobial activity, Pharmacology, and clinical efficacy.

    PubMed

    Smith, B R; LeFrock, J L

    1983-06-01

    The antimicrobial activity, pharmacology, toxicity, and clinical efficacy of cefuroxime are reviewed. Cefuroxime has a second-generation cephalosporin spectrum of activity similar to cefamandole. Addition of a methoxyimino side chain has enhanced its beta-lactamase stability. Cefuroxime is active against certain cephalothin-, cefamandole-, and gentamicin-resistant bacteria. Cefuroxime has an extended half-life which allows dosing every 8 h. If penetrates into bodily tissues and fluids, including the cerebrospinal fluid, in therapeutic concentrations. Cefuroxime has been used successfully in the treatment of meningitis; sepsis; urinary tract, bone and joint, pulmonary, skin, and soft tissue infections; and gonorrhea. Competitive pricing of cefuroxime should provide a cost-effective substitute for cefamandole and, in certain situations, third-generation cephalosporins.

  10. Antimicrobial activity of Cassia alata from Malaysia.

    PubMed

    Ibrahim, D; Osman, H

    1995-03-01

    Ethanolic extract of Cassia alata leaves was investigated for its antimicrobial activities on several microorganisms including bacteria, yeast, dermatophytic fungi and non-dermatophytic fungi. In vitro, the extract exhibited high activity against various species of dermatophytic fungi but low activity against non-dermatophytic fungi. However, bacterial and yeast species showed resistance against in vitro treatment with the extract. The minimum inhibitory concentration (MIC) values of the extract revealed that Trichophyton mentagorphytes var. interdigitale, Trichophyton mentagrophytes var. mentagorophytes, Trichophyton rubrum and Microsporum gypseum had the MIC of 125 mg/ml, whereas Microsporum canis had the MIC of 62.5 mg/ml. The inhibition can be observed on the macroconidia of Microsporum gypseum which resulted in structural degeneration beyond repair. The mechanism of inhibition can be related to the cell leakage as observed by irregular, wrinkle shape and loss in rigidity of the macroconidia.

  11. Synthesis and biological evaluation of some new amide moiety bearing quinoxaline derivatives as antimicrobial agents.

    PubMed

    Abu Mohsen, U; Yurttaş, L; Acar, U; Özkay, Y; Kaplacikli, Z A; Karaca Gencer, H; Cantürk, Z

    2015-05-01

    In this study, we aimed to synthesize some new quinoxaline derivatives bearing amide moiety and to evaluate their antimicrobial activity. A set of 16 novel compounds of N-[2,3-bis(4-methoxy/methylphenyl)quinoxalin-6-yl]-substituted benzamide derivatives were synthesized by reacting 2,3-bis(4-methoxyphenyl)-6-aminoquinoxaline or 2,3-bis(4-methylphenyl)-6-aminoquinoxaline with benzoyl chloride derivatives in tetrahydrofuran and investigated for their antimicrobial activity. The structures of the obtained final compounds were confirmed by spectral data (IR, (1)H-NMR, (13)C-NMR and MS). The antimicrobial activity of the compounds were determined by using the microbroth dilution method. Antimicrobial activity results revealed that synthesized compounds exhibited remarkable activity against Candida krusei (ATCC 6258) and Candida parapsilosis (ATCC 22019).

  12. Antimicrobial activity of endophytic fungi isolated from Swietenia macrophylla leaves.

    PubMed

    Ibrahim, Darah; Lee, Chong Chai; Sheh-Hong, Lim

    2014-02-01

    The endophytic fungi isolated from leaves of Swietenia macrophylla of different ages were examined for antimicrobial activity. The agar plug diffusion assay was used for primary screening, followed by the disc diffusion method. A total of 461 filamentous endophytic fungi were isolated and cultured to examine their antimicrobial properties. In the primary screen, 315 isolates (68.3%) exhibited activity against at least one of the test pathogenic microorganisms. The percentage of isolates exhibiting antimicrobial activity increased with leaf age. Endophytic fungal assemblages, as well as those isolates exhibiting antimicrobial properties appeared to increase with leaf age. The main antimicrobial compounds were produced extracellularly by the endophytic fungi. The results suggest that healthy leaves at older stages of growth can be a potential source for the isolation of endophytic fungi with antimicrobial properties.

  13. Antimicrobial activity of cationic peptides in endodontic procedures

    PubMed Central

    Winfred, Sofi Beaula; Meiyazagan, Gowri; Panda, Jiban J.; Nagendrababu, Venkateshbabu; Deivanayagam, Kandaswamy; Chauhan, Virander S.; Venkatraman, Ganesh

    2014-01-01

    Objectives: The present study aimed to investigate the antimicrobial and biofilm inhibition activity of synthetic antimicrobial peptides (AMPs) against microbes such as Enterococcus faecalis, Staphylococcus aureus, and Candida albicans which are involved in endodontic infections. Materials and Methods: Agar diffusion test was done to determine the activity of peptides. The morphological changes in E. faecalis and reduction in biofilm formation after treatment with peptides were observed using scanning electron microscope. The efficacy of peptides using an ex vivo dentinal model was determined by polymerase chain reaction and confocal laser scanning microscopy. Platelet aggregation was done to determine the biocompatibility of peptides. Results: Among 11 peptides, two of the amphipathic cationic peptides were found to be highly active against E. faecalis, S. aureus, C. albicans. Efficacy results using dentinal tubule model showed significant reduction in microbial load at 400 μm depth. The peptides were also biocompatible. Conclusion: These results suggest that synthetic AMPs have the potential to be developed as antibacterial agents against microorganisms involved in dental infections and thus could prevent the spread and persistence of endodontic infections improving treatment outcomes and teeth preservation. PMID:24966779

  14. Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens.

    PubMed

    Güell, Imma; Micaló, Lluís; Cano, Laura; Badosa, Esther; Ferre, Rafael; Montesinos, Emilio; Bardají, Eduard; Feliu, Lidia; Planas, Marta

    2012-01-01

    We designed and prepared peptidotriazoles based on the antimicrobial peptide BP100 (LysLysLeuPheLysLysIleLeuLysTyrLeu-NH(2)) by introducing a triazole ring in the peptide backbone or onto the side chain of a selected residue. These compounds were screened for their in vitro growth inhibition of bacterial and fungal phytopathogens, and for their cytotoxic effects on eukaryotic cells and tobacco leaves. Their proteolytic susceptibility was also analyzed. The antibacterial activity and the hemolysis were influenced by the amino acid that was modified with the triazole as well as by the absence of presence of a substituent in this heterocyclic ring. We identified sequences active against the bacteria Xanthomonas axonopodis pv. vesicatoria, Erwinia amylovora, Pseudomonas syringae pv. syringae (MIC of 1.6-12.5 μM), and against the fungi Fusarium oxysporum (MIC<6.2-12.5 μM) with low hemolytic activity (0-23% at 50 μM), high stability to protease digestion and no phytotoxicity. These peptidotriazoles constitute good candidates to design new antimicrobial agents. PMID:22198367

  15. Immunomodulatory effects of antimicrobial agents. Part I: antibacterial and antiviral agents.

    PubMed

    Labro, Marie-Thérèse

    2012-03-01

    Despite impressive therapeutic progresses in the battle against infections, microorganisms are still a threat to mankind. With hundreds of antibacterial molecules, major concerns remain about the emergence of resistant and multidrug-resistant pathogens. On the other hand, the antiviral drug armamentarium is comprised of only a few dozens of compounds which are highly pathogen specific, and resistance is also a concern. According to Arturo Casadevall (Albert Einstein College of Medicine, NY, USA), we have now entered the third era of anti-infective strategy, which intends to favor the interplay between active molecules and the immune system. The first part of this review focuses on the potential immunomodulating properties of anti-infective agents, beginning with antibacterial and antiviral agents.

  16. Antimicrobial activity of extracts from Tamarindus indica L. leaves.

    PubMed

    Escalona-Arranz, Julio César; Péres-Roses, Renato; Urdaneta-Laffita, Imilci; Camacho-Pozo, Miladis Isabel; Rodríguez-Amado, Jesús; Licea-Jiménez, Irina

    2010-07-01

    Tamarindus indica L. leaves are reported worldwide as antibacterial and antifungal agents; however, this observation is not completely accurate in the case of Cuba. In this article, decoctions from fresh and sun dried leaves, as well as fluid extracts prepared with 30 and 70% ethanol-water and the pure essential oil from tamarind leaves were microbiologically tested against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomona aeruginosa and Candida albicans. Aqueous and fluid extracts were previously characterized by spectrophotometric determination of their total phenols and flavonoids, while the essential oil was chemically evaluated by gas chromatography/mass spectroscopy (GC/MS). Experimental data suggest phenols as active compounds against B. subtilis cultures, but not against other microorganisms. On the other hand, the essential oil exhibited a good antimicrobial spectrum when pure, but its relative low concentrations in common folk preparations do not allow for any good activity in these extracts.

  17. Antimicrobial activity of extracts from Tamarindus indica L. leaves

    PubMed Central

    Escalona-Arranz, Julio César; Péres-Roses, Renato; Urdaneta-Laffita, Imilci; Camacho-Pozo, Miladis Isabel; Rodríguez-Amado, Jesús; Licea-Jiménez, Irina

    2010-01-01

    Tamarindus indica L. leaves are reported worldwide as antibacterial and antifungal agents; however, this observation is not completely accurate in the case of Cuba. In this article, decoctions from fresh and sun dried leaves, as well as fluid extracts prepared with 30 and 70% ethanol-water and the pure essential oil from tamarind leaves were microbiologically tested against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomona aeruginosa and Candida albicans. Aqueous and fluid extracts were previously characterized by spectrophotometric determination of their total phenols and flavonoids, while the essential oil was chemically evaluated by gas chromatography/mass spectroscopy (GC/MS). Experimental data suggest phenols as active compounds against B. subtilis cultures, but not against other microorganisms. On the other hand, the essential oil exhibited a good antimicrobial spectrum when pure, but its relative low concentrations in common folk preparations do not allow for any good activity in these extracts. PMID:20931087

  18. Fully Zwitterionic Nanoparticle Antimicrobial Agents through Tuning of Core Size and Ligand Structure.

    PubMed

    Huo, Shuaidong; Jiang, Ying; Gupta, Akash; Jiang, Ziwen; Landis, Ryan F; Hou, Singyuk; Liang, Xing-Jie; Rotello, Vincent M

    2016-09-27

    Zwitterionic nanoparticles are generally considered nontoxic and noninteracting. Here, we report effective and selective antimicrobial activity of zwitterionic gold nanoparticles (AuNP) through modulation NP size and surface charge orientation. Using a set of 2, 4, and 6 nm core AuNPs, increasing particle size increased antimicrobial efficiency through bacterial membrane disruption. Further improvement was observed through control of the ligand structure, generating antimicrobial particles with low hemolytic activity and demonstrating the importance of size and surface structure in dictating the bioactivity properties of nanomaterials. PMID:27622756

  19. Peptides and proteins with antimicrobial activity.

    PubMed

    Coutinho, Henrique Douglas Melo; Lôbo, Katiuscia Menezes; Bezerra, Denise Aline Casimiro; Lôbo, Inalzuir

    2008-01-01

    The increase of microbial resistance to antibiotics has led to a continuing search for newer and more effective drugs. Antimicrobial peptides are generally found in animals, plants, and microorganisms and are of great interest to medicine, pharmacology, and the food industry. These peptides are capable of inhibiting pathogenic microorganisms. They can attack parasites, while causing little or no harm to the host cells. The defensins are peptides found in granules in the polymorphonuclear neutrophils (PMNs) and are responsible for the defense of the organism. Several animal defensins, like dermaseptin, antileukoprotease, protegrin, and others, have had their activities and efficacy tested and been shown to be effective against bacteria, fungi, and protists; there are also specific defensins from invertebrates, e.g., drosomycin and heliomicin; from plants, e.g., the types A and B; and the bacteriocins, e.g., acrocin, marcescin, etc. The aim of the present work was to compile a comprehensive bibliographic review of the diverse potentially antimicrobial peptides in an effort to systematize the current knowledge on these substances as a contribution for further researches. The currently available bibliography does not give a holistic approach on this subject. The present work intends to show that the mechanism of defense represented by defensins is promising from the perspective of its application in the treatment of infectious diseases in human, animals and plants.

  20. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents.

    PubMed

    Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A

    2015-11-03

    In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.

  1. A synthetic peptide adhesion epitope as a novel antimicrobial agent.

    PubMed

    Kelly, C G; Younson, J S; Hikmat, B Y; Todryk, S M; Czisch, M; Haris, P I; Flindall, I R; Newby, C; Mallet, A I; Ma, J K; Lehner, T

    1999-01-01

    The earliest step in microbial infection is adherence by specific microbial adhesins to the mucosa of the oro-intestinal, nasorespiratory, or genitourinary tract. We inhibited binding of a cell surface adhesin of Streptococcus mutans to salivary receptors in vitro, as measured by surface plasmon resonance, using a synthetic peptide (p1025) corresponding to residues 1025-1044 of the adhesin. Two residues within p1025 that contribute to binding (Q1025, E1037) were identified by site-directed mutagenesis. In an in vivo human streptococcal adhesion model, direct application of p1025 to the teeth prevented recolonization of S. mutans but not Actinomyces, as compared with a control peptide or saline. This novel antimicrobial strategy, applying competitive peptide inhibitors of adhesion, may be used against other microorganisms in which adhesins mediate colonization of mucosal surfaces.

  2. Trachyspermum ammi (L.) sprague: chemical composition of essential oil and antimicrobial activities of respective fractions.

    PubMed

    Moein, Mahmoodreza R; Zomorodian, Kamiar; Pakshir, Keyvan; Yavari, Farnoosh; Motamedi, Marjan; Zarshenas, Mohammad M

    2015-01-01

    Resistance to antibacterial agents has become a serious problem for global health. The current study evaluated the antimicrobial activities of essential oil and respective fractions of Trachyspermum ammi (L.) Sprague. Seeds of the essential oil were extracted and fractionated using column chromatography. All fractions were then analyzed by gas chromatography/mass spectrometry. Antifungal and antibacterial activities of the oil and its fractions were assessed using microdilution method. Compounds γ-terpinene (48.07%), ρ-cymene (33.73%), and thymol (17.41%) were determined as major constituents. The effect of fraction II was better than total essential oil, fraction I, and standard thymol. The greater effect of fraction II compared to standard thymol showed the synergistic effects of the ingredients in this fraction. As this fraction and also total oil were effective on the studied microorganism, the combination of these products with current antimicrobial agents could be considered as new antimicrobial compounds in further investigations. PMID:25305209

  3. In vitro antimicrobial activity against 10 North American and European Lawsonia intracellularis isolates.

    PubMed

    Wattanaphansak, Suphot; Singer, Randall S; Gebhart, Connie J

    2009-03-01

    The objective of this study was to determine the in vitro minimum inhibitory concentration (MIC) of antimicrobials against 10 isolates of Lawsonia intracellularis, the etiological agent of proliferative enteropathy (PE). Antimicrobials tested included carbadox, chlortetracycline, lincomycin, tiamulin, tylosin and valnemulin. The MIC of each antimicrobial against L. intracellularis was determined using a tissue culture system and was identified as the lowest concentration that inhibited 99% of L. intracellularis growth, as compared to the antimicrobial-free control. Each antimicrobial concentration was evaluated for both intracellular and extracellular activity against L. intracellularis, an obligately intracellular bacterium. When tested for intracellular activity, carbadox, tiamulin, and valnemulin were the most active antimicrobials with MICs of < or =0.5microg/ml. Tylosin (MICs ranging from 0.25 to 32microg/ml) and chlortetracycline (MICs ranging from 0.125 to 64microg/ml) showed intermediate activities and lincomycin (MICs ranging from 8 to >128mIcog/ml) showed the least activity. When tested for extracellular activity, valnemulin (MICs ranging from 0.125 to 4microg/ml) was the most active against most L. intracellularis isolates. Chlortetracycline (MICs ranging from 16 to 64microg/ml), tylosin (MICs ranging from 1 to >128microg/ml), and tiamulin (MICs ranging from 1 to 32microg/ml) showed intermediate activities. Lincomycin (MICs ranging from 32 to >128microg/ml) showed the least activity. Our in vitro results showed that each L. intracellularis isolate had a different antimicrobial sensitivity pattern and these data can be utilized as an in vitro guideline for the further antimicrobial evaluation of field L. intracellularis isolates. PMID:18823723

  4. Dairy farm age and resistance to antimicrobial agents in Escherichia coli isolated from dairy topsoil.

    PubMed

    Jones, Suzanna E; Burgos, Jonathan M; Lutnesky, Marvin M F; Sena, Johnny A; Kumar, Sanath; Jones, Lindsay M; Varela, Manuel F

    2011-04-01

    Antimicrobial agent usage is common in animal agriculture for therapeutic and prophylactic purposes. Selective pressure exerted by these antimicrobials on soil bacteria could result in the selection of strains that are resistant due to chromosomal- or plasmid-derived genetic components. Multiple antimicrobial resistances in Escherichia coli and the direct relationship between antimicrobial agent use over time has been extensively studied, yet the relationship between the age of an animal agriculture environment such as a dairy farm and antibiotic resistance remains unclear. Therefore, we tested the hypothesis that antimicrobial-resistance profiles of E. coli isolated from dairy farm topsoil correlate with dairy farm age. E. coli isolated from eleven dairy farms of varying ages within Roosevelt County, NM were used for MIC determinations to chloramphenicol, nalidixic acid, penicillin, tetracycline, ampicillin, amoxicillin/clavulanic acid, gentamicin, trimethoprim/sulfamethoxazole, cefotaxime, and ciprofloxacin. The minimum inhibitory concentration values of four antibiotics ranged 0.75 to >256 μg/ml, 1 to >256 μg/ml, 12 to >256 μg/ml, and 0.75 to >256 μg/ml for chloramphenicol, nalidixic acid, penicillin, and tetracycline, respectively. The study did not show a direct relationship between antibiotic resistance and the age of dairy farms. PMID:21153729

  5. Plants as sources of new antimicrobials and resistance-modifying agents.

    PubMed

    Abreu, Ana Cristina; McBain, Andrew J; Simões, Manuel

    2012-09-01

    Infections caused by multidrug-resistant bacteria are an increasing problem due to the emergence and propagation of microbial drug resistance and the lack of development of new antimicrobials. Traditional methods of antibiotic discovery have failed to keep pace with the evolution of resistance. Therefore, new strategies to control bacterial infections are highly desirable. Plant secondary metabolites (phytochemicals) have already demonstrated their potential as antibacterials when used alone and as synergists or potentiators of other antibacterial agents. The use of phytochemical products and plant extracts as resistance-modifying agents (RMAs) represents an increasingly active research topic. Phytochemicals frequently act through different mechanisms than conventional antibiotics and could, therefore be of use in the treatment of resistant bacteria. The therapeutic utility of these products, however, remains to be clinically proven. The aim of this article is to review the advances in in vitro and in vivo studies on the potential chemotherapeutic value of phytochemical products and plant extracts as RMAs to restore the efficacy of antibiotics against resistant pathogenic bacteria. The mode of action of RMAs on the potentiation of antibiotics is also described.

  6. General principles of antimicrobial therapy.

    PubMed

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  7. General principles of antimicrobial therapy.

    PubMed

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community. PMID:21282489

  8. Synthesis and biological evaluation of 2-aminobenzamide derivatives as antimicrobial agents: opening/closing pharmacophore site.

    PubMed

    Mabkhot, Yahia N; Al-Majid, Abdullah M; Barakat, Assem; Al-Showiman, Salim S; Al-Har, Munirah S; Radi, Smaail; Naseer, Muhammad Moazzam; Hadda, Taibi B

    2014-03-21

    A series of new 2-aminobenzamide derivatives (1-10) has been synthesized in good to excellent yields by adopting both conventional and/or a time-efficient microwave assisted methodologies starting from isatoic anhydride (ISA) and characterized on the basis of their physical, spectral and microanalytical data. Selected compounds of this series were then tested against various bacterial (Bacillus subtilis (RCMB 000107) and Staphylococcus aureus (RCMB 000106). Pseudomonas aeruginosa (RCMB 000102) and Escherichia coli (RCMB 000103) and fungal strains (Saccharomyces cerevisiae (RCMB 006002), Aspergillus fumigatus (RCMB 002003) and Candida albicans (RCMB 005002) to explore their potential as antimicrobial agents. Compound 5 was found to be the most active compound among those tested, which showed excellent antifungal activity against Aspergillus fumigatus (RCMB 002003) more potent than standard Clotrimazole, and moderate to good antibacterial and antifungal activity against most of the other strains of bacteria and fungi. Furthermore, potential pharmacophore sites were identified and their activity was related with the structures in the solution.

  9. Antimicrobial activity of Uncaria tomentosa against oral human pathogens.

    PubMed

    Ccahuana-Vasquez, Renzo Alberto; Santos, Silvana Soléo Ferreira dos; Koga-Ito, Cristiane Yumi; Jorge, Antonio Olavo Cardoso

    2007-01-01

    Uncaria tomentosa is considered a medicinal plant used over centuries by the peruvian population as an alternative treatment for several diseases. Many microorganisms usually inhabit the human oral cavity and under certain conditions can become etiologic agents of diseases. The aim of the present study was to evaluate the antimicrobial activity of different concentrations of Uncaria tomentosa on different strains of microorganisms isolated from the human oral cavity. Micropulverized Uncaria tomentosa was tested in vitro to determine the minimum inhibitory concentration (MIC) on selected microbial strains. The tested strains were oral clinical isolates of Streptococcus mutans, Staphylococcus spp., Candida albicans, Enterobacteriaceae and Pseudomonas aeruginosa. The tested concentrations of Uncaria tomentosa ranged from 0.25-5% in Müeller-Hinton agar. Three percent Uncaria tomentosa inhibited 8% of Enterobacteriaceae isolates, 52% of S. mutans and 96% of Staphylococcus spp. The tested concentrations did not present inhibitory effect on P. aeruginosa and C. albicans. It could be concluded that micropulverized Uncaria tomentosa presented antimicrobial activity on Enterobacteriaceae, S. mutans and Staphylococcus spp. isolates.

  10. Antimicrobial Activity of Starch Hydrogel Incorporated with Copper Nanoparticles.

    PubMed

    Villanueva, María Emilia; Diez, Ana María Del Rosario; González, Joaquín Antonio; Pérez, Claudio Javier; Orrego, Manuel; Piehl, Lidia; Teves, Sergio; Copello, Guillermo Javier

    2016-06-29

    In order to obtain an antimicrobial gel, a starch-based hydrogel reinforced with silica-coated copper nanoparticles (Cu NPs) was developed. Cu NPs were synthesized by use of a copper salt and hydrazine as a reducing agent. In order to enhance Cu NP stability over time, they were synthesized in a starch medium followed by a silica coating. The starch hydrogel was prepared by use of urea and water as plasticizers and it was treated with different concentrations of silica-coated copper nanoparticles (Si-Cu NPs). The obtained materials were characterized by Fourier transform infrared (FT-IR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, scanning electron microscopy (SEM), and rheometry. FT-IR and EPR spectra were used for characterization of Cu NPs and Si-Cu NPs, confirming that a starch cap was formed around the Cu NP and demonstrating the stability of the copper nanoparticle after the silica coating step. SEM images showed Cu NP, Si-Cu NP, and hydrogel morphology. The particle size was polydisperse and the structure of the gels changed along with particle concentration. Increased NP content led to larger pores in starch structure. These results were in accordance with the rheological behavior, where reinforcement by the Si-Cu NP was seen. Antimicrobial activity was evaluated against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial species. The hydrogels were demonstrated to maintain antimicrobial activity for at least four cycles of use. A dermal acute toxicity test showed that the material could be scored as slightly irritant, proving its biocompatibility. With these advantages, it is believed that the designed Si-Cu NP loaded hydrogel may show high potential for applications in various clinical fields, such as wound dressings and fillers. PMID:27295333

  11. Metabolic Network Analysis-Based Identification of Antimicrobial Drug Targets in Category A Bioterrorism Agents

    PubMed Central

    Ahn, Yong-Yeol; Lee, Deok-Sun; Burd, Henry; Blank, William; Kapatral, Vinayak

    2014-01-01

    The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents. PMID:24454817

  12. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    PubMed

    Ahn, Yong-Yeol; Lee, Deok-Sun; Burd, Henry; Blank, William; Kapatral, Vinayak

    2014-01-01

    The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  13. A case study of preservation of semi-solid preparations using the European Pharmacopoeia test: comparative efficacy of antimicrobial agents in zinc gelatin.

    PubMed

    Favet, J; Chappuis, M L; Doelker, E

    2001-09-01

    The present study was undertaken with the aim of finding an alternative preservative system to methyl parahydroxybenzoate in zinc gelatin, which was described in the monographs of the Swiss Pharmacopoeia (until Ph. Helv. 8) and in previous editions of the German Pharmacopoeia (until DAB 7). This antimicrobial agent has now been withdrawn in the DAB, because of its potential allergy risks. As for the USP and DAB-DDR zinc gelatin preparations, they have always been devoid of any preservative agent, probably relying on the mild antimicrobial activity of zinc. A literature survey did not reveal if such an aqueous preparation containing the water-insoluble zinc oxide shows efficacious antimicrobial activity by itself. Thus, a comparative evaluation of differently preserved zinc gelatin preparations was performed using a test for the efficacy of antimicrobial preservation that has been modified with regard to the European Pharmacopoeia (EP) test to take into account the solid state of the preparations and the bactericidal effect of the zinc. Three zinc gelatin preparations were checked, either: (i), without any agent; or (ii), with 0.1% methyl parahydroxybenzoate; or (iii), with 0.5% phenoxyethanol, a broad-spectrum antimicrobial agent almost devoid of allergy risks. The three preparations behave quite differently, in particular with respect to fungi. All three preparations passed the modified EP test as far as bacteria are concerned. Even zinc gelatin without preservative is very effective, not only because of the mild antimicrobial activity of zinc (the soluble fraction of zinc oxide in the liquid phase of zinc gelatin was determined to be 13 microg/ml), but most probably because of the low water activity of the preparation (measured as around 0.81), as shown by the absence of growth of a zinc-resistant strain of Pseudomonas aeruginosa. Zinc gelatin preserved with methyl parahydroxybenzoate has a weak, although satisfactory, activity against Staphylococcus aureus

  14. CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era*

    PubMed Central

    Wareham, Lauren K.; Poole, Robert K.; Tinajero-Trejo, Mariana

    2015-01-01

    The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells. PMID:26055702

  15. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro.

    PubMed Central

    ter Laak, E A; Noordergraaf, J H; Verschure, M H

    1993-01-01

    The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline. PMID:8452363

  16. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro.

    PubMed

    ter Laak, E A; Noordergraaf, J H; Verschure, M H

    1993-02-01

    The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline.

  17. A theoretical approach to spot active regions in antimicrobial proteins

    PubMed Central

    2009-01-01

    Background Much effort goes into identifying new antimicrobial compounds able to evade the increasing resistance of microorganisms to antibiotics. One strategy relies on antimicrobial peptides, either derived from fragments released by proteolytic cleavage of proteins or designed from known antimicrobial protein regions. Results To identify these antimicrobial determinants, we developed a theoretical approach that predicts antimicrobial proteins from their amino acid sequence in addition to determining their antimicrobial regions. A bactericidal propensity index has been calculated for each amino acid, using the experimental data reported from a high-throughput screening assay as reference. Scanning profiles were performed for protein sequences and potentially active stretches were identified by the best selected threshold parameters. The method was corroborated against positive and negative datasets. This successful approach means that we can spot active sequences previously reported in the literature from experimental data for most of the antimicrobial proteins examined. Conclusion The method presented can correctly identify antimicrobial proteins with an accuracy of 85% and a sensitivity of 90%. The method can also predict their key active regions, making this a tool for the design of new antimicrobial drugs. PMID:19906288

  18. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  19. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  20. Antimicrobial and antioxidative activities in the bark extracts of Sonneratia caseolaris, a mangrove plant

    PubMed Central

    Simlai, Aritra; Rai, Archana; Mishra, Saumya; Mukherjee, Kalishankar; Roy, Amit

    2014-01-01

    The present study deals with the phytochemical contents, antimicrobial and antioxidative activities of bark tissue of Sonneratia caseolaris, a mangrove plant from Sundarban estuary, India. Phytochemical analyses revealed the presence of high amounts of phenolics, flavonoids, tannins, alkaloids and saponins. Antimicrobial efficacies of various extracts of S. caseolaris were assessed by disc diffusion method against two Gram-positive (Bacillus subtilis and Bacillus coagulans), two Gram-negative (Escherichia coli and Proteus vulgaris) bacteria and one fungus (Saccharomyces cerevisiae). The methanolic extract among others showed significant minimum inhibitory concentration (MIC) values. The antioxidant activity as indicated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the bark tissue extract from the species was found to be quite appreciable. The extracts were found to retain their antimicrobial activities despite pH and thermal treatments, thus indicating the stability of their activity even at extreme conditions. The antioxidant activity was also found to be considerably stable after thermal treatments. The components of the tissue extracts were subjected to separation using thin layer chromatography (TLC). The constituents with antimicrobial and antioxidative properties were identified using TLC-bioautography by agar-overlay and DPPH spraying methods respectively. A number of bioactive constituents with antimicrobial and radical scavenging properties were observed on the developed bioautography plate. The fractions with antimicrobial properties were isolated from the reference TLC plates and subjected to gas chromatography-mass spectrometry (GC-MS) analysis for partial characterization and identification of the metabolites that might be responsible for the activities. The study suggests Sonneratia caseolaris bark as a potential source of bioactive compounds with stable antimicrobial and antioxidative properties and can be used as natural

  1. Small Antimicrobial Agents Based on Acylated Reduced Amide Scaffold.

    PubMed

    Teng, Peng; Huo, Da; Nimmagadda, Alekhya; Wu, Jianfeng; She, Fengyu; Su, Ma; Lin, Xiaoyang; Yan, Jiyu; Cao, Annie; Xi, Chuanwu; Hu, Yong; Cai, Jianfeng

    2016-09-01

    Prevalence of drug-resistant bacteria has emerged to be one of the greatest threats in the 21st century. Herein, we report the development of a series of small molecular antibacterial agents that are based on the acylated reduced amide scaffold. These molecules display good potency against a panel of multidrug-resistant Gram-positive and Gram-negative bacterial strains. Meanwhile, they also effectively inhibit the biofilm formation. Mechanistic studies suggest that these compounds kill bacteria by compromising bacterial membranes, a mechanism analogous to that of host-defense peptides (HDPs). The mechanism is further supported by the fact that the lead compounds do not induce resistance in MRSA bacteria even after 14 passages. Lastly, we also demonstrate that these molecules have therapeutic potential by preventing inflammation caused by MRSA induced pneumonia in a rat model. This class of compounds could lead to an appealing class of antibiotic agents combating drug-resistant bacterial strains. PMID:27526720

  2. Comparison of antimicrobial activity in the epidermal mucus extracts of fish.

    PubMed

    Subramanian, Sangeetha; Ross, Neil W; MacKinnon, Shawna L

    2008-05-01

    The mucus layer on the surface of fish consists of several antimicrobial agents that provide a first line of defense against invading pathogens. To date, little is known about the antimicrobial properties of the mucus of Arctic char (Salvelinus alpinus), brook trout (S. fontinalis), koi carp (Cyprinus carpio sub sp. koi), striped bass (Morone saxatilis), haddock (Melanogrammus aeglefinus) and hagfish (Myxine glutinosa). The epidermal mucus samples from these fish were extracted with acidic, organic and aqueous solvents to identify potential antimicrobial agents including basic peptides, secondary metabolites, aqueous and acid soluble compounds. Initial screening of the mucus extracts against a susceptible strain of Salmonella enterica C610, showed a significant variation in antimicrobial activity among the fish species examined. The acidic mucus extracts of brook trout, haddock and hagfish exhibited bactericidal activity. The organic mucus extracts of brook trout, striped bass and koi carp showed bacteriostatic activity. There was no detectable activity in the aqueous mucus extracts. Further investigations of the activity of the acidic mucus extracts of brook trout, haddock and hagfish showed that these fish species had specific activity for fish and human pathogens, demonstrating the role of fish mucus in antimicrobial protection. In comparison to brook trout and haddock, the minimum bactericidal concentrations of hagfish acidic mucus extracts were found to be approximately 1.5 to 3.0 times lower against fish pathogens and approximately 1.6 to 6.6 folds lower for human pathogens. This preliminary information suggests that the mucus from these fish species may be a source of novel antimicrobial agents for fish and human health related applications.

  3. Potential of Submergedly Cultivated Mycelia of Ganoderma spp. as Antioxidant and Antimicrobial Agents.

    PubMed

    Ćilerdžić, Jasmina; Stajic, Mirjana; Vukojevic, Jelena

    2016-01-01

    The study aimed to evaluate the antiradical and antimicrobial (antibacterial and antifungal) potentials of ethanol mycelial extracts of selected Ganoderma species and strains and to define interand intraspecies diversity among Ganoderma species and strains. Ganoderma lucidum strains were good DPPH• scavengers (neutralizing up to 57.12% radicals), contrary to G. applanatum (20.35%) and G. carnosum (17.04%). High correlations between the activities and contents of total phenols in the extracts showed that these compounds were carriers of the activity. Results obtained by both discdiffusion and microdilution methods indicated that the extract of G. lucidum BEOFB 433 was the most potent antibacterial agent that inhibited growth of almost all bacterial species at a concentration of 1.0 mg/mL. Salmonella typhimurium was the most sensitive species to the mycelium extracts. Extracts of G. lucidum BEOFB 431 and BEOFB 434 showed the best antifungal activity since in concentration of 0.5 mg/mL inhibited the growth of Aspergillus glaucus (BEOFB 431) and the growth of A. glaucus and Trichoderma viride (BEOFB 434). Extracts of G. applanatum and G. lucidum BEOFB 431 had the strongest fungicidal effects, with lethal outcomes for A. glaucus and T. viride, respectively, being noted at a concentration of 1.17 mg/mL. Aspergillus niger was proved as the most resistant species. PMID:26420047

  4. Potential of Submergedly Cultivated Mycelia of Ganoderma spp. as Antioxidant and Antimicrobial Agents.

    PubMed

    Ćilerdžić, Jasmina; Stajic, Mirjana; Vukojevic, Jelena

    2016-01-01

    The study aimed to evaluate the antiradical and antimicrobial (antibacterial and antifungal) potentials of ethanol mycelial extracts of selected Ganoderma species and strains and to define interand intraspecies diversity among Ganoderma species and strains. Ganoderma lucidum strains were good DPPH• scavengers (neutralizing up to 57.12% radicals), contrary to G. applanatum (20.35%) and G. carnosum (17.04%). High correlations between the activities and contents of total phenols in the extracts showed that these compounds were carriers of the activity. Results obtained by both discdiffusion and microdilution methods indicated that the extract of G. lucidum BEOFB 433 was the most potent antibacterial agent that inhibited growth of almost all bacterial species at a concentration of 1.0 mg/mL. Salmonella typhimurium was the most sensitive species to the mycelium extracts. Extracts of G. lucidum BEOFB 431 and BEOFB 434 showed the best antifungal activity since in concentration of 0.5 mg/mL inhibited the growth of Aspergillus glaucus (BEOFB 431) and the growth of A. glaucus and Trichoderma viride (BEOFB 434). Extracts of G. applanatum and G. lucidum BEOFB 431 had the strongest fungicidal effects, with lethal outcomes for A. glaucus and T. viride, respectively, being noted at a concentration of 1.17 mg/mL. Aspergillus niger was proved as the most resistant species.

  5. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities.

    PubMed

    Nagamallu, Renuka; Srinivasan, Bharath; Ningappa, Mylarappa B; Kariyappa, Ajay Kumar

    2016-01-15

    A series of novel coumarin pyrazole hybrids of biological interest were synthesized from the hydrazones, carbazones and thiocarbazones via Vilsmeier Haack formylation reaction. These intermediates and formyl pyrazoles were evaluated for antimicrobial and antioxidant activities. Among the series, compounds 6g and 6h showed excellent antimicrobial activity against different bacterial and fungal strains and compounds 7g, 7h were found to be potent antioxidant agents in both DPPH and hydroxyl radical scavenging assays. Further, detailed quantitative structure-activity relationship (QSAR) analysis indicated the molecular parameters that contribute to increased potency of inhibition. The above findings would further encourage our understanding in employing coumarin pyrazole hybrids as potential antibiotic agents for treating infections caused by pathogenic microbes and fungi. Further, it also paves the way for exploration of these compounds as potential therapeutic agents to treat conditions arising because of excessive oxidative damage.

  6. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  7. Cytotoxic and antimicrobial activity of selected Cameroonian edible plants

    PubMed Central

    2013-01-01

    Background In Cameroon, the use of edible plants is an integral part of dietary behavior. However, evidence of the antimicrobial as well as the cytotoxic effects of many of them has not been investigated. In the present study, aqueous and methanol extracts from barks, seeds, leaves and roots of three Cameroonian edible plants namely Garcina lucida, Fagara heitzii and Hymenocardia lyrata were evaluated for their cytotoxic and antimicrobial activities. Methods Antibacterial and antifungal activities were assessed by the broth micro-dilution method meanwhile the cytotoxicity was performed using sulphorhodamine B assay (SRB) against the human leukemia THP-1, the alveolar epithelial A549, prostate cancer PC-3, breast adenocarcinoma MCF-7 and cervical cancer HeLa cell lines. Results The minimum inhibitory concentration (MIC) values of the seven tested extracts ranged from 62.5 μg/ml to 1000 μg/ml. The methanol (MeOH) extract from the roots of H. lyrata showed the highest antibacterial activity against Gram-positive bacteria S. aureus and S. epidermitis. The best antifungal activity was obtained with the MeOH extract from the leaves of G. lucida against C. tropicalis (MIC value of 62.5 μg/ml). The in vitro antiproliferative activity revealed that, extract from the bark of F. heitzii and extract from H. lyrata roots had significant cytotoxic activity on THP-1 (IC50 8.4 μg/ml) and PC-3 (IC50 9.5 μg/ml) respectively. Conclusion Our findings suggest that Cameroonian spices herein studied could be potentially useful for the development of therapeutic agents against bacterial infections as well as for prostate and leukemia cancer. PMID:23565827

  8. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine.

    PubMed

    Bruni, Natascia; Capucchio, Maria Teresa; Biasibetti, Elena; Pessione, Enrica; Cirrincione, Simona; Giraudo, Leonardo; Corona, Antonio; Dosio, Franco

    2016-01-01

    Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases). PMID:27294909

  9. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: a hypothesis.

    PubMed

    Ortega-Ramirez, Luis Alberto; Rodriguez-Garcia, Isela; Leyva, Juan Manuel; Cruz-Valenzuela, Manuel Reynaldo; Silva-Espinoza, Brenda Adriana; Gonzalez-Aguilar, Gustavo A; Siddiqui, Wasim; Ayala-Zavala, Jesus Fernando

    2014-02-01

    Many food preservation strategies can be used for the control of microbial spoilage and oxidation; however, these quality problems are not yet controlled adequately. Although synthetic antimicrobial and antioxidant agents are approved in many countries, the use of natural safe and effective preservatives is a demand of food consumers and producers. This paper proposes medicinal plants, traditionally used to treat health disorders and prevent diseases, as a source of bioactive compounds having food additive properties. Medicinal plants are rich in terpenes and phenolic compounds that present antimicrobial and antioxidant properties; in addition, the literature revealed that these bioactive compounds extracted from other plants have been effective in food systems. In this context, the present hypothesis paper states that bioactive molecules extracted from medicinal plants can be used as antimicrobial and antioxidant additives in the food industry.

  10. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  11. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole.

    PubMed

    Seenaiah, D; Reddy, P Ramachandra; Reddy, G Mallikarjuna; Padmaja, A; Padmavathi, V; Krishna, N Siva

    2014-04-22

    A variety of pyrimidinyl benzoxazoles, benzothiazoles and benzimidazoles linked by thio, methylthio and amino moieties were prepared and studied their antimicrobial and cytotoxic activities. The compound pyrimidinyl bis methylthio benzimidazole 22 was a potent antimicrobial agent particularly against Staphylococcus aureus (29 mm, MIC 12.5 μg/mL) and Penicillium chrysogenum (38 mm, MIC 12.5 μg/mL). The amino linked pyrimidinyl bis benzothiazole 24 exhibited cytotoxic activity on A549 cells with IC50 value of 10.5 μM.

  12. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  13. QSAR Studies and Design of Some Tetracyclic 1,4-Benzothiazines as Antimicrobial Agents.

    PubMed

    Mor, S; Nagoria, S; Kumar, A; Kumar, A; Kaushik, C P

    2016-08-01

    A quantitative structure-activity relationship (QSAR) analysis has been performed on a series of 20 tetracyclic 1,4-benzothiazines (1a-1t) with antimicrobial activity to explain the observed biological activity trend on structural basis. Multiple linear regression (MLR) method was employed to establish statistically significant QSAR models. The developed models are robust, predictive and free from chance correlation with good fitting ability and sufficient generalizability. These studies revealed the dominance of WHIM parameters in describing antimicrobial activity of the title compounds. Further, design of some more active compounds is presented. PMID:27389854

  14. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  15. [Recommendations for selecting antimicrobial agents for in vitro susceptibility studies using automatic and semiautomatic systems].

    PubMed

    Cantón, Rafael; Alós, Juan Ignacio; Baquero, Fernando; Calvo, Jorge; Campos, José; Castillo, Javier; Cercenado, Emilia; Domínguez, M Angeles; Liñares, Josefina; López-Cerezo, Lorena; Marco, Francesc; Mirelis, Beatriz; Morosini, María-Isabel; Navarro, Ferran; Oliver, Antonio; Pérez-Trallero, Emilio; Torres, Carmen; Martínez-Martínez, Luis

    2007-01-01

    The number of clinical microbiology laboratories that have incorporated automatic susceptibility testing devices has increased in recent years. The majority of these systems determine MIC values using microdilution panels or specific cards, with grouping into clinical categories (susceptible, intermediate or resistant) and incorporate expert systems to infer resistance mechanisms. This document presents the recommendations of a group of experts designated by Grupo de Estudio de los Mecanismos de Acción y Resistencia a los Antimicrobianos (GEMARA, Study group on mechanisms of action and resistance to antimicrobial agents) and Mesa Española de Normalización de la Sensibilidad y Resistencia a los Antimicrobianos (MENSURA, Spanish Group for Normalizing Antimicrobial Susceptibility and Antimicrobial Resistance), with the aim of including antimicrobial agents and selecting concentrations for the susceptibility testing panels of automatic systems. The following have been defined: various antimicrobial categories (A: must be included in the study panel; B: inclusion is recommended; and C: inclusion is secondary, but may facilitate interpretative reading of the antibiogram) and groups (0: not used in therapeutics but may facilitate the detection of resistance mechanisms; 1: must be studied and always reported; 2: must be studied and selectively reported; 3: must be studied and reported at a second level; and 4: should be studied in urinary tract pathogens isolated in urine and other specimens). Recommended antimicrobial concentrations are adapted from the breakpoints established by EUCAST, CLSI and MENSURA. This approach will lead to more accurate susceptibility testing results with better detection of resistance mechanisms, and allowing to reach the clinical goal of the antibiogram.

  16. Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of Candida albicans.

    PubMed

    Hua, J; Yamarthy, R; Felsenstein, S; Scott, R W; Markowitz, K; Diamond, G

    2010-12-01

    Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans but numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (with molecular weight < 1000) were developed and screened against oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-minimum inhibitory concentration levels did not lead to resistant Candida, in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies.

  17. Activity of Antimicrobial Peptide Mimetics in the Oral Cavity: I. Activity Against Biofilms of Candida albicans

    PubMed Central

    Hua, Jianyuan; Yamarthy, Radha; Felsenstein, Shaina; Scott, Richard W.; Markowitz, Kenneth; Diamond, Gill

    2010-01-01

    Summary Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans, however numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (MW <1,000) were developed and screened against oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-MIC levels did not lead to resistant Candida in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies. PMID:21040515

  18. Interactions between the antimicrobial agent triclosan and the bloom-forming cyanobacteria Microcystis aeruginosa.

    PubMed

    Huang, Xiaolong; Tu, Yenan; Song, Chaofeng; Li, Tiancui; Lin, Juan; Wu, Yonghong; Liu, Jiantong; Wu, Chenxi

    2016-03-01

    Cyanobacteria can co-exist in eutrophic waters with chemicals or other substances derived from personal care products discharged in wastewater. In this work, we investigate the interactions between the antimicrobial agent triclosan (TCS) and the bloom-forming cyanobacteria Microcystis aeruginosa. M. aeruginosa was very sensitive to TCS with the 96h lowest observed effect concentration of 1.0 and 10μg/L for inhibition of growth and photosynthetic activity, respectively. Exposure to TCS at environmentally relevant levels (0.1-2.0μg/L) also affected the activities of superoxide dismutase (SOD) and the generation of reduced glutathione (GSH), while microcystin production was not affected. Transmission electron microscope (TEM) examination showed the destruction of M. aeruginosa cell ultrastructure during TCS exposure. TCS however, can be biotransformed by M. aeruginosa with methylation as a major biotransformation pathway. Furthermore, the presence of M. aeruginosa in solution promoted the photodegradation of TCS. Overall, our results demonstrate that M. aeruginosa plays an important role in the dissipation of TCS in aquatic environments but high residual TCS can exert toxic effects on M. aeruginosa.

  19. Interactions between the antimicrobial agent triclosan and the bloom-forming cyanobacteria Microcystis aeruginosa.

    PubMed

    Huang, Xiaolong; Tu, Yenan; Song, Chaofeng; Li, Tiancui; Lin, Juan; Wu, Yonghong; Liu, Jiantong; Wu, Chenxi

    2016-03-01

    Cyanobacteria can co-exist in eutrophic waters with chemicals or other substances derived from personal care products discharged in wastewater. In this work, we investigate the interactions between the antimicrobial agent triclosan (TCS) and the bloom-forming cyanobacteria Microcystis aeruginosa. M. aeruginosa was very sensitive to TCS with the 96h lowest observed effect concentration of 1.0 and 10μg/L for inhibition of growth and photosynthetic activity, respectively. Exposure to TCS at environmentally relevant levels (0.1-2.0μg/L) also affected the activities of superoxide dismutase (SOD) and the generation of reduced glutathione (GSH), while microcystin production was not affected. Transmission electron microscope (TEM) examination showed the destruction of M. aeruginosa cell ultrastructure during TCS exposure. TCS however, can be biotransformed by M. aeruginosa with methylation as a major biotransformation pathway. Furthermore, the presence of M. aeruginosa in solution promoted the photodegradation of TCS. Overall, our results demonstrate that M. aeruginosa plays an important role in the dissipation of TCS in aquatic environments but high residual TCS can exert toxic effects on M. aeruginosa. PMID:26800489

  20. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles.

    PubMed

    Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee

    2014-09-15

    Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles.

  1. In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs.

    PubMed

    Stepanović, Srdjan; Antić, Natasa; Dakić, Ivana; Svabić-Vlahović, Milena

    2003-01-01

    The aim of this study was to investigate antimicrobial properties of ethanolic extract of 13 propolis (EEP) samples from different regions of Serbia against 39 microorganisms (14 resistant or multiresistant to antibiotics), and to determine synergistic activity between antimicrobials and propolis. Antimicrobial activity of propolis samples was evaluated by agar diffusion and agar dilution method. The synergistic action of propolis with antimicrobial drugs was assayed by the disc diffusion method on agar containing subinhibitory concentrations of propolis. Obtained results indicate that EEP, irrespectively of microbial resistance to antibiotics, showed significant antimicrobial activities against Gram-positive bacteria (MIC 0.078%-1.25% of EEP) and yeasts (0.16%-1.25%), while Gram-negative bacteria were less susceptible (1.25%-->5%). Enterococcus faecalis was the most resistant Gram-positive bacterium, Salmonella spp. the most resistant Gram-negative bacteria, and Candida albicans the most resistant yeast. EEP showed synergism with selected antibiotics, and displayed ability to enhance the activities of antifungals. The shown antimicrobial potential of propolis alone or in combination with certain antibiotics and antifungals is of potential medical interest.

  2. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    PubMed

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-01

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. PMID:25621992

  3. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India

    PubMed Central

    Duraipandiyan, Veeramuthu; Ayyanar, Muniappan; Ignacimuthu, Savarimuthu

    2006-01-01

    Background Antimicrobial activity of 18 ethnomedicinal plant extracts were evaluated against nine bacterial strains (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Ervinia sp, Proteus vulgaris) and one fungal strain (Candida albicans). The collected ethnomedicinal plants were used in folk medicine in the treatment of skin diseases, venereal diseases, respiratory problems and nervous disorders. Methods Plants were collected from Palni hills of Southern Western Ghats and the ethnobotanical data were gathered from traditional healers who inhabit the study area. The hexane and methanol extracts were obtained by cold percolation method and the antimicrobial activity was found using paper disc diffusion method. All microorganisms were obtained from Christian Medical College, Vellore, Tamil Nadu, India. Results The results indicated that out of 18 plants, 10 plants exhibited antimicrobial activity against one or more of the tested microorganisms at three different concentrations of 1.25, 2.5 and 5 mg/disc. Among the plants tested, Acalypha fruticosa, Peltophorum pterocarpum, Toddalia asiatica,Cassia auriculata, Punica granatum and Syzygium lineare were most active. The highest antifungal activity was exhibited by methanol extract of Peltophorum pterocarpum and Punica granatum against Candida albicans. Conclusion This study evaluated the antimicrobial activity of the some ethnomedicinal plants used in folkloric medicine. Compared to hexane extract, methanol extract showed significant activity against tested organisms. This study also showed that Toddalia asiatica, Syzygium lineare, Acalypha fruticosa and Peltophorum pterocarpum could be potential sources of new antimicrobial agents. PMID:17042964

  4. Dropwort (Filipendula hexapetala Gilib.): potential role as antioxidant and antimicrobial agent

    PubMed Central

    Katanic, Jelena; Mihailovic, Vladimir; Stankovic, Nevena; Boroja, Tatjana; Mladenovic, Milan; Solujic, Slavica; Stankovic, Milan S.; Vrvic, Miroslav M.

    2015-01-01

    The aim of this study was to investigate the antioxidant activity of the methanolic extracts of Filipendula hexapetala Gilib. aerial parts (FHA) and roots (FHR) and their potential in different model systems, as well as antimicrobial activity. According to this, a number of assays were employed to evaluate the antioxidant and antimicrobial potential of F. hexapetala extracts. In addition, the antioxidant activity assays in different model systems were carried out, as well as pH, thermal and gastrointestinal stability studies. The phenolic compounds contents in FHA and FHR were also determined. The results showed that F. hexapetala extracts had considerable antioxidant activity in vitro and a great stability in different conditions. The extracts exhibited antimicrobial activity against most of the tested bacterial and fungal species. Also, the extracts contain high level of phenolic compounds, especially aerial parts extract. PMID:26417349

  5. Using antimicrobial host defense peptides as anti-infective and immunomodulatory agents.

    PubMed

    Kruse, Thomas; Kristensen, Hans-Henrik

    2008-12-01

    Virtually all life forms express short antimicrobial cationic peptides as an important component of their innate immune defenses. They serve as endogenous antibiotics that are able to rapidly kill an unusually broad range of bacteria, fungi and viruses. Consequently, considerable efforts have been expended to exploit the therapeutic potential of these antimicrobial peptides. Within the last couple of years, it has become increasingly clear that many of these peptides, in addition to their direct antimicrobial activity, also have a wide range of functions in modulating both innate and adaptive immunity. For one class of antimicrobial peptides, such as the human defensins, their primary role may even be as immunomodulators. These properties potentially provide entirely new therapeutic approaches to anti-infective therapy.

  6. Thymus catharinae Camarda essential oil: β-cyclodextrin inclusion complexes, evaluation of antimicrobial activity.

    PubMed

    Delogu, Giovanna; Juliano, Claudia Clelia Assunta; Usai, Marianna

    2016-09-01

    An efficient antimicrobial activity was evidenced in a complex β-cyclodextrin-essential oil of Thymus catharinae Camarda (carvacrol chemotype). The release of carvacrol with respect to the antimicrobial activity was calculated as function of time. The βCD-complex of the bioactive agent was obtained by a simple, efficient and non-expensive method without purification of the carvacrol chemotype essential oil. According to the starting stoichiometry of β-cyclodextrin with respect to carvacrol, two inclusion complexes were produced, 1:1 and 2:1, respectively. The results demonstrate that, although the antimicrobial activity of the essential oil of T. catharinae Camarda is remarkable but acts too quickly in some types of application, its inclusion in a bio-matrix allows a slower release and improves its effectiveness.

  7. Screening of antimicrobial activity of Cistus ladanifer and Arbutus unedo extracts.

    PubMed

    Ferreira, S; Santos, J; Duarte, A; Duarte, A P; Queiroz, J A; Domingues, F C

    2012-01-01

    In this work, the in vitro antimicrobial activity of different crude extracts obtained from Cistus ladanifer L. and Arbutus unedo L. was investigated. The ethanol, methanol and acetone/water extracts of Cistus ladanifer and Arbutus unedo were prepared using different extraction methods and their antimicrobial activities against reference strains, including three Gram-positive, five Gram-negative and three yeasts, and against clinical isolates of Helicobacter pylori and methicillin-resistant Staphylococcus aureus, were investigated. All the extracts inhibited more than one microorganism; moreover all of them presented antimicrobial activity against the Gram-positive bacteria, Klebsiella pneumonia, Candida tropicalis and Helicobacter pylori. It is noteworthy that the most considerable in vitro effect was observed against Helicobacter pylori. These inhibitory effects can be considered relevant to the development of new agents for inclusion in the treatment or prevention of infections by the tested strains. PMID:22077559

  8. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues.

    PubMed

    Surendra Kumar, R; Arif, Ibrahim A; Ahamed, Anis; Idhayadhulla, Akbar

    2016-09-01

    A new sequence of pyrazole derivatives (1-6) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, (1)H NMR, (13)C NMR, Mass and elemental analysis. Synthesized compounds (1-6) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (1-6) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents. PMID:27579011

  9. Antimicrobial Activity of Seven Essential Oils From Iranian Aromatic Plants Against Common Causes of Oral Infections

    PubMed Central

    Zomorodian, Kamiar; Ghadiri, Pooria; Saharkhiz, Mohammad Jamal; Moein, Mohammad Reza; Mehriar, Peiman; Bahrani, Farideh; Golzar, Tahereh; Pakshir, Keyvan; Fani, Mohammad Mehdi

    2015-01-01

    Background: Over the past two decades, there has been a growing trend in using oral hygienic products originating from natural resources such as essential oils (EOs) and plant extracts. Seven aromatic plants used in this study are among popular traditional Iranian medicinal plants with potential application in modern medicine as anti-oral infectious diseases. Objectives: This study was conducted to determine the chemical composition and antimicrobial activities of essential oils from seven medicinal plants against pathogens causing oral infections. Materials and Methods: The chemical compositions of EOs distilled from seven plants were analyzed by gas chromatography/mass spectrometry (GC/MS). These plants included Satureja khuzestanica, S. bachtiarica, Ocimum sanctum, Artemisia sieberi, Zataria multiflora, Carum copticum and Oliveria decumbens. The antimicrobial activity of the essential oils was evaluated by broth micro-dilution in 96 well plates as recommended by the Clinical and Laboratory Standards Institute (CLSI) methods. Results: The tested EOs inhibited the growth of examined oral pathogens at concentrations of 0.015-16 µL/mL. Among the examined oral pathogens, Enterococcus faecalis had the highest Minimum Inhibitory Concentrations (MICs) and Minimum Microbicidal Concentrations (MMCs). Of the examined EOs, S. khuzestanica, Z. multiflora and S. bachtiarica, showed the highest antimicrobial activities, respectively, while Artemisia sieberi exhibited the lowest antimicrobial activity. Conclusions: The excellent antimicrobial activities of the tested EOs might be due to their major phenolic or alcoholic monoterpenes with known antimicrobial activities. Hence, these EOs can be possibly used as an antimicrobial agent in treatment and control of oral pathogens. PMID:25793100

  10. Danish Integrated Antimicrobial Resistance Monitoring and Research Program

    PubMed Central

    Heuer, Ole E.; Emborg, Hanne-Dorthe; Bagger-Skjøt, Line; Jensen, Vibeke F.; Rogues, Anne-Marie; Skov, Robert L.; Agersø, Yvonne; Brandt, Christian T.; Seyfarth, Anne Mette; Muller, Arno; Hovgaard, Karin; Ajufo, Justin; Bager, Flemming; Aarestrup, Frank M.; Frimodt-Møller, Niels; Wegener, Henrik C.; Monnet, Dominique L.

    2007-01-01

    Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries. PMID:18217544

  11. Selected Antimicrobial Activity of Topical Ophthalmic Anesthetics

    PubMed Central

    Reynolds, Margaret M.; Greenwood-Quaintance, Kerryl E.; Patel, Robin; Pulido, Jose S.

    2016-01-01

    Purpose Endophthalmitis is a rare complication of intravitreal injection (IVI). It is recommended that povidone-iodine be the last agent applied before IVI. Patients have reported povidone-iodine application to be the most bothersome part of IVIs. Topical anesthetics have been demonstrated to have antibacterial effects. This study compared the minimum inhibitory concentration (MIC) of topical anesthetic eye drops (proparacaine 0.5%, tetracaine 0.5%, lidocaine 2.0%) and the antiseptic, 5.0% povidone-iodine, against two organisms causing endophthalmitis after IVI. Methods Minimum inhibitory concentration values of topical anesthetics, povidone-iodine, preservative benzalkonium chloride (0.01%), and saline control were determined using five isolates of each Staphylococcus epidermidis and viridans group Streptococcus species (VGS). A broth microdilution technique was used with serial dilutions. Results Lidocaine (8.53 × 10−5mol/mL) had MICs of 4.27 to 8.53 × 10−5 mol/mL, and tetracaine (1.89 × 10−5 mol/mL) had MICs of 9.45 × 10−6 mol/mL for all isolates. Proparacaine (1.7 × 10−5 mol/mL) had MICs of 1.32 to 5.3 × 10−7 and 4.25 × 10−6 mol/mL for S. epidermidis and VGS, respectively). Benzalkonium chloride (3.52 × 10−7 mol/mL) had MICs of 1.86 × 10−9 to 1.1 × 10−8 and 4.40 × 10−8 mol/mL for S. epidermidis and VGS, respectively. Povidone-iodine (1.37 × 10−4 mol/mL) had MICs of 2.14 to 4.28 × 10−6 and 8.56 × 10−6 mol/mL for S. epidermidis and VGS, respectively. Conclusion Proparacaine was the anesthetic with the lowest MICs, lower than that of povidone-iodine. Benzalkonium chloride had lower MICs than proparacaine. All tested anesthetics and povidone-iodine inhibited growth of S. epidermidis and VGS at commercially available concentrations. Translational Relevance For certain patients, it could be possible to use topical anesthetic after povidone-iodine for comfort without inhibiting and perhaps contributing additional antimicrobial

  12. Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents.

    PubMed

    Zhang, Yi-Yi; Zhou, Cheng-He

    2011-07-15

    Naphthalimide-derived azoles as a new type of antimicrobial agents were synthesized and evaluated for their efficiency in vitro against eight bacteria and two fungi by two fold serial dilution technique. Most title compounds exhibited good antimicrobial potency with low MIC values ranging from 1 to 16μg/mL. Notably, some synthesized compounds displayed comparable or even better antibacterial and antifungal activities against some tested strains than the reference drugs Orbifloxacin, Chloromycin and Fluconazole, respectively.

  13. Antimicrobial activities of ozenoxacin against isolates of propionibacteria and staphylococci from Japanese patients with acne vulgaris.

    PubMed

    Nakajima, Akiko; Ikeda, Fumiaki; Kanayama, Shoji; Okamoto, Kazuaki; Matsumoto, Tatsumi; Ishii, Ritsuko; Fujikawa, Akira; Takei, Katsuaki; Kawashima, Makoto

    2016-08-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against clinical isolates of propionibacteria and staphylococci according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were collected from Japanese patients with acne vulgaris during a period from 2012 to 2013. The MIC90s of ozenoxacin against Propionibacterium acnes (n=266), Propionibacterium granulosum (n=10), Staphylococcus aureus (n=23), Staphylococcus epidermidis (n=229) and other coagulase-negative staphylococci (n=82) were ≤0.06, ≤0.06, ≤0.06, 0.125 and ≤0.06 µg ml-1, respectively. The antimicrobial activity of ozenoxacin against the clinical isolates of propionibacteria and staphylococci was greater than that of five reference antimicrobial agents which have been used for the treatment of acne vulgaris. The MICs of ozenoxacin were correlated with those of nadifloxacin in P. acnes and S. epidermidis isolates. However, the MICs of ozenoxacin were 0.25-0.5 µg ml-1 and 0.5-8 µg ml-1 against nadifloxacin-resistant P. acnes (MIC: ≥8 µg ml-1; n=8) and S. epidermidis (MIC: ≥64 µg ml-1; n=10), respectively. These results indicated the potent antimicrobial activity against P. acnes and S. epidermidis isolates resistant to nadifloxacin. Topical ozenoxacin could represent an alternative therapeutic drug for acne vulgaris based on its potent antimicrobial activity against the isolates of propionibacteria and staphylococci from acne patients.

  14. Antimicrobial activities of ozenoxacin against isolates of propionibacteria and staphylococci from Japanese patients with acne vulgaris.

    PubMed

    Nakajima, Akiko; Ikeda, Fumiaki; Kanayama, Shoji; Okamoto, Kazuaki; Matsumoto, Tatsumi; Ishii, Ritsuko; Fujikawa, Akira; Takei, Katsuaki; Kawashima, Makoto

    2016-08-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against clinical isolates of propionibacteria and staphylococci according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were collected from Japanese patients with acne vulgaris during a period from 2012 to 2013. The MIC90s of ozenoxacin against Propionibacterium acnes (n=266), Propionibacterium granulosum (n=10), Staphylococcus aureus (n=23), Staphylococcus epidermidis (n=229) and other coagulase-negative staphylococci (n=82) were ≤0.06, ≤0.06, ≤0.06, 0.125 and ≤0.06 µg ml-1, respectively. The antimicrobial activity of ozenoxacin against the clinical isolates of propionibacteria and staphylococci was greater than that of five reference antimicrobial agents which have been used for the treatment of acne vulgaris. The MICs of ozenoxacin were correlated with those of nadifloxacin in P. acnes and S. epidermidis isolates. However, the MICs of ozenoxacin were 0.25-0.5 µg ml-1 and 0.5-8 µg ml-1 against nadifloxacin-resistant P. acnes (MIC: ≥8 µg ml-1; n=8) and S. epidermidis (MIC: ≥64 µg ml-1; n=10), respectively. These results indicated the potent antimicrobial activity against P. acnes and S. epidermidis isolates resistant to nadifloxacin. Topical ozenoxacin could represent an alternative therapeutic drug for acne vulgaris based on its potent antimicrobial activity against the isolates of propionibacteria and staphylococci from acne patients. PMID:27305898

  15. Isolation, identification and antimicrobial activity of propolis-associated fungi.

    PubMed

    de Souza, Giovanni Gontijo; Pfenning, Ludwig Heinrich; de Moura, Fabiana; Salgado, Mírian; Takahashi, Jacqueline Aparecida

    2013-01-01

    Propolis is a natural product widely known for its medicinal properties. In this work, fungi present on propolis samples were isolated, identified and tested for the production of antimicrobial metabolites. Twenty-two fungal isolates were obtained, some of which were identified as Alternaria alternata, Aspergillus flavus, Bipolaris hawaiiensis, Fusarium merismoides, Lasiodiplodia theobromae, Penicillium citrinum, Penicillium crustosum, Penicillium janthinellum, Penicillium purpurogenum, Pestalotiopsis palustris, Tetracoccosporium paxianum and Trichoderma koningii. These fungi were grown in liquid media to obtain crude extracts that were evaluated for their antibiotic activity against pathogenic bacteria, yeast and Cladosporium cladosporioides and A. flavus. The most active extract was obtained from L. theobromae (minimum inhibitory concentration = 64 μg/mL against Listeria monocitogenes). Some extracts showed to be more active than the positive control in the inhibition of Staphylococcus aureus and L. monocitogenes. Therefore, propolis is a promising source of fungi, which produces active agents against relevant food poisoning bacteria and crop-associated fungi. PMID:23439233

  16. Incorporation of small molecular weight active agents into polymeric components.

    PubMed

    Iconomopoulou, Sofia M; Kallitsis, Joannis K; Voyiatzis, George A

    2008-01-01

    The incorporation of small molecular weight active agents into polymeric matrixes bearing controlled release characteristics represents an interesting strategy with numerous useful applications. Antimicrobials, biocides, fungicides or drugs, encapsulated into erodible or non-erodible polymeric micro-spheres, micro-capsules and micro-shells or/and embedded into continuous polymeric matrixes, are controlled released either by particular degradation routes or/and by specific stimuli. Cross-linking, curing or micro-porosity generating agents acting during polymerization impart additional controlled encapsulation characteristics to the active substances. Release modulating agents, like retardants or carrier materials used as vehicles are often encapsulated into microspheres or dispersed within polymeric compositions for the controlled introduction of an active agent into a liquid-based medium. The aim of this review is to reveal relevant strategies reported in recent patents on the encapsulation or incorporation of low molecular weight active agents into the matrix of polymers bearing controlled release characteristics. The inventions described implicate the formation of both erodible and non erodible polymer microparticles that contain active ingredients. Modification of polymer matrix and inorganic porous carriers represent pertinent major strategies that have been also developed and patented.

  17. Activity of an Antimicrobial Peptide Mimetic against Planktonic and Biofilm Cultures of Oral Pathogens▿ †

    PubMed Central

    Beckloff, Nicholas; Laube, Danielle; Castro, Tammy; Furgang, David; Park, Steven; Perlin, David; Clements, Dylan; Tang, Haizhong; Scott, Richard W.; Tew, Gregory N.; Diamond, Gill

    2007-01-01

    Antimicrobial peptides (AMPs) are naturally occurring, broad-spectrum antimicrobial agents that have recently been examined for their utility as therapeutic antibiotics. Unfortunately, they are expensive to produce and are often sensitive to protease digestion. To address this problem, we have examined the activity of a peptide mimetic whose design was based on the structure of magainin, exhibiting its amphiphilic structure. We demonstrate that this compound, meta-phenylene ethynylene (mPE), exhibits antimicrobial activity at nanomolar concentrations against a variety of bacterial and Candida species found in oral infections. Since Streptococcus mutans, an etiological agent of dental caries, colonizes the tooth surface and forms a biofilm, we quantified the activity of this compound against S. mutans growing under conditions that favor biofilm formation. Our results indicate that mPE can prevent the formation of a biofilm at nanomolar concentrations. Incubation with 5 nM mPE prevents further growth of the biofilm, and 100 nM mPE reduces viable bacteria in the biofilm by 3 logs. Structure-function analyses suggest that mPE inhibits the bioactivity of lipopolysaccharide and binds DNA at equimolar ratios, suggesting that it may act both as a membrane-active molecule, similar to magainin, and as an intracellular antibiotic, similar to other AMPs. We conclude that mPE and similar molecules display great potential for development as therapeutic antimicrobials. PMID:17785509

  18. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    PubMed

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

  19. Silver nanoparticles: green synthesis and their antimicrobial activities.

    PubMed

    Sharma, Virender K; Yngard, Ria A; Lin, Yekaterina

    2009-01-30

    This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity. Green synthetic methods include mixed-valence polyoxometallates, polysaccharide, Tollens, irradiation, and biological. The mixed-valence polyoxometallates method was carried out in water, an environmentally-friendly solvent. Solutions of AgNO(3) containing glucose and starch in water gave starch-protected Ag NPs, which could be integrated into medical applications. Tollens process involves the reduction of Ag(NH(3))(2)(+) by saccharides forming Ag NP films with particle sizes from 50-200 nm, Ag hydrosols with particles in the order of 20-50 nm, and Ag colloid particles of different shapes. The reduction of Ag(NH(3))(2)(+) by HTAB (n-hexadecyltrimethylammonium bromide) gave Ag NPs of different morphologies: cubes, triangles, wires, and aligned wires. Ag NPs synthesis by irradiation of Ag(+) ions does not involve a reducing agent and is an appealing procedure. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both reducing and capping agents forming stable and shape-controlled Ag NPs. The synthetic procedures of polymer-Ag and TiO(2)-Ag NPs are also given. Both Ag NPs and Ag NPs modified by surfactants or polymers showed high antimicrobial activity against gram-positive and gram-negative bacteria. The mechanism of the Ag NP bactericidal activity is discussed in terms of Ag NP interaction with the cell membranes of bacteria. Silver-containing filters are shown to have antibacterial properties in water and air purification. Finally, human and environmental implications of Ag NPs to the ecology of aquatic environment are briefly discussed.

  20. Synthesis, Biological Evaluation and 2D-QSAR Study of Halophenyl Bis-Hydrazones as Antimicrobial and Antitubercular Agents

    PubMed Central

    Abdel-Aziz, Hatem A.; Eldehna, Wagdy M.; Fares, Mohamed; Al-Rashood, Sara T. A.; Al-Rashood, Khalid A.; Abdel-Aziz, Marwa M.; Soliman, Dalia H.

    2015-01-01

    In continuation of our endeavor towards the development of potent and effective antimicrobial agents, three series of halophenyl bis-hydrazones (14a–n, 16a–d, 17a and 17b) were synthesized and evaluated for their potential antibacterial, antifungal and antimycobacterial activities. These efforts led to the identification of five molecules 14c, 14g, 16b, 17a and 17b (MIC range from 0.12 to 7.81 μg/mL) with broad antimicrobial activity against Mycobacterium tuberculosis; Aspergillus fumigates; Gram positive bacteria, Staphylococcus aureus, Streptococcus pneumonia, and Bacillis subtilis; and Gram negative bacteria, Salmonella typhimurium, Klebsiella pneumonia, and Escherichia coli. Three of the most active compounds, 16b, 17a and 17b, were also devoid of apparent cytotoxicity to lung cancer cell line A549. Amphotericin B and ciprofloxacin were used as references for antifungal and antibacterial screening, while isoniazid and pyrazinamide were used as references for antimycobacterial activity. Furthermore, three Quantitative Structure Activity Relationship (QSAR) models were built to explore the structural requirements controlling the different activities of the prepared bis-hydrazones. PMID:25903147

  1. Comparative in vitro activity of faropenem and 11 other antimicrobial agents against 405 aerobic and anaerobic pathogens isolated from skin and soft tissue infections from animal and human bites.

    PubMed

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi A; Tyrrell, Kerin L; Fernandez, Helen T

    2002-09-01

    Faropenem, a new oral beta-lactam agent with a penem structure, was very active against 405 aerobic and anaerobic bite isolates. It inhibited 232 of 236 (98%) aerobic isolates, including all Pasteurella spp. and Eikenella corrodens at < or = 0.25 mg/L, and 164/169 (97%) anaerobic isolates, at < or = 1 mg/L. The 10 isolates that required > or = 2 mg/L for inhibition were one strain each of Acinetobacter lwoffi, Corynebacterium minutissimum, Bacteroides ovatus, Lactobacillus delbrueckii and Peptostreptococcus tetradius, plus Corynebacterium 'aquaticum' (two strains) and Veillonella sp. (three strains). PMID:12205068

  2. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells.

    PubMed

    Chien, Rao-Chi; Yen, Ming-Tsung; Mau, Jeng-Leun

    2016-03-15

    Chitosan was prepared by alkaline N-deacetylation of chitin obtained from shiitake stipes and crab shells and its antimicrobial and antitumor activities were studied. Chitosan from shiitake stipes and crab shells exhibited excellent antimicrobial activities against eight species of Gram positive and negative pathogenic bacteria with inhibition zones of 11.4-26.8mm at 0.5mg/ml. Among chitosan samples, shiitake chitosan C120 was the most effective with inhibition zones of 16.4-26.8mm at 0.5mg/ml. In addition, shiitake and crab chitosan showed a moderate anti-proliferative effect on IMR 32 and Hep G2 cells. At 5mg/ml, the viability of IMR 32 cells incubated with chitosan was 68.8-85.0% whereas that of Hep G2 cells with chitosan was 60.4-82.9%. Overall, shiitake chitosan showed slightly better antimicrobial and antitumor activities than crab chitosan. Based on the results obtained, shiitake and crab chitosan were strong antimicrobial agents and moderate antitumor agents.

  3. Effect of Antimicrobial Agents on MinD Protein Oscillations in E. coli Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Kelly, Corey; Murphy, Megan; Giuliani, Maximiliano; Dutcher, John

    2011-03-01

    The pole-to-pole oscillation of the MinD proteins in E. coli determines the location of the division septum, and is integral to healthy cell division. It has been shown previously that the MinD oscillation period is approximately 40 s for healthy cells but is strongly dependant on environmental factors such as temperature, which may place stress on the cell [2,3]. We use a strain of E. coli in which the MinD proteins are tagged with green fluorescent protein (GFP), allowing fluorescence visualization of the MinD oscillation. We use high resolution total internal reflection fluorescence (TIRF) microscopy to observe the effect of exposure to antimicrobial agents on the MinD oscillation period and, more generally, to analyze the time variation of the spatial distribution of the MinD proteins within the cells. These measurements provide insight into the mechanism of antimicrobial action.

  4. Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis

    PubMed Central

    2011-01-01

    Background The aim of this study is to investigate in vitro antioxidant, antimicrobial and anticancer activity of the acetone extracts of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. Methods Antioxidant activity was evaluated by five separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds and determination of total flavonoid content. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method against six species of bacteria and ten species of fungi. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. Results Of the lichens tested, Lecanora atra had largest free radical scavenging activity (94.7% inhibition), which was greater than the standard antioxidants. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. Extract of Cladonia furcata was the most active antimicrobial agent with minimum inhibitory concentration values ranging from 0.78 to 25 mg/mL. All extracts were found to be strong anticancer activity toward both cell lines with IC50 values ranging from 8.51 to 40.22 μg/mL. Conclusions The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial and anticancer effects. That suggest that lichens may be used as as possible natural antioxidant, antimicrobial and anticancer agents to control various human, animal and plant diseases. PMID:22013953

  5. Antimicrobial activity of fresh garlic juice: An in vitro study

    PubMed Central

    Yadav, Seema; Trivedi, Niyati A.; Bhatt, Jagat D.

    2015-01-01

    Introduction: Antimicrobial resistance has been a global concern. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. One such botanical is Allium sativum (garlic). Aim: To evaluate the antimicrobial activity of fresh juice of garlic. Materials and Methods: Varying concentrations of fresh garlic juice (FGJ) were tested for their antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of FGJ were tested using broth dilution method. Sensitivity pattern of the conventional antimicrobials against common pathogenic bacteria was tested using disc diffusion method. Results: FGJ produced dose-dependent increase in the zone of inhibition at a concentration of 10% and higher. MIC of FGJ against the pathogens ranged from 4% to 16% v/v whereas MLC value ranged from 4% to 32% v/v with Escherichia coli and Staphylococcus aureus spp. showed highest sensitivity. Conclusion: FGJ has definite antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara. Further studies are needed to find out the efficacy, safety, and kinetic data of its active ingredients. PMID:27011724

  6. Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents.

    PubMed

    Kosanić, Marijana; Manojlović, Nedeljko; Janković, Slobodan; Stanojković, Tatjana; Ranković, Branislav

    2013-03-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Evernia prunastri and Pseudoevernia furfuraceae and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and some their major metabolites. HPLC-UV method was used for identification of secondary metabolites. Antioxidant activity was evaluated by free radical scavenging, superoxide anion radical scavenging, reducing power and determination of total phenolic compounds. As a result of the study physodic acid had largest antioxidant activities. Total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also physodic acid. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method.

  7. Effect of tea tree (Melaleuca alternifolia) oil as a natural antimicrobial agent in lipophilic formulations.

    PubMed

    Mantil, Elisabeth; Daly, Grace; Avis, Tyler J

    2015-01-01

    There has been increased interest surrounding the use of tea tree oil (TTO) as a natural antimicrobial. In this study, the antimicrobial activity of TTO and its components were investigated in vitro and in a predominantly lipid-based personal care formulation. In vitro, TTO showed minimal inhibitory concentrations of 0.2% (for Saccharomyces cerevisiae and Pythium sulcatum), 0.4% (for Escherichia coli, Bacillus subtilis, and Rhizopus stolonifer), and 0.8% (for Botrytis cinerea). TTO at 0.08%-0.8% was often as efficient as parabens. Comparison of the antimicrobial activities of TTO components showed that terpinen-4-ol and γ-terpinene were generally most effective in inhibiting microbial growth. TTO activity in a personal care product was evaluated through air and water exposure, artificial inoculation, and shelf life studies. While TTO did not increase shelf life of unopened products, it decreased microbial load in products exposed to water and air. Results from this study support that antimicrobial activity of TTO can be attributed to varying levels of its components and that low levels of TTO were effective in reducing microbial growth during the use of the product. This study showed that TTO can act as a suitable preservative system within an oil-based formulation.

  8. Novel 4-Thiazolidinone Derivatives as Anti-Infective Agents: Synthesis, Characterization, and Antimicrobial Evaluation.

    PubMed

    Gupta, Amit; Singh, Rajendra; Sonar, Pankaj K; Saraf, Shailendra K

    2016-01-01

    A series of new 4-thiazolidinone derivatives was synthesized, characterized by spectral techniques, and screened for antimicrobial activity. All the compounds were evaluated against five Gram-positive bacteria, two Gram-negative bacteria, and two fungi, at concentrations of 50, 100, 200, 400, 800, and 1600 µg/mL, respectively. Minimum inhibitory concentrations of all the compounds were also determined and were found to be in the range of 100-400 µg/mL. All the compounds showed moderate-to-good antimicrobial activity. Compounds 4a [2-(4-fluoro-phenyl)-3-(4-methyl-5,6,7,8-tetrahydro-quinazolin-2-yl)-thiazolidin-4-one] and 4e [3-(4,6-dimethyl-pyrimidin-2-yl)-2-(2-methoxy-phenyl)-thiazolidin-4-one] were the most potent compounds of the series, exhibiting marked antimicrobial activity against Pseudomonas fluorescens, Staphylococcus aureus, and the fungal strains. Thus, on the basis of results obtained, it may be concluded that synthesized compounds exhibit a broad spectrum of antimicrobial activity. PMID:26925267

  9. Effect of tea tree (Melaleuca alternifolia) oil as a natural antimicrobial agent in lipophilic formulations.

    PubMed

    Mantil, Elisabeth; Daly, Grace; Avis, Tyler J

    2015-01-01

    There has been increased interest surrounding the use of tea tree oil (TTO) as a natural antimicrobial. In this study, the antimicrobial activity of TTO and its components were investigated in vitro and in a predominantly lipid-based personal care formulation. In vitro, TTO showed minimal inhibitory concentrations of 0.2% (for Saccharomyces cerevisiae and Pythium sulcatum), 0.4% (for Escherichia coli, Bacillus subtilis, and Rhizopus stolonifer), and 0.8% (for Botrytis cinerea). TTO at 0.08%-0.8% was often as efficient as parabens. Comparison of the antimicrobial activities of TTO components showed that terpinen-4-ol and γ-terpinene were generally most effective in inhibiting microbial growth. TTO activity in a personal care product was evaluated through air and water exposure, artificial inoculation, and shelf life studies. While TTO did not increase shelf life of unopened products, it decreased microbial load in products exposed to water and air. Results from this study support that antimicrobial activity of TTO can be attributed to varying levels of its components and that low levels of TTO were effective in reducing microbial growth during the use of the product. This study showed that TTO can act as a suitable preservative system within an oil-based formulation. PMID:25515896

  10. Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: Influence of partial deacetylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of edible, environmentally friendly, mechanically strong and antimicrobial biopolymer films for active food packaging has gained considerable interest in recent years. The present work deals with the extraction and deacetylation of chitin nanofibers (ChNFs) from crab shells and their...

  11. Novel 4-Thiazolidinone Derivatives as Anti-Infective Agents: Synthesis, Characterization, and Antimicrobial Evaluation.

    PubMed

    Gupta, Amit; Singh, Rajendra; Sonar, Pankaj K; Saraf, Shailendra K

    2016-01-01

    A series of new 4-thiazolidinone derivatives was synthesized, characterized by spectral techniques, and screened for antimicrobial activity. All the compounds were evaluated against five Gram-positive bacteria, two Gram-negative bacteria, and two fungi, at concentrations of 50, 100, 200, 400, 800, and 1600 µg/mL, respectively. Minimum inhibitory concentrations of all the compounds were also determined and were found to be in the range of 100-400 µg/mL. All the compounds showed moderate-to-good antimicrobial activity. Compounds 4a [2-(4-fluoro-phenyl)-3-(4-methyl-5,6,7,8-tetrahydro-quinazolin-2-yl)-thiazolidin-4-one] and 4e [3-(4,6-dimethyl-pyrimidin-2-yl)-2-(2-methoxy-phenyl)-thiazolidin-4-one] were the most potent compounds of the series, exhibiting marked antimicrobial activity against Pseudomonas fluorescens, Staphylococcus aureus, and the fungal strains. Thus, on the basis of results obtained, it may be concluded that synthesized compounds exhibit a broad spectrum of antimicrobial activity.

  12. Propolis: anti-Staphylococcus aureus activity and synergism with antimicrobial drugs.

    PubMed

    Fernandes Júnior, Ary; Balestrin, Elaine Cristina; Betoni, Joyce Elaine Cristina; Orsi, Ricardo de Oliveira; da Cunha, Maria de Lourdes Ribeiro de Souza; Montelli, Augusto Cezar

    2005-08-01

    Propolis is a natural resinous substance collected by bees from tree exudates and secretions. Its antimicrobial activity has been investigated and inhibitory action on Staphylococcus aureus growth was evaluated. The in vitro synergism between ethanolic extract of propolis (EEP) and antimicrobial drugs by two susceptibility tests (Kirby and Bauer and E-Test) on 25 S. aureus strains was evaluated. Petri dishes with sub-inhibitory concentrations of EEP were incubated with 13 drugs using Kirby and Bauer method and synergism between EEP and five drugs [choramphenicol (CLO), gentamicin (GEN), netilmicin (NET), tetracycline (TET), and vancomycin (VAN)] was observed. Nine drugs were assayed by the E-test method and five of them exhibited a synergism [CLO, GEN, NET, TET, and clindamycin (CLI)]. The results demonstrated the synergism between EEP and antimicrobial drugs, especially those agents that interfere on bacterial protein synthesis.

  13. Nanoliposomes containing Eucalyptus citriodora as antibiotic with specific antimicrobial activity.

    PubMed

    Lin, Lin; Cui, Haiying; Zhou, Hui; Zhang, Xuejing; Bortolini, Christian; Chen, Menglin; Liu, Lei; Dong, Mingdong

    2015-02-14

    Bacterial infections are a serious issue for public health and represent one of the major challenges of modern medicine. In this work, a selective antimicrobial strategy based on triggering of pore-forming toxin, which is secreted by infective bacteria, was designed to fight Staphylococcus aureus. The antimicrobial activity is realized by employing Eucalyptus citriodora oil as antibiotic which in this study is encapsulated in nanoliposomes.

  14. Nanoliposomes containing Eucalyptus citriodora as antibiotic with specific antimicrobial activity.

    PubMed

    Lin, Lin; Cui, Haiying; Zhou, Hui; Zhang, Xuejing; Bortolini, Christian; Chen, Menglin; Liu, Lei; Dong, Mingdong

    2015-02-14

    Bacterial infections are a serious issue for public health and represent one of the major challenges of modern medicine. In this work, a selective antimicrobial strategy based on triggering of pore-forming toxin, which is secreted by infective bacteria, was designed to fight Staphylococcus aureus. The antimicrobial activity is realized by employing Eucalyptus citriodora oil as antibiotic which in this study is encapsulated in nanoliposomes. PMID:25573466

  15. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria

    PubMed Central

    Elkady, M. F.; Shokry Hassan, H.; Hafez, Elsayed E.; Fouad, Ahmed

    2015-01-01

    Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity. PMID:26451136

  16. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    PubMed Central

    Ebbensgaard, Anna; Mordhorst, Hanne; Overgaard, Michael Toft; Nielsen, Claus Gyrup; Aarestrup, Frank Møller; Hansen, Egon Bech

    2015-01-01

    Analysis of a Selected Set of Antimicrobial Peptides The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. Cap18 Shows a High Broad Spectrum Antimicrobial Activity Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our

  17. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China

    PubMed Central

    Pang, Hui; Li, Guilian; Zhao, Xiuqin; Liu, Haican; Wan, Kanglin; Yu, Ping

    2015-01-01

    Objectives. Several species of rapidly growing mycobacteria (RGM) are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Methods. Clinical isolates (73) were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. Results. M. abscessus (75.34%) and M. fortuitum (15.07%), the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Conclusions. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians. PMID:26351633

  18. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    PubMed

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods.

  19. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    PubMed

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. PMID:24360455

  20. Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis

    PubMed Central

    Pane, Gianluca; Cacciola, Gabriele; Giacco, Elisabetta; Mariottini, Gian Luigi; Coppo, Erika

    2015-01-01

    External otitis is a diffuse inflammation around the external auditory canal and auricle, which is often occurred by microbial infection. This disease is generally treated using antibiotics, but the frequent occurrence of antibiotic resistance requires the development of new antibiotic agents. In this context, unexplored bioactive natural candidates could be a chance for the production of targeted drugs provided with antimicrobial activity. In this paper, microbial pathogens were isolated from patients with external otitis using ear swabs for over one year, and the antimicrobial activity of the two methanol extracts from selected marine (Dunaliella salina) and freshwater (Pseudokirchneriella subcapitata) microalgae was tested on the isolated pathogens. Totally, 114 bacterial and 11 fungal strains were isolated, of which Staphylococcus spp. (28.8%) and Pseudomonas aeruginosa (P. aeruginosa) (24.8%) were the major pathogens. Only three Staphylococcus aureus (S. aureus) strains and 11 coagulase-negative Staphylococci showed resistance to methicillin. The two algal extracts showed interesting antimicrobial properties, which mostly inhibited the growth of isolated S. aureus, P. aeruginosa, Escherichia coli, and Klebsiella spp. with MICs range of 1.4 × 109 to 2.2 × 1010 cells/mL. These results suggest that the two algae have potential as resources for the development of antimicrobial agents. PMID:26492256

  1. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  2. Chemical composition, cytotoxicity, antimicrobial and antifungal activity of several essential oils.

    PubMed

    Cannas, Sara; Usai, Donatella; Tardugno, Roberta; Benvenuti, Stefania; Pellati, Federica; Zanetti, Stefania; Molicotti, Paola

    2016-01-01

    Essential oils (EOs) are known and used for their biological, antibacterial, antifungal and antioxidant properties. Numerous studies have shown that EOs exhibit a large spectrum of biological activities in vitro. The incidence of drug-resistant pathogens and the toxicity of antibiotics have drawn attention to the antimicrobial activity of natural products, encouraging the development of alternative treatments. The aim of this study was to analyse the phytochemical and the cytotoxic characteristic of 36 EOs; we then evaluated the antimicrobial activity of the less-toxic EOs on Gram-positive, Gram-negative and fungi strains. The results showed low cytotoxicity in seven EOs and good activity against Gram-negative and Candida spp. strains. Based on our results, EOs could be proposed as a novel group of therapeutic agents. Further experiments are necessary to confirm their pharmacological effectiveness, and to determine potential toxic effects and the mechanism of their activity in in vivo models. PMID:26214364

  3. Antimicrobial activity in the common seawhip, Leptogorgia virgulata (Cnidaria: Gorgonaceae).

    PubMed

    Shapo, Jacqueline L; Moeller, Peter D; Galloway, Sylvia B

    2007-09-01

    Antimicrobial activity was examined in the gorgonian Leptogorgia virgulata (common seawhip) from South Carolina waters. Extraction and assay protocols were developed to identify antimicrobial activity in crude extracts of L. virgulata. Detection was determined by liquid growth inhibition assays using Escherichia coli BL21, Vibrio harveyii, Micrococcus luteus, and a Bacillus sp. isolate. This represents the first report of antimicrobial activity in L. virgulata, a temperate/sub-tropical coral of the western Atlantic Ocean. Results from growth inhibition assays guided a fractionation scheme to identify active compounds. Reverse-phase HPLC, HPLC-mass spectrometry, and 1H and 13C NMR spectroscopy were used to isolate, purify, and characterize metabolites in antimicrobial fractions of L. virgulata. Corroborative HPLC-MS/NMR evidence validated the presence of homarine and a homarine analog, well-known emetic metabolites previously isolated from L. virgulata, in coral extracts. In subsequent assays, partially-purified L. virgulata fractions collected from HPLC-MS fractionation were shown to contain antimicrobial activity using M. luteus and V. harveyii. This study provides evidence that homarine is an active constituent of the innate immune system in L. virgulata. We speculate it may act synergistically with cofactors and/or congeners in this octocoral to mount a response to microbial invasion and disease.

  4. Synthesis, molecular modeling and structural characterization of vanillin derivatives as antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Sun, Juan; Yin, Yong; Sheng, Gui-Hua; Yang, Zhi-Bo; Zhu, Hai-Liang

    2013-05-01

    Two vanillin derivatives have been designed and synthesized and their biological activities were also evaluated for antimicrobial activity. Their chemical structures are characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization of them followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding model. Compound 3a shows the most potent biological activity, which may be a promising antimicrobial leading compound for the further research.

  5. Design of Embedded-Hybrid Antimicrobial Peptides with Enhanced Cell Selectivity and Anti-Biofilm Activity

    PubMed Central

    Xu, Wei; Zhu, Xin; Tan, Tingting; Li, Weizhong; Shan, Anshan

    2014-01-01

    Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents. PMID:24945359

  6. Synergistic antimicrobial activities of natural essential oils with chitosan films.

    PubMed

    Wang, Lina; Liu, Fei; Jiang, Yanfeng; Chai, Zhi; Li, Pinglan; Cheng, Yongqiang; Jing, Hao; Leng, Xiaojing

    2011-12-14

    The synergistic antimicrobial activities of three natural essential oils (i.e., clove bud oil, cinnamon oil, and star anise oil) with chitosan films were investigated. Cinnamon oil had the best antimicrobial activity among three oils against Escherichia coli , Staphylococcus aureus , Aspergillus oryzae , and Penicillium digitatum . The chitosan solution exhibited good inhibitory effects on the above bacteria except the fungi, whereas chitosan film had no remarkable antimicrobial activity. The cinnamon oil-chitosan film exhibited a synergetic effect by enhancing the antimicrobial activities of the oil, which might be related to the constant release of the oil. The cinnamon oil-chitosan film had also better antimicrobial activity than the clove bud oil-chitosan film. The results also showed that the compatibility of cinnamon oil with chitosan in film formation was better than that of the clove bud oil with chitosan. However, the incorporated oils modified the mechanical strengths, water vapor transmission rate, moisture content, and solubility of the chitosan film. Furthermore, chemical reaction took place between cinnamon oil and chitosan, whereas phase separation occurred between clove bud oil and chitosan.

  7. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials. PMID:25832181

  8. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials.

  9. Antimicrobial activity of tannins from Terminalia citrina.

    PubMed

    Burapadaja, S; Bunchoo, A

    1995-08-01

    Isolation of the fruit CH3OH extract of Terminalia citrina yielded five known tannins identified as corilagin (1) (3), punicalagin (2) (4), 1,3,6-tri-O-galloyl-beta-D-glucopyranose (3) (5), chebulagic acid (4) (6), and 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose (5) (7) by comparison of their physical and spectral data with those of authentic samples. These tannins were tested for antimicrobial action. PMID:7480186

  10. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  11. Luminescent Di and Polynuclear Organometallic Gold(I)-M (Au2, {Au2Ag}n and {Au2Cu}n) Compounds Containing Bidentate Phosphanes as Active Antimicrobial Agents

    PubMed Central

    Frik, Malgorzata; Jiménez, Josefina; Gracia, Ismael; Falvello, Larry R.; Abi-Habib, Sarya; Suriel, Karina; Muth, Theodore R.

    2012-01-01

    at room temperature. Previously reported compound [Au2Cl2(μ-LL)] (L-L dppy 5b) was also studied for comparative purposes. The antimicrobial activity of 1–5 and AgA (A= ClO4−, OSO2CF3−) against Gram-positive and Gram-negative bacteria and yeast was evaluated. Most tested compounds displayed moderate to high antibacterial activity while heteronuclear Au2M derivatives with dppe (2a–4a) were the more active (MIC 10 to 1 μg/mL). Compounds containing silver were ten times more active to Gram-negative bacteria than the parent dinuclear compound 1a or silver salts. Au2Ag compounds with dppy (2b, 3b) were also potent against fungi. PMID:22334444

  12. Fluorescein dye derivatives and their nanohybrids: Synthesis, characterization and antimicrobial activity.

    PubMed

    Negm, Nabel A; Abou Kana, Maram T H; Abd-Elaal, Ali A; Elwahy, Ahmed H M

    2016-09-01

    Fluorescein (resorcinolphthalein) is a synthetic organic photoactive dye compound soluble in water, alcohol and polar solvents. It is widely used as a fluorescent tracer in medicinal and biological applications and tumor infected tissues tracer. In this study, fluorescein (F) was condensed by five coupling agents namely: p,p-phenylene diamine, p-hydroxy aniline, o-hydroxy aniline, p-methoxy aniline and p-methyl aniline in a molar ratio of 2(F):1 (coupling agent). The chemical structures of the synthesized fluorescein derivatives were confirmed using: microelemental analysis, FTIR spectroscopy, 1H-NMR spectroscopy, and mass spectroscopy. The synthesized compounds were loaded on chemically prepared silver nanoparticles via reduction reaction of silver nitrate. The structures and properties of the formed fluorescein derivatives silver nanohybrids were determined using: UV/Vis spectroscopy, TEM images and dynamic light scattering (DLS). The synthesized compounds and their nanohybrids were evaluated for their antimicrobial activities against different bacterial strains and fungi. The results showed that the formed fluorescein derivatives silver nanohybrids are in moderate diameter range, and the loading of the synthesized compounds protect the silver nanoparticles against coagulation. The antimicrobial activity against the studied microorganisms was comparable to the standard used. Moreover, the antimicrobial activity was increased considerably in case of using fluorescein derivatives silver nanohybrids. The antimicrobial activities were correlated to the chemical structures of the compounds, diameter of the formed nanohybrids and to the nature of the tested bacterial strains. The mechanism of the antimicrobial action of the synthesized compounds and their nanohybrids was proposed. PMID:27450296

  13. Antimicrobial activity and hydrophobicity of edible whey protein isolate films formulated with nisin and/or glucose oxidase.

    PubMed

    Murillo-Martínez, María M; Tello-Solís, Salvador R; García-Sánchez, Miguel A; Ponce-Alquicira, Edith

    2013-04-01

    The use of edible antimicrobial films has been reported as a means to improve food shelf life through gradual releasing of antimicrobial compounds on the food surface. This work reports the study on the incorporation of 2 antimicrobial agents, nisin (N), and/or glucose oxidase (GO), into the matrix of Whey protein isolate (WPI) films at pH 5.5 and 8.5. The antimicrobial activity of the edible films was evaluated against Listeria innocua (ATCC 33090), Brochothrix thermosphacta (NCIB10018), Escherichia coli (JMP101), and Enterococcus faecalis (MXVK22). In addition, the antimicrobial activity was related to the hydrophobicity and water solubility of the WPI films. The greatest antibacterial activity was observed in WPI films containing only GO. The combined addition of N and GO resulted in films with lower antimicrobial activity than films with N or GO alone. In most cases, a pH effect was observed as greater antimicrobial response at pH 5.5 as well as higher film matrix hydrophobicity. WPI films supplemented with GO can be used in coating systems suitable for food preservation.

  14. Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria.

    PubMed

    Park, Joon-Woo; Wendt, Mitchell; Heo, Gang-Joon

    2016-06-01

    The antibacterial activities of the essential oil of Eucalyptus globulus (EOEG) was determined against 7 fish pathogenic bacteria (Edwardsiella tarda, Streptococcus iniae, S. parauberis, Lactococcus garviae, Vibrio harveyi, V. ichthyoenteri and Photobacterium damselae) obtained from farmed olive flounder. The inhibitory activity was evaluated by three methods: Disc diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). According to the disc diffusion test, as the concentration of EOEG (5-40 µg) rises, the inhibitory zone increases in size. Compared with amoxicillin, tetracycline and chloramphenicol, EOEG showed similar antibacterial activity. The MIC of EOEG ranged from 7.8 to 125 mg/mL and MBC values ranged from 62 to 250 mg/mL. These results show that EOEG has antimicrobial activity against all seven bacteria, but there was no marked difference between each genus. From these results, it is suggested that EOEG can be used as an antimicrobial agent against fish bacterial diseases in the fish industry.

  15. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus.

    PubMed

    Miao, Fang; Yang, Rui; Chen, Dong-Dong; Wang, Ying; Qin, Bao-Fu; Yang, Xin-Juan; Zhou, Le

    2012-11-28

    From the ethyl acetate extract of the culture broth of Talaromyces verruculosus, a rhizosphere fungus of Stellera chamaejasme L., (-)-8-hydroxy-3-(4-hydroxypentyl)-3,4-dihydroisocoumarin (1) and (E)-3-(2,5-dioxo-3-(propan-2-ylidene)pyrrolidin-1-yl)acrylic acid (2) were isolated and evaluated for their antimicrobial activities. Their structures were elucidated by UV, IR, MS, 1H-NMR, 13C-NMR and 2D NMR spectra. Compound 1 exhibited the significant activities in vitro against two strains of bacteria and four strains of fungi. Compound 2 gave slight activities on the fungi at 100 µg mL(-1), but no activities on the bacteria. Compound 1 should be considered as a new lead or model compound to develop new isocoumarin antimicrobial agents.

  16. Antimicrobial Activity of Croton macrostachyus Stem Bark Extracts against Several Human Pathogenic Bacteria

    PubMed Central

    Obey, Jackie K.; von Wright, Atte; Orjala, Jimmy; Kauhanen, Jussi; Tikkanen-Kaukanen, Carina

    2016-01-01

    In Kenya, leaves and roots from Croton macrostachyus are used as a traditional medicine for infectious diseases such as typhoid and measles, but reports on possible antimicrobial activity of stem bark do not exist. In this study, the antibacterial and antifungal effects of methanol, ethyl acetate and butanol extracts, and purified lupeol of C. macrostachyus stem bark were determined against important human gram-negative pathogens Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, and Enterobacter aerogenes, gram-positive Listeria monocytogenes, and a fungus Candida albicans. The most promising broad scale antimicrobial activity against all the studied pathogens was shown by the ethyl acetate extract. The ethyl acetate extract induced the zone of inhibition between 10.1 ± 0.6 mm and 16.0 ± 1.2 mm against S. typhi, E. coli, K. pneumoniae, E. aerogenes, and L. monocytogenes with weaker antimicrobial activity against C. albicans (zone of inhibition: 5.6 ± 1.0 mm). The antibiotic controls (amoxicillin, ciprofloxacin, ampicillin, benzylpenicillin, clotrimazole, and cefotaxime) showed antimicrobial activity with zones of inhibition within 13.4 ± 0.7–22.1 ± 0.9 mm. The ethyl acetate extract had MIC in the range of 125–250 mg/mL against all the studied bacteria and against C. albicans MIC was 500 mg/mL. The present results give scientific evidence and support the traditional use of C. macrostachyus stem bark as a source for antimicrobials. We show that C. macrostachyus stem bark lupeol is a promising antimicrobial agent against several important human pathogens. PMID:27293897

  17. Antimicrobial Activity of Croton macrostachyus Stem Bark Extracts against Several Human Pathogenic Bacteria.

    PubMed

    Obey, Jackie K; von Wright, Atte; Orjala, Jimmy; Kauhanen, Jussi; Tikkanen-Kaukanen, Carina

    2016-01-01

    In Kenya, leaves and roots from Croton macrostachyus are used as a traditional medicine for infectious diseases such as typhoid and measles, but reports on possible antimicrobial activity of stem bark do not exist. In this study, the antibacterial and antifungal effects of methanol, ethyl acetate and butanol extracts, and purified lupeol of C. macrostachyus stem bark were determined against important human gram-negative pathogens Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, and Enterobacter aerogenes, gram-positive Listeria monocytogenes, and a fungus Candida albicans. The most promising broad scale antimicrobial activity against all the studied pathogens was shown by the ethyl acetate extract. The ethyl acetate extract induced the zone of inhibition between 10.1 ± 0.6 mm and 16.0 ± 1.2 mm against S. typhi, E. coli, K. pneumoniae, E. aerogenes, and L. monocytogenes with weaker antimicrobial activity against C. albicans (zone of inhibition: 5.6 ± 1.0 mm). The antibiotic controls (amoxicillin, ciprofloxacin, ampicillin, benzylpenicillin, clotrimazole, and cefotaxime) showed antimicrobial activity with zones of inhibition within 13.4 ± 0.7-22.1 ± 0.9 mm. The ethyl acetate extract had MIC in the range of 125-250 mg/mL against all the studied bacteria and against C. albicans MIC was 500 mg/mL. The present results give scientific evidence and support the traditional use of C. macrostachyus stem bark as a source for antimicrobials. We show that C. macrostachyus stem bark lupeol is a promising antimicrobial agent against several important human pathogens.

  18. Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities.

    PubMed

    Urdaci, Maria C; Bressollier, Philippe; Pinchuk, Irina

    2004-07-01

    The clinical benefits observed with probiotic use are mainly attributed to the antimicrobial substances produced by probiotic strains and to their immunomodulatory effects. Currently, the best-documented probiotic bacteria used in human therapy are lactic acid bacteria. In contrast, studies aiming to characterize the mechanisms responsible for the probiotic beneficial effects of Bacillus are rare. The current work seeks to contribute to such characterization by evaluating the antimicrobial and immunomodulatory activities of probiotic B. clausii strains. B. clausii strains release antimicrobial substances in the medium. Moreover, the release of these antimicrobial substances was observed during stationary growth phase and coincided with sporulation. These substances were active against Gram-positive bacteria, in particular against Staphylococcus aureus, Enterococcus faecium, and Clostridium difficile. The antimicrobial activity was resistant to subtilisin, proteinase K, and chymotrypsin treatment, whereas it was sensitive to pronase treatment. The evaluation of the immunomodulatory properties of probiotic B. clausii strains was performed in vitro on Swiss and C57 Bl/6j murine cells. The authors demonstrate that these strains, in their vegetative forms, are able to induce NOS II synthetase activity, IFN-gamma production, and CD4 T-cell proliferation. PMID:15220667

  19. Antimicrobial activity of new porphyrins of synthetic and natural origin

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  20. Novel 2-Thioxanthine and Dipyrimidopyridine Derivatives: Synthesis and Antimicrobial Activity.

    PubMed

    El-kalyoubi, Samar; Agili, Fatmah; Youssif, Shaker

    2015-01-01

    Several fused imidazolopyrimidines were synthesized starting from 6-amino-1-methyl-2-thiouracil (1) followed by nitrosation, reduction and condensation with different aromatic aldehydes to give Schiff's base. The dehydrocyclization of Schiff's bases using iodine/DMF gave Compounds 5a-g. The methylation of 5a-g using a simple alkylating agent as dimethyl sulfate ((CH₃)₂SO₄) gave either monoalkylated imidazolopyrimidine 6a-g at room temperature or dialkylated derivatives 7a-g on heating 6a-g with ((CH₃)₂SO₄). On the other hand, treatment of 1 with different aromatic aldehydes in absolute ethanol in the presence of conc. hydrochloric acid at room temperature and/or reflux with acetic acid afforded bis-5,5́-diuracylmethylene 8a-e, which cyclized on heating with a mixture of acetic acid/HCl (1:1) to give 9a-e. Compounds 9a-e can be obtained directly by refluxing of Compound 1 with a mixture of acetic acid/HCl. The synthesized new compounds were screened for antimicrobial activity, and the MIC was measured. PMID:26506337

  1. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    PubMed Central

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  2. Characterization and activity of an immobilized antimicrobial peptide containing bactericidal PEG-hydrogel.

    PubMed

    Cleophas, Rik T C; Sjollema, Jelmer; Busscher, Henk J; Kruijtzer, John A W; Liskamp, Rob M J

    2014-09-01

    A single step immobilization-polymerization strategy of a highly active antimicrobial peptide into a soft hydrogel network on a poly(ethylene terephthalate) surface using thiol-ene chemistry is described. The bactericidal hydrogel was molecularly characterized via Coomassie and Lowry assay protein staining agents as well as by X-ray photoelectron spectroscopy. The bactericidal activity was established against Staphylococcus aureus and Staphylococcus epidermidis, two bacterial strains commonly associated with biomaterial infections. To gain further insight into the biological stability, the hydrogels were incubated with human serum prior to activity testing without loss of activity. These studies revealed a promising bactericidal hydrogel with good stability under physiological conditions.

  3. In vitro evaluation of the antimicrobial activity of lichen metabolites as potential preservatives.

    PubMed Central

    Ingólfsdóttir, K; Bloomfield, S F; Hylands, P J

    1985-01-01

    Antimicrobial screening of several lichen species and subsequent isolation and structure elucidation of active compounds revealed that the hydrolysis products of certain lichen metabolites, i.e., depsides, were active against gram-negative bacteria and fungi as well as gram-positive bacteria. The active constituents isolated from Stereocaulon alpinum and Peltigera aphthosa were identified, respectively, as methyl beta-orsellinate and a mixture of methyl and ethyl orsellinates. MIC determinations indicated that activity of these compounds was superior to that of the commonly used preservative agents methyl and propyl p-hydroxybenzoates and was of the same order as that of chlorocresol. PMID:3834834

  4. Phytochemical screening and antimicrobial activity of Coccinia cordifolia L. plant.

    PubMed

    Khatun, Shahanaz; Pervin, Farzana; Karim, Mohammad Rezaul; Ashraduzzaman, Mohammad; Rosma, Ahmad

    2012-10-01

    The medicinal plant, Coccinia cordifolia L. was analyzed for its chemical composition. The antimicrobial activities of the methanol, water, ethanol and ethyl acetate extracts of Coccinia cordifolia L. plant were evaluated against some Gram positive bacteria (Sarcina lutea, Bacillus subtilis and Staphylococcus aureus), Gram negative bacteria (Salmonella typhi, Shigella dysenteriae and Escherichia coli) and fungi (Candida albicans, Aspergillus niger and Penicillium notatum). Chemical analysis showed that the plant is rich in nutrients, especially antioxidant compounds such as total phenol, vitamin C and β-carotene. Phytochemical screening showed that the methanolic extract contains the bioactive constituents such as tannins, saponins, phenols, flavonoids and terpenoids. In the methanolic extract of the plant, promising antimicrobial potential was observed against the tested microorganism. Methanolic extract showed highest activity against Shigella dysenteriae, Escherichia coli, Staphylococcus aureus, and Candida albicans compared to the other extracts. Water extract showed less antimicrobial activity as compared to other extractants.

  5. Antimicrobial activity of submerged cultures of Chilean basidiomycetes.

    PubMed

    Aqueveque, Pedro; Anke, Timm; Saéz, Katia; Silva, Mario; Becerra, José

    2010-10-01

    This study is part of a screening program aimed at searching for bioactive metabolites from Chilean basidiomycetes. Submerged cultivation of fungal mycelia in liquid media was evaluated for antimicrobial activity. A total of 148 strains were obtained in vitro. The extracts produced from submerged cultures were evaluated against bacteria and fungi. In the primary antimicrobial assay, approximately 60% of the extracts presented positive biological activity. The highest frequencies of active strains were from the orders Agaricales (31.0%), Polyporales (20.6%), Sterales (18.3%), Boletales (11.4%), and Cortinariales (9.1%). Antifungal activity was more pronounced than antibacterial activity. Twelve extracts that exhibited strong antimicrobial activity showed minimum inhibitory concentration (MIC) values of 50 µL/mL against Bacillus brevis and 25∼50 µL/mL against Penicillium notatum and Paecilomyces variotii. The biological activity of some strains did not vary considerably, regardless of the substrate or collection site whereas, for others, it showed marked variations. Differences in antimicrobial activities observed in the different fungal genera suggested that the ability to produce bioactive compounds is not homogenously distributed among basidiomycetes. The information obtained from this study reveals that Chilean basidiomycetes are able to generate small and/or large variations in the normal pathway of compounds production. Thus, it is necessary to evaluate this biological and chemical wealth, which could be an unsuspected reservoir of new and potentially useful molecules.

  6. Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity.

    PubMed

    Jacob, Binu; Park, Il-Seon; Bang, Jeong-Kyu; Shin, Song Yub

    2013-11-01

    KR-12 (residues 18-29 of LL-37) was known to be the smallest peptide of human cathelicidin LL-37 possessing antimicrobial activity. In order to optimize α-helical short antimicrobial peptides having both antimicrobial and antiendotoxic activities without mammalian cell toxicity, we designed and synthesized a series of KR-12 analogs. Highest hydrophobic analogs KR-12-a5 and KR-12-a6 displayed greater inhibition of lipopolysaccharide (LPS)-stimulated tumor necrosis factor-α production and higher LPS-binding activity. We have observed that antimicrobial activity is independent of charge, but LPS neutralization requires a balance of hydrophobicity and net positive charge. Among KR-12 analogs, KR-12-a2, KR-12-a3 and KR-12-a4 showed much higher cell specificity for bacteria over erythrocytes and retained antiendotoxic activity, relative to parental LL-37. KR-12-a5 displayed the strongest antiendotoxic activity but almost similar cell specificity as compared with LL-37. Also, these KR-12 analogs (KR-12-a2, KR-12-a3, KR-12-a4 and KR-12-a5) exhibited potent antimicrobial activity (minimal inhibitory concentration: 4 μM) against methicillin-resistant Staphylococcus aureus. Taken together, these KR-12 analogs have the potential for future development as a novel class of antimicrobial and anti-inflammatory therapeutic agents.

  7. Antimicrobial Activities of Three Medicinal Plants and Investigation of Flavonoids of Tripleurospermum disciforme

    PubMed Central

    Tofighi, Zahra; Molazem, Maryam; Doostdar, Behnaz; Taban, Parisa; Shahverdi, Ahmad Reza; Samadi, Nasrin; Yassa, Narguess

    2015-01-01

    Rosa damascena, Tripleurospermum disciforme and Securigera securidaca were used as disinfectant agents and for treatment of some disease in folk medicine of Iran. The antimicrobial effects of different fractions of seeds extract of S. securidaca, petals extract of R. damascena and aerial parts extract of T. disciforme were examined against some gram positive, gram negative and fungi by cup plate diffusion method. The petroleum ether and chloroform fractions of S. securidaca showed antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa, while its methanol fraction had no antibacterial effects. R. damascena petals extract demonstrated antibacterial activities against Bacillus cereus, Staphylococcus epidermidis, S. aureus and Pseudomonas aeruginosa. T. disciforme aerial parts extract exhibited antimicrobial effects only against S. aureus and S. epidermidis. None of the fractions had any antifungal activities. Therefore, present study confirmed utility of these plants as disinfectant agents. Six flavonoids were isolated from T. disciforme: Luteolin, Quercetin-7-O-glucoside, Kaempferol, Kaempferol-7-O-glucoside, Apigenin and Apigenin-7-O-glucoside. The flavonoids and the antimicrobial activity of T. disciforme are reported for the first time. PMID:25561928

  8. Antimicrobial Activities of Three Medicinal Plants and Investigation of Flavonoids of Tripleurospermum disciforme.

    PubMed

    Tofighi, Zahra; Molazem, Maryam; Doostdar, Behnaz; Taban, Parisa; Shahverdi, Ahmad Reza; Samadi, Nasrin; Yassa, Narguess

    2015-01-01

    Rosa damascena, Tripleurospermum disciforme and Securigera securidaca were used as disinfectant agents and for treatment of some disease in folk medicine of Iran. The antimicrobial effects of different fractions of seeds extract of S. securidaca, petals extract of R. damascena and aerial parts extract of T. disciforme were examined against some gram positive, gram negative and fungi by cup plate diffusion method. The petroleum ether and chloroform fractions of S. securidaca showed antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa, while its methanol fraction had no antibacterial effects. R. damascena petals extract demonstrated antibacterial activities against Bacillus cereus, Staphylococcus epidermidis, S. aureus and Pseudomonas aeruginosa. T. disciforme aerial parts extract exhibited antimicrobial effects only against S. aureus and S. epidermidis. None of the fractions had any antifungal activities. Therefore, present study confirmed utility of these plants as disinfectant agents. Six flavonoids were isolated from T. disciforme: Luteolin, Quercetin-7-O-glucoside, Kaempferol, Kaempferol-7-O-glucoside, Apigenin and Apigenin-7-O-glucoside. The flavonoids and the antimicrobial activity of T. disciforme are reported for the first time. PMID:25561928

  9. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage.

    PubMed

    Busatta, C; Vidal, R S; Popiolski, A S; Mossi, A J; Dariva, C; Rodrigues, M R A; Corazza, F C; Corazza, M L; Vladimir Oliveira, J; Cansian, R L

    2008-02-01

    This work reports on the antimicrobial activity in fresh sausage of marjoram (Origanum majorana L.) essential oil against several species of bacteria. The in vitro minimum inhibitory concentration (MIC) was determined for 10 selected aerobic heterotrophic bacterial species. The antimicrobial activity of distinct concentrations of the essential oil based on the highest MIC value was tested in a food system comprising fresh sausage. Batch food samples were also inoculated with a fixed concentration of Escherichia coli and the time course of the product was evaluated with respect to the action of the different concentrations of essential oil. Results showed that addition of marjoram essential oil to fresh sausage exerted a bacteriostatic effect at oil concentrations lower than the MIC, while a bactericidal effect was observed at higher oil concentrations which also caused alterations in the taste of the product.

  10. The Synthesis and Antimicrobial Activity of Heterocyclic Derivatives of Totarol

    PubMed Central

    2012-01-01

    The synthesis and antimicrobial activity of heterocyclic analogues of the diterpenoid totarol are described. An advanced synthetic intermediate with a ketone on the A-ring is used to attach fused heterocycles, and a carbon-to-nitrogen atom replacement is made on the B-ring by de novo synthesis. A-ring analogues with an indole attached exhibit, for the first time, enhanced antimicrobial activity relative to the parent natural product. Preliminary experiments demonstrate that the indole analogues do not target the bacterial cell division protein FtsZ as had been hypothesized for totarol. PMID:23119123

  11. Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves

    PubMed Central

    Metwally, A. M.; Omar, A. A.; Harraz, F. M.; El Sohafy, S. M.

    2010-01-01

    Psidium guajava L. leaves were subjected to extraction, fractionation and isolation of the flavonoidal compounds. Five flavonoidal compounds were isolated which are quercetin, quercetin-3-O-α-L-arabinofuranoside, quercetin-3-O-β-D-arabinopyranoside, quercetin-3-O-β-D-glucoside and quercetin-3-O-β-D-galactoside. Quercetin-3-O-β-D-arabinopyranoside was isolated for the first time from the leaves. Fractions together with the isolates were tested for their antimicrobial activity. The antimicrobial studies showed good activities for the extracts and the isolated compounds. PMID:20931082

  12. Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides.

    PubMed

    Harraz, Fathalla M; Hammoda, Hala M; El Ghazouly, Maged G; Farag, Mohamed A; El-Aswad, Ahmed F; Bassam, Samar M

    2015-01-01

    Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin.

  13. Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides.

    PubMed

    Harraz, Fathalla M; Hammoda, Hala M; El Ghazouly, Maged G; Farag, Mohamed A; El-Aswad, Ahmed F; Bassam, Samar M

    2015-01-01

    Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin. PMID:25495783

  14. Macin Family of Antimicrobial Proteins Combines Antimicrobial and Nerve Repair Activities*

    PubMed Central

    Jung, Sascha; Sönnichsen, Frank D.; Hung, Chien-Wen; Tholey, Andreas; Boidin-Wichlacz, Céline; Haeusgen, Wiebke; Gelhaus, Christoph; Desel, Christine; Podschun, Rainer; Waetzig, Vicki; Tasiemski, Aurélie; Leippe, Matthias; Grötzinger, Joachim

    2012-01-01

    The tertiary structures of theromacin and neuromacin confirmed the macin protein family as a self-contained family of antimicrobial proteins within the superfamily of scorpion toxin-like proteins. The macins, which also comprise hydramacin-1, are antimicrobially active against Gram-positive and Gram-negative bacteria. Despite high sequence identity, the three proteins showed distinct differences with respect to their biological activity. Neuromacin exhibited a significantly stronger capacity to permeabilize the cytoplasmic membrane of Bacillus megaterium than theromacin and hydramacin-1. Accordingly, it is the only macin that displays pore-forming activity and that was potently active against Staphylococcus aureus. Moreover, neuromacin and hydramacin-1 led to an aggregation of bacterial cells that was not observed with theromacin. Analysis of the molecular surface properties of macins allowed confirmation of the barnacle model as the mechanistic model for the aggregation effect. Besides being antimicrobially active, neuromacin and theromacin, in contrast to hydramacin-1, were able to enhance the repair of leech nerves ex vivo. Notably, all three macins enhanced the viability of murine neuroblastoma cells, extending their functional characteristics. As neuromacin appears to be both a functional and structural chimera of hydramacin-1 and theromacin, the putative structural correlate responsible for the nerve repair capacity in leech was located to a cluster of six amino acid residues using the sequence similarity of surface-exposed regions. PMID:22396551

  15. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review

    PubMed Central

    Martins, Alessandro F.; Facchi, Suelen P.; Follmann, Heveline D. M.; Pereira, Antonio G. B.; Rubira, Adley F.; Muniz, Edvani C.

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents. PMID:25402643

  16. Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review.

    PubMed

    Martins, Alessandro F; Facchi, Suelen P; Follmann, Heveline D M; Pereira, Antonio G B; Rubira, Adley F; Muniz, Edvani C

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents.

  17. Antimicrobial activities of two edible bivalves M. meretrix and M. casta.

    PubMed

    Sugesh, S; Mayavu, P

    2013-01-01

    The marine invertebrates become one of hot spot for the lead of antimicrobial compounds. Two species of commercially available and edible bivalves (M. meretrix and M. casta) were assayed for antimicrobial activity against 10 bacterial pathogens and 6 fungal pathogens and its biochemical composition. The bivalves were extracted with three different solvent systems respectively methanol, ethanol and acetic acid. All the three extracts of both the species M. meretrix and M. casta showed highest antibacterial activities against S. aureus, E. coli, B. substillus, K. pneumonia, P. fleuroscence and V. cholera. In present investigation the methanolic extract of the two bivalve species of M. meretrix and M. casta was showed inhibition activities against all pathogenic fungal forms. The two bivalve extracts showed high amounts of protein content, which made the variation up to 160-180 microg mg(-1) (wet weight). Both samples had low amount of carbohydrates 4.77-5.77 microg mg(-1) and lipids 0.11-0.17 microg mg(-1), respectively. The results of thin layer chromatography were revealed that presence of pink color spots it clearly indicates the presence of amino acid or peptides in bivalve's samples. Presuming that the antimicrobial compounds were proteins or peptides. In SDS-PAGE on 12% gel, the crude proteins M. meretrix and M. casta showed 5-6 bands ranging from 45-223 kDa. They represent potential pharmacological leads perhaps possessing novel and uncharacterized mechanisms of action that might ultimately benefit the ongoing global search for clinically useful antimicrobial agents.

  18. In vitro assessment of chloramphenicol and florfenicol as second-line antimicrobial agents in dogs.

    PubMed

    Maaland, M G; Mo, S S; Schwarz, S; Guardabassi, L

    2015-10-01

    The aim of this study was to evaluate the potential of chloramphenicol and florfenicol as second-line antimicrobial agents for treatment of infections caused by methicillin-resistant Staphylococcus pseudintermedius (MRSP) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in dogs, through a systematic in vitro assessment of the pharmacodynamic properties of the two drugs. Minimum inhibitory concentrations (MIC) and phenicol resistance genes were determined for 169 S. pseudintermedius and 167 E. coli isolates. Minimum bactericidal concentrations (MBC), time-killing kinetics, and postantibiotic effect (PAE) of both agents against wild-type isolates of each species were assessed. For S. pseudintermedius, the chloramphenicol MIC90 was 32 μg/mL. No florfenicol resistance was detected in this species (MIC90 = 4 μg/mL). The MIC90 of both agents against E. coli was 8 μg/mL. Resistance genes found were catpC221 in S. pseudintermedius and catA1 and/or floR in E. coli. The phenicols displayed a time-dependent, mainly, bacteriostatic effect on both species. Prolonged PAEs were observed for S. pseudintermedius, and no PAEs were detected for E. coli. More research into determination of PK/PD targets of efficacy is needed to further assess the clinical use of chloramphenicol and florfenicol as second-line agents in dogs, optimize dosage regimens, and set up species-specific clinical break points. PMID:25623169

  19. In vitro antimicrobial activity of Achyranthes coynei Sant.

    PubMed Central

    Ankad, Gireesh; Upadhya, Vinayak; Pai, Sandeep R.; Hegde, Harsha V.; Roy, Subarna

    2013-01-01

    Objective To validate the traditional use of Achyranthes coynei (A. coynei) Sant. as an antimicrobial in treatment of various infectious diseases. Methods Leaf extracts of A. coynei obtained through successive solvent extraction using petroleum ether, dichrloromethane, chloroform and methanol were used to screen the antimicrobial activity on five Gram positive, five Gram negative bacteria and two fungi. Minimum inhibitory concentration (MIC) was determined by two fold tube-dilution method. Results Methanolic leaf extract was more effective than other three extracts on the tested bacteria. Methanolic extract was efficient on Staphylococcus epidermis, Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa with MIC values (0.62±0.00) mg/mL. The fungal organisms were less susceptible against extracts tested. Conclusions These results support the traditional use of leaf extracts of A. coynei as they have antimicrobial potential. Further studies are needed for establishing safety, toxicity and pharmacological activity with phytochemical investigation.

  20. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis.

  1. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis. PMID:24330167

  2. Effects of Alginate Oligosaccharide Mixture on the Bioavailability of Lysozyme as an Antimicrobial Agent.

    PubMed

    Park, Hyun Jung; Ahn, Joo-Myung; Park, Ra-Mi; Lee, Sang-Hee; Sekhon, Simranjeet Singh; Kim, Sang Yong; Wee, Ji-Hyang; Kim, Yang-Hoon; Min, Jiho

    2016-02-01

    In this study, we report an oral drug delivery system without any additional process using pH-sensitive biopolymer, alginate, and alginate oligosaccharide with lysozyme as a model drug. These biopolymers exhibited pH-sensitive characteristics such as shrinking at acidic pH and eroding with dissolution at alkaline pH. The incorporation of lysozyme and biopolymers was performed an artificial intestinal juice (pH 6.8). The immobilization efficiency and lysozyme stability in gastric juice (pH 1.2) has been tested by E coil antimicrobial activity. The lysozyme without biopolymer immobilization lost approximately 80-90% of antimicrobial activity than that of pure lysozyme. However, the pH-sensitive biopolymer-controlled lysozyme maintained similar antimicrobial activity compared to that of pure lysozyme (50-90% of cell mortality). Therefore, this simple, easy, and rapid system can be effectively and practically applied for pathogen treatment for in vivo oral drug delivery. PMID:27433602

  3. Biological evaluation and molecular docking of some chromenyl-derivatives as potential antimicrobial agents.

    PubMed

    Ionuţ, Ioana; Vodnar, Dan Cristian; Oniga, Ilioara; Oniga, Ovidiu; Tiperciuc, Brînduşa; Tamaian, Radu

    2016-01-01

    Various thiosemicarbazones (TSCs) and their heterocyclic thiadiazolines (TDZ) possess important biological effects. In addition, chromenyl derivatives exhibit a wide range of pharmacological activities. Based on these findings and as a continuation of our research on nitrogen and sulfur containing compounds, we investigated a series of previously reported chromenyl-TSCs (1a-j) and chromenyl-TDZs (2a-j) for their in vitro antimicrobial activities against two bacterial and four fungal strains. MIC and MBC/MFC (µg/mL) values of these compounds were evaluated and compared to those of Spectinomycin, Moxifloxacin and Fluconazole, used as reference drugs. For a better understanding of the drug-receptor interactions, all the compounds were further subjected to molecular docking against four targets that were chosen based on the specific mechanism of action of the reference drugs used in the antimicrobial screening. All compounds tested showed equal or higher antibacterial/antifungal activities relative to the used reference drugs. In silico studies (molecular docking) revealed that all the investigated compounds showed good binding energies towards four receptor protein targets and supported their antimicrobial properties. PMID:27005495

  4. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control. PMID:26137678

  5. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    PubMed

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde. PMID:21856030

  6. Antimicrobial and antioxidant activities of Turkish extra virgin olive oils.

    PubMed

    Karaosmanoglu, Hande; Soyer, Ferda; Ozen, Banu; Tokatli, Figen

    2010-07-28

    Turkish extra virgin olive oils (EVOO) from different varieties/geographical origins and their phenolic compounds were investigated in terms of their antimicrobial and antioxidant properties in comparison to refined olive, hazelnut, and canola oils. Antimicrobial activity was tested against three foodborne pathogenic bacteria, Escherichia coli O157:H7, Listeria monocytogenes , and Salmonella Enteritidis. Although all EVOOs showed a bactericidal effect, the individual phenolic compounds demonstrated only slight antimicrobial activity. Moreover, refined oil samples did not show any antimicrobial activity. Among the phenolic compounds, cinnamic acid (2 mg/kg of oil) had the highest percent inhibition value with 0.25 log reduction against L. monocytogenes. The synergistic interactions of tyrosol, vanillin, vanillic, and cinnamic acids were also observed against Salmonella Enteritidis. The antioxidant activities of oils were tested by beta-carotene-linoleate model system and ABTS method. In both methods, EVOOs showed higher antioxidant activities, whereas refined oils had lower activity. The ABTS method provided a higher correlation (0.89) with total phenol content.

  7. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  8. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    NASA Astrophysics Data System (ADS)

    Zúñiga, G. E.; Junqueira-Gonçalves, M. P.; Pizarro, M.; Contreras, R.; Tapia, A.; Silva, S.

    2012-01-01

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of γ-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation.

  9. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.

    PubMed

    Arias, Mauricio; Hoffarth, Elesha R; Ishida, Hiroaki; Aramini, James M; Vogel, Hans J

    2016-05-01

    The increase in antibiotic-resistant bacterial infections has prompted significant academic research into new therapeutic agents targeted against these pathogens. Antimicrobial peptides (AMPs) appear as promising candidates, due their potent antimicrobial activity and their ubiquitous presence in almost all organisms. Tritrpticin is a member of this family of peptides and has been shown to exert a strong antimicrobial activity against several bacterial strains. Tritrpticin's main structural characteristic is the presence of three consecutive Trp residues at the center of the peptide. These residues play an important role in the activity of tritrpticin against Escherichia coli. In this work, a recombinant version of tritrpticin was produced in E. coli using calmodulin as a fusion protein expression tag to overcome the toxicity of the peptide. When used in combination with glyphosate, an inhibitor of the endogenous synthesis of aromatic amino acids, this expression system allowed for the incorporation of fluorinated Trp analogs at very high levels (>90%). The antimicrobial activity of the 4-, 5- and 6-fluoro-Trp-containing tritrpticins against E. coli was as strong as the activity of the native peptide. Similarly, the tritrpticin analogs exhibited comparable abilities to perturb and permeabilize synthetic lipid bilayers as well as the outer and inner membrane of E. coli. Furthermore, the use of 19F NMR spectroscopy established that each individual fluoro-Trp residue interacts differently with SDS micelles, supporting the idea that each Trp in the original tritrpticin plays a different role in the perturbing/permeabilizing activity of the peptide. Moreover, our work demonstrates that the use of fluoro-Trp in solvent perturbation 19F NMR experiments provides detailed site-specific information on the insertion of the Trp residues in biological membrane mimetics. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai

  10. Effects of heating, storage, and ultraviolet exposure on antimicrobial activity of garlic juice.

    PubMed

    Al-Waili, Noori S; Saloom, Khelod Y; Akmal, M; Al-Waili, Thia N; Al-Waili, Ali N; Al-Waili, Hamza; Ali, Amjed; Al-Sahlani, Karem

    2007-03-01

    This study was designed to investigate the effect of heating, storage, and ultraviolet exposure on antimicrobial activity of garlic juice and its bacteriocidal activity against common human pathogens. Antimicrobial activity of fresh garlic juice was tested against Escherichia coli, Staphylococcus aureus, Streptococcus hemolyticus B, S. hemolyticus A, Klebsiella sp., Shigella dysenteriae, and Candida albicans using the disc method. The dilution method was performed by addition of garlic juice to broth media to obtain 1-100% concentrations as vol/vol or wt/vol. Garlic juice was used after 24 hours of storage at 4 degrees C, heating to 100 degrees C for 5 minutes, 10 minutes, 30 minutes, and 60 minutes, heating to 80 degrees C for 60 minutes, and 4 hours of exposure to ultraviolet light. Re-culture of specimens taken from garlic-induced negative media was performed in fresh broth free of garlic juice. Results showed that all the isolates were sensitive to fresh garlic juice; the most sensitive was C. albicans, and the least sensitive was S. hemolyticus A. Heating to 100 degrees C for 30 and 60 minutes completely abolished the antimicrobial activity, while heating for 5 and 10 minutes, storage for 24 hours, and 4 hours of ultraviolet exposure decreased it. Garlic juice was bactericidal at concentrations of 5% and more. Thus garlic juice has marked antimicrobial activity that makes it a potential agent to be tested in clinical trials. The antimicrobial activity was compromised by storage and heating; therefore it is advisable to use fresh garlic and avoid boiling it for more than 5 minutes during cooking. PMID:17472490

  11. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    PubMed

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories. PMID:26687131

  12. In vitro antioxidant and antimicrobial activities of two Hawaiian marine Limu: Ulva fasciata (Chlorophyta) and Gracilaria salicornia (Rhodophyta).

    PubMed

    Vijayavel, Kannappan; Martinez, Jonathan A

    2010-12-01

    The antioxidant and antimicrobial properties of two Hawaiian marine algae (Ulva fasciata and Gracilaria salicornia) were evaluated. Ethanolic extracts of these two algae exhibited intracellular reactive 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic radical, nitric oxide, superoxide radical, and hydroxyl radical scavenging activities. In addition to the antioxidant activity these algae possessed appreciable antimicrobial activity and total phenolic contents. The overall results have established that these two marine algae could be used to derive bioactive compounds for a possible role as nutraceutical agents.

  13. Antimicrobial, antimalarial, and antileishmanial activities of mono- and bis-quaternary pyridinium compounds.

    PubMed

    Bharate, Sandip B; Thompson, Charles M

    2010-12-01

    Pyridinium-based oxime compounds have been utilized worldwide as antidotes following exposure to anticholinesterase agents. In the event of combined chemical and biological incident, it is of vital importance to know the ability of antidotes to provide additional protection against biological threats. This paper reports results of in vitro antimicrobial and antiprotozoal activities of a series of quaternary pyridinium oximes against a number of lower pathogenicity BSL-1 and 2 agents. In general, our compound panel had little to no antimicrobial action except for thiophene- and benzothiophene-substituted monoquaternary pyridinium compounds 21 and 24 that showed moderate antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus with IC(50) values ranging from 12.2 to 17.7 μg/mL. Compounds 21 and 24 also exhibited antileishmanial activity against Leishmania donovani with IC(50) values of 19 and 18 μg/mL, respectively. Another monoquaternary pyridinium compound with a bromobutyl side chain 17 showed antimalarial activity against both a chloroquine sensitive and resistant strains of Plasmodium falciparum with IC(50) values of 3.7 and 4.0 μg/mL, respectively. None of the bisquaternary pyridinium compounds showed antimicrobial or antiprotozoal activity. None of the compounds showed cytotoxic effects toward mammalian kidney fibroblasts. Results of this study indicate that the pyridinium compounds, some of which are already in use as antidotes, do not have significant antimicrobial and antiprotozoal activities and cannot be relied upon for additional protection in the event of combined chemical-biological incident.

  14. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  15. Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent.

    PubMed

    P, Mujeeb Rahman; Muraleedaran, K; Mujeeb, V M Abdul

    2015-01-01

    ZnO nanoparticles are immobilized on the chitosan matrix by an in situ sol-gel conversion of precursor molecules in a single step. Three different composites are prepared by varying the concentration of sodium hydroxide with same quantity of chitosan and zinc acetate dihydrate. The composites were characterized by FTIR, UV-visible spectra, and XRD. The observed decrease in the band width corresponding to OH and NH2 group in the composites is ascribed to the reduction of hydrogen bond due to the presence of ZnO nanoparticles. The direct evidence of the immobilization of nano ZnO particles in the matrix was identified by SEM. The average particle size values obtained for the nanoparticles, using Debye-Scherrer equation from XRD, is in the range 10-18nm. Optical studies proved that all the three composites studied have the same band gap energy (3.28eV) in agreement with the reported values. We observed that the composites possess excellent antimicrobial activity against Gram negative bacteria Escherichia coli (E. coli) and Gram positive bacteria Staphylococcus aureus (S. aureus) than chitosan. Based on the above studies, the biocompatible, eco-friendly and low-cost composite powder could be applied in various fields as an antimicrobial agent. PMID:25841382

  16. Radiosensitivities of parabens and characterization of the radical species induced in this class of antimicrobial agents after gamma irradiation

    NASA Astrophysics Data System (ADS)

    Üstündaǧ, Ilknur; Korkmaz, Özden

    Radiosensitivities of methyl, ethyl, propyl and butyl parabens and sodium salts of methyl and propyl parabens (hereafter, MP, EP, PP, BP, SMP and SPP, respectively) were investigated by monitoring, through electron spin resonance (ESR) spectroscopy, the evolution under different experimental conditions of characteristic features of the radicalic species produced upon irradiation by gamma radiation. While ESR spectra of the studied parabens consisted of the sum of broad and narrow resonance lines of different microwave saturation and thermal characteristics, those of sodium salts appeared to consist of the sum of two overlapping narrow resonance lines. Radical species presented different room and high-temperature decay characteristics, depending on the extent of the cage effect created by the lattice networks on these species. A model based on the presence of two radical species presenting different spectroscopic and kinetic features described best the experimental data collected for parabens and their sodium salts. Radiation yields of the studied parabens towards gamma radiation were calculated to be low (G≤10-2), providing the opportunity of using these antimicrobial agents in food, cosmetics and drugs to be sterilized by radiation without much loss from their antimicrobial activities.

  17. Antiplaque effects and mode of action of a combination of zinc citrate and a nonionic antimicrobial agent.

    PubMed

    Saxton, C A; Svatun, B; Lloyd, A M

    1988-06-01

    The effect upon plaque growth of adding a nonionic antimicrobial agent, triclosan, to a dentifrice containing zinc citrate was established in short-term in vivo studies. Plaque regrowth was inhibited by brushing with dentifrices which contained either zinc citrate or triclosan. When both were combined in the same dentifrice, the inhibition of overnight plaque regrowth was significantly greater. In two 4-day non-brushing studies, the dentifrices containing both zinc citrate and triclosan were applied either undiluted by the use of a cap splint or as 23% suspensions in water. Both methods resulted in significant reductions in plaque accumulation, with the greater activity being observed for the undiluted application of the dentifrice. Analysis of results of the overnight plaque studies for individual teeth revealed that the two agents had a complementary inhibitory action on plaque regrowth, zinc citrate being more effective on existing plaque whereas triclosan inhibited plaque formation on clean surfaces. The dentifrice containing both agents was effective against both existing plaque and new plaque formation. It is concluded that the addition of triclosan to a dentifrice containing zinc citrate improves its antiplaque potential.

  18. Neomycin Sulfate Improves the Antimicrobial Activity of Mupirocin-Based Antibacterial Ointments

    PubMed Central

    Blanchard, Catlyn; Brooks, Lauren; Beckley, Andrew; Colquhoun, Jennifer; Dewhurst, Stephen

    2015-01-01

    In the midst of the current antimicrobial pipeline void, alternative approaches are needed to reduce the incidence of infection and decrease reliance on last-resort antibiotics for the therapeutic intervention of bacterial pathogens. In that regard, mupirocin ointment-based decolonization and wound maintenance practices have proven effective in reducing Staphylococcus aureus transmission and mitigating invasive disease. However, the emergence of mupirocin-resistant strains has compromised the agent's efficacy, necessitating new strategies for the prevention of staphylococcal infections. Herein, we set out to improve the performance of mupirocin-based ointments. A screen of a Food and Drug Administration (FDA)-approved drug library revealed that the antibiotic neomycin sulfate potentiates the antimicrobial activity of mupirocin, whereas other library antibiotics did not. Preliminary mechanism of action studies indicate that neomycin's potentiating activity may be mediated by inhibition of the organism's RNase P function, an enzyme that is believed to participate in the tRNA processing pathway immediately upstream of the primary target of mupirocin. The improved antimicrobial activity of neomycin and mupirocin was maintained in ointment formulations and reduced S. aureus bacterial burden in murine models of nasal colonization and wound site infections. Combination therapy improved upon the effects of either agent alone and was effective in the treatment of contemporary methicillin-susceptible, methicillin-resistant, and high-level mupirocin-resistant S. aureus strains. From these perspectives, combination mupirocin-and-neomycin ointments appear to be superior to that of mupirocin alone and warrant further development. PMID:26596945

  19. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments.

    PubMed

    Thorn, R M S; Lee, S W H; Robinson, G M; Greenman, J; Reynolds, D M

    2012-05-01

    Due to the limitations associated with the use of existing biocidal agents, there is a need to explore new methods of disinfection to help maintain effective bioburden control, especially within the healthcare environment. The transformation of low mineral salt solutions into an activated metastable state, by electrochemical unipolar action, produces a solution containing a variety of oxidants, including hypochlorous acid, free chlorine and free radicals, known to possess antimicrobial properties. Electrochemically activated solutions (ECAS) have been shown to have broad-spectrum antimicrobial activity, and have the potential to be widely adopted within the healthcare environment due to low-cost raw material requirements and ease of production (either remotely or in situ). Numerous studies have found ECAS to be highly efficacious, as both a novel environmental decontaminant and a topical treatment agent (with low accompanying toxicity), but they are still not in widespread use, particularly within the healthcare environment. This review provides an overview of the scientific evidence for the mode of action, antimicrobial spectrum and potential healthcare-related applications of ECAS, providing an insight into these novel yet seldom utilised biocides. PMID:21809085

  20. Phytochemical, antimicrobial, and antioxidant activities of different citrus juice concentrates.

    PubMed

    Oikeh, Ehigbai I; Omoregie, Ehimwenma S; Oviasogie, Faith E; Oriakhi, Kelly

    2016-01-01

    The search for new antimicrobial compounds is ongoing. Its importance cannot be overemphasized in an era of emerging resistant pathogenic organisms. This study therefore investigated the phytochemical composition and antioxidant and antimicrobial activities of different citrus juice concentrates. Fruit juices of Citrus tangerine (tangerine), Citrus paradisi (grape), Citrus limon (lemon), and Citrus aurantifolia (lime) were evaluated. Antimicrobial activities against five bacterial and three fungal strains were evaluated. The results revealed the presence of alkaloids, flavonoids, steroids, terpenoids, saponins, cardiac glycosides, and reducing sugars in all the juice concentrates. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging capacities varied with tangerine and grape juices having better scavenging capacities than lemon and lime juices. Grape juice was observed to have a significantly higher (P < 0.05) ferric-reducing antioxidant potential (FRAP) value (364.2 ± 10.25 μmol/L Fe(II)/g of the extract) than the reference antioxidant, ascorbic acid (312.88 ± 5.61 μmol/L). Antimicrobial studies revealed differential antimicrobial activities against different microbial strains. Zones of inhibition ranging from 4 to 26 mm were observed for the antibacterial tests with 0-24 mm for antifungal test. Minimum inhibitory concentrations (MIC) and minimum bacteriostatic concentrations (MBC) for concentrates against bacterial strains ranged from 12.5 to 200 μg/mL. Lemon and lime juice concentrates had lower MIC and MBC values with orange and tangerine having the highest values. Minimum fungicidal concentrations ranged from 50 to 200 μg/mL. The results of this study suggest that these juice concentrates may have beneficial antimicrobial roles that can be exploited in controlling unwanted microbial growth.

  1. Antimicrobial Activity of Bacteriocins and Their Applications

    NASA Astrophysics Data System (ADS)

    Drosinos, Eleftherios H.; Mataragas, Marios; Paramithiotis, Spiros

    Bacteriocins are peptides or proteins that exert an antimicrobial action against a range of microorganisms. Their production can be related to the antagonism within a certain ecological niche, as the producer strain, being itself immune to its action, generally gains a competitive advantage. Many Gram-positive and Gram-negative microorganisms have been found to produce bacteriocins. The former, and especially the ones produced by lactic acid bacteria, has been the field of intensive research during the last decades mainly due to their properties that account for their suitability in food preservation and the benefits arising from that, and secondarily due to the broader inhibitory spectrum compared to the ones produced by Gramnegative microorganisms.

  2. Macromolecular synthesis and membrane perturbation assays for mechanisms of action studies of antimicrobial agents.

    PubMed

    Cotsonas King, Amy; Wu, Liping

    2009-12-01

    The definition and confirmation of the mechanism of action of an NCE is central to antimicrobial drug discovery. Most antibiotics currently in clinical use selectively target and block one or more bacterial macromolecular synthesis processes, e.g., DNA replication, RNA synthesis (transcription), protein synthesis (translation), cell wall (peptidoglycan) synthesis, and fatty acid (lipid) biosynthesis. This unit includes two protocols for determining the effect of test compounds on macromolecular synthesis, one in test tube format and the other in 96-well plate format. A membrane potential depolarization protocol is also provided. Disruption of cell membrane integrity may be a legitimate mechanism of action for antibacterials, but it also may be the result of nonspecific cell membrane activity, an effect that must be ruled out for mammalian cells. These assays provide useful means for verifying inhibition of an intended target pathway with investigational antimicrobial compounds. They can also be used as valuable secondary assays for lead optimization to eliminate inhibitors that display nonselective toxicity.

  3. Chemical compositions, antioxidant and antimicrobial activities of essential oils of Piper caninum Blume.

    PubMed

    Salleh, Wan Mohd Nuzul Hakimi Wan; Ahmad, Farediah; Yen, Khong Heng; Sirat, Hasnah Mohd

    2011-01-01

    Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9%) and stems (87.0%) oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil showed the highest inhibitory activity towards lipid peroxidation (114.9 ± 0.9%), compared to BHT (95.5 ± 0.5%), while leaves oil showed significant total phenolic content (27.4 ± 0.5 mg GA/g) equivalent to gallic acid. However, the essential oils showed weak activity towards DPPH free-radical scavenging. Evaluation of antimicrobial activity revealed that both oils exhibited strong activity against all bacteria strains with MIC values in the range 62.5 to 250 μg/mL, but weak activity against fungal strains. These findings suggest that the essential oils can be used as antioxidant and antimicrobial agents for therapeutic, nutraceutical industries and food manufactures.

  4. In vitro antimicrobial activity of Brazilian medicinal plant extracts against pathogenic microorganisms of interest to dentistry.

    PubMed

    Pereira, Elizete Maria; Gomes, Rafael Tomaz; Freire, Natália Ribeiro; Aguiar, Evandro Guimarães; Brandão, Maria das Graças Lins; Santos, Vagner Rodrigues

    2011-03-01

    This study evaluated the susceptibility of oral pathogenic microorganisms Candida albicans, Streptococcus mutans, Staphylococcus aureus, and Aggregatibacter actinomycetemcomitans to Brazilian medicinal plant extracts of Schinus terebinthifolius (aroeira), Croton campestris (velame), Lafoensia pacari (pacari), Centaurium erythraea (centáurea), Stryphnodendron adstringens (barbatimão), and Anacardium humile (cajuzinho-docerrado), as compared to standardized antimicrobial agents (nystatin, chloramphenicol and tetracycline hydrochloride). Ethanol, hexane and butane fractions from stem barks, rinds, leaves, and/or roots were extracted and tested. Antimicrobial diffusion agar test and MIC were performed according to CLSI. After 24 h of incubation at 37 °C, the diameter of inhibition zones and spectrophotometer readings were measured and compared. The results were reported as means ± standard deviation (M ± SD). With the exception of five extracts that showed no antimicrobial activity, all the extracts tested showed antimicrobial activity, in different levels. This study suggests that extracts from the plants tested could be an alternative therapeutic option for infectious conditions of the oral cavity, such as denture stomatitis, dental caries, and periodontitis.

  5. Combating Antimicrobial Resistance in Foodborne Microorganisms.

    PubMed

    Lai, Edward P C; Iqbal, Zafar; Avis, Tyler J

    2016-02-01

    This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.

  6. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes.

    PubMed

    Yang, Darren; Pornpattananangkul, Dissaya; Nakatsuji, Teruaki; Chan, Michael; Carson, Dennis; Huang, Chun-Ming; Zhang, Liangfang

    2009-10-01

    This study evaluated the antimicrobial activity of lauric acid (LA) and its liposomal derivatives against Propionibacterium acnes (P. acnes), the bacterium that promotes inflammatory acne. First, the antimicrobial study of three free fatty acids (lauric acid, palmitic acid and oleic acid) demonstrated that LA gives the strongest bactericidal activity against P. acnes. However, a setback of using LA as a potential treatment for inflammatory acne is its poor water solubility. Then the LA was incorporated into a liposome formulation to aid its delivery to P. acnes. It was demonstrated that the antimicrobial activity of LA was not only well maintained in its liposomal derivatives but also enhanced at low LA concentration. In addition, the antimicrobial activity of LA-loaded liposomes (LipoLA) mainly depended on the LA loading concentration per single liposomes. Further study found that the LipoLA could fuse with the membranes of P. acnes and release the carried LA directly into the bacterial membranes, thereby killing the bacteria effectively. Since LA is a natural compound that is the main acid in coconut oil and also resides in human breast milk and liposomes have been successfully and widely applied as a drug delivery vehicle in the clinic, the LipoLA developed in this work holds great potential of becoming an innate, safe and effective therapeutic medication for acne vulgaris and other P. acnes associated diseases. PMID:19665786

  7. Antioxidant, antimicrobial and antiproliferative activities of five lichen species.

    PubMed

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Comić, Ljiljana; Dačić, Dragana; Curčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

  8. Antimicrobial Activity of Root Bark of Salacia reticulata

    PubMed Central

    Choudhary, G. P.; Vijay Kanth, M. S.

    2005-01-01

    Antimicrobial activity of chloroform and methanolic extracts of Salacia reticulata were tested against gram positive, gram negative and fungus strains using zone of inhibition and minimum inhibitory concentrations. It was observed that both extracts have inhibitory effect towards all microorganisms used in the test. Chloroform extract was more effective than methanolic extract. PMID:22557181

  9. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    PubMed Central

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

  10. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    PubMed

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry. PMID:25870697

  11. Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties

    PubMed Central

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.

    2015-01-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMP’s), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. epidermidis, and E. coli. In biological interactions such as occurs on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up

  12. Antimicrobial Activities of Ceftaroline and Comparator Agents against Bacterial Organisms Causing Bacteremia in Patients with Skin and Skin Structure Infections in U.S. Medical Centers, 2008 to 2014

    PubMed Central

    Flamm, Robert K.; Mendes, Rodrigo E.; Farrell, David J.; Jones, Ronald N.

    2016-01-01

    We evaluated the antimicrobial susceptibility of 1,454 organisms consecutively collected from patients with bacteremia associated with skin and skin structure infections. The most common organisms obtained were Staphylococcus aureus (670 organisms [46.1%]), Escherichia coli (200 organisms [13.8%]), β-hemolytic streptococci (βHS) (138 organisms [9.5%]), and Klebsiella pneumoniae (109 organisms [7.5%]). The susceptibility rates for ceftaroline were 97.9% for S. aureus (95.9% among methicillin-resistant S. aureus [MRSA]), 100.0% for βHS, 86.5% for E. coli, and 89.0% for K. pneumoniae. Ceftaroline and tigecycline provided the best overall coverage. PMID:26856825

  13. Design of novel 4-hydroxy-chromene-2-one derivatives as antimicrobial agents.

    PubMed

    Mladenović, Milan; Vuković, Nenad; Sukdolak, Slobodan; Solujić, Slavica

    2010-06-11

    This paper presents the design of novel 4-hydroxy-chromene-2 one derivatives, based on previously obtained minimal inhibitory concentration values (MICs), against twenty four microorganism cultures, gram positive and negative bacteria and fungi. Two of our compounds, 3b (MIC range 130-500 microg/mL) and 9c (31.25-62.5 microg/mL), presented high potential antimicrobial activity. The compound 9c had equal activity to the standard ketoconazole (31.25 microg/mL) against M. mucedo. Enlarged resistance of S. aureus, E. coli and C. albicans on the effect of potential drugs and known toxicity of coumarin antibiotics, motivated us to establish SAR and QSAR models of activity against these cultures and correlate biological activity, molecular descriptors and partial charges of functional groups to explain activity and use for the design of new compounds. The QSAR study presents essential relation of antimicrobial activity and dominant substituents, 4-hydroxy, 3-acetyl and thiazole functional groups, also confirmed through molecular docking. The result was ten new designed compounds with much improved predicted inhibition constants and average biological activity.

  14. A central composite rotatable design (CCRD) approach to study the combined effect of antimicrobial agents against bacterial pathogens.

    PubMed

    Santos, Fernanda Godoy; Mendonça, Layanne Andrade; Mantovani, Hilário Cuquetto

    2015-09-01

    The combination of antimicrobial agents has been proposed as a therapeutic strategy to control bacterial diseases and to reduce the emergence of antibiotic-resistant strains in clinical environments. In this study, the interaction between the lantibiotic bovicin HC5 with chloramphenicol, gentamicin, nisin, lysostaphin and hydrogen peroxide against Staphylococcus aureus O46 was evaluated by MIC assays. The central composite rotatable design (CCRD), a robust and economic statistical design, was used to combine concentration levels of different antimicrobials agents with distinct mechanisms of action and the presence of significant interactions among the antimicrobials was determined by regression analysis. According to the adjusted model, there were no significant interactions between bovicin HC5 and gentamicin, lysostaphin, nisin or hydrogen peroxide. However, bovicin HC5 showed a significant interaction (P < 0.02) with chloramphenicol. This is the first study applying the CCRD approach to evaluate the combined effect of antimicrobials against S. aureus. Based on our results, this approach is an effective strategy to determine synergistic interactions between antimicrobial agents applied in human and veterinary medicine against bacterial pathogens. PMID:26081601

  15. Effect of Antimicrobial Agents on MinD Protein Oscillations in E. coli Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Kelly, Corey; Giuliani, Maximiliano; Dutcher, John

    2012-02-01

    The pole-to-pole oscillation of MinD proteins in E. coli cells determines the location of the division septum, and is integral to healthy cell division. It has been shown previously that the MinD oscillation period is approximately 40 s for healthy cells [1] but is strongly dependant on environmental factors such as temperature, which may place stress on the cell [2,3]. We use a strain of E. coli in which the MinD proteins are tagged with green fluorescent protein (GFP), allowing fluorescence visualization of the MinD oscillation. We use high-resolution total internal reflection fluorescence (TIRF) microscopy and a custom, temperature controlled flow cell to observe the effect of exposure to antimicrobial agents on the MinD oscillation period and, more generally, to analyze the time variation of the spatial distribution of the MinD proteins within the cells. These measurements provide insight into the mechanism of antimicrobial action. [1] Raskin, D.M.; de Boer, P. (1999) Proc. Natl. Acad. Sci. 96: 4971-4976. [2] Touhami, A.; Jericho, M; Rutenberg, A. (2006) J. Bacteriol. 188: 7661-7667. [3] Downing, B.; Rutenberg, A.; Touhami, A.; Jericho, M. (2009) PLoS ONE 4: e7285.

  16. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix

    PubMed Central

    Babu, Ranjith; Zhang, Jianying; Beckman, Eric J.; Virji, Mohammed; Pasculle, William A.; Wells, Alan

    2007-01-01

    Wound healing is a complex and orchestrated process that re-establishes the barrier and other functions of the skin. While wound healing proceeds apace in healthy individual, bacterial overgrowth and infection disrupts this process with significant morbidity and mortality. As such, any artificial matrix to promote wound healing must also control infecting microbes. We had earlier developed a two-part space-conforming gel backbone based on polyethyleneglycol (PEG) or lactose, which used ionic silver as the catalyst for gelation. As silver is widely used as an in vitro antimicrobial, use of silver as a catalyst for gelation provided the opportunity to assess its function as an anti-microbial agent in the gels. We found that these gels show bacteriostatic and bactericidal activity for a range of Gram-negative and Gram-positive organisms, including aerobic as well as anaerobic bacteria. This activity lasted for days, as silver leached out of the formed gels over a day in the manner of second-order decay. Importantly the gels did not limit either cell growth or viability, though cell migration was affected. Adding collagen I fragments to the gels corrected this effect on cell migration. We also found that the PEG gel did not interfere with hemostasis. These observations provide the basis for use of the gel backbones for incorporation of anesthetic agents and factors that promote wound repair. In conclusion, silver ions can serve dual functions of catalyzing gelation and providing anti-microbial properties to a biocompatible polymer. PMID:16635526

  17. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Hwang, Yoon Y.; Ramalingam, Karthikeyan; Bienek, Diane R.; Lee, Valerie; You, Tao

    2013-01-01

    Acinetobacter baumannii has emerged as a serious problematic pathogen due to the ever-increasing presence of antibiotic resistance, demonstrating a need for novel, broad-spectrum antimicrobial therapeutic options. Antimicrobial nanoemulsions are emulsified mixtures of detergent, oil, and water (droplet size, 100 to 800 nm) which have broad antimicrobial activity against bacteria, enveloped viruses, and fungi. Here, we screened the antimicrobial activities of five nanoemulsion preparations against four Acinetobacter baumannii isolates to identify the most suitable preparation for further evaluation. Among them, N5, which contains 10% (vol/vol) Triton X-100, 25% (vol/vol) soybean oil, and 1% (wt/vol) cetylpyridinium chloride (CPC), showed the best efficacy against A. baumannii in both its planktonic and biofilm forms and was selected for further study. Our data demonstrate that, while the killing of planktonic forms of A. baumannii was due to the 1% CPC component of our nanoemulsions, the breakdown of biofilms was achieved via the emulsified oil and detergent fractions. Furthermore, we documented the effect of ethanol and NaCl in combination with N5 on planktonic A. baumannii. In killing curves of N5 combined with other agents (ethanol or NaCl), a synergistic effect of a ≥2-log decrease in CFU/ml was observed. The antibiofilm activity of N5 was confirmed via a cell proliferation test and scanning electron microscopy. The effects of exposure to severe environmental conditions, which simulates the field conditions in Iraq and Afghanistan, were evaluated, and this exposure did not affect the overall antimicrobial activity of N5. These studies lay a solid foundation for the utilization of nanoemulsions against the antibiotic-resistant forms of A. baumannii. PMID:23669390

  18. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria.

    PubMed

    Li, Xiaoning; Robinson, Sandra M; Gupta, Akash; Saha, Krishnendu; Jiang, Ziwen; Moyano, Daniel F; Sahar, Ali; Riley, Margaret A; Rotello, Vincent M

    2014-10-28

    We present the use of functionalized gold nanoparticles (AuNPs) to combat multi-drug-resistant pathogenic bacteria. Tuning of the functional groups on the nanoparticle surface provided gold nanoparticles that were effective against both Gram-negative and Gram-positive uropathogens, including multi-drug-resistant pathogens. These AuNPs exhibited low toxicity to mammalian cells, and bacterial resistance was not observed after 20 generations. A strong structure-activity relationship was observed as a function of AuNP functionality, providing guidance to activity prediction and rational design of effective antimicrobial nanoparticles.

  19. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts.

    PubMed

    Denev, Petko; Kratchanova, Maria; Ciz, Milan; Lojek, Antonin; Vasicek, Ondrej; Blazheva, Denitsa; Nedelcheva, Plamena; Vojtek, Libor; Hyrsl, Pavel

    2014-01-01

    The present study provides a comprehensive data on the antioxidant, antimicrobial and neutrophil-modulating activities of extracts from six medicinal plants--blackberry (Rubus fruticosus) leaves, chokeberry (Aronia melanocarpa) leaves, hawthorn (Crataegus monogyna) leaves, lady's mantle (Alchemilla glabra) aerial parts, meadowsweet (Filipendula ulmaria) aerial parts and raspberry (Rubus idaeus) leaves. In order to analyze the antioxidant activity of the herbs, several methods (ORAC, TRAP, HORAC and inhibition of lipid peroxidation) were used. Blackberry leaves and meadowsweet extracts revealed the highest antioxidant activities via all methods. All extracts studied blocked almost completely the opsonized zymosan particle-activated ROS production by neutrophils from human whole blood. On the other hand, the effect of extracts on phorbol myristate acetate-activated ROS production was much milder and even nonsignificant in the case of chokeberry leaves. This latter result suggests that extracts (apart from their antioxidative activity) interfere with the signaling cascade of phagocyte activation upstream of the protein kinase C activation. The antimicrobial activity of the investigated extracts against 11 human pathogens was investigated using three different methods. Meadowsweet and blackberry leaves extracts had the highest antimicrobial effect and the lowest minimal inhibiting concentrations (MICs) against the microorganisms tested.

  20. Contribution of Cell Surface Hydrophobicity in the Resistance of Staphylococcus aureus against Antimicrobial Agents

    PubMed Central

    Lather, Puja; Mohanty, A. K.; Jha, Pankaj; Garsa, Anita Kumari

    2016-01-01

    Staphylococcus aureus is found in a wide variety of habitats, including human skin, where many strains are commensals that may be clinically significant or contaminants of food. To determine the physiological characteristics of resistant strain of Staphylococcus aureus against pediocin, a class IIa bacteriocin, a resistant strain was compared with wild type in order to investigate the contribution of hydrophobicity to this resistance. Additional clumping of resistant strain relative to wild type in light microscopy was considered as an elementary evidence of resistance attainment. A delay in log phase attainment was observed in resistant strain compared to the wild type strain. A significant increase in cell surface hydrophobicity was detected for resistant strain in both hexadecane and xylene indicating the contribution of cell surface hydrophobicity as adaptive reaction against antimicrobial agents. PMID:26966577

  1. Bactericidal Action of Photodynamic Antimicrobial Chemotherapy (PACT) with Photosensitizers Used as Plaque-Disclosing Agents against Experimental Biofilm.

    PubMed

    Ishiyama, Kirika; Nakamura, Keisuke; Kanno, Taro; Niwano, Yoshimi

    2016-01-01

    Our previous study revealed that the photo-irradiation of rose bengal, erythrosine, and phloxine, xanthene photosensitizers, used as dental plaque disclosing agents, could exert bactericidal action on planktonic Streptococcus mutans via the singlet oxygen. In the present study, the photo-irradiation induced bactericidal activity of the three xanthene compounds against the experimental biofilm of S. mutans was investigated in combination with acid electrolyzed water (AcEW) and alkaline electrolyzed water (AlEW). As a result, only the photo-irradiated rose bengal in AlEW showed prominent bactericidal activity with a >3-log reduction of the viable bacterial count. Since our previous study showed that the affinity of rose bengal to bacterial cells was superior to that of erythrosine and phloxine, it was speculated that AlEW damaged the extracellular matrix of the experimental biofilm, which would let the rose bengal easily be bound to the bacterial cells. From these results, it is strongly suggested that rose bengal is a suitable photosensitizer for use as a plaque disclosing agent in photodynamic antimicrobial chemotherapy to treat dental plaque. PMID:27667525

  2. Effects of subtherapeutic administration of antimicrobial agents to beef cattle on the prevalence of antimicrobial resistance in Campylobacter jejuni and Campylobacter hyointestinalis.

    PubMed

    Inglis, G D; McAllister, T A; Busz, H W; Yanke, L J; Morck, D W; Olson, M E; Read, R R

    2005-07-01

    The influence of antimicrobial agents on the development of antimicrobial resistance (AMR) in Campylobacter isolates recovered from 300 beef cattle maintained in an experimental feedlot was monitored over a 315-day period (11 sample times). Groups of calves were assigned to one of the following antimicrobial treatments: chlortetracycline and sulfamethazine (CS), chlortetracycline alone (Ct), virginiamycin, monensin, tylosin phosphate, and no antimicrobial agent (i.e., control treatment). In total, 3,283 fecal samples were processed for campylobacters over the course of the experiment. Of the 2,052 bacterial isolates recovered, 92% were Campylobacter (1,518 were Campylobacter hyointestinalis and 380 were C. jejuni). None of the antimicrobial treatments decreased the isolation frequency of C. jejuni relative to the control treatment. In contrast, C. hyointestinalis was isolated less frequently from animals treated with CS and to a lesser extent from animals treated with Ct. The majority (> or =94%) of C. jejuni isolates were sensitive to ampicillin, erythromycin, and ciprofloxacin, but more isolates with resistance to tetracycline were recovered from animals fed Ct. All of the 1,500 isolates of C. hyointestinalis examined were sensitive to ciprofloxacin. In contrast, 11%, 10%, and 1% of these isolates were resistant to tetracycline, erythromycin, and ampicillin, respectively. The number of animals from which C. hyointestinalis isolates with resistance to erythromycin and tetracycline were recovered differed among the antimicrobial treatments. Only Ct administration increased the carriage rates of erythromycin-resistant isolates of C. hyointestinalis, and the inclusion of CS in the diet increased the number of animals from which tetracycline-resistant isolates were recovered. The majority of C. hyointestinalis isolates with resistance to tetracycline were obtained from cohorts within a single pen, and most of these isolates were recovered from cattle during feeding of

  3. Use of Extract of Citrus sinensis as an antimicrobial agent for foodborne zoonotic pathogens and spoilage bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens remain global health problems despite concerted efforts to control the transmission of these microorganisms through food. The resurgence of drug resistant bacteria has renewed interest in developing and testing new sources of antimicrobial agents to control foodborne illness. Thi...

  4. Edible coating as carrier of antimicrobial agents to extend the shelf life of fresh-cut apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible coatings with antimicrobial agents can extend shelf-life of fresh-cut fruits. The effect of lemongrass, oregano oil and vanillin incorporated in apple puree-alginate edible coatings, on shelf-life of fresh-cut 'Fuji' apples, was investigated. Coated apples were packed in air filled polypropyl...

  5. Edible Coating as Carrier of Antimicrobial Agents to Extend the Shelf Life of Fresh-Cut Apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible coatings with antimicrobial agents provide a novel way to improve the safety and shelf-life of fresh-cut fruit. The effect of lemongrass, oregano oil and vanillin, incorporated in apple puree-alginate edible coatings, on the shelf-life of fresh-cut Fuji apples, was investigated. Coated appl...

  6. Prevalence of multi-antimicrobial-agent resistant, shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga.

    PubMed

    Ram, Siya; Vajpayee, Poornima; Shanker, Rishi

    2007-11-01

    The consumption of polluted surface water for domestic and recreational purposes by large populations in developing nations is a major cause of diarrheal disease related mortality. The river Ganga and its tributaries meet 40% of the water requirement for drinking and irrigation in India. In this study, Escherichia coli isolates (n=75) of the river Ganga water were investigated for resistance to antimicrobial agents (n=15) and virulence genes specific to shiga toxin (STEC) and enterotoxin producing E. coli (ETEC). E. coli isolates from the river Ganga water exhibit resistance to multiple antimicrobial agents. The distribution of antimicrobial agent resistance in E. colivaries significantly (chi2: 81.28 at df = 24, p < 0.001) between the sites. Both stx1 and stx2 genes were present in 82.3% of STEC (n=17) while remaining isolates possess either stxl (11.8%) or stx2 (5.9%). The presence of eaeA, hlyA, and chuA genes was observed in 70.6, 88.2, and 58.8% of STEC, respectively. Both LT1 and ST1 genes were positive in 66.7% of ETEC (n=15) while 33.3% of isolates harbor only LT1 gene. The prevalence of multi-antimicrobial-agent resistant E. coli in the river Ganga water poses increased risk of infections in the human population.

  7. Consumer-mediated nutrient recycling is influenced by interactions between nutrient enrichment and the anti-microbial agent triclosan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triclosan (5-chloro-2-(2, 4-dichlorophenoxy)phenol) is a widely used antimicrobial agent in personal care products whose fate and transport in aquatic ecosystems is a growing environmental concern. Evidence for chronic ecological effects of triclosan in aquatic organisms is increasing. At larger sca...

  8. Prevalence of multi-antimicrobial-agent resistant, shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga.

    PubMed

    Ram, Siya; Vajpayee, Poornima; Shanker, Rishi

    2007-11-01

    The consumption of polluted surface water for domestic and recreational purposes by large populations in developing nations is a major cause of diarrheal disease related mortality. The river Ganga and its tributaries meet 40% of the water requirement for drinking and irrigation in India. In this study, Escherichia coli isolates (n=75) of the river Ganga water were investigated for resistance to antimicrobial agents (n=15) and virulence genes specific to shiga toxin (STEC) and enterotoxin producing E. coli (ETEC). E. coli isolates from the river Ganga water exhibit resistance to multiple antimicrobial agents. The distribution of antimicrobial agent resistance in E. colivaries significantly (chi2: 81.28 at df = 24, p < 0.001) between the sites. Both stx1 and stx2 genes were present in 82.3% of STEC (n=17) while remaining isolates possess either stxl (11.8%) or stx2 (5.9%). The presence of eaeA, hlyA, and chuA genes was observed in 70.6, 88.2, and 58.8% of STEC, respectively. Both LT1 and ST1 genes were positive in 66.7% of ETEC (n=15) while 33.3% of isolates harbor only LT1 gene. The prevalence of multi-antimicrobial-agent resistant E. coli in the river Ganga water poses increased risk of infections in the human population. PMID:18044515

  9. Synthesis and antimicrobial activity of a series of caespitin derivatives.

    PubMed Central

    Van der Schyf, C J; Dekker, T G; Fourie, T G; Snyckers, F O

    1986-01-01

    Chemical modification of the naturally occurring phlorophenone antimicrobial agent caespitin is described. These modifications include variations in the phenone side chain, substitution with prenyl, allyl, and benzyl in the 4-position of the phlorophenone nucleus, and ring cyclizations via etherification to give furan and chroman compounds. Several of these derivatives show enhanced in vitro potency over caespitin. Studies on the development of microbial resistance against these compounds show that no or very little resistance developed after several passes of these compounds in representative microbial strains. PMID:3535662

  10. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity

    PubMed Central

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  11. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity.

    PubMed

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection - induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone's antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  12. The role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib (traditional Ethiopian spiced fermented cottage cheese).

    PubMed

    Geremew, Tsehayneh; Kebede, Ameha; Andualem, Berhanu

    2015-09-01

    Spices and lactic acid bacteria have natural antimicrobial substances and organic compounds having antagonistic activity against microorganisms. The objective of this study was to investigate the role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib. Antimicrobial activities of spices and lactic acid bacteria (LAB) filtrates were determined by agar well diffusion method against E. coli, S. aureus, S. flexneri and S. peumoniae. Aantimicrobial activity of garlic was found to be the most effective against all the tested pathogens. Inhibition zones of garlic extract against all pathogens was significantly (P ≤ 0.05) greater than the remaining spice extracts. Inhibition zones (12.50 ± 1.00 to 15.50 ± 1.00 mm) of ginger and R. graveolens ethanol extracts against all tested pathogens were significantly (P ≤ 0.05) greater than the remaining solvent extracts. Inhibition zone of O. basilicum ethanol extract against all pathogenic bacteria was significantly (p ≤ 0.05) greater than hexane and acetone extracts. Lactobacillus isolates were shown the highest antimicrobial activity than the other LAB isolates against all pathogens. The synergistic effect of spices together with LAB might be contributed a lot to preserve and extend shelf life of metata ayib. Their antimicrobial activity can reduce the risk of spoilage and pathogenesis. The possible reason of LAB isolates was may be due to production of lactic acid, acetic acid and secondary metabolites like bacteriocins. Aseptic processing of traditional cottage cheese (ayib) is by far needed to minimize risks associated during consumption of metata ayib. PMID:26344979

  13. The role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib (traditional Ethiopian spiced fermented cottage cheese).

    PubMed

    Geremew, Tsehayneh; Kebede, Ameha; Andualem, Berhanu

    2015-09-01

    Spices and lactic acid bacteria have natural antimicrobial substances and organic compounds having antagonistic activity against microorganisms. The objective of this study was to investigate the role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib. Antimicrobial activities of spices and lactic acid bacteria (LAB) filtrates were determined by agar well diffusion method against E. coli, S. aureus, S. flexneri and S. peumoniae. Aantimicrobial activity of garlic was found to be the most effective against all the tested pathogens. Inhibition zones of garlic extract against all pathogens was significantly (P ≤ 0.05) greater than the remaining spice extracts. Inhibition zones (12.50 ± 1.00 to 15.50 ± 1.00 mm) of ginger and R. graveolens ethanol extracts against all tested pathogens were significantly (P ≤ 0.05) greater than the remaining solvent extracts. Inhibition zone of O. basilicum ethanol extract against all pathogenic bacteria was significantly (p ≤ 0.05) greater than hexane and acetone extracts. Lactobacillus isolates were shown the highest antimicrobial activity than the other LAB isolates against all pathogens. The synergistic effect of spices together with LAB might be contributed a lot to preserve and extend shelf life of metata ayib. Their antimicrobial activity can reduce the risk of spoilage and pathogenesis. The possible reason of LAB isolates was may be due to production of lactic acid, acetic acid and secondary metabolites like bacteriocins. Aseptic processing of traditional cottage cheese (ayib) is by far needed to minimize risks associated during consumption of metata ayib.

  14. Water Soluble Usnic Acid-Polyacrylamide Complexes with Enhanced Antimicrobial Activity against Staphylococcus epidermidis

    PubMed Central

    Francolini, Iolanda; Taresco, Vincenzo; Crisante, Fernanda; Martinelli, Andrea; D’Ilario, Lucio; Piozzi, Antonella

    2013-01-01

    Usnic acid, a potent antimicrobial and anticancer agent, poorly soluble in water, was complexed to novel antimicrobial polyacrylamides by establishment of strong acidic-base interactions. Thermal and spectroscopic analysis evidenced a molecular dispersion of the drug in the polymers and a complete drug/polymer miscibility for all the tested compositions. The polymer/drug complexes promptly dissolved in water and possessed a greater antimicrobial activity against Staphylococcus epidermidis than both the free drug and the polymer alone. The best results were obtained with the complex based on the lowest molecular weight polymer and containing a low drug content. Such a complex showed a larger inhibition zone of bacterial growth and a lower minimum inhibitory concentration (MIC) with respect to usnic acid alone. This improved killing effect is presumably due to the reduced size of the complexes that allows an efficient cellular uptake of the antimicrobial complexes. The killing effect extent seems to be not significantly dependent on usnic acid content in the samples. PMID:23549269

  15. Repurposing the Antihistamine Terfenadine for Antimicrobial Activity against Staphylococcus aureus

    PubMed Central

    2015-01-01

    Staphylococcus aureus is a rapidly growing health threat in the U.S., with resistance to several commonly prescribed treatments. A high-throughput screen identified the antihistamine terfenadine to possess, previously unreported, antimicrobial activity against S. aureus and other Gram-positive bacteria. In an effort to repurpose this drug, structure–activity relationship studies yielded 84 terfenadine-based analogues with several modifications providing increased activity versus S. aureus and other bacterial pathogens, including Mycobacterium tuberculosis. Mechanism of action studies revealed these compounds to exert their antibacterial effects, at least in part, through inhibition of the bacterial type II topoisomerases. This scaffold suffers from hERG liabilities which were not remedied through this round of optimization; however, given the overall improvement in activity of the set, terfenadine-based analogues provide a novel structural class of antimicrobial compounds with potential for further characterization as part of the continuing process to meet the current need for new antibiotics. PMID:25238555

  16. Antimicrobial and cytotoxic activities from Jatropha dioica roots.

    PubMed

    Silva-Belmares, Yesenia; Rivas-Morales, Catalina; Viveros-Valdez, Ezequiel; de la Cruz-Galicia, María Guadalupe; Carranza-Rosales, Pilar

    2014-05-01

    The antimicrobial and cytotoxic activities of organic extracts obtained from roots of the medicinal plant Jatropha dioica (Euphorbiaceae) were investigated. In order to evaluate their antimicrobial activity, the organic extracts were tested against clinical isolates of the human pathogens Bacillus cereus, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Enterobacter aerogenes, Enterobacter cloacae, Salmonella typhimurium, Cryptococcus neoformans, Candida albicans, Candida parapsilosis and Sporothrix schenckii. Results revealed that the hexane extract possess the stronger activity and a broader microbicide spectrum compared to the acetone and ethanol extracts. The activity of hexane extract may be attributed in part to the presence of β-sitosterol, the major compound identified by bioautography. The hexane extract, as well as the bioactive fraction were not cytotoxic when assays were profiled against the normal cell lines Chang, OK and LLCPK-1 (IC50>1000 μg mL(-1)). PMID:26031013

  17. Antimicrobial activity of different tea varieties available in Pakistan.

    PubMed

    Zakir, Muhammad; Sultan, Khush Bakht; Khan, Haroon; Ihsaanullah; Khan, Murad Ali; Fazal, Hina; Rauf, Abdur

    2015-11-01

    In this antimicrobial study, various extracts of Green and Black tea (Camellia sinensis) and Lemon grass (Cymbopogon citrates) were evaluated for antimicrobial activities against six bacterial strains including both human pathogenic bacteria (Escherichia coli, Pseudomonas aeuroginosa, Staphylococcus aureus and Salmonella typhi) and plant pathogenic bacteria (Erwinia carotovora, Agro bacterium tumifaciens) and one fungal strain Candida albicans by disc diffusion susceptibility method. Of human pathogens, P. aeruginosa was most susceptible to all three different tea varieties; though rest of the strains also demonstrated prominent sensitivity. In comparison, black tea extracts were less activities than green tea and lemon grass. However, all the three tea varieties illustrated profound activity against plant pathogenic bacteria. Similarly, when extracts of tea were tested against C. albicans, green tea and lemon grass exhibited significant activity while black tea was mostly inactive.

  18. Antimicrobial activity of different tea varieties available in Pakistan.

    PubMed

    Zakir, Muhammad; Sultan, Khush Bakht; Khan, Haroon; Ihsaanullah; Khan, Murad Ali; Fazal, Hina; Rauf, Abdur

    2015-11-01

    In this antimicrobial study, various extracts of Green and Black tea (Camellia sinensis) and Lemon grass (Cymbopogon citrates) were evaluated for antimicrobial activities against six bacterial strains including both human pathogenic bacteria (Escherichia coli, Pseudomonas aeuroginosa, Staphylococcus aureus and Salmonella typhi) and plant pathogenic bacteria (Erwinia carotovora, Agro bacterium tumifaciens) and one fungal strain Candida albicans by disc diffusion susceptibility method. Of human pathogens, P. aeruginosa was most susceptible to all three different tea varieties; though rest of the strains also demonstrated prominent sensitivity. In comparison, black tea extracts were less activities than green tea and lemon grass. However, all the three tea varieties illustrated profound activity against plant pathogenic bacteria. Similarly, when extracts of tea were tested against C. albicans, green tea and lemon grass exhibited significant activity while black tea was mostly inactive. PMID:26639502

  19. Antimicrobial activity of Lactobacillus against microbial flora of cervicovaginal infections

    PubMed Central

    Dasari, Subramanyam; Shouri, Raju Naidu Devanaboyaina; Wudayagiri, Rajendra; Valluru, Lokanatha

    2014-01-01

    Objective To assess the probiotic nature of Lactobacillus in preventing cervical pathogens by studying the effectiveness of antimicrobial activity against vaginal pathogens. Methods Lactobacilli were isolated from healthy vaginal swabs on selective media and different pathogenic bacteria were isolated by using different selective media. The Lactobacillus strains were tested for the production of hydrogen peroxide and antimicrobial compounds along with probiotic properties. Results Of the 10 isolated Lactobacillus strains, strain 1, 3 and 6 are high hydrogen peroxide producers and the rest were low producers. Results of pH and amines tests indicated that pH increased with fishy odour in the vaginal fluids of cervicovaginal infection patients when compared with vaginal fluids of healthy persons. The isolates were found to be facultative anaerobic, Gram-positive, non-spore-forming, non-capsule forming and catalase-negative bacilli. The results of antimicrobial activity of compounds indicated that 280 and 140 µg/mL was the minimum concentration to inhibit the growth of both pathogens and test organisms respectively. Conclusions The results demonstrated that Lactobacillus producing antimicrobial compounds inhibits the growth of cervical pathogens, revealing that the hypothesis of preventing vaginal infection by administering probiotic organisms has a great appeal to patients, which colonize the vagina to help, restore and maintain healthy vagina.

  20. The Antimicrobial Activity of Different Mouthwashes in Malaysia

    PubMed Central

    Mat Ludin, C.M.; Md Radzi, J.

    2001-01-01

    Seven different brands of mouthwashes were assessed for the inhibition of growth of oral micro-organisms. The results showed wide variations in their effectiveness: Those containing cationic surfactants and complex organic nitrogenous compounds were more active than the older formulations based on phenols. A list was compiled ranking the mouthwashes according to their antimicrobial activity, which did not always agree with the manufacturer’s claims or indication for use. PMID:22893755

  1. Distribution of drug-resistant bacteria and rational use of clinical antimicrobial agents

    PubMed Central

    ZHOU, CHENLIANG; CHEN, XIAOBING; WU, LIWEN; QU, JING

    2016-01-01

    Open wound may lead to infection in patients. Due to overuse of medication, certain bacteria have become resistant to drugs currently available. The aim of the present study was to provide a guide to ameliorate the appropriate and rational use of clinical antimicrobial agents by analyzing the distribution of drug-resistant pathogenic bacteria in patients. Between October 2013 and January 2015, 126 patients were selected at the Department of Orthopedics. Wound secretion samples were collected, and the pathogen bacteria isolated and identified. Identification was performed using an automated identification instrument and the Kirby-Bauer antibiotic method was used to evaluate the bacterial resistance. Of the 126 patients, 118 patients were infected (infection rate, 93.65%). Additionally, 47 strains of gram-positive pathogenic bacteria (39.83%) and 71 strains of pathogenic-gram negative bacteria (60.17%) were identified. The bacteria were most likely to be resistant to penicillin while sensitive to vancomycin and imipenem. Some bacteria were resistant to several antibacterial agents. The results showed that existing risk factors at the Department of Orthopedics were complex and any non-standard procedures were able to cause bacterial infection. There were obvious dissimilarities among infectious bacteria with regard to their sensitivity to various antibacterial agents. Manipulation techniques during the treatment process were performed in a sterile manner and the use of antibacterial agents was required to be strictly in accordance with the results of drug sensitivity tests to provide effective etiologic information and a treatment plan for clinical trials and to reduce the risk of infection by multi-resistant bacteria. PMID:27313667

  2. Review of antimicrobial and antioxidative activities of chitosans in food.

    PubMed

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality. PMID:20828484

  3. Antimicrobial activity of bone cements embedded with organic nanoparticles.

    PubMed

    Perni, Stefano; Thenault, Victorien; Abdo, Pauline; Margulis, Katrin; Magdassi, Shlomo; Prokopovich, Polina

    2015-01-01

    Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate) [PMMA], hydroxyapatite, and brushite) and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial activity; furthermore, lower concentrations are needed in calcium phosphate (brushite and hydroxyapatite) than in acrylic (PMMA) bone cements. These nanoparticles are effective against a wide spectrum of bacteria, including those already resistant to the antibiotics routinely employed in orthopedic applications, such as gentamicin.

  4. Antimicrobial activity of bone cements embedded with organic nanoparticles

    PubMed Central

    Perni, Stefano; Thenault, Victorien; Abdo, Pauline; Margulis, Katrin; Magdassi, Shlomo; Prokopovich, Polina

    2015-01-01

    Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate) [PMMA], hydroxyapatite, and brushite) and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial activity; furthermore, lower concentrations are needed in calcium phosphate (brushite and hydroxyapatite) than in acrylic (PMMA) bone cements. These nanoparticles are effective against a wide spectrum of bacteria, including those already resistant to the antibiotics routinely employed in orthopedic applications, such as gentamicin. PMID:26487803

  5. Development of an experimental apparatus and protocol for determining antimicrobial activities of gaseous plant essential oils.

    PubMed

    Seo, Hyun-Sun; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2015-12-23

    There is a growing interest in the use of naturally-occurring antimicrobial agents such as plant essential oils (EOs) to inhibit the growth of hazardous and spoilage microorganisms in foods. Gaseous EOs (EO gases) have many potential applications in the food industry, including use as antimicrobial agents in food packaging materials and sanitizing agents for foods and food-contact surfaces, and in food processing environments. Despite the potentially beneficial applications of EO gases, there is no standard method to evaluate their antimicrobial activities. Thus, the present study was aimed at developing an experimental apparatus and protocol to determine the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of EO gases against microorganisms. A sealed experimental apparatus was constructed for simultaneous evaluation of antimicrobial activities of EO gases at different concentrations without creating concentration gradients. A differential medium was then evaluated in which a color change allowed for the determination of growth of glucose-fermenting microorganisms. Lastly, an experimental protocol for the assessment of MIC and MLC values of EO gases was developed, and these values were determined for 31 EO gases against Escherichia coli O157:H7 as a model bacterium. Results showed that cinnamon bark EO gas had the lowest MIC (0.0391 μl/ml), followed by thyme-thymol EO gas (0.0781 μl/ml), oregano EO gas (0.3125 μl/ml), peppermint EO gas (0.6250 μl/ml), and thyme-linalool EO gas (0.6250 μl/ml). The order of the MLC values of the EO gases against the E. coli O157:H7 was thyme-thymol (0.0781 μl/ml)antimicrobial agents. PMID:26350124

  6. Development of an experimental apparatus and protocol for determining antimicrobial activities of gaseous plant essential oils.

    PubMed

    Seo, Hyun-Sun; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2015-12-23

    There is a growing interest in the use of naturally-occurring antimicrobial agents such as plant essential oils (EOs) to inhibit the growth of hazardous and spoilage microorganisms in foods. Gaseous EOs (EO gases) have many potential applications in the food industry, including use as antimicrobial agents in food packaging materials and sanitizing agents for foods and food-contact surfaces, and in food processing environments. Despite the potentially beneficial applications of EO gases, there is no standard method to evaluate their antimicrobial activities. Thus, the present study was aimed at developing an experimental apparatus and protocol to determine the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of EO gases against microorganisms. A sealed experimental apparatus was constructed for simultaneous evaluation of antimicrobial activities of EO gases at different concentrations without creating concentration gradients. A differential medium was then evaluated in which a color change allowed for the determination of growth of glucose-fermenting microorganisms. Lastly, an experimental protocol for the assessment of MIC and MLC values of EO gases was developed, and these values were determined for 31 EO gases against Escherichia coli O157:H7 as a model bacterium. Results showed that cinnamon bark EO gas had the lowest MIC (0.0391 μl/ml), followed by thyme-thymol EO gas (0.0781 μl/ml), oregano EO gas (0.3125 μl/ml), peppermint EO gas (0.6250 μl/ml), and thyme-linalool EO gas (0.6250 μl/ml). The order of the MLC values of the EO gases against the E. coli O157:H7 was thyme-thymol (0.0781 μl/ml)antimicrobial agents.

  7. Antimicrobial and antioxidant activities of alcoholic extracts of Rumex dentatus L.

    PubMed

    Humeera, Nisa; Kamili, Azra N; Bandh, Suhaib A; Amin, Shajr-ul-; Lone, Bashir A; Gousia, Nisa

    2013-04-01

    In-vitro antimicrobial and antioxidant activities of various concentrations ranging from 150 to 500 μg/ml of alcoholic (methanol and ethanol) extracts of Rumex dentatus were analyzed on different clinical bacterial strains (Shigella flexneri, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus) and fungal strains (Aspergillus versicolor, Aspergillus flavus, Acremonium spp., Penicillium dimorphosporum, Candida albicans, Candida kruesie, Candida parapsilosis) using agar disk diffusion method and broth dilution method (MIC and MBC determination) for antimicrobial activity and DPPH (1,1-diphenyl-2-picrylhydrazyl) assay, Riboflavin photo-oxidation assay, deoxyribose assay, lipid peroxidation assay for antioxidant activity. The extracts showed maximum inhibitory effect against K. pneumonia and P. aeruginosa with no activity against S. typhimurium from among the bacterial strains while as in case of the fungal strains the maximum effect was observed against C. albicans by both the extracts. MIC and MBC values determined for active fractions of the extracts against some bacterial strains (S. flexneri, K. pneumonia and E. coli) revealed that the test organisms were inhibited by all the extracts with methanol showing lower values of both MIC and MBC indicating it as a better antimicrobial agent. The antioxidant activity showed that the extracts exhibited scavenging effect in concentration-dependent manner on superoxide anion radicals and hydroxyl radicals leading to the conclusion that the plant has got a broad spectrum antimicrobial and antioxidant activity and could be a potential alternative for treating various diseases.

  8. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium adstringens

    PubMed Central

    Rodriguez-Garcia, A.; Peixoto, I. T. A.; Verde-Star, M. J.; De la Torre-Zavala, S.; Aviles-Arnaut, H.; Ruiz, A. L. T. G.

    2015-01-01

    Amphipterygium adstringens is a plant widely used in Mexican traditional medicine for its known anti-inflammatory and antiulcer properties. In this work, we evaluated the in vitro antimicrobial and antiproliferative activities of the methanolic extract of A. adstringens against oral pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Candida albicans, and Candida dubliniensis, using microdilution (MIC) and agar diffusion methods (MBC), and the antiproliferative activity evaluating total growth inhibition (TGI) by staining the protein content with sulforhodamine B (SRB), using nine human cancer cell lines. Crude extract (CE) of A. adstringens showed some degree of activity against one or more of the strains with a MIC from 0.125 mg/mL to 63 mg/mL and MBC from 1.6 to 6.3 mg/mL and cytotoxic activity, particularly against NCI-ADR/RES, an ovarian cell line expressing multiple resistance drugs phenotype. The CE is a complex mixture of possible multitarget metabolites that could be responsible for both antimicrobial and antiproliferative activities, and further investigation is required to elucidate the identity of active compounds. Nevertheless the CE itself is useful in the development of new antimicrobial treatment based on natural products to prevent oral diseases and as alternative natural source for cancer treatment and prevention. PMID:26451151

  9. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp.

    PubMed

    Mishra, Aradhana; Kumari, Madhuree; Pandey, Shipra; Chaudhry, Vasvi; Gupta, K C; Nautiyal, C S

    2014-08-01

    The aim of this work was to synthesize gold nanoparticles by Trichoderma viride and Hypocrea lixii. The biosynthesis of the nanoparticles was very rapid and took 10 min at 30 °C when cell-free extract of the T. viride was used, which was similar by H. lixii but at 100 °C. Biomolecules present in cell free extracts of both fungi were capable to synthesize and stabilize the formed particles. Synthesis procedure was very quick and environment friendly which did not require subsequent processing. The biosynthesized nanoparticles served as an efficient biocatalyst which reduced 4-nitrophenol to 4-aminophenol in the presence of NaBH₄ and had antimicrobial activity against pathogenic bacteria. To the best of our knowledge, this is the first report of such rapid biosynthesis of gold nanoparticles within 10 min by Trichoderma having plant growth promoting and plant pathogen control abilities, which served both, as an efficient biocatalyst, and a potent antimicrobial agent.

  10. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp.

    PubMed

    Mishra, Aradhana; Kumari, Madhuree; Pandey, Shipra; Chaudhry, Vasvi; Gupta, K C; Nautiyal, C S

    2014-08-01

    The aim of this work was to synthesize gold nanoparticles by Trichoderma viride and Hypocrea lixii. The biosynthesis of the nanoparticles was very rapid and took 10 min at 30 °C when cell-free extract of the T. viride was used, which was similar by H. lixii but at 100 °C. Biomolecules present in cell free extracts of both fungi were capable to synthesize and stabilize the formed particles. Synthesis procedure was very quick and environment friendly which did not require subsequent processing. The biosynthesized nanoparticles served as an efficient biocatalyst which reduced 4-nitrophenol to 4-aminophenol in the presence of NaBH₄ and had antimicrobial activity against pathogenic bacteria. To the best of our knowledge, this is the first report of such rapid biosynthesis of gold nanoparticles within 10 min by Trichoderma having plant growth promoting and plant pathogen control abilities, which served both, as an efficient biocatalyst, and a potent antimicrobial agent. PMID:24914997

  11. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis.

    PubMed

    Ding, Ling; Qin, Song; Li, Fuchao; Chi, Xiaoyuan; Laatsch, Hartmut

    2008-03-01

    Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.

  12. Susceptibilities of ampicillin-resistant strains of Salmonella other than S. typhi to 10 antimicrobial agents.

    PubMed Central

    Alós, J I; Gómez-Garcés, J L; Cogollos, R; Amor, E; Pérez-Rivilla, A

    1992-01-01

    Ampicillin-resistant strains of Salmonella other than S. typhi constitute a health problem. We tested the antimicrobial susceptibilities to 10 antibiotics of 57 of these strains isolated in a 30-month period. The rates of resistance were as follows: chloramphenicol, 40.3%; tetracycline, 33.3%; gentamicin, 5.3%; co-trimoxazole, 5.3%; nalidixic acid, 1.8%; and amoxicillin-clavulanic acid, cefotaxime, ceftriaxone, aztreonam, and ciprofloxacin, 0%. In our experience, there are alternative antibiotics with excellent in vitro activities. PMID:1416869

  13. Uses of antimicrobial genes from microbial genome

    DOEpatents

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  14. Essential Oil Compositions and Antimicrobial Activities of Various Parts of Litsea cubeba from Taiwan.

    PubMed

    Su, Yu-Chang; Ho, Chen-Lung

    2016-04-01

    The essential oils of leaves, fruits, flowers, stems and twigs of Litsea cubeba were extracted by hydrodistillation. A total of 53, 50, 76, 94 and 90 compounds were identified from the leaf, fruit, flower, stem and twig oils, respectively, and their yields were 13.9 ± 0.09, 4.0 ± 0.03, 10.4 ± 0.05, 0.09 ± 0.01 and 0.4 ± 0.02 mL/100 g of the oven-dried (o.d.) materials, respectively. The main component in the leaf, flower and twig oils was 1,8-cineole, whereas in the fruit oil it was citral, and in the stem oil limonene, citronellal, and citronellol. When tested for their antibacterial activities using the paper disc diffusion method, oils from all parts showed excellent activities, particularly the fruit oil. When the oils were infused onto filter paper and tested for their antimicrobial paper capability according to the JIS L 1902 method, the fruit oil exhibited excellent antimicrobial activities. Citral was deemed the main cause of the antimicrobial activity. With the multiplicity of contagious diseases and their prevalence in hospitals, these essential oils present a potentially good choice as antibacterial agents. We think that the essential oils of this species are capable of multipurpose applications. PMID:27396208

  15. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    PubMed

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  16. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    PubMed

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens. PMID:23444311

  17. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture.

    PubMed

    Swain, P; Nayak, S K; Sasmal, A; Behera, T; Barik, S K; Swain, S K; Mishra, S S; Sen, A K; Das, J K; Jayasankar, P

    2014-09-01

    The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag-TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.

  18. Antimicrobial activity of chicken NK-lysin against Eimeria sporozoites.

    PubMed

    Hong, Yeong H; Lillehoj, Hyun S; Siragusa, Gregory R; Bannerman, Douglas D; Lillehoj, Erik P

    2008-06-01

    NK-lysin is an antimicrobial and antitumor polypeptide that is considered to play an important role in innate immunity. Chicken NK-lysin is a member of the saposin-like protein family and exhibits potent antitumor cell activity. To evaluate the antimicrobial properties of chicken NK-lysin, we examined its ability to reduce the viability of various bacterial strains and two species of Eimeria parasites. Culture supernatants from COS7 cells transfected with a chicken NK-lysin cDNA and His-tagged purified NK-lysin from the transfected cells both showed high cytotoxic activity against Eimeria acervulina and Eimeria maxima sporozoites. In contrast, no bactericidal activity was observed. Further studies using synthetic peptides derived from NK-lysin may be useful for pharmaceutical and agricultural uses in the food animal industry.

  19. Chemical constituents of Solanum coagulans and their antimicrobial activities.

    PubMed

    Qin, Xu-Jie; Lunga, Paul-Keilah; Zhao, Yun-Li; Liu, Ya-Ping; Luo, Xiao-Dong

    2016-04-01

    The present study aimed at determining the chemical constituents of Solanum coagulans and their antimicrobial activities. The compounds were isolated by various chromatographic techniques and their structures were elucidated on the basis of extensive spectroscopic analysis, chemical methods, and comparison with reported spectroscopic data. One new phenolic glycoside, methyl salicylate 2-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (1), together with 12 known compounds (2-13), were isolated from the aerial parts of Solanum coagulans. Compound 1 was a new phenolic glycoside, and 2-6 were isolated from Solanum genus for the first time. The antimicrobial activities of the isolated compounds were also evaluated. Compound 7 showed remarkable antifungal activity against T. mentagrophytes, M. gypseum and E. floccosum with MIC values being 3.13, 1.56 and 3.13 μg·mL(-1), respectively. PMID:27114320

  20. In-vitro Antimicrobial Activities of Some Iranian Conifers

    PubMed Central

    Afsharzadeh, Maryam; Naderinasab, Mahboobe; Tayarani Najaran, Zahra; Barzin, Mohammad; Emami, Seyed Ahmad

    2013-01-01

    Male and female leaves and fruits of eleven different taxons of Iranian conifers (Cupressus sempervirens var. horizontalis, C. sempervirens var. sempervirens, C. sempervirens cv. Cereifeormis, Juniperus communis subsp. hemisphaerica, J. excelsa subsp. excelsa, J. excelsa subsp. polycarpos, J. foetidissima, J. oblonga, J. sabina, Platycladus orientalis and Taxus baccata) were collected from different localities of Iran, dried and extracted with methanol. The extracts were tested for their antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans. The extracts were screened qualitatively using four different methods, the disc diffusion, hole plate, cylinder agar diffusion and agar dilution methods, whereas the minimum inhibitory concentrations (MIC) of each extract were determined by the agar dilution method. The best result was obtained by means of hole plate method in qualitative determination of antimicrobial activities of extracts and the greatest activity was found against S. aureus in all tested methods. PMID:24250573

  1. C31G, a new agent for oral use with potent antimicrobial and antiadherence properties.

    PubMed Central

    Corner, A M; Dolan, M M; Yankell, S L; Malamud, D

    1988-01-01

    C31G, an equimolar mixture of alkyl dimethyl glycine and alkyl dimethyl amine oxide, was evaluated for antimicrobial and antiadherence properties. The efficacy of C31G, its two components, and several commercial mouth rinses was determined in assays measuring inhibition of glycolysis, inhibition of bacterial adherence, and MICs. Inhibition of glycolysis was determined by using a saliva sediment model, with glycolytic activity expressed as the change in pH relative to that of a control. Adherence studies were undertaken with Streptococcus sobrinus 6715 to measure inhibition of adherence to nichrome wires. MICs were determined against selected microorganisms by standard methods. C31G demonstrated broad-spectrum antimicrobial properties, with activity against both gram-positive and gram-negative organisms and Candida albicans, a yeast. C31G inhibited both glycolysis by salivary bacteria and adherence of Streptococcus strains to wire mesh. C31G was more effective in the assays conducted than any commercial formulation tested and was as effective as chlorhexidine. A synergistic effect was demonstrated between the individual components of C31G, and no loss of activity was noted when it was formulated into a mouth rinse vehicle. PMID:3364952

  2. Synthesis and Evaluation of Selected Benzimidazole Derivatives as Potential Antimicrobial Agents.

    PubMed

    Alasmary, Fatmah A S; Snelling, Anna M; Zain, Mohammed E; Alafeefy, Ahmed M; Awaad, Amani S; Karodia, Nazira

    2015-01-01

    A library of 53 benzimidazole derivatives, with substituents at positions 1, 2 and 5, were synthesized and screened against a series of reference strains of bacteria and fungi of medical relevance. The SAR analyses of the most promising results showed that the antimicrobial activity of the compounds depended on the substituents attached to the bicyclic heterocycle. In particular, some compounds displayed antibacterial activity against two methicillin-resistant Staphylococcus aureus (MRSA) strains with minimum inhibitory concentrations (MICs) comparable to the widely-used drug ciprofloxacin. The compounds have some common features; three possess 5-halo substituents; two are derivatives of (S)-2-ethanaminebenzimidazole; and the others are derivatives of one 2-(chloromethyl)-1H-benzo[d]imidazole and (1H-benzo[d]imidazol-2-yl)methanethiol. The results from the antifungal screening were also very interesting: 23 compounds exhibited potent fungicidal activity against the selected fungal strains. They displayed equivalent or greater potency in their MIC values than amphotericin B. The 5-halobenzimidazole derivatives could be considered promising broad-spectrum antimicrobial candidates that deserve further study for potential therapeutic applications. PMID:26307956

  3. Assessment of antimicrobial (host defense) peptides as anti-cancer agents.

    PubMed

    Douglas, Susan; Hoskin, David W; Hilchie, Ashley L

    2014-01-01

    Cationic antimicrobial (host defense) peptides (CAPs) are able to kill microorganisms and cancer cells, leading to their consideration as novel candidate therapeutic agents in human medicine. CAPs can physically associate with anionic membrane structures, such as those found on cancer cells, causing pore formation, intracellular disturbances, and leakage of cell contents. In contrast, normal cells are less negatively-charged and are typically not susceptible to CAP-mediated cell death. Because the interaction of CAPs with cells is based on charge properties rather than cell proliferation, both rapidly dividing and quiescent cancer cells, as well as multidrug-resistant cancer cells, are targeted by CAPs, making CAPS potentially valuable as anti-cancer agents. CAPs often exist as families of peptides with slightly different amino acid sequences. In addition, libraries of synthetic peptide variants based on naturally occurring CAP templates can be generated in order to improve upon their action. High-throughput screens are needed to quickly and efficiently assess the suitability of each CAP variant. Here we present the methods for assessing CAP-mediated cytotoxicity against cancer cells (suspension and adherent) and untransformed cells (measured using the tritiated thymidine-release or MTT assay), and for discriminating between cell death caused by necrosis (measured using lactate dehydrogenase- or (51)Cr-release assays), or apoptosis and necrosis (single-stranded DNA content measured by flow cytometry). In addition the clonogenic assay, which assesses the ability of single transformed cells to multiply and produce colonies, is described.

  4. Screening of Australian plants for antimicrobial activity against Campylobacter jejuni.

    PubMed

    Kurekci, Cemil; Bishop-Hurley, Sharon L; Vercoe, Philip E; Durmic, Zoey; Al Jassim, Rafat A M; McSweeney, Christopher S

    2012-02-01

    Campylobacter jejuni is the most common cause of acute enteritis in humans, with symptoms such as diarrhoea, fever and abdominal cramps. In this study, 115 extracts from 109 Australian plant species were investigated for their antimicrobial activities against two C. jejuni strains using an in vitro broth microdilution assay. Among the plants tested, 107 (93%) extracts showed activity at a concentration between 32 and 1024 µg/mL against at least one C. jejuni strain. Seventeen plant extracts were selected for further testing against another six C. jejuni strains, as well as Campylobacter coli, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Proteus mirabilis and Enterococcus faecalis. The extract from Eucalyptus occidentalis demonstrated the highest antimicrobial activity, with an inhibitory concentration of 32 µg/mL against C. jejuni and B. cereus. This study has shown that extracts of selected Australian plants possess antimicrobial activity against C. jejuni and thus may have application in the control of this organism in live poultry and retail poultry products.

  5. Achyrocline satureioides (LAM.) DC (Marcela): antimicrobial activity on Staphylococcus spp. and immunomodulating effects on human lymphocytes.

    PubMed

    Calvo, D; Cariddi, L N; Grosso, M; Demo, M S; Maldonado, A M

    2006-01-01

    Achyrocline satureioides (LAM.) DC (Compositae) is a sub-bush original from America and distributed in Europe and Africa. It is mainly used in infusions, as digestive, sedative among others and has antimicrobial and antiviral properties. A research was made into the anti-microbial activity of the A. satureioides decoction on the Staphylococcus spp strains. They were isolated from 18 patients with acne lesions and from 7 patients infected with Staphylococcus spp. (5 strains were taken from catheters and 2 from wounds). The strains were classified through biochemical tests and then were seeded in triptein-soy agar with or without decoction to observe the antibacterial activity. On the other hand, cultures of lymphocytes were made from those patients who displayed infections caused by Staphylococcus spp. and from 12 control non-infected individuals. The lymphocytes were stimulated with decoction or PHA-M. Among the expanded, CD8+ T cells, with anti-human CD8 monoclonal antibody were the outstanding ones by indirect IF. The A. satureiodes decoction inhibited 95% of the isolated Staphylococcus spp. strains and stimulated the lymphocyte expansion, of which 40% were CD8+ T cells. The A. satureiodes decoction showed anti-microbial activity and resulted to be an immunostimulating agent on CD8+ T cells, with lesser mitogenic effects than PHA-M.

  6. Antimicrobial activity of essential oils and chloroform alone and combinated with cetrimide against Enterococcus faecalis biofilm

    PubMed Central

    Ferrer Luque, Carmen Maria; González-Rodríguez, Maria Paloma; Arias-Moliz, Maria Teresa; Baca, Pilar

    2013-01-01

    Abstract The Enterococcus faecalis bacteria have been identified as the most commonly recovered species from teeth with persistent endodontic infections. The antimicrobial activity of essential oils and chloroform (CHL), alone and in association with various concentrations of cetrimide (CTR), against biofilm of Enterococcus faecalis was investigated. Solutions of CHL, eucalyptus oil (EO) and orange oil (OO) associated with CTR at 0.3%, 0.2%, 0.1%, and 0.05% were used to determine antimicrobial activity by exposing treated bovine dentine blocks to E. faecalis. Biofilms grown in the dentine blocks for 7 days were exposed to solutions for 2 and 5 min. Biofilm reduction between OO and EO at 2 min did not show any significant differences; however, OO had a higher kill percentage of biofilms than did the eucalyptus oil at 5 min (p < 0.01). Combinations with CTR at all concentrations achieved a 100% kill rate at 2 and 5 min. The association of CTR with solvent agents achieved the maximum antimicrobial activity against E. faecalis biofilms in dentine. PMID:24265917

  7. In vitro antimicrobial activity of benzoquinolinediones.

    PubMed

    Clark, A M; Huddleston, D L; Ma, C Y; Ho, C H

    1984-11-01

    The in vitro antibacterial and anti-fungal activity of benz[g]isoquinoline-5,10-dione (1), benzo[g]quinoline-5, 10-dione (2), benzo[g]quinoline-5,6-dione (3), and anthraquinone (4) was determined using the agar well-diffusion assay. The minimum inhibitory concentrations (MIC's) of each of the active compounds (1-3) was determined using the two-fold serial dilution technique. Of the four compounds tested, benz[g]isoquinoline-5,10-dione exhibited the best overall activity against both bacteria and fungi. Particularly noteworthy was its significant antifungal activity which was comparable to the activity of the standard antifungal antibiotic amphotericin B.

  8. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  9. The antimicrobial activity of embalming chemicals and topical disinfectants on the microbial flora of human remains.

    PubMed

    Burke, P A; Sheffner, A L

    1976-10-01

    The antimicrobial activity of embalming chemicals an topical disinfectants was evaluated to determine the degree of disinfection achieved during the embalming of human remains. The administration of arterial and cavity embalming chemicals resulted in a 99% reduction of the postmortem microbial population after 2 hours of contact. This level of disinfection was maintained for the 24 hours test period. Topical disinfection of the body orifices was also observed. Therefore, it is probable that present embalming practices reduce the hazard from transmission of potentially infectious microbial agents within the immediate environment of embalmed human remains.

  10. De Novo Design and Synthesis of Ultra-Short Peptidomimetic Antibiotics Having Dual Antimicrobial and Anti-Inflammatory Activities

    PubMed Central

    Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Background Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. Methodology/Principal Findings In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. Conclusion/Significance The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics. PMID:24302996

  11. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation.

    PubMed

    Gómez-Estaca, J; López de Lacey, A; López-Caballero, M E; Gómez-Guillén, M C; Montero, P

    2010-10-01

    Essential oils of clove (Syzygium aromaticum L.), fennel (Foeniculum vulgare Miller), cypress (Cupressus sempervirens L.), lavender (Lavandula angustifolia), thyme (Thymus vulgaris L.), herb-of-the-cross (Verbena officinalis L.), pine (Pinus sylvestris) and rosemary (Rosmarinus officinalis) were tested for their antimicrobial activity on 18 genera of bacteria, which included some important food pathogen and spoilage bacteria. Clove essential oil showed the highest inhibitory effect, followed by rosemary and lavender. In an attempt to evaluate the usefulness of these essential oils as food preservatives, they were also tested on an extract made of fish, where clove and thyme essential oils were the most effective. Then, gelatin-chitosan-based edible films incorporated with clove essential oil were elaborated and their antimicrobial activity tested against six selected microorganisms: Pseudomonas fluorescens, Shewanella putrefaciens, Photobacterium phosphoreum, Listeria innocua, Escherichia coli and Lactobacillus acidophilus. The clove-containing films inhibited all these microorganisms irrespectively of the film matrix or type of microorganism. In a further experiment, when the complex gelatin-chitosan film incorporating clove essential oil was applied to fish during chilled storage, the growth of microorganisms was drastically reduced in gram-negative bacteria, especially enterobacteria, while lactic acid bacteria remained practically constant for much of the storage period. The effect on the microorganisms during this period was in accordance with biochemical indexes of quality, indicating the viability of these films for fish preservation. PMID:20688230

  12. Composition of Satureja kitaibelii essential oil and its antimicrobial activity.

    PubMed

    Kundaković, Tatjana; Milenković, Marina; Zlatković, Sasa; Kovacević, Nada; Goran, Nikolić

    2011-09-01

    The composition of the essential oil obtained by hydrodistillation from the aerial parts of Satureja kitaibelii from Rtanj mountain (Serbia), collected during three years, was studied. Thirty-nine components were identified in each sample of S. kitaibelii essential oil, representing about 87% of the oils. p-Cymene was the most dominant compound in all three oils (27.9%, 14.7% and 24.4%, respectively). The simple formulation of a lozenge with 0.2% of S. kitaibelii essential oil was prepared and the antimicrobial activity of the essential oil and the lozenge with essential oil was tested using a broth microdilution assay. Both essential oil and lozenge possessed strong antimicrobial activity with MIC values of 0.10-25 microg/mL, and 0.97-15.6 mg/mL, respectively. PMID:21941914

  13. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria.

    PubMed

    Yamani, Hanaa A; Pang, Edwin C; Mantri, Nitin; Deighton, Margaret A

    2016-01-01

    In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum tenuiflorum (Tulsi), to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC) of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5 and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA) and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes, or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA), P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms.

  14. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria.

    PubMed

    Yamani, Hanaa A; Pang, Edwin C; Mantri, Nitin; Deighton, Margaret A

    2016-01-01

    In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum tenuiflorum (Tulsi), to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC) of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5 and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA) and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes, or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA), P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms. PMID:27242708

  15. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria

    PubMed Central

    Yamani, Hanaa A.; Pang, Edwin C.; Mantri, Nitin; Deighton, Margaret A.

    2016-01-01

    In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum tenuiflorum (Tulsi), to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC) of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5 and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA) and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes, or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA), P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms. PMID:27242708

  16. Synthesis, antimicrobial and molluscicidal activities of new benzimidazole derivatives.

    PubMed

    Nofal, Z M; Fahmy, H H; Mohamed, H S

    2002-02-01

    A series of benzimidazole Schiff's bases, thiosemicarbazides were synthesized, azole ring systems as 1,3,4-triazole, 1,3,4-oxadiazole were prepared. 1-Methylbenzimidazole incorporated to substituted dithio-carbamate, thiophenol, diethylamine via acetamido group were synthesized. A series of pyrimidinobenzimidazoles, triazinobenz-imidazoles, and 2-(acetonylamino)-1-methylbenzimidazole were prepared. The antimicrobial and molluscicidal activities of some newly prepared compounds were carried out. PMID:11885688

  17. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    PubMed

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  18. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    PubMed Central

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  19. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil.

    PubMed

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef; Kokoska, Ladislav

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  20. Antimicrobial Activity of Cefmenoxime (SCE-1365)

    PubMed Central

    Stamm, John M.; Girolami, Roland L.; Shipkowitz, Nathan L.; Bower, Robert R.

    1981-01-01

    The in vitro activity of cefmenoxime (SCE-1365 or A-50912), a new semisynthetic cephalosporin antibiotic, was compared with those of cefazolin, cefoxitin, and cefamandole against a broad spectrum of 486 organisms and with that of cefotaxime against 114 organisms. Cefmenoxime and cefotaxime exhibited nearly equivalent activities against those organisms tested and were the most active of these cephalosporins against all aerobic and facultative organisms except Staphylococcus aureus. The minimum inhibitory concentration (MIC) of cefmenoxime required to inhibit at least 90% of strains tested (MIC90) ranged from 0.06 to 8 μg/ml for the Enterobacteriaceae. The MIC90s for gram-positive cocci were 0.015 and ≤0.008 μg/ml for Streptococcus pneumoniae and Streptococcus pyogenes, respectively, and 2 μg/ml for S. aureus. Group D streptococci were less susceptible. Cefmenoxime was very active against Haemophilus influenzae, Neisseria gonorrhoeae, and Neisseria meningitidis with MIC90s ranging from ≤0.008 to 0.25 μg/ml. Cefmenoxime, at a concentration of 16 μg/ml, inhibited 78% and 73% of Pseudomonas aeruginosa and Acinetobacter spp., respectively. MICs for anaerobes ranged from 0.5 to >128 μg/ml with good activity against the gram-positive organisms. In addition, cefmenoxime activity was bactericidal and only slightly affected by differences in inoculum size. The combination of cefmenoxime and gentamicin was synergistic against 80% of the Enterobacteriaceae and 100% of P. aeruginosa strains tested. Development of resistance to cefmenoxime was slow or absent for organisms with low initial MICs but more rapid for those with higher initial MICs. Cefmenoxime exhibited good protective activity in mice infected with Escherichia coli, Enterobacter cloacae, Proteus mirabilis, Proteus vulgaris, or S. aureus but was less effective against P. aeruginosa. PMID:6264846

  1. The management of risk arising from the use of antimicrobial agents in veterinary medicine in EU/EEA countries - a review.

    PubMed

    Törneke, K; Torren-Edo, J; Grave, K; Mackay, D K J

    2015-12-01

    Antimicrobials are essential medicines for the treatment of many microbial infections in humans and animals. Only a small number of antimicrobial agents with new mechanisms of action have been authorized in recent years for use in either humans or animals. Antimicrobial resistance (AMR) arising from the use of antimicrobial agents in veterinary medicine is a concern for public health due to the detection of increasing levels of resistance in foodborne zoonotic bacteria, particularly gram-negative bacteria, and due to the detection of determinants of resistance such as Extended-spectrum beta-lactamases (ESBL) in bacteria from animals and in foodstuffs of animal origin. The importance and the extent of the emergence and spread of AMR from animals to humans has yet to be quantified. Likewise, the relative contribution that the use of antimicrobial agents in animals makes to the overall risk to human from AMR is currently a subject of debate that can only be resolved through further research. Nevertheless, risk managers have agreed that the impact on public health of the use of antimicrobials in animals should be minimized as far as possible and a variety of measures have been introduced by different authorities in the EU to achieve this objective. This article reviews a range of measures that have been implemented within European countries to reduce the occurrence and the risk of transmission of AMR to humans following the use of antimicrobial agents in animals and briefly describes some of the alternatives to the use of antimicrobial agents that are being developed.

  2. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398.

    PubMed

    Lapenda, J C; Silva, P A; Vicalvi, M C; Sena, K X F R; Nascimento, S C

    2015-02-01

    Prodigiosin is an alkaloid and natural red pigment produced by Serratia marcescens. Prodigiosin has antimicrobial, antimalarial and antitumor properties and induces apoptosis in T and B lymphocytes. These properties have piqued the interest of researchers in the fields of medicine, pharmaceutics and different industries. The aim of the present study was to evaluate the antimicrobial activity of prodigiosin against pathogenic micro-organisms. The red pigments produced by S. marcescens exhibited absorption at 534 nm, Rf of 0.59 and molecular weight of 323 m/z. Antimicrobial activity was tested against oxacillin-resistant Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Acinetobacter sp. and oxacillin-resistant S. aureus. The standard antibiotics employed were ampicillin, chloramphenicol, gentamicin and oxacillin. The disc-diffusion tests demonstrated significant inhibition zones for S. aureus (35 ± 0.6), E. faecalis (22 ± 1.0) and S. pyogenes (14 ± 0.6). However, prodigiosin showed resistance to E. coli, P. aeruginosa and acinetobacter, where no significant formation of inhibitory halos were observed. We determined the inhibitory minimum concentrations and bactericidal for 20 strains of oxacillin-resistant S. aureus (ORSA). The pattern was the antibiotic oxacillin. The minimum inhibitory concentrations observed ranged from 1, 2 and 4.0 μg/mL, respectively, while the minimum bactericidal concentrations ranged from 2, 4, 8 and 16 μg/mL. The S. marcescens prodigiosin produced by showed bactericidal and bacteriostatic effect showing promising antimicrobial activity and suggesting future studies regarding its applicability in antibiotics therapies directed ORSA. PMID:25549906

  3. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398.

    PubMed

    Lapenda, J C; Silva, P A; Vicalvi, M C; Sena, K X F R; Nascimento, S C

    2015-02-01

    Prodigiosin is an alkaloid and natural red pigment produced by Serratia marcescens. Prodigiosin has antimicrobial, antimalarial and antitumor properties and induces apoptosis in T and B lymphocytes. These properties have piqued the interest of researchers in the fields of medicine, pharmaceutics and different industries. The aim of the present study was to evaluate the antimicrobial activity of prodigiosin against pathogenic micro-organisms. The red pigments produced by S. marcescens exhibited absorption at 534 nm, Rf of 0.59 and molecular weight of 323 m/z. Antimicrobial activity was tested against oxacillin-resistant Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Acinetobacter sp. and oxacillin-resistant S. aureus. The standard antibiotics employed were ampicillin, chloramphenicol, gentamicin and oxacillin. The disc-diffusion tests demonstrated significant inhibition zones for S. aureus (35 ± 0.6), E. faecalis (22 ± 1.0) and S. pyogenes (14 ± 0.6). However, prodigiosin showed resistance to E. coli, P. aeruginosa and acinetobacter, where no significant formation of inhibitory halos were observed. We determined the inhibitory minimum concentrations and bactericidal for 20 strains of oxacillin-resistant S. aureus (ORSA). The pattern was the antibiotic oxacillin. The minimum inhibitory concentrations observed ranged from 1, 2 and 4.0 μg/mL, respectively, while the minimum bactericidal concentrations ranged from 2, 4, 8 and 16 μg/mL. The S. marcescens prodigiosin produced by showed bactericidal and bacteriostatic effect showing promising antimicrobial activity and suggesting future studies regarding its applicability in antibiotics therapies directed ORSA.

  4. In vitro Antimicrobial Activity of Traditional Plant Used in Mestizo Shamanism from the Peruvian Amazon in Case of Infectious Diseases

    PubMed Central

    Roumy, Vincent; Gutierrez-Choquevilca, Andréa-Luz; Lopez Mesia, Jean Pierre; Ruiz, Lastenia; Ruiz Macedo, Juan Celidonio; Abedini, Amin; Landoulsi, Ameni; Samaillie, Jennifer; Hennebelle, Thierry; Rivière, Céline; Neut, Christel

    2015-01-01

    Context: Our survey was performed near Iquitos (Peruvian Amazon) and its surroundings and leads us to consider Mestizo ethnomedical practices. The plant species reported here are traditionally used for ailments related to microbial infections. Inhabitants of various ethnic origins were interviewed, and 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi-resistant bacteria or yeast. The study aimed at providing information on antimicrobial plant extract activities and the ethnomedical context of Mestizo riverine populations from Loreto (Peru). Material and Method: The minimum inhibitory concentrations (MICs) of the plant crude extracts were carried out using the agar dilution method and ranged between 0.075 and 5.0 mg/ml. Results: Of the 40 plants analyzed, 9 species showed MIC ≤0.3 mg/ml (Anacardium occidentale, Couroupita guianensis, Croton lechleri, Davilla rugosa, Erythrina amazonica, Jacaranda copaia subsp. Spectabilis, Oenocarpus bataua, Peperomia macrostachya, and Phyllanthus urinaria) for one or several of the 36 microorganisms and only 6 drug extracts were inactive. Among the 40 plants, 13 were evaluated for the first time for an antibacterial activity. Conclusion: This evaluation of the antimicrobial activity of 40 plants using an approved standard methodology allowed comparing those activities against various microbes to establish antimicrobial spectra of standardized plant extracts, and give support to the traditional use of these plants. It may also help discovering new chemical classes of antimicrobial agents that could serve against multi-resistant bacteria. SUMMARY This study leads us to consider Mestizo ethnomedical practices near Iquitos (Peruvian Amazon) and its surroundings. The plant species reported here are traditionally used for ailments related to microbial infections. 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36

  5. Antimicrobial activity of different Finnish monofloral honeys against human pathogenic bacteria

    PubMed Central

    Huttunen, Sanna; Riihinen, Kaisu; Kauhanen, Jussi; Tikkanen-Kaukanen, Carina

    2013-01-01

    The antimicrobial activity and phenolic compounds of five Finnish honey products against important human pathogens Streptococcus pneumoniae, S. pyogenes, Staphylococcus aureus, and methicillin-resistant S. aureus were analyzed. Microbroth dilution method and HPLC-DAD were used in antimicrobial testing and phenolic compound determination, respectively. Significant antimicrobial activity (p < 0.01) against all the tested pathogens was found from willow herb (Epilobium angustifolium), heather (Calluna vulgaris), and buckwheat (Fagopyrum esculentum) honeys. This is the first report on antimicrobial activity of Finnish monofloral honeys against streptococcal and staphylococcal bacteria. To our knowledge this is also the first report on the antimicrobial effect of honey against S. pneumoniae. PMID:23278378

  6. Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents.

    PubMed

    Sakhuja, Rajeev; Panda, Siva S; Khanna, Leena; Khurana, Shilpi; Jain, Subhash C

    2011-09-15

    A series of novel spiro[indole-thiazolidine]spiro[indole-pyran] derivatives were synthesized from N-(bromoalkyl)indol-2,3-diones via monospiro-bisindole intermediates; the two indole nuclei being connected via N-(CH(2))(n)-N linker. Synthesized compounds were evaluated for their antimicrobial activities in vitro against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, and Staphylococcus epidermis), four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Klebsiella pneumonia) as well as four fungi (Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, and Candida albicans) using Cup plate method. Bis spiro-indoles exhibited stronger antibacterial and antifungal efficiency than their corresponding mono spiro-indoles. Compound 10e, the most active derivative was shown to inhibit the growth of all bacterial strains and two fungal strains (A. niger and C. albicans). PMID:21782421

  7. Development of new 5-(chromene-3-yl)methylene-2,4-thiazolidinediones as antimicrobial agents

    PubMed Central

    NASTASĂ, CRISTINA MARIANA; DUMA, MIHAELA; PÎRNĂU, ADRIAN; VLASE, LAURIAN; TIPERCIUC, BRÎNDUŞA; ONIGA, OVIDIU

    2016-01-01

    Background and aims In the context of the increasing phenomenon of microbial resistance to usual drugs, the development of new treatment strategies and new therapeutic protocols is a constant need. Thiazolidinedione and chromone represent two important scaffolds in medicinal chemistry due to their large pharmacological applicability. Methods We synthesized a new 5-(chromene-3-yl)methylene-2,4-thiazolidinedione starting from 6,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde. Then, by treating with different α-bromoalkylarylketones, we obtained N-substituted derivatives. All new compounds were investigated for their antimicrobial potential, using the diffusion method, against Listeria monocytogenes ATCC 13932, Staphylococcus aureus ATCC 49444, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 14028 and Candida albicans ATCC 10231. Three concentrations, 10 mg/ml, 5 mg/ml and 1 mg/ml of compounds were used. The results were evaluated by the measurement of the inhibition zone diameters and compared to those of gentamicin and fluconazole respectively, as reference drugs. Results All new synthesized compounds were characterized using physico-chemical and spectrometric methods. They displayed modest to good antimicrobial activity. New molecules 8, 9 and 10 may represent promising candidates, showing zone inhibition diameters superior to those of reference drugs. Conclusions This work presents chemical synthesis, characterization and investigation of the antibacterial and antifungal potential of 5-(chromene-3-yl)methylene-2,4-thiazolidinedione derivatives, which may be worthy of future research for designing new chemical entities. PMID:27004035

  8. Antimicrobial activity of basil (Ocimum basilicum) oil against Salmonella enteritidis in vitro and in food.

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2010-01-01

    Nine essential oils were examined for antimicrobial activity against reference and clinical strains of Salmonella Enteritidis. Based on the size of the inhibition zone and the minimal inhibitory concentration, basil oil had the strongest antimicrobial activity against all the tested bacteria, and S. Enteritidis SE3 was the most sensitive strain to all the tested oils. Gas chromatography/mass spectrometry analysis revealed that the major constituents of the oil were linalool (64.35%), 1,8-cineole (12.28%), eugenol (3.21%), germacrene D (2.07%), alpha-terpineol (1.64%), and rho-cymene (1.03%). When applied in nham, a fermented pork sausage, experimentally inoculated with S. Enteritidis SE3 and stored at 4 degrees C, basil oil inhibited the bacterium in a dose-dependent fashion. Basil oil at a concentration of 50 ppm reduced the number of bacteria in the food from 5 to 2log cfu/g after storage for 3 d. An unmeasurable level of the bacterium in the food was observed at days 2 and 3 of storage when 100 and 150 ppm of basil oil was used, respectively. Sensory evaluation suggested that the addition of 100 but not of 150 ppm to nham would be acceptable to consumers. The results from this study confirm the potential use of basil oil as an antimicrobial agent to control S. Enteritidis in food.

  9. Antimicrobial activity of basil (Ocimum basilicum) oil against Salmonella enteritidis in vitro and in food.

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2010-01-01

    Nine essential oils were examined for antimicrobial activity against reference and clinical strains of Salmonella Enteritidis. Based on the size of the inhibition zone and the minimal inhibitory concentration, basil oil had the strongest antimicrobial activity against all the tested bacteria, and S. Enteritidis SE3 was the most sensitive strain to all the tested oils. Gas chromatography/mass spectrometry analysis revealed that the major constituents of the oil were linalool (64.35%), 1,8-cineole (12.28%), eugenol (3.21%), germacrene D (2.07%), alpha-terpineol (1.64%), and rho-cymene (1.03%). When applied in nham, a fermented pork sausage, experimentally inoculated with S. Enteritidis SE3 and stored at 4 degrees C, basil oil inhibited the bacterium in a dose-dependent fashion. Basil oil at a concentration of 50 ppm reduced the number of bacteria in the food from 5 to 2log cfu/g after storage for 3 d. An unmeasurable level of the bacterium in the food was observed at days 2 and 3 of storage when 100 and 150 ppm of basil oil was used, respectively. Sensory evaluation suggested that the addition of 100 but not of 150 ppm to nham would be acceptable to consumers. The results from this study confirm the potential use of basil oil as an antimicrobial agent to control S. Enteritidis in food. PMID:20530897

  10. In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens.

    PubMed

    Koru, Ozgur; Toksoy, Fulya; Acikel, Cengiz Han; Tunca, Yasar Meric; Baysallar, Mehmet; Uskudar Guclu, Aylin; Akca, Eralp; Ozkok Tuylu, Asli; Sorkun, Kadriye; Tanyuksel, Mehmet; Salih, Bekir

    2007-01-01

    Propolis is an agent having antimicrobial properties, however, its composition can vary depending on the area where it is collected. In the present study, the antimicrobial activity of five propolis samples, collected from four different regions in Turkey and from Brazil, against nine anaerobic strains was evaluated. Ethanol extracts of propolis (EEP) were prepared from propolis samples and we determined minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of EEP on the growth of test microorganisms by using agar dilution method. All strains were susceptible and MIC values ranged from 4 to 512 microg/ml for propolis activity. Propolis from Kazan-Ankara showed most effective MIC values to the studied microorganisms. MBC values of Kazan-Ankara EEP samples were ranged from 8 to 512 microg/ml. Death was observed within 4 h of incubation for Peptostreptococcus anaerobius and micros and Lactobacillus acidophilus and Actinomyces naeslundii, while 8 h for Prevotella oralis and Prevotella melaninogenica and Porphyromonas gingivalis, 12 h for Fusobacterium nucleatum, 16 h for Veillonella parvula. It was shown that propolis samples were more effective against Gram positive anaerobic bacteria than Gram negative ones. The organic chemical compositions of EEPs were determined by high-resolution gas chromatography coupled to mass spectrometry (GC-MS). The main compounds of EEPs were flavonoids such as pinobanksin, quercetin, naringenin, galangine, chrysin and aromatic acids such as cafeic acid. Because of increased antimicrobial resistance, propolis may be kept in mind in the treatment of oral cavity diseases.

  11. Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity.

    PubMed

    Peres, M S; Maniero, M G; Guimarães, J R

    2015-03-01

    Ofloxacin is an antimicrobial agent frequently found in significant concentrations in wastewater and surface water. Its continuous introduction into the environment is a potential risk to non-target organisms or to human health. In this study, ofloxacin degradation by UV/TiO2 and UV/TiO2/H2O2, antimicrobial activity (E. coli) of samples subjected to these processes, and by-products formed were evaluated. For UV/TiO2, the degradation efficiency was 89.3% in 60 min of reaction when 128 mg L(-1) TiO2 were used. The addition of 1.68 mmol L(-1) hydrogen peroxide increased degradation to 97.8%. For UV/TiO2, increasing the catalyst concentration from 4 to 128 mg L(-1) led to an increase in degradation efficiency. For both processes, the antimicrobial activity was considerably reduced throughout the reaction time. The structures of two by-products are presented: m/z 291 (9-fluoro-3-methyl-10-(methyleneamino)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid) and m/z 157 ((Z)-2-formyl-3-((2-oxoethyl)imino)propanoic acid).

  12. Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity.

    PubMed

    Fischer, Marion; Vahdatzadeh, Maryam; Konradi, Rupert; Friedrichs, Jens; Maitz, Manfred F; Freudenberg, Uwe; Werner, Carsten

    2015-07-01

    While silver-loaded catheters are widely used to prevent early-onset catheter-related infections [1], long term antimicrobial protection of indwelling catheters remains to be achieved [2] and antiseptic functionalization of coatings often impairs their hemocompatibility characteristics. Therefore, this work aimed to capitalize on the antimicrobial properties of silver nanoparticles, incorporated in anticoagulant poly(ethylene glycol) (PEG)-heparin hydrogel coatings [3] on thermoplastic polyurethane materials. For prolonged antimicrobial activity, the silver-containing starPEG-heparin hydrogel layers were shielded with silver-free hydrogel layers of otherwise similar composition. The resulting multi-layered gel coatings showed long term antiseptic efficacy against Escherichia coli and Staphylococcus epidermidis strains in vitro, and similarly performed well when incubated with freshly drawn human whole blood with respect to hemolysis, platelet activation and plasmatic coagulation. The introduced hydrogel multilayer system thus offers a promising combination of hemocompatibility and long-term antiseptic capacity to meet an important clinical need.

  13. Chemical properties and antioxidant and antimicrobial activities of Slovenian propolis.

    PubMed

    Mavri, Ana; Abramovič, Helena; Polak, Tomaž; Bertoncelj, Jasna; Jamnik, Polona; Smole Možina, Sonja; Jeršek, Barbara

    2012-08-01

    The chemical composition as well as the antioxidant and antimicrobial activities of two EtOH extracts of propolis (PEEs) from Slovenia were determined. EtOH was used as extracting solvent at 70 and 96%, providing the extracts PEE70 and PEE96, respectively. The extraction with 70% EtOH was more efficient than that with 96% EtOH, as the PEE70 was richer in total phenolic compounds than the PEE96. The Slovenian propolis was characterized by different phenolic acids and flavonoids. The PEE96 was slightly richer in three specific compounds, i.e., caffeic acid, ferulic acid, and luteolin, while all other substances detected showed higher contents in the PEE70. The PEE70 showed a stronger reducing power and ability to scavenge free radicals and metal ions than the PEE96. Both PEEs were in the main more effective against Gram-positive bacteria than against fungi and Gram-negative bacteria like Salmonella and Escherichia coli, with the exception of Campylobacter. The PEE96 decreased the intracellular oxidation in Saccharomyces cerevisiae in a dose-dependent manner. The antimicrobial activities and antioxidant properties were related to the total phenolic contents. The two PEEs have the potential for use as natural antimicrobial and antioxidant additives in foods.

  14. Antimicrobial activity of toothpastes containing natural extracts, chlorhexidine or triclosan.

    PubMed

    De Rossi, Andiara; Ferreira, Danielly Cunha Araújo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo

    2014-01-01

    The objective of this in vitro study was to evaluate the antimicrobial effect of toothpastes containing natural extracts, chlorhexidine or triclosan. The effectiveness of toothpastes containing natural extracts (Parodontax®), 0.12% chlorhexidine (Cariax®), 0.3% triclosan (Sanogil®) or fluoride (Sorriso®, control) was evaluated against yeasts, Gram-positive and Gram-negative bacteria using the disk diffusion method. Water was used as a control. Disks impregnated with the toothpastes were placed in Petri dishes containing culture media inoculated with 23 indicative microorganisms by the pour plate method. After incubation, the inhibition growth halos were measured and statistical analyses (α=0.05) were performed. The results indicated that all formulations, except for conventional toothpaste (Sorriso®), showed antimicrobial activity against Gram-positive bacteria and yeasts. The toothpaste containing natural extracts (Parodontax®) was the only product able to inhibit the growth of Pseudomonas aeruginosa. The toothpastes containing chlorhexidine, triclosan or natural extracts presented antimicrobial activity against Gram-positive bacteria and yeasts.

  15. Antimicrobial Activity of Molluscan Hemocyanins from Helix and Rapana Snails.

    PubMed

    Dolashka, Pavlina; Dolashki, Aleksander; Van Beeumen, Jozef; Floetenmeyer, Matthias; Velkova, Lyudmila; Stevanovic, Stefan; Voelter, Wolfgang

    2016-01-01

    For the first time the antimicrobial activities of hemocyanins from the molluscs Rapana venosa (RvH) and Helix aspersa (HaH) have been tested. From the hemolymph of the garden snail H. aspersa one structural subunit (βc-HaH ) and eight functional units (FUs, βc-HaH-a to βc-HaH-h) were isolated, and their N-terminal sequences and molecular weights, ranging between 45 and 65 kDa, determined. The antimicrobial test of the hemocyanins against different bacteria showed that only two FUs from Rapana, RvH1-b and RvH1-e, exhibit a low inhibition effect against Staphylococcus aureus. In contrast and surprisingly, the structural subunit βc-HaH of H. aspersa not only shows strong antimicrobial activities against S. aureus and the likewise Gram-positive Streptococcus epidermidis, but also against the Gram-negative bacterium Escherichia coli. We suggest that this subunit therefore has the potential to become a substitute for the commonly used antibiotics against which bacterial resistance has gradually been developed. PMID:26343131

  16. Novel Antimicrobial Peptides with High Anticancer Activity and Selectivity

    PubMed Central

    Chen, Kuan-Hao; Yu, Hui-Yuan; Chih, Ya-Han; Cheng, Hsi-Tsung; Chou, Yu-Ting; Cheng, Jya-Wei

    2015-01-01

    We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics. PMID:25970292

  17. Gram-positive antimicrobial activity of amino acid-based hydrogels.

    PubMed

    Irwansyah, I; Li, Yong-Qiang; Shi, Wenxiong; Qi, Dianpeng; Leow, Wan Ru; Tang, Mark B Y; Li, Shuzhou; Chen, Xiaodong

    2015-01-27

    Antimicrobial hydrogels are prepared based on the co-assembly of commercial Fmoc-phenylalanine and Fmoc-leucine, which act as the hydrogelator and antimicrobial building block, respectively. This co-assembled antimicrobial hydrogel is demonstrated to exhibit selective bactericidal activity for gram-positive bacteria while being biocompatible with normal mammalian cells, showing great potential as an antimicrobial coating for clinical anti-infective applications.

  18. Broad Spectrum Antimicrobial Activity of Forest-Derived Soil Actinomycete, Nocardia sp. PB-52

    PubMed Central

    Sharma, Priyanka; Kalita, Mohan C.; Thakur, Debajit

    2016-01-01

    A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195). The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacteria, and yeasts. Optimization for the growth and antimicrobial activity of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and antimicrobial potential of the strain were recorded in GLM medium at 28°C, initial pH 7.4 of the medium and incubation period of 8 days. Based on polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial compounds in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52) showed lowest minimum inhibitory concentration (MIC) against S. aureus MTCC 96 (0.975 μg/mL) whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 μg/mL). Scanning electron microscopy (SEM) revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS). GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which are reported to possess diverse biological activity. These

  19. The comparative effect of novel Pelargonium essential oils and their corresponding hydrosols as antimicrobial agents in a model food system.

    PubMed

    Lis-Balchin, M; Steyrl, H; Krenn, E

    2003-01-01

    Essential oils and their corresponding hydrosols, obtained after distillation of various scented Pelargonium (Geraniaceae) leaves were assessed for their antimicrobial activity in a model food system. Both the essential oils and hydrosols were used at 1000 ppm in broccoli soup, previously inoculated with Enterobacter aerogenes (at 10(5) cfu g(-1)) and Staphylococcus aureus (at 10(4) cfu g(-1)). The results showed a complete inhibition of S. aureus in the broccoli soup by the essential oils of 'Sweet Mimosa', 'Mabel Grey', P. graveolens, 'Atomic Snowflake', 'Royal Oak', 'Attar of Roses' and a lesser effect by 'Chocolate Peppermint' and 'Clorinda'; the hydrosols, however, had a potentiating effect on the bacterial population in the food. Both extracts showed a complete inhibition of S. aureus in the Maximum Recovery Diluent (MRD). Antibacterial activity against E. aerogenes in the broccoli soup was generally very much reduced: only the essential oil of 'Mabel Grey' showed complete inhibition and virtually no reductions in colonies were seen with the other essential oils; the hydrosols again caused an increase in bacterial colonies. All the essential oils, bar Chocolate Peppermint showed complete inhibition of E. aerogenes in MRD, but the hydrosols showed no effect. The results strongly suggest that the residual hydrosols from distillation of these plant essential oils have no potential as antibacterial agents in foods, in contrast to most of the essential oils, which show potential against some micro-organisms, but only in some food systems. The problem of food component interference and its possible management is discussed.

  20. Short communication: Streptococcus species isolated from mastitis milk samples in Germany and their resistance to antimicrobial agents.

    PubMed

    Minst, K; Märtlbauer, E; Miller, T; Meyer, C

    2012-12-01

    Mastitis is one of the most frequent infectious diseases in dairy cattle and is a reason for antimicrobial drug usage in dairy cows. The bacteria involved in bovine mastitis are mainly Streptococcus spp., Staphylococcus spp., and coliforms. The aim of this study was to determine antimicrobial resistance among Streptococcus spp. isolated from bovine mastitis milk. Antimicrobial resistance in Strep. uberis (n=227), Strep. dysgalactiae (n=49), and Strep. agalactiae (n=3) was determined for 9 antimicrobial agents using the broth microdilution method in accordance with Clinical and Laboratory Standards Institute recommendations. Of all Streptococcus spp., 13% were multidrug resistant. The rate of multidrug resistance was higher among Strep. uberis (15%) than among Strep. dysgalactiae (6%) and Strep. agalactiae (0%). Resistance to tetracycline was the most common, followed by resistance to erythromycin, pirlimycin, and gentamicin. Resistance rates were higher on farms with more than 80 cows compared with those with fewer than 20 cows. β-Lactams should remain the drugs of choice in the treatment of streptococcal mastitis. The slightly elevated minimum inhibitory concentrations determined for these antibiotics may indicate, however, the emergence of resistant streptococci. To identify such changes in susceptibility as early as possible, antimicrobial resistance in streptococci should be surveyed regularly. PMID:22999286

  1. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    SciTech Connect

    Martinez-Becerra, Francisco; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria . E-mail: garciaze@servidor.unam.mx

    2007-04-06

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in {alpha} helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa.

  2. Antimicrobial, antioxidant and cytotoxic activities of propolis from Melipona orbignyi (Hymenoptera, Apidae).

    PubMed

    Campos, Jaqueline Ferreira; dos Santos, Uilson Pereira; Macorini, Luis Fernando Benitez; de Melo, Adriana Mary Mestriner Felipe; Balestieri, José Benedito Perrella; Paredes-Gamero, Edgar Julian; Cardoso, Claudia Andrea Lima; de Picoli Souza, Kely; dos Santos, Edson Lucas

    2014-03-01

    Propolis from stingless bees is well known for its biologic properties; however, few studies have demonstrated these effects. Therefore, this study aimed to investigate the chemical composition and antimicrobial, antioxidant and cytotoxic activities of propolis from the stingless bee Melipona orbignyi, found in Mato Grosso do Sul, Brazil. The chemical composition of the ethanol extract of propolis (EEP) indicated the presence of aromatic acids, phenolic compounds, alcohols, terpenes and sugars. The EEP was active against the bacterium Staphylococcus aureus and the fungus Candida albicans. The EEP showed antioxidant activity by scavenging free radicals and inhibiting hemolysis and lipid peroxidation in human erythrocytes incubated with an oxidizing agent. Additionally, EEP promoted cytotoxic activity and primarily necrotic death in K562 erythroleukemia cells. Taken together, these results indicate that propolis from M. orbignyi has therapeutic potential for the treatment and/or prevention of diseases related to microorganism activity, oxidative stress and tumor cell proliferation.

  3. Chemo-sensitization of fungal pathogens to antimicrobial agents using benzaldehyde analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activity of conventional antifungal agents, fludioxonil, strobilurin and antimycinA, which target the oxidative and osmotic stress response systems, was elevated by co-application of certain analogs of benzaldehyde. Fungal tolerance to 2,3-dihydroxybenzaldehyde or 2,3-dihydroxybenzoic acid was foun...

  4. Quantum Speedup for Active Learning Agents

    NASA Astrophysics Data System (ADS)

    Paparo, Giuseppe Davide; Dunjko, Vedran; Makmal, Adi; Martin-Delgado, Miguel Angel; Briegel, Hans J.

    2014-07-01

    Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-life situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.

  5. Vinegar as an antimicrobial agent for control of Candida spp. in complete denture wearers.

    PubMed

    Pinto, Telma Maria Silva; Neves, Ana Christina Claro; Leão, Mariella Vieira Pereira; Jorge, Antonio Olavo Cardoso

    2008-01-01

    The use of denture is known to increase the carriage of Candida in healthy patients, and the proliferation of Candida albicans strains can be associated with denture-induced stomatitis. The aim of this study was to evaluate the use of vinegar as an antimicrobial agent for control of Candida spp. in complete upper denture wearers. Fifty-five patients were submitted to a detailed clinical interview and oral clinical examination, and were instructed to keep their dentures immersed in a 10% vinegar solution (pH less than 3) overnight for 45 days. Before and after the experimental period, saliva samples were collected for detection of Candida, counting of cfu/mL and identification of species by phenotypical tests (germ tube formation, chlamidoconidia production, and carbohydrate fermentation and assimilation). The results were analyzed using Spearman's correlation and Student's t-test (p

  6. Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo

    PubMed Central

    Gnanadhas, Divya Prakash; Ben Thomas, Midhun; Thomas, Rony; Raichur, Ashok M.

    2013-01-01

    The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes. PMID:23877702

  7. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

    PubMed Central

    Kwakman, P. H. S.; de Boer, L.; Ruyter-Spira, C. P.; Creemers-Molenaar, T.; Helsper, J. P. F. G.; Vandenbroucke-Grauls, C. M. J. E.; te Velde, A. A.

    2010-01-01

    Honey has potent activity against both antibiotic-sensitive and -resistant bacteria, and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application. We investigated the kinetics of the killing of antibiotic-resistant bacteria by RS honey, the source for the production of Revamil® medical-grade honey, and we aimed to enhance the rapid bactericidal activity of RS honey by enrichment with its endogenous compounds or the addition of antimicrobial peptides (AMPs). RS honey killed antibiotic-resistant isolates of Pseudomonas aeruginosa, Staphylococcus epidermidis, Enterococcus faecium, and Burkholderia cepacia within 2 h, but lacked such rapid activity against methicillin-resistant S. aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. It was not feasible to enhance the rapid activity of RS honey by enrichment with endogenous compounds, but RS honey enriched with 75 μM of the synthetic peptide Bactericidal Peptide 2 (BP2) showed rapid bactericidal activity against all species tested, including MRSA and ESBL E. coli, at up to 10–20-fold dilution. RS honey enriched with BP2 rapidly killed all bacteria tested and had a broader spectrum of bactericidal activity than either BP2 or honey alone. PMID:20927564

  8. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized

    PubMed Central

    Campos, Matias D.; Zucchi, Paola C.; Phung, Ann; Leonard, Steven N.; Hirsch, Elizabeth B.

    2016-01-01

    Background Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. Aim We compared the efficacy of multiple testing protocols against several “antimicrobial” film surfaces. Methods Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a “dried droplet”, and a “transfer” method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. Results Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the ex