Sample records for active antimicrobial agents

  1. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-05

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effect of Two Cancer Chemotherapeutic Agents on the Antibacterial Activity of Three Antimicrobial Agents

    PubMed Central

    Moody, Marcia R.; Morris, Maureen J.; Young, Viola Mae; Moyé, Lemuel A.; Schimpff, Stephen C.; Wiernik, Peter H.

    1978-01-01

    Cancer chemotherapeutic agents and antibacterial antibiotics are often given concomitantly. Daunorubicin, cytosine arabinoside, and three antibiotics (gentamicin, amikacin, and ticarcillin) were tested individually and in combinations to determine their antimicrobial activity against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. These cytotoxic agents are commonly employed in the therapy of acute nonlymphocytic leukemia for remission induction therapy, and these antimicrobial agents are used in infection therapy. The maximum concentrations of the two cytotoxic drugs were chosen to be twice the known peak plasma levels of commonly employed dosage schedules. Neither of the cancer chemotherapeutic agents, alone or in combination, demonstrated bactericidal activity at the levels tested. However, in the presence of these agents, the antimicrobial activity of gentamicin and amikacin, although not that of ticarcillin, was depressed for 11 of 15 K. pneumoniae strains and 8 of 15 P. aeruginosa strains, but for none of the strains of E. coli. This level of decreased activity occasionally resulted in a minimal inhibitory concentration of the tested aminoglycoside well above the standard serum levels. Daunorubicin was more likely to antagonize gentamicin than was cytosine arabinoside. PMID:103494

  3. Pharmacokinetic parameters explain the therapeutic activity of antimicrobial agents in a silkworm infection model.

    PubMed

    Paudel, Atmika; Panthee, Suresh; Urai, Makoto; Hamamoto, Hiroshi; Ohwada, Tomohiko; Sekimizu, Kazuhisa

    2018-01-25

    Poor pharmacokinetic parameters are a major reason for the lack of therapeutic activity of some drug candidates. Determining the pharmacokinetic parameters of drug candidates at an early stage of development requires an inexpensive animal model with few associated ethical issues. In this study, we used the silkworm infection model to perform structure-activity relationship studies of an antimicrobial agent, GPI0039, a novel nitrofuran dichloro-benzyl ester, and successfully identified compound 5, a nitrothiophene dichloro-benzyl ester, as a potent antimicrobial agent with superior therapeutic activity in the silkworm infection model. Further, we compared the pharmacokinetic parameters of compound 5 with a nitrothiophene benzyl ester lacking chlorine, compound 7, that exerted similar antimicrobial activity but had less therapeutic activity in silkworms, and examined the metabolism of these antimicrobial agents in human liver fractions in vitro. Compound 5 had appropriate pharmacokinetic parameters, such as an adequate half-life, slow clearance, large area under the curve, low volume of distribution, and long mean residence time, compared with compound 7, and was slowly metabolized by human liver fractions. These findings suggest that the therapeutic effectiveness of an antimicrobial agent in the silkworms reflects appropriate pharmacokinetic properties.

  4. Efficacy of Antimicrobial Agents for Food Contact Applications: Biological Activity, Incorporation into Packaging, and Assessment Methods: A Review.

    PubMed

    Mousavi Khaneghah, Amin; Hashemi, Seyed Mohammad Bagher; Eş, Ismail; Fracassetti, Daniela; Limbo, Sara

    2018-07-01

    Interest in the utilization of antimicrobial active packaging for food products has increased in recent years. Antimicrobial active packaging involves the incorporation of antimicrobial compounds into packaging materials, with the aim of maintaining or extending food quality and shelf life. Plant extracts, essential oils, organic acids, bacteriocins, inorganic substances, enzymes, and proteins are used as antimicrobial agents in active packaging. Evaluation of the antimicrobial activity of packaging materials using different methods has become a critical issue for both food safety and the commercial utilization of such packaging technology. This article reviews the different types of antimicrobial agents used for active food packaging materials, the main incorporation techniques, and the assessment methods used to examine the antimicrobial activity of packaging materials, taking into account their safety as food contact materials.

  5. Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents.

    PubMed

    Kim, Jaeeun; Hahn, Ji-Sook; Franklin, Michael J; Stewart, Philip S; Yoon, Jeyong

    2009-01-01

    The aim of the study was to determine the susceptibility of active and dormant cell populations from Pseudomonas aeruginosa biofilms to non-antibiotic antimicrobial agents such as chlorine, hydrogen peroxide and silver ions in comparison with antibiotics. Active cells in colony biofilm were differentially labelled by induction of a green fluorescent protein (GFP). Active and dormant cells were sorted in phosphate buffered solution by flow cytometry. Reductions in viability were determined with plate counts. The spatial pattern of metabolic activity in colony biofilm was verified, and the active and dormant cells were successfully sorted according to the GFP intensity. Active cells had bigger cell size and higher intracellular density than dormant cells. While dormant cells were more tolerant to tobramycin and silver ions, active cells were more tolerant to chlorine. Metabolically active cells contain denser intracellular components that can react with highly reactive oxidants such as chlorine, thereby reducing the available concentrations of chlorine. In contrast, the concentrations of silver ions and hydrogen peroxide were constant during treatment. Aerobically grown stationary cells were significantly more tolerant to chlorine unlike other antimicrobial agents. Chlorine was more effective in inactivation of metabolically inactive dormant cells and also more effective under anaerobic conditions. The high oxidative reactivity and rapid decay of chlorine might influence the different antimicrobial actions of chlorine compared with antibiotics. This study contributes to understanding the effects of dormancy and the presence of oxygen on the susceptibility of P. aeruginosa biofilm to a wide range of antimicrobial agents.

  6. Antimicrobial activity of chemomechanical gingival retraction products.

    PubMed

    Hsu, Belinda; Lee, Stephanie; Schwass, Donald; Tompkins, Geoffrey

    2017-07-01

    Application of astringent hemostatic agents is the most widely used technique for gingival retraction, and a variety of products are offered commercially. However, these products may have additional unintended yet clinically beneficial properties. The authors assessed the antimicrobial activities of marketed retraction products against plaque-associated bacteria in both planktonic and biofilm assays, in vitro. The authors assessed hemostatic solutions, gels, pellets, retraction cords, pastes, and their listed active agents against a collection of microorganisms by means of conventional agar diffusion and minimum bacteriostatic and bactericidal concentration determinations. The authors then tested the most active products against monospecies biofilms grown on hydroxyapatite disks. All of the tested retraction products exhibited some antimicrobial activity. The results of the most active products were comparable with those of a marketed mouthwash. The listed retraction-active agents displayed relatively little activity when tested in pure form. At 10% dilution, some products evidenced inhibitory activity against most tested bacteria within 3 minutes of exposure, whereas others displayed variable effects after 10 minutes. The most active agents reduced, but did not completely prevent, the metabolic activity of a monospecies biofilm. Commercial gingival retraction products exhibit antimicrobial effects to various degrees in vitro. Some products display rapid bactericidal activity. The antimicrobial activity is not owing to the retraction-active agents. Biofilm bacteria are less sensitive to the antimicrobial effects of the agents. The rapidity of killing by some hemostatic agents suggests an antimicrobial effect that may be efficacious during clinical placement. The results of this in vitro study suggest that clinicians should be aware of the potential antimicrobial effects of some hemostatic agents, but more research is needed to confirm these observations in

  7. Nanocomposites: suitable alternatives as antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Matharu, Rupy Kaur; Ciric, Lena; Edirisinghe, Mohan

    2018-07-01

    The exploration of nanocomposites has gained a strong research following over the last decade. These materials have been heavily exploited in several fields, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of microbiology, specifically as antimicrobial agents. This review aims to provide a comprehensive account of various nanocomposites that elucidate promising antimicrobial activity. The composition, physical and chemical properties, as well as the antimicrobial performance of these nanocomposites, are discussed in detail.

  8. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  9. Susceptibility of Legionella pneumophila to twenty antimicrobial agents.

    PubMed Central

    Edelstein, P H; Meyer, R D

    1980-01-01

    Thirty-three isolates of Legionella pneumophila, all except one of which were clinical isolates, were tested against 20 antimicrobial agents by using an agar dilution technique. Erythromycin, rifamp]in, and rosaramycin were the most active agents tested. Aminoglycosides, chloramphenicol, and cefoxitin also inhibited the organisms at low concentrations. Other agents, including moxalactam, cefoperazone, and cephalosporins, exhibited moderate to little activity. Tetracycline, doxycycline and minocyeline were apparently inactivated by charcoal-yeast extract medium. There was slight inoculum dependence noted with most of the antimicrobials tested, particularly the beta-lactam agents. There was no consistent difference in susceptibility between Center for Disease Control-supplied stock strains and recent clinical isolates, but there were marked differences with some agents. Susceptibility testing needs to be standardized in view of the influence of inoculum size, strain variation, and the medium used. PMID:7425611

  10. Nanoparticles as potential new generation broad spectrum antimicrobial agents.

    PubMed

    Yah, Clarence S; Simate, Geoffrey S

    2015-09-02

    The rapid emergence of antimicrobial resistant strains to conventional antimicrobial agents has complicated and prolonged infection treatment and increased mortality risk globally. Furthermore, some of the conventional antimicrobial agents are unable to cross certain cell membranes thus, restricting treatment of intracellular pathogens. Therefore, the disease-causing-organisms tend to persist in these cells. However, the emergence of nanoparticle (NP) technology has come with the promising broad spectrum NP-antimicrobial agents due to their vast physiochemical and functionalization properties. In fact, NP-antimicrobial agents are able to unlock the restrictions experienced by conventional antimicrobial agents. This review discusses the status quo of NP-antimicrobial agents as potent broad spectrum antimicrobial agents, sterilization and wound healing agents, and sustained inhibitors of intracellular pathogens. Indeed, the perspective of developing potent NP-antimicrobial agents that carry multiple-functionality will revolutionize clinical medicine and play a significant role in alleviating disease burden.

  11. Antimicrobial and physical characteristics of orthodontic primers containing antimicrobial agents.

    PubMed

    Chung, Shin-Hye; Cho, Soha; Kim, Kyungsun; Lim, Bum-Soon; Ahn, Sug-Joon

    2017-03-01

    To compare the antimicrobial and physical properties of experimental primers containing chlorhexidine (CHX) or ursolic acid (UA) with a commercial primer. Two antibacterial agents, 3 mg each of CHX and UA were incorporated respectively into 1 ml of Transbond XT primer (TX) to form antibacterial primers, TX-CHX and TX-UA. The antimicrobial activity of the three primers (TX, TX-CHX, and TX-UA) against Streptococcus mutans in both planktonic and biofilm phases was analyzed by determining minimum inhibitory and bactericidal concentrations and by performing growth and biofilm assays. Growth and biofilm assays were performed in both the absence and presence of thermocycling in a water tank to analyze the effects of water aging on the antimicrobial activities of primers. After bonding brackets onto bovine incisors using the primers, shear bond strength and mode of fracture were analyzed to compare physical properties. TX-CHX had stronger antimicrobial activity against S. mutans in the planktonic and biofilm phases than did TX or TX-UA. When applied, TX-CHX completely inhibited the growth and biofilm formation of S. mutans . In addition, the antimicrobial activity of TX-CHX was maintained after thermocycling. However, TX-UA did not show significant antimicrobial activity compared with TX. There was no significant difference in either shear bond strength or bond failure interface among the primers. Incorporation of CHX into an orthodontic primer may help prevent enamel demineralization around surfaces without compromising its physical properties.

  12. Silanols, a New Class of Antimicrobial Agent

    DTIC Science & Technology

    2006-04-01

    carbinols against the four bacteria was log (1/MLC) = 0.670 log P + 0.0035 ∆ν -1.836, n = 282, r = 0.96, s = 0.22. This equation and a significantly...activity relationship of antimicrobial agents by means of equations [8] based on a method proposed by Hansch and Fujita in 1964 [1]. This multiple...correlation equations between their antimicrobial activities and structural properties, log P and H-bond acidity, were created by a multiple regression

  13. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  14. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Inhibition of Legionella pneumophila multiplication within human macrophages by antimicrobial agents.

    PubMed Central

    Vildé, J L; Dournon, E; Rajagopalan, P

    1986-01-01

    The activity of serial concentrations of different antimicrobial agents on the multiplication of Legionella pneumophila within human monocyte-derived macrophages was studied. The results led to the definition of a minimal extracellular concentration inhibiting intracellular multiplication (MIEC). According to the MIECs, the antimicrobial agents tested were classified in three groups: very active (MIEC less than or equal to 0.06 microgram/ml), such as erythromycin, rifampin, and pefloxacin; active (1 microgram/ml greater than or equal to MIEC greater than or equal to 0.1 microgram/ml), such as sulfamethoxazole-trimethoprim or doxycycline; and ineffective, such as cefoxitin, which was not active within macrophages at as high as 64 micrograms/ml despite a low MIC (0.2 microgram/ml) on bacterial charcoal-yeast extract agar. The activity of netilmicin was difficult to assess because of its effect on extracellular legionellae. Combinations of erythromycin with rifampin and pefloxacin with erythromycin, rifampin, doxycycline, or netilmicin showed an additive effect and no antagonism. These results obtained in a cellular model are in agreement with the efficacy of antimicrobial agents in experimental infections and in Legionnaires disease. They sustain clinical interest in the new quinolones, such as pefloxacin, and in combinations of antimicrobial agents for the treatment of Legionnaires disease. PMID:3492176

  16. Synergy between antibiotics and natural agents results in increased antimicrobial activity against Staphylococcus epidermidis.

    PubMed

    Abidi, Syed Hani; Ahmed, Khalid; Sherwani, Sikander Khan; Kazmi, Shahana Urooj

    2015-09-27

    Staphylococcus epidermidis is one of the most frequent causes of biofilm-associated infections on indwelling medical devices. With the emergence of methicillin-resistant S. epidermidis (MRSE), there is an urgent need to discover novel active agents against a range of Gram-positive pathogens. We screened the clinical isolates of S. epidermidis for susceptibility/resistance against commonly prescribed antibiotics. Furthermore, we tested some natural agents alone and in combination with antibiotics to find possible synergistic antimicrobial effects. S. epidermidis clinical isolates were screened for susceptibility/resistance against vancomycin, erythromycin, tetracycline, chloramphenicol, ampicillin, ofloxacin, cephalexin, and gentamicin using the Kirby-Bauer disk diffusion method. The antimicrobial potential of Camellia sinensis, Juglans regia, and Hippophae rhamnoides alone and in combination with antibiotics were examined using the disk diffusion method, where the antimicrobial potential activity was measured in terms of formation of zones of inhibition. Most S. epidermidis isolates were found to be resistant to one or more antibiotics. Gentamycin and ofloxacin were found to be the most effective antibiotics against S. epidermidis isolates. Extracts of Hippophae rhamnoides, Juglans regia, and Camellia sinensis were found to be equally effective against S. epidermidis isolates. In combination with antibiotics, these extracts exhibited appreciable synergistic activity; the highest synergistic activity was observed with erythromycin and cephalexin. In the case of cephalexin, a reversion in resistance was observed. The plant extracts used in the study exhibited additive and synergistic antibacterial activity against S. epidermidis, hence providing an effective alternative to deal with the problem of multidrug resistance.

  17. In vitro susceptibility of Trichomonas vaginalis to 50 antimicrobial agents.

    PubMed Central

    Sears, S D; O'Hare, J

    1988-01-01

    We determined the susceptibilities of five strains of Trichomonas vaginalis, one of which was metronidazole resistant, to 50 antimicrobial agents. For the metronidazole-susceptible strains, the most active agents were metronidazole, tinidazole, mebendazole, furazolidone, and anisomycin. Against the resistant strain mebendazole, furazolidone, and anisomycin were the most active. Antifungal agents, beta-lactams, macrolides, aminoglycosides, and folic acid antagonists were ineffective against all strains. PMID:3258142

  18. [Studies on antimicrobial activity of extracts from thyme].

    PubMed

    Fan, M; Chen, J

    2001-08-01

    The extracts from thyme by water and ethanol, thyme essential oil, thymol and carvacrol were used as antimicrobial agents in this paper. The results show that all antimicrobial agents used have strong inhibition activity against Staphalococcus aureus, Bacillus subtilis, Escherichia coli.

  19. Development of non-natural flavanones as antimicrobial agents.

    PubMed

    Fowler, Zachary L; Shah, Karan; Panepinto, John C; Jacobs, Amy; Koffas, Mattheos A G

    2011-01-01

    With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells.

  20. Development of Non-Natural Flavanones as Antimicrobial Agents

    PubMed Central

    Fowler, Zachary L.; Shah, Karan; Panepinto, John C.; Jacobs, Amy; Koffas, Mattheos A. G.

    2011-01-01

    With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells. PMID:22039419

  1. Extended stability of antimicrobial agents in administration devices.

    PubMed

    Jenkins, Abi; Hills, Tim; Santillo, Mark; Gilchrist, Mark

    2017-04-01

    Outpatient parenteral antimicrobial therapy (OPAT) is an established approach to patient care. A lack of data on antimicrobial stability within administration devices is a barrier to service expansion, and poses an antimicrobial stewardship dilemma. Often broad-spectrum, long half-life agents are used instead of narrow-spectrum agents, which need more frequent administration, but could possibly be used if stability data were available. To complete a comprehensive literature review of published antimicrobial stability data, and assess these against a nationally recognized minimum dataset for medicines compounded into administration devices. Medline, EMBASE, Global Health, International Pharmaceutical Abstracts and Biomedical Research Database were interrogated in April 2014 and updated in November 2015. A total of 420 citations were reviewed with 121 selected for full text review. None of these papers met the inclusion criteria stipulated in the national standards. The most frequent reason for study exclusion was the tolerance limit for the level of the active pharmaceutical ingredient being wider than 95%-105% and absence of 'in-use' testing at 37 °C. This review found no published studies that comply with UK national standards for stability testing. We recommend further research and publication of antimicrobial stability data to support OPAT within the antimicrobial stewardship agenda. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents.

    PubMed

    Thielmann, J; Kohnen, S; Hauser, C

    2017-06-19

    The antimicrobial activity of phenolic compounds from Olea (O.) europaea Linné (L.) is part of the scientific discussion regarding the use of natural plant extracts as alternative food preservative agents. Although, the basic knowledge on the antimicrobial potential of certain molecules such as oleuropein, hydroxytyrosol or elenolic acid derivatives is given, there is still little information regarding their applicability for food preservation. This might be primarily due to the lack of information regarding the full antimicrobial spectrum of the compounds, their synergisms in natural or artificial combinations and their interaction with food ingredients. The present review accumulates available literature from the past 40 years, investigating the antimicrobial activity of O. europaea L. derived extracts and compounds in vitro and in food matrices, in order to evaluate their food applicability. In summary, defined extracts from olive fruit or leaves, containing the strongest antimicrobial compounds hydroxytyrosol, oleacein or oleacanthal in considerable concentrations, appear to be suitable for food preservation. Nonetheless there is still need for consequent research on the compounds activity in food matrices, their effect on the natural microbiota of certain foods and their influence on the sensorial properties of the targeted products. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Animal Venom Peptides: Potential for New Antimicrobial Agents.

    PubMed

    Primon-Barros, Muriel; José Macedo, Alexandre

    2017-01-01

    Microbial infections affect people worldwide, causing diseases with significant impact on public health, indicating the need for research and development of new antimicrobial agents. Animal venoms represent a vast and largely unexploited source of biologically active molecules with attractive candidates for the development of novel therapeutics. Venoms consist of complex mixtures of molecules, including antimicrobial peptides (AMPs). Since the discovery of AMPs, they have been studied as promising new antimicrobial drugs. Amongst the remarkable sources of AMPs with known antimicrobial activities are ants, bees, centipedes, cone snails, scorpions, snakes, spiders, and wasps. The antimicrobial tests against bacteria, protozoans, fungi and viruses using 170 different peptides isolated directly from crude venoms or cDNA libraries of venom glands are listed and discussed in this review, as well as hemolytic ativity. The potential of venoms as source of new compounds, including AMPs, is extensively discussed. Currently, there are six FDA-approved drugs and many others are undergoing preclinical and clinical trials. The search for antimicrobial "weapons" makes the AMPs from venoms promising candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. The Three Bacterial Lines of Defense against Antimicrobial Agents.

    PubMed

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-09-09

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.

  5. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii.

    PubMed

    Knezevic, Petar; Aleksic, Verica; Simin, Natasa; Svircev, Emilija; Petrovic, Aleksandra; Mimica-Dukic, Neda

    2016-02-03

    Traditional herbal medicine has become an important issue on the global scale during the past decade. Among drugs of natural origin, special place belongs to essential oils, known as strong antimicrobial agents that can be used to combat antibiotic-resistant bacteria. Eucalyptus camaldulensis leaves are traditional herbal remedy used for various purposes, including treatment of infections. The aim of this study was to determine antimicrobial potential of two E. camaldulensis essential oils against multi-drug resistant (MDR) Acinetobacter baumannii wound isolates and to examine possible interactions of essential oils with conventional antimicrobial agents. Chemical composition of essential oils was determined by gas chromatography-mass spectrometry analysis (GC-MS). MIC values of essential oils against A. baumannii strains were estimated by modified broth microdilution method. The components responsible for antimicrobial activity were detected by bioautographic analysis. The potential synergy between the essential oils and antibiotics (ciprofloxacin, gentamicin and polymyxin B) was examined by checkerboard method and time kill curve. The dominant components of both essential oils were spatulenol, cryptone, p-cimene, 1,8-cineole, terpinen-4-ol and β-pinene. The detected MICs for the E. camaldulensis essential oils were in range from 0.5 to 2 μl mL(-1). The bioautographic assay confirmed antibacterial activity of polar terpene compounds. In combination with conventional antibiotics (ciprofloxacin, gentamicin and polymyxin B), the examined essential oils showed synergistic antibacterial effect in most of the cases, while in some even re-sensitized MDR A. baumannii strains. The synergistic interaction was confirmed by time-kill curves for E. camaldulensis essential oil and polymyxin B combination which reduced bacterial count under detection limit very fast, i.e. after 6h of incubation. The detected anti-A. baumannii activity of E. camaldulensis essential oils

  6. Antimicrobial activity of pomegranate peel extracts as affected by cultivar.

    PubMed

    Rosas-Burgos, Ema C; Burgos-Hernández, Armando; Noguera-Artiaga, Luis; Kačániová, Miroslava; Hernández-García, Francisca; Cárdenas-López, José L; Carbonell-Barrachina, Ángel A

    2017-02-01

    Some studies have reported that different parts of the pomegranate fruit, especially the peel, may act as potential antimicrobial agents and thus might be proposed as a safe natural alternative to synthetic antimicrobial agents. The high tannin content, especially punicalagin, found in pomegranate extracts, has been reported as the main compound responsible for such antimicrobial activity. Because the pomegranate peel chemical composition may vary with the type of cultivar (sweet, sour-sweet and sour), pomegranates may also differ with respect to their antimicrobial capacity. The extract from PTO8 pomegranate cultivar peel had the highest antimicrobial activity, as well as the highest punicalagins (α and β) and ellagic acid concentrations. In the results obtained from both antibacterial and antifungal activity studies, the sour-sweet pomegranate cultivar PTO8 showed the best antimicrobial activity, and the highest ellagic acid concentrations. The results of the present study suggest that ellagic acid content has a significant influence on the antimicrobial activity of the pomegranate extracts investigated. The pomegranate peel of the PTO8 cultivar is a good source of antifungal and antibacterial compounds, and may represent an alternative to antimicrobial agents of synthetic origin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. In vitro activities of 10 antimicrobial agents against bacterial vaginosis-associated anaerobic isolates from pregnant Japanese and Thai women.

    PubMed

    Puapermpoonsiri, S; Watanabe, K; Kato, N; Ueno, K

    1997-10-01

    The in vitro activities of 10 antimicrobial agents against 159 bacterial vaginosis-associated anaerobic isolates from pregnant Japanese and Thai women were determined. Clindamycin, imipenem, cefmetazole, amoxicillin, amoxicillin-clavulanate, and metronidazole were highly active against all anaerobic isolates except Prevotella bivia and Mobiluncus species, which were resistant to amoxicillin and metronidazole, respectively. Cefotiam, ceftazidime, and ofloxacin were variably effective, while cefaclor was the least effective agent.

  8. Microbioassay of Antimicrobial Agents

    PubMed Central

    Simon, Harold J.; Yin, E. Jong

    1970-01-01

    A previously described agar-diffusion technique for microbioassay of antimicrobial agents has been modified to increase sensitivity of the technique and to extend the range of antimicrobial agents to which it is applicable. This microtechnique requires only 0.02 ml of an unknown test sample for assay, and is capable of measuring minute concentrations of antibiotics in buffer, serum, and urine. In some cases, up to a 20-fold increase in sensitivity is gained relative to other published standardized methods and the error of this method is less than ±5%. Buffer standard curves have been established for this technique, concurrently with serum standard curves, yielding information on antimicrobial serum-binding and demonstrating linearity of the data points compared to the estimated regression line for the microconcentration ranges covered by this technique. This microassay technique is particularly well suited for pediatric research and for other investigations where sample volumes are small and quantitative accuracy is desired. Dilution of clinical samples to attain concentrations falling with the range of this assay makes the technique readily adaptable and suitable for general clinical pharmacological studies. The microassay technique has been standardized in buffer solutions and in normal human serum pools for the following antimicrobials: ampicillin, methicillin, penicillin G, oxacillin, cloxacillin, dicloxacillin, cephaloglycin, cephalexin, cephaloridine, cephalothin, erythromycin, rifamycin amino methyl piperazine, kanamycin, neomycin, streptomycin, colistin, polymyxin B, doxycycline, minocycline, oxytetracycline, tetracycline, and chloramphenicol. PMID:4986725

  9. Antimicrobial activity of spices.

    PubMed

    Arora, D S; Kaur, J

    1999-08-01

    Spices have been shown to possess medicinal value, in particular, antimicrobial activity. This study compares the sensitivity of some human pathogenic bacteria and yeasts to various spice extracts and commonly employed chemotherapeutic substances. Of the different spices tested only garlic and clove were found to possess antimicrobial activity. The bactericidal effect of garlic extract was apparent within 1 h of incubation and 93% killing of Staphylococcus epidermidis and Salmonella typhi was achieved within 3 h. Yeasts were totally killed in 1 h by garlic extract but in 5 h with clove. Some bacteria showing resistance to certain antibiotics were sensitive to extracts of both garlic and clove. Greater anti-candidal activity was shown by garlic than by nystatin. Spices might have a great potential to be used as antimicrobial agents.

  10. The Three Bacterial Lines of Defense against Antimicrobial Agents

    PubMed Central

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  11. In Vitro Activities of the Everninomicin SCH 27899 and Other Newer Antimicrobial Agents against Borrelia burgdorferi

    PubMed Central

    Dever, Lisa L.; Torigian, Christine V.; Barbour, Alan G.

    1999-01-01

    The in vitro activity of the everninomicin antibiotic SCH 27899 against 17 isolates of Borrelia spp. was investigated. MICs ranged from 0.06 to 0.5 μg/ml. Time-kill studies with the B31 strain of B. burgdorferi demonstrated ≥3-log10-unit killing after 72 h with concentrations representing four times the MIC. The in vitro activity of four other newer antimicrobial agents, meropenem, cefepime, quinupristin-dalfopristin, and linezolid, was also tested against the B31 strain. Meropenem was the most potent of the latter agents, with an MIC of 0.125 μg/ml. PMID:10390242

  12. Spectrum of antimicrobial activity associated with ionic colloidal silver.

    PubMed

    Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2013-03-01

    Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.

  13. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene

    PubMed Central

    Marchese, Anna; Arciola, Carla Renata; Barbieri, Ramona; Silva, Ana Sanches; Nabavi, Seyed Fazel; Tsetegho Sokeng, Arold Jorel; Izadi, Morteza; Jafari, Nematollah Jonaidi; Suntar, Ipek; Nabavi, Seyed Mohammad

    2017-01-01

    p-Cymene [1-methyl-4-(1-methylethyl)-benzene] is a monoterpene found in over 100 plant species used for medicine and food purposes. It shows a range of biological activity including antioxidant, anti-inflammatory, antinociceptive, anxiolytic, anticancer and antimicrobial effects. This last property has been widely investigated due to the urgent need for new substances with antimicrobial properties, to be used to treat communicable diseases whose diffusion in developed countries has been facilitated by globalization and the evolution of antimicrobial resistance. This review summarizes available scientific data, as reported by the most recent studies describing the antimicrobial activity of p-cymene either alone, or as the main component of plant extracts, as well as addressing the mechanisms of action of cymenes as antimicrobial agents. While p-cymene is one of the major constituents of extracts and essential oils used in traditional medicines as antimicrobial agents, but considering the limited data on its in vivo efficacy and safety, further studies are required to reach a definitive recommendation on the use and beneficial effects of p-cymene in human healthcare and in biomedical applications as a promising candidate to functionalize biomaterials and nanomaterials. PMID:28809799

  14. Light activated compounds as antimicrobial agents - patently obvious?

    PubMed

    Phoenix, D A; Harris, F

    2006-06-01

    Microbial pathogens with resistance to conventional drugs are a problem of global proportions and may be viral such as HIV, bacterial as in the case of MRSA or eukaryotic as seen with the malarial parasite Plasmodium falciparum. In response, photodynamic antimicrobial chemotherapy (PACT) has been developed, which is the delivery of a non-toxic photosensitiser (PS) to the site of a microbial infection. When taken up by the pathogen, illumination of the PS by light at an appropriate wavelength can lead to inactivation of the pathogen through the production of highly reactive free radical species, which induce oxidative damage to lipid, proteins and DNA / RNA, and / or adduct formation between the PS and these microbial biomolecules. Here the photochemical and photophysical steps underlying PS antimicrobial action along with the desirable electronic and physiochemical properties of PS are briefly reviewed. The therapeutic uses of PS are then illustrated with reference to a number that have featured in recent patents, including: The induction of endogenous PS by aminolevulinic acid; phenothiazinium based PS, which are the most studied of PACT agents, psoralens and organorhodium complexes.

  15. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    PubMed Central

    de Rapper, Stephanie; Viljoen, Alvaro

    2016-01-01

    The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender) essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538) and Gram-negative Pseudomonas aeruginosa (ATCC 27858) and Candida albicans (ATCC 10231) was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC) microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29). Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination. PMID:27891157

  16. The Risk of Some Veterinary Antimicrobial Agents on Public Health Associated with Antimicrobial Resistance and their Molecular Basis

    PubMed Central

    Hao, Haihong; Sander, Pascal; Iqbal, Zahid; Wang, Yulian; Cheng, Guyue; Yuan, Zonghui

    2016-01-01

    The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data, and risk assessment results of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in humans. From the selected examples, it was apparent from reviewing the published scientific literature that the ban on use of some antimicrobial agents (e.g., avoparcin, fluoroquinolone, tetracyclines) did not change drug resistance patterns and did not mitigate the intended goal of minimizing antimicrobial resistance. The use of some antimicrobial agents (e.g., virginiamycin, macrolides, and cephalosporins) in food animals may have an impact on the antimicrobial resistance in humans, but it was largely depended on the pattern of drug usage in different geographical regions. The epidemiological characteristics of resistant bacteria were closely related to molecular mechanisms involved in the development, fitness, and transmission of antimicrobial resistance. PMID:27803693

  17. Efficacy of antimicrobial agents incorporated in orthodontic bonding systems: a systematic review and meta-analysis.

    PubMed

    de Almeida, C M; da Rosa, W L O; Meereis, C T W; de Almeida, S M; Ribeiro, J S; da Silva, A F; Lund, Rafael Guerra

    2018-06-01

    The purpose of this study was to evaluate the efficacy of orthodontic bonding systems containing different antimicrobial agents, as well as the influence of antimicrobial agent incorporation in the bonding properties of these materials. Eight databases were searched: PubMed (Medline), Web of Science, Scopus, Lilacs, Ibecs, BBO, Scielo and Google Scholar. Any study that evaluated antimicrobial activity in experimental or commercial orthodontic bonding systems was included. Data were tabulated independently and in duplicated by two authors on pre-designed data collection form. The global analysis was carried out using a random-effects model, and pooled-effect estimates were obtained by comparing the standardised mean difference of each antimicrobial orthodontic adhesive with the respective control group. A p-value < .05 was considered as statistically significant. Thirty-two studies were included in the qualitative analysis; of these, 22 studies were included in the meta-analysis. Antimicrobial agents such as silver nanoparticles, benzalkonium chloride, chlorhexidine, triclosan, cetylpyridinium chloride, Galla chinensis extract, acid ursolic, dimethylaminododecyl methacrylate, dimethylaminohexadecyl methacrylate, 2-methacryloyloxyethyl phosphorylcholine, 1,3,5-triacryloylhexahydro-1,3,5-triazine, zinc oxide and titanium oxide have been incorporated into orthodontic bonding systems. The antimicrobial agent incorporation in orthodontic bonding systems showed higher antimicrobial activity than the control group in agar diffusion (overall standardised mean difference: 3.71; 95% CI 2.98 to 4.43) and optical density tests (0.41; 95% CI -0.05 to 0.86) (p < .05). However, for biofilm, the materials did not present antimicrobial activity (6.78; 95% CI 4.78 to 8.77). Regarding bond strength, the global analysis showed antimicrobial orthodontic bonding systems were statistically similar to the control. Although there is evidence of antibacterial activity from in vitro

  18. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective.

    PubMed

    Aidara-Kane, A

    2012-04-01

    The use of antimicrobial agents in humans and food-producing animals has important consequences for human and animal health, as it can lead to the development of resistant bacteria (pathogens and/or commensals with resistance genes). Moreover, resistant bacteria in animals can be transferred to people--usually through the consumption of food, but also through direct contact with food-producing animals or through environmental spread. Ultimately, this can result in human infections with bacteria that are resistant to antimicrobial agents and that can therefore be difficult or impossible to cure. Of special concern is resistance to antimicrobial agents classified by the World Health Organization (WHO) as critically important for human medicine, such as fluoroquinolones, third- and fourth-generation cephalosporins, and macrolides. WHO encourages the agricultural, food, veterinary and health sectors to work together to eliminate the burden of antimicrobial resistance arising from the use of antimicrobial agents in food-producing animals. Joint efforts should be made to reduce the inappropriate use of antimicrobial agents (e.g. the use of antimicrobials as growth promoters) and limit the spread of bacteria resistant to antimicrobial agents. WHO will continueto address this issue in conjunction with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the animal health/production industry and other important stakeholders. It will also continue to enhance the capacity of its Member States (through training courses and sentinel studies), particularly developing countries, to conduct integrated surveillance of antimicrobial use and resistance, to carry out risk assessments to support the selection of risk management options and to implement strategies for the containment of antimicrobial resistance.

  19. Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries.

    PubMed

    Grave, Kari; Torren-Edo, Jordi; Muller, Arno; Greko, Christina; Moulin, Gerard; Mackay, David

    2014-08-01

    To describe sales and sales patterns of veterinary antimicrobial agents in 25 European Union (EU)/European Economic Area (EEA) countries for 2011. Data on the sales of veterinary antimicrobial agents from 25 EU member states and EEA countries for 2011 were collected at package level (name, formulation, strength, pack size, number of packages sold) according to a standardized protocol and template and presented in a harmonized manner. These data were calculated to express amounts sold, in metric tonnes, of active ingredient of each package. A population correction unit (PCU) was applied as a proxy for the animal biomass potentially treated with antimicrobial agents. The indicator used to express sales was milligrams of active substance per PCU. Substantial variations in the sales patterns and in the magnitude of sales of veterinary antimicrobial agents, expressed as mg/PCU, between the countries were observed. The proportion of sales, in mg/PCU, of products applicable for treatment of groups or herds of animals (premixes, oral powders and oral solution) varied considerably between the countries. Some countries reported much lower sales of veterinary antimicrobial agents than others, when expressed as mg/PCU. Sales patterns varied between countries, particularly with respect to pharmaceutical forms. Further studies are needed to understand the factors that explain the observed differences. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods.

    PubMed

    Aminlari, Ladan; Hashemi, Marjan Mohammadi; Aminlari, Mahmoud

    2014-06-01

    In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which

  1. Current and future challenges in the development of antimicrobial agents.

    PubMed

    Rennie, Robert P

    2012-01-01

    Micro-organisms exist to survive. Even in the absence of antimicrobial agents, many have determinants of resistance that may be expressed phenotypically, should the need arise. With the advent of the antibiotic age, as more and more drugs were developed to treat serious infections, micro-organisms (particularly bacteria) rapidly developed resistance determinants to prevent their own demise.The most important determinants of resistance have been in the Gram-positive and Gram-negative bacteria. Among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP) have taxed researchers and pharmaceutical companies to develop new agents that are effective against these resistant strains. Among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBL) enzymes, carbapenemases (CREs) and the so-called amp-C enzymes that may be readily transferred between species of enterobacteriaceae and other facultative species have created multi-drug resistant organisms that are difficult to treat. Other resistance determinants have been seen in other clinically important bacterial species such as Neisseria gonorrhoeae, Clostridium difficile, Haemophilus influenzae and Mycobacterium tuberculosis. These issues have now spread to fungal agents of infection.A variety of modalities have been used to stem the tide of resistance. These include the development of niche compounds that target specific resistance determinants. Other approaches have been to find new targets for antimicrobial activity, use of combination agents that are effective against more than one target in the cell, or new delivery mechanism to maximize the concentration of antimicrobial agents at the site of infection without causing toxicity to the host. It is important that such new modalities have been proved effective for clinical therapy. Animal models and non-mammalian systems have been developed to

  2. Animal venoms as antimicrobial agents.

    PubMed

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina H K

    2017-06-15

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nontherapeutic Use of Antimicrobial Agents in Animal Agriculture: Implications for Pediatrics.

    PubMed

    Paulson, Jerome A; Zaoutis, Theoklis E

    2015-12-01

    Antimicrobial resistance is one of the most serious threats to public health globally and threatens our ability to treat infectious diseases. Antimicrobial-resistant infections are associated with increased morbidity, mortality, and health care costs. Infants and children are affected by transmission of susceptible and resistant food zoonotic pathogens through the food supply, direct contact with animals, and environmental pathways. The overuse and misuse of antimicrobial agents in veterinary and human medicine is, in large part, responsible for the emergence of antibiotic resistance. Approximately 80% of the overall tonnage of antimicrobial agents sold in the United States in 2012 was for animal use, and approximately 60% of those agents are considered important for human medicine. Most of the use involves the addition of low doses of antimicrobial agents to the feed of healthy animals over prolonged periods to promote growth and increase feed efficiency or at a range of doses to prevent disease. These nontherapeutic uses contribute to resistance and create new health dangers for humans. This report describes how antimicrobial agents are used in animal agriculture, reviews the mechanisms of how such use contributes to development of resistance, and discusses US and global initiatives to curb the use of antimicrobial agents in agriculture. Copyright © 2015 by the American Academy of Pediatrics.

  4. Effect of mixed antimicrobial agents and flavors in active packaging films.

    PubMed

    Gutiérrez, Laura; Escudero, Ana; Batlle, Ramón; Nerín, Cristina

    2009-09-23

    Active packaging is an emerging food technology to improve the quality and safety of food products. Many works have been developed to study the antimicrobial activity of essential oils. Essential oils have been traditionally used as flavorings in food, so they have an important odor impact but they have as well antimicrobial properties that could be used to protect the food. Recent developments in antimicrobial active packaging showed the efficiency of essential oils versus bread and bakery products among other applications. However, one of the main problems to face is the odor and taste they could provide to the packaged food. Using some aromas to mask the odor could be a good approach. That is why the main objective of this paper is to develop an antimicrobial packaging material based on the combination of the most active compounds of essential oils (hydrocinnamaldehyde, oregano essential oil, cinnamaldehyde, thymol, and carvacrol) together with some aromas commonly used in the food industry. A study of the concentration required to get the antimicrobial properties, the organoleptic compatibility with typical aroma present in many food systems (vanilla, banana, and strawberry), and the right combination of both systems has been carried out. Antimicrobial tests of both the mentioned aromas, the main components of some essential oils, and the combination of both groups were carried out against bacteria (Enterococcus faecalis, Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonella choleraesuis, Yersinia enterocolitica, Escherichia coli), yeasts (Candida albicans, Debaryomyces hansenii, Zygosaccharomyces rouxii), and molds (Botrytis cinerae, Aspergillus flavus, Penicillium roqueforti, Eurotium repens, Penicillium islandicum, Penicillium commune, Penicillium nalgiovensis). The sensory properties of the combinations were evaluated with a triangular test and classification was by an order test; the odor threshold of the aroma compounds was also

  5. Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds.

    PubMed

    Thorsteinsson, Thorsteinn; Másson, Már; Kristinsson, Karl G; Hjálmarsdóttir, Martha A; Hilmarsson, Hilmar; Loftsson, Thorsteinn

    2003-09-11

    A series of soft quaternary ammonium antimicrobial agents, which are analogues to currently used quaternary ammonium preservatives such as cetyl pyridinium chloride and benzalkonium chloride, were synthesized. These soft analogues consist of long alkyl chain connected to a polar headgroup via chemically labile spacer group. They are characterized by facile nonenzymatic and enzymatic degradation to form their original nontoxic building blocks. However, their chemical stability has to be adequate in order for them to have antimicrobial effects. Stability studies and antibacterial and antiviral activity measurements revealed relationship between activity, lipophilicity, and stability. Their minimum inhibitory concentration (MIC) was as low as 1 microg/mL, and their viral reduction was in some cases greater than 6.7 log. The structure-activity studies demonstrate that the bioactive compounds (i.e., MIC for Gram-positive bacteria of <10 microg/mL) have an alkyl chain length between 12 and 18 carbon atoms, with a polar headgroup preferably of a small quaternary ammonium group, and their acquired inactivation half-life must be greater than 3 h at 60 degrees C.

  6. Antimicrobial Activities of Clove and Thyme Extracts

    PubMed Central

    Nzeako, B C; Al-Kharousi, Zahra S N; Al-Mahrooqui, Zahra

    2006-01-01

    Objective: It has been postulated that geographical locations of the herbs affect the constituents of their essential oils and thus the degree of their antimicrobial action. This study examine two samples of clove obtained from Sri Lanka and Zanzibar and two samples of thyme from Iran and Oman to determine the antimicrobial potential of their extracted oils. Method: The active agents in each plant were extracted by steam distillation and by boiling. The antimicrobial activities of the extracts were determined at neat and by two-fold dilutions in well agar diffusion technique using Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pyogenes, Corynebacterium species, Salmonella species, Bacteroides fragilis and Candida albicans. Results: All oil extracts possessed antimicrobial activity against all bacteria and yeast tested. Their water extracts exhibited lower antimicrobial activity, though thyme aqueous extract was active only against S. aureus. The lowest concentration of antimicrobial activity (0.1% i.e., 1:1024) was obtained with thyme oil extract using Candida albicans. There was no significant difference in antimicrobial activity between clove obtained from Sri Lanka or Zanzibar or thyme obtained from Iran or Oman. Conclusion: Our experiment showed that the country of origin of the herbs has no effect on their antimicrobial activity. However, further work is necessary to ascertain why Candida albicans displayed remarkable degree of sensitivity with the extracts than all the other organisms test. PMID:21748125

  7. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents.

    PubMed

    Czyzewski, Ann M; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Chongsiriwatana, Nathaniel P; Yuen, Eddie; Hancock, Robert E W; Barron, Annelise E

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.

  8. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    PubMed Central

    Fjell, Christopher D.; Waldbrook, Matt; Chongsiriwatana, Nathaniel P.; Yuen, Eddie; Hancock, Robert E. W.; Barron, Annelise E.

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents. PMID:26849681

  9. In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent

    PubMed Central

    2009-01-01

    Background The widespread problem of antibiotic resistance in pathogens such as Staphylococcus aureus has prompted the search for new antimicrobial approaches. In this study we report for the first time the use of a light-activated antimicrobial agent, methylene blue, to kill an epidemic methicillin-resistant Staphylococcus aureus (EMRSA-16) strain in two mouse wound models. Results Following irradiation of wounds with 360 J/cm2 of laser light (670 nm) in the presence of 100 μg/ml of methylene blue, a 25-fold reduction in the number of viable EMRSA was seen. This was independent of the increase in temperature of the wounds associated with the treatment. Histological examination of the wounds revealed no difference between the photodynamic therapy (PDT)-treated wounds and the untreated wounds, all of which showed the same degree of inflammatory infiltration at 24 hours. Conclusion The results of this study demonstrate that PDT is effective at reducing the total number of viable EMRSA in a wound. This approach has promise as a means of treating wound infections caused by antibiotic-resistant microbes as well as for the elimination of such organisms from carriage sites. PMID:19193212

  10. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents.

    PubMed

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2015-01-01

    Antimicrobial resistance is one of the most serious public health problems. This is of particular concern when bacteria become resistant to various antimicrobial agents simultaneously and when they form biofilms. Consequently, therapeutic options for the treatment of infections have become limited, leading frequently to recurrent infections, treatment failure and increase of morbidity and mortality. Both, persistence and spread of antibiotic resistance, in combination with decreased effectiveness and increased toxicity of current antibiotics have emphasized the urgent need to search alternative sources of antimicrobial substances. Plants are recognized as a source of unexplored chemical structures with high therapeutic potential, including antimicrobial activity against clinically important microorganisms. Additionally, phytochemicals (plant secondary metabolites) present several advantages over synthetic molecules, including green status and different mechanisms of action from antibiotics which could help to overcome the resistance problem. In this study, an overview of the main classes of phytochemicals with antimicrobial properties and their mode of action is presented. A revision about the application of phytochemicals for biofilm prevention and control is also done. Moreover, the use of phytochemicals as scaffolds of new functional molecules to expand the antibiotics pipeline is reviewed.

  11. Species of Genus Ganoderma (Agaricomycetes) Fermentation Broth: A Novel Antioxidant and Antimicrobial Agent.

    PubMed

    Cilerdzic, Jasmina; Kosanic, Marijana; Stajić, Mirjana; Vukojevic, Jelena; Ranković, Branislav

    2016-01-01

    The bioactivity of Ganoderma lucidum basidiocarps has been well documented, but there are no data on the medicinal properties of its submerged cultivation broth nor on the other species of the genus Ganoderma. Thus the aim of this study was to test the potential antimicrobial and antioxidant activity of fermentation broth obtained after submerged cultivation of G. applanatum, G. carnosum, and G. lucidum. DPPH· scavenging ability, total phenols, and flavonoid contents were measured to determine the antioxidative potential of Ganoderma spp. fermentation filtrates, whereas their antimicrobial potential was studied using the microdilution method. DPPH· scavenging activity of G. lucidum fermentation filtrates was significantly higher than that of G. applanatum and G. carnosum, with the maximum (39.67%) obtained from strain BEOFB 432. This filtrate also contained the highest concentrations of phenols (134.89 μg gallic acid equivalents/mL) and flavonoids (42.20 μg quercetin equivalent/mL). High correlations between the activity and phenol content in the extracts showed that these compounds were active components of the antioxidative activity. G. lucidum strain BEOFB 432 was the most effective antibacterial agent, whereas strain BEOFB 434 has proven to be the most effective antifungal agent. The study showed that Ganoderma spp. fermentation filtrates are novel potent antioxidative and antimicrobial agents that could be obtained more quickly and cheaper than basidiocarps.

  12. Contact Active Antimicrobial Coatings Prepared by Polymer Blending.

    PubMed

    Cuervo-Rodríguez, Rocío; López-Fabal, Fátima; Gómez-Garcés, José L; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2017-11-01

    Herein, contact active antimicrobial films are prepared by simply blending cationic amphiphilic block copolymers with commercial polystyrene (PS). The copolymers are prepared by combining atom transfer radical polymerization and "click chemistry." A variety of copolymers are synthesized, and composed of a PS segment and an antimicrobial block bearing flexible side chain with thiazole and triazole groups, 4-(1-(2-(4-methylthiazol-5-yl)ethyl)-1H-1,2,3-triazol-4-yl) butyl methacrylate (TTBM). The length of the TTBM block is varied as well as the alkylating agent. Different films are prepared from N,N-dimethylformamide solution, containing variable PS-b-PTTBM/PS ratio: from 0 to 100 wt%. Remarkably, the blend films, especially those with 30 and 50 wt% of copolymers, exhibit excellent antimicrobial activities against Gram-positive, Gram-negative bacteria and fungi, even higher than films prepared exclusively from the cationic copolymers. Blends composed of 50 wt% of the copolymers present a more than 99.999% killing efficiency against the studied microorganisms. The better activity found in blends can be due to the higher roughness, which increases the surface area and consequently the contact with the microorganisms. These results demonstrate that the use of blends implies a reduction of the content of antimicrobial agent and also enhances the antimicrobial activity, providing new insights for the better designing of antimicrobial coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    PubMed

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. [Research on the marketing status of antimicrobial products and the use of antimicrobial agents indicated on product labels from 1991 through 2005].

    PubMed

    Nakashima, Harunobu; Miyano, Naoko; Matsunaga, Ichiro; Nakashima, Naomi; Kaniwa, Masa-aki

    2007-05-01

    To clarify the marketing status of antimicrobial products, descriptions on the labels of commercially available antimicrobial products were investigated from 1991 through 2005, and the results were analyzed using a database system on antimicrobial deodorant agents. A classification table of household antimicrobial products was prepared and revised, based on which target products were reviewed for any changes in the product type. The number of antimicrobial products markedly increased over 3 years starting from 1996, among which there were many products apparently not requiring antimicrobial processing. More recently, in the 2002 and 2004 surveys, while sales of kitchenware and daily necessities decreased, chemical products, baby articles, and articles for pets increased; this poses new problems. To clarify the use of antimicrobial agents in the target products, a 3-step (large, intermediate, small) classification table of antimicrobial agents was also prepared, based on which antimicrobial agents indicated on the product labels were checked. The rate of identifying the agents increased. However, this is because of the increase of chemical products and baby articles, both of which more frequently indicated the ingredient agents on the labels, and the decrease of kitchenware and daily necessities, which less frequently indicated them on the labels. Therefore there has been little change in the actual identification rate. The agents used are characterized by product types: quaternary ammonium salts, metal salts, and organic antimicrobials are commonly used in textiles, plastics, and chemical products, respectively. Since the use of natural organic agents has recently increased, the safety of these agents should be evaluated.

  15. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents.

    PubMed

    Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian

    2015-10-01

    The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents. © 2015 John Wiley & Sons A/S.

  16. Animals living in polluted environments are potential source of antimicrobials against infectious agents

    PubMed Central

    Lee, Simon; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2012-01-01

    The antimicrobials crisis is a ticking time bomb which could lead to millions of people dying from untreatable infections. With the worsening trends of antimicrobial resistance, we are heading towards a pre-antibiotic era. Thus, there is a need for newer and more powerful antibiotic agents. The search for new antibiotic compounds originating from natural resources is a promising research area. Animals living in germ-infested environments are a potent source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of bacteria, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances which show potent activity in the nervous system. We hope that the discovery of antimicrobial activity in the cockroach brain will stimulate research in finding antimicrobials from unusual sources, and has potential for the development of novel antibiotics. Nevertheless, intensive research in the next few years will be required to approach or realize these expectations. PMID:23265422

  17. Synthesis of tritium-labeled cyadox, a promising antimicrobial growth-promoting agent with high specific activity.

    PubMed

    Harnud, Sechenchogt; Zhang, Aiqun; Yuan, Zonghui

    2018-05-23

    Cyadox is a new antimicrobial growth-promoting agent for food-producing animals. Studies on radiolabeled compounds enable the use of sensitive radiometric analytical methods and help in the elucidation of metabolic and elimination pathways. In the present study, 6-[ 3 H]-cyadox with a high specific activity of 2.08 Ci/mmol was prepared by the catalytic bromine-tritium exchange of 4-bromo-2-nitroaniline followed by a three-step microscale synthesis, giving a high yield between 36.16% and 94.75%. Copyright © 2018. Published by Elsevier Ltd.

  18. Food-grade antimicrobials potentiate the antibacterial activity of 1,2-hexanediol.

    PubMed

    Yogiara; Hwang, S J; Park, S; Hwang, J-K; Pan, J-G

    2015-05-01

    Preservative agents determining the shelf life of cosmetic products must have effective antimicrobial activity while meeting safety requirements for topical use. In this study, we determined the antimicrobial activity of 1,2-hexanediol against several Gram-positive and Gram-negative bacteria. Antimicrobial susceptibility tests have shown that 1,2-hexanediol exhibits broad-spectrum activity against Gram-positive and Gram-negative bacteria with MICs of 0·5-2% (v/v). The bactericidal concentration of 1,2-hexanediol was ranging from 1 to 2 × MIC as demonstrated by time-kill curve assay. A membrane depolarization assay showed that 1,2-hexanediol disrupted the cytoplasmic membrane potential. A checkerboard assay indicated that the effective concentration of 1,2-hexanediol was reduced up to 0·25-0·5 × MIC when combined with macelignan and octyl gallate against Gram-positive bacteria. However, this combination was not effective against Gram-negative bacteria. A turbidity reduction assay demonstrated that the combination of a high concentration of 1,2-hexanediol with food-grade antimicrobial compounds could trigger lytic activity towards Bacillus cereus cells. The remaining cell turbidity was 24·6 and 22·2% when 2% of 1,2-hexanediol was combined with 8 mg l(-1) octyl gallate or with 32 mg l(-1) macelignan respectively. This study showed that food-grade antimicrobial compounds may be used in combination with 1,2-hexanediol to increase its efficacy as a preservative agent in cosmetics. The antimicrobial activity of 1,2-hexanediol against Gram-positive and Gram-negative bacteria was potentiated with food-grade antimicrobials including xanthorrhizol, macelignan, panduratin A and octyl gallate, which have already been reported to display anti-inflammatory and other beneficial activities related to cosmetics. Therefore, the combination of 1,2-hexanediol and these food-grade antimicrobial agents would have benefits not only for increasing the antimicrobial activity

  19. In vitro activity of five tetracyclines and some other antimicrobial agents against four porcine respiratory tract pathogens.

    PubMed

    Pijpers, A; Van Klingeren, B; Schoevers, E J; Verheijden, J H; Van Miert, A S

    1989-09-01

    The minimal inhibitory concentrations (MIC) of five tetracyclines and ten other antimicrobial agents were determined for four porcine bacterial respiratory tract pathogens by the agar dilution method. For the following oxytetracycline-susceptible strains, the MIC50 ranges of the tetracyclines were: P. multocida (n = 17) 0.25-0.5 micrograms/ml; B. bronchiseptica (n = 20) 0.25-1.0 micrograms/ml; H. pleuropneumoniae (n = 20) 0.25-0.5 micrograms/ml; S. suis Type 2 (n = 20) 0.06-0.25 micrograms/ml. For 19 oxytetracycline-resistant P. multocida strains the MIC50 of the tetracyclines varied from 64 micrograms/ml for oxytetracycline to 0.5 micrograms/ml for minocycline. Strikingly, minocycline showed no cross-resistance with oxytetracycline, tetracycline, chlortetracycline and doxycycline in P. multocida and in H. pleuropneumoniae. Moreover, in susceptible strains minocycline showed the highest in vitro activity followed by doxycycline. Low MIC50 values were observed for chloramphenicol, ampicillin, flumequine, ofloxacin and ciprofloxacin against P. multocida and H. pleuropneumoniae. B. bronchiseptica was moderately susceptible or resistant to these compounds. As expected tiamulin, lincomycin, tylosin and spiramycin were not active against H. pleuropneumoniae. Except for flumequine, the MIC50 values of nine antimicrobial agents were low for S. suis Type 2. Six strains of this species showed resistance to the macrolides and lincomycin.

  20. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.

    PubMed

    Conlon, J Michael; Al-Ghaferi, Nadia; Abraham, Bency; Leprince, Jérôme

    2007-08-01

    The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.

  1. Synthesis of Some Benzofuran Derivatives Containing Pyrimidine Moiety as Potent Antimicrobial Agents.

    PubMed

    Venkatesh, Talavara; Bodke, Yadav Dasharathrao; Joy, Muthipeedika Nibin; Dhananjaya, Bhadrapura Lakkappa; Venkataraman, Sivaramakrishnan

    2018-01-01

    In this investigation, the synthesis of 2-substituted pyrimidines by the reaction of benzofuran chalcones (3a-d) with urea, thiourea and guanidine hydrochloride was reported. The structures of title compounds (4a-d), (5a-d) and (6a-d) were established on the basis of analytical and spectral data. The synthesized compounds were screened for antimicrobial activity and molecular docking studies. Some of the compounds displayed excellent antimicrobial activity. The molecular docking analysis revealed that compounds 5a and 5c with the lowest binding energy in comparison to others suggesting its potential as best inhibitor of GluN-6-P. Consequently, it is confirmed from the above analysis that the compounds 5a and 5c might serve as a useful backbone scaffold for rational design, adaptation and investigation of more active analogs as potential broad spectrum antimicrobial agents.

  2. Fluoroquinolone antimicrobial agents.

    PubMed Central

    Wolfson, J S; Hooper, D C

    1989-01-01

    The fluoroquinolones, a new class of potent orally absorbed antimicrobial agents, are reviewed, considering structure, mechanisms of action and resistance, spectrum, variables affecting activity in vitro, pharmacokinetic properties, clinical efficacy, emergence of resistance, and tolerability. The primary bacterial target is the enzyme deoxyribonucleic acid gyrase. Bacterial resistance occurs by chromosomal mutations altering deoxyribonucleic acid gyrase and decreasing drug permeation. The drugs are bactericidal and potent in vitro against members of the family Enterobacteriaceae, Haemophilus spp., and Neisseria spp., have good activity against Pseudomonas aeruginosa and staphylococci, and (with several exceptions) are less potent against streptococci and have fair to poor activity against anaerobic species. Potency in vitro decreases in the presence of low pH, magnesium ions, or urine but is little affected by different media, increased inoculum, or serum. The effects of the drugs in combination with a beta-lactam or aminoglycoside are often additive, occasionally synergistic, and rarely antagonistic. The agents are orally absorbed, require at most twice-daily dosing, and achieve high concentrations in urine, feces, and kidney and good concentrations in lung, bone, prostate, and other tissues. The drugs are efficacious in treatment of a variety of bacterial infections, including uncomplicated and complicated urinary tract infections, bacterial gastroenteritis, and gonorrhea, and show promise for therapy of prostatitis, respiratory tract infections, osteomyelitis, and cutaneous infections, particularly when caused by aerobic gram-negative bacilli. Fluoroquinolones have also proved to be efficacious for prophylaxis against travelers' diarrhea and infection with gram-negative bacilli in neutropenic patients. The drugs are effective in eliminating carriage of Neisseria meningitidis. Patient tolerability appears acceptable, with gastrointestinal or central nervous

  3. Antimicrobial topical agents used in the vagina.

    PubMed

    Frey Tirri, Brigitte

    2011-01-01

    Vaginally applied antimicrobial agents are widely used in the vagina in women with lower genital tract infections. An 'antimicrobial' is a general term that refers to a group of drugs that are effective against bacteria, fungi, viruses and protozoa. Topical treatments can be prescribed for a wide variety of vaginal infections. Many bacterial infections, such as bacterial vaginosis, desquamative inflammatory vaginitis or, as some European authors call it, aerobic vaginitis as well as infection with Staphylococcus aureus or group A streptococci, may be treated in this way. Candida vulvovaginitis is a fungal infection that is very amenable to topical treatment. The most common viral infections which can be treated with topical medications are condylomata acuminata and herpes simplex. The most often encountered protozoal vaginitis, which is caused by Trichomonas vaginalis, may be susceptible to topical medications, although this infection is treated systemically. This chapter covers the wide variety of commonly used topical antimicrobial agents for these diseases and focuses on the individual therapeutic agents and their clinical efficacy. In addition, potential difficulties that can occur in practice, as well as the usage of these medications in the special setting of pregnancy, are described in this chapter. Copyright © 2011 S. Karger AG, Basel.

  4. Periodontal therapy using local delivery of antimicrobial agents.

    PubMed

    Niederman, Richard; Abdelshehid, George; Goodson, J Max

    2002-10-01

    Antimicrobial agents, systemic and/or local, are thought by some to be effective agents for treating periodontal infections. Here the authors determine the costs and benefits of local delivery agents for treating periodontal disease. Applying this cost-benefit analysis to patient care, however, will depend upon a clinician's expertise and a patient's value system.

  5. Antimicrobial and Efflux Inhibitor Activity of Usnic Acid Against Mycobacterium abscessus.

    PubMed

    Ramis, Ivy B; Vianna, Júlia S; Reis, Ana Júlia; von Groll, Andrea; Ramos, Daniela F; Viveiros, Miguel; da Silva, Pedro E Almeida

    2018-06-18

    New drugs are needed to treat infections with antimicrobial-resistant Mycobacterium abscessus ; therefore, we evaluated usnic acid as an antimicrobial agent and efflux inhibitor (EI) against M. abscessus . Usnic acid showed antimicrobial activity, and synergistically, the EI verapamil increased this activity. In addition, when we evaluated the interaction of antimicrobials with usnic acid, the increase of their activity was observed. Finally, usnic acid showed an efflux inhibitory effect between the classical EIs verapamil and carbonyl cyanide m-chlorophenylhydrazine. In conclusion, usnic acid showed both antimicrobial and EI activity, indicating that this natural compound may be a promising scaffold for new drugs against this difficult-to-treat microorganism. Georg Thieme Verlag KG Stuttgart · New York.

  6. Design of novel analogues of short antimicrobial peptide anoplin with improved antimicrobial activity.

    PubMed

    Wang, Yang; Chen, Jianbo; Zheng, Xin; Yang, Xiaoli; Ma, Panpan; Cai, Ying; Zhang, Bangzhi; Chen, Yuan

    2014-12-01

    Currently, novel antibiotics are urgently required to combat the emergence of drug-resistant bacteria. Antimicrobial peptides with membrane-lytic mechanism of action have attracted considerable interest. Anoplin, a natural α-helical amphiphilic antimicrobial peptide, is an ideal research template because of its short sequence. In this study, we designed and synthesized a group of analogues of anoplin. Among these analogues, anoplin-4 composed of D-amino acids displayed the highest antimicrobial activity due to increased charge, hydrophobicity and amphiphilicity. Gratifyingly, anoplin-4 showed low toxicity to host cells, indicating high bacterial selectivity. Furthermore, the mortality rate of mice infected with Escherichia coli was significantly reduced by anoplin-4 treatment relative to anoplin. In conclusion, anoplin-4 is a novel anoplin analogue with high antimicrobial activity and enzymatic stability, which may represent a potent agent for the treatment of infection. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  7. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes

    PubMed Central

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894

  8. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes.

    PubMed

    Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2016-01-01

    8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents.

  9. Essential oils as natural food antimicrobial agents: a review.

    PubMed

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

  10. Synthesis and Evaluation of Ester Derivatives of 10-Hydroxycanthin-6-one as Potential Antimicrobial Agents.

    PubMed

    Zhao, Fei; Dai, Jiang-Kun; Liu, Dan; Wang, Shi-Jun; Wang, Jun-Ru

    2016-03-21

    As part of our continuing research on canthin-6-one antimicrobial agents, a new series of ester derivatives of 10-hydroxycanthin-6-one were synthesized using a simple and effective synthetic route. The structure of each compound was characterized by NMR, ESI-MS, FT-IR, UV, and elemental analysis. The antimicrobial activity of these compounds against three phytopathogenic fungi (Alternaria solani, Fusarium graminearum, and Fusarium solani) and four bacteria (Bacillus cereus, Bacillus subtilis, Ralstonia solanacearum, and Pseudomonas syringae) were evaluated using the mycelium linear growth rate method and micro-broth dilution method, respectively. The structure-activity relationship is discussed. Of the tested compounds, 4 and 7s displayed significant antifungal activity against F. graminearum, with inhibition rates of 100% at a concentration of 50 μg/mL. Compounds 5, 7s, and 7t showed the best inhibitory activity against all the tested bacteria, with minimum inhibitory concentrations (MICs) between 3.91 and 31.25 μg/mL. Thus, 7s emerged as a promising lead compound for the development of novel canthine-6-one antimicrobial agents.

  11. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent.

    PubMed

    Escárcega-González, Carlos Enrique; Garza-Cervantes, J A; Vázquez-Rodríguez, A; Montelongo-Peralta, Liliana Zulem; Treviño-González, M T; Díaz Barriga Castro, E; Saucedo-Salazar, E M; Chávez Morales, R M; Regalado Soto, D I; Treviño González, F M; Carrazco Rosales, J L; Cruz, Rocío Villalobos; Morones-Ramírez, José Rubén

    2018-01-01

    One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells. In this study, we report a green one-pot synthesis method that uses Acacia rigidula extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo. The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet-visible, and Fourier transform infrared. We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative ( Escherichia coli , Pseudomonas aeruginosa , and a clinical multidrug-resistant strain of P. aeruginosa ) and Gram-positive ( Bacillus subtilis ) bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant P. aeruginosa clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were monitored in the murine infection model, and the

  12. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent

    PubMed Central

    Escárcega-González, Carlos Enrique; Garza-Cervantes, JA; Vázquez-Rodríguez, A; Montelongo-Peralta, Liliana Zulem; Treviño-González, MT; Díaz Barriga Castro, E; Saucedo-Salazar, EM; Chávez Morales, RM; Regalado Soto, DI; Treviño González, FM; Carrazco Rosales, JL; Cruz, Rocío Villalobos; Morones-Ramírez, José Rubén

    2018-01-01

    Introduction One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells. Purpose In this study, we report a green one-pot synthesis method that uses Acacia rigidula extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo. Materials and methods The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet–visible, and Fourier transform infrared. Results We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and a clinical multidrug-resistant strain of P. aeruginosa) and Gram-positive (Bacillus subtilis) bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant P. aeruginosa clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were

  13. Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents

    PubMed Central

    Baranwal, Anupriya; Srivastava, Ananya; Kumar, Pradeep; Bajpai, Vivek K.; Maurya, Pawan K.; Chandra, Pranjal

    2018-01-01

    Nanostructured materials (NSMs) have increasingly been used as a substitute for antibiotics and additives in various products to impart microbicidal effect. In particular, use of silver nanoparticles (AgNPs) has garnered huge researchers' attention as potent bactericidal agent due to the inherent antimicrobial property of the silver metal. Moreover, other nanomaterials (carbon nanotubes, fullerenes, graphene, chitosan, etc.) have also been studied for their antimicrobial effects in order ensure their application in widespread domains. The present review exclusively emphasizes on materials that possess antimicrobial activity in nanoscale range and describes their various modes of antimicrobial action. It also entails broad classification of NSMs along with their application in various fields. For instance, use of AgNPs in consumer products, gold nanoparticles (AuNPs) in drug delivery. Likewise, use of zinc oxide nanoparticles (ZnO-NPs) and titanium dioxide nanoparticles (TiO2-NPs) as additives in consumer merchandises and nanoscale chitosan (NCH) in medical products and wastewater treatment. Furthermore, this review briefly discusses the current scenario of antimicrobial nanostructured materials (aNSMs), limitations of current research and their future prospects. To put various perceptive insights on the recent advancements of such antimicrobials, an extended table is incorporated, which describes effect of NSMs of different dimensions on test microorganisms along with their potential widespread applications. PMID:29593676

  14. Antimicrobial activity of transition metal acid MoO(3) prevents microbial growth on material surfaces.

    PubMed

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Appropriateness of gram-negative agent use at a tertiary care hospital in the setting of significant antimicrobial resistance.

    PubMed

    Vora, Neil M; Kubin, Christine J; Furuya, E Yoko

    2015-01-01

    Background.  Practicing antimicrobial stewardship in the setting of widespread antimicrobial resistance among gram-negative bacilli, particularly in urban areas, is challenging. Methods.  We conducted a retrospective cross-sectional study at a tertiary care hospital with an established antimicrobial stewardship program in New York, New York to determine appropriateness of use of gram-negative antimicrobials and to identify factors associated with suboptimal antimicrobial use. Adult inpatients who received gram-negative agents on 2 dates, 1 June 2010 or 1 December 2010, were identified through pharmacy records. Clinical data were collected for each patient. Use of gram-negative agents was deemed optimal or suboptimal through chart review and according to hospital guidelines. Data were compared using χ(2) or Fischer's exact test for categorical variables and Student t test or Mann-Whitney U test for continuous variables. Results.  A total of 356 patients were included who received 422 gram-negative agents. Administration was deemed suboptimal in 26% of instances, with the most common reason being spectrum of activity too broad. In multivariable analysis, being in an intensive care unit (adjusted odds ratio [aOR], .49; 95% confidence interval [CI], .29-.84), having an infectious diseases consultation within the previous 7 days (aOR, .52; 95% CI, .28-.98), and having a history of multidrug-resistant gram-negative bacilli within the past year (aOR, .24; 95% CI, .09-.65) were associated with optimal gram-negative agent use. Beta-lactam/beta-lactamase inhibitor combination drug use (aOR, 2.6; 95% CI, 1.35-5.16) was associated with suboptimal use. Conclusions.  Gram-negative agents were used too broadly despite numerous antimicrobial stewardship program activities.

  16. Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis.

    PubMed

    Santos, A L S; Sodre, C L; Valle, R S; Silva, B A; Abi-Chacra, E A; Silva, L V; Souza-Goncalves, A L; Sangenito, L S; Goncalves, D S; Souza, L O P; Palmeira, V F; d'Avila-Levy, C M; Kneipp, L F; Kellett, A; McCann, M; Branquinha, M H

    2012-01-01

    Infections caused by resistant microorganisms often fail to respond to conventional therapy, resulting in prolonged illness, increased treatment costs and greater risk of death. Consequently, the development of novel antimicrobial drugs is becoming more demanding every day since the existing drugs either have too many side-effects or they tend to lose effectiveness due to the selection of resistant strains. In view of these facts, a number of new strategies to obstruct vital biological processes of a microbial cell have emerged; one of these is focused on the use of metal-chelating agents, which are able to selectively disturb the essential metal metabolism of the microorganism by interfering with metal acquisition and bioavailability for crucial reactions. The chelation activity is able to inhibit the biological role of metal-dependent proteins (e.g., metalloproteases and transcription factors), disturbing the microbial cell homeostasis and culminating in the blockage of microbial nutrition, growth and development, cellular differentiation, adhesion to biotic (e.g., extracellular matrix components, cell and/or tissue) and abiotic (e.g., plastic, silicone and acrylic) structures as well as controlling the in vivo infection progression. Interestingly, chelating agents also potentiate the activity of classical antimicrobial compounds. The differences between the microorganism and host in terms of the behavior displayed in the presence of chelating agents could provide exploitable targets for the development of an effective chemotherapy for these diseases. Consequently, metal chelators represent a novel group of antimicrobial agents with potential therapeutic applications. This review will focus on the anti-fungal and anti-protozoan action of the most common chelating agents, deciphering and discussing their mode of action.

  17. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  18. Antimicrobial activity and phytochemical characterization of Carya illinoensis.

    PubMed

    Bottari, Nathieli Bianchin; Lopes, Leonardo Quintana Soares; Pizzuti, Kauana; Filippi Dos Santos Alves, Camilla; Corrêa, Marcos Saldanha; Bolzan, Leandro Perger; Zago, Adriana; de Almeida Vaucher, Rodrigo; Boligon, Aline Augusti; Giongo, Janice Luehring; Baldissera, Matheus Dellaméa; Santos, Roberto Christ Vianna

    2017-03-01

    Carya illinoensis is a widespread species, belonging to the Juglandaceae family, commonly known as Pecan. Popularly, the leaves have been used in the treatment of smoking as a hypoglycemic, cleansing, astringent, keratolytic, antioxidant, and antimicrobial agent. The following research aimed to identify for the first time the phytochemical compounds present in the leaves of C. illinoensis and carry out the determination of antimicrobial activity of aqueous and ethanolic extracts. The antimicrobial activity was tested against 20 microorganisms by determining the minimum inhibitory concentration (MIC). Phenolic acids (gallic acid and ellagic acid), flavonoids (rutin), and tannins (catechins and epicatechins) were identified by HPLC-DAD and may be partially responsible for the antimicrobial activity against Gram-positive, Gram-negative, and yeast. The results showed MIC values between 25 mg/mL and 0.78 mg/mL. The extracts were also able to inhibit the production of germ tubes by Candida albicans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    NASA Astrophysics Data System (ADS)

    Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F.; Vitor, Débora M.; Coimbra, Jane Sélia dos Reis; de Andrade, Nélio José; de Sousa, Frederico B.; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  20. Essential oils and metal ions as alternative antimicrobial agents: a focus on tea tree oil and silver.

    PubMed

    Low, Wan-Li; Kenward, Ken; Britland, Stephen T; Amin, Mohd Cim; Martin, Claire

    2017-04-01

    The increasing occurrence of hospital-acquired infections and the emerging problems posed by antibiotic-resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic-resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre-antibiotic compounds, including heavy metal ions and essential oils, have been re-investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrobials interact with many different intracellular components, thereby resulting in the disruption of vital cell functions and eventually cell death. This review will discuss the application of essential oils and heavy metal ions, particularly tea tree oil and silver ions, as alternative antimicrobial agents for the treatment of chronic, infected wounds. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. Characterization of Antimicrobial Agent Loaded Eudragit RS Solvent Exchange-Induced In Situ Forming Gels for Periodontitis Treatment.

    PubMed

    Phaechamud, Thawatchai; Jantadee, Takron; Mahadlek, Jongjan; Charoensuksai, Purin; Pichayakorn, Wiwat

    2017-02-01

    Eudragit RS (ERS), a quaternary polyacrylate positively charged polymer, exhibits a very low permeability and swells in aqueous media independently of pH without dissolving. Owing to its high solubility in N-methyl pyrrolidone (NMP), it was interesting to apply as polymer matrix for solvent-exchanged in situ forming gel. The aim of this research was to prepare in situ forming gels from ERS to deliver the antimicrobial agents (doxycycline hyclate, metronidazole, and benzoyl peroxide) for periodontitis treatment. They were evaluated for viscosity and rheology, gel formation, syringeability, drug release, and antimicrobial activities. The solvent exchange between NMP and an external aqueous simulated gingival crevicular fluid stimulated the dissolved ERS transforming into the opaque rigid gel. Antimicrobial agent loaded ERS systems exhibited Newtonian flow with acceptable syringeability. The higher-loaded ERS promoted the more prolongation of drug release because of the retardation of water diffusion into the precipitated matrix. Antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis depended on type of drugs and test microorganisms. Doxycycline hyclate loaded ERS systems showed these activities greater than the others; however, all of them could inhibit all test microorganisms. Thus, the solvent exchange-induced in situ forming gels comprising ERS-antimicrobial drugs exhibited potential use as localized delivery systems for periodontitis treatment.

  2. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.

    PubMed

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-01

    In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A case study of preservation of semi-solid preparations using the European Pharmacopoeia test: comparative efficacy of antimicrobial agents in zinc gelatin.

    PubMed

    Favet, J; Chappuis, M L; Doelker, E

    2001-09-01

    The present study was undertaken with the aim of finding an alternative preservative system to methyl parahydroxybenzoate in zinc gelatin, which was described in the monographs of the Swiss Pharmacopoeia (until Ph. Helv. 8) and in previous editions of the German Pharmacopoeia (until DAB 7). This antimicrobial agent has now been withdrawn in the DAB, because of its potential allergy risks. As for the USP and DAB-DDR zinc gelatin preparations, they have always been devoid of any preservative agent, probably relying on the mild antimicrobial activity of zinc. A literature survey did not reveal if such an aqueous preparation containing the water-insoluble zinc oxide shows efficacious antimicrobial activity by itself. Thus, a comparative evaluation of differently preserved zinc gelatin preparations was performed using a test for the efficacy of antimicrobial preservation that has been modified with regard to the European Pharmacopoeia (EP) test to take into account the solid state of the preparations and the bactericidal effect of the zinc. Three zinc gelatin preparations were checked, either: (i), without any agent; or (ii), with 0.1% methyl parahydroxybenzoate; or (iii), with 0.5% phenoxyethanol, a broad-spectrum antimicrobial agent almost devoid of allergy risks. The three preparations behave quite differently, in particular with respect to fungi. All three preparations passed the modified EP test as far as bacteria are concerned. Even zinc gelatin without preservative is very effective, not only because of the mild antimicrobial activity of zinc (the soluble fraction of zinc oxide in the liquid phase of zinc gelatin was determined to be 13 microg/ml), but most probably because of the low water activity of the preparation (measured as around 0.81), as shown by the absence of growth of a zinc-resistant strain of Pseudomonas aeruginosa. Zinc gelatin preserved with methyl parahydroxybenzoate has a weak, although satisfactory, activity against Staphylococcus aureus

  4. Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film.

    PubMed

    Bhatia, Sugandha; Bharti, Anoop

    2015-06-01

    The pleothera of micro organisms obtained from contaminated food cultured in a starch broth was effectively tested against antibacterial agents, i.e. nisin, lysozyme and chelating agent EDTA. A variety of combination treatments of these antimicrobial agents and their incorporation in Starch based active packaging film according to their permissibility standards was done. 4 variables of Nisin concentration (ranging from 0 to 750 IU/ml), 3 variables of lysozyme concentration (ranging from 0 to 500 IU/ml) and 3 variables of EDTA concentration from (0 to 20 μM) were chosen. Bacterial inhibition by combination of different levels of different factors without antimicrobial films was evaluated using a liquid incubation method. The samples were assayed for turbidity at interval of 2, 4 and 24 h to check effectiveness of combined effects of antimicrobial agents which proved a transitory bactericidal effect for short incubation times. Zone of Inhibition was observed in the antimicrobial films prepared by agar diffusion method. Statistical analysis of experimental data for their antimicrobial spectrum was carried out by multi regression analysis and ANOVA using Design-Expert software to plot the final equation in terms of coded factors as antimicrobial agents. The experimental data indicated that the model was highly significant. Results were also evaluated graphically using response surface showing interactions between two factors, keeping other factor fixed at values at the center of domain. Synergy was also determined among antibacterial agents using the fractional inhibitory concentration (FIC) index which was observed to be 0.56 supporting the hypothesis that nisin and EDTA function as partial synergistically. The presented work aimed to screen in quick fashion the combinatorial effect of three antimicrobial agents and evaluating their efficacy in anti microbial film development.

  5. Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials.

    PubMed

    Şen, Ferhat; Uzunsoy, İrem; Baştürk, Emre; Kahraman, Memet Vezir

    2017-08-15

    This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic starch was synthesized and characterized by FT-IR spectroscopy and 1 H NMR spectroscopy. Its nitrogen content was determined by Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using starch, cationic starch and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by TGA and DSC. Hydrophobicity of samples was determined by contact angle measurements. Surface morphology of samples was investigated by SEM. Moreover, gel contents of samples were determined. The obtained results prove that produced food packaging materials have good thermal, antimicrobial and surface properties, and they can be used as food packaging material in many industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthesis, lipophilicity and antimicrobial activity evaluation of some new thiazolyl-oxadiazolines

    PubMed Central

    STOICA, CRISTINA IOANA; IONUȚ, IOANA; PÎRNĂU, ADRIAN; POP, CARMEN; ROTAR, ANCUȚA; VLASE, LAURIAN; ONIGA, SMARANDA; ONIGA, OVIDIU

    2015-01-01

    Background and aims Synthesis of new potential antimicrobial agents and evaluation of their lipophilicity. Methods Ten new thiazolyl-oxadiazoline derivatives were synthesized and their structures were validated by 1H-NMR and mass spectrometry. The lipophilicity of the compounds was evaluated using the principal component analysis (PCA) method. The necessary data for applying this method were obtained by reverse-phase thin-layer chromatography (RP-TLC). The antimicrobial activities were tested in vitro against four bacterial strains and one fungal strain. Results The lipophilicity varied with the structure but could not be correlated with the antimicrobial activity, since this was modest. Conclusions We have synthesized ten new heterocyclic compounds. After their physical and chemical characterization, we determined their lipophilicity and screened their antimicrobial activity. PMID:26733751

  7. Development of antimicrobial active packaging materials based on gluten proteins.

    PubMed

    Gómez-Heincke, Diana; Martínez, Inmaculada; Partal, Pedro; Guerrero, Antonio; Gallegos, Críspulo

    2016-08-01

    The incorporation of natural biocide agents into protein-based bioplastics, a source of biodegradable polymeric materials, manufactured by a thermo-mechanical method is a way to contribute to a sustainable food packaging industry. This study assesses the antimicrobial activity of 10 different biocides incorporated into wheat gluten-based bioplastics. The effect that formulation, processing, and further thermal treatments exert on the thermo-mechanical properties, water absorption characteristics and rheological behaviour of these materials is also studied. Bioplastics containing six of the 10 examined bioactive agents have demonstrated suitable antimicrobial activity at 37 °C after their incorporation into the bioplastic. Moreover, the essential oils are able to create an antimicrobial atmosphere within a Petri dish. Depending on the selected biocide, its addition may alter the bioplastics protein network in a different extent, which leads to materials exhibiting less water uptake and different rheological and thermo-mechanical behaviours. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation.

    PubMed

    Lee, Ji-Soo; Hong, Da Young; Kim, Eun Suh; Lee, Hyeon Gyu

    2017-06-01

    The aims of this study were to improve the water solubility and antimicrobial activity of milk thistle silymarin by nanoencapsulation and to assess the functions of silymarin nanoparticle-containing film as an antimicrobial food-packaging agent. Silymarin nanoparticles were prepared using water-soluble chitosan (WCS) and poly-γ-glutamic acid (γ-PGA). As the WCS and silymarin concentrations increased, particle size and polydispersity index (PDI) significantly increased. Nanoencapsulation significantly improved the water solubility of silymarin 7.7-fold. Antimicrobial activity of silymarin was effectively improved when silymarin was entrapped within the nanocapsule compared to when it was not entrapped. Films incorporating silymarin nanoparticles had better antimicrobial activity than films incorporating free silymarin. The results suggest that silymarin nanoparticles have applications in antimicrobial food additives and food packing. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents as an innovative type of polymeric materials with superior antimicrobial efficacy.

    PubMed

    Sun, Xinbo; Zhang, Lifeng; Cao, Zhengbing; Deng, Ying; Liu, Li; Fong, Hao; Sun, Yuyu

    2010-04-01

    Herein we report that electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents and having large surface-to-mass ratios are an innovative type of antimicrobial polymeric materials with durable, nonleachable, and biocompatible characteristics, and more importantly, superior antimicrobial efficacy. Specifically, electrospun cellulose acetate (CA) nanofiber fabrics containing an N-halamine antimicrobial agent of bis(N-chloro-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (Cl-BTMP) were prepared and evaluated; the results of antimicrobial efficacy indicated that the electrospun composite nanofiber fabrics substantially outperformed the control samples that were solution-cast films containing identical amounts of CA and Cl-BTMP. Additionally, the results of trypan blue assay test suggested that the electrospun composite nanofiber fabrics also had excellent mammal cell viability. The developed electrospun composite nanofiber fabrics with superior antimicrobial efficacy are expected to find vital applications in biomedical, hygienic, and many other fields.

  10. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii

    DTIC Science & Technology

    2013-08-01

    antimicrobial nanoparticles, chelating agents, and peptides . ACKNOWLEDGMENTS We thank Stephanie A. Brown and Hunter Radetsky for technical support. Funding...AUG 2013 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Antimicrobial activity of nanoemulsion in combination with...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Antimicrobial Activity of Nanoemulsion in Combination

  11. Antimicrobial activity of endophytic fungi from olive tree leaves.

    PubMed

    Malhadas, Cynthia; Malheiro, Ricardo; Pereira, José Alberto; de Pinho, Paula Guedes; Baptista, Paula

    2017-03-01

    In this study, the antimicrobial potential of three fungal endophytes from leaves of Olea europaea L. was evaluated and the host plant extract effect in the antimicrobial activity was examined. The volatile compounds produced by endophytes were identified by GC/MS and further correlated with the antimicrobial activity. In potato dextrose agar, both Penicillium commune and Penicillium canescens were the most effective inhibiting Gram-positive and -negative bacteria (up to 2.7-fold compared to 30 µg/mL chloramphenicol), whereas Alternaria alternata was most effective inhibiting yeasts (up to 8.0-fold compared to 25 μg/mL fluconazole). The presence of aqueous leaf extract in culture medium showed to induce or repress the antimicrobial activity, depending on the endophytic species. In the next step, various organic extracts from both A. alternata mycelium and cultured broth were prepared; being ethyl acetate extracts displayed the widest spectrum of anti-microorganisms at a minimum inhibitory concentration ≤0.095 mg/mL. The volatile composition of the fungi that displayed the highest (A. alternata) and the lowest (P. canescens) antimicrobial activity against yeasts revealed the presence of six volatiles, being the most abundant components (3-methyl-1-butanol and phenylethyl alcohol) ascribed with antimicrobial potentialities. Overall the results highlighted for the first time the antimicrobial potential of endophytic fungi from O. europaea and the possibility to be exploited for their antimicrobial agents.

  12. Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms

    PubMed Central

    Appiah, Theresa; Boakye, Yaw Duah

    2017-01-01

    The rapid rise of antimicrobial resistance is a worldwide problem. This has necessitated the need to search for new antimicrobial agents. Mushrooms are rich sources of potential antimicrobial agents. This study investigated the antimicrobial properties of methanol extracts of Trametes gibbosa, Trametes elegans, Schizophyllum commune, and Volvariella volvacea. Agar well diffusion, broth microdilution, and time-kill kinetic assays were used to determine the antimicrobial activity of the extracts against selected test organisms. Preliminary mycochemical screening revealed the presence of tannins, flavonoids, triterpenoids, anthraquinones, and alkaloids in the extracts. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea showed mean zone of growth inhibition of 10.00 ± 0.0 to 21.50 ± 0.84, 10.00 ± 0.0 to 22.00 ± 1.10, 9.00 ± 0.63 to 21.83 ± 1.17, and 12.00 ± 0.0 to 21.17 ± 1.00 mm, respectively. The minimum inhibitory concentration of methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea ranged from 4.0 to 20, 6.0 to 30.0, 8.0 to 10.0, and 6.0 to 20.0 mg/mL, respectively. Time-kill kinetics studies showed that the extracts possess bacteriostatic action. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea exhibited antimicrobial activity and may contain bioactive compounds which may serve as potential antibacterial and antifungal agents. PMID:29234399

  13. Environmental fate of two sulfonamide antimicrobial agents in soil.

    PubMed

    Accinelli, Cesare; Koskinen, William C; Becker, Joanna M; Sadowsky, Michael J

    2007-04-04

    Veterinary antimicrobial agents have been detected in a number of environmental samples, including agricultural soils. In this study, we investigated the persistence and sorption of the sulfonamides sulfamethazine (SMZ) and sulfachloropyridine (SCP) in soil and their potential effects on soil microorganisms. The sulfonamides dissipated more rapidly from the silt loam soil as compared to the sandy soil. Average half-lives of SMZ and SPC among the two soils were 18.6 and 21.3 days, respectively. The presence of liquid swine slurry (5% v/w) decreased sulfonamide persistence in the silt loam soil. The lower persistence of the antimicrobials in liquid swine slurry-amended soil was likely due to higher microbial activity, as compared to unamended soil, and/or to the greater bioavailability of the sulfonamides to degrading microorganisms, as estimated by sorption isotherms. Concentrations of SMZ and SPC up to 100 microg g-1 had no effect on antimicrobial degradation rates and soil microorganisms. These studies suggest that higher sulfonamide concentrations would be necessary to affect the main processes controlling their environmental fates in soil, but at the concentrations normally found in the environment, there would be little or no effects.

  14. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System

    PubMed Central

    May, Holly C.; Yu, Jieh-Juen; Guentzel, M. N.; Chambers, James P.; Cap, Andrew P.; Arulanandam, Bernard P.

    2018-01-01

    As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity. PMID:29556223

  15. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity.

    PubMed

    MacDougall, Conan

    2017-03-25

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity ("flower diagrams"). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students.

  16. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity

    PubMed Central

    2017-01-01

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity (“flower diagrams”). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students. PMID:28381885

  17. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  18. Antimicrobial peptides: Possible anti-infective agents.

    PubMed

    Lakshmaiah Narayana, Jayaram; Chen, Jyh-Yih

    2015-10-01

    Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Supramolecular reactive sulphur nanoparticles: a novel and efficient antimicrobial agent.

    PubMed

    Roy Choudhury, S; Goswami, A

    2013-01-01

    Antimicrobial resistance continues to be an inexorable threat for the biomedical and biochemical researchers. Despite the novel discoveries in drug designing and delivery, high-throughput screening and surveillance data render the prospects for new antimicrobial agents as bleak as ever. The advent of nanotechnology, however, strengthens pharmacology by offering effective therapeutics to treat this aforementioned problem. Several nanoparticles of the known elements have already been reported for their antimicrobial efficacy. Nanosized fabrication of elemental sulphur with suitable surface modifications offers to retrieve the use of sulphur (man's oldest known ecofriendly microbicide) as a potential antimicrobial agent. Sulphur nanoparticles (SNPs) are effective against both conventionally sulphur-resistant and sulphur-susceptible microbes (fungi and bacteria). Moreover, biocompatible polymers present on the surface of SNPs minimize toxicity during application. Here, we focus on various aspects of physicochemical features of SNPs and their biochemical interactions with microbes. The present review also illustrates the effects of SNPs on plants and animals in terms of cytotoxicity and biocompatibility. © 2012 The Society for Applied Microbiology.

  20. Sales of veterinary antimicrobial agents for therapeutic use in food-producing animal species in Japan between 2005 and 2010.

    PubMed

    Hosoi, Y; Asai, T; Koike, R; Tsuyuki, M; Sugiura, K

    2014-12-01

    The use of veterinary antimicrobial agents in animals can result in the emergence and selection of resistant bacteria in food-producing animals. This study elucidated the use of veterinary antimicrobial agents in Japan in terms of milligrams of active ingredient sold per kilogram of biomass between 2005 and 2010. Data on sales of antimicrobial agents and on the biomass of the target animal species were compiled from statistics published bythe Japanese Ministry of Agriculture, Forestry and Fisheries. The quantities of antimicrobials used varied between animal species: the highest usage was observed in pigs (392 to 423 mg/ kg), followed by beef cattle (45 to 67 mg/kg), broiler chickens (44 to 63 mg/kg) and dairy cattle (33 to 49 mg/kg). For the animal species combined, usage of third- and fourth-generation cefalosporins, fluoroquinolones and macrolides ranged from 0.10 to 0.14 mg/kg biomass, 1.1 to 1.3 mg/kg biomass and 7.8 to 10.6 mg/kg biomass, respectively.

  1. Role of C-terminal heptapeptide in pore-forming activity of antimicrobial agent, gaegurin 4.

    PubMed

    Kim, H J; Kim, S S; Lee, M H; Lee, B J; Ryu, P D

    2004-10-01

    Gaegurin 4 (GGN4) is an antimicrobial peptide of 37 amino acids isolated from the skin of a frog, Rana rugosa. GGN4 has a disulfide bond between the residues 31 and 37, which is highly conserved among the antimicrobial peptides isolated from skin of the genus, Rana. However, the role of this C-terminal heptapeptide motif is not well understood. In this work, we compared the membrane effects of the full-length GGN4 (C37) and GGN4 1-30 (C30), which is devoid of the C-terminal seven amino acids to elucidate the function of the C-terminal motif. C37 induced significantly larger membrane conductance (>10x) in the model lipid bilayers formed with acidic and neutral phospholipids and larger K+ efflux from gram-positive (>30x) and gram-negative bacteria. However, the pores induced by C37 and C30 were not different in their permeability to K+ over Cl- (permeability ratio of K+ to Cl- = 4.8-7.1). In addition, the pore-forming effect of C37 or C30 in acidic membranes was not different from that in neutral membranes. Furthermore, C37-induced K+ efflux was not significantly decreased by the reducing agent, dithiothreitol. The results indicate that C-terminal heptapeptide sequence plays an important role in maintaining the high pore-forming activity of GGN4, but does not participate in forming GGN4-induced pore structure. The disulfide bond in this region does not appear critical for such high ionophoric activity of GGN4.

  2. In-vitro susceptibility of 1982 respiratory tract pathogens and 1921 urinary tract pathogens against 19 antimicrobial agents: a Canadian multicentre study. Canadian Antimicrobial Study Group.

    PubMed

    Blondeau, J M; Yaschuk, Y; Suter, M; Vaughan, D

    1999-03-01

    A total of 3903 pathogens from 48 Canadian medical centres were tested against 19 antimicrobial agents. Five agents showed activity against > or = 90% of all 1982 respiratory tract pathogens tested (ciprofloxacin, 90%; cefoperazone, 91%; ticarcillin/clavulanate, 92%; ceftazidime and imipenem, 93% each). Nine agents had > or = 90% activity against Enterobacteriaceae from respiratory tract infection (cefotaxime and ticarcillin/clavulanate, 90% each; aztreonam, ceftizoxime and ceftriaxone, 91% each; ceftazidime, 93%; ciprofloxacin, 97%; imipenem and netilmicin, 98% each). Similarly, five agents had activity against > or = 90% of all 1921 urinary tract pathogens tested (ciprofloxacin and ticarcillin/clavulanate, 90% each; cefoperazone and netilmicin, 91% each; imipenem, 99%). Nine agents had > or = 95% activity against Enterobacteriaceae from urinary tract infection (ciprofloxacin, 95%; cefotetan, 97%; aztreonam, cefotaxime, ceftazidime, ceftizoxime, ceftriaxone and netilmicin, 98% each; imipenem, 99%). Seventeen agents had activity against > or = 95% of Staphylococcus aureus strains. Susceptibility of Pseudomonas aeruginosa isolates ranged from 2% to 91%.

  3. Essential oils and their principal constituents as antimicrobial agents for synthetic packaging films.

    PubMed

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-01-01

    Spices and herbal plant species have been recognized to possess a broad spectrum of active constituents that exhibit antimicrobial (AM) activity. These active compounds are produced as secondary metabolites associated with the volatile essential oil (EO) fraction of these plants. A wide range of AM agents derived from EOs have the potential to be used in AM packaging systems which is one of the promising forms of active packaging systems aimed at protecting food products from microbial contamination. Many studies have evaluated the AM activity of synthetic AM and/or natural AM agents incorporated into packaging materials and have demonstrated effective AM activity by controlling the growth of microorganisms. This review examines the more common synthetic and natural AM agents incorporated into or coated onto synthetic packaging films for AM packaging applications. The focus is on the widely studied herb varieties including basil, oregano, and thyme and their EOs. © 2011 Institute of Food Technologists®

  4. General Principles of Antimicrobial Therapy

    PubMed Central

    Leekha, Surbhi; Terrell, Christine L.; Edson, Randall S.

    2011-01-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community. PMID:21282489

  5. General principles of antimicrobial therapy.

    PubMed

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  6. Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study

    NASA Astrophysics Data System (ADS)

    Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Díaz-Torres, Luis Armando

    2017-08-01

    The antimicrobial activity of silver nanoparticles has been extensively studied in the last years. Such nanoparticles constitute a potential and promising approach for the development of new antimicrobial systems especially due to the fact that several microorganisms are developing resistance to some already existing antimicrobial agents, therefore making antibacterial and antimicrobial studies on alternative materials necessary to overcome this issue. Silver nanoparticle concentration and size are determining factors on the antimicrobial activity of these nano systems. Heparin is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family, molecules formed by a base disaccharide whose components are joined by a glycosidic linkage that is a repeating unit along their structure. It is highly sulfated making it a negatively charged material that is also widely used as an anticoagulant in Medicine because its biocompatibility besides it is also produced within the human body, specifically in the mast cells. Heparin alone possesses antimicrobial activity although it has not been studied very much in detail, it only has been demonstrated that it inhibits E. coli, P. aeruginosa, S. aureus and S. epidermidis, so taking this into account, this study is dedicated to assess UV photochemically-synthesized (λ=254 nm) heparin-based silver nanoparticles antimicrobial activity using the agar disk diffusion method complemented by the broth microdilution method to estimate de minimum inhibitory concentration (MIC), that is the lowest concentration at which an antimicrobial will inhibit visible growth of a microorganism. The strains used were the ones aforementioned to assess the antimicrobial activity degree these heparinbased nanoparticles exhibit.

  7. Semi-synthesis of dihydrochalcone derivatives and their in vitro antimicrobial activities.

    PubMed

    Awouafack, Maurice D; Kusari, Souvik; Lamshöft, Marc; Ngamga, Dieudonne; Tane, Pierre; Spiteller, Michael

    2010-04-01

    We describe the semi-synthesis of dihydrochalcone derivatives and their IN VITRO antimicrobial activities. These compounds were prepared by modifying two naturally occurring antimicrobial dihydrochalcones, erioschalcones A and B, reported by us earlier. The structures of the compounds were assigned on the basis of spectroscopic evidence and by comparing their physical and spectroscopic data with those reported in the literature. All the compounds were subjected to IN VITRO antimicrobial assays against a panel of pathogenic microorganisms, including gram-positive and gram-negative bacteria, and fungi. The antimicrobial efficacies of this class of compounds were established by correlating the activity profile of each compound with its structure and by comparing the activities of all the compounds with each other based on their structure. This should enable the development of other derivatives of the dihydrochalcone family that would serve as more potent antimicrobial agents against specific pathogens. Georg Thieme Verlag KG Stuttgart.New York.

  8. Antimicrobial activity of sodium hypochlorite in endodontics.

    PubMed

    Mohammadi, Zahed; Shalavi, Sousan

    2013-01-01

    One of the major objectives in endodontic therapy is to disinfect the entire root canal system. This goal may be achieved using mechanical instrumenation and chemical irrigation in conjunrction with medication of the root canal between treatment sessions. Microorganisms and their by-products are considered to be the major cause of pulpal and periradicular patholic. In order to reduce or eliminate bacteria and popular tissue remnants, the use of various irrigation solution during treatment have been suggested. Sodium hypochlorite (NaOCI), the most common irrigant, is an excellent nonspecific proteolytic and antimicrobial agent. The purpose of this paper is to review the antimicrobial activity of sodium hypochlorite.

  9. Antimicrobial activity of yeasts against some pathogenic bacteria

    PubMed Central

    Younis, Gamal; Awad, Amal; Dawod, Rehab E.; Yousef, Nehal E.

    2017-01-01

    Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR) for detection of khs (kievitone hydratase) and pelA (pectate degrading enzyme)genes. Results: The recovery rate of yeasts from sausage was 20% (2/10) followed by kareish cheese, processed cheese, and butter 10% (1/10) each as well as raw milk 9% (9/100), and fruit yoghurt 30% (6/20). Different yeast species were recovered, namely, Candida kefyr (5 isolates), Saccharomyces cerevisiae (4 isolates), Candida intermedia (3 isolates), Candida tropicalis (2 isolates), Candida lusitaniae (2 isolates), and Candida krusei (1 isolate). khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food. PMID:28919693

  10. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles.

    PubMed

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca(10-x)Ag(x)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  11. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies.

    PubMed

    Ashraf, Zaman; Bais, Abdul; Manir, Md Maniruzzaman; Niazi, Umar

    2015-01-01

    A number of penicillin derivatives (4a-h) were synthesized by the condensation of 6-amino penicillinic acid (6-APA) with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF) using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents.

  12. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies

    PubMed Central

    Ashraf, Zaman; Bais, Abdul; Manir, Md. Maniruzzaman; Niazi, Umar

    2015-01-01

    A number of penicillin derivatives (4a-h) were synthesized by the condensation of 6-amino penicillinic acid (6-APA) with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF) using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents. PMID:26267242

  13. Food Antimicrobials Nanocarriers

    PubMed Central

    Blanco-Padilla, Adriana; Soto, Karen M.; Hernández Iturriaga, Montserrat

    2014-01-01

    Natural food antimicrobials are bioactive compounds that inhibit the growth of microorganisms involved in food spoilage or food-borne illness. However, stability issues result in degradation and loss of antimicrobial activity. Nanoencapsulation allows protection of antimicrobial food agents from unfavorable environmental conditions and incompatibilities. Encapsulation of food antimicrobials control delivery increasing the concentration of the antimicrobials in specific areas and the improvement of passive cellular absorption mechanisms resulted in higher antimicrobial activity. This paper reviews the present state of the art of the nanostructures used as food antimicrobial carriers including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers. PMID:24995363

  14. Antimicrobial activity of topical anaesthetic preparations.

    PubMed Central

    Badenoch, P R; Coster, D J

    1982-01-01

    Eight commercial topical anaesthetic preparations were tested for their ability to inhibit microbial growth in vitro by incubating serial dilutions with each of 4 micro-organisms. In addition corneas of mice were infected with Staphylococcus aureus, and the effect of the anaesthetics on isolation rates of bacteria was investigated. The preparations were shown to have a wide range of antimicrobial activity, correlating both with the active agents and the preservatives. We suggest that some preparations are unsuitable for use prior to collection of specimens from human corneal ulcers. PMID:6805500

  15. Metal oxide nanoparticles as antimicrobial agents: a promise for the future.

    PubMed

    Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-01

    Microbial infectious diseases are a global threat to human health. Excess and improper use of antibiotics has created antimicrobial-resistant microbes that can defy clinical treatment. The hunt for safe and alternate antimicrobial agents is on in order to overcome such resistant micro-organisms, and the birth of nanotechnology offers promise to combat infectious organisms. Over the past two decades, metal oxide nanoparticles (MeO-NPs) have become an attractive alternative source to combat microbes that are highly resistant to various classes of antibiotics. Their vast array of physicochemical properties enables MeO-NPs to act as antimicrobial agents through various mechanisms. Apart from exhibiting antimicrobial properties, MeO-NPs also serve as carriers of drugs, thus barely providing a chance for micro-organisms to develop resistance. These immense multiple properties exhibited by MeO-NPs will have an impact on the treatment of deadly infectious diseases. This review discusses the mechanisms of action of MeO-NPs against micro-organisms, safety concerns, challenges and future perspectives. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Effects of antimicrobial treatment on fiberglass-acrylic filters.

    PubMed

    Cecchini, C; Verdenelli, M C; Orpianesi, C; Dadea, G M; Cresci, A

    2004-01-01

    The aims of the present study were to: (i) analyse a group of antimicrobial agents and to select the most active against test microbial strains; (ii) test the effect of the antimicrobial treatment on air filters in order to reduce microbial colonization. Different kinds of antimicrobial agents were analysed to assess their compatibility with the production process of air filter media. The minimal inhibitory concentration for each antimicrobial agent was determined against a defined list of microbial strains, and an antimicrobial activity assay of filter prototypes was developed to determine the most active agent among the compatible antimicrobials. Then, the most active was chosen and added directly to the filter during the production process. The microbial colonization of treated and untreated filter media was assessed at different working times for different incubation times by stereomicroscope and scanning electron microscope analysis. Some of the antimicrobial agents analysed were more active against microbial test strains and compatible with the production process of the filter media. Filter sections analysis of treated filter media showed a significantly lower microbial colonization than those untreated, a reduction of species both in density and varieties and of the presence of bacteria and fungal hyphae with reproductive structures. This study demonstrated the ability of antimicrobial treatments to inhibit the growth of micro-organisms in filter media and subsequently to increase indoor air quality (IAQ), highlighting the value of adding antimicrobials to filter media. To make a contribution to solving the problem of microbial contamination of air filters, by demonstrating the efficacy of incorporating antimicrobial agents in the filter media to improve IAQ and health.

  17. High-Velocity Microsprays Enhance Antimicrobial Activity in Streptococcus mutans Biofilms.

    PubMed

    Fabbri, S; Johnston, D A; Rmaile, A; Gottenbos, B; De Jager, M; Aspiras, M; Starke, E M; Ward, M T; Stoodley, P

    2016-12-01

    Streptococcus mutans in dental plaque biofilms play a role in caries development. The biofilm's complex structure enhances the resistance to antimicrobial agents by limiting the transport of active agents inside the biofilm. The authors assessed the ability of high-velocity water microsprays to enhance delivery of antimicrobials into 3-d-old S. mutans biofilms. Biofilms were exposed to a 90° or 30° impact, first using a 1-µm tracer bead solution (10 9 beads/mL) and, second, a 0.2% chlorhexidine (CHX) or 0.085% cetylpyridinium chloride (CPC) solution. For comparison, a 30-s diffusive transport and simulated mouthwash were also performed. Confocal microscopy was used to determine number and relative bead penetration depth into the biofilm. Assessment of antimicrobial penetration was determined by calculating the killing depth detected by live/dead viability staining. The authors first demonstrated that the microspray was able to deliver significantly more microbeads deeper in the biofilm compared with diffusion and mouthwashing exposures. Next, these experiments revealed that the microspray yielded better antimicrobial penetration evidenced by deeper killing inside the biofilm and a wider killing zone around the zone of clearance than diffusion alone. Interestingly the 30° impact in the distal position delivered approximately 16 times more microbeads and yielded approximately 20% more bacteria killing (for both CHX and CPC) than the 90° impact. These data suggest that high-velocity water microsprays can be used as an effective mechanism to deliver microparticles and antimicrobials inside S. mutans biofilms. High shear stresses generated at the biofilm-burst interface might have enhanced bead and antimicrobial delivery inside the remaining biofilm by combining forced advection into the biofilm matrix and physical restructuring of the biofilm itself. Further, the impact angle has potential to be optimized both for biofilm removal and active agents' delivery inside

  18. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds.

    PubMed

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-17

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  19. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    PubMed Central

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  20. Improved agar diffusion method for detecting residual antimicrobial agents.

    PubMed

    Tsai, C E; Kondo, F

    2001-03-01

    The improved agar diffusion method for determination of residual antimicrobial agents was investigated, and the sensitivities of various combinations of test organisms and assay media were determined using 7 organisms, 5 media, and 31 antimicrobial agents. Bacillus stearothermophilus and synthetic assay medium (SAM) showed the greatest sensitivity for screening penicillins (penicillin G and ampicillin). The combination of Bacillus subtilis and minimum medium (MM) was the most sensitive for tetracyclines (oxytetracycline and chlortetracycline), B. stearothermophilus and SAM or Micrococcus luteus and Mueller-Hinton agar (MHA) for detecting tylosin and erythromycin, B. subtilis and MHA for aminoglycosides (streptomycin, kanamycin, gentamicin, and dihydrostreptomycin), B. stearothermophilus and SAM for polyethers (salinomycin and lasalocid), and B. subtilis and MM or Clostridium perfringens and GAM for polypeptides (thiopeptin, enramycin, virginiamycin, and bacitracin). However, gram-negative bacterium Escherichia coli ATCC 27166 and MM were better for screening for colistin and polymixin-B. For detecting the synthetic drugs tested, the best combination was B. subtilis and MM for sulfonamides, E. coli 27166 and MM for quinolones (oxolinic acid and nalidixic acid), B. subtilis and MM for furans (furazolidone), and the bioluminescent bacterium Photobacterium phosphoreum and luminescence assay medium for chloramphenicol and oxolinic acid. The results showed that the use of four assay plates, B. stearothermophilus and SAM, B. subtilis and MM, M. luteus and MHA, and E. coli 27166 and MM, was superior to the currently available techniques for screening for residual antimicrobial agents in edible animal tissues.

  1. A Global Declaration on Appropriate Use of Antimicrobial Agents across the Surgical Pathway.

    PubMed

    This declaration, signed by an interdisciplinary task force of 234 experts from 83 different countries with different backgrounds, highlights the threat posed by antimicrobial resistance and the need for appropriate use of antibiotic agents and antifungal agents in hospitals worldwide especially focusing on surgical infections. As such, it is our intent to raise awareness among healthcare workers and improve antimicrobial prescribing. To facilitate its dissemination, the declaration was translated in different languages.

  2. Antimicrobial activity of silver nanoparticles impregnated wound dressing

    NASA Astrophysics Data System (ADS)

    Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

    2013-06-01

    In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

  3. Effect of clavulanic acid on minimal inhibitory concentrations of 16 antimicrobial agents tested against Legionella pneumophila.

    PubMed Central

    Pohlod, D J; Saravolatz, L D; Quinn, E L; Somerville, M M

    1980-01-01

    A total of 15 Legionella pneumophilia isolated were tested against 16 antimicrobial agents used singly and in combination with clavulanic acid. When combined with clavulanic acid, 4 of the 16 antimicrobial agents produced no enhanced effect. However, the minimal inhibitory concentrations of 12 of the antimicrobial agents were reduced by one-half to one-third when in combination with clavulanic acid. These reductions reflected only a one-dilution decrease, however, in the original minimal inhibitory concentrations. Thus, clavulanic acid combinations appear to be only nominally effective beta-lactamase inhibitors against L. pneumophilia. PMID:6969575

  4. A potential photocatalytic, antimicrobial and anticancer activity of chitosan-copper nanocomposite.

    PubMed

    Arjunan, Nithya; Singaravelu, Chandra Mohan; Kulanthaivel, Jeganathan; Kandasamy, Jothivenkatachalam

    2017-11-01

    In this study, chitosan-copper (CS-Cu) nanocomposite was synthesized without the aid of any external chemical reducing agents. The optical, structural, spectral, thermal and morphological analyses were carried out by several techniques. The prepared nanocomposite acts as a photocatalyst for the removal of Rhodamine B (RhB) and Conge red (CR) dyes under visible light irradiation. The pseudo first order kinetics was derived according to Langmuir-Hinshelwood (L-H) model. The nanocomposite also proved to be an excellent antimicrobial agent against Gram-positive and Gram-negative bacteria; and also show activity against fungus. The advanced material was used for the major research areas which include photocatalytic materials for waste water treatment; biological applications in the development of drug resistant antimicrobials and anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory-antimicrobial agents.

    PubMed

    Khloya, Poonam; Kumar, Satish; Kaushik, Pawan; Surain, Parveen; Kaushik, Dhirender; Sharma, Pawan K

    2015-03-15

    Current Letter presents design, synthesis and biological evaluation of a novel series of pyrazolylthiazole carboxylates 1a-1p and corresponding acid derivatives 2a-2p. All 32 novel compounds were tested for their in vivo anti-inflammatory activity by carrageenan-induced rat paw edema method as well as for in vitro antimicrobial activity. All the tested compounds exhibited excellent AI activity profile. Three compounds 1p (R=Cl, R(1)=Cl), 2c (R=H, R(1)=F) and 2n (R=Cl, R(1)=OCH3) were identified as potent anti-inflammatory agents exhibiting edema inhibition of 93.06-89.59% which is comparable to the reference drug indomethacin (91.32%) after 3h of carrageenan injection while most of the other compounds displayed inhibition ⩾80%. In addition, pyrazolylthiazole carboxylic acids (2a-2p) also showed good antimicrobial profile. Compound 2h (R=OCH3, R(1)=Cl) showed excellent antimicrobial activity (MIC 6.25μg/mL) against both Gram positive bacteria comparable with the reference drug ciprofloxacin (MIC 6.25μg/mL). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Antimicrobial Activities of Three Medicinal Plants and Investigation of Flavonoids of Tripleurospermum disciforme.

    PubMed

    Tofighi, Zahra; Molazem, Maryam; Doostdar, Behnaz; Taban, Parisa; Shahverdi, Ahmad Reza; Samadi, Nasrin; Yassa, Narguess

    2015-01-01

    Rosa damascena, Tripleurospermum disciforme and Securigera securidaca were used as disinfectant agents and for treatment of some disease in folk medicine of Iran. The antimicrobial effects of different fractions of seeds extract of S. securidaca, petals extract of R. damascena and aerial parts extract of T. disciforme were examined against some gram positive, gram negative and fungi by cup plate diffusion method. The petroleum ether and chloroform fractions of S. securidaca showed antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa, while its methanol fraction had no antibacterial effects. R. damascena petals extract demonstrated antibacterial activities against Bacillus cereus, Staphylococcus epidermidis, S. aureus and Pseudomonas aeruginosa. T. disciforme aerial parts extract exhibited antimicrobial effects only against S. aureus and S. epidermidis. None of the fractions had any antifungal activities. Therefore, present study confirmed utility of these plants as disinfectant agents. Six flavonoids were isolated from T. disciforme: Luteolin, Quercetin-7-O-glucoside, Kaempferol, Kaempferol-7-O-glucoside, Apigenin and Apigenin-7-O-glucoside. The flavonoids and the antimicrobial activity of T. disciforme are reported for the first time.

  7. Antimicrobial Activities of Three Medicinal Plants and Investigation of Flavonoids of Tripleurospermum disciforme

    PubMed Central

    Tofighi, Zahra; Molazem, Maryam; Doostdar, Behnaz; Taban, Parisa; Shahverdi, Ahmad Reza; Samadi, Nasrin; Yassa, Narguess

    2015-01-01

    Rosa damascena, Tripleurospermum disciforme and Securigera securidaca were used as disinfectant agents and for treatment of some disease in folk medicine of Iran. The antimicrobial effects of different fractions of seeds extract of S. securidaca, petals extract of R. damascena and aerial parts extract of T. disciforme were examined against some gram positive, gram negative and fungi by cup plate diffusion method. The petroleum ether and chloroform fractions of S. securidaca showed antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa, while its methanol fraction had no antibacterial effects. R. damascena petals extract demonstrated antibacterial activities against Bacillus cereus, Staphylococcus epidermidis, S. aureus and Pseudomonas aeruginosa. T. disciforme aerial parts extract exhibited antimicrobial effects only against S. aureus and S. epidermidis. None of the fractions had any antifungal activities. Therefore, present study confirmed utility of these plants as disinfectant agents. Six flavonoids were isolated from T. disciforme: Luteolin, Quercetin-7-O-glucoside, Kaempferol, Kaempferol-7-O-glucoside, Apigenin and Apigenin-7-O-glucoside. The flavonoids and the antimicrobial activity of T. disciforme are reported for the first time. PMID:25561928

  8. Green synthesis of silver nanoparticles combined to calcium glycerophosphate: antimicrobial and antibiofilm activities.

    PubMed

    Souza, José As; Barbosa, Debora B; Berretta, Andresa A; do Amaral, Jackeline G; Gorup, Luiz F; de Souza Neto, Francisco N; Fernandes, Renan A; Fernandes, Gabriela L; Camargo, Emerson R; Agostinho, Alessandra M; Delbem, Alberto Cb

    2018-03-01

    To synthesize, characterize and evaluate the antimicrobial and antibiofilm activities of novel nanocomposites containing silver nanoparticles (AgNPs) associated or not to β-calcium glycerophosphate. These nanocomposites were produced through a 'green' route using extracts of different parts of pomegranate. Antimicrobial and antibiofilm properties against Candida albicans and Streptococcus mutans were determined by the minimum bactericidal/fungicidal concentration and biofilm density after treatments. All extracts used were successful in producing AgNPs. Composites made with peel extracts showed the highest antimicrobial and antibiofilm activity against both microorganisms tested and performed similarly or even better than chlorhexidine. AgNPs associated or not to calcium glycerophosphate produced by a 'green' process may be a promising novel antimicrobial agent against oral microorganisms.

  9. Protocols to test the activity of antimicrobial peptides against the honey bee pathogen Paenibacillus larvae.

    PubMed

    Khilnani, Jasmin C; Wing, Helen J

    2015-10-01

    Paenibacillus larvae is the causal agent of the honey bee disease American Foulbrood. Two enhanced protocols that allow the activity of antimicrobial peptides to be tested against P. larvae are presented. Proof of principle experiments demonstrate that the honey bee antimicrobial peptide defensin 1 is active in both assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. [Antimycoplasmal activities of ofloxacin and commonly used antimicrobial agents on Mycoplasma gallisepticum].

    PubMed

    Takahashi, I; Yoshida, T

    1989-05-01

    In vitro activities of ofloxacin (OFLX), a new quinolone derivative, against 29 strains of Mycoplasma gallisepticum was compared with those of 4 commonly used antimicrobial agents, doxycycline (DOXY), tylosin (TS), spectinomycin (SPCM) and thiamphenicol (TP). Antimycoplasmal activities of the drugs were evaluated on the MIC (final MIC) and MPC (minimum mycoplasmacidal concentration) values which were determined by a broth dilution procedure. The following results were obtained. 1. The MIC90s of OFLX and DOXY were both 0.20 micrograms/ml. The MICs of TS were distributed through a wide range (less than or equal to 0.006 - 0.78 micrograms/ml), and its MIC90 was 0.78 micrograms/ml. Of 29 M. gallisepticum strains, 27.6% were recognized as TS-resistant. The MIC90 values of SPCM and TP were 1.56 micrograms/ml and 3.13 micrograms/ml, respectively. The MIC90 of OFLX was equal to that of DOXY and 4- to 16-fold smaller than the values of the other 3 antibiotics. 2. The MPC of OFLX was the lowest among the antibiotics tested, its MPC90 value was 0.39 micrograms/ml and was followed by DOXY (1.56 micrograms/ml). The MPCs of TS were distributed in a wide range (0.012 - 3.13 micrograms/ml), and its MPC90 was 3.13 micrograms/ml. The MPC90 values of SPCM and TP were both 6.25 micrograms/ml. Therefore, the mycoplasmacidal activity of OFLX evaluated with MPC90 values was 4- to 16-fold greater than those of the other 4 antibiotics.

  11. Isolation, Purification and Characterization of Antimicrobial Agent Antagonistic to Escherichia coli ATCC 10536 Produced by Bacillus pumilus SAFR-032 Isolated from the Soil of Unaizah, Al Qassim Province of Saudi Arabia.

    PubMed

    S Alanazi, Abdurrahman; Qureshi, Kamal Ahmad; Elhassan, Gamal Osman; I El-Agamy, Elsayed

    Escherichia coli is one of the most common pathogenic bacteria, which cause urinary tract infections in infants as well as in adult human beings. Due to the emergence of antibiotic resistance in E. coli, there is a great demand of new antimicrobial agent for the treatment of infections caused by such E. coli. This study aims to isolate, identify and characterize the native soil-bacterial strains predominate in the soil of Unaizah city, which produce antimicrobial agent antagonistic to E. coli ATCC 10536, followed by isolation, purification and characterization of antimicrobial agent. Pour plate, spread plate and 16S rRNA sequence analysis methods were followed for the isolation and identification of soil bacteria. Ammonium sulphate and dialysis (MWCO-8 KD) methods were followed for the isolation and partial purification of antimicrobial agent from the cell free broths. The characterization of antimicrobial agent was carried out by determining the minimum inhibitory concentration and effects of temperature and pH on the antimicrobial stability. Out of the twenty five soil samples, only one soil-bacterial strain was found to produce antimicrobial agent antagonistic to E. coli ATCC 10536. The isolated soil bacterium was identified as Bacillus pumilus SAFR-032. The soil isolate was characterized and results suggest that 30°C temperature and pH 7.0 were the optimum growth parameters and soybean casein digest broth was the best fermentation medium, whereas the highest production of antimicrobial agent was at 35°C temperature, pH 7.0, shaking at 150-220 rpm and at 60th h of incubation. The maximum yield of antimicrobial agent was obtained at 60% of (NH 4) 2SO 4. The results of characterization of antimicrobial agent suggest that the maximum and minimum antimicrobial activities were at pH 3.0 and 8.0, respectively, whereas antimicrobial activity was unaffected by temperature. The antimicrobial agent was highly stable at varying range of temperature 50-120°C. Minimum

  12. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine.

    PubMed

    Bruni, Natascia; Capucchio, Maria Teresa; Biasibetti, Elena; Pessione, Enrica; Cirrincione, Simona; Giraudo, Leonardo; Corona, Antonio; Dosio, Franco

    2016-06-11

    Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases).

  13. Evaluation of new antimicrobial agents on Bacillus spp. strains: docking affinity and in vitro inhibition of glutamate-racemase.

    PubMed

    Tamay-Cach, Feliciano; Correa-Basurto, José; Villa-Tanaca, Lourdes; Mancilla-Percino, Teresa; Juárez-Montiel, Margarita; Trujillo-Ferrara, José G

    2013-10-01

    Three glutamic acid derivatives, two boron-containing and one imide-containing compound, were synthesized and tested for antimicrobial activity targeting glutamate-racemase. Antimicrobial effect was evaluated over Bacillus spp. Docking analysis shown that the test compounds bind near the active site of racemase isoforms, suggesting an allosteric effect. The boron derivatives had greater affinity than the imide derivative. In vitro assays shown good antimicrobial activity for the boron-containing compounds, and no effectiveness for the imide-containing compounds. The minimum inhibitory concentration of tetracycline, used as standard, was lower than that of the boron-containing derivatives. However, it seems that the boron-containing derivatives are more selective for bacteria. Experimental evidence suggests that the boron-containing derivatives act by inhibiting the racemase enzyme. Therefore, these test compounds probably impede the formation of the bacterial cell wall. Thus, the boron-containing glutamic acid derivatives should certainly be of interest for future studies as antimicrobial agents for Bacillus spp.

  14. Antimicrobial activity of silver and gold in toothpastes: A comparative analysis.

    PubMed

    Junevičius, Jonas; Žilinskas, Juozas; Česaitis, Kęstutis; Česaitienė, Gabrielė; Gleiznys, Darius; Maželienė, Žaneta

    2015-01-01

    In this study, we compared the antimicrobial activity of identical toothpastes differing only in silver or gold nanoparticles against the activity of one of the common toothpastes containing a chemical active ingredient. We also compared the active concentrations of the toothpastes. For this study, we selected "Royal Denta" toothpastes containing silver and gold particles, and the "Blend-A-Med Complete" toothpaste containing zinc citrate as the active ingredient. We used 8 standard microorganism cultures on the basis of their individual mechanisms of protection. The antimicrobial activity of each studied preparation was evaluated at 9 concentrations. Most effective against gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) was the "Silver Technology" – MIC was 0.004-0.0015 g/mL. Neither "Silver Technology" nor "Orange and Gold Technology" had any effect on Escherichia coli or Proteus mirabilis. Antimicrobial activity against the motile bacterium Proteus mirabilis was observed in "Silver Technology", "Orange and Gold Technology", and "Blend-A-Med Complete" – the MIC was 0.015 g/mL or lower. No antimicrobial activity against Candida albicans fungus at the studied concentrations was observed in the "Orange and Gold Technology". The toothpaste "Blend-A-Med" demonstrated the most effective antimicrobial activity - the MIC of 0.0015 g/mL and 0.015 g/mL inhibited Staphylococcus aureus and Enterococcus faecalis, respectively, and the MIC of 0.15 g/mL inhibited the growth of the bacteria Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and fungus Candida albicans. Silver in toothpaste has a greater antimicrobial effect than gold, but its effect is still inferior to that of a chemical antimicrobial agent.

  15. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.

    PubMed

    Chung, Pooi Yin; Khanum, Ramona

    2017-08-01

    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed. Copyright © 2017. Published by Elsevier B.V.

  16. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.

    PubMed

    Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu

    2017-01-05

    In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Patterns of antimicrobial agent prescription in a sentinel population of canine and feline veterinary practices in the United Kingdom.

    PubMed

    Singleton, D A; Sánchez-Vizcaíno, F; Dawson, S; Jones, P H; Noble, P J M; Pinchbeck, G L; Williams, N J; Radford, A D

    2017-06-01

    Antimicrobial resistance is an increasingly important global health threat and the use of antimicrobial agents is a key risk factor in its development. This study describes antimicrobial agent prescription (AAP) patterns over a 2year period using electronic health records (EHRs) from booked consultations in a network of 457 sentinel veterinary premises in the United Kingdom. A semi-automated classification methodology was used to map practitioner defined product codes in 918,333 EHRs from 413,870 dogs and 352,730 EHRs from 200,541 cats, including 289,789 AAPs. AAP as a proportion of total booked consultations was more frequent in dogs (18.8%, 95% confidence interval, CI, 18.2-19.4) than cats (17.5%, 95% CI 16.9-18.1). Prescription of topical antimicrobial agents was more frequent in dogs (7.4%, 95% CI 7.2-7.7) than cats (3.2%, 95% CI 3.1-3.3), whilst prescription of systemic antimicrobial agents was more frequent in cats (14.8%, 95% CI 14.2-15.4) than dogs (12.2%, 95% CI 11.7-12.7). A decreasing temporal pattern was identified for prescription of systemic antimicrobial agents in dogs and cats. Premises which prescribed antimicrobial agents frequently for dogs also prescribed frequently for cats. AAP was most frequent during pruritus consultations in dogs and trauma consultations in cats. Clavulanic acid potentiated amoxicillin was the most frequently prescribed antimicrobial agent in dogs (28.6% of prescriptions, 95% CI 27.4-29.8), whereas cefovecin, a third generation cephalosporin, was the most frequently prescribed antimicrobial agent in cats (36.2%, 95% CI 33.9-38.5). This study demonstrated patterns in AAP over time and for different conditions in a population of companion animals in the United Kingdom. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Antimicrobial activity of jasmine oil against oral microorganisms

    NASA Astrophysics Data System (ADS)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  19. Mushrooms as possible antioxidant and antimicrobial agents.

    PubMed

    Kosanić, Marijana; Ranković, Branislav; Dašić, Marko

    2012-01-01

    The aim of the study is to examine in-vitro antioxidant and antimicrobial activity of the acetonic and methanolic extracts of the mushrooms Boletus aestivalis, Boletus edulis and Leccinum carpini. Antioxidant activity was evaluated by using free radical scavenging activity and reducing power. In addition, total content of phenol and flavonoid in extracts were determined as pyrocatechol equivalent, and as rutin equivalent, respectively. As a result of the study acetonic extracts from Boletus edulis was more powerful antioxidant activity with IC50 value of 4.72 μg/mL which was similar or greater than the standard antioxidants, ascorbic acid (IC50 = 4.22 μg/mL), BHA (IC50 = 6.42 μg/mL) and α-tocopherol (IC50 = 62.43 μg/mL). Moreover, the tested extracts had effective reducing power. A significant relationship between total phenolic and flavonoid contents and their antioxidative activities was significantly observed. The antimicrobial activity of each extract was estimated by determination of the minimum inhibitory concentration by using microdilution plate method against five species of bacteria and five species of fungi. Generally, the tested mushroom extracts had relatively strong antimicrobial activity against the tested microorganisms. The minimum inhibitory concentration for both extracts related to the tested bacteria and fungi were 1.25 - 10 mg/ mL. The present study shows that tested mushroom species demonstrated a strong antioxidant and antimicrobial activity. It suggests that mushroom may be used as good sources of natural antioxidants and for pharmaceutical purposes in treating of various deseases.

  20. Mushrooms as Possible Antioxidant and Antimicrobial Agents

    PubMed Central

    Kosanić, Marijana; Ranković, Branislav; Dašić, Marko

    2012-01-01

    The aim of the study is to examine in-vitro antioxidant and antimicrobial activity of the acetonic and methanolic extracts of the mushrooms Boletus aestivalis, Boletus edulis and Leccinum carpini. Antioxidant activity was evaluated by using free radical scavenging activity and reducing power. In addition, total content of phenol and flavonoid in extracts were determined as pyrocatechol equivalent, and as rutin equivalent, respectively. As a result of the study acetonic extracts from Boletus edulis was more powerful antioxidant activity with IC50 value of 4.72 μg/mL which was similar or greater than the standard antioxidants, ascorbic acid (IC50 = 4.22 μg/mL), BHA (IC50 = 6.42 μg/mL) and α-tocopherol (IC50 = 62.43 μg/mL). Moreover, the tested extracts had effective reducing power. A significant relationship between total phenolic and flavonoid contents and their antioxidative activities was significantly observed. The antimicrobial activity of each extract was estimated by determination of the minimum inhibitory concentration by using microdilution plate method against five species of bacteria and five species of fungi. Generally, the tested mushroom extracts had relatively strong antimicrobial activity against the tested microorganisms. The minimum inhibitory concentration for both extracts related to the tested bacteria and fungi were 1.25 - 10 mg/ mL. The present study shows that tested mushroom species demonstrated a strong antioxidant and antimicrobial activity. It suggests that mushroom may be used as good sources of natural antioxidants and for pharmaceutical purposes in treating of various deseases. PMID:24250542

  1. French multicenter study involving eight test sites for radiometric determination of activities of 10 antimicrobial agents against Mycobacterium avium complex.

    PubMed Central

    Rastogi, N; Bauriaud, R M; Bourgoin, A; Carbonnelle, B; Chippaux, C; Gevaudan, M J; Goh, K S; Moinard, D; Roos, P

    1995-01-01

    The radiometric BACTEC 460-TB methodology has filled an increased need in the screening of a wide range of antimicrobial agents against Mycobacterium avium (MAC) isolates on a patient-to-patient basis. In this context, a multicenter study involving eight test sites across France was performed to determine the MICs of 10 antimicrobial agents for MAC organisms. The aim of the investigation was to compare the in vitro activities of D-cycloserine, ethambutol, ethionamide, rifampin, amikacin, streptomycin, ciprofloxacin, sparfloxacin, clofazimine, and clarithromycin against MAC isolates. All of the test sites received the same clinical isolates of MAC, and the MICs were determined by a common protocol. The overall interlaboratory reproducibility of the MICs within +/- 1 dilution of the modal MICs varied from 79.70 to 100% (mean, 95.2% +/- 2.1%), whereas overall agreement of the MICs among the test sites varied from a mean of 91% +/- 4.1% to a mean of 98 +/- 1.3%. We confirmed that the proposed methodology is easy, accurate, and sufficiently reproducible to be used routinely in a clinical laboratory. Despite variations in the MICs of the same drug among strains, no link between the origin of MAC isolates (from human immunodeficiency virus-positive or -negative patients) and their drug susceptibilities was established. On the basis of the MICs that inhibited 50 and 90% of isolates tested for the drugs used, clarithromycin, clofazimine, ethambutol, and streptomycin were the most uniformly active against MAC; this was followed by amikacin, rifampin, and sparfloxacin. On the other hand, ciprofloxacin, D-cycloserine, and ethionamide showed only marginal in vitro activities. PMID:7793865

  2. Component Release and Mechanical Properties of Endodontic Sealers following Incorporation of Antimicrobial Agents.

    PubMed

    Gjorgievska, Elizabeta S; Nicholson, John W; Coleman, Nichola J; Booth, Samantha; Dimkov, Aleksandar; Hurt, Andrew

    2017-01-01

    Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent.

  3. Component Release and Mechanical Properties of Endodontic Sealers following Incorporation of Antimicrobial Agents

    PubMed Central

    Nicholson, John W.; Coleman, Nichola J.; Booth, Samantha; Dimkov, Aleksandar

    2017-01-01

    Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent. PMID:28620615

  4. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents.

    PubMed

    Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A

    2015-11-03

    In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.

  5. Determining Multiple Responses of Pseudomonas aeruginosa PAO1 to an Antimicrobial Agent, Free Nitrous Acid.

    PubMed

    Gao, Shu-Hong; Fan, Lu; Peng, Lai; Guo, Jianhua; Agulló-Barceló, Míriam; Yuan, Zhiguo; Bond, Philip L

    2016-05-17

    Free nitrous acid (FNA) has recently been demonstrated as an antimicrobial agent on a range of micro-organisms, especially in wastewater-treatment systems. However, the antimicrobial mechanism of FNA is largely unknown. Here, we report that the antimicrobial effects of FNA are multitargeted. The response of a model denitrifier, Pseudomnas aeruginosa PAO1 (PAO1), common in wastewater treatment, was investigated in the absence and presence of inhibitory level of FNA (0.1 mg N/L) under anaerobic denitrifying conditions. This was achieved through coupling gene expression analysis, by RNA sequencing, and with a suite of physiological analyses. Various transcripts exhibited significant changes in abundance in the presence of FNA. Respiration was likely inhibited because denitrification activity was severely depleted, and decreased transcript levels of most denitrification genes occurred. As a consequence, the tricarboxylic acid (TCA) cycle was inhibited due to the lowered cellular redox state in the FNA-exposed cultures. Meanwhile, during FNA exposure, PAO1 rerouted its carbon metabolic pathway from the TCA cycle to pyruvate fermentation with acetate as the end product as a possible survival mechanism. Additionally, protein synthesis was significantly decreased, and ribosome preservation was evident. These findings improve our understanding of PAO1 in response to FNA and contribute toward the potential application for use of FNA as an antimicrobial agent.

  6. In vitro susceptibility of Helicobacter pullorum strains to different antimicrobial agents.

    PubMed

    Ceelen, Liesbeth; Decostere, Annemie; Devriese, Luc A; Ducatelle, Richard; Haesebrouck, Freddy

    2005-01-01

    The in vitro activity of 13 antimicrobial agents against 23 Helicobacter pullorum strains from poultry (21) and human (two) origin, and one human H. canadensis strain was tested by the agar dilution method. With the H. pullorum strains, monomodal distributions of Minimum Inhibitory Concentrations (MICs) were seen with lincomycin, doxycycline, gentamicin, tobramycin, erythromycin, tylosin, metronidazole, and enrofloxacin in concentration ranges considered as indicating susceptibility in other bacteria. The normal susceptibility level for nalidixic acid was situated at or slightly above the MIC breakpoints proposed for Campylobacteriaceae. Ampicillin, ceftriaxone, and sulphamethoxazole-trimethoprim showed poor activity against H. pullorum. For the H. canadensis strain, a similar susceptibility pattern was seen, except for nalidixic acid and enrofloxacin, whose MIC of >512 and 8 microg/ml, respectively, indicated resistance of this agent. With spectinomycin, a bimodal distribution of the MICs was noted for the tested strains; eight H. pullorum isolates originating from one flock showed acquired resistance (MIC>512 microg/ml).

  7. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay

    PubMed Central

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product’s activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate. Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium. The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds. PMID:29845058

  8. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay.

    PubMed

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product's activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate . Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium . The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds.

  9. Alginate edible films containing microencapsulated lemongrass oil or citral: effect of encapsulating agent and storage time on physical and antimicrobial properties.

    PubMed

    Alarcón-Moyano, Jessica K; Bustos, Rubén O; Herrera, María Lidia; Matiacevich, Silvia B

    2017-08-01

    Active edible films have been proposed as an alternative to extend shelf life of fresh foods. Most essential oils have antimicrobial properties; however, storage conditions could reduce their activity. To avoid this effect the essential oil (EO) can be microencapsulated prior to film casting. The aim of this study was to determine the effects of the type of encapsulating agent (EA), type of EO and storage time on physical properties and antimicrobial activity of alginate-based films against Escherichia coli ATCC 25922. Trehalose (TH), Capsul ® (CAP) and Tween 20 (Tw20) were used as EA. Lemongrass essential oil (LMO) and citral were used as active agents. The results showed that the type of EA affected the stability of the film forming-emulsions as well as the changes in opacity and colour of the films during storage but not the antimicrobial activity of them. Both microencapsulated EOs showed a prolonged release from the alginate films during the 28 days of storage. Trehalose was selected to encapsulate both active compounds because the films made with this microencapsulated EA showed the greatest physical stability and the lowest color variation among all the films studied.

  10. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei.

    PubMed

    Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; Veerman, Enno C I; Tungpradabkul, Sumalee; Wongratanacheewin, Surasakdi; Kanthawong, Sakawrat; Taweechaisupapong, Suwimol

    2013-07-01

    Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity. A hybrid peptide (LFchimera) containing lactoferrampin (LFampin265-284) and a part of lactoferricin (LFcin17-30) has strikingly higher antimicrobial activities compared to the individual peptides. In this study, the antimicrobial activities of this chimeric construct (LFchimera1), as well as of another one containing LFcin17-30 and LFampin268-284, a shorter fragment of LFampin265-284 (LFchimera2), and the constituent peptides were tested against 7 isolates of B. pseudomallei and compared to the preferential antibiotic ceftazidime (CAZ). All isolates including B. pseudomallei 979b shown to be resistant to CAZ, at a density of 10(5) CFU/ml, could be killed by 5-10 μM of LFchimera1 within 2 h, while the other peptides as well as the antibiotic CAZ only inhibited the B. pseudomallei strains resulting in an overgrowth in 24 h. These data indicate that LFchimera1 could be considered for development of therapeutic agents against B. pseudomallei.

  11. Resistance of Staphylococcus aureus to antimicrobial agents in Ethiopia: a meta-analysis.

    PubMed

    Deyno, Serawit; Fekadu, Sintayehu; Astatkie, Ayalew

    2017-01-01

    Emergence of antimicrobial resistance by Staphylococcus aureus has limited treatment options against its infections. The purpose of this study was to determine the pooled prevalence of resistance to different antimicrobial agents by S. aureus in Ethiopia. Web-based search was conducted in the databases of PubMed, Google Scholar, Hinari, Scopus and the Directory of Open Access Journals (DOAJ) to identify potentially eligible published studies. Required data were extracted and entered into Excel spread sheet. Statistical analyses were performed using Stata version 13.0. The metaprop Stata command was used to pool prevalence values. Twenty-one separate meta-analysis were done to estimate the pooled prevalence of the resistance of S. aureus to twenty-one different antimicrobial agents. Heterogeneity among the studies was assessed using the I 2 statistic and chi-square test. Publication bias was assessed using Egger's test. Because of significant heterogeneity amongst the studies, the random effects model was used to pool prevalence values. The electronic database search yielded 1317 studies among which 45 studies met our inclusion criteria. Our analyses demonstrated very high level of resistance to amoxicillin (77% [95% confidence interval (CI): 68%, 0.85%]), penicillin (76% [95% CI: 67%, 84%]), ampicillin (75% [95% CI: 65%, 85%]), tetracycline (62% [95% CI: 55%, 68%]), methicillin (47% [95% CI: 33%, 61%]), cotrimoxaziole (47% [95% CI: 40%, 55%]), doxycycline (43% [95% CI: 26%, 60%]), and erythromycin (41% [95% CI: 29%, 54%]). Relatively low prevalence of resistance was observed with kanamycin (14% [95% CI: 5%, 25%]) and ciprofloxacin (19% [95% CI: 13%, 26%]). The resistance level to vancomycin is 11% 995% CI: (4%, 20%). High heterogeneity was observed for each of the meta-analysis performed (I 2 ranging from 79.36% to 95.93%; all p -values ≤0.01). Eggers' test did not show a significant publication bias for all antimicrobial agents except for erythromycin and

  12. Antimicrobial activity of ceftaroline and other anti-infective agents against microbial pathogens recovered from the surgical intensive care patient population: a prevalence analysis.

    PubMed

    Edmiston, Charles E; Krepel, Candace J; Leaper, David; Ledeboer, Nathan A; Mackey, Tami-Lea; Graham, Mary Beth; Lee, Cheong; Rossi, Peter J; Brown, Kellie R; Lewis, Brian D; Seabrook, Gary R

    2014-12-01

    Ceftaroline is a new parenteral cephalosporin agent with excellent activity against methicillin-sensitive (MSSA) and resistant strains of Staphylococcus aureus (MRSA). Critically ill surgical patients are susceptible to infection, often by multi-drug-resistant pathogens. The activity of ceftaroline against such pathogens has not been described. Three hundred thirty-five consecutive microbial isolates were collected from surgical wounds or abscesses, respiratory, urine, and blood cultures from patients in the surgical intensive care unit (SICU) of a major tertiary medical center. Using Clinical and Laboratory Standards Institute (CLSI) standard methodology and published breakpoints, all aerobic, facultative anaerobic isolates were tested against ceftaroline and selected comparative antimicrobial agents. All staphylococcal isolates were susceptible to ceftaroline at a breakpoint of ≤1.0 mcg/mL. In addition, ceftaroline exhibited excellent activity against all streptococcal clinical isolates and non-ESBL-producing strains of Enterobacteriaceae (93.5%) recovered from SICU patients. Ceftaroline was inactive against ESBL-producing Enterobacteriaceae, Pseudomonas aeruginosa, vancomycin-resistant enterococci, and selective gram-negative anaerobic bacteria. At present, ceftaroline is the only cephalosporin agent that is active against community and healthcare-associated MRSA. Further studies are needed to validate the benefit of this novel broad-spectrum anti-infective agent for the treatment of susceptible serious infections in the SICU patient population.

  13. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  14. Antimicrobial agents from selected medicinal plants in Libya.

    PubMed

    Muhaisen, Hasan M H; Ab-Mous, Miftah Mailoud; Ddeeb, Fadel A; Rtemi, Aboclaid Ali; Taba, Omer M; Parveen, Mehtab

    2016-03-01

    To test the in vitro antimicrobial efficacy of water and methanol extracts of 23 plant species that are commonly used in Libyan folk medicine. The antimicrobial activity was determined using the well-diffusion method. Four test microorganisms were used namely, Escherichia coli, Salmonella species, Staphylococcus aureus and Bacillus subtilis. The minimum inhibitory concentration (MIC) was determined for the high biologically active crude plant extracts. Among 23 medicinal plants used in the study, only 5 methanolic extracts [Rosmarinus offcinalis L., Carduus marianium L., Lantana camara L., Rhus tripartite (ueria) Grande, and Thymus capitatus (L.) Hoffm (link)] showed the highest antimicrobial activity against Staphylococcus aureus, Bacillus subtilis and Salmonella species, while 22 methanolic and aqueous extracts showed moderate to weak antimicrobial activity on all tested organisms. However 19 of the extracts showed no activity at all against Gram-ve and Gram +ve microorganisms. MIC was found to be 1.25 mg/mL (Thymus capitatus), 3 mg/mL (Rhus tripartite), 4 mg/mL (Carduus marianium), 5 mg/mL (Rosamarinus officinalis) and 5 mg/mL (Lantana camara), respectively. The present results revealed that, crude methanolic extracts of the investigated Libyan folk medicinal plants exhibited mild to high in vitro antibacterial activities against Gram-positive and Gram-negative microorganisms.

  15. Synergistic effects of guanidine-grafted CMC on enhancing antimicrobial activity and dry strength of paper.

    PubMed

    Liu, Kai; Xu, Yaoguang; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Li, Jian

    2014-09-22

    In order to improve the strength property and antimicrobial activity of paper simultaneously, we prepared a novel multifunctional agent based on carboxymethyl cellulose (CMC) by a simple two-stage method. The first stage was the oxidation of CMC to obtain the dialdehyde CMC (DCMC), and the second stage was the graft of guanidine hydrochloride (GH) onto DCMC to obtain DCMC-GH polymer. The strength property and antimicrobial activity of DCMC-GH-coated copy paper have been studied by the tensile test and inhibition zone method, respectively. The results showed that the dry strength index could increase about 20% after the paper was coated with DCMC-GH. The coating of DCMC-GH on paper also resulted in excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus, and the inhibition zone became larger as the GH content grafted on DCMC increased. The novel DCMC-GH polymer would be a multifunctional coating agent for food packaging paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants

    PubMed Central

    Yazici, Hilal; O'Neill, Mary B.; Kacar, Turgay; Wilson, Brandon R.; Oren, E. Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-01-01

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property. PMID:26795060

  17. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    PubMed

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  18. Design, synthesis and biological evaluation of 5-fluorouracil-derived benzimidazoles as novel type of potential antimicrobial agents.

    PubMed

    Fang, Xue-Jie; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhou, Qian; Zhou, Cheng-He

    2016-06-01

    A series of 5-fluorouracil benzimidazoles as novel type of potential antimicrobial agents were designed and synthesized for the first time. Bioactive assay manifested that some of the prepared compounds exhibited good or even stronger antibacterial and antifungal activities against the tested strains in comparison with reference drugs norfloxacin, chloromycin and fluconazole. Noticeably, 3-fluorobenzyl benzimidazole derivative 5c gave remarkable antimicrobial activities against Saccharomyces cerevisiae, MRSA and Bacillus proteus with MIC values of 1, 2 and 4μg/mL, respectively. Experimental research revealed that compound 5c could effectively intercalate into calf thymus DNA to form compound 5c-DNA complex which might block DNA replication and thus exert antimicrobial activities. Molecular docking indicated that compound 5c should bind with DNA topoisomerase IA through three hydrogen bonds by the use of fluorine atom and oxygen atoms in 5-fluorouracil with the residue Lys 423. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    PubMed

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-06

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. In vitro susceptibility of rabbit strains of Clostridium spiroforme to antimicrobial agents.

    PubMed

    Carman, R J; Wilkins, T D

    1991-08-30

    Using an agar dilution method we measured the minimum inhibitory concentration (MIC) of 12 antimicrobial agents against 11 strains of iota-toxigenic strains of Clostridium spiroforme. Each strain was isolated from a separate outbreak of toxic diarrhoea of rabbits. Vancomycin and bacitracin, both agents used to treat intestinal clostridioses of humans and other animals, had a relatively high MIC (8 micrograms/ml or more). Metronidazole was uniformly active against C. spiroforme. With MIC of 8 micrograms/ml or more, both lincomycin (11 strains) and erythromycin (9 strains) were relatively inactive against C. spiroforme, conversely, penicillin G was active (MIC for 8 strains was 0.5 micrograms/ml or less). Exposure to any one of these drugs has been implicated as a predisposing factor for C. spiroforme mediated diarrhoea of rabbits. The greatest variation in MIC was seen for erythromycin (8-fold), penicillin G (8-fold) and tetracycline (16-fold).

  1. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus.

    PubMed

    Haba, Ester; Bouhdid, Samira; Torrego-Solana, Noelia; Marqués, A M; Espuny, M José; García-Celma, M José; Manresa, Angeles

    2014-12-10

    This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities.

    PubMed

    Lee, Kwang Sik; Kim, Bo Yeon; Yoon, Hyung Joo; Choi, Yong Soo; Jin, Byung Rae

    2016-10-01

    Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  4. Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara).

    PubMed

    Zeng, Wei-Cai; Zhang, Zeng; Gao, Hong; Jia, Li-Rong; He, Qiang

    2012-07-01

    The chemical composition of essential oil from pine needles (Cedrus deodara) was determined, and its antioxidant and antimicrobial activities were evaluated. Twenty-three components, representing 95.79% of the oil, were identified by gas chromatography mass spectrometry. The main components include α-terpineol (30.2%), linalool (24.47%), limonene (17.01%), anethole (14.57%), caryophyllene (3.14%), and eugenol (2.14%). Pine needle essential oil showed remarkable antioxidant activity in scavenging free radicals, in lipid peroxidation, and in reducing power assays. Moreover, the essential oil revealed strong antimicrobial activity against typical food-borne microorganisms, with minimum inhibitory concentration and minimum bactericidal concentration values of 0.2 to 1.56 and 0.39 to 6.25 μg/mL, respectively. Transmission electron microscope observation ascertained that the bactericidal mechanism of pine needle essential oil may be the induction of cytoplasmic outflow and plasmolysis. These results suggest that the essential oil from pine needles has potential to be used as a natural antioxidant and antimicrobial agent in food processing. The present study provides a theoretical basis for the potential application of essential oil from pine needles (C. deodara) to be used as a natural resource of antioxidant and antimicrobial agents in food industry. © 2012 Institute of Food Technologists®

  5. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract.

    PubMed

    Awad El-Gied, Amgad A; Abdelkareem, Abdelkareem M; Hamedelniel, Elnazeer I

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity.

  6. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    PubMed Central

    Awad El-Gied, Amgad A.; Abdelkareem, Abdelkareem M.; Hamedelniel, Elnazeer I.

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity. PMID:25878974

  7. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  8. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation.

    PubMed

    Dong, Liping; Tong, Zhongchun; Linghu, Dake; Lin, Yuan; Tao, Rui; Liu, Jun; Tian, Yu; Ni, Longxing

    2012-05-01

    Many studies have demonstrated that sub-minimum inhibitory concentrations (sub-MICs) of antimicrobial agents can inhibit bacterial biofilm formation. However, the mechanisms by which antimicrobial agents at sub-MICs inhibit biofilm formation remain unclear. At present, most studies are focused on Gram-negative bacteria; however, the effects of sub-MICs of antimicrobial agents on Gram-positive bacteria may be more complex. Streptococcus mutans is a major cariogenic bacterium. In this study, the S. mutans growth curve as well as the expression of genes related to S. mutans biofilm formation were evaluated following treatment with 0.5× MIC of chlorhexidine (CHX), tea polyphenols and sodium fluoride (NaF), which are common anticaries agents. The BioFlux system was employed to generate a biofilm under a controlled flow. Morphological changes of the S. mutans biofilm were observed and analysed using field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that these three common anticaries agents could significantly upregulate expression of the genes related to S. mutans biofilm formation, and S. mutans exhibited a dense biofilm with an extensive extracellular matrix following treatment with sub-MICs of NaF and CHX. These findings suggest that sub-MICs of anticaries agents favour S. mutans biofilm formation, which might encourage dental caries progression. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  9. Antimicrobial and anti-Quorum Sensing activities of selected medicinal plants of Ethiopia: Implication for development of potent antimicrobial agents.

    PubMed

    Bacha, Ketema; Tariku, Yinebeb; Gebreyesus, Fisseha; Zerihun, Shibru; Mohammed, Ali; Weiland-Bräuer, Nancy; Schmitz, Ruth A; Mulat, Mulugeta

    2016-07-11

    Traditional medicinal plants have been used as an alternative medicine in many parts of the world, including Ethiopia. There are many documented scientific reports on antimicrobial activities of the same. To our knowledge, however, there is no report on the anti-Quorum Sensing (Quorum Quenching, QQ) potential of traditional Ethiopian medicinal plants. As many of the opportunistic pathogenic bacteria depend on Quorum Sensing (QS) systems to coordinate their virulence expression, interference with QS could be a novel approach to control bacterial infections. Thus, the aim of this study was to evaluate selected medicinal plants from Ethiopia for their antimicrobial activities against bacterial and fungal pathogens; and to assess the interference of these plant extracts with QS of bacteria. Antimicrobial activities of plant extracts (oil, resins and crude extracts) were evaluated following standard agar diffusion technique. The minimum inhibitory concentrations (MIC) of potent extracts were determined using 96 well micro-titer plates and optical densities were measured using an ELISA Microplate reader. Interference with Quorum Sensing activities of extracts was determined using the recently established E. coli based reporter strain AI1-QQ.1 and signaling molecule N-(ß-ketocaproyl)-L-homoserine lactone (3-oxo-C6-HSL). Petroleum ether extract of seed of Nigella sativa exhibited the highest activity against both the laboratory isolated Bacillus cereus [inhibition zone (IZ), 44 ± 0.31 mm] and B. cereus ATCC 10987 (IZ, 40 ± 2.33 mm). Similarly, oil extract from mature ripe fruit husk of Aframomum corrorima and mature unripe fruit of A. corrorima revealed promising activities against Candida albicans ATCC 90028 (IZ, 35 ± 1.52 mm) and Staphylococcus aureus DSM 346 (IZ, 25 ± 1.32 mm), respectively. Antimicrobial activities of oil extract from husk of A. corrorima and petroleum ether extract of seed of N. sativa were significantly higher than that of

  10. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

    NASA Astrophysics Data System (ADS)

    Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.

    2018-03-01

    The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

  11. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

    NASA Astrophysics Data System (ADS)

    Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.

    2018-06-01

    The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

  12. Antityrosinase and antimicrobial activities from Thai medicinal plants.

    PubMed

    Dej-Adisai, Sukanya; Meechai, Imron; Puripattanavong, Jindaporn; Kummee, Sopa

    2014-04-01

    Various dermatological disorders and microbial skin infection can cause hyperpigmentation. Therefore, screenings for whitening and antimicrobial agents from Thai medicinal plants have been of research interest. Seventy-seven ethanol plant extracts were investigated for antityrosinase activity, eleven samples showed the tyrosinase inhibition more than 50 % were further preliminary screening for antimicrobial activity by agar disc diffusion and broth micro-dilution methods. Artocarpus integer (Thunb.) Merr. (Moraceae) root extract, which showed the potential of tyrosinase inhibition with 90.57 ± 2.93 % and antimicrobial activity against Staphylococcus aureus, S. epidermidis, Propionibacterium acnes and Trichophyton mentagophytes with inhibition zone as 9.10 ± 0.00, 10.67 ± 0.09, 15.25 ± 0.05 and 6.60 ± 0.17 mm, respectively was selected for phytochemical investigation. Three pure compounds were isolated as artocarpin, cudraflavone C and artocarpanone. And artocarpanone exhibited anti-tyrosinase effect; artocarpin and cudraflavone C also showed the potential of antibacterial activity against S. aureus, S. epidermidis and P. acnes with MIC at 2, 4 and 2 μg/ml, respectively and MBC at 32 μg/ml for these bacteria. So, these pure compounds are interesting for further study in order to provide possibilities of new whitening and antibacterial development. This will be the first report of phytochemical investigation of A. integer root.

  13. Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control.

    PubMed

    Liu, Dan; Mao, Yiqin; Ding, Lijun

    2018-04-01

    Waterborne diseases significantly affect human health and are responsible for high mortality rates worldwide. Antibiotics have been known for decades for treatment of bacterial strains and their overuse and irrational applications are causing increasing bacteria resistance. Therefore, there is a strong need to find alternative ways for efficient water disinfection and microbial control. Carbon nanotubes (CNTs) have demonstrated strong antimicrobial properties due to their remarkable structure. This paper reviews the antimicrobial properties of CNTs, discusses diverse mechanisms of action against microorganisms as well as their applicability for water disinfection and microbial control. Safety concerns, challenges of CNTs as antimicrobial agents and future opportunities for their application in the water remediation process are also highlighted.

  14. Comparison of antimicrobial activity of selected, commercially available wound dressing materials.

    PubMed

    Szweda, Piotr; Gorczyca, Grzegorz; Tylingo, Robert

    2018-05-02

    The aim of our study was to examine the antimicrobial potential of eight selected, commercially available wound dressings containing different antimicrobial agents: silver, chlorhexidine acetate, povidone-iodine, and manuka honey. The materials were tested against four reference strains of bacteria: Staphylococcus aureus (PCM 2051), Staphylococcus epidermidis (PCM 2118), Pseudomonas aeruginosa (ATCC 27853), and Escherichia coli (K12), using the disc diffusion-like method and a time-killing assay. For both experiments, the highest activity against all four tested strains of bacteria was observed in the case of Mepilex Ag, which contains silver as an antibacterial agent. Incubation for four hours of a 10x10mm 2 piece of this material in 10ml cells suspension (concentration: 10 9 -10 10 CFU/ml) resulted in complete elimination of bacteria of all four strains tested. The same results were obtained for a povidone-iodine containing dressing, Inadine, though its activity was lower in the disc diffusion assay. Silvercel, Aquacel Ag and Melgisorb Ag, which also contain silver, also exhibited a satisfactory level of activity. In the case of Aquacel Ag, 24 hours' incubation resulted in complete elimination of the cells of both Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa.The Escherichia coli cells were killed after only four hours' treatment. High effectiveness against Escherichia coli was also demonstrated for Silvercel. However, 24 hours' includation was required for complete elimination of the cells of this bacteria strain. High activity against all tested bacteria, but only in the disc diffusion assay, was observed for Algivon, which contains manuka honey. The Medisorb Silver Pad, containing silver, and Bactigras, which contains chlorhexidine acetate, revealed much lower antimicrobial activity, particularly noticeable in the time-killing assay. In addition, we also tested the anti-staphylococcal activity of a biopolymer material impregnated with

  15. Antimicrobial Activity of N-Halamine-Coated Materials in Broiler Chicken Houses.

    PubMed

    Ren, Tian; Qiao, Mingyu; Zhang, Lei; Weese, Jean; Huang, Tung-Shi; Ren, Xuehong

    2018-02-01

    The antimicrobial activity of 1-chloro-2,2,5,5-tetramethyl-4-imidazoidinone (MC), a nonbleaching N-halamine compound, was investigated on materials commonly used in broiler production, including stainless steel, galvanized metal, aluminum, plastic, and pressure-treated wood. MC aqueous solutions at 0.02, 0.04, and 0.06% were challenged with Salmonella Typhimurium and Campylobacter jejuni at 6 log CFU/mL, resulting in complete inactivation of both bacteria in 30 min with 0.06% MC. Follow-up experiments were performed using test materials treated with 0.1 and 1% MC and challenged with Salmonella Typhimurium and C. jejuni at 6 log CFU per coupon. Stability of MC on the various surfaces of testing materials was assessed, and the chlorine content of the materials was measured using iodometric thiosulfate titration over a 4-week period. Antimicrobial activities were evaluated by a sandwich test on each sampling day during 4 weeks of storage. On the samples treated with 1% MC, bacteria at 6 log CFU per coupon were completely inactivated within 2 h of contact time. The antimicrobial activity extended to 4 weeks, and the active chlorine atoms in the treated materials decreased from the initial 10 16 to 10 15 atoms per cm 2 . Overall, MC had high stability and long-lasting antimicrobial activity, which suggests that MC has high potential for use as a novel antimicrobial agent to lower the microbial load on broiler house materials.

  16. Cationic antimicrobial polymers and their assemblies.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-05-10

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  17. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  18. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    PubMed Central

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  19. Antimicrobial Activity of Lippia Species from the Brazilian Semiarid Region Traditionally Used as Antiseptic and Anti-Infective Agents

    PubMed Central

    Pinto, Cristiana da Purificação; Rodrigues, Velize Dias; Pinto, Fernanda da Purificação; Pinto, Renata da Purificação; Uetanabaro, Ana Paula Trovatti; Pinheiro, Carla Santos Ribeiro; Gadea, Suzana Ferreira Magalhães; Silva, Tânia Regina dos Santos; Lucchese, Angélica Maria

    2013-01-01

    Lippia origanoides Kunth, Lippia alnifolia Schauer, and Lippia thymoides Martius and Schauer are shrubs used in the traditional Brazilian medicine as antiseptics, as well as in the treatment of infectious diseases. This study was designed to investigate the antibacterial and antifungal activities of the methanolic extracts of these species, as new potential sources of antimicrobial drugs. The antimicrobial activity of methanolic extracts was investigated against resistant yeasts and bacteria by agar disk diffusion. Then, the MIC determination of the most active species and its fractions in hexane, dichloromethane, ethyl acetate, and water was performed. By the agar diffusion assay, all species were active against at least two microorganisms, giving evidence to support their use in the popular medicine. L. origanoides leaves exhibited the widest antimicrobial action, inhibiting the growth of two Gram-positive bacteria and two yeasts; this activity was also confirmed by the MIC evaluation. The fractionation of L. origanoides crude extracts improved the activity in spectrum and intensity. The results obtained in this study indicate that L. origanoides may be a promising alternative in the treatment of bacterial and fungal infections and in the seeking of new antimicrobial drugs. PMID:24109492

  20. Growth Media Affect Assessment of Antimicrobial Activity of Plant-Derived Polyphenols.

    PubMed

    Xu, Xin; Ou, Zhen M; Wu, Christine D

    2018-01-01

    This study aimed to investigate the effects of different microbial growth media on the laboratory assessment of antimicrobial activity of natural polyphenolic compounds. The inhibition of the tea polyphenol EGCG on growth of selected oral microorganisms was evaluated in complex media and a protein-free chemically defined medium (CDM). Other antimicrobial agents (polyphenolic grape seed extract, plant alkaloid berberine, methyl salicylate, and chlorhexidine gluconate) were also tested in the study. The presence of proteins and their effects on the antimicrobial activity of EGCG were investigated by the addition of BSA to the CDM. The MICs of EGCG against test oral microorganisms were 4 to 64 times higher in complex media than in CDM. The polyphenolic grape seed extract exhibited similar discrepancies. However, the MICs of the nonpolyphenolic compounds (berberine, methyl salicylate, and chlorhexidine) were not significantly different between the two growth media. The MIC of EGCG against S. mutans UA159 in CDM with added BSA was 16 times higher than that in CDM alone. Therefore, nonproteinaceous CDM should be used to avoid interference of proteins with the active ingredients when testing the antimicrobial activity of plant-derived polyphenolic compounds against microorganisms. This will also minimize the discrepancies noted in results obtained by different investigators.

  1. Efficacy of Yeast' Vacuoles as Antimicrobial Agents to Escherichia coli Bacteremia in Rat.

    PubMed

    Yoon, Jihee; Cho, Ho-Seong; Park, Chul; Park, Byoung-Yong; Kim, Yang-Hoon; Min, Jiho

    2017-01-01

    Yeast vacuoles, lysosomes, are cell organelles that have antimicrobial activity against several bacteria in vitro. Lysosomes have a potential application to the treatment of pathogens such as antibiotics in vivo. Therefore, the in vivo efficacy of lysosomes was examined in a rat infection model against pathogenic Escherichia coli with varying susceptibilities to standard antimicrobial agents. Before in vivo testing, the concentration-dependent safety of lysosomes was confirmed by blood test and histopathology of normal rats. The therapeutic efficacy of lysosomes was examined in terms of the survival of E. coli in infected rat blood. The complete blood count and histopathology results were affected by the lysosomes concentration. In addition, the E. coli growth was inhibited by the initial injection of lysosomes. These results support the use of lysosomes as a bacterial inhibitor of an infected rat model.

  2. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds.

    PubMed

    Elena, Poverenov; Miri, Klein

    2018-05-16

    Different synthetic strategies for the formation of contact active antimicrobial materials utilizing covalent linkage of quaternary ammonium compounds (QACs) were reviewed. There is a demand to find methods that will prevent bacterial fouling without the release of antimicrobial agents, because biocides cause environment pollution and promote the development of bacteria resistance mechanisms. The contact active antimicrobial surfaces may provide a useful tool for this purpose. The covalent surface grafting of QACs seems to be a feasible and promising approach for the formation of safe and effective antimicrobial materials that could be utilized for medical devices, food industry, water treatment systems and other applications. This manuscript reviews covalent attachment of QACs to form contact active antimicrobial materials based on glass, metals, synthetic and natural polymers. The review emphasizes the description of different synthetic methods that are used for the covalent linkage. Direct covalent linkage of QACs to the material surfaces, a linkage via auxiliary nanoparticles (NPs), or spacers, controlled radical polymerization techniques and a linkage to pre-activated surfaces are discussed. The physico-chemical properties and biological activity of the modified surfaces are also described. This review does not cover non-covalent grafting of QACs and incorporation of QACs into a bulk material. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae).

    PubMed

    Katoch, Meenu; Singh, Gurpreet; Sharma, Sadhna; Gupta, Nidhi; Sangwan, Payare Lal; Saxena, Ajit Kumar

    2014-02-11

    Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10-100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri.

  4. Pharmacogenomics of antimicrobial agents

    PubMed Central

    Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J

    2015-01-01

    Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use. PMID:25495412

  5. Trachyspermum ammi (L.) sprague: chemical composition of essential oil and antimicrobial activities of respective fractions.

    PubMed

    Moein, Mahmoodreza R; Zomorodian, Kamiar; Pakshir, Keyvan; Yavari, Farnoosh; Motamedi, Marjan; Zarshenas, Mohammad M

    2015-01-01

    Resistance to antibacterial agents has become a serious problem for global health. The current study evaluated the antimicrobial activities of essential oil and respective fractions of Trachyspermum ammi (L.) Sprague. Seeds of the essential oil were extracted and fractionated using column chromatography. All fractions were then analyzed by gas chromatography/mass spectrometry. Antifungal and antibacterial activities of the oil and its fractions were assessed using microdilution method. Compounds γ-terpinene (48.07%), ρ-cymene (33.73%), and thymol (17.41%) were determined as major constituents. The effect of fraction II was better than total essential oil, fraction I, and standard thymol. The greater effect of fraction II compared to standard thymol showed the synergistic effects of the ingredients in this fraction. As this fraction and also total oil were effective on the studied microorganism, the combination of these products with current antimicrobial agents could be considered as new antimicrobial compounds in further investigations. © The Author(s) 2014.

  6. Recent updates of marine antimicrobial peptides.

    PubMed

    Semreen, Mohammad H; El-Gamal, Mohammed I; Abdin, Shifaa; Alkhazraji, Hajar; Kamal, Leena; Hammad, Saba; El-Awady, Faten; Waleed, Dima; Kourbaj, Layal

    2018-03-01

    Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  7. Resistance profiles to antimicrobial agents in bacteria isolated from acute endodontic infections: systematic review and meta-analysis.

    PubMed

    Lang, Pauline M; Jacinto, Rogério C; Dal Pizzol, Tatiane S; Ferreira, Maria Beatriz C; Montagner, Francisco

    2016-11-01

    Infected root canal or acute apical abscess exudates can harbour several species, including Fusobacterium, Porphyromonas, Prevotella, Parvimonas, Streptococcus, Treponema, Olsenella and not-yet cultivable species. A systematic review and meta-analysis was performed to assess resistance rates to antimicrobial agents in clinical studies that isolated bacteria from acute endodontic infections. Electronic databases and the grey literature were searched up to May 2015. Clinical studies in humans evaluating the antimicrobial resistance of primary acute endodontic infection isolates were included. PRISMA guidelines were followed. A random-effect meta-analysis was employed. The outcome was described as the pooled resistance rates for each antimicrobial agent. Heterogeneity and sensitivity analyses were performed. Subgroup analyses were conducted based upon report or not of the use of antibiotics prior to sampling as an exclusion factor (subgroups A and B, respectively). Data from seven studies were extracted. Resistance rates for 15 different antimicrobial agents were evaluated (range, 3.5-40.0%). Lower resistance rates were observed for amoxicillin/clavulanic acid and amoxicillin; higher resistance rates were detected for tetracycline. Resistance rates varied according to previous use of an antimicrobial agent as demonstrated by the subgroup analyses. Heterogeneity was observed for the resistance profiles of penicillin G in subgroup A and for amoxicillin, clindamycin, metronidazole and tetracycline in subgroup B. Sensitivity analyses demonstrated that resistance rates changed for metronidazole, clindamycin, tetracycline and amoxicillin. These findings suggest that clinical isolates had low resistance to β-lactams. Further well-designed studies are needed to clarify whether the differences in susceptibility among the antimicrobial agents may influence clinical responses to treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights

  8. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro.

    PubMed Central

    ter Laak, E A; Noordergraaf, J H; Verschure, M H

    1993-01-01

    The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline. PMID:8452363

  9. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro.

    PubMed

    ter Laak, E A; Noordergraaf, J H; Verschure, M H

    1993-02-01

    The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline.

  10. Microwave Assisted Synthesis of 1-[5-(Substituted Aryl)-1H-Pyrazol-3-yl]-3,5-Diphenyl-1H-1,2,4-Triazole as Antinociceptive and Antimicrobial Agents

    PubMed Central

    Khanage, Shantaram Gajanan; Mohite, Popat Baban; Pandhare, Ramdas Bhanudas; Raju, S. Appala

    2014-01-01

    Purpose: An efficient technique has been developed for microwave assisted synthesis of 1-[5-(substituted aryl)-1H-pyrazol-3-yl]-3,5-diphenyl-1H-1,2,4-triazole as antinociceptive and antimicrobial agents. Methods: The desired compounds (S1-S10) were synthesized by the microwave irradiation via cyclization of formerly synthesized chalcones of 3,5-diphenyl-1H-1,2,4-triazole and hydrazine hydrate in mild acidic condition. All newly synthesized compounds were subjected to study their antinociceptive and antimicrobial activity. The analgesic potential of compounds was tested by acetic acid induced writhing response and hot plate method. The MIC values for antimicrobial activity were premeditated by liquid broth method. Results: The compounds S1, S2, S4, S6 and S10 were found to be excellent peripherally acting analgesic agents when tested on mice by acetic acid induced writhing method and compounds S3, S6 and S1 at dose level of 100 mg/kg were exhibited superior centrally acting antinociceptive activity when tested by Eddy’s hot plate method. In antimicrobial activity compound S10 found to be broad spectrum antibacterial agent at MIC value of 15.62 µg/ml and compound S6 was exhibited antifungal potential at 15.62 µg/mL on both fungal strains. Conclusion: Some novel pyrazoles clubbed with 1,2,4-triazole derivatives were synthesized and evaluated as possible antimicrobial, centrally and peripherally acting analgesics. PMID:24511473

  11. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles.

    PubMed

    Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee

    2014-09-15

    Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Antimicrobial activity of allylic thiocyanates derived from the Morita-Baylis-Hillman reaction

    PubMed Central

    Sá, Marcus Mandolesi; Ferreira, Misael; Lima, Emerson Silva; dos Santos, Ivanildes; Orlandi, Patrícia Puccinelli; Fernandes, Luciano

    2014-01-01

    Bacterial resistance to commonly used antibiotics has been recognized as a significant global health issue. In this study, we carried out the screening of a family of allylic thiocyanates for their action against a diversity of bacteria and fungi with a view to developing new antimicrobial agents. Allylic thiocyanates bearing halogenated aryl groups, which were readily obtained in two steps from the Morita-Baylis-Hillman adducts, showed moderate-to-high activity against selective pathogens, including a methicillin-resistant S. aureus (MRSA) strain. In particular cases, methyl (Z)-3-(2,4-dichlorophenyl)-2-(thiocyanomethyl)-2-propenoate exhibited antimicrobial activity comparable to the reference antibiotic Imipenem. PMID:25477911

  13. The Potential of Antimicrobial Peptides as Biocides

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2011-01-01

    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. PMID:22072905

  14. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland).

    PubMed

    Giebułtowicz, Joanna; Tyski, Stefan; Wolinowska, Renata; Grzybowska, Wanda; Zaręba, Tomasz; Drobniewska, Agata; Wroczyński, Piotr; Nałęcz-Jawecki, Grzegorz

    2018-02-01

    Antimicrobial agents (antimicrobials) are a group of therapeutic and hygienic agents that either kill microorganisms or inhibit their growth. Their occurrence in surface water may reveal harmful effects on aquatic biota and challenge microbial populations. Recently, there is a growing concern over the contamination of surface water with both antimicrobial agents and multidrug-resistant bacteria. The aim of the study was the determination of the presence of selected antimicrobials at specific locations of the Vistula River (Poland), as well as in tap water samples originating from the Warsaw region. Analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method. In addition, the occurrence of drug-resistant bacteria and resistance genes was determined using standard procedures. This 2-year study is the first investigation of the simultaneous presence of antimicrobial agents, drug-resistant bacteria, and genes in Polish surface water. In Poland, relatively high concentrations of macrolides are observed in both surface and tap water. Simultaneous to the high macrolide levels in the environment, the presence of the erm B gene, coding the resistance to macrolides, lincosamides, and streptogramin, was detected in almost all sampling sites. Another ubiquitous gene was int1, an element of the 5'-conserved segment of class 1 integrons that encode site-specific integrase. Also, resistant isolates of Enterococcus faecium and Enterococcus faecalis and Gram-negative bacteria were recovered. Multidrug-resistant bacteria isolates of Gram-negative and Enterococcus were also detected. The results show that wastewater treatment plants (WWTP) are the main source of most antimicrobials, resistant bacteria, and genes in the aquatic environment, probably due to partial purification during wastewater treatment processes.

  15. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin.

    PubMed Central

    Haynie, S L; Crum, G A; Doele, B A

    1995-01-01

    A series of polymer-bound antimicrobial peptides was prepared, and the peptides were tested for their antimicrobial activities. The immobilized peptides were prepared by a strategy that used solid-phase peptide synthesis that linked the carboxy-terminal amino acid with an ethylenediamine-modified polyamide resin (PepsynK). The acid-stable, permanent amide bond between the support and the nascent peptide renders the peptide resistant to cleavage from the support during the final acid-catalyzed deprotection step in the synthesis. Select immobilized peptides containing amino acid sequences that ranged from the naturally occurring magainin to simpler synthetic sequences with idealized secondary structures were excellent antimicrobial agents against several organisms. The immobilized peptides typically reduced the number of viable cells by > or = 5 log units. We show that the reduction in cell numbers cannot be explained by the action of a soluble component. We observed no leached or hydrolyzed peptide from the resin, nor did we observe any antimicrobial activity in soluble extracts from the immobilized peptide. The immobilized peptides were washed and reused for repeated microbial contact and killing. These results suggest that the surface actions by magainins and structurally related antimicrobial peptides are sufficient for their lethal activities. PMID:7726486

  16. All Natural and Clean-Label Preservatives and Antimicrobial Agents Used during Poultry Processing and Packaging.

    PubMed

    Grant, Ar'quette; Parveen, Salina

    2017-04-01

    The poultry industry is faced with compounding pressures of maintaining product safety and wholesomeness while keeping up with consumer trends of all-natural foods and label accuracy. Consumers are increasingly demanding that their foods be minimally processed and contain compounds that are easily read and recognized, i.e., products must be clean labeled. The purpose of this review is to briefly describe several natural antimicrobial agents that can be incorporated into poultry processing. These compounds and their essential oils were included in this mini-review because they are generally recognized as safe by the U.S. Food and Drug Administration and are considered clean label: thyme extract, rosemary extract, garlic, and oregano. This list of natural antimicrobial agents by no means includes all of the options available to poultry processors. Rather, this review provides a brief glance at the potential these natural antimicrobial agents have in terms of reduced pathogenicity, increased shelf stability, and sensory acceptability through direct product application or as part of the product packaging.

  17. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents.

    PubMed

    Ramesh, Suhas; Govender, Thavendran; Kruger, Hendrik G; de la Torre, Beatriz G; Albericio, Fernando

    2016-07-01

    The emergence of multidrug resistant bacteria has a direct impact on global public health because of the reduced potency of existing antibiotics against pathogens. Hence, there is a pressing need for new drugs with different modes of action that can kill microorganisms. Antimicrobial peptides (AMPs) can be regarded as an alternative tool for this purpose because they are proven to have therapeutic effects with broad-spectrum activities. There are some hurdles in using AMPs as clinical candidates such as toxicity, lack of stability and high budgets required for manufacturing. This can be overcome by developing shorter and more easily accessible AMPs, the so-called Short AntiMicrobial Peptides (SAMPs) that contain between two and ten amino acid residues. These are emerging as an attractive class of therapeutic agents with high potential for clinical use and possessing multifunctional activities. In this review we attempted to compile those SAMPs that have exhibited biological properties which are believed to hold promise for the future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  18. 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents.

    PubMed

    Serban, Georgeta; Stanasel, Oana; Serban, Eugenia; Bota, Sanda

    2018-01-01

    Pathogenic microorganisms are causative agents for different types of serious and even lethal infectious diseases. Despite advancements in medication, bacterial and fungal infections continue to be a growing problem in health care. As more and more bacteria become resistant to antibiotics used in therapy and an increasing number of invasive fungal species become resistant to current antifungal medications, there is considerable interest in the development of new compounds with antimicrobial activity. The compounds containing a heterocyclic ring play an important role among organic compounds with biological activity used as drugs in human and veterinary medicine or as insecticides and pesticides in agriculture. Thiadiazoles belong to the classes of nitrogen-sulfur heterocycles with extensive application as structural units of biologically active molecules and as useful intermediates in medicinal chemistry. The potency of the thiadiazole nucleus is demonstrated by the drugs currently used. 1,3,4-Thiadiazoles and some of their derivatives are extensively studied because of their broad spectrum of pharmacological activities. The aim of this review was to highlight the main antimicrobial properties exhibited by derivatives possessing 2-amino-1,3,4-thiadiazole moiety. Many of the reported 2-amino-1,3,4-thiadiazole derivatives can be considered as lead compounds for drug synthesis, and several of them have demonstrated higher antimicrobial activity in comparison to standard drugs. Furthermore, taking into account the reactivity of the amine group in the derivatization process, 2-amino-1,3,4-thiadiazole moiety may be a good scaffold for future pharmacologically active 1,3,4-thiadiazole derivatives.

  19. Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability.

    PubMed

    Ahn, Mija; Murugan, Ravichandran N; Jacob, Binu; Hyun, Jae-Kyung; Cheong, Chaejoon; Hwang, Eunha; Park, Hyo-Nam; Seo, Ji-Hyung; Srinivasrao, G; Lee, Kyung S; Shin, Song Yub; Bang, Jeong Kyu

    2013-10-01

    Here we report for the first time the synthesis of Histidine (His) derived lipo-amino acids having pendant lipid tails at N(τ)- and N(π)-positions on imidazole group of His and applied it into synthesis of lipo-peptides. The attachment of His-derived lipo-amino acid into the very short inactive cationic peptides endows potent antimicrobial activity against Gram-positive and Gram-negative bacteria without hemolytic activity. Furthermore, our designed His-derived lipo-peptidomimetics (HDLPs) consisting of two or three residues displayed strong anti-MRSA activity and protease stability as well as retained potent antimicrobial activity under high salt concentration. Our results demonstrate that the novel lipo-amino acid is highly flexible to synthesize and carry out the extensive structure-activity relationship (SAR) on lipo-antimicrobial peptidomimetics and represents a unique amenable platform for modifying parameters important for antimicrobial activity. Through this study, we proved that the discovery of His-derived lipo-amino acid and the corresponding HDLPs are an excellent candidate as a lead compound for the development of novel antimicrobial agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents.

    PubMed

    Dawson, Raymond Murray; Liu, Chun-Qiang

    2008-01-01

    Recent advances in knowledge of the properties of antimicrobial peptides (AMPs) are reviewed. AMPs are typically small, positively charged, amphipathic peptides that interact electrostatically and non-stereospecifically with the bacterial cell membrane, resulting in its permeabilization and cell death. Classes of AMPs, their mechanisms of action, hemolytic activity, and cytotoxicity towards host cells are discussed. A particular focus is AMPs with potential for use in defense against biological warfare agents. Some AMPs cytotoxic to Bacillus anthracis have been described. Synthesis of these peptides in multivalent form leads to a synergistic increase in antibacterial activity. Strategies to enhance the potency, stability, and selectivity of AMPs are discussed.

  1. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review

    PubMed Central

    Martins, Alessandro F.; Facchi, Suelen P.; Follmann, Heveline D. M.; Pereira, Antonio G. B.; Rubira, Adley F.; Muniz, Edvani C.

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents. PMID:25402643

  2. Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis

    PubMed Central

    Pane, Gianluca; Cacciola, Gabriele; Giacco, Elisabetta; Mariottini, Gian Luigi; Coppo, Erika

    2015-01-01

    External otitis is a diffuse inflammation around the external auditory canal and auricle, which is often occurred by microbial infection. This disease is generally treated using antibiotics, but the frequent occurrence of antibiotic resistance requires the development of new antibiotic agents. In this context, unexplored bioactive natural candidates could be a chance for the production of targeted drugs provided with antimicrobial activity. In this paper, microbial pathogens were isolated from patients with external otitis using ear swabs for over one year, and the antimicrobial activity of the two methanol extracts from selected marine (Dunaliella salina) and freshwater (Pseudokirchneriella subcapitata) microalgae was tested on the isolated pathogens. Totally, 114 bacterial and 11 fungal strains were isolated, of which Staphylococcus spp. (28.8%) and Pseudomonas aeruginosa (P. aeruginosa) (24.8%) were the major pathogens. Only three Staphylococcus aureus (S. aureus) strains and 11 coagulase-negative Staphylococci showed resistance to methicillin. The two algal extracts showed interesting antimicrobial properties, which mostly inhibited the growth of isolated S. aureus, P. aeruginosa, Escherichia coli, and Klebsiella spp. with MICs range of 1.4 × 109 to 2.2 × 1010 cells/mL. These results suggest that the two algae have potential as resources for the development of antimicrobial agents. PMID:26492256

  3. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    PubMed

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. The management of risk arising from the use of antimicrobial agents in veterinary medicine in EU/EEA countries - a review.

    PubMed

    Törneke, K; Torren-Edo, J; Grave, K; Mackay, D K J

    2015-12-01

    Antimicrobials are essential medicines for the treatment of many microbial infections in humans and animals. Only a small number of antimicrobial agents with new mechanisms of action have been authorized in recent years for use in either humans or animals. Antimicrobial resistance (AMR) arising from the use of antimicrobial agents in veterinary medicine is a concern for public health due to the detection of increasing levels of resistance in foodborne zoonotic bacteria, particularly gram-negative bacteria, and due to the detection of determinants of resistance such as Extended-spectrum beta-lactamases (ESBL) in bacteria from animals and in foodstuffs of animal origin. The importance and the extent of the emergence and spread of AMR from animals to humans has yet to be quantified. Likewise, the relative contribution that the use of antimicrobial agents in animals makes to the overall risk to human from AMR is currently a subject of debate that can only be resolved through further research. Nevertheless, risk managers have agreed that the impact on public health of the use of antimicrobials in animals should be minimized as far as possible and a variety of measures have been introduced by different authorities in the EU to achieve this objective. This article reviews a range of measures that have been implemented within European countries to reduce the occurrence and the risk of transmission of AMR to humans following the use of antimicrobial agents in animals and briefly describes some of the alternatives to the use of antimicrobial agents that are being developed. © 2015 John Wiley & Sons Ltd.

  5. Effective Treatment of Folliculitis Decalvans Using Selected Antimicrobial Agents

    PubMed Central

    Sillani, Caulloo; Bin, Zhang; Ying, Zhao; Zeming, Cai; Jian, Yang; Xingqi, Zhang

    2010-01-01

    Folliculitis Decalvans (FD) is a rare neutrophilic infammation of the scalp characterized by painful, recurrent purulent follicular exudation resulting in primary cicatricial alopecia. However, unclear etiology makes FD treatment a difficult task. A wide variety of topical and systemic agents have been tried previously, with varied results. We present here a case series report of a set of 13 patients with FD on antimicrobial therapy. PMID:21188019

  6. Novel aminohydrazide cross-linked chitosan filled with multi-walled carbon nanotubes as antimicrobial agents.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A

    2018-04-21

    Four chemically modified chitosan derivatives 1-4 were designed and synthesized via a series of four reactions; first by reaction with benzaldehyde to protect its amino groups (Derivative 1), second by reaction with epichlorohydrine (Derivative 2), third by reaction with aminobenzhydrazide (Derivative 3), and forth by removing of benzaldehyde to restore the free amino groups on the chitosan (Derivative 4). Two multi-walled carbon nanotube (MWCNT) biocomposites based on Derivative 4 were also prepared. The structure of the prepared derivatives and MWCNT composites was elucidated using elemental analyses, FTIR, XRD, SEM and TEM. The modified chitosan derivatives and MWCNT composites showed better antimicrobial activities than that of chitosan against Enterococcus faecalis, Staphylococcus epidermidis, Escherichia coli, Aspergillus niger, Cryptococcus neoformans and Candida tropicalis as judged by their higher inhibition zone diameters using the agar well diffusion technique. These derivatives and MWCNT composites are more potent against Gram-positive bacteria than against Gram-negative bacteria. The MWCNT composites displayed comparable or even better antimicrobial activities than the reference bactericides or fungicides. Thus, structural modification of chitosan through combination with functionalized moieties and MWCNTs in one system was taken as a way to achieve promising templates for antimicrobial agents and to be appropriate candidates for medical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Isolation and characterization of Bacillus sp. GFP-2, a novel Bacillus strain with antimicrobial activities, from Whitespotted bamboo shark intestine.

    PubMed

    Wu, Jia; Xu, Guoqiang; Jin, Yangyang; Sun, Cong; Zhou, Li; Lin, Guodong; Xu, Rong; Wei, Ling; Fei, Hui; Wang, Dan; Chen, Jianqing; Lv, Zhengbing; Liu, Kuancheng

    2018-05-22

    The abuse of antibiotics and following rapidly increasing of antibiotic-resistant pathogens is the serious threat to our society. Natural products from microorganism are regarded as the important substitution antimicrobial agents of antibiotics. We isolated a new strain, Bacillus sp. GFP-2, from the Chiloscyllium plagiosum (Whitespotted bamboo shark) intestine, which showed great inhibitory effects on the growth of both Gram-positive and Gram-negative bacteria. Additionally, the growth of salmon was effectively promoted when fed with inactivated strain GFP-2 as the inhibition agent of pathogenic bacteria. The genes encoding antimicrobial peptides like LCI, YFGAP and hGAPDH and gene clusters for secondary metabolites and bacteriocins, such as difficidin, bacillibactin, bacilysin, surfactin, butirosin, macrolactin, bacillaene, fengycin, lanthipeptides and LCI, were predicted in the genome of Bacillus sp. GFP-2, which might be expressed and contribute to the antimicrobial activities of this strain. The gene encoding β-1,3-1,4-glucanase was successfully cloned from the genome and this protein was detected in the culture supernatant of Bacillus sp. GFP-2 by the antibody produced in rabbit immunized with the recombinant β-1,3-1,4-glucanase, indicating that this strain could express β-1,3-1,4-glucanase, which might partially contribute to its antimicrobial activities. This study can enhance a better understanding of the mechanism of antimicrobial activities in genus Bacillus and provide a useful material for the biotechnology study in antimicrobial agent development.

  8. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    PubMed Central

    Svahn, K. Stefan; Göransson, Ulf; El-Seedi, Hesham; Bohlin, Lars; Larsson, D.G. Joakim; Olsen, Björn; Chryssanthou, Erja

    2012-01-01

    Background Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules. PMID:22957125

  9. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    PubMed Central

    Malik, Erum; Dennison, Sarah R.; Harris, Frederick; Phoenix, David A.

    2016-01-01

    delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era. PMID:27809281

  10. Topical antimicrobial agents for treating foot ulcers in people with diabetes.

    PubMed

    Dumville, Jo C; Lipsky, Benjamin A; Hoey, Christopher; Cruciani, Mario; Fiscon, Marta; Xia, Jun

    2017-06-14

    People with diabetes are at high risk for developing foot ulcers, which often become infected. These wounds, especially when infected, cause substantial morbidity. Wound treatments should aim to alleviate symptoms, promote healing, and avoid adverse outcomes, especially lower extremity amputation. Topical antimicrobial therapy has been used on diabetic foot ulcers, either as a treatment for clinically infected wounds, or to prevent infection in clinically uninfected wounds. To evaluate the effects of treatment with topical antimicrobial agents on: the resolution of signs and symptoms of infection; the healing of infected diabetic foot ulcers; and preventing infection and improving healing in clinically uninfected diabetic foot ulcers. We searched the Cochrane Wounds Specialised Register, CENTRAL, Ovid MEDLINE, Ovid MEDLINE (In-Process & Other Non-Indexed Citations), Ovid Embase, and EBSCO CINAHL Plus in August 2016. We also searched clinical trials registries for ongoing and unpublished studies, and checked reference lists to identify additional studies. We used no restrictions with respect to language, date of publication, or study setting. We included randomised controlled trials conducted in any setting (inpatient or outpatient) that evaluated topical treatment with any type of solid or liquid (e.g., cream, gel, ointment) antimicrobial agent, including antiseptics, antibiotics, and antimicrobial dressings, in people with diabetes mellitus who were diagnosed with an ulcer or open wound of the foot, whether clinically infected or uninfected. Two review authors independently performed study selection, 'Risk of bias' assessment, and data extraction. Initial disagreements were resolved by discussion, or by including a third review author when necessary. We found 22 trials that met our inclusion criteria with a total of over 2310 participants (one study did not report number of participants). The included studies mostly had small numbers of participants (from 4 to 317

  11. Structure-Activity Relationship of Benzophenanthridine Alkaloids from Zanthoxylum rhoifolium Having Antimicrobial Activity

    PubMed Central

    Tavares, Luciana de C.; Zanon, Graciane; Weber, Andréia D.; Neto, Alexandre T.; Mostardeiro, Clarice P.; Da Cruz, Ivana B. M.; Oliveira, Raul M.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F.

    2014-01-01

    Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1–3), and nine benzophenanthridine alkaloids (4–12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect

  12. Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees.

    PubMed

    Lopes, Leonardo Q S; Santos, Cayane G; de Almeida Vaucher, Rodrigo; Gende, Liesel; Raffin, Renata P; Santos, Roberto C V

    2016-08-01

    The American Foulbrood Disease (AFB) is a fatal larval bee infection. The etiologic agent is the bacterium Paenibacillus larvae. The treatment involves incineration of all contaminated materials, leading to high losses. The Glycerol Monolaurate (GML) is a known antimicrobial potential compound, however its use is reduced due to its low solubility in water and high melting point. The nanoencapsulation of some drugs offers several advantages like improved stability and solubility in water. The present study aimed to evaluate the antimicrobial activity against P. larvae and the toxicity in bees of GML nanoparticles. The nanocapsules were produced and presented mean diameter of 210 nm, polydispersity index of 0.044, and zeta potential of -23.4 mV demonstrating the acceptable values to predict a stable system. The microdilution assay showed that it is necessary 142 and 285 μg/mL of GML nanocapsules to obtain a bacteriostatic and bactericidal effect respectively. The time-kill curve showed the controlled release of compound, exterminating the microorganism after 24 h. The GML nanocapsules were able to kill the spore form of Paenibacillus larvae while the GML do not cause any effect. The assay in bees showed that the GML has a high toxicity while the GML nanoparticles showed a decrease on toxic effects. Concluding, the formulation shows positive results in the action to combat AFB besides not causing damage to bees. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae)

    PubMed Central

    2014-01-01

    Background Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Methods Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. Results 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10–100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Conclusions Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri. PMID:24512530

  14. Use of Computer-Assisted Instruction to Review Microbiology and Antimicrobial Agents.

    ERIC Educational Resources Information Center

    Carver, Peggy L.; And Others

    1991-01-01

    A study assessed the effectiveness of a microcomputer-assisted instructional program using graphics, color, and text in simulations to enhance pharmacy students' knowledge of microbiology and antimicrobial agents. Results indicated high short- and long-term retention of information presented and higher levels of knowledge and comprehension among…

  15. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.

    PubMed

    Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian

    2018-05-09

    Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.

  16. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents.

    PubMed

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-04-01

    Significant interest has emerged in the introduction of food packaging materials manufactured from biodegradable polymers that have the potential to reduce the environmental impacts associated with conventional packaging materials. Current technologies in active packaging enable effective antimicrobial (AM) packaging films to be prepared from biodegradable materials that have been modified and/or blended with different compatible materials and/or plasticisers. A wide range of AM films prepared from modified biodegradable materials have the potential to be used for packaging of various food products. This review examines biodegradable polymers derived from polysaccharides and protein-based materials for their potential use in packaging systems designed for the protection of food products from microbial contamination. A comprehensive table that systematically analyses and categorizes much of the current literature in this area is included in the review.

  17. Antimicrobial activity and hydrophobicity of edible whey protein isolate films formulated with nisin and/or glucose oxidase.

    PubMed

    Murillo-Martínez, María M; Tello-Solís, Salvador R; García-Sánchez, Miguel A; Ponce-Alquicira, Edith

    2013-04-01

    The use of edible antimicrobial films has been reported as a means to improve food shelf life through gradual releasing of antimicrobial compounds on the food surface. This work reports the study on the incorporation of 2 antimicrobial agents, nisin (N), and/or glucose oxidase (GO), into the matrix of Whey protein isolate (WPI) films at pH 5.5 and 8.5. The antimicrobial activity of the edible films was evaluated against Listeria innocua (ATCC 33090), Brochothrix thermosphacta (NCIB10018), Escherichia coli (JMP101), and Enterococcus faecalis (MXVK22). In addition, the antimicrobial activity was related to the hydrophobicity and water solubility of the WPI films. The greatest antibacterial activity was observed in WPI films containing only GO. The combined addition of N and GO resulted in films with lower antimicrobial activity than films with N or GO alone. In most cases, a pH effect was observed as greater antimicrobial response at pH 5.5 as well as higher film matrix hydrophobicity. WPI films supplemented with GO can be used in coating systems suitable for food preservation. © 2013 Institute of Food Technologists®

  18. Investigation on antimicrobial agents of the terrestrial Streptomyces sp. BCC71188.

    PubMed

    Supong, Khomsan; Sripreechasak, Paranee; Tanasupawat, Somboon; Danwisetkanjana, Kannawat; Rachtawee, Pranee; Pittayakhajonwut, Pattama

    2017-01-01

    The terrestrial actinomycete strain BCC71188 was identified as Streptomyces by its morphology (having spiral chain spore on the aerial mycelium), chemotaxonomy (containing LL-diaminopimelic acid in the cell wall), and 16S rRNA gene sequence analysis [showing high similarity values compared with Streptomyces samsunensis M1463 T (99.85 %) and Streptomyces malaysiensis NBRC 16446 T (99.40 %)]. The crude extract exhibited antimalarial against Plasmodium falciparum (IC 50 0.19 μg/ml), anti-TB against Mycobacterial tuberculosis (MIC 6.25 μg/ml), and antibacterial against Bacillus cereus (MIC 1.56 μg/ml) activities. Therefore, chemical investigation was conducted by employing bioassay-guided method and led to the isolation of 19 compounds including two cyclic peptides (1-2), five macrolides (3-7), new naphthoquinone (8), nahuoic acid C (9), geldanamycin derivatives (10-13), cyclooctatin (14), germicidins A (15) and C (16), actinoramide A (17), abierixin, and 29-O-methylabierixin. These isolated compounds were evaluated for antimicrobial activity, such as antimalarial, anti-TB, and antibacterial activities, and for cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells. Compounds 1-7, 10-14 exhibited antimalarial (IC 50 0.22-7.14 μg/ml), and elaiophylin analogs (4-6) displayed anti-TB (MIC 0.78-12.00 μg/ml) and B. cereus (MIC 0.78-3.13 μg/ml) activities. Compounds 1, 2, 14, and abierixin displayed weak cytotoxicity, indicating a potential for antimicrobial agents.

  19. The in situ synthesis and application of silver nanoparticles as an antimicrobial agent for cotton fibers

    USDA-ARS?s Scientific Manuscript database

    The application of sliver (Ag) as an antimicrobial agent dates back to the 1800s. Silver systems release positively charged silver ions (Ag+), when in aqueous media, that disrupts negatively charged surfaces of bacterial membranes, thus resulting in bacterial death. Its antimicrobial utility is not ...

  20. Phyllanthus wightianus Müll. Arg.: A Potential Source for Natural Antimicrobial Agents

    PubMed Central

    Natarajan, D.; Srinivasan, R.; Shivakumar, M. S.

    2014-01-01

    Phyllanthus wightianus belongs to Euphorbiaceae family having ethnobotanical importance. The present study deals with validating the antimicrobial potential of solvent leaf extracts of P. wightianus. 11 human bacterial pathogens (Bacillus subtilis, Streptococcus pneumoniae, Staphylococcus epidermidis, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, Shigella flexneri, Proteus vulgaris, and Serratia marcescens) and 4 fungal pathogens (Candida albicans, Cryptococcus neoformans, Mucor racemosus, and Aspergillus niger) were also challenged with solvent leaf extracts usingagar well and disc diffusion methods. Further, identification of the active component present in the bioactive extract was done using GC-MS analysis. Results show that all extracts exhibited broad spectrum (6–29 mm) of antibacterial activity on most of the tested organisms. The results highlight the fact that the well in agar method was more effective than disc diffusion method. Significant antimicrobial activity was detected in methanol extract against S. pneumoniae (29 mm) with MIC and MBC values of 15.62 μg/mL. GC-MS analysis revealed that 29 bioactive constituents were present in methanolic extract of P. wightianus, of which 9,12-octadecaenioic acid (peak area 22.82%; RT-23.97) and N-hexadecanoic acid (peak area 21.55% RT-21.796) are the major compounds. The findings of this study show that P. wightianus extracts may be used as an anti-infective agent in folklore medicine. PMID:24883301

  1. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.

    PubMed

    Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal

    2016-02-01

    Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.

  2. KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens.

    PubMed

    Caiaffa, Karina Sampaio; Massunari, Loiane; Danelon, Marcelle; Abuna, Gabriel Flores; Bedran, Telma Blanca Lombardo; Santos-Filho, Norival Alves; Spolidorio, Denise Madalena Palomari; Vizoto, Natalia Leal; Cilli, Eduardo Maffud; Duque, Cristiane

    2017-11-01

    This study evaluated the cytotoxicity and antimicrobial activity of analogs of cationic peptides against microorganisms associated with endodontic infections. L-929 fibroblasts were exposed to LL-37, KR-12-a5 and hBD-3-1C V and chlorhexidine (CHX, control), and cell metabolism was evaluated with MTT. The minimal inhibitory concentration (MIC) and the minimal bactericidal/fungicidal concentration (MBC/MFC) of the peptides and CHX were determined against oral pathogens associated with endodontic infections. Enterococcus faecalis and Streptococcus mutans biofilms were cultivated in bovine dentin blocks, exposed to different concentrations of the most efficient antimicrobial peptide and analyzed by confocal laser scanning microscopy. CHX and peptides affected the metabolism of L-929 at concentrations > 31.25 and 500 μg ml -1 , respectively. Among the peptides, KR-12-a5 inhibited growth of both the microorganisms tested with the lowest MIC/MBC/MFC values. In addition, KR-12-a5 significantly reduced E. faecalis and S. mutans biofilms inside dentin tubules. In conclusion, KR-12-a5 is a non-cytotoxic agent with potent antimicrobial and anti-biofilm activity against oral pathogens associated with endodontic infections.

  3. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms.

    PubMed

    Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik

    2013-01-01

    The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.

  4. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of

  5. Antimicrobial agents from Licaria puchuri-major and their synergistic effect with polygodial.

    PubMed

    Himejima, M; Kubo, I

    1992-05-01

    The resistance of the seeds of Licaria puchuri-major (Lauraceae) to decomposition in nature seems to be due largely to chemical defense, since its n-hexane extract contains antimicrobial principles in quantity, with a broad antimicrobial spectrum. In order to identify the active principles, the n-hexane extract was steam-distilled to yield a distillate and a residue. Subsequent bioassay indicated that the distillate retained the original broad antimicrobial activity, while the residue exhibited almost no activity. Gc-ms analysis showed that the distillate contained four phenolic compounds, seven monoterpenes, and one sesquiterpene. In contrast, the residue contained, almost exclusively, lauric acid. In the detailed antimicrobial assay with the pure compounds identified, most of them showed broad, but moderate, antimicrobial activity. Some of the components identified in the distillate were combined with polygodial [1] in order to enhance their antifungal activity. Unexpectedly, while polygodial did not synergize the antifungal activity of any of the compounds tested, the antifungal activity of polygodial was significantly increased when combined with aromatic substances such as anethole, safrole, or methyleugenol.

  6. Chitosan-thioglycolic acid as a versatile antimicrobial agent.

    PubMed

    Geisberger, Georg; Gyenge, Emina Besic; Hinger, Doris; Käch, Andres; Maake, Caroline; Patzke, Greta R

    2013-04-08

    As functionalized chitosans hold great potential for the development of effective and broad-spectrum antibiotics, representative chitosan derivatives were tested for antimicrobial activity in neutral media: trimethyl chitosan (TMC), carboxy-methyl chitosan (CMC), and chitosan-thioglycolic acid (TGA; medium molecular weight: MMW-TGA; low molecular weight: LMW-TGA). Colony forming assays indicated that LMW-TGA displayed superior antimicrobial activity over the other derivatives tested: a 30 min incubation killed 100% Streptococcus sobrinus (Gram-positive bacteria) and reduced colony counts by 99.99% in Neisseria subflava (Gram-negative bacteria) and 99.97% in Candida albicans (fungi). To elucidate LMW-TGA effects at the cellular level, microscopic studies were performed. Use of fluorescein isothiocyanate (FITC)-labeled chitosan derivates in confocal microscopy showed that LMW-TGA attaches to microbial cell walls, while transmission electron microscopy indicated that this derivative severely affects cell wall integrity and intracellular ultrastructure in all species tested. We therefore propose LMW-TGA as a promising and effective broad-band antimicrobial compound.

  7. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents

    PubMed Central

    Singh, Shriti; Singh, Santosh Kumar; Chowdhury, Indrajit; Singh, Rajesh

    2017-01-01

    A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms. PMID:28553416

  8. Evaluation of the antimicrobial activity of three irrigating solutions in teeth with pulpal necrosis.

    PubMed

    Ferreira, C M; Bonifácio, K C; Fröner, I C; Ito, I Y

    1999-01-01

    The antimicrobial activity of 0.4% papaine gel (FCF-USP), an antibacterial product derived from 3.3% castor oil (IQSC-USP), and 0.5% sodium hypochlorite (FORP-USP) was evaluated in teeth with radiographically visible pulpal necrosis and periapical lesion in vivo. After cavity access, under aseptic conditions, a first harvesting was performed. The 3 irrigating solutions were used for biomechanical preparation. After 72 hours, a second harvesting was performed, also under aseptic conditions. The number of colony forming units (cfu) was counted with a stereomicroscope under reflected light. Castor oil and 0.5% sodium hypochlorite presented similar antimicrobial activities for the reduction of the anaerobe number, S. mutans and streptococci; however, the papaine gel showed lower activity. We conclude that both castor oil and sodium hypochlorite are effective as antimicrobial agents and can be used in the treatment of root canals with pulpal necrosis.

  9. Study of the nanomaterials and their antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Ramadi, Muntaha

    In the last decade, the world faced huge problems associated with the spread of antimicrobial resistant infections that are essentially untreatable such as methicillin resistant Staphylococcus aureus (MRSA) infection. These infections have begun to occur in both hospital and community environments. Developing new antimicrobial surface coatings can hold a great promise to minimize and control various problems that associated with the spreading of infections and biofilms formation, these coatings can be used in medicine where medical devices associated with severe infections, in construction industry and the in food packaging industry. It has been established that single-walled CNTs exhibit a strong antimicrobial activity and can pierce bacterial cell walls. Recently, nanomaterial structures that made from pure carbon such as CNTs have been seen as promising candidates for many potential applications in Biotechnology and bioscience due to the combination of their extraordinary properties that arise from surface area, light weight, strength, flexibility, unique electrical conductivity and many more novel physical and chemical properties at nanoscale level. CNTs have been used widely in biomedical field including drug delivery, gene therapy and creating new biomedical devices with novel properties. Researchers have now made a first step to add carbon nanotubes to antimicrobial agents list. There are two types of CNTs have been used in biomedical research. The first one is a single-walled carbon nanotube (SWNT) and the second is a multi-walled carbon nanotube (MWNT). Recent in vitro studies suggest that carbon nanotubes have antimicrobial activity and coating CNTs with nickel nanoparticle could enhance the antimicrobial activity of cabon nanotubes. In order to test this hypothesis, nickel nanoparticles were deposited on carbon nanotubes (CNTs) by electrochemical deposition. The carbon nanotubes used in this study were XD-CNTs, SWNTs and Ni-coated CNTs. The structure and

  10. Antimicrobial activity and stability of protonectin with D-amino acid substitutions.

    PubMed

    Qiu, Shuai; Zhu, Ranran; Zhao, Yanyan; An, Xiaoping; Jia, Fengjing; Peng, Jinxiu; Ma, Zelin; Zhu, Yuanyuan; Wang, Jiayi; Su, Jinhuan; Wang, Qingjun; Wang, Hailin; Li, Yuan; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-05-01

    The misuse and overuse of antibiotics result in the emergence of resistant bacteria and fungi, which make an urgent need of the new antimicrobial agents. Nowadays, antimicrobial peptides have attracted great attention of researchers. However, the low physiological stability in biological system limits the application of naturally occurring antimicrobial peptides as novel therapeutics. In the present study, we synthesized derivatives of protonectin by substituting all the amino acid residues or the cationic lysine residue with the corresponding D-amino acids. Both the D-enantiomer of protonectin (D-prt) and D-Lys-protonectin (D-Lys-prt) exhibited strong antimicrobial activity against bacteria and fungi. Moreover, D-prt showed strong stability against trypsin, chymotrypsin and the human serum, while D-Lys-prt only showed strong stability against trypsin. Circular dichroism analysis revealed that D-Lys-prt still kept typical α-helical structure in the membrane mimicking environment, while D-prt showed left hand α-helical structure. In addition, propidium iodide uptake assay and bacteria and fungi killing experiments indicated that all D-amino acid substitution or partially D-amino acid substitution analogs could disrupt the integrity of membrane and lead the cell death. In summary, these findings suggested that D-prt and D-Lys-prt might be promising candidate antibiotic agents for therapeutic application against resistant bacteria and fungi infection. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  11. Identification of milk proteins enhancing the antimicrobial activity of lactoferrin and lactoferricin.

    PubMed

    Murata, M; Wakabayashi, H; Yamauchi, K; Abe, F

    2013-08-01

    Lactoferrin (LF) is known as an iron-binding antimicrobial protein present in exocrine secretions such as milk and releases the potent antimicrobial peptide lactoferricin (LFcin) by hydrolysis with pepsin. The antimicrobial activity of LF and LFcin has been studied well; however, their cooperative action with other milk proteins remains to be elucidated. In this study, we identified milk proteins enhancing the antimicrobial activity of bovine LF and LFcin against gram-negative bacteria, gram-positive bacteria, and fungi. As the target fraction, we isolated a minor milk protein fraction around 15 kDa, which was identified as bovine RNase 5 (angiogenin-1), RNase 4, and angiogenin-2 by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. As these proteins are collectively known as the RNase A family, we referred to the target protein fraction as milk RNase of 15 kDa (MR15). The number of colony-forming units of Escherichia coli and other pathogenic microorganisms with the addition of MR15 to LF (MR15:LF ratio=16:1,000) was dramatically lowered than that with LF alone. On the other hand, MR15 itself did not show any reductions in the number of colony-forming units at the concentrations tested. Similarly, the antimicrobial activities of LFcin against various microorganisms were significantly enhanced by the addition of MR15. These results suggest that LF and MR15 may be concomitantly acting antimicrobial agents in milk. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities.

    PubMed

    Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J

    1999-12-15

    Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.

  13. Occurrence of Salmonella spp. in broiler chicken carcasses and their susceptibility to antimicrobial agents

    PubMed Central

    Duarte, Dalila Angélica Moliterno; Ribeiro, Aldemir Reginato; Vasconcelos, Ana Mércia Mendes; Santos, Sylnei Barros; Silva, Juliana Vital Domingos; de Andrade, Patrícia Lúcia Arruda; de Arruda Falcão, Lúcia Sadae Pereira da Costa

    2009-01-01

    The present study was carried out to evaluate the occurrence of Salmonellae in broiler chicken carcasses and to determine the antimicrobial resistance profile of the isolated strains. Twenty-five out of the 260 broiler chicken carcasses samples (9.6%) were positive for Salmonella. S. Enteritidis was the most frequent serovar. Nineteen Salmonella isolates were tested for antimicrobial resistance, and the results indicated that 94.7% were resistant to at least one antimicrobial agent. Resistance to streptomycin (73.7%), nitrofurantoin (52.3%), tetracycline (31.6%), and nalidixic acid (21%) were the prevalent amongst Salmonella strains tested. PMID:24031401

  14. Antimicrobial activity of natural products from the flora of Northern Ontario, Canada.

    PubMed

    Vandal, Janique; Abou-Zaid, Mamdouh M; Ferroni, Garry; Leduc, Leo G

    2015-06-01

    The number of multidrug resistant (MDR) microorganisms is increasing and the antimicrobial resistance expressed by these pathogens is generating a rising global health crisis. In fact, there are only a few antimicrobial agents left that can be used against MDR bacteria and fungi. In this study, the antimicrobial activities of selected natural products from the flora of Northern Ontario against selected microorganisms are reported. Plants were collected from Sault Ste. Marie, Ontario, Canada, and ethanol extracts were prepared using EtOH:H2O (1:1, v/v). Fungal cultures used in this study were Candida albicans ATCC 10231 and Schizosaccharomyces octosporus. Bacterial cultures employed included Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Mycobacterium phlei ATCC 11758, and Streptococcus lactis ATCC 19435. The microplate resazurin assay was used to screen for antimicrobial activity. Extracts of four plant species Chimaphila umbellata L. (Pyrolaceae), Betula papyrifera Marshall (Betulaceae), Rhus typhina L. (Anacardiaceae), and Fraxinus pennsylvanica Marshall (Oleaceae), and six compounds (gallic acid, ethyl gallate, caffeic acid, sinapic acid, gentisic acid, and chlorogenic acid) demonstrated antibacterial or antifungal activities with MICs ranging from 62.5 to 1000 µg/mL, respectively, for a chemical fraction of an extract from Betula papyrifera against the bacterium S. aureus. The present study has shown that certain plant extracts and select fractions and standard chemical compounds exhibit antimicrobial effects. Prince's Pine, Chimaphila umbellate, White Birch, Betula papyrifera, Staghorn Sumac, Rhus typhina, and Green Ash, Fraxinus pennsylvanica were the principal extracts exhibiting notable antibacterial and/or antifungal activities; while gallic acid, ethyl gallate, and caffeic acid demonstrated antibacterial activities and sinapic acid, gentisic acid, and chlorogenic acid demonstrated antifungal activities.

  15. Antimicrobial activity of Nigerian medicinal plants

    PubMed Central

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  16. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity.

    PubMed

    Durán, Nelson; Durán, Marcela; de Jesus, Marcelo Bispo; Seabra, Amedea B; Fávaro, Wagner J; Nakazato, Gerson

    2016-04-01

    Silver nanoparticles are well known potent antimicrobial agents. Although significant progresses have been achieved on the elucidation of antimicrobial mechanism of silver nanoparticles, the exact mechanism of action is still not completely known. This overview incorporates a retrospective of previous reviews published and recent original contributions on the progress of research on antimicrobial mechanisms of silver nanoparticles. The main topics discussed include release of silver nanoparticles and silver ions, cell membrane damage, DNA interaction, free radical generation, bacterial resistance and the relationship of resistance to silver ions versus resistance to silver nanoparticles. The focus of the overview is to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles. The possibility that pathogenic microbes may develop resistance to silver nanoparticles is also discussed. Antibacterial effect of nanoscopic silver generated a lot of interest both in research projects and in practical applications. However, the exact mechanism is still will have to be elucidated. This overview incorporates a retrospective of previous reviews published from 2007 to 2013 and recent original contributions on the progress of research on antimicrobial mechanisms to summarize our current knowledge in the field of antibacterial activity of silver nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.

    PubMed

    Zhao, Jun; Zhao, Chao; Liang, Guizhao; Zhang, Mingzhen; Zheng, Jie

    2013-12-23

    The rapid rise of antibiotic resistance in pathogens becomes a serious and growing threat to medicine and public health. Naturally occurring antimicrobial peptides (AMPs) are an important line of defense in the immune system against invading bacteria and microbial infection. In this work, we present a combined computational and experimental study of the biological activity and membrane interaction of the computationally designed Bac2A-based peptide library. We used the MARTINI coarse-grained molecular dynamics with adaptive biasing force method and the umbrella sampling technique to investigate the translocation of a total of 91 peptides with different amino acid substitutions through a mixed anionic POPE/POPG (3:1) bilayer and a neutral POPC bilayer, which mimic the bacterial inner membrane and the human red blood cell (hRBC) membrane, respectively. Potential of mean force (PMF, free energy profile) was obtained to measure the free energy barrier required to transfer the peptides from the bulk water phase to the water-membrane interface and to the bilayer interior. Different PMF profiles can indeed identify different membrane insertion scenarios by mapping out peptide-lipid energy landscapes, which are correlated with antimicrobial activity and hemolytic activity. Computationally designed peptides were further tested experimentally for their antimicrobial and hemolytic activities using bacteria growth inhibition assay and hemolysis assay. Comparison of PMF data with cell assay results reveals a good correlation of the peptides between predictive transmembrane activity and antimicrobial/hemolytic activity. Moreover, the most active mutants with the balanced substitutions of positively charged Arg and hydrophobic Trp residues at specific positions were discovered to achieve the improved antimicrobial activity while minimizing red blood cell lysis. Such substitutions provide more effective and cooperative interactions to distinguish the peptide interaction with

  18. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  19. Evaluation of Anti-inflammatory and Antimicrobial Activity of AHPL/AYCAP/0413 Capsule.

    PubMed

    Nipanikar, Sanjay; Chitlange, Sohan; Nagore, Dheeraj

    2017-01-01

    Conventional therapeutic agents used for treatment of Acne are associated with various adverse effects necessitating development of safe and effective alternative therapeutic agents. In this context, a polyherbal formulation AHPL/AYCAP/0413 was developed for treatment of Acne. To evaluate Anti-inflammatory and antimicrobial activity of AHPL/AYCAP/0413. 1) Anti-inflammatory activity: Anti-inflammatory activity of AHPL/AYCAP/0413 in comparison with Diclofenac was assessed in carrageenan induced rat Paw edema model. 2) Anti-microbial activity for P. acne : Propionibacterium acnes were incubated under anaerobic conditions. Aliquots of molten BHI with glucose agar were used as the agar base. Formulation and clindamycin (10 μg/ml) were introduced in to the Agar wells randomly. 3) Anti-microbial activity for Staphylococcus epidermidis and Staphylococcus aureus : Staphylococcus epidermidis and Staphylococcus aureus were incubated under aerobic conditions at 37°C. TSB with glucose agar was used as the agar base. 0.5ml of formulation and clindamycin (10 μg/ml) were introduced in to the wells randomly. The antibacterial activity was evaluated by measuring zones of inhibition (in mm). Significant reduction in rat paw edema (51% inhibition) was observed with formulation AHPL/AYCAP/0413 which was also comparable to that of Diclofenac (58% inhibition). Zone of inhibition for formulation was 18.33 mm, 19.20 mm and 26.30 mm for P. acnes , S. epidermidis and S. aureus respectively. This activity was also comparable to that of Clindamycin. AHPL/AYCAP/0413 capsule possesses significant Anti-inflammatory and Anti-microbial activities which further justifies its role in the management of Acne vulgaris. Anti-inflammatory and antimicrobial activities of polyherbal formulation AHPL/AYCAP/0413 were evaluatedAHPL/AYCAP/0413 contains Guduchi extract ( Tinospora cordifolia ), Manjishtha extract ( Rubia cordifolia ), Sariva extract ( Hemidesmus indicus ), Nimba extract ( Azardirachta indica

  20. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.

    PubMed

    Hahn, C; Hans, M; Hein, C; Mancinelli, R L; Mücklich, F; Wirth, R; Rettberg, P; Hellweg, C E; Moeller, R

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of

  1. Uses of antimicrobial genes from microbial genome

    DOEpatents

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  2. Methods of Antimicrobial Coating of Diverse Materials

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chem istries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.

  3. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake.

    PubMed

    Santi, E; Facchin, G; Faccio, R; Barroso, R P; Costa-Filho, A J; Borthagaray, G; Torre, M H

    2016-02-01

    Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed.

  4. Lipid composition and sensitivity of Prototheca wickerhamii to membrane-active antimicrobial agents.

    PubMed Central

    Sud, I J; Feingold, D S

    1979-01-01

    The lipid composition of Prototheca wickerhamii ATCC 16529 is presented and discussed in relation to the unique susceptibility of the organism to drugs of three membrane-active antimicrobial classes: the polyenes, the polymyxins, and the imidazoles. The presence of ergosterol in the neutral lipid fraction of the membrane is likely responsible for the exquisite susceptibility to amphotericin B. The presence of a large quantity of free fatty acids in the membrane appears responsible for imidazole susceptibility. The membrane determinants of polymyxin B susceptibility are less well defined. PMID:518077

  5. Antibiofilm agents: A new perspective for antimicrobial strategy.

    PubMed

    Li, Xi-Hui; Lee, Joon-Hee

    2017-10-01

    Biofilms are complex microbial architectures that attach to surfaces and encase microorganisms in a matrix composed of self-produced hydrated extracellular polymeric substances (EPSs). In biofilms, microorganisms become much more resistant to antimicrobial treatments, harsh environmental conditions, and host immunity. Biofilm formation by microbial pathogens greatly enhances survival in hosts and causes chronic infections that result in persistent inflammation and tissue damages. Currently, it is believed over 80% of chronic infectious diseases are mediated by biofilms, and it is known that conventional antibiotic medications are inadequate at eradicating these biofilm-mediated infections. This situation demands new strategies for biofilm-associated infections, and currently, researchers focus on the development of antibiofilm agents that are specific to biofilms, but are nontoxic, because it is believed that this prevents the development of drug resistance. Here, we review the most promising antibiofilm agents undergoing intensive research and development.

  6. Antimicrobial efficacy of oral topical agents on microorganisms associated with radiated head and neck cancer patients: an in vitro study.

    PubMed

    Bidra, Avinash S; Tarrand, Jeffery J; Roberts, Dianna B; Rolston, Kenneth V; Chambers, Mark S

    2011-04-01

    A variety of oral topical agents have been used for prevention and management of radiotherapy-induced adverse effects. The antimicrobial nature of some of the commonly used agents is unknown. The purpose of this study was to evaluate antimicrobial efficacies of various oral topical agents on common microorganisms associated with radiated head and neck cancer patients. Seven commonly used topical oral agents-0.12% chlorhexidine with alcohol, 0.12% chlorhexidine without alcohol, baking soda-salt rinse, 0.4% stannous fluoride gel, 0.63% stannous fluoride rinse, calcium phosphate mouthrinse, and acemannan hydrogel (aloe vera) rinse-were evaluated in vitro for their antimicrobial efficacies against four common microorganisms. A combination of baking soda-salt rinse and 0.4% stannous fluoride gel was evaluated as the eighth agent. The microorganisms used were Staphylococcus aureus, group B Streptococcus, Escherichia coli, and Candida albicans. An ELISA reader was used to measure the turbidity of microbial culture wells and optical density (OD) values for each of the 960 wells recorded. Mean OD values were rank ordered based on their turbidity. One-way ANOVA with Tukey HSD post hoc analysis was used to study differences in OD values (P < .05). Mean OD values classified for topical agents from lowest to highest were chlorhexidine with alcohol, chlorhexidine without alcohol, baking soda- salt, calcium phosphate rinse, and the combination of baking soda-salt and stannous fluoride gel. Mean OD values classified for microorganisms from lowest to highest were Escherichia coli, Staphylococcus aureus, group B Streptococcus, and Candida albicans. A significant difference among the antimicrobial efficacies of topical agents was evident for each of four microorganisms (P < .05). There was also a significant difference among the antimicrobial efficacies of the same topical agent on the four microorganisms tested (P < .05).

  7. The chemistry and applications of antimicrobial polymers: a state-of-the-art review.

    PubMed

    Kenawy, El-Refaie; Worley, S D; Broughton, Roy

    2007-05-01

    Microbial infection remains one of the most serious complications in several areas, particularly in medical devices, drugs, health care and hygienic applications, water purification systems, hospital and dental surgery equipment, textiles, food packaging, and food storage. Antimicrobials gain interest from both academic research and industry due to their potential to provide quality and safety benefits to many materials. However, low molecular weight antimicrobial agents suffer from many disadvantages, such as toxicity to the environment and short-term antimicrobial ability. To overcome problems associated with the low molecular weight antimicrobial agents, antimicrobial functional groups can be introduced into polymer molecules. The use of antimicrobial polymers offers promise for enhancing the efficacy of some existing antimicrobial agents and minimizing the environmental problems accompanying conventional antimicrobial agents by reducing the residual toxicity of the agents, increasing their efficiency and selectivity, and prolonging the lifetime of the antimicrobial agents. Research concerning the development of antimicrobial polymers represents a great a challenge for both the academic world and industry. This article reviews the state of the art of antimicrobial polymers primarily since the last comprehensive review by one of the authors in 1996. In particular, it discusses the requirements of antimicrobial polymers, factors affecting the antimicrobial activities, methods of synthesizing antimicrobial polymers, major fields of applications, and future and perspectives in the field of antimicrobial polymers.

  8. In vitro investigation of antimicrobial activities of ethnomedicinal plants against dental caries pathogens.

    PubMed

    Besra, Mamta; Kumar, Vipin

    2018-05-01

    The study aimed to evaluate the antimicrobial activity of medicinal plant extracts against the bacterial pathogens prominent in dental caries. A total of 20 plant species (herbs, shrubs and trees) belonging to 18 genera and 15 families were documented for dental caries. Antimicrobial activity of solvent extracts and essential oil from plants were determined by zone of inhibition on the growth of Streptococcus mutans (MTCC 497) and Lactobacillus acidophilus (MTCC 10307) using the agar well diffusion method. The results of in vitro antimicrobial assay prove that methanol is more successful in the extraction of phytochemicals from plant samples than aqueous solvent, as methanol extracts show higher antimicrobial activity than aqueous extracts against both the test pathogens. Methanol extracts of Nigella sativa, Psidium guajava and Syzygium aromaticum were the most effective among all 20 plant samples and have potent inhibitory activity against both dental caries pathogens with minimum inhibitory concentration of 0.2 mg mL - 1 . N. sativa seed methanol extract was more effective with 22.3 mm zone of inhibition at 0.2 mg mL - 1 against S. mutans (MTCC 497), while L. acidophilus (MTCC 10307) was more sensitive to S. aromaticum bud methanol extract at 11.3 mm zone of inhibition at concentration 0.1 mg mL - 1 . Essential oil extracted from plants also possesses strong antimicrobial activity for both test pathogens, with a minimum inhibitory concentration range of 0.05-0.16 mg mL - 1 . Syzygium aromaticum bud essential oil at 0.05 mg mL - 1 was most active against S. mutans (MTCC 497). Plant extracts viewing antimicrobial activity with minimum inhibitory concentration show the efficacy of the plant products that could be considered as a good indicator of prospective plants for discovering new antimicrobial agents against dental caries pathogens. The findings of this study provide a lead to further polyherbal formulations for the treatment of dental caries

  9. Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity.

    PubMed

    Jenner, Zachary B; Crittenden, Christopher M; Gonzalez, Martín; Brodbelt, Jennifer S; Bruns, Kerry A

    2017-05-01

    Antimicrobial peptides (AMPs) occur widely in nature and have been studied for their therapeutic potential. AMPs are of interest due to the large number of possible chemical structural combinations using natural and unnatural amino acids, with varying effects on their biological activities. Using physicochemical properties from known naturally occurring amphipathic cationic AMPs, several hydrocarbon-stapled lipopeptides (HSLPs) were designed, synthesized, and tested for antimicrobial properties. Peptides were chemically modified by N-terminal acylation, C-terminal amidation, and some were hydrocarbon stapled by intramolecular olefin metathesis. The effects of peptide length, amphipathic character, and stapling on antimicrobial activity were tested against Escherichia coli, three species of Gram-positive bacteria (Staphylococcus aureus, Bacillus megaterium, and Enterococcus faecalis), and two strains of Candida albicans. Peptides were shown to disrupt liposomes of different phospholipid composition, as measured by leakage of a fluorescent compound from vesicles. Peptides with (S)-2-(4'-pentenyl)-alanine substituted for l-alanine in a reference peptide showed a marked increase in antimicrobial activity, hemolysis, and membrane disruption. Stapled peptides exhibited slightly higher antimicrobial potency; those with greatest hydrophobic character showed the greatest hemolysis and liposome leakage, but lower antimicrobial activity. The results support a model of HSLPs as membrane-disruptive AMPs with potent antimicrobial activity and relatively low hemolytic potential at biologically active peptide concentrations. © 2017 Wiley Periodicals, Inc.

  10. Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements-A literature review.

    PubMed

    Farrugia, Cher; Camilleri, Josette

    2015-04-01

    It has been reported that complete caries removal from cavities during restoration of teeth is difficult. Furthermore with the tissue saving approach it is expected that more of the saved affected tissue will possibly harbor more residual bacteria. Antimicrobial restorative filling materials would be ideal to prevent the spread of caries after completion of tooth restoration, thus preventing recurrent decay and eventually restoration failure. This paper reviews the literature on the antimicrobial properties of dental restorative filling materials. Pubmed searches on the antibacterial properties of restorative materials were carried out. Keywords were chosen to assess antibacterial properties of conventional filling materials. Methods of introducing antimicrobial agents in restorative materials were also reviewed together with the methodology used to assess antimicrobial activity. 174 articles from 1983 till 2014 were included. Adhesive materials have decreased antimicrobial activity when compared to amalgams and zinc oxides. Several techniques have been employed in order to increase the antimicrobial activity of restorative materials. Although antimicrobial activity of restorative materials is important, the introduction of antimicrobial agents/techniques should not be at the expense of other material properties. Environmental changes within a material may affect the bacterial response to the antimicrobial. Bacterial adhesion to the restorative materials should be assessed. Long term assessment of antimicrobial activity is important and is clinically relevant. The use of antimicrobial dental materials is important unless such characteristics are gained to the detriment of other material properties. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Comparative in vitro susceptibilities and bactericidal activities of investigational fluoroquinolone ABT-492 and other antimicrobial agents against human mycoplasmas and ureaplasmas.

    PubMed

    Waites, Ken B; Crabb, Donna M; Duffy, Lynn B

    2003-12-01

    We determined in vitro susceptibilities for ABT-492 and other antimicrobials against Mycoplasma pneumoniae, Mycoplasma fermentans, Mycoplasma hominis, and Ureaplasma species. ABT-492 MICs were < or =1 microg/ml, and the agent was bactericidal against selected isolates of M. pneumoniae and M. hominis. ABT-492 has potential for treatment of infections due to these microorganisms.

  12. Antimicrobial activities of pomelo (Citrus maxima) seed and pulp ethanolic extract

    NASA Astrophysics Data System (ADS)

    Sahlan, Muhamad; Damayanti, Vina; Tristantini, Dewi; Hermansyah, Heri; Wijanarko, Anondho; Olivia, Yuko

    2018-02-01

    Grapefruit (Citrus paradisi) seed extract is generally used as naturopathic medications, supplements, antiseptic and disinfecting agents and also as preservatives in food and cosmetics products. In vitro studies have demonstrated that grapefruit seed extract has anti bacterial properties against a range of gram-positive and gram-negative organisms. Indonesian grapefruit, known as pomelo (C. maxima), has similar characteristics, contents and is under the same genus (Citrus) as grapefruit; however it has not been completely utilized as a preservative. In this work we analyze the antimicrobial activities of ethanolic extract of Indonesian pomelo (C. maxima) seeds and pulp compared to the grapefruit (C. paradisi) seeds and pulp ethanolic extract. Ethanolic extracts of pomelo and grapefruit seeds and pulp are investigated for activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Candida albicans. The level of antimicrobial effects is established using agar diffusion method. Both of the ethanolic do not show any antimicrobial activities against C. albicans. The ethanolic extract of pomelo seeds and pulp used in this research give positive results with growth inhibition effect on B. subtilis, S. aureus and E. coli. The zones of inhibition ranges from 22 - 30 mm in diameter, which is higher to grapefruit seeds and pulp ethanolic extract (17 - 25 mm). Ethanolic extract of pomelo seeds and pulp has an antimicrobial effect, which makes it a natural preparation for use as an alternative preservative for food and cosmetic.

  13. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities.

    PubMed

    Al-Shmgani, Hanady S A; Mohammed, Wasnaa H; Sulaiman, Ghassan M; Saadoon, Ali H

    2017-09-01

    Biosynthesis of silver nanoparticles (AgNPs) from Catharanthus roseus leaf extract was carried out, and their characterization, as well as antioxidant, antimicrobial, and wound-healing activities were evaluated. Color change, UV-vis spectrum, XRD, FTIR, and AFM assessments supported the biosynthesis and characterization of AgNPs. The synthesized AgNPs showed strong in vitro antioxidant and antimicrobial activities against various pathogens. The in vivo assessment of wound healing in AgNPs-treated mice revealed their effectiveness in closuring and reducing size of wounds. Such potent bioactivity may justify their biomedical use as antioxidant and antimicrobial agents for controlling various health-related diseases, particularly in wound healing.

  14. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review

    NASA Astrophysics Data System (ADS)

    Khan, Shams Tabrez; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2015-06-01

    Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO2 NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO2 NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance.

  15. Antimicrobial Activity of Seven Essential Oils From Iranian Aromatic Plants Against Common Causes of Oral Infections

    PubMed Central

    Zomorodian, Kamiar; Ghadiri, Pooria; Saharkhiz, Mohammad Jamal; Moein, Mohammad Reza; Mehriar, Peiman; Bahrani, Farideh; Golzar, Tahereh; Pakshir, Keyvan; Fani, Mohammad Mehdi

    2015-01-01

    Background: Over the past two decades, there has been a growing trend in using oral hygienic products originating from natural resources such as essential oils (EOs) and plant extracts. Seven aromatic plants used in this study are among popular traditional Iranian medicinal plants with potential application in modern medicine as anti-oral infectious diseases. Objectives: This study was conducted to determine the chemical composition and antimicrobial activities of essential oils from seven medicinal plants against pathogens causing oral infections. Materials and Methods: The chemical compositions of EOs distilled from seven plants were analyzed by gas chromatography/mass spectrometry (GC/MS). These plants included Satureja khuzestanica, S. bachtiarica, Ocimum sanctum, Artemisia sieberi, Zataria multiflora, Carum copticum and Oliveria decumbens. The antimicrobial activity of the essential oils was evaluated by broth micro-dilution in 96 well plates as recommended by the Clinical and Laboratory Standards Institute (CLSI) methods. Results: The tested EOs inhibited the growth of examined oral pathogens at concentrations of 0.015-16 µL/mL. Among the examined oral pathogens, Enterococcus faecalis had the highest Minimum Inhibitory Concentrations (MICs) and Minimum Microbicidal Concentrations (MMCs). Of the examined EOs, S. khuzestanica, Z. multiflora and S. bachtiarica, showed the highest antimicrobial activities, respectively, while Artemisia sieberi exhibited the lowest antimicrobial activity. Conclusions: The excellent antimicrobial activities of the tested EOs might be due to their major phenolic or alcoholic monoterpenes with known antimicrobial activities. Hence, these EOs can be possibly used as an antimicrobial agent in treatment and control of oral pathogens. PMID:25793100

  16. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  17. Antimicrobial Stewardship: A Call to Action for Surgeons

    PubMed Central

    Duane, Therese M.; Catena, Fausto; Tessier, Jeffrey M.; Coccolini, Federico; Kao, Lillian S.; De Simone, Belinda; Labricciosa, Francesco M.; May, Addison K.; Ansaloni, Luca; Mazuski, John E.

    2016-01-01

    Abstract Despite current antimicrobial stewardship programs (ASPs) being advocated by infectious disease specialists and discussed by national and international policy makers, ASPs coverage remains limited to only certain hospitals as well as specific service lines within hospitals. The ASPs incorporate a variety of strategies to optimize antimicrobial agent use in the hospital, yet the exact set of interventions essential to ASP success remains unknown. Promotion of ASPs across clinical practice is crucial to their success to ensure standardization of antimicrobial agent use within an institution. To effectively accomplish this standardization, providers who actively engage in antimicrobial agent prescribing should participate in the establishment and support of these programs. Hence, surgeons need to play a major role in these collaborations. Surgeons must be aware that judicious antibiotic utilization is an integral part of any stewardship program and necessary to maximize clinical cure and minimize emergence of antimicrobial resistance. The battle against antibiotic resistance should be fought by all healthcare professionals. If surgeons around the world participate in this global fight and demonstrate awareness of the major problem of antimicrobial resistance, they will be pivotal leaders. If surgeons fail to actively engage and use antibiotics judiciously, they will find themselves deprived of the autonomy to treat their patients. PMID:27828764

  18. Diversity and antimicrobial activity of endophytic fungi associated with the alpine plant Saussurea involucrata.

    PubMed

    Lv, Ya-li; Zhang, Fu-sheng; Chen, Juan; Cui, Jin-long; Xing, Yong-mei; Li, Xiang-dong; Guo, Shun-xing

    2010-01-01

    Endophytic fungi are rich in species diversity and may play an important role in the fitness of their host plants. This study investigated the diversity and antimicrobial potential of endophytic fungi obtained from Saussurea involucrata KAR. et KIR. A total of 49 endophytic fungi were isolated from S. involucrata and identified using morphological and molecular techniques. Extracts of fermentation broth from the 49 fungi were tested for antimicrobial activity against pathogenic microorganisms using the agar diffusion method. Forty-eight out of the 49 endophytic fungi were identified and grouped into 14 taxa. Cylindrocarpon sp. was the dominant species isolated from S. involucrata, followed by Phoma sp. and Fusarium sp. Among the 49 endophytic fungi, 9 root isolates having darkly pigmented, septate hyphae were identified as dark septate endophytic (DSE) fungus, and 12 fungi inhibited at least one test microorganism. Moreover, 5 strains showed a broader spectrum of antimicrobial activity and 4 strains displayed strong inhibition (+++) against pathogenic fungi. The results indicate that endophytic fungi isolated from S. involucrata are diverse in species and a potential source of antimicrobial agents.

  19. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.

  20. [Recommendations for selecting antimicrobial agents for in vitro susceptibility studies using automatic and semiautomatic systems].

    PubMed

    Cantón, Rafael; Alós, Juan Ignacio; Baquero, Fernando; Calvo, Jorge; Campos, José; Castillo, Javier; Cercenado, Emilia; Domínguez, M Angeles; Liñares, Josefina; López-Cerezo, Lorena; Marco, Francesc; Mirelis, Beatriz; Morosini, María-Isabel; Navarro, Ferran; Oliver, Antonio; Pérez-Trallero, Emilio; Torres, Carmen; Martínez-Martínez, Luis

    2007-01-01

    The number of clinical microbiology laboratories that have incorporated automatic susceptibility testing devices has increased in recent years. The majority of these systems determine MIC values using microdilution panels or specific cards, with grouping into clinical categories (susceptible, intermediate or resistant) and incorporate expert systems to infer resistance mechanisms. This document presents the recommendations of a group of experts designated by Grupo de Estudio de los Mecanismos de Acción y Resistencia a los Antimicrobianos (GEMARA, Study group on mechanisms of action and resistance to antimicrobial agents) and Mesa Española de Normalización de la Sensibilidad y Resistencia a los Antimicrobianos (MENSURA, Spanish Group for Normalizing Antimicrobial Susceptibility and Antimicrobial Resistance), with the aim of including antimicrobial agents and selecting concentrations for the susceptibility testing panels of automatic systems. The following have been defined: various antimicrobial categories (A: must be included in the study panel; B: inclusion is recommended; and C: inclusion is secondary, but may facilitate interpretative reading of the antibiogram) and groups (0: not used in therapeutics but may facilitate the detection of resistance mechanisms; 1: must be studied and always reported; 2: must be studied and selectively reported; 3: must be studied and reported at a second level; and 4: should be studied in urinary tract pathogens isolated in urine and other specimens). Recommended antimicrobial concentrations are adapted from the breakpoints established by EUCAST, CLSI and MENSURA. This approach will lead to more accurate susceptibility testing results with better detection of resistance mechanisms, and allowing to reach the clinical goal of the antibiogram.

  1. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei

    PubMed Central

    Perumal Samy, R; Pachiappan, A; Gopalakrishnakone, P; Thwin, Maung M; Hian, Yap E; Chow, Vincent TK; Bow, Ho; Weng, Joseph T

    2006-01-01

    Background Burkholderia pseudomallei are the causative agent of melioidosis. Increasing resistance of the disease to antibiotics is a severe problem in treatment regime and has led to intensification of the search for new drugs. Antimicrobial peptides are the most ubiquitous in nature as part of the innate immune system and host defense mechanism. Methods Here, we investigated a group of venoms (snakes, scorpions and honey bee venoms) for antimicrobial properties against two strains of Gram-negative bacteria Burkholderia pseudomallei by using disc-diffusion assay for in vitro susceptibility testing. The antibacterial activities of the venoms were compared with that of the isolated L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2s) enzymes. MICs were determined using broth dilution method. Bacterial growth was assessed by measurement of optical density at the lowest dilutions (MIC 0.25 mg/ml). The cell viability was measured using tetrazolium salts (XTT) based cytotoxic assay. Results The studied venoms showed high antimicrobial activity. The venoms of C. adamanteus, Daboia russelli russelli, A. halys, P. australis, B. candidus and P. guttata were equally as effective as Chloramphenicol and Ceftazidime (30 μg/disc). Among those tested, phospholipase A2 enzymes (crotoxin B and daboiatoxin) showed the most potent antibacterial activity against Gram-negative (TES) bacteria. Naturally occurring venom peptides and phospholipase A2 proved to possess highly potent antimicrobial activity against Burkholderia pseudomallei. The XTT-assay results showed that the cell survival decreased with increasing concentrations (0.05–10 mg/mL) of Crotalus adamanteus venom, with no effect on the cell viability evident at 0.5 mg/mL. Conclusion This antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like B. pseudomallei. PMID:16784542

  2. Comparative In Vitro Susceptibilities and Bactericidal Activities of Investigational Fluoroquinolone ABT-492 and Other Antimicrobial Agents against Human Mycoplasmas and Ureaplasmas

    PubMed Central

    Waites, Ken B.; Crabb, Donna M.; Duffy, Lynn B.

    2003-01-01

    We determined in vitro susceptibilities for ABT-492 and other antimicrobials against Mycoplasma pneumoniae, Mycoplasma fermentans, Mycoplasma hominis, and Ureaplasma species. ABT-492 MICs were ≤1 μg/ml, and the agent was bactericidal against selected isolates of M. pneumoniae and M. hominis. ABT-492 has potential for treatment of infections due to these microorganisms. PMID:14638513

  3. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  4. Combination Antimicrobial Nanocomposite Materials for Neutralization of Biological Threat Agents (PREPRINT)

    DTIC Science & Technology

    2008-09-01

    AFRL-RX-TY-TP-2008-4601 PREPRINT COMBINATION ANTIMICROBIAL NANOCOMPOSITE MATERIALS FOR NEUTRALIZATION OF BIOLOGICAL THREAT AGENTS...AIRBASE TECHNOLOGIES DIVISION MATERIALS AND MANUFACTURING DIRECTORATE AIR FORCE RESEARCH LABORATORY AIR FORCE MATERIEL COMMAND 139 BARNES DRIVE, SUITE 2...a composite material that combines the protein and inorganic components. The process can be mimicked in vitro to some degree, providing methods for

  5. Synthesis, evaluation and modeling of some triazolothienopyrimidinones as anti-inflammatory and antimicrobial agents.

    PubMed

    Bekhit, Adnan A; Farghaly, Ahmed M; Shafik, Ragab M; Elsemary, Mona Ma; El-Shoukrofy, Mai S; Bekhit, Alaa El-Din A; Ibrahim, Tamer M

    2017-06-01

    New triazolotetrahydrobenzothienopyrimidinone derivatives were synthesized. Their structures were confirmed, and their anti-inflammatory, antimicrobial activities and ulcerogenic potentials were evaluated. Compounds 7a, 10a and 11a showed minimal ulcerogenic effect and high selectivity toward human recombinant COX-2 over COX-1 enzyme with IC 50 values of 1.39, 1.22 and 0.56 μM, respectively. Their docking outcome correlated with their biological activity and confirmed the high selectivity binding toward COX-2. Compound 12b displayed antimicrobial activity comparable to that of ampicillin against Escherichia coli while compounds 6 and 11c were similar to ampicillin against Staphylococcus aureus. In addition, compounds 7a, 9a, 10b and 11c showed dual anti-inflammatory/antimicrobial activities. This work represents a promising matrix for developing new potential anti-inflammatory, antimicrobial and dual antimicrobial/anti-inflammatory candidates. [Formula: see text].

  6. Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus.

    PubMed

    Salehzadeh, Ali; Asadpour, Leila; Naeemi, Akram Sadat; Houshmand, Elham

    2014-01-01

    Increase in the emergence of drug -resistant pathogens led to the development of natural antimicrobials. In this study the antimicrobial effect of methanolic extracts of Sambucus ebulus and Urtica dioica on 16 skin and wound infections isolates of methicillin resistant S. aureus have been studied. Solvent extraction procedure was done using soxhlet apparatus for extracting antimicrobial agents from freeze dried plants. Antibacterial activity was measured using agar well diffusion method. The MIC of Sambucus ebulus and Urtica dioica extracts against the standard strain of S. aureus ATCC 6538 were determined using the micro dilution method at 15 mg and 20 mg respectively. All the test bacteria were found sensitive to the Sambucus ebulus extract and only one isolate was resistant to Urtica dioica extract. Extracts of Sambucus ebulus and Urtica dioica possess antibacterial potency against MRSA isolates and may be used as a natural antiseptics and antimicrobial agents in medicine.

  7. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology

    PubMed Central

    Polívková, Markéta; Hubáček, Tomáš; Staszek, Marek; Švorčík, Václav; Siegel, Jakub

    2017-01-01

    Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed. PMID:28212308

  8. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology.

    PubMed

    Polívková, Markéta; Hubáček, Tomáš; Staszek, Marek; Švorčík, Václav; Siegel, Jakub

    2017-02-15

    Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.

  9. Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity.

    PubMed

    Peres, M S; Maniero, M G; Guimarães, J R

    2015-03-01

    Ofloxacin is an antimicrobial agent frequently found in significant concentrations in wastewater and surface water. Its continuous introduction into the environment is a potential risk to non-target organisms or to human health. In this study, ofloxacin degradation by UV/TiO2 and UV/TiO2/H2O2, antimicrobial activity (E. coli) of samples subjected to these processes, and by-products formed were evaluated. For UV/TiO2, the degradation efficiency was 89.3% in 60 min of reaction when 128 mg L(-1) TiO2 were used. The addition of 1.68 mmol L(-1) hydrogen peroxide increased degradation to 97.8%. For UV/TiO2, increasing the catalyst concentration from 4 to 128 mg L(-1) led to an increase in degradation efficiency. For both processes, the antimicrobial activity was considerably reduced throughout the reaction time. The structures of two by-products are presented: m/z 291 (9-fluoro-3-methyl-10-(methyleneamino)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid) and m/z 157 ((Z)-2-formyl-3-((2-oxoethyl)imino)propanoic acid).

  10. In vitro antimicrobial activities of cinnamon bark oil, anethole, carvacrol, eugenol and guaiazulene against Mycoplasma hominis clinical isolates.

    PubMed

    Sleha, Radek; Mosio, Petra; Vydrzalova, Marketa; Jantovska, Alexandra; Bostikova, Vanda; Mazurova, Jaroslava

    2014-06-01

    The aim of this study was to evaluate the antimicrobial effects of five natural substances against 50 clinical isolates of Mycoplasma hominis. The in vitro activity of selected natural compounds, cinnamon bark oil, anethole, carvacrol, eugenol and guaiazulene, was investigated against 50 M. hominis isolates cultivated from cervical swabs by the broth dilution method. All showed valuable antimicrobial activity against the tested isolates. Oil from the bark of Cinnamomum zeylanicum (MBC90 = 500 µg/mL) however was found to be the most effective. Carvacrol (MBC90 = 600 µg/mL) and eugenol (MBC90 = 1000 µg/mL) also possessed strong antimycoplasmal activity. The results indicate that cinnamon bark oil, carvacrol and eugenol have strong antimycoplasmal activity and the potential for use as antimicrobial agents in the treatment of mycoplasmal infections.

  11. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract.

    PubMed

    Umer, Shemsu; Tekewe, Alemu; Kebede, Nigatu

    2013-01-28

    In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract also showed good antimicrobial

  12. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract

    PubMed Central

    2013-01-01

    Background In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Methods Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Results In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract

  13. Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest.

    PubMed

    Li, J; Zhao, G-Z; Chen, H-H; Wang, H-B; Qin, S; Zhu, W-Y; Xu, L-H; Jiang, C-L; Li, W-J

    2008-12-01

    The aim of this study was to screen antitumour and antimicrobial activities of endophytic actinomycetes isolated from pharmaceutical plants in rainforest in Yunnan province, China. Antitumour activity was studied by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and antimicrobial activity was determined by agar well diffusion method. The high bioactive endophytic isolates were identified and further investigated for the presence of polyketide synthases (PKS-I, PKS-II) and nonribosomal peptide synthetases (NRPS) sequences by specific amplification. The molecular identification confirmed that the 41 isolates showed significant activities were members of the genus Streptomyces. Among them, 31.7% of endophytic streptomycete cultures were cytotoxic against A549 cells, 29.3% against HL-60 cells, 85.4% against BEL-7404 cells, 90.2% against P388D1 cells, 65.9% were active against Escherichia coli, 24.4% against Staphylococcus aureus, 31.7% against Staphylococcus epidermidis, 12.2% against Candida albicans and no strain displayed antagonistic activity against Klebsiella pneumoniae. High frequencies of positive PCR amplification were obtained for PKS-I (34.1%), PKS-II (63.4%) and NRPS (61.0%) biosynthetic systems. Many endophytic streptomycetes isolated from pharmaceutical plants in rainforest possess remarkable and diverse antitumour and antimicrobial bioactivities. These endophytic streptomycetes are precious resources obtained from rainforests, and they could be a promising source for bioactive agents.

  14. Neuropsychiatric Effects of Antimicrobial Agents.

    PubMed

    Zareifopoulos, Nicholas; Panayiotakopoulos, George

    2017-05-01

    Antimicrobial drugs used in clinical practice are selected on the basis of their selective toxicity against bacterial cells. However, all exhibit multiple offsite interactions with eukaryotic cell structures, resulting in adverse reactions during antimicrobial pharmacotherapy. A multitude of these side effects involve the nervous system as antimicrobials at clinically relevant concentrations seem to interact with many of the same molecules usually implicated in the action of psychotropic drugs. The importance of such events cannot be overstated, as the misdiagnosis of an adverse drug reaction as a symptom of a primary psychiatric or neurological disorder entails great suffering for the patient affected as well as significant costs for the healthcare system. The neuropsychiatric effects of antimicrobial drugs are extensively documented in the literature. A number of antimicrobial drugs have the potential to exert CNS effects and many are associated with stimulant, psychotomimetic and epileptogenic properties, mediated by GABA antagonism (beta-lactams, quinolones and clarithromycin), NMDA agonism (D-cycloserine, aminoglycosides, and perhaps quinolones), MAO inhibition (linezolid, metronidazole and isoniazid weakly) as well as more exotic mechanisms, as in the case of trimethoprim, isoniazid, ethambutol, rifampicin and the tetracyclines. While those effects are generally undesirable, they may also under certain circumstances be beneficial, and further research is warranted in that direction.

  15. Design and synthesis of some new 2,3'-bipyridine-5-carbonitriles as potential anti-inflammatory/antimicrobial agents.

    PubMed

    Elzahhar, Perihan A; Elkazaz, Salwa; Soliman, Raafat; El-Tombary, Alaa A; Shaltout, Hossam A; El-Ashmawy, Ibrahim M; Abdel Wahab, Abeer E; El-Hawash, Soad A

    2017-08-01

    Inflammation may cause accumulation of fluid in the injured area, which may promote bacterial growth. Other reports disclosed that non-steroidal anti-inflammatory drugs may enhance progression of bacterial infection. This work describes synthesis of new series of 2,3'-bipyridine-5-carbonitriles as structural analogs of etoricoxib, linked at position-6 to variously substituted thio or oxo moieties. Biological screening results revealed that compounds 2b, 4b, 7e and 8 showed significant acute and chronic AI activities and broad spectrum of antimicrobial activity. In addition, similarity ensemble approach was applied to predict potential biological targets of the tested compounds. Then, pharmacophore modeling study was employed to determine the most important structural parameters controlling bioactivity. Moreover, title compounds showed physicochemical properties within those considered adequate for drug candidates. This study explored the potential of such series of compounds as structural leads for further modification to develop a new class of dual AI-antimicrobial agents.

  16. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity

    PubMed Central

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  17. Aqueous Zinc Compounds as Residual Antimicrobial Agents for Textiles.

    PubMed

    Holt, Brandon Alexander; Gregory, Shawn Alan; Sulchek, Todd; Yee, Shannon; Losego, Mark D

    2018-03-07

    Textiles, especially those worn by patients and medical professionals, serve as vectors for proliferating pathogens. Upstream manufacturing techniques and end-user practices, such as transition-metal embedment in textile fibers or alcohol-based disinfectants, can mitigate pathogen growth, but both techniques have their shortcomings. Fiber embedment requires complete replacement of all fabrics in a facility, and the effects of embedded nanoparticles on human health remain unknown. Alcohol-based, end-user disinfectants are short-lived because they quickly volatilize. In this work, common zinc salts are explored as an end-user residual antimicrobial agent. Zinc salts show cost-effective and long-lasting antimicrobial efficacy when solution-deposited on common textiles, such as nylon, polyester, and cotton. Unlike common alcohol-based disinfectants, these zinc salt-treated textiles mitigate microbial growth for more than 30 days and withstand commercial drying. Polyester fabrics treated with ZnO and ZnCl 2 were further explored because of their commercial ubiquity and likelihood for rapid commercialization. ZnCl 2 -treated textiles were found to retain their antimicrobial coating through abrasive testing, whereas ZnO-treated textiles did not. Scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry analyses suggest that ZnCl 2 likely hydrolyzes and reacts with portions of the polyester fiber, chemically attaching to the fiber, whereas colloidal ZnO simply sediments and binds with weaker physical interactions.

  18. Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles.

    PubMed

    Lam, Shu J; Wong, Edgar H H; O'Brien-Simpson, Neil M; Pantarat, Namfon; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-12-14

    'Structurally nanoengineered antimicrobial peptide polymers' (SNAPPs), in the form of star-shaped peptide polymer nanoparticles, have been recently demonstrated as a new class of antimicrobial agents with superior in vitro and in vivo efficacy against Gram-negative pathogens, including multidrug-resistant species. Herein, we present a detailed bionano interaction study on SNAPPs by assessing their antimicrobial activities against several Gram-negative bacteria in complex biological matrices. Simulated body fluid and animal serum were used as test media to reveal factors that influence the antimicrobial efficacy of SNAPPs. With the exception of Acinetobacter baumannii, the presence of divalent cations at physiological concentrations reduced the antimicrobial efficacy of SNAPPs from minimum inhibitory concentrations (MICs) within the nanomolar range (40-300 nM) against Escherichia coli, Pseudomanas aeruginosa, and Klebsiella pneumoniae to 0.6-4.7 μM. By using E. coli as a representative bacterial species, we demonstrated that the reduction in activity was due to a decrease in the ability of SNAPPs to cause outer and inner membrane disruption. This effect could be reversed through coadministration with a chelating agent. Interestingly, the potency of SNAPPs against A. baumannii was retained even under high salt concentrations. The presence of serum proteins was also found to affect the interaction of SNAPPs with bacterial membranes, possibly through intermolecular binding. Collectively, this study highlights the need to consider the possible interactions of (bio)molecules present in vivo with any new antimicrobial agent under development. We also demonstrate that outer membrane disruption/destabilization is an important but hitherto under-recognized target for the antimicrobial action of peptide-based agents, such as antimicrobial peptides (AMPs). Overall, the findings presented herein could aid in the design of more efficient peptide-based antimicrobial agents with

  19. Bioprospecting of antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis.

    PubMed

    Pinheiro, Eduardo A A; Pina, Jeferson R S; Feitosa, André O; Carvalho, Josiwander M; Borges, Fábio C; Marinho, Patrícia S B; Marinho, Andrey M R

    Antibiotic resistance results in higher medical costs, prolonged hospital stays and increased mortality and is rising to dangerously high levels in all parts of the world. Therefore, this study aims to search for new antimicrobial agents through bioprospecting of extracts of endophytic fungi from Bauhinia guianensis, a typical Amazonian plant used in combating infections. Seventeen (17) fungi were isolated and as result the methanolic extract of the fungus Exserohilum rostratum showed good activity against the bacteria tested. The polyketide monocerin was isolated by the chromatographic technique, identified by NMR and MS, showing broad antimicrobial spectrum. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Design of Embedded-Hybrid Antimicrobial Peptides with Enhanced Cell Selectivity and Anti-Biofilm Activity

    PubMed Central

    Xu, Wei; Zhu, Xin; Tan, Tingting; Li, Weizhong; Shan, Anshan

    2014-01-01

    Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents. PMID:24945359

  1. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  2. Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo

    PubMed Central

    Gnanadhas, Divya Prakash; Ben Thomas, Midhun; Thomas, Rony; Raichur, Ashok M.

    2013-01-01

    The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes. PMID:23877702

  3. In-vitro activity of several antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA) isolates expressing aminoglycoside-modifying enzymes: potency of plazomicin alone and in combination with other agents.

    PubMed

    López Díaz, María Carmen; Ríos, Esther; Rodríguez-Avial, Iciar; Simaluiza, Rosa Janneth; Picazo, Juan José; Culebras, Esther

    2017-08-01

    This study investigated the in-vitro activity of clinically relevant aminoglycosides and new antimicrobial agents-plazomicin, ceftobiprole and dalbavancin-against 55 methicillin-resistant Staphylococcus aureus (MRSA) isolates producing aminoglycoside-modifying enzymes (AMEs). The checkerboard method was used to assess synergism between plazomicin and four antibiotics (fosfomycin, ceftobiprole, cefoxitin and meropenem), and time-kill assays were performed for the most active combinations. Among the aminoglycosides tested, plazomicin was the most active agent against MRSA, with >90% of isolates being inhibited at a minimum inhibitory concentration (MIC) of ≤1 mg/L. MIC 50 and MIC 90 values for ceftobiprole and dalbavancin were 2 and 4 mg/L, and 0.125 and 0.125 mg/L, respectively. The most prevalent AME gene was aac(6')Ie-aph(2″)Ia (87.3%), followed by ant(4')Ia (52.7%) and aph(3')IIIa (52.7%). Plazomicin activity was not affected by the type or number of enzymes detected. In checkerboard and time-kill assays, indifference was the most common result achieved for the antibiotic combinations. Notably, no antagonism was observed with any combination tested. Overall, plazomicin in combination with meropenem had the highest synergistic effect, demonstrating synergy against seven isolates in the checkerboard assay and three isolates in time-kill curves. In conclusion, plazomicin showed potent activity against aminoglycoside-resistant MRSA isolates, regardless of the number and type of AMEs present. These findings indicate the potential utility of plazomicin in combination with meropenem for the treatment of MRSA infections. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. De novo design and synthesis of ultra-short peptidomimetic antibiotics having dual antimicrobial and anti-inflammatory activities.

    PubMed

    Murugan, Ravichandran N; Jacob, Binu; Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.

  5. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    NASA Astrophysics Data System (ADS)

    Zúñiga, G. E.; Junqueira-Gonçalves, M. P.; Pizarro, M.; Contreras, R.; Tapia, A.; Silva, S.

    2012-01-01

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of γ-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation.

  6. In vitro antimicrobial activity and chemical composition of the essential oil of Foeniculum vulgare Mill.

    PubMed

    Aprotosoaie, Ana Clara; Hăncianu, Monica; Poiată, Antonia; Tuchiluş, Cristina; Spac, A; Cioană, Oana; Gille, Elvira; Stănescu, Ursula

    2008-01-01

    In our study, four samples of volatile oil from Foeniculum vulgare, cultivated in different pedoclimatic conditions, were investigated for their antimicrobial activity and chemical composition. Organisms. Staphylococcus aureus ATCC 25923, Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli ATCC 25922, Candida albicans were included in the report. Antimicrobial susceptibility tests. The comparative inhibitory activity of volatile oil samples with other antimicrobial agents was quantitative determined by minimum inhibitory concentration (MIC). Oil samples are the volatile oils extracted by steam distillation, from two ecological vegetative populations of Foeniculum vulgare. Gas chromatography coupled to mass spectrometry (GC-MS) was used to determine the chemical composition of the essential oils. All oil samples have a good activity against E. coli and S. aureus at low concentrations. Against B. cereus and P. aeruginosa these oil samples are less active. The oil samples were generally bactericidal at a concentration up to twofold or fourfold higher than the MIC value. Significantly synergic activity with amoxicillin or tetracycline showed all fennel samples against E. coli, Sarcina lutea and B. subtilis strains. Fennel oil samples have shown high activity against Candida albicans. No significant antimicrobial activity variations were observed for Foeniculum vulgare volatile oil samples obtained after two or three years cultivation period. The most important identified compounds in all samples of fennel volatile oils were trans-anethole, estragole, fenchone, limonene, alpha-pinene and gamma-terpinene.

  7. Enhanced antimicrobial activity in biosynthesized ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Niraj; Kumari, Priti; Jha, Anal K.; Prasad, K.

    2018-05-01

    Biological synthesis of different metallic and/or oxide nanoparticles and their applications especially in agriculture and biomedical sciences are gaining prominence nowadays due to their handy and reproducible synthetic protocols which are cost-effective and eco-friendly. In this work, green synthesis of zinc oxide nanoparticles (ZnO NPs) using the alcoholic extract of Azadirachta indica as a reducing and stabilizing agent has been presented. Formation of ZnO NPs was confirmed by X-ray diffraction, scanning and transmission electron microscopy techniques. The phytochemicals responsible for nano-transformation were principally alkaloids, flavanoids, terpenoids, tannins and organic acids present in the Azadirachta indica leaves. The synthesized ZnO NPs were used for antimicrobial assays by disc diffusion method against Staphylococcus aureus and Candida albicans. Results showed that ZnO NPs may act as antimicrobial agent especially against skin infections.

  8. Methylsulfonyl benzothiazoles (MSBT) derivatives: Search for new potential antimicrobial and anticancer agents.

    PubMed

    Lad, Nitin P; Manohar, Yogesh; Mascarenhas, Malcolm; Pandit, Yashwant B; Kulkarni, Mahesh R; Sharma, Rajiv; Salkar, Kavita; Suthar, Ashish; Pandit, Shivaji S

    2017-03-01

    A series of novel 4 and 5-substituted methylsulfonyl benzothiazole (MSBT) compounds having amide, alkoxy, sulfonamide, nitro and amine functionality were synthesized from sequential reactions on 5-ethoxy-2-(methylsulfonyl)benzo[d]thiazole such as nitration, reduction, sulfonation, dealkylation, etc. All synthesized compounds were screened against antimicrobial and selected screened for anticancer activity. Antimicrobial activities studies reveled that among all compounds screened, out of MSBT-07, MSBT-11, MSBT-12, MSBT-14, MSBT-19, and MSBT-27 were found to have promising antimicrobial activity at MIC range of 4-50μg/ml against selected bacterial as well as fungal species. Compounds having good antimicrobial activity were screened for cervical cancer (HeLA cell lines). Of these MSBT-07 and MSBT-12 significantly reduced the cell growth. Consequently their calculated GI 50 values were found to be 0.1 or <0.1μM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Antimicrobial activity of tempeh gembus hydrolyzate

    NASA Astrophysics Data System (ADS)

    Noviana, A.; Dieny, F. F.; Rustanti, N.; Anjani, G.; Afifah, D. N.

    2018-02-01

    Tropical disease can be prevented by consumming fermented foods that have antimicrobial activity. One of them is tempeh gembus that has short shelf life. It can be overcome by processing it into hydrolyzate. This study aimed to determine antimicrobial activity of tempeh gembus hydrolyzate. Tempeh gembus was made of local soybean from Grobogan. They were added 5,000 ppm, 8,000 ppm, and 10,000 ppm of bromelain enzyme (TGH BE). Antimicrobial effects of TGH BE were tested against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Steptococcus mutans. Antimicrobial test was carried out using Kirby-Bauer Disc Diffussion method. Soluble protein test used Bradford method. The largest inhibition zone against S. aureus and S. mutans were shown by TGH BE 8,000 ppm, 0.89±0.53 mm and 2.40±0.72 mm. The largest inhibition zone of B. subtilis, 7.33±2,25 mm, was shown by TGH BE 5,000 ppm. There wasn’t antimicrobial effect of TGH BE against E. coli. There weren’t significant differences of soluble protein (P=0.293) and the inhibition zones againt S. aureus (P = 0.967), E. coli (P = 1.000), B. subtilis (P = 0.645), S. mutans (P=0.817) of all treatments. There were antimicrobial activities of TGH BE against S. aureus, B. subtilis, and S. mutans.

  10. Increased Staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with minocycline and monoacylglycerol.

    PubMed

    Wakabayashi, Hiroyuki; Teraguchi, Susumu; Tamura, Yoshitaka

    2002-10-01

    This study aimed to find antibiotics or other compounds that could increase the antimicrobial activity of an antimicrobial peptide, lactoferricin B (LFcin B), against Staphylococcus aureus, including antibiotic-resistant strains. Among conventional antibiotics, minocycline increased the bactericidal activity of LFcin B against S. aureus, but methicillin, ceftizoxime, and sulfamethoxazole-trimethoprim did not have such an effect. The combination of minocycline and LFcin B had synergistic effects against three antibiotic-resistant strains of S. aureus, according to result of checkerboard analysis. Screening of 33 compounds, including acids and salts, alcohols, amino acids, proteins and peptides, sugar, and lipids, showed that medium-chain monoacylglycerols increased the bactericidal activity of LFcin B against three S. aureus strains. The short-term killing test in water and the killing curve test in growing cultures showed that a combination of LFcin B and monolaurin (a monoacylglycerol with a 12-carbon acyl chain) killed S. aureus more rapidly than either agent alone. These findings may be helpful in the application of antimicrobial peptides in medical or other situations.

  11. Chemical composition and antimicrobial activity of Satureja kitaibelii essential oil against pathogenic microbial strains.

    PubMed

    Mihajilov-Krstev, Tatjana; Kitić, Dusanka; Radnović, Dragan; Ristić, Mihajlo; Mihajlović-Ukropina, Mira; Zlatković, Bojan

    2011-08-01

    Plant species Satureja kitaibelii Wierzb. ex Heuff. is used as a spice and as a natural preservative for food and herbal tea, owing to its characteristic scent and flavor as well as high antimicrobial activity. In the present study, the antimicrobial activity of isolated essential oil of S. kitaibelii was tested against a panel of 30 pathogenic microorganisms (foodborne microbes, selected multiresistant bacterial isolates from the patient wounds and dermatophyte isolates). Limonene (15.54%), p-cymene (9.99%), and borneol (8.91%) appeared as the main components in 44 identified compounds representing 98.44% of the oil. Essential oil of S. kitaibelii showed significant activity against a wide spectrum of foodborne microbes (MIC=0.18-25.5 microg mL(-1)) and multiresistant bacterial isolates (MIC=6.25-50.0 microg mL(-1)), as well as against dermatophyte strains (MIC=12.5-50.0 microg mL(-1)). These results demonstrate that S. kitaibelii essential oil could be used as a natural potential antimicrobial agent against pathogenic strains in the treatment of foodborne disease, wound and skin infections.

  12. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    PubMed

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  13. Antimicrobial activity of four essential oils against pigmenting Pseudomonas fluorescens and biofilmproducing Staphylococcus aureus of dairy origin

    PubMed Central

    Pedonese, Francesca; Fratini, Filippo; Pistelli, Luisa; Porta, Federica Maria; Ciccio, Pierluigi Di; Fischetti, Roberto; Turchi, Barbara; Nuvoloni, Roberta

    2017-01-01

    Essential oils (EOs) are mixtures of secondary metabolites of plant origin with many useful properties, among which the antimicrobial activity is also of interest for the food industry. EOs can exert their antimicrobial potential both directly, in food products and active packaging, and indirectly, as sanitizing and anti-biofilm agents of food facility surfaces. Aim of this research was to evaluate the antimicrobial activity of four EOs (bergamot, cinnamon, manuka and thyme) against Pseudomonas fluorescens and Staphylococcus aureus isolated from milk and dairy products. The chemical composition of EOs was evaluated by Gas Chromatography-Mass Spectrometry analysis. Minimum Inhibitory Concentration values were determined by a microplate method against 9 Ps. fluorescens from marketed mozzarella with blue discoloration defect, and 3 biofilm-producing S. aureus from milk. Reference ATCC strains were included. Pigment production activity by Ps. fluorescens was assessed both in culture and in cheese. EOs of manuka (leptospermone 23%) and thyme (carvacrol 30%, pcymene 20%, thymol 15%) showed the highest antimicrobial activity against S. aureus, MIC values were 0.012%-0.024% and 0.024% v/v, respectively; meanwhile EOs from thyme and cinnamon (cinnamaldehyde 55%) exhibited the best activity against Ps. fluorescens with MIC values of 0.098%-0.195% and 0.195%-0.391% v/v, respectively. The antimicrobial activity of these EOs is promising and they could be exploited in the dairy production chain. PMID:29564238

  14. Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L.

    PubMed

    Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique Douglas Melo

    2013-07-01

    Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity.

  15. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    PubMed Central

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  16. Development and evaluation of thymol-chitosan hydrogels with antimicrobial-antioxidant activity for oral local delivery.

    PubMed

    Alvarez Echazú, María Inés; Olivetti, Christian Ezequiel; Anesini, Claudia; Perez, Claudio Javier; Alvarez, Gisela Solange; Desimone, Martin Federico

    2017-12-01

    Nowadays, the research of innovative drug delivery devices is focused on the design of multiple drug delivery systems, the prevention of drug side effects and the reduction of dosing intervals. Particularly, new mucosal delivery systems for antimicrobials, antioxidants and anti-inflammatory drugs has a growing development, regards to the avoidance of side effects, easy administration and a suitable drug concentration in the mucosa. In this work, chitosan hydrogels are evaluated as a biodegradable scaffold and as a bioactive agent carrier of an antioxidant-antimicrobial compound called thymol. Throughout the study, swelling behavior, viscoelastic properties and thermal analysis are highlighted to present its advantages for a biomedical application. Furthermore, the in vitro results obtained indicate that thymol-chitosan hydrogels are biocompatible when exposed to [3T3] fibroblasts, exhibit antimicrobial activity against Staphylococcus aureus and Streptococcus mutans for 72h and antioxidant activity for 24h. These are desirable properties for a mucosal delivery system for an antimicrobial-antioxidant dual therapy for periodontal disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evaluation of anti-inflammatory and antimicrobial activity of AHPL/AYTOP/0213 cream

    PubMed Central

    Nipanikar, Sanjay U.; Nagore, Dheeraj; Chitlange, Soham S.; Buzruk, Devashree

    2017-01-01

    Background: Acne vulgaris is almost a widespread disease occurring in all races. Propionibacterium acnes initiate acne and inflammatory mediators aggravate it. Conventional therapies for acne include comedolytic, anti-inflammatory, and anti-biotic agents. Due to adverse effects of these therapies, people are searching for alternative options. In this context, a polyherbal formulation AHPL/AYTOP/0213 cream was developed for the treatment of Acne. Objective: The objective of this study is to study anti-inflammatory and antimicrobial activities of AHPL/AYTOP/0213 cream. Materials and Methods: Skin irritation study was conducted on AHPL/AYTOP/0213 cream as per OECD guidelines. (1) Anti-inflammatory activity: Anti-inflammatory activity of AHPL/AYTOP/0213 cream in comparison with diclofenac sodium cream was assessed in carrageenan-induced rat paw edema model. (2) Antimicrobial activity for P. acnes: P. acnes were incubated under anaerobic conditions. Aliquots of molten brain–heart infusion with glucose agar were used as the agar base. Formulation and clindamycin (10 mg/ml) were introduced in to the Agar wells randomly. (3) Antimicrobial activity for Staphylococcus epidermidis and Staphylococcus aureus: bacteria were incubated under aerobic conditions at 37°C. Tryptic soy broth with glucose agar was used as the agar base. A volume of 0.5 ml of formulation and clindamycin (10 mg/ml) were introduced in to the wells randomly. The antibacterial activity was evaluated by measuring zones of inhibition (in mm). Results: AHPL/AYTOP/0213 cream is nonirritant. Significant reduction in rat paw edema (43%) was observed with AHPL/AYTOP/0213 which was also comparable to diclofenac sodium cream (56.09%). Zone of inhibition for formulation was 20.68 mm, 28.20 mm, and 21.40 mm for P. acnes, S. epidermidis and S. aureus, respectively, which was comparable to clindamycin. The minimum inhibitory concentration of formulation AHPL/AYTOP/0213 obtained in anti-microbial study was 2.5 mg

  18. Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation.

    PubMed

    Liu, Han-Bo; Gao, Wei-Wei; Tangadanchu, Vijai Kumar Reddy; Zhou, Cheng-He; Geng, Rong-Xia

    2018-01-01

    A series of novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents were designed, synthesized and characterized by IR, NMR and HRMS spectra. The biological evaluation in vitro revealed that some of the target compounds exerted good antibacterial and antifungal activity in comparison with the reference drugs. Noticeably, compound 7d could effectively inhibit the growth of A. flavus, E. coli DH52 and MRSA with MIC values of 1, 1 and 8 μg/mL, respectively. Further studies revealed that pyrimidine derivative 7d could exhibit bactericidal mode of action against both Gram positive (S. aureus and MRSA) and Gram negative (P. aeruginosa) bacteria. The active molecule 7d showed low cell toxicity and did not obviously trigger the development of resistance in bacteria even after 16 passages. Furthermore, compound 7d was able to beneficially regulate reactive oxygen species (ROS) generation for an excellent safety profile. Molecular docking study revealed that compound 7d could bind with DNA gyrase by the formation of hydrogen bonds. The preliminary exploration for antimicrobial mechanism disclosed that compound 7d could effectively intercalate into calf thymus DNA to form a steady supramolecular complex, which might further block DNA replication to exert the powerful bioactivities. The binding investigation of compound 7d with human serum albumins (HSA) revealed that this molecule could be effectively transported by HSA. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Prevalence of multi-antimicrobial-agent resistant, shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga.

    PubMed

    Ram, Siya; Vajpayee, Poornima; Shanker, Rishi

    2007-11-01

    The consumption of polluted surface water for domestic and recreational purposes by large populations in developing nations is a major cause of diarrheal disease related mortality. The river Ganga and its tributaries meet 40% of the water requirement for drinking and irrigation in India. In this study, Escherichia coli isolates (n=75) of the river Ganga water were investigated for resistance to antimicrobial agents (n=15) and virulence genes specific to shiga toxin (STEC) and enterotoxin producing E. coli (ETEC). E. coli isolates from the river Ganga water exhibit resistance to multiple antimicrobial agents. The distribution of antimicrobial agent resistance in E. colivaries significantly (chi2: 81.28 at df = 24, p < 0.001) between the sites. Both stx1 and stx2 genes were present in 82.3% of STEC (n=17) while remaining isolates possess either stxl (11.8%) or stx2 (5.9%). The presence of eaeA, hlyA, and chuA genes was observed in 70.6, 88.2, and 58.8% of STEC, respectively. Both LT1 and ST1 genes were positive in 66.7% of ETEC (n=15) while 33.3% of isolates harbor only LT1 gene. The prevalence of multi-antimicrobial-agent resistant E. coli in the river Ganga water poses increased risk of infections in the human population.

  20. Antimicrobial activity of blended essential oil preparation.

    PubMed

    Tadtong, Sarin; Suppawat, Supatcha; Tintawee, Anchalee; Saramas, Phanida; Jareonvong, Suchada; Hongratanaworakit, Tapanee

    2012-10-01

    Antimicrobial activities of two blended essential oil preparations comprising lavender oil, petigrain oil, clary sage oil, ylang ylang oil and jasmine oil were evaluated against various pathogenic microorganisms. Both preparations showed antimicrobial activity in the agar disc diffusion assay against the Gram-positive bacteria, Staphylococcus aureus ATCC6538 and S. epidermidis isolated strain, the fungus, Candida albicans ATCC10231, and the Gram-negative bacterium, Escherichia coli ATCC25922, but showed no activity against Pseudomonas aeruginosa ATCC9027. The minimum inhibitory concentration (MIC) of these preparations was evaluated. By the broth microdilution assay, preparation 1, comprising lavender oil, clary sage oil, and ylang ylang oil (volume ratio 3:4:3), exhibited stronger antimicrobial activity than preparation 2, which was composed of petigrain oil, clary sage oil, and jasmine oil (volume ratio 3:4:3). Moreover, the sum of the fractional inhibitory concentrations (Sigma fic) of preparation 1 expressed a synergistic antimicrobial effect against the tested microorganisms (Sigma ficantimicrobial effect of either blended oil preparations or single/pure essential oils may be influenced by the amount of linalool and linalyl acetate, and the number of active components in either the blended preparations or single/pure essential oils. In addition, blended oil preparations expressed synergistic antimicrobial effect by the accumulation of active components such as linalool and linalyl acetate and combining active constituents of more than one oil.

  1. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng.

    PubMed

    Jin, Zhaoxia; Gao, Lin; Zhang, Lin; Liu, Tianyi; Yu, Fang; Zhang, Zongshen; Guo, Qiong; Wang, Biying

    2017-11-01

    Endophytes in plants may be co-producer of the bioactive compounds of their hosts. We conducted a study to bioprospect for saponin-producing endophytic fungi from Panax notoginseng and evaluate the antimicrobial activity of saponins. Two novel fungal endophytes, Fusarium sp. PN8 and Aspergillus sp. PN17, were isolated from traditional Chinese medicinal herb P. notoginseng. After eight days of fermentation, the total saponins produced in the culture broth of PN8 and PN17 were 1.061 and 0.583 mg mL -1 , respectively. The saponin extracts exhibited moderate to high (inhibition zone diameter 15.7-28.4 mm, MIC 1.6-12.5 mg mL -1 ) antimicrobial activity against pathogens tested. Further analysis showed that triterpenoid saponins produced by Fusarium PN8 were Rb 1 , Rd and 20(S)-Rg 3 , while Aspergillus PN17 had the ability to synthesise ginsenoside Re, Rd and 20(S)-Rg 3 . The isolated endophytes may be used as potential sources for microbial production of plant secondary metabolites and for antimicrobial agents.

  2. White Light-Activated Antimicrobial Paint using Crystal Violet.

    PubMed

    Hwang, Gi Byoung; Allan, Elaine; Parkin, Ivan P

    2016-06-22

    Crystal violet (CV) was incorporated into acrylic latex to produce white-light-activated antimicrobial paint (WLAAP). Measurement of the water contact angle of the WLAAP showed that the water contact angle increased with increasing CV concentration. In a leaching test over 120 h, the amount of CV that leached from the WLAAPs was close to the detection limit (<0.03%). The WLAAPs were used to coat samples of polyurethane, and these showed bactericidal activity against Escherichia coli, which is a key causative agent of healthcare-associated infections (HAIs). A reduction in the numbers of viable bacteria was observed on the painted coated polyurethane after 6 h in the dark, and the bactericidal activity increased with increasing CV concentration (P < 0.1). After 6 h of white light exposure, all of coated polyurethanes demonstrated a potent photobactericidal activity, and it was statistically confirmed that the WLAAP showed better activity in white light than in the dark (P < 0.05). At the highest CV concentration, the numbers of viable bacteria fell below the detection limit (<10(3) CFU/mL) after 6 h of white light exposure. The difference in antimicrobial activity between the materials in the light and dark was 0.48 log at CV 250 ppm, and it increased by 0.43 log at each increment of CV 250 ppm. The difference was the highest (>1.8 log) at the highest CV concentration (1000 ppm). These WLAAPs are promising candidates for use in healthcare facilities to reduce HAIs.

  3. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yaqiong; Wu, Haifan; Teng, Peng

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, aremore » more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.« less

  4. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine.

    PubMed

    Zahi, Mohamed Reda; El Hattab, Mohamed; Liang, Hao; Yuan, Qipeng

    2017-04-15

    The objective of this research was to investigate the synergism between ε-polylysine and d-limonene and develop a novel nanoemulsion system by merging the positive effect of these two antimicrobial agents. Results from the checkerboard method showed that ε-polylysine and d-limonene exhibit strong synergistic and useful additive effects against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Saccharomyces cerevisiae. In addition, d-limonene nanoemulsion with the inclusion of ε-polylysine was successfully prepared by high pressure homogenizer technology. Its antimicrobial efficiency was compared with pure d-limonene nanoemulsion by measuring the minimal inhibitory concentration, electronic microscope observation and the leakage of the intercellular constituents. The results demonstrated a wide improvement of the antimicrobial activity of d-limonene nanoemulsion following the inclusion of ε-polylysine. Overall, the current study may have a valuable contribution to make in developing a more efficient antimicrobial system in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles.

    PubMed

    Ginjupalli, Kishore; Alla, Rama Krishna; Tellapragada, Chaitanya; Gupta, Lokendra; Upadhya Perampalli, Nagaraja

    2016-06-01

    Conventional spray and the immersion disinfection of irreversible hydrocolloid impression materials may lead to dimensional changes. The purpose of this in vitro study was to investigate the antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The antimicrobial activity and properties of 2 commercially available irreversible hydrocolloid impression materials were evaluated after incorporating varying concentrations of silver nanoparticles. Antimicrobial activity was determined using the disk diffusion method. The gel strength, permanent deformation, flow, and gelation time were measured according to American Dental Association specification #18. Analysis of variance was used to identify the significant differences within and across the groups (α=.05). Adding silver nanoparticles to irreversible hydrocolloid impression materials resulted in superior antimicrobial activity without adversely affecting their properties. Adding silver nanoparticles to Zelgan significantly increased the gel strength compared with the control group, except at 5 wt%. However, the gel strength of Tropicalgin was unaffected except at 5 wt%. An increase in the permanent deformation was found with the incorporation of silver nanoparticles in both Zelgan and Tropicalgin. The flow of Zelgan increased with the incorporation of silver nanoparticles, whereas a decrease in the flow of Tropicalgin was observed at 1 wt% and 2 wt%. An increase in the gelation time of both Zelgan and Tropicalgin was observed with the incorporation of silver nanoparticles. Based on this in vitro study, silver nanoparticles can be incorporated into irreversible hydrocolloid impression materials as antimicrobial agents without adversely affecting their properties. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Antimicrobial activity of Miconia species (Melastomataceae).

    PubMed

    Rodrigues, Juliana; Michelin, Danielle Carvalho; Rinaldo, Daniel; Zocolo, Guilherme Julião; dos Santos, Lourdes Campaner; Vilegas, Wagner; Salgado, Hérida Regina Nunes

    2008-03-01

    This work evaluated the antimicrobial activity of the methanol and chloroform extracts of the leaves of Miconia cabucu, Miconia rubiginosa, and Miconia stenostachya using the disc-diffusion method. The results obtained showed that the methanol extracts of the leaves of M. rubiginosa and M. stenostachya and the chloroform extract of the leaves of M. cabucu presented antimicrobial activity against the tested microorganisms.

  7. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity

    PubMed Central

    Hua, J; Scott, R.W.; Diamond, G

    2011-01-01

    Whereas periodontal disease is ultimately of bacterial etiology, from multispecies biofilms of gram-negative anaerobic microorganisms, much of the deleterious effects are caused by the resultant epithelial inflammatory response. Hence, development of a treatment that combines anti-biofilm antibiotic activity with anti-inflammatory activity would be of great utility. Antimicrobial peptides (AMPs) such as defensins are naturally occurring peptides that exhibit broad-spectrum activity as well as a variety of immunomodulatory activities. Furthermore, bacteria do not readily develop resistance to these agents. However, clinical studies have suggested that they do not represent optimal candidates for exogenous therapeutic agents. Small-molecule mimetics of these AMPs exhibit similar activities to the parent peptides, in addition to having low toxicity, high stability and low cost. To determine whether AMP mimetics have the potential for treatment of periodontal disease, we examined the activity of one mimetic, mPE, against biofilm cultures of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Metabolic assays as well as culture and biomass measurement assays demonstrated that mPE exhibits potent activity against biofilm cultures of both species. Furthermore, as little as 2 µg ml−1 mPE was sufficient to inhibit interleukin-1β-induced secretion of interleukin-8 in both gingival epithelial cells and THP-1 cells. This anti-inflammatory activity is associated with a reduction in activation of nuclear factor-κB, suggesting that mPE can act both as an anti-biofilm agent in an anaerobic environment and as an anti-inflammatory agent in infected tissues. PMID:21040516

  8. The US national antimicrobial resistance monitoring system.

    PubMed

    Gilbert, Jeffrey M; White, David G; McDermott, Patrick F

    2007-10-01

    The use of antimicrobial agents in food animals can select for resistant bacterial pathogens that may be transmitted to humans via the commercial meat supply. In the USA, the FDA's Center for Veterinary Medicine regulatory duties require a determination that antimicrobial drugs are safe and effective for use in food animals. In addition, a qualitative assessment of risks to human health from antimicrobial resistance requires development. This risk assessment process is supported by data generated by the FDA's National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria. NARMS data on antimicrobial susceptibility among Salmonella, Campylobacter, Escherichia coli and Enterococcus is collected. Research activities defining the genetic bases of resistance helps to understand the potential public health risks posed by the spread of antimicrobial resistance from food animal antimicrobial use. These activities help insure that antimicrobials are used judiciously to promote human and animal health.

  9. Durability of Anti-Infective Effect of Long-Term Silicone Sheath Catheters Impregnated with Antimicrobial Agents

    PubMed Central

    Tcholakian, Robert K.; Raad, Issam I.

    2001-01-01

    This study was performed to test the long-term antimicrobial efficacy of impregnated silicone catheters comprising an antimicrobial layer sandwiched between an external surface sheath and a luminal surface silicone sheath. The design of the catheter permits the introduction of various antimicrobials in addition to anticoagulants or antifibrins in the antimicrobial layer and allows their gradual release over a period of months after insertion. The in vitro data presented show that the catheter can provide antimicrobial activity for 90 days, after being replated for 15 7-day cycles of replating. When the catheters were immersed in human serum and incubated at 37°C, they demonstrated significant antimicrobial activity after more than 325 days of incubation. The significant long-term in vitro antimicrobial activity observed may imply effective in vivo activity for almost 1 year after insertion and could serve as a cost-effective alternative to surgically implantable silicone catheters. PMID:11408213

  10. Resistance to antimicrobial agents among Salmonella isolates recovered from layer farms and eggs in the Caribbean region.

    PubMed

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-12-01

    This investigation determined the frequency of resistance of 84 isolates of Salmonella comprising 14 serotypes recovered from layer farms in three Caribbean countries (Trinidad and Tobago, Grenada, and St. Lucia) to eight antimicrobial agents, using the disc diffusion method. Resistance among isolates of Salmonella was related to the country of recovery, type of sample, size of layer farms, and isolate serotype. Overall, all (100.0%) of the isolates exhibited resistance to one or more of seven antimicrobial agents tested, and all were susceptible to chloramphenicol. The resistance detected ranged from 11.9% to sulphamethoxazole-trimethoprim (SXT) to 100.0% to erythromycin. The difference was, however, not statistically significant (P = 0.23). Across countries, for types of samples that yielded Salmonella, significant differences in frequency of resistance were detected only to SXT (P = 0.002) in Trinidad and Tobago and to gentamycin (P = 0.027) in St. Lucia. For the three countries, the frequency of resistance to antimicrobial agents was significantly different for ampicillin (P = 0.001) and SXT (P = 0.032). A total of 83 (98.8%) of the 84 isolates exhibited 39 multidrug resistance patterns. Farm size significantly (P = 0.032) affected the frequency of resistance to kanamycin across the countries. Overall, among the 14 serotypes of Salmonella tested, significant (P < 0.05) differences in frequency of resistance were detected to kanamycin, ampicillin, and SXT. Results suggest that the relatively high frequency of resistance to six of the antimicrobial agents (erythromycin, streptomycin, gentamycin, kanamycin, ampicillin, and tetracycline) tested and the multidrug resistance detected may pose prophylactic and therapeutic concerns for chicken layer farms in the three countries studied.

  11. Antimicrobial Peptides As Biologic and Immunotherapeutic Agents against Cancer: A Comprehensive Overview.

    PubMed

    Roudi, Raheleh; Syn, Nicholas L; Roudbary, Maryam

    2017-01-01

    Antimicrobial peptides (AMPs) are a pervasive and evolutionarily ancient component of innate host defense which is present in virtually all classes of life. In recent years, evidence has accumulated that parallel or de novo mechanisms by which AMPs curb infectious pathologies are also effective at restraining cancer cell proliferation and dissemination, and have consequently stimulated significant interest in their deployment as novel biologic and immunotherapeutic agents against human malignancies. In this review, we explicate the biochemical underpinnings of their tumor-selectivity, and discuss results of recent clinical trials (outside of oncologic indications) which substantiate their safety and tolerability profiles. Next, we present evidence for their preclinical antitumor activity, systematically organized by the major and minor classes of natural AMPs. Finally, we discuss the barriers to their clinical implementation and envision directions for further development.

  12. Antimicrobial activity and cytotoxic effects of Magnolia dealbata and its active compounds.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Gonzalez-Espindola, Luis Angel; Alonso-Castro, Angel Josabad; Gonzalez-Martinez, Marisela del Rocio; Domínguez, Fabiola; Garcia-Carranca, Alejandro

    2011-08-01

    Multi-drug resistance is of great concern for public health worldwide and necessitates the search for new antimicrobials from sources such as plants. Several Magnolia (Magnoliaceae) species have been reported to exert antimicrobial effects on sensitive and multidrug-resistant microorganisms. However, the antimicrobial properties of Magnolia dealbata have not been experimentally evaluated. The antimicrobial effects of an ethanol extract of Magnolia dealbata seeds (MDE) and its active compounds honokiol (HK) and magnolol (MG) were tested against the phytopathogen Clavibacter michiganensis subsp. michiganensis and several human multi-drug resistant pathogens using the disk-diffusion assay. The effects of MDE and its active compounds on the viability of human peripheral blood mononuclear cells (PBMC) were evaluated using MTT assay. MDE and its active compounds had antimicrobial activity (inhibition zone > 10 mm) against C. michiganensis, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter lwoffii, Candida albicans, Candida tropicalis and Trichosporon belgeii. The results suggest that M. dealbata and its active compounds have selective antimicrobial effects against drug-resistant fungal and Gram (-) bacteria and exert minimal toxic effects on human PMBC.

  13. Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: structure-property relationship.

    PubMed

    Elhusseiny, Amel F; Hassan, Hammed H A M

    2013-02-15

    Square planar Pd (II) and octahedral Pt (IV) complexes with novel spherical aramides nanoparticles containing flexible linkages ligands have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using Kirby-Bauer disc diffusion method. The antitumor activity has been performed using liver carcinoma (HEPG2), breast carcinoma (MCF7) and colon carcinoma (HCT 116) cell lines. Palladium complexes of polyamides containing sulfones showed the highest potency as antibacterial and antifungal agents. Platinum complexes containing sulfone and ether flexible linkages and chloro groups exhibited high potency as antitumor and antimicrobial agents. The uniform sizes of these nanomaterials could find biological uses such as immune assay and other medical purposes. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Antimicrobial activity of N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides.

    PubMed

    Woźniak, Edyta; Mozrzymas, Anna; Czarny, Anna; Kocieba, Maja; Rózycka-Roszak, Bozenna; Dega-Szafran, Zofia; Dulewicz, Ewa; Petryna, Magdalena

    2004-01-01

    The aim of the study was to assay antibacterial and antifungal activity of newly synthesised N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides. The compounds tested were found to inhibit the growth of some Gram-negative bacteria, Gram-positive strains and some representatives of yeast-type Candida. From microbiological experiments two of the compounds tested, N-dodecyloxycarbonylmethyl-N-methyl-piperidinium chloride (3) and N-dodecyl-N-ethoxycarbonylmethyl-piperidinium chloride (6), emerged as more active than the other compounds. Since the resistance of biofilms to biocides should be noted during the design and testing of new antimicrobial agents therefore, we have analysed antibacterial properties of the most active compounds towards biofilms. Our study focused on strains of Pseudomonas aeruginosa and Staphylococcus aureus that served as main model organisms for the biofilm studies.

  15. Antimicrobial activity of Gentiana lutea L. extracts.

    PubMed

    Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora

    2009-01-01

    Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.

  16. De Novo Design and Synthesis of Ultra-Short Peptidomimetic Antibiotics Having Dual Antimicrobial and Anti-Inflammatory Activities

    PubMed Central

    Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Background Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. Methodology/Principal Findings In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. Conclusion/Significance The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics. PMID:24302996

  17. Novel natural food antimicrobials.

    PubMed

    Juneja, Vijay K; Dwivedi, Hari P; Yan, Xianghe

    2012-01-01

    Naturally occurring antimicrobial compounds could be applied as food preservatives to protect food quality and extend the shelf life of foods and beverages. These compounds are naturally produced and isolated from various sources, including plants, animals and microorganisms, in which they constitute part of host defense systems. Many naturally occurring compounds, such as nisin, plant essential oils, and natamycin, have been widely studied and are reported to be effective in their potential role as antimicrobial agents against spoilage and pathogenic microorganisms. Although some of these natural antimicrobials are commercially available and applied in food processing, their efficacy, consumer acceptance and regulation are not well defined. This manuscript reviews natural antimicrobial compounds with reference to their applications in food when applied individually or in combination with other hurdles. It also reviews the mechanism of action of selected natural antimicrobials, factors affecting their antimicrobial activities, and future prospects for use of natural antimicrobials in the food industry.

  18. Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity.

    PubMed

    Serna, Naroa; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Unzueta, Ugutz; Roldán, Mónica; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio

    2017-09-15

    The emergence of bacterial antibiotic resistances is a serious concern in human and animal health. In this context, naturally occurring cationic antimicrobial peptides (AMPs) might play a main role in a next generation of drugs against bacterial infections. Taking an innovative approach to design self-organizing functional proteins, we have generated here protein-only nanoparticles with intrinsic AMP microbicide activity. Using a recombinant version of the GWH1 antimicrobial peptide as building block, these materials show a wide antibacterial activity spectrum in absence of detectable toxicity on mammalian cells. The GWH1-based nanoparticles combine clinically appealing properties of nanoscale materials with full biocompatibility, structural and functional plasticity and biological efficacy exhibited by proteins. Because of the largely implemented biological fabrication of recombinant protein drugs, the protein-based platform presented here represents a novel and scalable strategy in antimicrobial drug design, that by solving some of the limitations of AMPs offers a promising alternative to conventional antibiotics. The low molecular weight antimicrobial peptide GWH1 has been engineered to oligomerize as self-assembling protein-only nanoparticles of around 50nm. In this form, the peptide exhibits potent and broad antibacterial activities against both Gram-positive and Gram-negative bacteria, without any harmful effect over mammalian cells. As a solid proof-of-concept, this finding strongly supports the design and biofabrication of nanoscale antimicrobial materials with in-built functionalities. The protein-based homogeneous composition offer advantages over alternative materials explored as antimicrobial agents, regarding biocompatibility, biodegradability and environmental suitability. Beyond the described prototype, this transversal engineering concept has wide applicability in the design of novel nanomedicines for advanced treatments of bacterial infections

  19. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters.

    PubMed

    Heleno, Sandrina A; Ferreira, Isabel C F R; Esteves, Ana P; Ćirić, Ana; Glamočlija, Jasmina; Martins, Anabela; Soković, Marina; Queiroz, Maria João R P

    2013-08-01

    Mushroom extracts or isolated compounds may be useful in the search of new potent antimicrobial agents. Herein, it is described the synthesis of protected (acetylated) glucuronide derivatives of p-hydroxybenzoic and cinnamic acids, two compounds identified in the medicinal mushroom Ganoderma lucidum. Their antimicrobial and demelanizing activities were evaluated and compared to the parent acids and G. lucidum extract. p-Hydroxybenzoic and cinnamic acids, as also their protected glucuronide derivatives revealed high antimicrobial (antibacterial and antifungal) activity, even better than the one showed by commercial standards. Despite the variation in the order of parent acids and the protected glucuronide derivatives, their antimicrobial activity was always higher than the one revealed by the extract. Nevertheless, the extract was the only one with demelanizing activity against Aspergillus niger. The acetylated glucuronide derivatives could be deprotected to obtain glucuronide metabolites, which circulate in the human organism as products of the metabolism of the parent compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. In vitro drug susceptibility of 40 international reference rapidly growing mycobacteria to 20 antimicrobial agents

    PubMed Central

    Pang, Hui; Li, Guilian; Wan, Li; Jiang, Yi; Liu, Haican; Zhao, Xiuqin; Zhao, Zhongfu; Wan, Kanglin

    2015-01-01

    Rapidly growing mycobacteria (RGM) are human pathogens that are relatively easily identified by acid-fast staining but are proving difficult to treat in the clinic. In this study, we performed susceptibility testing of 40 international reference RGM species against 20 antimicrobial agents using the cation-adjusted Mueller-Hinton (CAMH) broth microdilution based on the minimum inhibitory concentration (MIC) assay recommended by the guidelines of the Clinical and Laboratory Standards Institute (CLSI). The results demonstrated that RGM organisms were resistant to the majority of first-line antituberculous agents but not to second-line fluoroquinolones or aminoglycosides. Three drugs (amikacin, tigecycline and linezolid) displayed potent antimycobacterial activity against all tested strains. Capreomycin, levofloxacin and moxifloxacin emerged as promising candidates for the treatment of RGM infections, and cefoxitin and meropenem were active against most strains. Mycobacterium chelonae (M. chelonae), M. abscessus, M. bolletii, M. fortuitum, M. boenickei, M. conceptionense, M. pseudoshottsii, M. septicum and M. setense were the most resistant RGM species. These results provide significant insight into the treatment of RGM species and will assist optimization of clinical criteria. PMID:26629031

  1. Antimicrobial and cytotoxic activity of red propolis: an alert for its safe use.

    PubMed

    Lopez, B G-C; de Lourenço, C C; Alves, D A; Machado, D; Lancellotti, M; Sawaya, A C H F

    2015-09-01

    Red propolis is a resinous product popularly consumed in Brazil as it improves health, and it is considered a nutraceutical. The objective of this study was to test the antimicrobial activity of eight samples of red propolis from Brazil and Cuba to assess the possibility of application of this natural product as an antimicrobial agent, along with a study of its cytotoxic activity against non-tumor cell lines to evaluate at which concentrations it could be safely used. The chemical profile of the samples was evaluated by UHPLC-MS. All the samples presented antimicrobial activity which was tested using agar diffusion and serial dilution methods; and these samples displayed a better activity against most Gram-negative bacteria with minimum inhibitory concentration (MIC) in the range between 6·25 μg ml(-1) and 500 μg ml(-1). However our studies also revealed an inherent cytotoxic effect against HaCaT human keratinocytes and BALBc 3T3. To have a noncytotoxic and safe use of red propolis, it is necessary to use a concentration below the IC50 cytotoxic values. The traditional use of propolis does not necessarily guarantee its safety. The evaluation of the safety of bioactive natural products should always be considered together with the evaluation of the activity. © 2015 The Society for Applied Microbiology.

  2. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.

    PubMed

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke; Færgeman, Nils J; Kallipolitis, Birgitte H

    The foodborne pathogen Listeria monocytogenes is the causative agent of the invasive disease listeriosis. Infection by L. monocytogenes involves bacterial crossing of the intestinal barrier and intracellular replication in a variety of host cells. The PrfA protein is the master regulator of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression in the intestinal environment. In the gastrointestinal phase of infection, the bacterium encounters a variety of antimicrobial agents, including medium- and long-chain free fatty acids that are commonly found in our diet and as active components of bile. Here we show that subinhibitory concentrations of specific antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Nasal Carriage in Vietnamese Children of Streptococcus pneumoniae Resistant to Multiple Antimicrobial Agents

    PubMed Central

    Parry, Christopher M.; Diep, To Song; Wain, John; Hoa, Nguyen Thi Tuyet; Gainsborough, Mary; Nga, Diem; Davies, Catrin; Phu, Nguyen Hoan; Hien, Tran Tinh; White, Nicholas J.; Farrar, Jeremy J.

    2000-01-01

    Resistance to antimicrobial agents in Streptococcus pneumoniae is increasing rapidly in many Asian countries. There is little recent information concerning resistance levels in Vietnam. A prospective study of pneumococcal carriage in 911 urban and rural Vietnamese children, of whom 44% were nasal carriers, was performed. Carriage was more common in children <5 years old than in those ≥5 years old (192 of 389 [49.4%] versus 212 of 522 [40.6%]; P, 0.01). A total of 136 of 399 isolates (34%) had intermediate susceptibility to penicillin (MIC, 0.1 to 1 mg/liter), and 76 of 399 isolates (19%) showed resistance (MIC, >1.0 mg/liter). A total of 54 of 399 isolates (13%) had intermediate susceptibility to ceftriaxone, and 3 of 399 isolates (1%) were resistant. Penicillin resistance was 21.7 (95% confidence interval, 7.0 to 67.6) times more common in urban than in rural children (35 versus 2%; P, <0.001). More than 40% of isolates from urban children were also resistant to erythromycin, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline. Penicillin resistance was independently associated with an urban location when the age of the child was controlled for. Multidrug resistance (resistance to three or more antimicrobial agent groups) was present in 32% of isolates overall but in 39% of isolates with intermediate susceptibility to penicillin and 86% of isolates with penicillin resistance. The predominant serotypes of the S. pneumoniae isolates were 19, 23, 14, 6, and 18. Almost half of the penicillin-resistant isolates serotyped were serotype 23, and these isolates were often multidrug resistant. This study suggests that resistance to penicillin and other antimicrobial agents is common in carriage isolates of S. pneumoniae from children in Vietnam. PMID:10681307

  4. Survey of resistance of Pseudomonas aeruginosa from UK patients with cystic fibrosis to six commonly prescribed antimicrobial agents

    PubMed Central

    Pitt, T; Sparrow, M; Warner, M; Stefanidou, M

    2003-01-01

    Methods: The susceptibility of 417 CF patient isolates of P aeruginosa from 17 hospitals to six commonly prescribed antibiotics were examined. Isolates were tested by an agar break point dilution method and E-tests according to British Society of Antimicrobial Chemotherapy guidelines. Genotyping of isolates was performed by XbaI DNA macrorestriction and pulsed field gel electrophoresis. Results: 38% of isolates were susceptible to all of the agents tested; almost half were resistant to gentamicin compared with ceftazidime (39%), piperacillin (32%), ciprofloxacin (30%), tobramycin (10%), and colistin (3%). Approximately 40% were resistant to two or more compounds with ceftazidime in combination with gentamicin, piperacillin or ciprofloxacin being the most common cross resistances. Resistance rates were generally similar to those reported recently from the USA and Germany. A selection of resistant isolates proved to be predominantly genotypically distinct by XbaI DNA macrorestriction but six pairs from three centres had similar genotypes. Conclusions: The level of resistance to front line antipseudomonal agents, with the exception of colistin, is disturbingly high. The prudent use of antimicrobial drugs and closer monitoring of accumulation of resistant strain populations should be actively considered. PMID:12947141

  5. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance

    NASA Astrophysics Data System (ADS)

    Wong, Chew Ee; Dolzhenko, Anton V.; Lee, Sui Mae; Young, David James

    Antimicrobial resistance poses one of the most serious global challenges of our age. Cyclodextrins (CDs) are widely utilized excipients in formulations because of their solubilizing properties, low toxicity, and low inflammatory response. This review summarizes recent investigations of antimicrobial agents involving CDs and CD-based antimicrobial materials. CDs have been employed for antimicrobial applications either through formation of inclusion complexes or by chemical modification of their hydroxyl groups to tailor pharmaceutically active compounds. Applications of these CD inclusion complexes include drug delivery, antimicrobial coatings on materials (e.g., biomedical devices and implants) and antimicrobial dressings that help to prevent wound infections. There are relatively limited studies of chemically modified CDs with antimicrobial activity. The mechanism of action of antimicrobial CD inclusion complexes and derivatives needs further elucidation, but activity of CDs and their derivatives is often associated with their interaction with bacterial cell membranes.

  6. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    PubMed

    Tomczykowa, Monika; Tomczyk, Michał; Jakoniuk, Piotr; Tryniszewska, Elzbieta

    2008-01-01

    The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+), Klebsiella pneumoniae (ESBL+), Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts), which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.

  7. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria.

    PubMed

    Kraszewska, Joanna; Beckett, Michael C; James, Tharappel C; Bond, Ursula

    2016-07-15

    Antimicrobial peptides offer potential as novel therapeutics to combat food spoilage and poisoning caused by pathogenic and nonpathogenic bacteria. Our previous studies identified the peptide human beta-defensin 3 (HBD3) as a potent antimicrobial agent against a wide range of beer-spoiling bacteria. Thus, HBD3 is an excellent candidate for development as an additive to prevent food and beverage spoilage. To expand the repertoire of peptides with antimicrobial activity against bacteria associated with food spoilage and/or food poisoning, we carried out an in silico discovery pipeline to identify peptides with structure and activity similar to those of HBD3, focusing on peptides of plant origin. Using a standardized assay, we compared the antimicrobial activities of nine defensin-like plant peptides to the activity of HBD3. Only two of the peptides, fabatin-2 and Cp-thionin-2, displayed antimicrobial activity; however, the peptides differed from HBD3 in being sensitive to salt and were thermostable. We also compared the activities of several ultrashort peptides to that of HBD3. One of the peptides, the synthetic tetrapeptide O3TR, displayed biphasic antimicrobial activity but had a narrower host range than HBD3. Finally, to determine if the peptides might act in concert to improve antimicrobial activity, we compared the activities of the peptides in pairwise combinations. The plant defensin-like peptides fabatin-2 and Cp-thionin-2 displayed a synergistic effect with HBD3, while O3TR was antagonistic. Thus, some plant defensin-like peptides are effective antimicrobials and may act in concert with HBD3 to control bacteria associated with food spoilage and food poisoning. Food spoilage and food poisoning caused by bacteria can have major health and economic implications for human society. With the rise in resistance to conventional antibiotics, there is a need to identify new antimicrobials to combat these outbreaks in our food supply. Here we screened plant peptide

  8. The closo-Dodecaborate Dianion Fused with Oxazoles Provides 3D Diboraheterocycles with Selective Antimicrobial Activity.

    PubMed

    Sun, Yuji; Zhang, Jianglin; Zhang, Yuanbin; Liu, Jiyong; van der Veen, Stijn; Duttwyler, Simon

    2018-05-08

    The synthesis and application of icosahedral boron cluster compounds has been studied extensively since their discovery several decades ago; however, two aspects of their chemistry have received little attention: The possibility to form inorganic/organic fused boraheterocycles and their potential to act as antimicrobial agents. This work comprises the preparation of a class of three-dimensional diborabenzoxazole analogues with the closo-dodecaborate in place of the benzene moiety. The presented synthetic procedures provide access to a wide range of diboraheterocycles under mild conditions. These 3D heterocycles exhibit strong and selective antimicrobial activity against Neisseria gonorrhoeae, a widespread bacterial pathogen that has shown increasing incidences of multi-drug resistance and for which the development of new antimicrobial compounds is urgently needed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria

    PubMed Central

    Elkady, M. F.; Shokry Hassan, H.; Hafez, Elsayed E.; Fouad, Ahmed

    2015-01-01

    Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity. PMID:26451136

  10. Antiaflatoxigenic and Antimicrobial Activities of Schiff Bases of 2-Hydroxy-4-methoxybenzaldehyde, Cinnamaldehyde, and Similar Aldehydes.

    PubMed

    Harohally, Nanishankar V; Cherita, Chris; Bhatt, Praveena; Anu Appaiah, K A

    2017-10-11

    2-Hydroxy-4-methoxybenzaldehyde (HMBA) is a nontoxic phenolic flavor from dietary source Decalipus hamiltonii and Hemidesmus indicus. HMBA is an excellent antimicrobial agent with additional antiaflatoxigenic potency. On the other hand, cinnamaldehyde from cinnamon is a widely employed flavor with significant antiaflatoxigenic activity. We have attempted the enhancement of antiaflatoxigenic and antimicrobial properties of HMBA, cinnamaldehyde, and similar molecules via Schiff base formation accomplished from condensation reaction with amino sugar (d-glucamine). HMBA derived Schiff bases exhibited commendable antiaflatoxigenic activity at the concentration 0.1 mg/mL resulting in 9.6 ± 1.9% growth of Aspergillus flavus and subsequent 91.4 ± 3.9% reduction of aflatoxin B 1 with respect to control.

  11. Novel 4-Thiazolidinone Derivatives as Anti-Infective Agents: Synthesis, Characterization, and Antimicrobial Evaluation.

    PubMed

    Gupta, Amit; Singh, Rajendra; Sonar, Pankaj K; Saraf, Shailendra K

    2016-01-01

    A series of new 4-thiazolidinone derivatives was synthesized, characterized by spectral techniques, and screened for antimicrobial activity. All the compounds were evaluated against five Gram-positive bacteria, two Gram-negative bacteria, and two fungi, at concentrations of 50, 100, 200, 400, 800, and 1600 µg/mL, respectively. Minimum inhibitory concentrations of all the compounds were also determined and were found to be in the range of 100-400 µg/mL. All the compounds showed moderate-to-good antimicrobial activity. Compounds 4a [2-(4-fluoro-phenyl)-3-(4-methyl-5,6,7,8-tetrahydro-quinazolin-2-yl)-thiazolidin-4-one] and 4e [3-(4,6-dimethyl-pyrimidin-2-yl)-2-(2-methoxy-phenyl)-thiazolidin-4-one] were the most potent compounds of the series, exhibiting marked antimicrobial activity against Pseudomonas fluorescens, Staphylococcus aureus, and the fungal strains. Thus, on the basis of results obtained, it may be concluded that synthesized compounds exhibit a broad spectrum of antimicrobial activity.

  12. Antimicrobial Prophylaxis in Adults

    PubMed Central

    Enzler, Mark J.; Berbari, Elie; Osmon, Douglas R.

    2011-01-01

    Antimicrobial prophylaxis is commonly used by clinicians for the prevention of numerous infectious diseases, including herpes simplex infection, rheumatic fever, recurrent cellulitis, meningococcal disease, recurrent uncomplicated urinary tract infections in women, spontaneous bacterial peritonitis in patients with cirrhosis, influenza, infective endocarditis, pertussis, and acute necrotizing pancreatitis, as well as infections associated with open fractures, recent prosthetic joint placement, and bite wounds. Perioperative antimicrobial prophylaxis is recommended for various surgical procedures to prevent surgical site infections. Optimal antimicrobial agents for prophylaxis should be bactericidal, nontoxic, inexpensive, and active against the typical pathogens that can cause surgical site infection postoperatively. To maximize its effectiveness, intravenous perioperative prophylaxis should be administered within 30 to 60 minutes before the surgical incision. Antimicrobial prophylaxis should be of short duration to decrease toxicity and antimicrobial resistance and to reduce cost. PMID:21719623

  13. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  14. Bioequivalence and in vitro antimicrobial activity between generic and brand-name levofloxacin.

    PubMed

    Sun, Hsin-Yun; Liao, Hsiao-Wei; Sheng, Meng-Huei; Tai, Hui-Min; Kuo, Ching-Hua; Sheng, Wang-Huei

    2016-07-01

    Generic agents play a crucial role in reducing the cost of medical care in many countries. However, the therapeutic equivalence remains a great concern. Our study aims to assess the in vitro antimicrobial activity and bioequivalence between generic and brand-name levofloxacin. Enantiomeric purity test, dissolution test, and in vitro antimicrobial susceptibility against seven clinically important pathogens by the agar dilution method were employed to assess the similarity between four generic products and brand-name levofloxacin (Daiichi Sankyo). All the generic and brand-name levofloxacin passed enantiomeric purity test. The results of dissolution tests were not similar among the generic products and the brand-name levofloxacin. Compared with the generic products, the brand-name levofloxacin had the smallest mean variations (-25% to 13%) with reference standard (United States Pharmacopeia levofloxacin Reference Standards). Variations were observed particularly in dissolution profiles and in vitro activity between generic products and brand-name levofloxacin. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Antimicrobial Effects of 7,8-Dihydroxy-6-Methoxycoumarin and 7-Hydroxy-6-Methoxycoumarin Analogues against Foodborne Pathogens and the Antimicrobial Mechanisms Associated with Membrane Permeability.

    PubMed

    Yang, Ji-Yeon; Park, Jun-Hwan; Lee, Myung-Ji; Lee, Ji-Hoon; Lee, Hoi-Seon

    2017-10-03

    The antimicrobial effects of 7,8-dihydroxy-6-methoxycoumarin and 7-hydroxy-6-methoxycoumarin isolated from Fraxinus rhynchophylla bark and of their structural analogues were determined in an attempt to develop natural antimicrobial agents against the foodborne pathogens Escherichia coli, Bacillus cereus, Staphylococcus intermedius, and Listeria monocytogenes. To elucidate the relationship between structure and antimicrobial activity for the coumarin analogues, isolated constituents and their structural analogues were evaluated against foodborne pathogens. Based on the culture plate inhibition zones and MICs, 6,7-dimethoxycoumarin, 7,8-dihydroxy-6-methoxycoumarin, 7-hydroxy-6-methoxycoumarin, and 7-methoxycoumarin, containing a methoxy functional group on the coumarin skeleton, had the notable antimicrobial activity against foodborne pathogens. However, 7-hydroxycoumarin and 6,7-dihydroxycoumarin, which contained a hydroxyl functional group on the coumarin skeleton, had no antimicrobial activity against these pathogens. An increase in cell membrane permeability was confirmed by electron microscopy observations, and release of extracellular ATP and cell constituents followed treatment with the ethyl acetate fraction of F. rhynchophylla extract. These findings indicate that F. rhynchophylla extract and coumarin analogues have potential for use as antimicrobial agents against foodborne pathogens and that the antimicrobial mechanisms are associated with the loss of cell membrane integrity.

  16. Curvularia Haloperoxidase: Antimicrobial Activity and Potential Application as a Surface Disinfectant

    PubMed Central

    Hansen, Eva H.; Albertsen, Line; Schäfer, Thomas; Johansen, Charlotte; Frisvad, Jens C.; Molin, Søren; Gram, Lone

    2003-01-01

    A presumed antimicrobial enzyme system, the Curvularia haloperoxidase system, was examined with the aim of evaluating its potential as a sanitizing agent. In the presence of hydrogen peroxide, Curvularia haloperoxidase facilitates the oxidation of halides, such as chloride, bromide, and iodide, to antimicrobial compounds. The Curvularia haloperoxidase system caused several-log-unit reductions in counts of bacteria (Pseudomonas spp., Escherichia coli, Serratia marcescens, Aeromonas salmonicida, Shewanella putrefaciens, Staphylococcus epidermidis, and Listeria monocytogenes), yeasts (Candida sp. and Rhodotorula sp.), and filamentous fungi (Aspergillus niger, Aspergillus tubigensis, Aspergillus versicolor, Fusarium oxysporum, Penicillium chrysogenum, and Penicillium paxilli) cultured in suspension. Also, bacteria adhering to the surfaces of contact lenses were killed. The numbers of S. marcescens and S. epidermidis cells adhering to contact lenses were reduced from 4.0 and 4.9 log CFU to 1.2 and 2.7 log CFU, respectively, after treatment with the Curvularia haloperoxidase system. The killing effect of the Curvularia haloperoxidase system was rapid, and 106 CFU of E. coli cells/ml were eliminated within 10 min of treatment. Furthermore, the antimicrobial effect was short lived, causing no antibacterial effect against E. coli 10 min after the system was mixed. Bovine serum albumin (1%) and alginate (1%) inhibited the antimicrobial activity of the Curvularia haloperoxidase system, whereas glucose and Tween 20 did not affect its activity. In conclusion, the Curvularia haloperoxidase system is an effective sanitizing system and has the potential for a vast range of applications, for instance, for disinfection of contact lenses or medical devices. PMID:12902249

  17. Curvularia haloperoxidase: antimicrobial activity and potential application as a surface disinfectant.

    PubMed

    Hansen, Eva H; Albertsen, Line; Schäfer, Thomas; Johansen, Charlotte; Frisvad, Jens C; Molin, Søren; Gram, Lone

    2003-08-01

    A presumed antimicrobial enzyme system, the Curvularia haloperoxidase system, was examined with the aim of evaluating its potential as a sanitizing agent. In the presence of hydrogen peroxide, Curvularia haloperoxidase facilitates the oxidation of halides, such as chloride, bromide, and iodide, to antimicrobial compounds. The Curvularia haloperoxidase system caused several-log-unit reductions in counts of bacteria (Pseudomonas spp., Escherichia coli, Serratia marcescens, Aeromonas salmonicida, Shewanella putrefaciens, Staphylococcus epidermidis, and Listeria monocytogenes), yeasts (Candida sp. and Rhodotorula sp.), and filamentous fungi (Aspergillus niger, Aspergillus tubigensis, Aspergillus versicolor, Fusarium oxysporum, Penicillium chrysogenum, and Penicillium paxilli) cultured in suspension. Also, bacteria adhering to the surfaces of contact lenses were killed. The numbers of S. marcescens and S. epidermidis cells adhering to contact lenses were reduced from 4.0 and 4.9 log CFU to 1.2 and 2.7 log CFU, respectively, after treatment with the Curvularia haloperoxidase system. The killing effect of the Curvularia haloperoxidase system was rapid, and 10(6) CFU of E. coli cells/ml were eliminated within 10 min of treatment. Furthermore, the antimicrobial effect was short lived, causing no antibacterial effect against E. coli 10 min after the system was mixed. Bovine serum albumin (1%) and alginate (1%) inhibited the antimicrobial activity of the Curvularia haloperoxidase system, whereas glucose and Tween 20 did not affect its activity. In conclusion, the Curvularia haloperoxidase system is an effective sanitizing system and has the potential for a vast range of applications, for instance, for disinfection of contact lenses or medical devices.

  18. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    PubMed

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  19. Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Ahmad, Parvaiz; Berg, Gabriele

    2017-01-01

    Medicinal plants are known to harbor potential endophytic microbes, due to their bioactive compounds. In a first study of ongoing research, endophytic bacteria were isolated from two medicinal plants, Hypericum perforatum and Ziziphora capitata with contrasting antimicrobial activities from the Chatkal Biosphere Reserve of Uzbekistan, and their plant-specific traits involved in biocontrol and plant growth promotion were evaluated. Plant extracts of H. perforatum exhibited a remarkable activity against bacterial and fungal pathogens, whereas extracts of Z. capitata did not exhibit any potential antimicrobial activity. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was used to identify plant associated culturable endophytic bacteria. The isolated culturable endophytes associated with H. perforatum belong to eight genera (Arthrobacter, Achromobacter, Bacillus, Enterobacter, Erwinia, Pseudomonas, Pantoea, Serratia, and Stenotrophomonas). The endophytic isolates from Z. capitata also contain those genera except Arthrobacter, Serratia, and Stenotrophomonas. H. perforatum with antibacterial activity supported more bacteria with antagonistic activity, as compared to Z. capitata. The antagonistic isolates were able to control tomato root rot caused by Fusarium oxysporum and stimulated plant growth under greenhouse conditions and could thus be a cost-effective source for agro-based biological control agents. PMID:28232827

  20. Antimicrobial Properties of Natural Phenols and Related Compounds

    PubMed Central

    Jurd, L.; King, A. D.; Mihara, K.; Stanley, W. L.

    1971-01-01

    Obtusastyrene (4-cinnamylphenol) displays effective antimicrobial activity in vitro against a variety of gram-positive bacteria, yeasts, and molds. The activity of obtusastyrene is not appreciably affected by pH, and its minimal inhibitory concentrations, 12 to 25 μg/ml for bacteria and 12 to 100 μg/ml for fungi, compare favorably with those of a number of synthetic, phenolic antimicrobial agents. PMID:5553287

  1. Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride in multidrug-resistant Acinetobacter baumannii.

    PubMed

    Hwang, Yoon Y; Ramalingam, Karthikeyan; Bienek, Diane R; Lee, Valerie; You, Tao; Alvarez, Rene

    2013-08-01

    Acinetobacter baumannii has emerged as a serious problematic pathogen due to the ever-increasing presence of antibiotic resistance, demonstrating a need for novel, broad-spectrum antimicrobial therapeutic options. Antimicrobial nanoemulsions are emulsified mixtures of detergent, oil, and water (droplet size, 100 to 800 nm) which have broad antimicrobial activity against bacteria, enveloped viruses, and fungi. Here, we screened the antimicrobial activities of five nanoemulsion preparations against four Acinetobacter baumannii isolates to identify the most suitable preparation for further evaluation. Among them, N5, which contains 10% (vol/vol) Triton X-100, 25% (vol/vol) soybean oil, and 1% (wt/vol) cetylpyridinium chloride (CPC), showed the best efficacy against A. baumannii in both its planktonic and biofilm forms and was selected for further study. Our data demonstrate that, while the killing of planktonic forms of A. baumannii was due to the 1% CPC component of our nanoemulsions, the breakdown of biofilms was achieved via the emulsified oil and detergent fractions. Furthermore, we documented the effect of ethanol and NaCl in combination with N5 on planktonic A. baumannii. In killing curves of N5 combined with other agents (ethanol or NaCl), a synergistic effect of a ≥ 2-log decrease in CFU/ml was observed. The antibiofilm activity of N5 was confirmed via a cell proliferation test and scanning electron microscopy. The effects of exposure to severe environmental conditions, which simulates the field conditions in Iraq and Afghanistan, were evaluated, and this exposure did not affect the overall antimicrobial activity of N5. These studies lay a solid foundation for the utilization of nanoemulsions against the antibiotic-resistant forms of A. baumannii.

  2. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Hwang, Yoon Y.; Ramalingam, Karthikeyan; Bienek, Diane R.; Lee, Valerie; You, Tao

    2013-01-01

    Acinetobacter baumannii has emerged as a serious problematic pathogen due to the ever-increasing presence of antibiotic resistance, demonstrating a need for novel, broad-spectrum antimicrobial therapeutic options. Antimicrobial nanoemulsions are emulsified mixtures of detergent, oil, and water (droplet size, 100 to 800 nm) which have broad antimicrobial activity against bacteria, enveloped viruses, and fungi. Here, we screened the antimicrobial activities of five nanoemulsion preparations against four Acinetobacter baumannii isolates to identify the most suitable preparation for further evaluation. Among them, N5, which contains 10% (vol/vol) Triton X-100, 25% (vol/vol) soybean oil, and 1% (wt/vol) cetylpyridinium chloride (CPC), showed the best efficacy against A. baumannii in both its planktonic and biofilm forms and was selected for further study. Our data demonstrate that, while the killing of planktonic forms of A. baumannii was due to the 1% CPC component of our nanoemulsions, the breakdown of biofilms was achieved via the emulsified oil and detergent fractions. Furthermore, we documented the effect of ethanol and NaCl in combination with N5 on planktonic A. baumannii. In killing curves of N5 combined with other agents (ethanol or NaCl), a synergistic effect of a ≥2-log decrease in CFU/ml was observed. The antibiofilm activity of N5 was confirmed via a cell proliferation test and scanning electron microscopy. The effects of exposure to severe environmental conditions, which simulates the field conditions in Iraq and Afghanistan, were evaluated, and this exposure did not affect the overall antimicrobial activity of N5. These studies lay a solid foundation for the utilization of nanoemulsions against the antibiotic-resistant forms of A. baumannii. PMID:23669390

  3. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    PubMed

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Antimicrobial silver: An unprecedented anion effect

    PubMed Central

    Swathy, J. R.; Sankar, M. Udhaya; Chaudhary, Amrita; Aigal, Sahaja; Anshup; Pradeep, T.

    2014-01-01

    Silver is an indispensable metal but its use has to be minimised for sustainable growth. Much of the silver lost during use is unrecoverable; an example being its use as an antimicrobial agent, a property known since ages. While developing methods to create an affordable drinking water purifier especially for the developing world, we discovered that 50 parts per billion (ppb) of Ag+ released continuously from silver nanoparticles confined in nanoscale cages is enough to cause antimicrobial activity in conditions of normal water. Here we show that the antibacterial and antiviral activities of Ag+ can be enhanced ~1,000 fold, selectively, in presence of carbonate ions whose concentration was maintained below the drinking water norms. The protective layers of the organisms were affected during the carbonate-assisted antimicrobial activity. It is estimated that ~1,300 tons of silver can be saved annually using this new way to enhance its antimicrobial activity. PMID:25418185

  5. Antimicrobial activity of extracts from macroalgae Ulva lactuca against clinically important Staphylococci is impacted by lunar phase of macroalgae harvest.

    PubMed

    Deveau, A M; Miller-Hope, Z; Lloyd, E; Williams, B S; Bolduc, C; Meader, J M; Weiss, F; Burkholder, K M

    2016-05-01

    Staphylococcus aureus is a common human bacterial pathogen that causes skin and soft tissue infections. Methicillin-resistant Staph. aureus (MRSA) are increasingly drug-resistant, and thus there is great need for new therapeutics to treat Staph. aureus infections. Attention has focused on potential utility of natural products, such as extracts of marine macroalgae, as a source of novel antimicrobial compounds. The green macroalgae Ulva lactuca produces compounds inhibitory to human pathogens, although the effectiveness of U. lactuca extracts against clinically relevant strains of Staph. aureus is poorly understood. In addition, macroalgae produce secondary metabolites that may be influenced by exogenous factors including lunar phase, but whether lunar phase affects U. lactuca antimicrobial capacity is unknown. We sought to evaluate the antibacterial properties of U. lactuca extracts against medically important Staphylococci, and to determine the effect of lunar phase on antimicrobial activity. We report that U. lactuca methanolic extracts inhibit a range of Staphylococci, and that lunar phase of macrolagae harvest significantly impacts antimicrobial activity, suggesting that antimicrobial properties can be maximized by manipulating time of algal harvest. These findings provide useful parameters for future studies aimed at isolating and characterizing U. lactuca anti-Staphylococcal agents. The growing prevalence of antibiotic-resistant human pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) has intensified efforts towards discovery and development of novel therapeutics. Marine macroalgae like Ulva lactuca are increasingly recognized as potential sources of antimicrobials, but the efficacy of U. lactuca extracts against common, virulent strains of Staph. aureus is poorly understood. We demonstrate that U. lactuca methanolic extracts inhibit a variety of clinically relevant Staphylococcus strains, and that the antimicrobial activity can

  6. The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens.

    PubMed

    Bucci, Andreia R; Marcelino, Larissa; Mendes, Renata K; Etchegaray, Augusto

    2018-06-06

    The oral pathogen Streptococcus mutans is involved in tooth decay by a process that initiates with biofilm adhesion and caries development. The presence of other microbes such as Candida albicans may worsen the demineralization process. Since both microbes are virulent to the host and will proliferate under specific host immune deficiencies and systemic diseases, it is important to study antimicrobial substances and their effects on both pathogens. There are several antiseptic agents used to reduce plaque biofilm and its outcome (dental caries and/or periodontal disease). However, some of these have undesired effects. In the current study we investigated the antimicrobial and anti-adhesion properties of micellar solutions of surfactants and the plant natural product terpinen-4-ol (TP). The results revealed an increase in antimicrobial properties of the synthetic surfactants, cetylpyridinium chloride (CPC) and cetyltrimethylammonium bromide (CTAB), when mixed with TP. In addition, although surfactin, a biosurfactant, has little antimicrobial activity, it was demonstrated that it enhanced the effect of TP both as antimicrobial and anti-adhesion compound. Surfactin and the synthetic surfactants promote the antimicrobial activity of TP against S. mutans, the causal agent of tooth decay, suggesting specificity for membrane interactions that may be facilitated by surfactants. This is the first report on the successful use of surfactin in association with TP to inhibit the growth and adhesion of microbial pathogens. Surfactin has other beneficial properties besides being biodegradable, it has antiviral and anti-mycoplasma activities in addition to adjuvant properties and encapsulating capacity at low concentration.

  7. Antimicrobial Substances for Food Packaging Products: The Current Situation.

    PubMed

    Pellerito, Alessandra; Ameen, Sara M; Micali, Maria; Caruso, Giorgia

    2018-04-04

    Antimicrobial substances are widely used in many anthropic activities, including sanitary and military services for the human population. These compounds are also known to be used in food production, agricultural activities, and partially correlated industrial sectors. However, there are concerns regarding the link between the abuse of antimicrobial agents in these ambits and the possible detection of antibiotic-resistant microorganisms. Modern food and beverage products are generally found on the market as prepackaged units, with several exceptions. Consequently, positive and negative features of a specific food or beverage should be considered as the result of the synergic action of different components, including the container (or the assembled sum of packaging materials). At present, the meaning of food container also includes the creation and development of new packaging materials that are potentially able to interact with the contained food. "Active" packaging systems can be realized with antimicrobial substances. On the other hand, a careful evaluation of risks and advantages correlated with antimicrobial agents is needed because of possible negative and/or unexpected failures.

  8. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    PubMed

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  9. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  10. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters.

    PubMed

    Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W

    2009-01-01

    Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.

  11. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China.

    PubMed

    Pang, Hui; Li, Guilian; Zhao, Xiuqin; Liu, Haican; Wan, Kanglin; Yu, Ping

    2015-01-01

    Several species of rapidly growing mycobacteria (RGM) are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Clinical isolates (73) were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. M. abscessus (75.34%) and M. fortuitum (15.07%), the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians.

  12. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China

    PubMed Central

    Pang, Hui; Li, Guilian; Zhao, Xiuqin; Liu, Haican; Wan, Kanglin; Yu, Ping

    2015-01-01

    Objectives. Several species of rapidly growing mycobacteria (RGM) are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Methods. Clinical isolates (73) were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. Results. M. abscessus (75.34%) and M. fortuitum (15.07%), the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Conclusions. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians. PMID:26351633

  13. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil.

    PubMed

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. O. dictamnus essential oil was initially analyzed by gas chromatography-mass spectrometry (GC-MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. The main constituents of O. dictamnus essential oil identified by GC-MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was 0.045±0.0042% (v/v) and was mainly

  14. Determination of the Mutant Prevention Concentration and the Mutant Selection Window of Topical Antimicrobial Agents against Propionibacterium acnes.

    PubMed

    Nakase, Keisuke; Nakaminami, Hidemasa; Toda, Yuta; Noguchi, Norihisa

    2017-01-01

    Determination of the mutant prevention concentration (MPC) and the mutant selection window (MSW) of antimicrobial agents used to treat pathogenic bacteria is important in order to apply effective antimicrobial therapies. Here, we determined the MPCs of the major topical antimicrobial agents against Propionibacterium acnes and Staphylococcus aureus which cause skin infections and compared their MSWs. Among the MPCs of nadifloxacin and clindamycin, the clindamycin MPC was determined to be the lowest against P. acnes. In contrast, the nadifloxacin MPC was the lowest against S. aureus. Calculations based on the minimum inhibitory concentrations and MPCs showed that clindamycin has the lowest MSW against both P. acnes and S. aureus. Nadifloxacin MSWs were 4-fold higher against P. acnes than against S. aureus. It is more likely for P. acnes to acquire resistance to fluoroquinolones than S. aureus. Therefore, topical application of clindamycin contributes very little to the emergence of resistant P. acnes and S. aureus strains. © 2016 S. Karger AG, Basel.

  15. Antimicrobials in beekeeping.

    PubMed

    Reybroeck, Wim; Daeseleire, Els; De Brabander, Hubert F; Herman, Lieve

    2012-07-06

    The bee diseases American and European foulbrood and nosemosis can be treated with anti-infectious agents. However, in the EU and the USA the use of these agents in beekeeping is strictly regulated due to the lack of tolerance (e.g. Maximum Residue Limit) for residues of antibiotics and chemotherapeutics in honey. This article reviews the literature dealing with antimicrobials of interest in apiculture, stability of these antimicrobials in honey, and disposition of the antimicrobials in honeybee hives. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Synthesis, spectroscopic characterization and computational chemical study of 5-cyano-2-thiouracil derivatives as potential antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Rizk, Sameh A.; El-Naggar, Abeer M.; El-Badawy, Azza A.

    2018-03-01

    A series of 5-cyano-2-thiouracil derivatives, containing diverse hydrophobic groups in the 2-, 4- and 6-positions, were synthesized through one pot reaction of thiophene 2-carboxaldehyde, ethylcyanoacetate and thiourea using classic reflux-based method as well as microwave-assisted methods. Such prepared compounds were reacted with different electrophilic reagents to synthesize potent anti-microbial agents, e.g. 1,3,4-thiadiazinopyrimidine, hydrazide and triazolopyrimidine derivatives (compounds 4a-e, 9 and 10-12) respectively. The density functional theory (DFT) was then applied to explore the structural and electronic characteristics of these materials. It is found that compound 12 exhibited the highest antibacterial and antifungal activity against C. Albicans showing six-fold increasing biological affinity compared to that of Colitrimazole drug with MIC values 7.8 and 49 μg/mL, respectively. All the synthesized compounds have been characterized based on their elemental analyses and spectral data. Such compounds can be submitted to in vivo antimicrobial studies in future works.

  17. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  18. A new effective assay to detect antimicrobial activity of filamentous fungi.

    PubMed

    Pereira, Eric; Santos, Ana; Reis, Francisca; Tavares, Rui M; Baptista, Paula; Lino-Neto, Teresa; Almeida-Aguiar, Cristina

    2013-01-15

    The search for new antimicrobial compounds and the optimization of production methods turn the use of antimicrobial susceptibility tests a routine. The most frequently used methods are based on agar diffusion assays or on dilution in agar or broth. For filamentous fungi, the most common antimicrobial activity detection methods comprise the co-culture of two filamentous fungal strains or the use of fungal extracts to test against single-cell microorganisms. Here we report a rapid, effective and reproducible assay to detect fungal antimicrobial activity against single-cell microorganisms. This method allows an easy way of performing a fast antimicrobial screening of actively growing fungi directly against yeast. Because it makes use of an actively growing mycelium, this bioassay also provides a way for studying the production dynamics of antimicrobial compounds by filamentous fungi. The proposed assay is less time consuming and introduces the innovation of allowing the direct detection of fungal antimicrobial properties against single cell microorganisms without the prior isolation of the active substance(s). This is particularly useful when performing large screenings for fungal antimicrobial activity. With this bioassay, antimicrobial activity of Hypholoma fasciculare against yeast species was observed for the first time. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Thiadiazolidinones: A New Class of Alanine Racemase Inhibitors with Antimicrobial Activity against Methicillin- Resistant S. aureus

    PubMed Central

    Ciustea, Mihai; Mootien, Sara; Rosato, Adriana E.; Perez, Oriana; Cirillo, Pier; Yeung, Kacheong R.; Ledizet, Michel; Cynamon, Michael H.; Aristoff, Paul A.; Koski, Raymond A.; Kaplan, Paul A.; Anthony, Karen G.

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a human pathogen and a major cause of hospital-acquired infections. New antibacterial agents that have not been compromised by bacterial resistance are needed to treat MRSA-related infections. We chose the S. aureus cell wall synthesis enzyme, alanine racemase (Alr) as the target for a high-throughput screening effort to obtain novel enzyme inhibitors, which inhibit bacterial growth. Among the ‘hits’ identified was a thiadiazolidinone with chemical properties attractive for lead development. This study evaluated the mode of action, antimicrobial activities, and mammalian cell cytotoxicity of the thiadiazolidinone family in order to assess its potential for development as a therapeutic agent against MRSA. The thiadiazolidones inhibited Alr activity with 50% inhibitory concentrations (IC50) ranging from 0. 36 – 6. 4 μM, and they appear to inhibit the enzyme irreversibly. The series inhibited the growth of S. aureus, including MRSA strains, with minimal inhibitory concentrations (MICs) ranging from 6. 25–100 μg/mL. The antimicrobial activity showed selectivity against Gram-positive bacteria and fungi, but not Gram-negative bacteria. The series inhibited human HeLa cell proliferation. Lead development centering on the thiadiazolidinone series would require additional medicinal chemistry efforts to enhance the antibacterial activity and minimize mammalian cell toxicity. PMID:22146584

  20. Evaluation of antimicrobial peptides as novel bactericidal agents for room temperature-stored platelets.

    PubMed

    Mohan, Ketha V K; Rao, Shilpakala Sainath; Atreya, Chintamani D

    2010-01-01

    A single cost-effective pathogen inactivation approach would help to improve the safety of our nation's blood supply. Several methods and technologies are currently being studied to help reduce bacterial contamination of blood components. There is clearly need for simple and easy-to-use pathogen inactivation techniques specific to plasma, platelets (PLTs), and red blood cells. In this report, we introduce a novel proof of concept: using known therapeutic antimicrobial peptides (AMPs) as bactericidal agents for room temperature-stored PLT concentrates (PCs). Nine synthetic AMPs, four from PLT microbicidal protein-derived peptides (PD1-4) and five Arg-Trp (RW) repeat peptides containing one to five repeats, were tested for bactericidal activity in plasma and PC samples spiked with Staphylococcus aureus, S. epidermidis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Bacillus cereus. A 3-log reduction of viable bacteria was considered as the bactericidal activity of a given peptide. In both plasma alone and PCs, RW3 peptide demonstrated bactericidal activity against S. aureus, S. epidermidis, E. coli, P. aeruginosa, and K. pneumoniae; PD4 and RW2 against P. aeruginosa; and RW4 against K. pneumoniae. The activity of each of these four peptides against the remaining bacterial species in the test panel resulted in less than a 3-log reduction in the number of viable bacteria and hence considered ineffective. These findings suggest a new approach to improving the safety of blood components, demonstrating the potential usefulness of screening therapeutic AMPs against selected bacteria to identify suitable bactericidal agents for stored plasma, PCs, and other blood products.

  1. Aspects of the antimicrobial efficacy of grapefruit seed extract and its relation to preservative substances contained.

    PubMed

    von Woedtke, T; Schlüter, B; Pflegel, P; Lindequist, U; Jülich, W D

    1999-06-01

    The antimicrobial efficacy as well as the content of preservative agents of six commercially available grapefruit seed extracts were examined. Five of the six extracts showed a high growth inhibiting activity against the test germs Bacillus subtilis SBUG 14, Micrococcus flavus SBUG 16, Staphylococcus aureus SBUG 11, Serratia marcescens SBUG 9, Escherichia coli SBUG 17, Proteus mirabilis SBUG 47, and Candida maltosa SBUG 700. In all of the antimicrobial active grapefruit seed extracts, the preservative benzethonium chloride was detected by thin layer chromatography. Additionally, three extracts contained the preserving substances triclosan and methyl parabene. In only one of the grapefruit seed extracts tested no preservative agent was found. However, with this extract as well as with several self-made extracts from seed and juiceless pulp of grapefruits (Citrus paradisi) no antimicrobial activity could be detected (standard serial broth dilution assay, agar diffusion test). Thus, it is concluded that the potent as well as nearly universal antimicrobial activity being attributed to grapefruit seed extract is merely due to the synthetic preservative agents contained within. Natural products with antimicrobial activity do not appear to be present.

  2. One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles.

    PubMed

    Hussain, Muhammad Ajaz; Shah, Abdullah; Jantan, Ibrahim; Tahir, Muhammad Nawaz; Shah, Muhammad Raza; Ahmed, Riaz; Bukhari, Syed Nasir Abbas

    2014-12-03

    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report green synthesis of silver nanoparticles (Ag NPs) mediated with dextran. Dextran was used as a stabilizer and capping agent to synthesize Ag NPs using silver nitrate (AgNO3) under diffused sunlight conditions. UV-vis spectra of as synthesized Ag nanoparticles showed characteristic surface plasmon band in the range from ~405-452 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies showed spherical Ag NPs in the size regime of ~50-70 nm. Face centered cubic lattice of Ag NPs was confirmed by powder X-ray diffraction (PXRD). FT-IR spectroscopy confirmed that dextran not only acts as reducing agent but also functionalizes the surfaces of Ag NPs to make very stable dispersions. Moreover, on drying, the solution of dextran stabilized Ag NPs resulted in the formation of thin films which were found stable over months with no change in the plasmon band of pristine Ag NPs. The antimicrobial assay of the as synthesized Ag NPs showed remarkable activity. Being significantly active against microbes, the Ag NPs can be explored for antimicrobial medical devices.

  3. Preliminary evaluation of antimicrobial activity of some chemicals on in vitro apple shoots infected by 'Candidatus Phytoplasma mali'.

    PubMed

    Aldaghi, M; Massart, S; Druart, Ph; Bertaccini, A; Jijakli, M H; Lepoivre, P

    2008-01-01

    Phytoplasmas are associated with several hundred plant diseases worldwide, including numerous ones with important economical impact. Control of epidemic outbreak of phytoplasma diseases can be theoretically carried out by antibiotics. However, they are expensive, not allowed or prohibited in several countries, and even not always efficient. Presently, effective but safe antimicrobial agents are needed to control severe phytoplasma diseases in field. The aim of the present study was to evaluate the susceptibility of 'Candidatus Phytoplasma mali' to several chemical or synthetic antimicrobial agents. We tested nisin, esculetin, pyrithione and chloramphenicol as molecules having different target activities against micro-organisms. Because of their antimicrobial properties against fungi and bacteria, 4 phyto-essential oils (carvacrol, eugenol, terpineol, alpha-pinene) had also been tested. The activity of these molecules was compared with two antibiotics (tetracycline and enrofloxacin) used as control products. All these compounds were tested in in vitro culture of apples (MM106) infected by 'Ca. P. mall'. All compounds were added to the proliferation medium (modified MS) after autoclaving at 3 concentrations (100, 500, 1,000 ppm), except nisin and pyrithione which were tested at 10, 100 and 500 ppm. Phytoplasma infection was quantified in plant materials by real-time PCR before their transfer and after one or two months of culture in the presence of antimicrobial agents. Primary results showed that phytoplasma were not detectable after one and two months in the presence of pyrithione (at 10 and 100 ppm). Moreover, some other products reduced the concentration of phytoplasma after two months. Shoots died or withered on media enriched with essential oils; that made them impossible to assess, especially when they were used at concentration of 500 and 1,000 ppm.

  4. Microbiological aspects of an in situ model to study effects of antimicrobial agents on dental plaque ecology.

    PubMed

    Giertsen, E; Guggenheim, B; Thurnheer, T; Gmür, R

    2000-10-01

    This study validates an in situ model for ecological studies of dental plaque exposed to various antimicrobial agents with different modes of action on plaque bacteria. Eleven subjects wore two acrylic appliances, each containing two bovine enamel discs, during two 1-wk test periods. Using a split-mouth crossover design, the appliances were dipped twice daily for 1 min into water (control; treatment A), fluoride (26.3 mM NaF; B), zinc acetate (20.0 mM; C), or fluoride plus zinc acetate (D). Four of the subjects used also chlorhexidine diacetate (2.2 mM; E) and chlorhexidine plus fluoride (F). At the end of each period, plaque was collected from the discs, after which the microbiota were analyzed by culture, automated quantitative immunofluorescence, and a viability fluorescence stain. As compared to control, treatments B, C, and D resulted in a significant reduction of individual taxa as detected by immunofluorescence, whereas similar bacterial viability and total bacterial numbers were observed. In contrast, chlorhexidine significantly reduced bacterial viability, total cell numbers, and the abundance of most of the enumerated taxa. We conclude that this in situ model is well suited to study effects of antimicrobial agents on dental plaque ecology. Combined with viability testing, immunofluorescence is obviously superior to culture in detecting taxa-specific shifts caused by antimicrobial agents.

  5. Antimicrobial susceptibility of Brachyspira hyodysenteriae in Switzerland.

    PubMed

    Kirchgässner, C; Schmitt, S; Borgström, A; Wittenbrink, M M

    2016-06-01

    Brachyspira (B.) hyodysenteriae is the causative agent of swine dysentery (SD), a severe mucohaemorrhagic diarrheal disease in pigs worldwide. So far, the antimicrobial susceptibility patterns of B. hyodysenteriae in Switzerland have not been investigated. Therefore, a panel of 30 porcine B. hyodysenteriae isolates were tested against 6 antimicrobial agents by using the VetMIC Brachy panel, a broth microdilution test. Tiamulin and valnemulin showed high antimicrobial activity inhibiting all isolates at low concentrations. The susceptibility testing of doxycycline revealed values from ≤0.25 μg/ ml (47%) to 2 μg/ml (10%). The MIC values of lincomycin ranged between ≤0.5 μg/ml (30%) and 32 μg/ml (43%). For tylosin, 57% of the isolates could not be inhibited at the highest concentration of ≥128 μg/ml. The MIC values for tylvalosin were between ≤0.25 μg/ml (10%) and 8 μg/ml (20%). These findings reveal Switzerland's favourable situation compared to other European countries. Above all, tiamulin and valnemulin are still effective antimicrobial agents and can be further used for the treatment of SD.

  6. Plant Products as Antimicrobial Agents

    PubMed Central

    Cowan, Marjorie Murphy

    1999-01-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and “leads” which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations. PMID:10515903

  7. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis.

    PubMed

    Cui, Jin-long; Guo, Shun-xing; Xiao, Pei-gen

    2011-05-01

    The purpose of this study was to isolate and characterize endophytic fungi from the stem tissue which can produce fragrant ingredients in Aquilaria sinensis (also called agarwood) to determine their antitumor and antimicrobial activities. Twenty-eight fungal endophytes were isolated from agarwood by strict sterile sample preparation and were classified into 14 genera and 4 taxonomic classes (Sordariomycetes, Dothideomycetes, Saccharomycetes, and Zygomycetes) based on molecular identification. Of the 28 isolates, 13 (46.4%) showed antimicrobial activity against at least one of the test strains by the agar well diffusion method, and 23 isolates (82.1%) displayed antitumor activity against at least one of five cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The diameters of inhibition zones of YNAS07, YNAS14, HNAS04, HNAS05, HNAS08, and HNAS11 were equal to or higher than 14.0 mm against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, B. subtilis, Aspergillus fumigatus, and B. subtilis, respectively. The inhibition rates of YNAS06, YNAS08, and HNAS06 were not less than 60% to 293-T, 293-T, and SKVO3 cells, respectively. These results suggest that the endophytic fungi associated with agarwood will provide us with not only useful micro-ecological information, but also potential antimicrobial and antitumor agents.

  8. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review.

    PubMed

    Aziz, Marya; Karboune, Salwa

    2018-02-11

    Synthetic preservatives are widely used by the food industry to control the growth of spoilage and pathogenic microorganisms and to inhibit the process of lipid oxidation extending the shelf-life, quality and safety of food products. However, consumer's preference for natural food additives and concern regarding the safety of synthetic preservatives prompted the food industry to look for natural alternatives. Natural antimicrobials, including plant extracts and their essential oils, enzymes, peptides, bacteriocins, bacteriophages, and fermented ingredients have all been shown to have the potential for use as alternatives to chemical antimicrobials. Some spices, herbs and other plant extracts were also reported to be strong antioxidants. The antimicrobial/antioxidant activities of some plant extracts and/or their essential oils are mainly due to the presence of some major bioactive compounds, including phenolic acids, terpenes, aldehydes, and flavonoids. The proposed mechanisms of action of these natural preservatives are reported. An overview of the research done on the direct incorporation of natural preservatives agents into meat and poultry products as well as fruit and vegetables to extend their shelf-life is presented. The development of edible packaging materials containing natural preservatives is growing and their applications in selected food products are also presented in this review.

  9. Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity.

    PubMed

    Đolić, Maja B; Rajaković-Ognjanović, Vladana N; Štrbac, Svetlana B; Dimitrijević, Suzana I; Mitrić, Miodrag N; Onjia, Antonije E; Rajaković, Ljubinka V

    2017-10-25

    showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis and antimicrobial studies of novel derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-Acinetobacter baumanni agents

    PubMed Central

    Allison, Devin; Delancey, Evan; Ramey, Hunter; Williams, Conrad; Alsharif, Zakeyah Ali; Al-khattabi, Hessa; Ontko, Allyn; Gilmore, David

    2017-01-01

    Microbial resistance to antibiotics is a global concern. The World Health Organization (WHO) has identified antimicrobial resistance as one the three greatest threats for human beings in the 21st century. Without urgent and coordinated action, the world is moving toward a post-antibiotic era, in which normal infections or minor injuries may become fatal. In an effort to find new agents, we report the synthesis and antimicrobial activities of 40 novel 1,3-diphenyl pyrazole derivatives. These compounds have shown zones of growth inhibition up to 85 mm against Acinetobacter baumannii. We tested the active compounds against this Gram-negative bacterium in minimum inhibitory concentration (MIC) tests and found activity with concentration as low as 4 μg/mL. PMID:28065568

  11. Synthesis and antimicrobial studies of novel derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-Acinetobacter baumannii agents.

    PubMed

    Allison, Devin; Delancey, Evan; Ramey, Hunter; Williams, Conrad; Alsharif, Zakeyah Ali; Al-Khattabi, Hessa; Ontko, Allyn; Gilmore, David; Alam, Mohammad A

    2017-02-01

    Microbial resistance to antibiotics is a global concern. The World Health Organization (WHO) has identified antimicrobial resistance as one the three greatest threats for human beings in the 21st century. Without urgent and coordinated action, the world is moving toward a post-antibiotic era, in which normal infections or minor injuries may become fatal. In an effort to find new agents, we report the synthesis and antimicrobial activities of 40 novel 1,3-diphenyl pyrazole derivatives. These compounds have shown zones of growth inhibition up to 85mm against Acinetobacter baumannii. We tested the active compounds against this Gram-negative bacterium in minimum inhibitory concentration (MIC) tests and found activity with concentration as low as 4μg/mL. Published by Elsevier Ltd.

  12. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.

    PubMed

    Marchese, Anna; Barbieri, Ramona; Coppo, Erika; Orhan, Ilkay Erdogan; Daglia, Maria; Nabavi, Seyed Fazel; Izadi, Morteza; Abdollahi, Mohammad; Nabavi, Seyed Mohammad; Ajami, Marjan

    2017-11-01

    Eugenol is a hydroxyphenyl propene, naturally occurring in the essential oils of several plants belonging to the Lamiaceae, Lauraceae, Myrtaceae, and Myristicaceae families. It is one of the major constituents of clove (Syzygium aromaticum (L.) Merr. & L.M. Perry, Myrtaceae) oil and is largely used in both foods and cosmetics as a flavoring agent. A large body of recent scientific evidence supports claims from traditional medicine that eugenol exerts beneficial effects on human health. These effects are mainly associated with antioxidant and anti-inflammatory activities. Eugenol has also shown excellent antimicrobial activity in studies, being active against fungi and a wide range of gram-negative and gram-positive bacteria. The aim of this review is to analyze scientific data from the main published studies describing the antibacterial and antifungal activities of eugenol targeting different kind of microorganisms, such as those responsible for human infectious diseases, diseases of the oral cavity, and food-borne pathogens. This article also reports the effects of eugenol on multi-drug resistant microorganisms. On the basis of this collected data, eugenol represents a very interesting bioactive compound with broad spectrum antimicrobial activity against both planktonic and sessile cells belonging to food-decaying microorganisms and human pathogens.

  13. Antimicrobial food packaging: potential and pitfalls

    PubMed Central

    Malhotra, Bhanu; Keshwani, Anu; Kharkwal, Harsha

    2015-01-01

    Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line. PMID:26136740

  14. Antimicrobial and antiplasmid activities of essential oils.

    PubMed

    Schelz, Zsuzsanna; Molnar, Joseph; Hohmann, Judit

    2006-06-01

    The antimicrobial and antiplasmid activities of essential oils (orange oil, eucalyptus oil, fennel oil, geranium oil, juniper oil, peppermint oil, rosemary oil, purified turpentine oil, thyme oil, Australian tea tree oil) and of menthol, the main component of peppermint oil, were investigated. The antimicrobial activities were determined on the Gram (+) Staphylococcus epidermidis and the Gram (-) Escherichia coli F'lac K12 LE140, and on two yeast Saccharomyces cerevisiae 0425 delta/1 and 0425 52C strains. The antiplasmid activities were investigated on E. coli F'lac bacterial strain. Each of the oils exhibited antimicrobial activity and three of them antiplasmid action. The interaction of peppermint oil and menthol with the antibiotics was studied on the same bacterial strain with the checkerboard method. Peppermint oil and menthol displayed additive synergy with oxytetracycline. A new mechanism of plasmid curing was established for one of the oil components.

  15. Synthesis of symmetrical and asymmetrical azines from hydrazones and/or ferrocenecarboxaldehyde as potential antimicrobial-antitumor agents

    NASA Astrophysics Data System (ADS)

    Lasri, Jamal; Aly, Magda M.; Eltayeb, Naser Eltaher; Babgi, Bandar A.

    2018-07-01

    9-Fluorenone azine 2a and benzophenone azine 2b were synthesized, respectively, by treatment of 9-fluorenone hydrazone 1a or benzophenone hydrazone 1b with FeCl3 in chloroform. Ferrocenecarboxaldehyde 3 reacts with 1a or 1b, in ethanol, to furnish novel asymmetrical azine products 1-((ferrocenyl)methylene)-2-(9H-fluoren-9-ylidene)hydrazine 3a or 1-((ferrocenyl)methylene)-2-(diphenylmethylene)hydrazine 3b, respectively. The compounds were characterized by IR,1H, 13C and DEPT-135 NMR spectroscopy, high resolution ESI+-MS or EI, and also by single crystal X-ray diffraction analysis (in the case of 2b and 3b). The contribution of the azine functional group (3a) in the LUMO orbital was justified by observing a red shift in the MLCT upon its protonation. The antimicrobial activities of 2a, 2b, 3a and 3b were determined against some Gram-positive and Gram-negative bacteria in addition to Candida albicans and Aspergillus niger using paper disc diffusion method. Moderate antibacterial activities were found for 3a and 3b while weak activities were recorded for 2a and 2b compared to Ampicillin, positive control. No antifungal or antitumor activities were found for all the tested compounds, except 3a which showed antitumor activity. Low toxicity was recorded for 3a and 3b using Artemia salina as test organism. Hence, the prepared products 3a and 3b can be used as antimicrobial agents due to their antibacterial activities and low cell toxicity.

  16. Antimicrobial resistance of Listeria spp. recovered from processed bison.

    PubMed

    Li, Q; Sherwood, J S; Logue, C M

    2007-01-01

    The current study examined the antimicrobial susceptibility of 86 Listeria spp. isolated from processed bison carcasses. Susceptibility to 25 antimicrobial agents was determined using E-test and National Antimicrobial Resistance Monitoring System (NARMS) panels. Most Listeria isolates (88-98%) exhibited resistance to bacitracin, oxacillin, cefotaxime, and fosfomycin. Resistance to tetracycline (18.6%) was also common. Of the 16 tetracycline-resistant Listeria isolates, 15 carried tetM and 2 contained integrase of Tn1545 transposons. Rifampicin and trimethoprim-sulfamethoxazole were the most active antimicrobial agents against Listeria spp., with a MIC(90) of 0.38 microg ml(-1). Ampicillin, erythromycin, penicillin, gentamicin, and tobramycin also exhibited good activity against Listeria spp., with MIC(90) not exceeding 1 microg ml(-1). Differences in resistance among Listeria spp. was displayed, as Listeria innocua strains were more resistant than other Listeria species. The study showed that Listeria monocytogenes strains from bison were susceptible to the antibiotics most commonly used to treat human listeriosis. However, the presence of antimicrobial resistance in L. innocua indicates the potential for transfer of resistance and a conjugative transposon to L. monocytogenes. The findings of our study will provide useful information for the development of public health policy in the use of antimicrobials in food animal production.

  17. Cytotoxic and antimicrobial activity of selected Cameroonian edible plants

    PubMed Central

    2013-01-01

    Background In Cameroon, the use of edible plants is an integral part of dietary behavior. However, evidence of the antimicrobial as well as the cytotoxic effects of many of them has not been investigated. In the present study, aqueous and methanol extracts from barks, seeds, leaves and roots of three Cameroonian edible plants namely Garcina lucida, Fagara heitzii and Hymenocardia lyrata were evaluated for their cytotoxic and antimicrobial activities. Methods Antibacterial and antifungal activities were assessed by the broth micro-dilution method meanwhile the cytotoxicity was performed using sulphorhodamine B assay (SRB) against the human leukemia THP-1, the alveolar epithelial A549, prostate cancer PC-3, breast adenocarcinoma MCF-7 and cervical cancer HeLa cell lines. Results The minimum inhibitory concentration (MIC) values of the seven tested extracts ranged from 62.5 μg/ml to 1000 μg/ml. The methanol (MeOH) extract from the roots of H. lyrata showed the highest antibacterial activity against Gram-positive bacteria S. aureus and S. epidermitis. The best antifungal activity was obtained with the MeOH extract from the leaves of G. lucida against C. tropicalis (MIC value of 62.5 μg/ml). The in vitro antiproliferative activity revealed that, extract from the bark of F. heitzii and extract from H. lyrata roots had significant cytotoxic activity on THP-1 (IC50 8.4 μg/ml) and PC-3 (IC50 9.5 μg/ml) respectively. Conclusion Our findings suggest that Cameroonian spices herein studied could be potentially useful for the development of therapeutic agents against bacterial infections as well as for prostate and leukemia cancer. PMID:23565827

  18. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains.

    PubMed

    Konaté, Kiessoun; Hilou, Adama; Mavoungou, Jacques François; Lepengué, Alexis Nicaise; Souza, Alain; Barro, Nicolas; Datté, Jacques Y; M'batchi, Bertrand; Nacoulma, Odile Germaine

    2012-02-24

    The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections.

  19. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains

    PubMed Central

    2012-01-01

    Background The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials Materials and methods In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). Results All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. Conclusion The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections. PMID:22364123

  20. Underlying Mechanism of Antimicrobial Activity of Chitosan Microparticles and Implications for the Treatment of Infectious Diseases

    PubMed Central

    Jeon, Soo Jin; Oh, Manhwan; Yeo, Won-Sik; Galvão, Klibs N.; Jeong, Kwang Cheol

    2014-01-01

    The emergence of antibiotic resistant microorganisms is a great public health concern and has triggered an urgent need to develop alternative antibiotics. Chitosan microparticles (CM), derived from chitosan, have been shown to reduce E. coli O157:H7 shedding in a cattle model, indicating potential use as an alternative antimicrobial agent. However, the underlying mechanism of CM on reducing the shedding of this pathogen remains unclear. To understand the mode of action, we studied molecular mechanisms of antimicrobial activity of CM using in vitro and in vivo methods. We report that CM are an effective bactericidal agent with capability to disrupt cell membranes. Binding assays and genetic studies with an ompA mutant strain demonstrated that outer membrane protein OmpA of E. coli O157:H7 is critical for CM binding, and this binding activity is coupled with a bactericidal effect of CM. This activity was also demonstrated in an animal model using cows with uterine diseases. CM treatment effectively reduced shedding of intrauterine pathogenic E. coli (IUPEC) in the uterus compared to antibiotic treatment. Since Shiga-toxins encoded in the genome of bacteriophage is often overexpressed during antibiotic treatment, antibiotic therapy is generally not recommended because of high risk of hemolytic uremic syndrome. However, CM treatment did not induce bacteriophage or Shiga-toxins in E. coli O157:H7; suggesting that CM can be a potential candidate to treat infections caused by this pathogen. This work establishes an underlying mechanism whereby CM exert antimicrobial activity in vitro and in vivo, providing significant insight for the treatment of diseases caused by a broad spectrum of pathogens including antibiotic resistant microorganisms. PMID:24658463

  1. Sustained antimicrobial activity and reduced toxicity of oxidative biocides through biodegradable microparticles.

    PubMed

    Sofokleous, Panagiotis; Ali, Shanom; Wilson, Peter; Buanz, Asma; Gaisford, Simon; Mistry, Dharmit; Fellows, Adrian; Day, Richard M

    2017-12-01

    The spread of antibiotic-resistant pathogens requires new treatments. Small molecule precursor compounds that produce oxidative biocides with well-established antimicrobial properties could provide a range of new therapeutic products to combat resistant infections. The aim of this study was to investigate a novel biomaterials-based approach for the manufacture, targeted delivery and controlled release of a peroxygen donor (sodium percarbonate) combined with an acetyl donor (tetraacetylethylenediamine) to deliver local antimicrobial activity via a dynamic equilibrium mixture of hydrogen peroxide and peracetic acid. Entrapment of the pre-cursor compounds into hierarchically structured degradable microparticles was achieved using an innovative dry manufacturing process involving thermally induced phase separation (TIPS) that circumvented compound decomposition associated with conventional microparticle manufacture. The microparticles provided controlled release of hydrogen peroxide and peracetic acid that led to rapid and sustained killing of multiple drug-resistant organisms (methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli) without associated cytotoxicity in vitro nor intracutaneous reactivity in vivo. The results from this study demonstrate for the first time that microparticles loaded with acetyl and peroxygen donors retain their antimicrobial activity whilst eliciting no host toxicity. In doing so, it overcomes the detrimental effects that have prevented oxidative biocides from being used as alternatives to conventional antibiotics. The manuscript explores a novel approach to utilize the antimicrobial activity of oxidative species for sustained killing of multiple drug-resistant organisms without causing collateral tissue damage. The results demonstrate, for the first time, the ability to load pre-cursor compounds into porous polymeric structures that results in their release and conversion into oxidative species in a

  2. The effect of radiopacifiers agents on pH, calcium release, radiopacity, and antimicrobial properties of different calcium hydroxide dressings.

    PubMed

    Ordinola-Zapata, Ronald; Bramante, Clovis Monteiro; García-Godoy, Franklin; Moldauer, Bertram Ivan; Gagliardi Minotti, Paloma; Tercília Grizzo, Larissa; Duarte, Marco Antonio Hungaro

    2015-07-01

    The aim of this study was to evaluate the antimicrobial activity, pH level, calcium ion release, and radiopacity of calcium hydroxide pastes associated with three radiopacifying agents (iodoform, zinc oxide, and barium sulfate). For the pH and calcium release tests, 45 acrylic teeth were utilized and immersed in ultrapure water. After 24 h, 72 h, and 7 days the solution was analyzed by using a pH meter and an atomic absorption spectrophotometer. Polyethylene tubes filled with the pastes were used to perform the radiopacity test. For the antimicrobial test, 25 dentin specimens were infected intraorally in order to induce the biofilm colonization and treated with the pastes for 7 days. The Live/Dead technique and a confocal microscope were used to obtain the ratio of live cells. Parametric and nonparametric statistical tests were performed to show differences among the groups (P < 0.05). The pH analysis at 7 days showed significant differences (P < 0.05) among the groups. No differences among the pastes were found in the calcium release test on the 7th day (P > 0.05). The calcium hydroxide/iodoform samples had the highest radiopacity and antimicrobial activity against the biofilm-infected dentin in comparison to the other pastes (P < 0.05). Calcium hydroxide mixed with 17% iodoform and 35% propylene glycol into a paste had the highest pH, calcium ion release, radiopacity, and the greatest antimicrobial action versus similar samples mixed with BaSO4 or ZnO. © 2015 Wiley Periodicals, Inc.

  3. Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities.

    PubMed

    Manivasagan, Panchanathan; Alam, Moch Syaiful; Kang, Kyong-Hwa; Kwak, Minseok; Kim, Se-Kwon

    2015-06-01

    Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.

  4. Antimicrobial activity of ProRoot MTA in contact with blood

    PubMed Central

    Farrugia, C.; Baca, P.; Camilleri, J.; Arias Moliz, M. T.

    2017-01-01

    Dental materials based on Portland cement, which is used in the construction industry have gained popularity for clinical use due to their hydraulic properties, the interaction with tooth tissue and their antimicrobial properties. The antimicrobial properties are optimal in vitro. However in clinical use contact with blood may affect the antimicrobial properties. This study aims to assess whether antimicrobial properties of the Portland cement-based dental cements such as mineral trioxide aggregate (MTA) are also affected by contact with blood present in clinical situations. ProRoot MTA, a Portland cement-based dental cement was characterized following contact with water, or heparinized blood after 1 day and 7 days aging. The antimicrobial activity under the mentioned conditions was assessed using 3 antimicrobial tests: agar diffusion test, direct contact test and intratubular infection test. MTA in contact with blood was severely discoloured, exhibited an additional phosphorus peak in elemental analysis, no calcium hydroxide peaks and no areas of bacterial inhibition growth in the agar diffusion test were demonstrated. ProRoot MTA showed limited antimicrobial activity, in both the direct contact test and intratubular infection test. When aged in water ProRoot MTA showed higher antimicrobial activity than when aged in blood. Antimicrobial activity reduced significantly after 7 days. Further assessment is required to investigate behaviour in clinical situations. PMID:28128328

  5. In vitro antimicrobial activity of extracts and isolated compound from Dalbergia stipulacea Roxb. leaves

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Bhat, Tahir Ahmad; Singh, Rattan Deep

    2017-07-01

    The study was designed to examine the in vitro antimicrobial efficacy of extracts and isolated compound of Dalbergia stipulacea. Combined extracts (chloroform and methanol) of plant leaves fractionated with n-butanol loaded with column afforded a flavonoid glycoside compound identified as luteolin 4'-rutinoside. Different extracts and isolated compound exhibited pronounced antibacterial and antifungal varied activities against four bacteria (Clostridium acetobutylinium, Bacillus subtilis, Streptococcus mutans, and Pseudomonas sp.) and one fungus (Candida albicans) susceptibility were determined using disc diffusion method. The minimum inhibitory concentration (MIC) of extracts and isolated compounds was determined by broth dilution method. The maximum activity was shown by chloroform extract against C. albicans with a zone of inhibition of 17 mm and minimum activity was displayed by methanolic extract against Pseudomonas sp. with 5 mm. However, isolated compound has shown maximum activity against Pseudomonas sp. with 15 mm. The MIC values higher in methanol extract against Pseudomonas sp. and isolated compound shows good against Pseudomonas sp. and B. subtilis. Our findings indicate that plant could be used as a good antimicrobial agent in food, pharmaceutical and bio-pesticide industries.

  6. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP.

    PubMed

    Jia, Fengjing; Wang, Jiayi; Peng, Jinxiu; Zhao, Ping; Kong, Ziqing; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-10-01

    With the increasing emergence of resistant microbes toward conventional antimicrobial agents, there is an urgent need for the development of antimicrobial agents with novel action mode. Antimicrobial peptides (AMPs) are believed to be one kind of ideal alternatives. However, AMPs can be easily degraded by protease, which limited their therapeutic use. In the present study, D-amino acid substitution strategy was employed to enhance the stability of polybia-CP. We investigated the stability of peptides against the degradation of trypsin and chymotrypsin by determining the antimicrobial activity or determining the HPLC profile of peptides after incubation with proteases. Our results showed that both the all D-amino acid derivative (D-CP) and partial D-lysine substitution derivative (D-lys-CP) have an improved stability against trypsin and chymotrypsin. Although D-CP takes left-hand α-helical conformation and D-lys-CP loses some α-helical content, both of the D-amino acid-substituted derivatives maintain their parental peptides' membrane active action mode. In addition, D-lys-CP showed a slight weaker antimicrobial activity than polybia-CP, but the hemolytic activity decreased greatly. These results suggest that D-CP and D-lys-CP can offer strategy to improve the property of AMPs and may be leading compounds for the development of novel antimicrobial agents. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Antimicrobial stewardship activities: a survey of Queensland hospitals.

    PubMed

    Avent, Minyon L; Hall, Lisa; Davis, Louise; Allen, Michelle; Roberts, Jason A; Unwin, Sean; McIntosh, Kylie A; Thursky, Karin; Buising, Kirsty; Paterson, David L

    2014-11-01

    In 2011, the Australian Commission on Safety and Quality in Health Care (ACSQHC) recommended that all hospitals in Australia must have an Antimicrobial Stewardship (AMS) program by 2013. Nevertheless, little is known about current AMS activities. This study aimed to determine the AMS activities currently undertaken, and to identify gaps, barriers to implementation and opportunities for improvement in Queensland hospitals. The AMS activities of 26 facilities from 15 hospital and health services in Queensland were surveyed during June 2012 to address strategies for effective AMS: implementing clinical guidelines, formulary restriction, reviewing antimicrobial prescribing, auditing antimicrobial use and selective reporting of susceptibility results. The response rate was 62%. Nineteen percent had an AMS team (a dedicated multidisciplinary team consisting of a medically trained staff member and a pharmacist). All facilities had access to an electronic version of Therapeutic Guidelines: Antibiotic, with a further 50% developing local guidelines for antimicrobials. One-third of facilities had additional restrictions. Eighty-eight percent had advice for restricted antimicrobials from in-house infectious disease physicians or clinical microbiologists. Antimicrobials were monitored with feedback given to prescribers at point of care by 76% of facilities. Deficiencies reported as barriers to establishing AMS programs included: pharmacy resources, financial support by hospital management, and training and education in antimicrobial use. Several areas for improvement were identified: reviewing antimicrobial prescribing with feedback to the prescriber, auditing, and training and education in antimicrobial use. There also appears to be a lack of resources to support AMS programs in some facilities. WHAT IS KNOWN ABOUT THE TOPIC?: The ACSQHC has recommended that all hospitals implement an AMS program by 2013 as a requirement of Standard 3 (Preventing and Controlling Healthcare

  8. Broad Spectrum Antimicrobial Activity of Forest-Derived Soil Actinomycete, Nocardia sp. PB-52

    PubMed Central

    Sharma, Priyanka; Kalita, Mohan C.; Thakur, Debajit

    2016-01-01

    A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195). The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacteria, and yeasts. Optimization for the growth and antimicrobial activity of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and antimicrobial potential of the strain were recorded in GLM medium at 28°C, initial pH 7.4 of the medium and incubation period of 8 days. Based on polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial compounds in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52) showed lowest minimum inhibitory concentration (MIC) against S. aureus MTCC 96 (0.975 μg/mL) whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 μg/mL). Scanning electron microscopy (SEM) revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS). GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which are reported to possess diverse biological activity. These

  9. An Injectable System for Local and Sustained Release of Antimicrobial Agents in the Periodontal Pocket.

    PubMed

    Morelli, Laura; Cappelluti, Martino Alfredo; Ricotti, Leonardo; Lenardi, Cristina; Gerges, Irini

    2017-08-01

    Periodontitis treatments usually require local administration of antimicrobial drugs with the aim to reduce the bacterial load inside the periodontal pocket. Effective pharmaceutical treatments may require sustained local drug release for several days in the site of interest. Currently available solutions are still not able to fulfill the clinical need for high-quality treatments, mainly in terms of release profiles and patients' comfort. This work aims to fill this gap through the development of an in situ gelling system, capable to achieve controlled and sustained release of antimicrobial agents for medium-to-long-term treatments. The system is composed of micrometer-sized β-cyclodextrin-based hydrogel (bCD-Jef-MPs), featured by a strong hydrophilic character, suspended in a synthetic block-co-polymer solution (Poloxamer 407), which is capable to undergo rapid thermally induced sol-gel phase transition at body temperature. The chemical structure of bCD-Jef-MPs was confirmed by cross-correlating data from Fourier transform infrared (FTIR) spectroscopy, swelling test, and degradation kinetics. The thermally induced sol-gel phase transition is demonstrated by rheometric tests. The effectiveness of the described system to achieve sustained release of antimicrobial agents is demonstrated in vitro, using chlorhexidine digluconate as a drug model. The results achieved in this work disclose the potential of the mentioned system in effectively treating periodontitis lesions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antimicrobial Octapeptin C4 Analogues Active against Cryptococcus Species.

    PubMed

    Chitty, Jessica L; Butler, Mark S; Suboh, Azzah; Edwards, David J; Cooper, Matthew A; Fraser, James A; Robertson, Avril A B

    2018-02-01

    Resistance to antimicrobials is a growing problem in both developed and developing countries. In nations where AIDS is most prevalent, the human fungal pathogen Cryptococcus neoformans is a significant contributor to mortality, and its growing resistance to current antifungals is an ever-expanding threat. We investigated octapeptin C4, from the cationic cyclic lipopeptide class of antimicrobials, as a potential new antifungal. Octapeptin C4 was a potent, selective inhibitor of this fungal pathogen with an MIC of 1.56 μg/ml. Further testing of octapeptin C4 against 40 clinical isolates of C. neoformans var. grubii or neoformans showed an MIC of 1.56 to 3.13 μg/ml, while 20 clinical isolates of C. neoformans var. gattii had an MIC of 0.78 to 12.5 μg/ml. In each case, the MIC values for octapeptin C4 were equivalent to, or better than, current antifungal drugs fluconazole and amphotericin B. The negatively charged polysaccharide capsule of C. neoformans influences the pathogen's sensitivity to octapeptin C4, whereas the degree of melanization had little effect. Testing synthetic octapeptin C4 derivatives provided insight into the structure activity relationships, revealing that the lipophilic amino acid moieties are more important to the activity than the cationic diaminobutyric acid groups. Octapeptins have promising potential for development as anticryptococcal therapeutic agents. Copyright © 2018 Chitty et al.

  11. Antimicrobial Octapeptin C4 Analogues Active against Cryptococcus Species

    PubMed Central

    Chitty, Jessica L.; Butler, Mark S.; Suboh, Azzah; Edwards, David J.; Cooper, Matthew A.; Fraser, James A.

    2017-01-01

    ABSTRACT Resistance to antimicrobials is a growing problem in both developed and developing countries. In nations where AIDS is most prevalent, the human fungal pathogen Cryptococcus neoformans is a significant contributor to mortality, and its growing resistance to current antifungals is an ever-expanding threat. We investigated octapeptin C4, from the cationic cyclic lipopeptide class of antimicrobials, as a potential new antifungal. Octapeptin C4 was a potent, selective inhibitor of this fungal pathogen with an MIC of 1.56 μg/ml. Further testing of octapeptin C4 against 40 clinical isolates of C. neoformans var. grubii or neoformans showed an MIC of 1.56 to 3.13 μg/ml, while 20 clinical isolates of C. neoformans var. gattii had an MIC of 0.78 to 12.5 μg/ml. In each case, the MIC values for octapeptin C4 were equivalent to, or better than, current antifungal drugs fluconazole and amphotericin B. The negatively charged polysaccharide capsule of C. neoformans influences the pathogen's sensitivity to octapeptin C4, whereas the degree of melanization had little effect. Testing synthetic octapeptin C4 derivatives provided insight into the structure activity relationships, revealing that the lipophilic amino acid moieties are more important to the activity than the cationic diaminobutyric acid groups. Octapeptins have promising potential for development as anticryptococcal therapeutic agents. PMID:29158283

  12. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    PubMed

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  13. Prunus mume extract exhibits antimicrobial activity against pathogenic oral bacteria.

    PubMed

    Seneviratne, Chamida J; Wong, Ricky W K; Hägg, Urban; Chen, Yong; Herath, Thanuja D K; Samaranayake, P Lakshman; Kao, Richard

    2011-07-01

    Prunus mume is a common fruit in Asia, which has been used in traditional Chinese medicine. In this study, we focused on the antimicrobial properties of Prunus mume extract against oral pathogens related to dental caries and periodontal diseases. A total of 15 oral pathogens including Streptococcus mutans, S. sobrinus, S. mitis, S. sanguinis, Lactobacillus acidophilus, P. gingivalis, Aggregatibacter actinomycetemcomitans, and Candida species were included in the study. Initially, agar diffusion assay was performed to screen the antimicrobial activities of Prunus mume extract. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were then determined for sensitive species. Effect of Prunus mume extract on human oral keratinocytes (HOK) viability was also tested. In the agar diffusion assay, drug suspension of 2 g/mL was able to inhibit all the bacterial species tested, but not the fungal species. MIC and MBC range of Prunus mume extract against the oral bacteria was 0.15625-0.0003 g/mL and P. gingivalis being the most susceptible species. Prune extract did not cause any detrimental effect on HOK. Prunus mume extract may be a potential candidate for developing an oral antimicrobial agent to control or prevent dental diseases associated with oral pathogenic bacteria. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.

  14. Antimicrobial activity of topically-applied soyaethyl morpholinium ethosulfate micelles against Staphylococcus species.

    PubMed

    Yang, Shih-Chun; Aljuffali, Ibrahim A; Sung, Calvin T; Lin, Chwan-Fwu; Fang, Jia-You

    2016-03-01

    Here we evaluated the antibacterial efficacy of soyaethyl morpholinium ethosulfate (SME) micelles as an inherent bactericide against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). The antimicrobial activity was examined by in vitro culture model and murine model of skin infection. Cationic micelles formed by benzalkonium chloride or cetylpyridinium chloride were used for comparison. The minimum inhibitory concentration and minimum bactericidal concentration against S. aureus and MRSA were 1.71-3.42 and 1.71-6.84 μg/ml, respectively. Topical administration of SME micelles significantly decreased the cutaneous infection and MRSA load in mice. The killing of bacteria was caused by direct cell wall/membrane rupture. SME micelles also penetrated into the bacteria to elicit a Fenton reaction and oxidative stress. SME micelles have potential as antimicrobial agents due to their lethal effect against S. aureus and MRSA with a low toxicity to mammalian cells.

  15. In vitro antimicrobial activity of Medilox® super-oxidized water.

    PubMed

    Gunaydin, Murat; Esen, Saban; Karadag, Adil; Unal, Nevzat; Yanik, Keramettin; Odabasi, Hakan; Birinci, Asuman

    2014-07-14

    Super-oxidized water is one of the broad spectrum disinfectants, which was introduced recently. There are many researches to find reliable chemicals which are effective, inexpensive, easy to obtain and use, and effective for disinfection of microorganisms leading hospital infections. Antimicrobial activity of super-oxidized water is promising. The aim of this study was to investigate the in-vitro antimicrobial activity of different concentrations of Medilox® super-oxidized water that is approved by the Food and Drug Administration (FDA) as high level disinfectant. In this study, super-oxidized water obtained from Medilox® [Soosan E & C, Korea] device, which had been already installed in our hospital, was used. Antimicrobial activities of different concentrations of super-oxidized water (1/1, 1/2, 1/5, 1/10, 1/20, 1/50, 1/100) at different exposure times (1, 2, 5, 10, 30 min) against six ATCC strains, eight antibiotic resistant bacteria, yeasts and molds were evaluated using qualitative suspension test. Dey-Engley Neutralizing Broth [Sigma-Aldrich, USA] was used as neutralizing agent. Medilox® was found to be effective against all standard strains (Acinetobacter baumannii 19606, Escherichia coli 25922, Enterococcus faecalis 29212, Klebsiella pneumoniae 254988, Pseudomonas aeruginosa 27853, Staphylococcus aureus 29213), all clinical isolates (Acinetobacter baumannii, Escherichia coli, vancomycin-resistant Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Myroides spp.), and all yeastsat 1/1 dilution in ≥1 minute. It was found to be effective on Aspergillus flavus at 1/1 dilution in ≥2 minutes and on certain molds in ≥5 minutes. Medilox® super-oxidized water is a broad spectrum, on-site producible disinfectant, which is effective on bacteria and fungi and can be used for the control of nosocomial infection.

  16. Novel food packaging systems with natural antimicrobial agents.

    PubMed

    Irkin, Reyhan; Esmer, Ozlem Kizilirmak

    2015-10-01

    A new type of packaging that combines food packaging materials with antimicrobial substances to control microbial surface contamination of foods to enhance product microbial safety and to extend shelf-life is attracting interest in the packaging industry. Several antimicrobial compounds can be combined with different types of packaging materials. But in recent years, since consumer demand for natural food ingredients has increased because of safety and availability, these natural compounds are beginning to replace the chemical additives in foods and are perceived to be safer and claimed to alleviate safety concerns. Recent research studies are mainly focused on the application of natural antimicrobials in food packaging system. Biologically derived compounds like bacteriocins, phytochemicals, enzymes can be used in antimicrobial food packaging. The aim of this review is to give an overview of most important knowledge about application of natural antimicrobial packagings with model food systems and their antimicrobial effects on food products.

  17. From Synthesis to Biological Impact of Pd (II) Complexes: Synthesis, Characterization, and Antimicrobial and Scavenging Activity

    PubMed Central

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    The Pd (II) complexes with a series of halosubstituted benzylamine ligands (BLs) have been synthesized and characterized with different spectroscopic technique such as FTIR, UV/Vis, LCMS, 1H, and 13C NMR. Their molecular sustainability in different solvents such as DMSO, DMSO : H2O, and DMSO : PBS at physiological condition (pH 7.2) was determined by UV/Vis spectrophotometer. The in vitro antibacterial and antifungal activities of the complexes were investigated against Gram-positive and Gram-negative microbes and two different fungi indicated their significant biological potential. Additionally, their antioxidant activity has been analyzed with DPPH• free radical through spectrophotometric method and the result inferred them as an antioxidant. The stronger antibacterial and antioxidant activities of the synthesized complexes suggested them as a stronger antimicrobial agent. Our study advances the biological importance of palladium (II) amine complexes in the field of antimicrobial and antioxidant activities. PMID:27119023

  18. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil

    PubMed Central

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    Background Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. Objective The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. Design O. dictamnus essential oil was initially analyzed by gas chromatography–mass spectrometry (GC–MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. Results The main constituents of O. dictamnus essential oil identified by GC–MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was

  20. Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots.

    PubMed

    Sahreen, Sumaira; Khan, Muhammad Rashid; Khan, Rahmat Ali; Hadda, Taibi Ben

    2015-07-03

    Being a part of Chinese as well as ayurdic herbal system, roots of Rumex hastatus D. Don (RH) is highly medicinal, used to regulated blood pressure. It is also reported that the plant is diuretic, laxative, tonic, used against microbial skin diseases, bilious complaints and jaundice. The present study is conducted to evaluate phytochemical, antimicrobial, antitumor and cytotoxic activities of extract obtained from R. hastatus roots. RH roots were powdered and extracted with methanol to get crude extract. Crude extract was further fractioned on the basis of increasing polarity, with n-hexane (HRR), chloroform (CRR), ethyl acetate (ERR), n-butanol (BRR) and residual aqueous fraction (ARR). Methanol extract and its derived fractions were subjected to phytochemical screening and assayed for antibacterial activities via agar well diffusion method. Antifungal activities were checked through agar tube dilution method whereas potato disc assay was employed for the determination of antitumor activity. On the other hand cytotoxic activities were conducted using brine shrimps procedures. The results obtained from phytochemical analysis indicate the presence of alkaloids, anthraquinones, flavonoids and saponins in all the fractions. Most of the plant fractions showed substantial antimicrobial activities, which is in accordance with the spacious use of tested plant samples in primary healthcare center. Fractions of R. hastatus roots for cytotoxicity were tested as an effective cytotoxic was found as BRR > MRR > CRR > ARR > ERR > HRR. Ranking order of fractions of R. hastatus roots for effective antitumor screening was found as MRR > BRR > ARR > CRR > ERR > HRR. These results showed that R. hastatus appeared as an important source for the discovery of new antimicrobial drugs and antitumor agents; verify its traditional uses and its exploitation as therapeutic agent.

  1. Antimicrobial Activity of New Materials Based on Lavender and Basil Essential Oils and Hydroxyapatite.

    PubMed

    Predoi, Daniela; Iconaru, Simona Liliana; Buton, Nicolas; Badea, Monica Luminita; Marutescu, Luminita

    2018-04-30

    This study presents, for the first-time, the results of a study on the hydrodynamic diameter of essential oils (EOs) of basil and lavender in water, and solutions of EOs of basil (B) and lavender (L) and hydroxyapatite (HAp). The possible influence of basil and lavender EOs on the size of hydroxyapatite nanoparticles was analyzed by Scanning Electron Microscopy (SEM). We also investigated the in vitro antimicrobial activity of plant EOs and plant EOs hydroxyapatite respectively, against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus 1144 (MRSA 1144) and S. aureus 1426) and Gram-negative bacteria ( Escherichia coli ATCC 25922 and Escherichia coli ESBL 4493). From the autocorrelation function, obtained by Dynamic Light Scattering (DLS) measurements it was observed that basil yielded one peak at an average hydrodynamic diameter of 354.16 nm, while lavender yielded one peak at an average hydrodynamic diameter of 259.76 nm. In the case of HAp nanoparticles coated with basil (HApB) and lavender (HApL) essential oil, the aggregation was minimal. We found that the lavender EO exhibited a very good inhibitory growth activity (MIC values ranging from <0.1% for E. coli reference strain to 0.78% for S. aureus strains). The biological studies indicated that HapL material displayed an enhanced antimicrobial activity, indicating the potential use of HAp as vehicle for low concentrations of lavender EO with antibacterial properties. Flow cytometry analysis (FCM) allowed us to determine some of the potential mechanisms of the antimicrobial activities of EOs, suggesting that lavender EO was active against E. coli by interfering with membrane potential, the membrane depolarization effect being increased by incorporation of the EOs into the microporous structure of HAp. These findings could contribute to the development of new antimicrobial agents that are urgently needed for combating the antibiotic resistance phenomena.

  2. Novel Synthetic Antimicrobial Peptides against Streptococcus mutans▿

    PubMed Central

    He, Jian; Eckert, Randal; Pharm, Thanh; Simanian, Maurice D.; Hu, Chuhong; Yarbrough, Daniel K.; Qi, Fengxia; Anderson, Maxwell H.; Shi, Wenyuan

    2007-01-01

    Streptococcus mutans, a common oral pathogen and the causative agent of dental caries, has persisted and even thrived on the tooth surface despite constant removal and eradication efforts. In this study, we generated a number of synthetic antimicrobial peptides against this bacterium via construction and screening of several structurally diverse peptide libraries where the hydrophobicity and charge within each library was varied incrementally in order to generate a collection of peptides with different biochemical characteristics. From these libraries, we identified multiple peptides with robust killing activity against S. mutans. To further improve their effectiveness, the most bactericidal peptides from each library were synthesized together as one molecule, in various combinations, with and without a flexible peptide linker between each antimicrobial region. Many of these “fusion” peptides had enhanced killing activities in comparison with those of the original nonconjoined molecules. The results presented here illustrate that small libraries of biochemically constrained peptides can be used to generate antimicrobial peptides against S. mutans, several of which may be likely candidates for the development of anticaries agents. PMID:17296741

  3. The Central Hinge Link Truncation of the Antimicrobial Peptide Fowlicidin-3 Enhances Its Cell Selectivity without Antibacterial Activity Loss

    PubMed Central

    Qu, Pei; Gao, Wei; Chen, Huixian; Li, Dan; Yang, Na; Zhu, Jian; Li, Zhongqiu

    2016-01-01

    Antimicrobial peptides (AMPs) have been paid considerable attention because of their broad-spectrum antimicrobial activity and a reduced possibility of the development of bacterial drug resistance. Fowlicidin-3 (Fow-3) is an identified type of chicken cathelicidin AMP that has exhibited considerable antimicrobial activity and cytotoxicity. To reduce cell toxicity and improve cell selectivity, several truncated peptides of fowlicidin-3, Fow-3(1-15), Fow-3(1-19), Fow-3(1-15-20-27), and Fow-3(20-27), were synthesized. Our results indicated that neither the N- nor C-terminal segment alone [Fow-3(1-15), Fow-3(1-19), Fow-3(20-27)] was sufficient to confer antibacterial activity. However, Fow-3(1-19) with the inclusion of the central hinge link (-AGIN-) retained substantial cell toxicity, which other analogs lost. Fow-3(1-15-20-27) displayed potent antimicrobial activity for a wide range of Gram-negative and Gram-positive bacteria and no obvious hemolytic activity or cytotoxicity. The central link region was shown to be critically important in the function of cell toxicity but was not relevant to antibacterial activity. Fow-3(1-15-20-27) maintained antibacterial activity in the presence of physiological concentrations of salts. The results from fluorescence spectroscopy, scanning electron microcopy, and transmission electron microcopy showed that Fow-3(1-15-20-27) as well as fowlicidin-3 killed bacterial cells by increasing membrane permeability and damaging the membrane envelope integrity. Fow-3(1-15-20-27) could be a promising antimicrobial agent for clinical application. PMID:26902768

  4. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis.

    PubMed

    Ho, K Y; Tsai, C C; Chen, C P; Huang, J S; Lin, C C

    2001-03-01

    The antimicrobial activity of honokiol and magnolol, the main constituents of Magnolia officinalis was investigated. The antimicrobial activity was assayed by the agar dilution method using brain heart infusion medium and the minimum inhibitory concentration (MIC) were determined for each compound using a twofold serial dilution assay. The results showed that honokiol and magnolol have a marked antimicrobial effect (MIC = 25 microg/mL) against Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Micrococcus luteus and Bacillus subtilis, but did not show antimicrobial activity (MIC > or = 100 microg/mL) for Shigella flexneii, Staphylococcus epidermidis, Enterobacter aerogenes, Proteus vulgaris, Escherichia coli and Pseudomonas aeruginosa. Our results indicate that honokiol and magnolol, although less potent than tetracycline, show a significant antimicrobial activity for periodontal pathogens. Hence we suggest that honokiol and magnolol might have the potential to be an adjunct in the treatment of periodontitis. Copyright 2001 John Wiley & Sons, Ltd.

  5. Edible coating as carrier of antimicrobial agents to extend the shelf life of fresh-cut apples

    USDA-ARS?s Scientific Manuscript database

    Edible coatings with antimicrobial agents can extend shelf-life of fresh-cut fruits. The effect of lemongrass, oregano oil and vanillin incorporated in apple puree-alginate edible coatings, on shelf-life of fresh-cut 'Fuji' apples, was investigated. Coated apples were packed in air filled polypropyl...

  6. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity.

    PubMed

    Mondal, Dibyendu; Bhowmick, Biplab; Maity, Dipanwita; Mollick, Md Masud R; Rana, Dipak; Rangarajan, Vivek; Sen, Ramkrishna; Chattopadhyay, Dipankar

    2015-03-01

    Polymeric nanocomposites embedded with nontoxic antimicrobial agents have recently gained potential industrial significance, mainly for their applicability to preserve food quality and ensure safety. In this study, a poly(butylene adipate-co-terephthalate) (PBAT)/organoclay (CMMT) based nanocomposite film doped with sodium benzoate (SB) as antimicrobial agent was prepared by a solution mixing process. A homogenous dispersion of organoclay (cetyltrimethylammonium-modified montmorillonite [CMMT]) in PBAT matrix was observed by X-ray diffraction and transmission electron microscopy. PBAT/CMMT nanocomposite film showed higher barrier properties against water and methanol vapor compared to the PBAT film. The release of SB from PBAT and its nanocomposite film was measured and the relevant data were fitted to the Weibull model. The higher values of Weibull's shape factor and scale parameter as corroborated by experimental findings indicated faster rate of SB release from PBAT/CMMT/SB nanocomposite film, when compared to the pristine PBAT film. Bacterial inhibition studies were accomplished against 2 food pathogenic bacteria, Bacillus subtilis and Staphylococcus aureus, by determining the zone of inhibition and corresponding growth profiles. Both bacterial inhibition studies and growth profiles established that PBAT/CMMT/SB demonstrated better antimicrobial activity than PBAT/SB film. Therefore, PBAT/CMMT/SB nanocomposite film can be used for food packaging application as it showed good barrier properties and antimicrobial activity against food pathogenic bacteria. © 2015 Institute of Food Technologists®

  7. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents.

    PubMed

    Mahlapuu, Margit; Håkansson, Joakim; Ringstad, Lovisa; Björn, Camilla

    2016-01-01

    Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.

  8. The Influence of Osmolytes on the Antimicrobial Activity of Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Reed-Jones, Neiunna L.

    Silver nanoparticles (Ag-NPs) are gaining popularity as antimicrobial agents due to their broad- spectrum activity and lower propensity to develop resistance in bacteria. However, with increased frequency of use, there remains a possibility for bacteria to develop resistance or adaptive mechanisms against Ag-NPs overtime. Mechanisms used by bacteria to resist antimicrobial agents include efflux pumps, heat shock proteins (Hsp) and accumulation of compatible solutes, generally referred to as osmolytes. The latter mechanism is typically employed when bacteria are under osmotic stress they accumulate osmolytes either through de novo synthesis or exogenously. Osmolytes act to stabilize the bacterial cell membrane by maintaining the native protein structure, while at the same time, ensuring compatibility with other cellular structures and functions. The most common osmolytes accumulated by bacteria are glycine betaine, proline, carnitine, choline, trehalose and glutamate. Since Ag-NPs target the cell membrane it is conceivable that osmolytes may suppress its bactericidal activity. In the present study, we assess the antimicrobial efficacy of Ag-NPs in the presence of glycine betaine and proline. Exponential phase cultures (106 cfu/ml) of Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus were exposed to a predetermined the minimum inhibitory concentration (MIC) of 0.4 mM of citrate-stabilized Ag-NPs and incubated at 37°C for 48 h. This was replicated with the addition of 1 mM of either glycine betaine or proline. Growth was monitored by optical density, standard plate count, resazurin assay and LIVE/DEAD analyses. The result showed that Ag-NPs had no detectable effect on osmolyte treated cells. The average plate count of cultures supplemented with either glycine betaine or proline ranged from 108 to 109 cfu/ml after 48 h. Resazurin assay also showed that there was a significant increase in the cells supplemented with

  9. Antimicrobial activity of Memecylon malabaricum leaves.

    PubMed

    Hullatti, Kiran Kumar; Rai, V Ravishankar

    2004-06-01

    The petroleum ether, chloroform and methanol extracts of Memecylon malabaricum leaves were tested for antimicrobial activity. Only methanol extract has shown activity against bacteria both Gram (+) and Gram (-), and fungi. Copyright 2004 Elsevier B.V.

  10. Use of Extract of Citrus sinensis as an antimicrobial agent for foodborne zoonotic pathogens and spoilage bacteria

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens remain global health problems despite concerted efforts to control the transmission of these microorganisms through food. The resurgence of drug resistant bacteria has renewed interest in developing and testing new sources of antimicrobial agents to control foodborne illness. Thi...

  11. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America.

    PubMed

    Pérez Zamora, Cristina M; Torres, Carola A; Nuñez, María B

    2018-03-01

    The Verbenaceae family includes 2600 species grouped into 100 genera with a pantropical distribution. Many of them are important elements of the floras of warm-temperature and tropical regions of America. This family is known in folk medicine, and its species are used as digestive, carminative, antipyretic, antitussive, antiseptic, and healing agents. This review aims to collect information about the essential oils from the most reported species of the Verbenaceae family growing in South America, focusing on their chemical composition, antimicrobial activity, and synergism with commercial antimicrobials. The information gathered comprises the last twenty years of research within the South American region and is summarized taking into consideration the most representative species in terms of their essential oils. These species belong to Aloysia , Lantana , Lippia , Phyla , and Stachytarpheta genera, and the main essential oils they contain are monoterpenes and sesquiterpenes, such as β-caryophyllene, thymol, citral, 1,8-cineole, carvone, and limonene. These compounds have been found to possess antimicrobial activities. The synergism of these essential oils with antibiotics is being studied by several research groups. It constitutes a resource of interest for the potential use of combinations of essential oils and antibiotics in infection treatments.

  12. Absorbent silver (I) antimicrobial fabrics

    USDA-ARS?s Scientific Manuscript database

    In recent years, silver in form of silver ions, has been gaining importance in the wound management as an effective broad-spectrum antimicrobial agent. Silver has a long history as an antimicrobial agent, especially in the treatment of wounds. Alginates and carboxymethyl (CM) cotton contain carboxyl...

  13. Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Paralikar, Priti

    2016-10-01

    The alarming rate of infections caused by various pathogens and development of their resistance towards a large number of antimicrobial agents has generated an essential need to search for novel and effective antimicrobial agents. Metal nanoparticles such as silver have been widely used and accepted as strong antimicrobial agents, but considering the cost effectiveness and significant bioactivities, researchers are looking to utilize sulfur nanoparticles as an effective alternative to silver nanoparticles. This review has been focused on different approaches for the synthesis of sulfur nanoparticles, their broad spectrum bioactivities and possible mechanisms involved in their bioactivities. Expert commentary: Sulfur nanoparticles are reported to possess broad spectrum antimicrobial activity, and hence can be used to treat microbial infections and potentially tackle the problem of antibiotic resistance. Thus, in the future, sulfur nanoparticles can be used as an effective, non-toxic and economically viable alternative to other precious metal nanoparticles.

  14. Sales of veterinary antibacterial agents in nine European countries during 2005-09: trends and patterns.

    PubMed

    Grave, Kari; Greko, Christina; Kvaale, Mari K; Torren-Edo, Jordi; Mackay, David; Muller, Arno; Moulin, Gerard

    2012-12-01

    To identify trends and patterns of sales of veterinary antimicrobial agents in nine European countries during 2005-09 in order to document the situation. Existing sales data, in tonnes of active ingredients, of veterinary antimicrobial agents by class were collected from nine European countries in a standardized manner for the years 2005-09 (one country for 2006-09). A population correction unit (PCU) is introduced as a proxy for the animal population potentially treated with antimicrobial agents. The sales data are expressed as mg of active substance/PCU. Data coverage was reported to be 98%-100% for the nine countries. Overall, sales of veterinary antimicrobials agents, in mg/PCU, declined during the reporting period in the nine countries. Substantial differences in the sales patterns and in the magnitude of sales of veterinary antimicrobial agents, expressed as mg/PCU, between the nine countries are observed. The major classes sold were penicillins, sulphonamides and tetracyclines. The sales accounted for by the various veterinary antimicrobial agents have changed substantially for most countries. An increase in the sales of third- and fourth-generation cephalosporins and fluoroquinolones were observed for the majority of the countries. Through re-analysis of existing data by application of a harmonized approach, an overall picture of the trends in the sales of veterinary antimicrobial agents in the nine countries was obtained. Notable differences in trends in sales between the countries were observed. Further studies, preferably including data by animal species, are needed to understand the factors that explain these observations.

  15. Antimicrobial activity of topical agents against Propionibacterium acnes: an in vitro study of clinical isolates from a hospital in Shanghai, China.

    PubMed

    Ma, Ying; Zhang, Nanxue; Wu, Shi; Huang, Haihui; Cao, Yanpei

    2016-12-01

    This study aimed to compare the antimicrobial activities of topical agents against Propionibacterium acnes isolated from patients admitted to a hospital in Shanghai, China. The minimal inhibitory concentrations of the cultured P. acnes were determined in accordance with the Clinical and Laboratory Standards Institute. Susceptibilities to clindamycin and erythromycin were compared in terms of gender, age, disease duration, previous treatment, and disease severity. A total of 69 P. acnes strains were isolated from 98 patients (70.41%). The susceptibility to triple antibiotic ointment (neomycin/bacitracin/polymyxin B) and bacitracin was 100%. The susceptibility to fusidic acid was 92.7%. The resistance rates to neomycin sulfate, erythromycin, and clindamycin were 11.7%, 49.3%, and 33.4%, respectively. The high resistance rate to clindamycin and erythromycin was significantly affected by gender, previous treatment, and disease severity rather than by age and disease duration. Topical antibiotics should not be used separately for long-term therapy to avoid multiresistance. The use of topical antibiotics should be determined by clinicians on the basis of clinical conditions.

  16. Encrypted Antimicrobial Peptides from Plant Proteins.

    PubMed

    Ramada, M H S; Brand, G D; Abrão, F Y; Oliveira, M; Filho, J L Cardozo; Galbieri, R; Gramacho, K P; Prates, M V; Bloch, C

    2017-10-16

    Examples of bioactive peptides derived from internal sequences of proteins are known for decades. The great majority of these findings appear to be fortuitous rather than the result of a deliberate and methodological-based enterprise. In the present work, we describe the identification and the biological activities of novel antimicrobial peptides unveiled as internal fragments of various plant proteins founded on our hypothesis-driven search strategy. All putative encrypted antimicrobial peptides were selected based upon their physicochemical properties that were iteratively selected by an in-house computer program named Kamal. The selected peptides were chemically synthesized and evaluated for their interaction with model membranes. Sixteen of these peptides showed antimicrobial activity against human and/or plant pathogens, some with a wide spectrum of activity presenting similar or superior inhibition efficacy when compared to classical antimicrobial peptides (AMPs). These original and previously unforeseen molecules constitute a broader and undisputable set of evidences produced by our group that illustrate how the intragenic concept is a workable reality and should be carefully explored not only for microbicidal agents but also for many other biological functions.

  17. Synthesis and antimicrobial activity of gold/silver-tellurium nanostructures.

    PubMed

    Chang, Hsiang-Yu; Cang, Jinshun; Roy, Prathik; Chang, Huan-Tsung; Huang, Yi-Cheng; Huang, Chih-Ching

    2014-06-11

    Gold-tellurium nanostructures (Au-Te NSs), silver-tellurium nanostructures (Ag-Te NSs), and gold/silver-tellurium nanostructures (Au/Ag-Te NSs) have been prepared through galvanic reactions of tellurium nanotubes (Te NTs) with Au(3+), Ag(+), and both ions, respectively. Unlike the use of less environmentally friendly hydrazine, fructose as a reducing agent has been used to prepare Te NTs from TeO2 powders under alkaline conditions. The Au/Ag-Te NSs have highly catlaytic activity to convert nonfluorescent Amplex Red to form fluorescent product, revealing their great strength of generating reactive oxygen species (ROS). Au/Ag-Te NSs relative to the other two NSs exhibit greater antimicrobial activity toward the growth of E. coli, S. enteritidis, and S. aureus; the minimal inhibitory concentration (MIC) values of Au/Ag-Te NSs were much lower (>10-fold) than that of Ag-Te NSs and Au-Te NSs. The antibacterial activity of Au/Ag-Te NSs is mainly due to the release of Ag(+) ions and Te-related ions and also may be due to the generated ROS which destroys the bacteria membrane. In vitro cytotoxicity and hemolysis analyses have revealed their low toxicity in selected human cell lines and insignificant hemolysis in red blood cells. In addition, inhibition zone measurements using a Au/Ag-Te NSs-loaded konjac jelly film have suggested that it has great potential in practial application such as wound dressing for reducing bacterial wound infection. Having great antibacterial activitiy and excellent biocompatibility, the low-cost Au/Ag-Te NSs hold great potential as effective antimicrobial drugs.

  18. Hydroxyapatites and europium(III) doped hydroxyapatites as a carrier of silver nanoparticles and their antimicrobial activity.

    PubMed

    Wiglusz, Rafal J; Kedziora, Anna; Lukowiak, Anna; Doroszkiewicz, Wlodzimierz; Strek, Wieslaw

    2012-08-01

    Hydroxyapatites (Ca10(PO4)6(OH)2 and Eu3+:Ca10(PO4)6(OH)2) were synthesized by aqueous synthesis route. Hydroxyapatites were impregnated with silver ions that were subsequently reduced. XRD, TEM, and SAED measurements were used in order to determine the crystal structure and morphology of the final products. The results showed the well crystallized hydroxyapatite grains with diameter of about 35 nm and with silver nanoparticles on their surface. The antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 6538 as model of the Gram-positive bacteria, Escherichia coli ATCC 11229, and Klebsiella pneumoniae ATCC 4352 as model of Gram-negative bacteria, were shown with the best activity against K. pneumoniae. These nanocomposite powders can be a promising antimicrobial agent and a fluorescent material for biodetection due to their optical and bioactive properties.

  19. Chitosan-based nanosystems and their exploited antimicrobial activity.

    PubMed

    Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia

    2018-05-30

    Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Antimicrobial activity of chemically modified dextran derivatives.

    PubMed

    Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C

    2017-04-01

    Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C 12 H 25 or C 18 H 37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Composition, Cytotoxic and Antimicrobial Activities of Satureja intermedia C.A.Mey Essential Oil.

    PubMed

    Sharifi-Rad, Javad; Sharifi-Rad, Mehdi; Hoseini-Alfatemi, Seyedeh Mahsan; Iriti, Marcello; Sharifi-Rad, Majid; Sharifi-Rad, Marzieh

    2015-08-03

    In this study, the essential oil (EO) constituents from the aerial parts of Satureja intermedia C.A.Mey were detected by GC and GC/MS. The antimicrobial activity of EO on oral pathogens and its cytotoxicity to human cancer cells were determined by the microbroth dilution method and the crystal violet staining method, respectively. Thirty-nine compounds were identified and the main EO constituents were γ-terpinene (37.1%), thymol (30.2%), p-cymene (16.2%), limonene (3.9%), α-terpinene (3.3%), myrcene (2.5%), germacrene B (1.4%), elemicine (1.1%) and carvacrol (0.5%). The S. intermedia EO showed a concentration-dependent decrease in viability of Hep-G2 (hepatocellular carcinoma) and MCF-7 (breast adenocarcinoma) human cancer cell lines (p < 0.05). Antimicrobial screening of S. intermedia EO demonstrated slight antibacterial and antifungal activities against Streptococcus mutants, S. salivarius, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. glabrata. Further preclinical studies are needed to assess the efficacy and safety of S. intermedia EO as a new promising anticancer agent.

  2. Composition, Cytotoxic and Antimicrobial Activities of Satureja intermedia C.A.Mey Essential Oil

    PubMed Central

    Sharifi-Rad, Javad; Sharifi-Rad, Mehdi; Hoseini-Alfatemi, Seyedeh Mahsan; Iriti, Marcello; Sharifi-Rad, Majid; Sharifi-Rad, Marzieh

    2015-01-01

    In this study, the essential oil (EO) constituents from the aerial parts of Satureja intermedia C.A.Mey were detected by GC and GC/MS. The antimicrobial activity of EO on oral pathogens and its cytotoxicity to human cancer cells were determined by the microbroth dilution method and the crystal violet staining method, respectively. Thirty-nine compounds were identified and the main EO constituents were γ-terpinene (37.1%), thymol (30.2%), p-cymene (16.2%), limonene (3.9%), α-terpinene (3.3%), myrcene (2.5%), germacrene B (1.4%), elemicine (1.1%) and carvacrol (0.5%). The S. intermedia EO showed a concentration-dependent decrease in viability of Hep-G2 (hepatocellular carcinoma) and MCF-7 (breast adenocarcinoma) human cancer cell lines (p < 0.05). Antimicrobial screening of S. intermedia EO demonstrated slight antibacterial and antifungal activities against Streptococcus mutants, S. salivarius, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. glabrata. Further preclinical studies are needed to assess the efficacy and safety of S. intermedia EO as a new promising anticancer agent. PMID:26247936

  3. Antimicrobial activity of fresh garlic juice: An in vitro study

    PubMed Central

    Yadav, Seema; Trivedi, Niyati A.; Bhatt, Jagat D.

    2015-01-01

    Introduction: Antimicrobial resistance has been a global concern. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. One such botanical is Allium sativum (garlic). Aim: To evaluate the antimicrobial activity of fresh juice of garlic. Materials and Methods: Varying concentrations of fresh garlic juice (FGJ) were tested for their antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of FGJ were tested using broth dilution method. Sensitivity pattern of the conventional antimicrobials against common pathogenic bacteria was tested using disc diffusion method. Results: FGJ produced dose-dependent increase in the zone of inhibition at a concentration of 10% and higher. MIC of FGJ against the pathogens ranged from 4% to 16% v/v whereas MLC value ranged from 4% to 32% v/v with Escherichia coli and Staphylococcus aureus spp. showed highest sensitivity. Conclusion: FGJ has definite antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara. Further studies are needed to find out the efficacy, safety, and kinetic data of its active ingredients. PMID:27011724

  4. Effect of Plant Antimicrobial Agents Containing Marinades on Storage Stability and Microbiological Quality of Broiler Chicken Cuts Packed with Modified Atmosphere Packaging.

    PubMed

    Alakomi, H-L; Maukonen, J; Honkapää, K; Storgårds, E; Quirin, K-W; Yang, B; Saarela, M

    2017-10-01

    The food industry, including the meat industry, is currently looking for natural preservatives to prevent the growth of harmful microbes in foods. The potential of plant-derived antimicrobial extracts to increase the shelf life and to delay the microbiological spoilage of marinated broiler chicken cuts in modified atmosphere packages during cold storage was investigated in this study. We evaluated the impact of aqueous ethanolic extracts of Finnish sea buckthorn berries and lingonberries and supercritical CO 2 -extracted herbal extracts from an antimicrobial blend and oregano leaves on the shelf life of broiler meat. The commercial antimicrobial blend extract and the oregano extract inhibited the growth of lactic acid bacteria (LAB) and Brochothrix thermosphacta in the marinated samples. The antimicrobial blend extract also reduced the growth of psychrotrophic aerobic bacteria, whereas the sea buckthorn and lingonberry extracts did not. Only minor antimicrobial activity against Enterobacteriaceae by all the extracts was observed. Plate count analysis, denaturing gradient gel electrophoresis, and quantitative real-time PCR indicated that LAB, which are the major spoilage group in marinated modified atmosphere-packaged poultry products, were not significantly affected by the berry extracts studied. During this shelf-life study, LAB isolates of Lactobacillus and Leuconostoc were identified in the marinated samples. Antimicrobial blends and oregano leaf extracts can act as antimicrobial agents in marinade blends, although tailoring of the dose is needed because of their strong taste. Further studies for exploiting synergistic effects of plant extracts could contribute to the development of potential and more effective antimicrobial blends. Studies are needed in meat matrices and in product applications to demonstrate the efficacy of these compounds.

  5. Determination of antimicrobial activity of sorrel (Hibiscus sabdariffa) on Escherichia coli O157:H7 isolated from food, veterinary, and clinical samples.

    PubMed

    Fullerton, Marjorie; Khatiwada, Janak; Johnson, Jacqueline U; Davis, Shurrita; Williams, Leonard L

    2011-09-01

    The use of medicinal plants as natural antimicrobial agents is gaining popularity. Sorrel (Hibiscus sabdariffa) is widely used for the treatment of diseases. The objective of this study was to investigate the antimicrobial activity of sorrel on Escherichia coli O157:H7 isolates from food, veterinary, and clinical samples. Phenolics of the calyces were extracted from 10 g of ground, freeze-dried samples using 100 mL of 80% aqueous methanol. Concentrations of 10%, 5%, and 2.5% methanol extract of sorrel were investigated for its antimicrobial activity. Inhibition zones were indicated by a lack of microbial growth due to inhibitory concentrations of sorrel diffused into semisolid culture medium beneath the sorrel-impregnated disk. The results of this experiment showed that the most potent sorrel concentration was 10%, then 5%, and finally 2.5%. The overall mean zone of inhibition for the sorrel extract was 12.66 mm for 10%, 10.75 mm for 5%, and 8.9 mm for 2.5%. The highest inhibition zones (11.16 mm) were observed in veterinary samples, and the lowest (10.57 mm) in the food samples. There were significant (P<.05) differences among mean zones of inhibition found in the food, veterinary, and clinical sources. Based on the source of samples and concentration of sorrel extract, the lowest mean inhibition was 7.00±0.04 mm from clinical samples, and the highest was 15.37±0.61 mm from a food source. These findings indicated that sorrel was effective at all levels in inhibiting E. coli O157:H7; thus it possesses antimicrobial activity and hold great promise as an antimicrobial agent.

  6. Antimicrobial activity of Bryum argenteum.

    PubMed

    Sabovljevic, Aneta; Sokovic, Marina; Sabovljevic, Marko; Grubisic, Dragoljub

    2006-02-01

    The antimicrobial activity of Bryum argenteum ethanol extracts was evaluated by microdilution method against four bacterial (Escherichia coli, Bacillus subtilis, Micrococcus luteus and Staphilococcus aureus) and four fungal species (Aspergillus niger, Penicillium ochrochloron, Candida albicans and Trichophyton mentagrophyes). All the investigated ethanol extracts have been proved to be active against all bacteria and fungi tested.

  7. Antimicrobial and anticancer efficacy of antineoplastic agent capped gold nanoparticles.

    PubMed

    Selvaraj, V; Grace, A Nirmala; Alagar, M; Hamerton, I

    2010-04-01

    Synthesis of thioguanine (TG)-capped Au nanoparticles (Au@TG) and their enhanced in vitro antimicrobial and anticancer efficacy against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, E. coli, Aspergillus fumigatus, Aspergillus niger and Hep2 cancer cell (Human epidermiod cell) have been reported. The nature of binding between 6-TG and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The present experimental studies suggests that Au@TG are more potential than TG towards antimicrobial and anticancer activities. Hence, gold nanoparticles have the potential to be used as effective carriers for anticancer drug.

  8. Antimicrobial and antioxidant activities of substituted 4H-1, 4-benzothiazines

    NASA Astrophysics Data System (ADS)

    Sharma, Praveen Kumar; Chaucer, Puneet; Kumar, Gulshan; Parihar, Leena

    2017-07-01

    Antioxidant and antimicrobial activity of substituted benzothiazine was investigated. Antioxidant activity of 3,7-dimethyl-2-(4'-morpholinylcarbonyl)-4H-1,4-benzothiazine was tested by the use of 2-diphenyl-1-picrylhydrazyl radical(DPPH). In addition 3,7-dimethyl-2-(4'-morpholinylcarbonyl)-4H-1,4-benzothiazine was examined for its antimicrobial activity against bacteria, Bacillus subtilis, B. flexus, B. alkalophilus, as well as their antifungal activity against Aspergillus nigrum, A. Flexus and show potential antimicrobial activities.

  9. Systematic review and technological overview of the antimicrobial activity of Tagetes minuta and future perspectives.

    PubMed

    Santos, Daniela Coelho Dos; Schneider, Lara Rodrigues; da Silva Barboza, Andressa; Diniz Campos, Ângela; Lund, Rafael Guerra

    2017-08-17

    The antimicrobial potential of Tagetes minuta was correlated with its traditional use as antibacterial, insecticidal, biocide, disinfectant, anthelminthic, antifungal, and antiseptic agent as well as its use in urinary tract infections. This study aimed to systematically review articles and patents regarding the antimicrobial activity of T. minuta and give rise to perspectives on this plant as a potential antimicrobial agent. A literature search of studies published between 1997 and 2015 was conducted over five databases: MedLine (PubMed), Web of Science, Scopus, Google Scholar, Portal de Periódicos Capes and SciFinder, grey literature was explored using the System for Information on Dissertations database, and theses were searched using the ProQuest Dissertations and Theses Full text database and the Periódicos Capes Theses database. Additionally, the following databases for patents were analysed: United States Patent and Trademark Office (USPTO), Google Patents, National Institute of Industrial Property (INPI) and Espacenet patent search (EPO). The data were tabulated and analysed using Microsoft Office Excel 2010. After title screening, 51 studies remained and this number decreased to 26 after careful examinations of the abstracts. The full texts of these 26 studies were assessed to check if they were eligible. Among them, 3 were excluded for not having full text access, and 11 were excluded because they did not fit the inclusion criteria, which left 10 articles for this systematic review. The same process was conducted for the patent search, resulting in 4 patents being included in this study. Recent advances highlighted by this review may shed light on future directions of studies concerning T. minuta as a novel antimicrobial agent, which should be repeatedly proven in future animal and clinical studies. Although more evidence on its specificity and clinical efficacy are necessary to support its clinical use, T. minuta is expected to be a highly effective

  10. Antimicrobial Impacts of Essential Oils on Food Borne-Pathogens.

    PubMed

    Ozogul, Yesim; Kuley, Esmeray; Ucar, Yilmaz; Ozogul, Fatih

    2015-01-01

    The antimicrobial activity of twelve essential oil (pine oil, eucalyptus, thyme, sage tea, lavender, orange, laurel, lemon, myrtle, lemon, rosemary and juniper) was tested by a disc diffusion method against food borne pathogens (Escherichia coli, Salmonella paratyphi A, Klebsiella pneumoniae, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Campylobacter jejuni, Enterococcus faecalis, Staphylococcus aureus). The major components in essential oils were monoterpenes hydrocarbons, α-pinene, limonene; monoterpene phenol, carvacrol and oxygenated monoterpenes, camphor, 1,8-cineole, eucalyptol, linalool and linalyl acetate. Although the antimicrobial effect of essential oils varied depending on the chemical composition of the essential oils and specific microorganism tested, majority of the oils exhibited antibacterial activity against one or more strains. The essential oil with the lowest inhibition zones was juniper with the values varied from 1.5 to 6 mm. However, the components of essential oil of thyme and pine oil are highly active against food borne pathogen, generating the largest inhibition zones for both gram negative and positive bacteria (5.25-28.25 mm vs. 12.5-30 mm inhibition zones). These results indicate the possible use of the essential oils on food system as antimicrobial agents against food-borne pathogen. The article also offers some promising patents on applications of essential oils on food industry as antimicrobial agent.

  11. Antimicrobial graphene family materials: Progress, advances, hopes and fears.

    PubMed

    Lukowiak, Anna; Kedziora, Anna; Strek, Wieslaw

    2016-10-01

    Graphene-based materials have become very popular bionanotechnological instruments in the last few years. Since 2010, the graphene family materials have been recognized as worthy of attention due to its antimicrobial properties. Functionalization of graphene (or rather graphene oxide) surface creates the possibilities to obtain efficient antimicrobial agents. In this review, progress and advances in this field in the last few years are described and discussed. Special attention is devoted to materials based on graphene oxide in which specifically selected components significantly modify biological activity of this carbon structure. Short introduction concerns the physicochemical properties of the graphene family materials. In the section on antimicrobial properties, proposed mechanisms of activity against microorganisms are given showing enhanced action of nanocomposites also under light irradiation (photoinduced activity). Another important feature, i.e. toxicity against eukaryotic cells, is presented with up-to-date data. Taking into account all the information on the properties of the described materials and usefulness of the graphene family as antimicrobial agents, hopes and fears concerning their application are discussed. Finally, some examples of promising usage in medicine and other fields, e.g. in phytobiology and water remediation, are shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides.

    PubMed

    Harraz, Fathalla M; Hammoda, Hala M; El Ghazouly, Maged G; Farag, Mohamed A; El-Aswad, Ahmed F; Bassam, Samar M

    2015-01-01

    Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin.

  13. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    PubMed

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  14. Antimicrobial activity of peptides derived from olive flounder lipopolysaccharide binding protein/bactericidal permeability-increasing protein (LBP/BPI).

    PubMed

    Nam, Bo-Hye; Moon, Ji-Young; Park, Eun-Hee; Kim, Young-Ok; Kim, Dong-Gyun; Kong, Hee Jeong; Kim, Woo-Jin; Jee, Young Ju; An, Cheul Min; Park, Nam Gyu; Seo, Jung-Kil

    2014-10-17

    We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase.

  15. Top 1% of Inpatients Administered Antimicrobial Agents Comprising 50% of Expenditures: A Descriptive Study and Opportunities for Stewardship Intervention.

    PubMed

    Dela-Pena, Jennifer; Kerstenetzky, Luiza; Schulz, Lucas; Kendall, Ron; Lepak, Alexander; Fox, Barry

    2017-03-01

    OBJECTIVE To characterize the top 1% of inpatients who contributed to the 6-month antimicrobial budget in a tertiary, academic medical center and identify cost-effective intervention opportunities targeting high-cost antimicrobial utilization. DESIGN Retrospective cohort study. PATIENTS Top 1% of the antimicrobial budget from July 1 through December 31, 2014. METHODS Patients were identified through a pharmacy billing database. Baseline characteristics were collected through a retrospective medical chart review. Patients were presented to the antimicrobial stewardship team to determine appropriate utilization of high-cost antimicrobials and potential intervention opportunities. Appropriate use was defined as antimicrobial therapy that was effective, safe, and most cost-effective compared with alternative agents. RESULTS A total of 10,460 patients received antimicrobials in 6 months; 106 patients accounted for $889,543 (47.2%) of the antimicrobial budget with an antimicrobial cost per day of $219±$192 and antimicrobial cost per admission of $4,733±$7,614. Most patients were immunocompromised (75%) and were followed by the infectious disease consult service (80%). The most commonly prescribed antimicrobials for treatment were daptomycin, micafungin, liposomal amphotericin B, and meropenem. Posaconazole and valganciclovir accounted for most of the prophylactic therapy. Cost-effective opportunities (n=71) were present in 57 (54%) of 106 patients, which included dose optimization, de-escalation, dosage form conversion, and improvement in transitions of care. CONCLUSION Antimicrobial stewardship oversight is important in implementing cost-effective strategies, especially in complex and immunocompromised patients who require the use of high-cost antimicrobials. Infect Control Hosp Epidemiol 2017;38:259-265.

  16. Consumer-mediated nutrient recycling is influenced by interactions between nutrient enrichment and the anti-microbial agent triclosan

    USDA-ARS?s Scientific Manuscript database

    Triclosan (5-chloro-2-(2, 4-dichlorophenoxy)phenol) is a widely used antimicrobial agent in personal care products whose fate and transport in aquatic ecosystems is a growing environmental concern. Evidence for chronic ecological effects of triclosan in aquatic organisms is increasing. At larger sca...

  17. Efficient synthesis, structural characterization and anti-microbial activity of chiral aryl boronate esters of 1,2-O-isopropylidene-α-D-xylofuranose.

    PubMed

    Trivedi, Rajiv; Rami Reddy, E; Kiran Kumar, Ch; Sridhar, B; Pranay Kumar, K; Srinivasa Rao, M

    2011-07-01

    A simple and efficient synthetic approach toward a series of chiral aryl boronate esters, starting from D-xylose, as anti-microbial agents, is described herein. Minimum inhibitory concentration and zone of inhibition revealed that these derivatives exhibit potent anti-bacterial and anti-fungal properties. Herein, we report the first anti-microbial activity of this class of compounds. All products have been characterized by NMR ((1)H, (13)C and (11)B), IR, elemental and mass spectral study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    PubMed

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

  19. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.

    PubMed

    Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia

    2016-11-01

    Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G 1 LLKR 5 IKT 8 LL-NH 2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly 1 , Arg 5 , and Thr 8 and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF 5 IKK 8 LL-NH 2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  20. The Central Hinge Link Truncation of the Antimicrobial Peptide Fowlicidin-3 Enhances Its Cell Selectivity without Antibacterial Activity Loss.

    PubMed

    Qu, Pei; Gao, Wei; Chen, Huixian; Li, Dan; Yang, Na; Zhu, Jian; Feng, Xingjun; Liu, Chunlong; Li, Zhongqiu

    2016-05-01

    Antimicrobial peptides (AMPs) have been paid considerable attention because of their broad-spectrum antimicrobial activity and a reduced possibility of the development of bacterial drug resistance. Fowlicidin-3 (Fow-3) is an identified type of chicken cathelicidin AMP that has exhibited considerable antimicrobial activity and cytotoxicity. To reduce cell toxicity and improve cell selectivity, several truncated peptides of fowlicidin-3, Fow-3(1-15), Fow-3(1-19), Fow-3(1-15-20-27), and Fow-3(20-27), were synthesized. Our results indicated that neither the N- nor C-terminal segment alone [Fow-3(1-15), Fow-3(1-19), Fow-3(20-27)] was sufficient to confer antibacterial activity. However, Fow-3(1-19) with the inclusion of the central hinge link (-AGIN-) retained substantial cell toxicity, which other analogs lost. Fow-3(1-15-20-27) displayed potent antimicrobial activity for a wide range of Gram-negative and Gram-positive bacteria and no obvious hemolytic activity or cytotoxicity. The central link region was shown to be critically important in the function of cell toxicity but was not relevant to antibacterial activity. Fow-3(1-15-20-27) maintained antibacterial activity in the presence of physiological concentrations of salts. The results from fluorescence spectroscopy, scanning electron microcopy, and transmission electron microcopy showed that Fow-3(1-15-20-27) as well as fowlicidin-3 killed bacterial cells by increasing membrane permeability and damaging the membrane envelope integrity. Fow-3(1-15-20-27) could be a promising antimicrobial agent for clinical application. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. In Vitro Antimicrobial Potential of the Lichen Parmotrema sp. Extracts against Various Pathogens.

    PubMed

    Chauhan, Ritika; Abraham, Jayanthi

    2013-07-01

    The ongoing increasing antibiotic resistance is one of the biggest challenges faced by global public health. The perennial need for new antimicrobials against a background of increasing antibiotic resistance in pathogenic and opportunistic microorganisms obliges the scientific community to constantly develop new drugs and antimicrobial agents. Lichens are known prolific sources of natural antimicrobial drugs and biologically active natural products. This study was aimed to explore in vitro antimicrobial activity of lichen Parmotrema sp. The methanol and aqueous extracts of lichen Parmotrema sp. was extracted using Soxhlet extractor. Antibiotic assessment of methanol and aqueous extracts was done against eight bacterial (Escherichia coli, Staphylococcus aureus, Proteus mirabilis, Salmonella sp., Shigella sp., Enterococci faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae,) clinical pathogens and five plant pathogenic fungal strains (Aspergillus terreus strain JAS1, Scedosporium sp. JAS1, Ganoderma sp. JAS4, Candida tropicalis and Fusarium sp.) by Kirby-Bauer method. The methanol lichen Parmotrema sp. extract inhibited all the test organisms. The highest antibacterial activity was found against Pseudomonas aeruginosa and Staphylococcus aureus. The weakest activity was manifested in Salmonella sp. and Scedosporium sp. JAS1. Strong antifungal effect was found against Ganoderma sp. JAS4 and Fusarium sp. The aqueous lichen Parmotrema sp. extract revealed neither antibacterial nor antifungal activity. The present study shows that tested lichen Parmotrema sp. extracts demonstrated a strong antimicrobial effect. That suggests the active components from methanol extracts of the investigated lichen Parmotrema sp. can be used as natural antimicrobial agent against pathogens.

  2. In vitro Antimicrobial Activity of Traditional Plant Used in Mestizo Shamanism from the Peruvian Amazon in Case of Infectious Diseases.

    PubMed

    Roumy, Vincent; Gutierrez-Choquevilca, Andréa-Luz; Lopez Mesia, Jean Pierre; Ruiz, Lastenia; Ruiz Macedo, Juan Celidonio; Abedini, Amin; Landoulsi, Ameni; Samaillie, Jennifer; Hennebelle, Thierry; Rivière, Céline; Neut, Christel

    2015-10-01

    Our survey was performed near Iquitos (Peruvian Amazon) and its surroundings and leads us to consider Mestizo ethnomedical practices. The plant species reported here are traditionally used for ailments related to microbial infections. Inhabitants of various ethnic origins were interviewed, and 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi-resistant bacteria or yeast. The study aimed at providing information on antimicrobial plant extract activities and the ethnomedical context of Mestizo riverine populations from Loreto (Peru). The minimum inhibitory concentrations (MICs) of the plant crude extracts were carried out using the agar dilution method and ranged between 0.075 and 5.0 mg/ml. Of the 40 plants analyzed, 9 species showed MIC ≤0.3 mg/ml (Anacardium occidentale, Couroupita guianensis, Croton lechleri, Davilla rugosa, Erythrina amazonica, Jacaranda copaia subsp. Spectabilis, Oenocarpus bataua, Peperomia macrostachya, and Phyllanthus urinaria) for one or several of the 36 microorganisms and only 6 drug extracts were inactive. Among the 40 plants, 13 were evaluated for the first time for an antibacterial activity. This evaluation of the antimicrobial activity of 40 plants using an approved standard methodology allowed comparing those activities against various microbes to establish antimicrobial spectra of standardized plant extracts, and give support to the traditional use of these plants. It may also help discovering new chemical classes of antimicrobial agents that could serve against multi-resistant bacteria. This study leads us to consider Mestizo ethnomedical practices near Iquitos (Peruvian Amazon) and its surroundings. The plant species reported here are traditionally used for ailments related to microbial infections. 52 selected plants extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi resistant bacteria or yeast. The study aimed

  3. Antimicrobial activity of silver nanoparticles synthesized using honey and gamma radiation against silver-resistant bacteria from wounds and burns

    NASA Astrophysics Data System (ADS)

    Hosny, A. M. S.; Kashef, M. T.; Rasmy, S. A.; Aboul-Magd, D. S.; El-Bazza, Z. E.

    2017-12-01

    Silver nanoparticles (AgNPs) are promising antimicrobial agents for treatment of wounds and burns. We synthesized AgNPs using honey at different pH values or with different gamma irradiation doses. The resulting nanoparticles were characterized by UV-vis spectroscopy, TEM, DLS and FTIR. Their antimicrobial activity, against standard bacterial strains and silver-resistant clinical isolates from infected wounds and burns, was evaluated in vitro through determination of their minimum inhibitory concentration (MIC). AgNPs prepared using 30 g of honey exposed to 5 kGy gamma radiation had the best physical characters regarding stability and uniformity of particle size and shape. They recorded the lowest MIC values against both the standard and silver-resistant isolates. In conclusion, honey and gamma radiation can be used in synthesis of highly stable pure AgNPs, without affecting the physico-chemical and antimicrobial activity of honey. This offered an advantage in terms of inhibition of silver-resistant bacteria isolates.

  4. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  5. Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers

    PubMed Central

    Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.

    2014-01-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766

  6. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam - epidemiology, laboratory detection and treatment implications.

    PubMed

    Sherry, Norelle; Howden, Benjamin

    2018-04-01

    Multidrug-resistant (MDR) and extensively-drug-resistant (XDR) Gram-negative bacteria have emerged as a major threat to human health globally. This has resulted in the 're-discovery' of some older antimicrobials and development of new agents, however resistance has also rapidly emerged to these agents. Areas covered: Here we describe recent developments in resistance to three of the most important last-line antimicrobials for treatment of MDR and XDR Gram negatives: fosfomycin, colistin and ceftazidime-avibactam. Expert commentary: A key challenge for microbiologists and clinicians using these agents for treating patients with MDR and XDR Gram negative infections is the need to ensure appropriate reference methods are being used to test susceptibility to these agents, especially colistin and fosfomycin. These methods are not available in all laboratories meaning accurate results are either delayed, or potentially inaccurate as non-reference methods are employed. Combination therapy for MDR and XDR Gram negatives is likely to become more common, and future studies should focus on the clinical effects of monotherapy vs combination therapy, as well as validation of synergy testing methods. Effective national and international surveillance systems to detect and respond to resistance to these last line agents are also critical.

  7. Antimicrobial and anti-inflammatory activities of Pleurostylia capensis Turcz (Loes) (celastraceae).

    PubMed

    Razwinani, Mapula; Tshikalange, Thilivhali Emmanuel; Motaung, Shirley C K M

    2014-01-01

    Pleurostylia capensis is a large tree that can reach the maximum height of 20 m long, and it have been traditionally used as cosmetic, for steam bath, ritual body wash, and as a purgative to treat symptoms of witchcraft. Using ethanol, chloroform, dichloromethane (DCM), ethyl acetate (EA), and water extracts, leaves, bark and roots of Pleurostylia capensis were investigated scientifically for their effectiveness in antimicrobial, antioxidant and anti-inflammatory activities using standard methods. The extracts were evaluated for antimicrobial activity against Gram positive (Staphylococcus aureus, Bacillus cereus, and Mycobacterium smegmatis), Gram negative (Escherichia coli, Klebsiella pneumonia, Klebsiella oxytoca, Streptococcus pyogenes, Pseudomonas aeruginosa and Salmonella typhimurium), and Candida albicans. The antioxidant activity was investigated using 2, 2-diphenlyl-1-picrylhadrazyl (DPPH), free radical scavenging assay. The anti-inflammatory activity of P. capensis extracts was evaluated against both cyclooxygenase enzymes (COX 1 and 2). The ethyl acetate extracts of P. capensis showed a strong antimicrobial activity against B. cereus, K. pneumonia, S. pyogenes, and M. smegmatis with MIC value of 0.39 and 0.78 mg/ml. While the ethanol bark extract was most active against M. smegmatis with MIC value of 0.78 mg/ml; the least potent activity was observed with dichloromethane, chloroform and water extracts, with an MIC value ranging from 1.56 mg/ml to 50.0 mg/ml. The plant extracts proved to be good antioxidant agent, whereas extracts of ethanol were the most active, with IC50 ranging from 1.00 to 1.74 µg/ml, which is lower, and in close range to Vitamin C (1.40 µg/ml). Its moderation to potent inhibitory activity was observed in all extracts. Ethanol and dichloromethane extracts were among the most potent when compared to water and petroleum ether extracts. The water extracts showed to be nontoxic on the Hek cell line with an IC50 value of 204.0, and 207

  8. Antimicrobial activity of extracts from Tamarindus indica L. leaves

    PubMed Central

    Escalona-Arranz, Julio César; Péres-Roses, Renato; Urdaneta-Laffita, Imilci; Camacho-Pozo, Miladis Isabel; Rodríguez-Amado, Jesús; Licea-Jiménez, Irina

    2010-01-01

    Tamarindus indica L. leaves are reported worldwide as antibacterial and antifungal agents; however, this observation is not completely accurate in the case of Cuba. In this article, decoctions from fresh and sun dried leaves, as well as fluid extracts prepared with 30 and 70% ethanol-water and the pure essential oil from tamarind leaves were microbiologically tested against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomona aeruginosa and Candida albicans. Aqueous and fluid extracts were previously characterized by spectrophotometric determination of their total phenols and flavonoids, while the essential oil was chemically evaluated by gas chromatography/mass spectroscopy (GC/MS). Experimental data suggest phenols as active compounds against B. subtilis cultures, but not against other microorganisms. On the other hand, the essential oil exhibited a good antimicrobial spectrum when pure, but its relative low concentrations in common folk preparations do not allow for any good activity in these extracts. PMID:20931087

  9. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives

    PubMed Central

    Chouhan, Sonam; Sharma, Kanika

    2017-01-01

    Extensive documentation on the antimicrobial properties of essential oils and their constituents has been carried out by several workers. Although the mechanism of action of a few essential oil components has been elucidated in many pioneering works in the past, detailed knowledge of most of the compounds and their mechanism of action is still lacking. This knowledge is particularly important for the determination of the effect of essential oils on different microorganisms, how they work in combination with other antimicrobial compounds, and their interaction with food matrix components. Also, recent studies have demonstrated that nanoparticles (NPs) functionalized with essential oils have significant antimicrobial potential against multidrug- resistant pathogens due to an increase in chemical stability and solubility, decreased rapid evaporation and minimized degradation of active essential oil components. The application of encapsulated essential oils also supports their controlled and sustained release, which enhances their bioavailability and efficacy against multidrug-resistant pathogens. In the recent years, due to increasingly negative consumer perceptions of synthetic preservatives, interest in essential oils and their application in food preservation has been amplified. Moreover, the development of resistance to different antimicrobial agents by bacteria, fungi, viruses, parasites, etc. is a great challenge to the medical field for treating the infections caused by them, and hence, there is a pressing need to look for new and novel antimicrobials. To overcome these problems, nano-encapsulation of essential oils and exploiting the synergies between essential oils, constituents of essential oils, and antibiotics along with essential oils have been recommended as an answer to this problem. However, less is known about the interactions that lead to additive, synergistic, or antagonistic effects. A contributing role of this knowledge could be the design of new

  10. Topical antimicrobial agents for the treatment of chronic wounds.

    PubMed

    Ousey, Karen; McIntosh, Caroline

    2009-09-01

    Chronic wounds are commonly observed in acute and community settings. The management of chronic wounds represents a significant proportion of health-care resources and makes up a substantial amount of contact time with community-based nurses spending approximately 25% to 50% of their time treating wounds. Chronic wounds often exhibit increased bacterial burden that can negatively impact upon patients, reduce their quality of life and substantially increase treatment costs for health care providers. Antibiotic resistance has become a major medical and public health problem, and interest has been generated in the use of topical therapies to manage wound infection. This article presents an overview of the historical use of honey, silver and iodine for the treatment of infected wounds progressing through to modern day use and the current evidence base for the use of these antimicrobial agents in the management of infected wounds.

  11. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Rajendran, R.; Thilagavathi, G.

    2008-02-01

    A thorough investigation on the antimicrobial activity of RF air plasma and azadirachtin (neem leaf extract) treated cotton fabric has been dealt with in this paper. The cotton fabric was given a RF air plasma treatment to improve its hydrophilicity. The process parameters such as electrode gap, time of exposure and RF power have been varied to study their effect in improving the hydrophilicity of the cotton fabric and they were optimized based on the static immersion test results. The neem leaf extract (azadirachtin) was applied on fabric samples to impart antimicrobial activity. The antimicrobial efficacy of the samples have been analysed and compared with the efficacy of the cotton fabric treated with the antimicrobial finish alone. The investigation reveals that the RF air plasma has modified the surface of the fabric, which in turn increased the antimicrobial activity of the fabric when treated with azadirachtin. The surface modification due to RF air plasma treatment has been analysed by comparing the FTIR spectra of the untreated and plasma treated samples. The molecular interaction between the fabric, azadirachtin and citric acid which was used as a cross linking agent to increase the durability of the antimicrobial finish has also been analysed using FTIR spectra.

  12. Antimicrobial activity in the common seawhip, Leptogorgia virgulata (Cnidaria: Gorgonaceae).

    PubMed

    Shapo, Jacqueline L; Moeller, Peter D; Galloway, Sylvia B

    2007-09-01

    Antimicrobial activity was examined in the gorgonian Leptogorgia virgulata (common seawhip) from South Carolina waters. Extraction and assay protocols were developed to identify antimicrobial activity in crude extracts of L. virgulata. Detection was determined by liquid growth inhibition assays using Escherichia coli BL21, Vibrio harveyii, Micrococcus luteus, and a Bacillus sp. isolate. This represents the first report of antimicrobial activity in L. virgulata, a temperate/sub-tropical coral of the western Atlantic Ocean. Results from growth inhibition assays guided a fractionation scheme to identify active compounds. Reverse-phase HPLC, HPLC-mass spectrometry, and 1H and 13C NMR spectroscopy were used to isolate, purify, and characterize metabolites in antimicrobial fractions of L. virgulata. Corroborative HPLC-MS/NMR evidence validated the presence of homarine and a homarine analog, well-known emetic metabolites previously isolated from L. virgulata, in coral extracts. In subsequent assays, partially-purified L. virgulata fractions collected from HPLC-MS fractionation were shown to contain antimicrobial activity using M. luteus and V. harveyii. This study provides evidence that homarine is an active constituent of the innate immune system in L. virgulata. We speculate it may act synergistically with cofactors and/or congeners in this octocoral to mount a response to microbial invasion and disease.

  13. Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine.

    PubMed

    Romulo, Andreas; Zuhud, Ervizal A M; Rondevaldova, Johana; Kokoska, Ladislav

    2018-12-01

    In many regions of Indonesia, there are numerous traditional herbal preparations for treatment of infectious diseases. However, their antimicrobial potential has been poorly studied by modern laboratory methods. This study investigates in vitro antimicrobial activity of 49 ethanol extracts from 37 plant species used in Indonesian traditional medicine for treatment against Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The plants were collected from the Biopharmaca collection garden, Bogor, Indonesia. The plant material was dried, finely grounded, extracted using ethanol, concentrated, and the dried residue was dissolved in 100% DMSO. Antimicrobial activity was determined in terms of a minimum inhibitory concentration (MIC) using a broth microdilution method in 96-well microplates. The extract of Orthosiphon aristatus (Blume) Miq. (Lamiaceae) leaf produced the strongest antimicrobial effect, inhibiting the growth of C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL), E. faecalis (MIC 256 μg/mL) and P. aeruginosa (MIC 256 μg/mL). The leaf extract of Woodfordia floribunda Salisb. (Lythraceae) also exhibited significant effect against C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL) and E. faecalis (MIC 256 μg/mL). Rotheca serrata (L.) Steane & Mabb. (Lamiaceae) leaf extract inhibited the growth of S. aureus (MIC 256 µg/mL) and C. albicans (MIC 256 µg/mL). The leaf extract of O. aristatus and W. floribunda exhibited a significant anti-candidal effect. Therefore, both of these plants can serve as prospective source materials for the development of new anti-candidal agents.

  14. Antimicrobial Tolerance of Pseudomonas aeruginosa Biofilms Is Activated during an Early Developmental Stage and Requires the Two-Component Hybrid SagS

    PubMed Central

    Gupta, Kajal; Marques, Cláudia N. H.; Petrova, Olga E.

    2013-01-01

    A hallmark characteristic of biofilms is their extraordinary tolerance to antimicrobial agents. While multiple factors are thought to contribute to the high level of antimicrobial tolerance of biofilms, little is known about the timing of induction of biofilm tolerance. Here, we asked when over the course of their development do biofilms gain their tolerance to antimicrobial agents? We demonstrate that in Pseudomonas aeruginosa, biofilm tolerance is linked to biofilm development, with transition to the irreversible attachment stage regulated by the two-component hybrid SagS, marking the timing when biofilms switch to the high-level tolerance phenotype. Inactivation of sagS rendered biofilms but not planktonic cells more susceptible to tobramycin, norfloxacin, and hydrogen peroxide. Moreover, inactivation of sagS also eliminated the recalcitrance of biofilms to killing by bactericidal antimicrobial agents, a phenotype comparable to that observed upon inactivation of brlR, which encodes a MerR-like transcriptional regulator required for biofilm tolerance. Multicopy expression of brlR in a ΔsagS mutant restored biofilm resistance and recalcitrance to killing by bactericidal antibiotics to wild-type levels. In contrast, expression of sagS did not restore the susceptibility phenotype of ΔbrlR mutant biofilms to wild-type levels, indicating that BrlR functions downstream of SagS. Inactivation of sagS correlated with reduced BrlR levels in biofilms, with the produced BrlR being impaired in binding to the previously described BrlR-activated promoters of the two multidrug efflux pump operons mexAB-oprM and mexEF-oprN. Our findings demonstrate that biofilm tolerance is linked to early biofilm development and SagS, with SagS contributing indirectly to BrlR activation. PMID:23995639

  15. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.

    PubMed

    Phaechamud, Thawatchai; Mahadlek, Jongjan

    2015-10-15

    Solvent-exchanged in situ forming gel is a drug delivery system which is in sol form before administration. When it contacts with the body fluid, then the water miscible organic solvent dissipates and water penetrates into the system, leading the polymer precipitation as in situ gel at the site of injection. The aim of this research was to study the parameters affecting the gel properties, drug release and antimicrobial activities of the in situ forming gels prepared from ethyl cellulose (EC) dissolved in N-methyl pyrrolidone (NMP) to deliver the antimicrobial agents (doxycycline hyclate, metronidazole and benzyl peroxide) for periodontitis treatment. The gel appearance, pH, viscosity, rheology, syringeability, gel formation, rate of water diffusion into the gels, in vitro degradation, drug release behavior and antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans and Porphyrommonas gingivalis were determined. Increasing the amount of EC increased the viscosity of system while still exhibiting Newtonian flow and increased the work of syringeability whereas decreased the releasing of drug. The system transformed into the rigid gel formation after being injected into the simulated gingival crevicular fluid. The developed systems containing 5% w/w antimicrobial agent showed the antimicrobial activities against all test bacteria. Thus the developed solvent exchange-induced in situ forming gels comprising EC-antimicrobial drugs exhibited potential use for periodontitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Drug-induced liver injury due to antimicrobials, central nervous system agents, and nonsteroidal anti-inflammatory drugs.

    PubMed

    Devarbhavi, Harshad; Andrade, Raúl J

    2014-05-01

    Antimicrobial agents including antituberculosis (anti-TB) agents are the most common cause of idiosyncratic drug-induced liver injury (DILI) and drug-induced liver failure across the world. Better molecular and genetic biomarkers are acutely needed to help identify those at risk of liver injury particularly for those needing antituberculosis therapy. Some antibiotics such as amoxicillin-clavulanate and isoniazid consistently top the lists of agents in retrospective and prospective DILI databases. Central nervous system agents, particularly antiepileptics, account for the second most common class of agents implicated in DILI registries. Hepatotoxicity from older antiepileptics such as carbamazepine, phenytoin, and phenobarbital are often associated with hypersensitivity features, whereas newer antiepileptic drugs have a more favorable safety profile. Antidepressants and nonsteroidal anti-inflammatory drugs carry very low risk of significant liver injury, but their prolific use make them important causes of DILI. Early diagnosis and withdrawal of the offending agent remain the mainstays of minimizing hepatotoxicity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Alpha-Melanocyte Stimulating Hormone: An Emerging Anti-Inflammatory Antimicrobial Peptide

    PubMed Central

    Singh, Madhuri; Mukhopadhyay, Kasturi

    2014-01-01

    The alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide belonging to the melanocortin family. It is well known for its anti-inflammatory and antipyretic effects and shares several characteristics with antimicrobial peptides (AMPs). There have been some recent reports about the direct antimicrobial activity of α-MSH against various microbes belonging to both fungal and bacterial pathogens. Similar to α-MSH's anti-inflammatory properties, its C-terminal residues also exhibit antimicrobial activity parallel to that of the entire peptide. This review is focused on the current findings regarding the direct antimicrobial potential and immunomodulatory mechanism of α-MSH and its C-terminal fragments, with particular emphasis on the prospects of α-MSH based peptides as a strong anti-infective agent. PMID:25140322

  18. Screening of antimicrobial activity of macroalgae extracts from the Moroccan Atlantic coast.

    PubMed

    El Wahidi, M; El Amraoui, B; El Amraoui, M; Bamhaoud, T

    2015-05-01

    The aim of this work is the screening of the antimicrobial activity of seaweed extracts against pathogenic bacteria and yeasts. The antimicrobial activity of the dichloromethane and ethanol extracts of ten marine macroalgae collected from the Moroccan's Atlantic coast (El-Jadida) was tested against two Gram+ (Bacillus subtilis and Staphylococcus aureus) and two Gram- (Escherichia coli and Pseudomonas aeruginosa) human pathogenic bacteria, and against two pathogenic yeasts (Candida albicans and Cryptococcus neoformans) using the agar disk-diffusion method. Seven algae (70%) of ten seaweeds are active against at least one pathogenic microorganisms studied. Five (50%) are active against the two studied yeast with an inhibition diameter greater than 15 mm for Cystoseira brachycarpa. Six (60%) seaweeds are active against at least one studied bacteria with five (50%) algae exhibiting antibacterial inhibition diameter greater than 15 mm. Cystoseira brachycarpa, Cystoseira compressa, Fucus vesiculosus, and Gelidium sesquipedale have a better antimicrobial activity with a broad spectrum antimicrobial and are a potential source of antimicrobial compounds and can be subject of isolation of the natural antimicrobials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Determination of Antimicrobial Activity of Sorrel (Hibiscus sabdariffa) on Esherichia coli O157:H7 Isolated from Food, Veterinary, and Clinical Samples

    PubMed Central

    Fullerton, Marjorie; Khatiwada, Janak; Johnson, Jacqueline U.; Davis, Shurrita

    2011-01-01

    Abstract The use of medicinal plants as natural antimicrobial agents is gaining popularity. Sorrel (Hibiscus sabdariffa) is widely used for the treatment of diseases. The objective of this study was to investigate the antimicrobial activity of sorrel on Escherichia coli O157:H7 isolates from food, veterinary, and clinical samples. Phenolics of the calyces were extracted from 10 g of ground, freeze-dried samples using 100 mL of 80% aqueous methanol. Concentrations of 10%, 5%, and 2.5% methanol extract of sorrel were investigated for its antimicrobial activity. Inhibition zones were indicated by a lack of microbial growth due to inhibitory concentrations of sorrel diffused into semisolid culture medium beneath the sorrel-impregnated disk. The results of this experiment showed that the most potent sorrel concentration was 10%, then 5%, and finally 2.5%. The overall mean zone of inhibition for the sorrel extract was 12.66 mm for 10%, 10.75 mm for 5%, and 8.9 mm for 2.5%. The highest inhibition zones (11.16 mm) were observed in veterinary samples, and the lowest (10.57 mm) in the food samples. There were significant (P<.05) differences among mean zones of inhibition found in the food, veterinary, and clinical sources. Based on the source of samples and concentration of sorrel extract, the lowest mean inhibition was 7.00±0.04 mm from clinical samples, and the highest was 15.37±0.61 mm from a food source. These findings indicated that sorrel was effective at all levels in inhibiting E. coli O157:H7; thus it possesses antimicrobial activity and hold great promise as an antimicrobial agent. PMID:21548802

  20. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review.

    PubMed

    Valencia-Chamorro, Silvia A; Palou, Lluís; Del Río, Miguel A; Pérez-Gago, María B

    2011-01-01

    The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.

  1. Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae

    NASA Astrophysics Data System (ADS)

    Vico, Tamara A.; Arce, Valeria B.; Fangio, María F.; Gende, Liesel B.; Bertran, Celso A.; Mártire, Daniel O.; Churio, María S.

    2016-11-01

    Silica nanoparticles attached to gallic acid were synthesized from 7-nm diameter fumed silica particles by different functionalization methods involving the condensation of hydroxyl or carboxyl groups. The particles were characterized by thermal analyses and UV-vis, FTIR, NMR, and EPR spectroscopies. In comparison to free gallic acid, enhanced stability and increased antimicrobial activity against Paenibacillus larvae were found for the functionalized nanoparticles. Thus, both derivatization strategies result in improved properties of the natural polyphenol as antimicrobial agent for the treatment of honeybee pathologies.

  2. Synthesis and evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents.

    PubMed

    Bhat, Mahima; Poojary, Boja; Kalal, Bhuvanesh Sukhlal; Gurubasavaraja Swamy, Purawarga Matada; Kabilan, Senthamaraikannan; Kumar, Vasantha; Shruthi, Nooji; Alias Anand, Selvam Athavan; Pai, Vinitha Ramanath

    2018-05-01

    To synthesize a series of new thiazolidinone-pyrazole hybrids (5a-o) and assess their anticancer (in vitro and in vivo) and antimicrobial activities. The compounds 5h (against Ehrlich ascites carcinoma cells), 5e and 5i (against the human breast cancer [MDA-MB231] cell line) exhibited potent anticancer activity. All the compounds except 5g and 5e found to be less toxic for the human dermal fibroblast cells. The effective interactions of the compounds in silico with MDM2 exemplified their inhibitory potency. The derivatives also showed moderate antimicrobial activity. The halogen atoms on various positions of the N-arylamino ring played an advantageous role in elevating the potency of the molecules. Thus, these conjugates could be used as a lead for further optimization to achieve promising therapeutics.

  3. The comparison of antimicrobial packaging properties with different applications incorporation method of active material

    NASA Astrophysics Data System (ADS)

    Anwar, R. W.; Sugiarto; Warsiki, E.

    2018-03-01

    Contamination after the processing of products during storage, distribution and marketing is one of the main causes of food safety issues. Handling of food products after processing can be done during the packaging process. Antimicrobial (AM) active packaging is one of the concept of packaging product development by utilize the interaction between the product and the packaging environment that can delay the bacterial damage by killing or reducing bacterial growth. The active system is formed by incorporating an antimicrobial agent against a packaging matrix that will function as a carrier. Many incorporation methods have been developed in this packaging-making concept which were direct mixing, polishing, and encapsulation. The aims of this research were to examine the different of the AM packaging performances including its stability and effectiveness of its function that would be produced by three different methods. The stability of the packaging function was analyzed by looking at the diffusivity of the active ingredient to the matrix using SEM. The effectiveness was analyzed by the ability of the packaging to prevent the growing of the microbial. The results showed that different incorporation methods resulted on different characteristics of the AM packaging.

  4. Biological evaluation and molecular docking of some chromenyl-derivatives as potential antimicrobial agents.

    PubMed

    Ionuţ, Ioana; Vodnar, Dan Cristian; Oniga, Ilioara; Oniga, Ovidiu; Tiperciuc, Brînduşa; Tamaian, Radu

    2016-01-01

    Various thiosemicarbazones (TSCs) and their heterocyclic thiadiazolines (TDZ) possess important biological effects. In addition, chromenyl derivatives exhibit a wide range of pharmacological activities. Based on these findings and as a continuation of our research on nitrogen and sulfur containing compounds, we investigated a series of previously reported chromenyl-TSCs (1a-j) and chromenyl-TDZs (2a-j) for their in vitro antimicrobial activities against two bacterial and four fungal strains. MIC and MBC/MFC (µg/mL) values of these compounds were evaluated and compared to those of Spectinomycin, Moxifloxacin and Fluconazole, used as reference drugs. For a better understanding of the drug-receptor interactions, all the compounds were further subjected to molecular docking against four targets that were chosen based on the specific mechanism of action of the reference drugs used in the antimicrobial screening. All compounds tested showed equal or higher antibacterial/antifungal activities relative to the used reference drugs. In silico studies (molecular docking) revealed that all the investigated compounds showed good binding energies towards four receptor protein targets and supported their antimicrobial properties.

  5. Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memariani, Hamed; Shahbazzadeh, Delavar; Sabatier, Jean-Marc

    Antimicrobial peptides are attractive candidates for developing novel therapeutic agents, since they are lethal to a broad spectrum of pathogens and have a unique low tendency for resistance development. In this study, mechanism of action and in vitro anti-pseudomonal activity of previously designed short hybrid antimicrobial peptide PV3 were investigated. Compared to ceftazidime, PV3 had not only higher antibacterial activity but also faster bactericidal activity. PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. Although the antimicrobial activity of PV3 was reduced in Mueller-Hinton broth (MHB) containing human serum, it was still active enough to eradicationmore » of bacteria at low concentrations. Compared with standard condition (MHB only), there was no significant decrease in antibacterial activity of PV3 against P. aeruginosa strains under 150 mM NaCl (p = 0.615) and 1 mM MgCl{sub 2} (p = 0.3466). Fluorescence microscopy and field emission scanning electron microscopy further indicated that PV3 killed bacteria by disrupting the cell membrane. Since PV3 has potent anti-pseudomonal activity and has little cytotoxicity in vitro, it seems plausible that the peptide should be further investigated with animal studies to support future pharmacological formulations and potential topical applications. - Highlights: • PV3 killed Pseudomonas aeruginosa by membrane-disrupting mechanism. • PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. • Short hybrid antimicrobial peptide PV3 exhibited higher and faster bactericidal activity comparing to ceftazidime.« less

  6. Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India.

    PubMed

    Choudhari, Milind K; Punekar, Sachin A; Ranade, Ramchandra V; Paknikar, Kishore M

    2012-05-07

    Stingless bee (Trigona sp.) propolis is widely used in the folk medicine of Western Maharashtra, India to treat a variety of ailments. To determine the chemical composition and evaluate the antimicrobial activity of Indian stingless bee propolis. Chemical composition of the ethanolic extract of propolis (EEP) was determined by GC-MS analysis. A range of bacteria including multidrug resistant (MDR) cultures as well as a yeast strain was tested for antimicrobial activity using EEP. MIC, MBC, MFC, Kill curves and post agent effect (PAE) of the EEP were assessed using standard microbiological methods. GC-MS analysis revealed that propolis contained 24 compounds (9 known and 15 newly reported). Many of these were known bioactive compounds, including antimicrobials. The MICs of EEP were in the range of 1.21-9.75μg/mL while the MBCs/MFC were between 2.43 and 19.5μg/mL. The time required to achieve 90% (1 log(10)) reduction in culture growth ranged between 1.06 and 3.53h at their respective MIC values. PAE for all the cultures was >24h. Indian stingless bee propolis has a complex nature with 24 chemical compounds. It has a potent broad-spectrum antimicrobial activity. The latter finding, in conjunction with other bioactive properties, could provide a scientific basis to its popular use in the Indian folk medicine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies.

    PubMed

    Samiei, Mohammad; Farjami, Afsaneh; Dizaj, Solmaz Maleki; Lotfipour, Farzaneh

    2016-01-01

    Antimicrobial nanoparticles with enhanced physiochemical properties have attracted attention as modern antimicrobials, especially in the complicated oral cavity environment. The goal of the present article is to review the current state of nanoparticles used for antimicrobial purposes in root canal infections. A review was conducted in electronic databases using MeSH keywords to identify relevant published literature in English. The analysis and eligibility criteria were documented according to the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA-guidelines). No restrictions on publication date were imposed. Data regarding root canal disinfections, general antimicrobial mechanisms of nanoparticles, type of nanoparticles as antimicrobial agent and antimicrobial effect of nanoparticles in endodontics were collected and subjected to descriptive data analysis. The literature search in electronic databases according to the inclusion criteria provided 83 titles and abstracts. Among them 15 papers were related to antimicrobial effect of nanoparticles in Endodontics. Silver nanoparticles with sustainable activity were the most studied agent for its antimicrobial behavior in root canal infection. Aided polymeric nanoparticles with photo or ultrasound, glass bioactive nanoparticles as well as Calcium derivative based nanoparticles, with improved activity in comparison with the non-nano counterparts, are of importance in infection control of dental root canal. Bioactive Non-organic nanoparticles with structural capabilities present enhanced antimicrobial activity in root canal infections. All included studies showed an enhanced or at least equal effect of nanoparticulate systems to combat dental root canal infections compared to conventional antimicrobial procedures. However, it is crucial to understand their shortcomings and their probable cellular effects and toxicity as well as environmental effects. Copyright © 2015 Elsevier B.V. All rights

  8. Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics.

    PubMed

    Alves, M J; Ferreira, I C F R; Martins, A; Pintado, M

    2012-08-01

    This work aimed to screen the antimicrobial activity of aqueous methanolic extracts of 13 mushroom species, collected in Bragança, against several clinical isolates obtained in Hospital Center of Trás-os-Montes and Alto Douro, Portugal. Microdilution method was used to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). MIC results showed that Russula delica and Fistulina hepatica extracts inhibited the growth of gram-negative (Escherichia coli, Morganella morganni and Pasteurella multocida) and gram-positive (Staphylococcus aureus, MRSA, Enterococcus faecalis, Listeria monocytogenes, Streptococcus agalactiae and Streptococcus pyogenes) bacteria. A bactericide effect of both extracts was observed in Past. multocida, Strep. agalactiae and Strep. pyogenes with MBC of 20, 10 and 5 mg ml⁻¹, respectively. Lepista nuda extract exhibited a bactericide effect upon Past. multocida at 5 mg ml⁻¹ and inhibited Proteus mirabilis at 20 mg ml⁻¹. Ramaria botrytis extract showed activity against Enterococcus faecalis and L. monocytogenes, being bactericide for Past. multocida, Strep. agalactiae (MBCs 20 mg ml⁻¹) and Strep. pyogenes (MBC 10 mg ml⁻¹). Leucopaxillus giganteus extract inhibited the growth of E. coli and Pr. mirabilis, being bactericide for Past. multocida, Strep. pyogenes and Strep. agalactiae. Fistulina hepatica, R. botrytis and R. delica are the most promising species as antimicrobial agents. Mushroom extracts could be an alternative as antimicrobials against pathogenic micro-organisms resistant to conventional treatments. © 2012The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  9. Chemical Composition and Antimicrobial Activities of Iranian Propolis

    PubMed Central

    Afrouzan, Houshang; Tahghighi, Azar; Zakeri, Sedigheh; Es-haghi, Ali

    2018-01-01

    Background: With considering the importance of natural products for their remedial and therapeutic value, this research was aimed to analyze the chemical compositions and antimicrobial activity of four propolis samples from different areas of Iran (Chenaran, Taleghan, Morad Beyg, and Kalaleh) with various climates and flora. Methods: Ethanolic (70% EtOH) and dichlromethane (DCM) extracts of Iranian propolis were analyzed by gas chromatography-mass spectrometry (GC-MS) methods, and antimicrobial activity was evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus using disk diffusion antimicrobial method. Results: The results of GC-MS analysis showed the presence of fatty acids, flavonoids, terpenes, aromatic-aliphatic acids, and their related esters. The total flavonoids in DCM extract of Chenaran, Taleghan, Morad Beyg, and Kalaleh propolis were pinocembrin and pinostrobin chalcone. The common phenolic and terpene compounds detected in all four tested EtOH extracts were P-cumaric acid and dimethyl -1,3,5,6-tetramethyl-[1,3-(13C2)] bicycloce [5.5.0] dodeca-1,3,5,6,8,10-hexaene-9,10-dicarboxylate, respectively. The highest inhibitory diameter zone of the Iranian propolis against C. albicans, E. coli, and S. aureus was for DCM extract of Kalaleh propolis (13.33 mm), Morad Beyg propolis (12 mm), and Kalaleh (11.67 mm), respectively. Conclusion: Iranian propolis showed antimicrobial activities against C. albicans, E. coli, and S. aurous, perhaps due to the presence of flavonoids, phenolic acids, and terpenes as active components that can be used alone or in combination with the selected antibiotics to synergize antibiotic effect, as well as to prevent microbial resistance to available antimicrobial drugs. PMID:28558440

  10. Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina.

    PubMed

    Sakunphueak, Athip; Panichayupakaranant, Pharkphoom

    2012-01-01

    Lawsone (1), lawsone methyl ether (2), and methylene-3,3'-bilawsone (3) are the main naphthoquinones in the leaf extracts of Impatiens balsamina L. (Balsaminaceae). Antimicrobial activities of these three naphthoquinones against dermatophyte fungi, yeast, aerobic bacteria and facultative anaerobic and anaerobic bacteria were evaluated by determination of minimal inhibitory concentrations (MICs) and minimal bactericidal or fungicidal concentrations (MBCs or MFCs) using a modified agar dilution method. Compound 2 showed the highest antimicrobial activity. It showed antifungal activity against dermatophyte fungi and Candida albicans with the MICs and MFCs in the ranges of 3.9-23.4 and 7.8-23.4 µg mL(-1), respectively, and also had some antibacterial activity against aerobic, facultative anaerobic and anaerobic bacteria with MICs in the range of 23.4-93.8, 31.2-62.5 and 125 µg mL(-1), respectively. Compound 1 showed only moderate antimicrobial activity against dermatophytes (MICs and MFCs in the ranges of 62.5-250 and 125-250 µg mL(-1), respectively), but had low potency against aerobic bacteria, and was not active against C. albicans and facultative anaerobic bacteria. In contrast, 3 showed significant antimicrobial activity only against Staphylococus epidermidis and Bacillus subtilis (MIC and MBC of 46.9 and 93.8 µg mL(-1), respectively).

  11. Antimicrobial activity of Caesalpinia pulcherrima, Euphorbia hirta and Asystasia gangeticum.

    PubMed

    Sudhakar, M; Rao, Ch V; Rao, P M; Raju, D B; Venkateswarlu, Y

    2006-07-01

    The ethanolic extracts of the dry fruits of Caesalpinia pulcherrima, aerial parts of Euphorbia hirta and flowers of Asystasia gangeticum were tested for antimicrobial activity. The three plants exhibited a broad spectrum of antimicrobial activity, particularly against Escherichia coli (enteropathogen), Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus.

  12. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity.

    PubMed

    Cazorla, Silvia I; Maldonado-Galdeano, Carolina; Weill, Ricardo; De Paula, Juan; Perdigón, Gabriela D V

    2018-01-01

    The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP) that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431) and L. paracasei CNCM I-1518 (Lp 1518) to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus . Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old) to old age (180 days old). Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  13. Comparison of Antimicrobial Efficacy of Triclosan- Containing, Herbal and Homeopathy Toothpastes- An Invitro Study

    PubMed Central

    Fawaz, Mohammed Alimullah; Narahari, Rao; Shahela, Tanveer; Syed, Afroz

    2015-01-01

    Background Use of antimicrobial agents is one of the important strategies to prevent oral diseases. These agents vary in their abilities to deliver preventive and therapeutic benefits. Objectives This invitro study was conducted to assess antimicrobial efficacy of different toothpastes against various oral pathogens. Materials and Methods A total of nine toothpastes in three groups were tested for their antimicrobial activity against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Streptococcus mutans (ATCC 0266P) and Candida albicans (Laboratory Strain) by modified agar well diffusion method. Statistical Analysis was performed using Minitab Software. A p-value of less than 0.05 was considered significant. Results Triclosan-based dental formulation with combination of fluoride (1000ppm) exhibited higher antimicrobial activity against test organisms than the combination of lower fluoride-concentration or sodium monofluorophosphate. Among herbal dentifrices, formulation containing Neem, Pudina, Long, Babool, Turmeric and Vajradanti showed significant antimicrobial activity against all the four tested microorganisms (p<0.05). However, against Streptococcus mutans, all three herbal products showed significant antimicrobial activity. Homeo products showed least antimicrobial activity on the tested strains. Formulation with kreosotum, Plantago major and calendula was significantly effective only against Streptococcus mutans. Conclusion In the present study, antimicrobial activity of the toothpaste containing both triclosan and fluoride (1000ppm) as active ingredients showed a significant difference (p< 0.05) against all four tested microflora compared to that of with lower fluoride-concentration or sodium monofluorophosphate. Of herbal groups, the only dentifrice containing several phytochemicals was found to be significantly effective and comparable to triclosan-fluoride (1000ppm) formulation. Thus, this herbal toothpaste can be used as alternative to

  14. Evaluation of Toxicity and Antimicrobial Activity of an Ethanolic Extract from Leaves of Morus alba L. (Moraceae)

    PubMed Central

    de Oliveira, Alisson Macário; Mesquita, Matheus da Silva; da Silva, Gabriela Cavalcante; de Oliveira Lima, Edeltrudes; de Medeiros, Paloma Lys; Paiva, Patrícia Maria Guedes; de Souza, Ivone Antônia; Napoleão, Thiago Henrique

    2015-01-01

    This work evaluated an ethanolic extract from Morus alba leaves for toxicity to Artemia salina, oral toxicity to mice, and antimicrobial activity. Phytochemical analysis revealed the presence of coumarins, flavonoids, tannins, and triterpenes in the extract, which did not show toxicity to A. salina nauplii. No mortality and behavioral alterations were detected for mice treated with the extract (300 and 2000 mg/kg b.w.) for 14 days. However, animals that received the highest dose showed reduced MCV and MCHC as well as increased serum alkaline phosphatase activity. In treatments with the extract at both 300 and 2000 mg/kg, there was a reduction in number of leukocytes, with decrease in percentage of lymphocytes and increase in proportion of segmented cells. Histopathological analysis of organs from mice treated with the extract at 2000 mg/kg revealed turgidity of contorted tubules in kidneys, presence of leukocyte infiltration around the liver centrilobular vein, and high dispersion of the spleen white pulp. The extract showed antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Candida krusei, Candida tropicalis, and Aspergillus flavus. In conclusion, the extract contains antimicrobial agents and was not lethal for mice when ingested; however, its use requires caution because it promoted biochemical, hematological, and histopathological alterations. PMID:26246840

  15. Development of antimicrobial films for microbiological control of packaged salad.

    PubMed

    Muriel-Galet, Virginia; Cerisuelo, Josep P; López-Carballo, Gracia; Lara, Marta; Gavara, Rafael; Hernández-Muñoz, Pilar

    2012-07-02

    The aim of the present work was to characterize the antimicrobial efficiency of films consisting of PP/EVOH structures with oregano essential oil and citral. Both substances are known for their antimicrobial activity based on their interaction with the cell membrane. The films developed were used to pack minimally processed salads, combining modified atmosphere technology to extend shelf-life and active packaging technology to reduce possible microbiological risks. The antimicrobial activity of the films against the pathogenic microorganisms Escherichia coli, Salmonella enterica and Listeria monocytogenes and natural microflora was investigated "in vitro" and also on the food itself. The effect of release of the antimicrobial agent on the sensory characteristics of the salad was also studied. The results showed that antimicrobial activity reduced spoilage flora on the salad as well as inhibited the growth of pathogens in contaminated salads. This effect was greater against Gram-negative bacteria. Sensory studies showed that the package that was most effective and most accepted by customers was the one containing 5% oregano essential oil. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers

    PubMed Central

    Venkatesh, Mayandi; Barathi, Veluchamy Amutha; Goh, Eunice Tze Leng; Anggara, Raditya; Fazil, Mobashar Hussain Urf Turabe; Ng, Alice Jie Ying; Harini, Sriram; Aung, Thet Tun; Fox, Stephen John; Liu, Shouping; Barkham, Timothy Mark Sebastian; Loh, Xian Jun

    2017-01-01

    ABSTRACT The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 μg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections. PMID:28784676

  17. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and

  18. [Susceptibility and resistence of Pseudomonas aeruginosa to antimicrobial agents].

    PubMed

    Gamero Delgado, M C; García-Mayorgas, A D; Rodríguez, F; Ibarra, A; Casal, M

    2007-06-01

    Pseudomonas aeruginosa is an opportunistic microorganism that is frequently the cause of nosocomial infections. Multiple mechanisms are involved in its natural and acquired resistance to many of the antimicrobial agents commonly used in clinical practice. The objective of this study was to assess the susceptibility and resistance patterns of P. aeruginosa strains isolated in Hospital Reina Sofia between 2000 and 2005, as well as to analyze the differences between intrahospital and extrahospital isolates in 2005 and to compare the results with those obtained in other studies. A total of 3,019 strains of P. aeruginosa from different hospitals and nonhospital settings were evaluated, taking into consideration their degree of sensitivity to different antibiotics. The MICs were determined by means of the Wider I automated system (Soria Melguizo), taking into consideration the criteria of susceptibility and resistance recommended by MENSURA. Results of the analysis showed that P. aeruginosa maintained similar levels of antimicrobial susceptibility during the period 2000-2005, with increased susceptibility to amikacin, gentamicin and tobramycin. There were also important differences in the degree of susceptibility between intrahospital and extrahospital strains, except for imipenem and fosfomycin. The intrahospital difference in susceptibility was also evaluated, emphasizing the importance of periodically studying susceptibility and resistance patterns of P. aeruginosa in each setting in order to evaluate different therapeutic guidelines, as it is not always advisable to extrapolate data from different regions. These differences can be explained by the different use of antibiotics in each center and the geographic variations of the resistance mechanisms of P. aeruginosa.

  19. Lipopolysaccharide induces amyloid formation of antimicrobial peptide HAL-2.

    PubMed

    Wang, Jiarong; Li, Yan; Wang, Xiaoming; Chen, Wei; Sun, Hongbin; Wang, Junfeng

    2014-11-01

    Lipopolysaccharide (LPS), the important component of the outer membrane of Gram-negative bacteria, contributes to the integrity of the outer membrane and protects the cell against bactericidal agents, including antimicrobial peptides. However, the mechanisms of interaction between antimicrobial peptides and LPS are not clearly understood. Halictines-2 (HAL-2), one of the novel antimicrobial peptides, was isolated from the venom of the eusocial bee Halictus sexcinctus. HAL-2 has exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria and even against cancer cells. Here, we studied the interactions between HAL-2 and LPS to elucidate the antibacterial mechanism of HAL-2 in vitro. Our results show that HAL-2 adopts a significant degree of β-strand structure in the presence of LPS. LPS is capable of inducing HAL-2 amyloid formation, which may play a vital role in its antimicrobial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of Encapsulation on Antimicrobial Activity of
Herbal Extracts with Lysozyme

    PubMed Central

    Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla

    2016-01-01

    Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries. PMID:27956862

  1. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections.

    PubMed

    Sadhasivam, S; Palanivel, S; Ghosh, S

    2016-12-01

    Antimicrobials from natural sources have gained immense importance in recent times to combat the global challenge of antibiotic resistance. Essential oils are implicated in antimicrobial action against several species. Here, we have screened nine commercially available essential oils for their antimicrobial activity against organisms associated with skin, scalp and nail infections mainly Propionibacterium acnes, Malassezia spp., Candida albicans and Trichophyton spp. Among nine essential oils, Boswellia serrata essential oil demonstrated superior antimicrobial activity against all the micro-organisms and surprisingly it showed maximum activity against Trichophyton spp. The gas chromatography-mass spectrometry analysis of B. serrata oil indicates a major composition of α thujene, ρ cymene and sabinene. Additionally, B. serrata oil was found to inhibit Staphylococcus epidermidis biofilm, and its combination with azoles has shown synergistic activity against azole-resistant strain of C. albicans. These broad-spectrum antimicrobial activities of B. serrata oil will make it an ideal candidate for topical use. Eradication of skin and nail infections still remain a challenge and there are serious concerns regarding the recurrence of the diseases associated with these infections. Antimicrobials from plant sources are gaining importance in therapeutics because they encounter minimal challenges of emergence of resistance. We have demonstrated the antimicrobial activity of Boswellia serrata essential oil against micro-organisms involved in skin, scalp and nail infections, especially if it has shown favourable synergistic antifungal activity in combination with azoles against the azole-resistant Candida albicans strain. Thus, B. serrata oil can be one of the plausible therapeutic agents for management of skin, scalp and nail infections. © 2016 The Society for Applied Microbiology.

  2. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.).

    PubMed

    Mohanta, Yugal K; Panda, Sujogya K; Jayabalan, Rasu; Sharma, Nanaocha; Bastia, Akshaya K; Mohanta, Tapan K

    2017-01-01

    In this experiment, biosynthesized silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Erythrina suberosa (Roxb.). The biosynthesis of silver nanoparticle was continuously followed by UV-vis spectrophotometric analysis. The response of the phytoconstituents resides in E. suberusa during synthesis of stable AgNPs were analyzed by ATR- fourier-transform infrared spectroscopy. Further, the size, charge, and polydispersity nature of AgNPs were studied using dynamic light scattering spectroscopy. The morphology of the nanoparticles was determined by scanning electron microscopy. Current result shows core involvement of plant extracts containing glycosides, flavonoids, and phenolic compounds played a crucial role in the biosynthesis of AgNPs. The antimicrobial activities of silver nanoparticles were evaluated against different pathogenic bacterium and fungi. The antioxidant property was studied by radical scavenging (DPPH) assay and cytotoxic activity was evaluated against A-431 osteosarcoma cell line by MTT assay. The characteristics of the synthesized silver nanoparticles suggest their application as a potential antimicrobial and anticancer agent.

  3. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.)

    PubMed Central

    Mohanta, Yugal K.; Panda, Sujogya K.; Jayabalan, Rasu; Sharma, Nanaocha; Bastia, Akshaya K.; Mohanta, Tapan K.

    2017-01-01

    In this experiment, biosynthesized silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Erythrina suberosa (Roxb.). The biosynthesis of silver nanoparticle was continuously followed by UV-vis spectrophotometric analysis. The response of the phytoconstituents resides in E. suberusa during synthesis of stable AgNPs were analyzed by ATR- fourier-transform infrared spectroscopy. Further, the size, charge, and polydispersity nature of AgNPs were studied using dynamic light scattering spectroscopy. The morphology of the nanoparticles was determined by scanning electron microscopy. Current result shows core involvement of plant extracts containing glycosides, flavonoids, and phenolic compounds played a crucial role in the biosynthesis of AgNPs. The antimicrobial activities of silver nanoparticles were evaluated against different pathogenic bacterium and fungi. The antioxidant property was studied by radical scavenging (DPPH) assay and cytotoxic activity was evaluated against A-431 osteosarcoma cell line by MTT assay. The characteristics of the synthesized silver nanoparticles suggest their application as a potential antimicrobial and anticancer agent. PMID:28367437

  4. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds.

    PubMed

    Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew

    2017-09-01

    An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.

  5. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria.

    PubMed

    Cermak, Pavel; Olsovska, Jana; Mikyska, Alexandr; Dusek, Martin; Kadleckova, Zuzana; Vanicek, Jiri; Nyc, Otakar; Sigler, Karel; Bostikova, Vanda; Bostik, Pavel

    2017-11-01

    Anaerobic bacteria, such as Bacteroides fragilis or Clostridium perfringens, are part of indigenous human flora. However, Clostridium difficile represents also an important causative agent of nosocomial infectious antibiotic-associated diarrhoea. Treatment of C. difficile infection is problematic, making it imperative to search for new compounds with antimicrobial properties. Hops (Humulus lupulus L.) contain substances with antibacterial properties. We tested antimicrobial activity of purified hop constituents humulone, lupulone and xanthohumol against anaerobic bacteria. The antimicrobial activity was established against B. fragilis, C. perfringens and C. difficile strains according to standard testing protocols (CLSI, EUCAST), and the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were calculated. All C. difficile strains were toxigenic and clinically relevant, as they were isolated from patients with diarrhoea. Strongest antimicrobial effects were observed with xanthohumol showing MIC and MBC values of 15-107 μg/mL, which are close to those of conventional antibiotics in the strains of bacteria with increased resistance. Slightly higher MIC and MBC values were obtained with lupulone followed by higher values of humulone. Our study, thus, shows a potential of purified hop compounds, especially xanthohumol, as alternatives for treatment of infections caused by select anaerobic bacteria, namely nosocomial diarrhoea caused by resistant strains. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  6. Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides

    PubMed Central

    Veldhuizen, Edwin J. A.; Schneider, Viktoria A. F.; Agustiandari, Herfita; van Dijk, Albert; Tjeerdsma-van Bokhoven, Johanna L. M.; Bikker, Floris J.; Haagsman, Henk P.

    2014-01-01

    The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics. PMID:24755622

  7. De-Novo Design of Antimicrobial Peptides for Plant Protection

    PubMed Central

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents. PMID:23951222

  8. De-novo design of antimicrobial peptides for plant protection.

    PubMed

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.

  9. Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nik Nuraznida Nik; Usup, Gires; Ahmad, Asmat

    2018-04-01

    Over the past ten years, marine natural product researchers have expanded the scope of their studies from macroorganisms such as algae to marine microorganisms. The marine environment is believed to be able to provide novel lead against pathogenic microbes that are evolving and developing resistance to existing pharmaceutical agents. In this study, a total of 150 bacterial isolates isolated from Port Klang and Port Tanjung Pelepas were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Entrococcus, faecalis, Pseudomonas aeruginosa and Methicillin-Resistance Staphylococcus aureus (MRSA). Only 10 isolates: PW01, PW02, PB03, and PS (04, 05, 06, 07, 08, 09, and 10) showed strong antibacterial activity. Based on the strongest activity, isolates PW01 and PW02 were selected for secondary screening using well diffusion assay. The dichloromethane extract of Pseudomonas sp. PW01 showed activity against S. aureus (15±0 mm), V. parahaemolyticus (25±1.63 mm) and MRSA (18±0.81 mm). Meanwhile, the diethyl ether extract of Pseudomonas sp. PW02 showed active activity against S. aureus (10±0 mm), V. parahaemolyticus (30±0.94 mm), MRSA (30±0.94 mm), E. coli (22±1.25 mm) and E. faecalis (26±0 mm). Through this study, it was suggested that marine microorganisms may represent an untapped reservoir of biodiversity capable of synthesizing antimicrobial molecules.

  10. Antimicrobial resistance mechanisms among Campylobacter.

    PubMed

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  11. Antimicrobial susceptibility survey on bacterial agents of canine and feline urinary tract infections: Weight of the empirical treatment.

    PubMed

    Rampacci, Elisa; Bottinelli, Marco; Stefanetti, Valentina; Hyatt, Doreene R; Sgariglia, Elisa; Coletti, Mauro; Passamonti, Fabrizio

    2018-06-01

    This work characterised the antimicrobial susceptibility of uropathogens isolated from empirically treated dogs and cats. Within-household transmission of uropathogens can involve humans and companion animals. Knowledge on the prevalence and susceptibility pattern of isolates from canine and feline urine samples and the impact of prior antimicrobial treatment is important to prevent the dissemination of antimicrobial resistance. A retrospective study was conducted selecting antibiotic-treated companion animals. Urine samples were collected by cystocentesis and were submitted to an Italian diagnostic laboratory over a 2-year period (2013-2015). The antimicrobial susceptibility of the isolates was analysed both using Clinical and Laboratory Standards Institute (CLSI) guidelines and a formula to help select rational antimicrobial therapy. Gram-negative bacteria were clearly prevalent. Gentamicin had the highest impact factors. Amoxicillin/clavulanic acid and doxycycline appeared to be the most effective compounds against Gram-positive infections, whilst marbofloxacin may be a useful option against Gram-negative urinary tract infections (UTIs) as well as doxycycline and trimethoprim/sulfamethoxazole in cats and dogs, respectively. Consulting published studies, a comparable overall trend regarding bacterial species incriminated in canine and feline UTIs and their susceptibilities seems likely, despite different circumstances where the studies were conducted. Companion animals are potential reservoirs of drug-resistant uropathogens. Judicious use of antibiotics is necessary to maintain the efficacy of antimicrobials in human and veterinary medicine. Antimicrobial susceptibility monitoring programmes are therefore essential to facilitate the choice of antimicrobial agent that is most likely to be effective, particularly in cases of prior antimicrobial treatment. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. All rights reserved.

  12. Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast.

    PubMed

    Johnston, W H; Karchesy, J J; Constantine, G H; Craig, A M

    2001-11-01

    Extracts of woods commonly used for animal bedding were tested for antimicrobial activity. Essential oils from Alaska cedar (Chamaecyparis nootkatensis), western juniper (Juniperus occidentalis) and old growth Douglas fir (Pseudotsuga menziesii) as well as methanol extracts of wood from these trees plus western red cedar (Thuja plicata) and ponderosa pine (Pinus ponderosa) were tested for antimicrobial activity against anaerobic bacteria and yeast. The test microbes included Fusobacterium necrophorum, Clostridium perfringens, Actinomyces bovis and Candida albicans which are common to foot diseases and other infections in animals. The essential oils and methanol extracts were tested using a standardized broth assay. Only extracts of Alaska cedar and western juniper showed significant antimicrobial activity against each of the microbes tested. The essential oil of Douglas fir did show antimicrobial activity against A. bovis at the concentrations tested. The methanol extracts of the heartwood of Douglas fir and the sapwood of ponderosa pine showed no antimicrobial activity. The major chemical components of western juniper (cedrol and alpha- and beta-cedrene) and Alaska cedar (nootkatin) were also tested. In western juniper, alpha- and beta-cedrene were found to be active components. Nootkatin showed activity only against C. albicans. The inhibitory activity in Alaska cedar oil was high enough to justify further efforts to define the other chemical components responsible for the antimicrobial activity. Copyright 2001 John Wiley & Sons, Ltd.

  13. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Baraliya, Jagdish D.; Joshi, Hiren H.

    2014-04-01

    We report the results of biological study on core-shell structured MFe2O4 (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe2O4 nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  14. Vancomycin-modified Fe3O4@SiO2@Ag microflowers as effective antimicrobial agents.

    PubMed

    Wang, Chongwen; Zhang, Kehan; Zhou, Zhe; Li, Qingjun; Shao, Liting; Hao, Rong Zhang; Xiao, Rui; Wang, Shengqi

    2017-01-01

    Nanomaterials combined with antibiotics exhibit synergistic effects and have gained increasing interest as promising antimicrobial agents. In this study, vancomycin-modified magnetic-based silver microflowers (Van/Fe 3 O 4 @SiO 2 @Ag microflowers) were rationally designed and prepared to achieve strong bactericidal ability, a wide antimicrobial spectrum, and good recyclability. High-performance Fe 3 O 4 @SiO 2 @Ag microflowers served as a multifunction-supporting matrix and exhibited sufficient magnetic response property due to their 200 nm Fe 3 O 4 core. The microflowers also possessed a highly branched flower-like Ag shell that provided a large surface area for effective Ag ion release and bacterial contact. The modified-vancomycin layer was effectively bound to the cell wall of bacteria to increase the permeability of the cell membrane and facilitate the entry of the Ag ions into the bacterium, resulting in cell death. As such, the fabricated Van/Fe 3 O 4 @SiO 2 @Ag microflowers were predicted to be an effective and environment-friendly antibacterial agent. This hypothesis was verified through sterilization of Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus , with minimum inhibitory concentrations of 10 and 20 μg mL -1 , respectively. The microflowers also showed enhanced effect compared with bare Fe 3 O 4 @SiO 2 @Ag microflowers and free-form vancomycin, confirming the synergistic effects of the combination of the two components. Moreover, the antimicrobial effect was maintained at more than 90% after five cycling assays, indicating the high stability of the product. These findings reveal that Van/Fe 3 O 4 @SiO 2 @Ag microflowers exhibit promising applications in the antibacterial fields.

  15. Preparation, characterization and in vitro antimicrobial activity of liposomal ceftazidime and cefepime against Pseudomonas aeruginosa strains

    PubMed Central

    Torres, Ieda Maria Sapateiro; Bento, Etiene Barbosa; Almeida, Larissa da Cunha; de Sá, Luisa Zaiden Carvalho Martins; Lima, Eliana Martins

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic microorganism with the ability to respond to a wide variety of environmental changes, exhibiting a high intrinsic resistance to a number of antimicrobial agents. This low susceptibility to antimicrobial substances is primarily due to the low permeability of its outer membrane, efflux mechanisms and the synthesis of enzymes that promote the degradation of these drugs. Cephalosporins, particularty ceftazidime and cefepime are effective against P. aeruginosa, however, its increasing resistance has limited the usage of these antibiotics. Encapsulating antimicrobial drugs into unilamellar liposomes is an approach that has been investigated in order to overcome microorganism resistance. In this study, antimicrobial activity of liposomal ceftazidime and cefepime against P. aeruginosa ATCC 27853 and P. aeruginosa SPM-1 was compared to that of the free drugs. Liposomal characterization included diameter, encapsulation efficiency and stability. Minimum Inhibitory Concentration (MIC) was determined for free and liposomal forms of both drugs. Minimum Bactericidal Concentration (MBC) was determined at concentrations 1, 2 and 4 times MIC. Average diameter of liposomes was 131.88 nm and encapsulation efficiency for cefepime and ceftazidime were 2.29% end 5.77%, respectively. Improved stability was obtained when liposome formulations were prepared with a 50% molar ratio for cholesterol in relation to the phospholipid. MIC for liposomal antibiotics for both drugs were 50% lower than that of the free drug, demonstrating that liposomal drug delivery systems may contribute to increase the antibacterial activity of these drugs. PMID:24031917

  16. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent.

    PubMed

    Arjunan, Nithya; Kumari, Henry Linda Jeeva; Singaravelu, Chandra Mohan; Kandasamy, Ruckmani; Kandasamy, Jothivenkatachalam

    2016-11-01

    Chitosan (CS), a seaweed polysaccharide is a natural macromolecule which is widely being used in medical applications because of its distinctive antimicrobial and anticancer properties. Silver, a noble metal, is also receiving wide attention for its potential usage in antimicrobial and anticancer therapeutics. In this study, an effective way of reduction of silver using chitosan at varying reaction temperatures and an optimised concentration of silver were performed. The optical, structural, spectral, morphological and elemental studies of the biosynthesized chitosan-silver (CS-Ag) nanocomposites were characterized by several techniques. The synthesized CS-Ag nanocomposites exhibit particle size around 20nm and were further exploited for potent biological applications in nanomedicine due to their nanometric sizes and biocompatibility of chitosan. The antimicrobial activity of the biosynthesized CS-Ag nanocomposites exhibits zone of inhibition ranged between 09.666±0.577 and 19.000±1.000 (mm). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were from 8 to 128μgmL -1 and 16 to 256μgmL -1 respectively, with the highest antimicrobial activity shown against Gram-negative Salmonella sp. The synergistic effect of chitosan and silver as a composite in nanometric size revealed significant IC 50 value of 29.35μgmL -1 and a maximum of 95.56% inhibition at 100μgmL -1 against A549 lung cancer cell line, resulting in potent anticancer effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Consensus summary of aerosolized antimicrobial agents: application of guideline criteria. Insights from the Society of Infectious Diseases Pharmacists.

    PubMed

    Le, Jennifer; Ashley, Elizabeth Dodds; Neuhauser, Melinda M; Brown, Jack; Gentry, Chris; Klepser, Michael E; Marr, Ann Marie; Schiller, Daryl; Schwiesow, Joshua N; Tice, Sally; VandenBussche, Heather L; Wood, G Christopher

    2010-06-01

    Aerosolized delivery of antimicrobial agents is an attractive option for management of pulmonary infections, as this is an ideal method of providing high local drug concentrations while minimizing systemic exposure. With the paucity of consensus regarding the safety, efficacy, and means with which to use aerosolized antimicrobials, a task force was created by the Society of Infectious Diseases Pharmacists to critically review and evaluate the literature on the use of aerosolized antiinfective agents. This article summarizes key findings and statements for preventing or treating a variety of infectious diseases, including cystic fibrosis, bronchiecstasis, hospital-acquired pneumonia, fungal infections, nontuberculosis mycobacterial infection, and Pneumocystis jiroveci pneumonia. Our intention was to provide guidance for clinicians on the use of aerosolized antibiotics through evidence-based pharmacotherapy. Further research with well-designed clinical trials is necessary to elucidate the optimal dosage and duration of therapy and, of equal importance, to appreciate the true risks associated with the use of aerosolized delivery systems.

  18. Antimicrobial, Cytotoxic, Anti-Inflammatory, and Antioxidant Activity of Culinary Processed Shiitake Medicinal Mushroom (Lentinus edodes, Agaricomycetes) and Its Major Sulfur Sensory-Active Compound-Lenthionine.

    PubMed

    Kupcova, Kristyna; Stefanova, Iveta; Plavcova, Zuzana; Hosek, Jan; Hrouzek, Pavel; Kubec, Roman

    2018-01-01

    The antimicrobial, cytotoxic, anti-inflammatory, and antioxidant properties of aqueous extracts of raw and culinary processed shiitake mushrooms were evaluated and compared with those of lenthionine (1,2,3,5,6-penta-thiepane), the principal aroma-bearing substance of the shiitake medicinal mushroom (Lentinus edodes). Antimicrobial activity was tested using a panel of 4 strains of bacteria, 2 yeasts, and 2 fungi. Cytotoxic properties were evaluated against 3 cell lines (HepG2, HeLa, PaTu), whereas the anti-inflammatory activity of tested samples was assayed based on their ability to attenuate the secretion of the cytokine tumor necrosis factor-α. Antioxidant activity was measured using in vitro DPPH and ABTS assays. It was found that lenthionine possesses significant antimicrobial properties; it is remarkably effective in inhibiting the growth of yeasts and fungi (minimum inhibitory concentration, 2-8 μg/mL) and thus is comparable to standard antifungal agents. Lenthionine is also able to decrease significantly the production of tumor necrosis factor-a and thus could be at least partly responsible for the observed anti-inflammatory effect of shiitake. On the other hand, lenthionine does not seem to contribute significantly to the well-known anticancer and antioxidant effects of the mushroom.

  19. Antimicrobial activity of fluoride and its in vivo importance: identification of research questions.

    PubMed

    Van Loveren, C

    2001-01-01

    This manuscript discusses the antimicrobial activity of fluoride and its in vivo importance in order to identify research questions. There is a lot of information on mechanisms by which fluoride may interfere with bacterial metabolism and dental plaque acidogenicity. The antimicrobial activity of fluoride products is enhanced when fluoride is associated with antimicrobial cations like Sn(2+) and amine. It is not clear whether the antimicrobial mechanisms of fluoride are operating in vivo or even to what extent antimicrobial activity can contribute to caries prevention. This latter question may be the most important one in research. Copyright 2001 S. Karger AG, Basel.

  20. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms.

    PubMed

    Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo

    2015-07-07

    Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least