Science.gov

Sample records for active archaeal communities

  1. Active archaeal communities at cold seep sediments populated by Siboglinidae tubeworms from the Storegga Slide.

    PubMed

    Lazar, Cassandre Sara; Dinasquet, Julie; Pignet, Patricia; Prieur, Daniel; Toffin, Laurent

    2010-10-01

    Siboglinid tubeworms in cold seep sediments can locally modify the geochemical gradients of electron acceptors and donors, hence creating potential microhabitats for prokaryotic populations. The archaeal communities associated with sediments populated by Oligobrachia haakonmosbiensis and Sclerolinum contortum Siboglinid tubeworms in the Storegga Slide were examined in this study. Vertical distribution of archaeal communities was investigated using denaturing gradient gel electrophoresis based on 16S rRNA genes. The active fraction of the archaeal community was assessed by using reverse-transcribed rRNA. Archaeal communities associated with sediments colonized by tubeworms were affiliated with uncultivated archaeal lineages of the Crenarchaeota and Euryarchaeota. The composition of the active archaeal populations changed with depth indicating a reorganization of microbial communities. 16S rRNA gene libraries were dominated by sequences affiliated to the Rice Cluster V which are unusual in marine sediment samples. Moreover, this study provides the first evidence of living Crenarchaeota of the Rice Cluster V in cold seep sediments. Furthermore, the Storegga Slide sediments harbored a high diversity of other minor groups of uncultivated lineages including Terrestrial Miscellaneous Euryarchaeotal Group, Marine Benthic Group (MBG)-D, MBG-E, Deep-Sea Hydrothermal Vent Euryarchaeotal Group, Lake Dagow Sediment, Val Kotinen Lake clade III, and Sippenauer Moor 1. Thus, we hypothesize that the vertical geochemical imprint created by the tubeworms could support broad active archaeal populations in the Siboglinidae-populated Storegga Slide sediments.

  2. Stratified active archaeal communities in the sediments of Jiulong River estuary, China.

    PubMed

    Li, Qianqian; Wang, Fengping; Chen, Zhiwei; Yin, Xijie; Xiao, Xiang

    2012-01-01

    Here the composition of total and active archaeal communities in a sediment core of Jiulong River estuary at Fujian Province, Southern China was reported. Profiles of CH(4) and SO(2-) (4) concentrations from the sediment core indicated the existence of a sulfate-methane transition zone (SMTZ) in which sulfate reduction-coupled anaerobic oxidation of methane (AOM) occurs. Accordingly, three sediment layers (16-18.5 cm, 71-73.5 cm, and 161-163.5 cm) from the 1.2 m sediment core were sectioned and named top, middle and bottom, respectively. Total DNA and RNA of each layer were extracted and used for clone libraries and sequence analysis of 16S rRNA genes, the reverse transcription (RT)-PCR products of 16S rRNA and methyl CoM reductase alpha subunit (mcrA) genes. Phylogenetic analysis indicated that archaeal communities of the three layers were dominated by the Miscellaneous Crenarchaeotal Group (MCG) whose ecological functions were still unknown. The MCG could be further divided into seven subgroups, named MCG-A, B, C, D, E, F, and G. MCG-A and MCG-G were the most active groups in the estuarine sediments. Known anaerobic methanotrophic archaea (ANMEs) were only found as minor components in these estuarine archaeal communities. This study, together with the studies of deep subsurface sediments, would be a very good start point to target and compare the specific active archaeal groups and their roles in the dark, deep subsurface sediment environments.

  3. Environmental Shaping of Sponge Associated Archaeal Communities

    PubMed Central

    Turque, Aline S.; Batista, Daniela; Silveira, Cynthia B.; Cardoso, Alexander M.; Vieira, Ricardo P.; Moraes, Fernando C.; Clementino, Maysa M.; Albano, Rodolpho M.; Paranhos, Rodolfo; Martins, Orlando B.; Muricy, Guilherme

    2010-01-01

    Background Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood. Methodology/Principal Findings We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA) gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA) generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum. Conclusion/Significance The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition of their associated

  4. Archaeal communities associated with shallow to deep subseafloor sediments of the New Caledonia Basin.

    PubMed

    Roussel, Erwan G; Sauvadet, Anne-Laure; Chaduteau, Carine; Fouquet, Yves; Charlou, Jean-Luc; Prieur, Daniel; Cambon Bonavita, Marie-Anne

    2009-09-01

    The distribution of the archaeal communities in deep subseafloor sediments [0-36 m below the seafloor (mbsf)] from the New Caledonia and Fairway Basins was investigated using DNA- and RNA-derived 16S rRNA clone libraries, functional genes and denaturing gradient gel electrophoresis (DGGE). A new method, Co-Migration DGGE (CM-DGGE), was developed to access selectively the active archaeal diversity. Prokaryotic cell abundances at the open-ocean sites were on average approximately 3.5 times lower than at a site under terrestrial influence. The sediment surface archaeal community (0-1.5 mbsf) was characterized by active Marine Group 1 (MG-1) Archaea that co-occurred with ammonia monooxygenase gene (amoA) sequences affiliated to a group of uncultured sedimentary Crenarchaeota. However, the anoxic subsurface methane-poor sediments (below 1.5 mbsf) were dominated by less active archaeal communities, such as the Thermoplasmatales, Marine Benthic Group D and other lineages probably involved in the methane cycle (Methanosarcinales, ANME-2 and DSAG/MBG-B). Moreover, the archaeal diversity of some sediment layers was restricted to only one lineage (Uncultured Euryarchaeota, DHVE6, MBG-B, MG-1 and SAGMEG). Sequences forming two clusters within the Thermococcales order were also present in these cold subseafloor sediments, suggesting that these uncultured putative thermophilic archaeal communities might have originated from a different environment. This study shows a transition between surface and subsurface sediment archaeal communities.

  5. Distribution and diversity of archaeal communities in selected Chinese soils.

    PubMed

    Cao, Peng; Zhang, Li-Mei; Shen, Ju-Pei; Zheng, Yuan-Ming; Di, Hong J; He, Ji-Zheng

    2012-04-01

    To understand the distribution and diversity of archaea in Chinese soils, the archaeal communities in a series of topsoils and soil profiles were investigated using quantitative PCR, T-RFLP combining sequencing methods. Archaeal 16S rRNA gene copy numbers, ranging from 4.96 × 10(6) to 1.30 × 10(8)  copies g(-1) dry soil, were positively correlated with soil pH, organic carbon and total nitrogen in the topsoils. In the soil profiles, archaeal abundance was positively correlated with soil pH but negatively with depth profile. The relative abundance of archaea in the prokaryotes (sum of bacteria and archaea) ranged from 0.20% to 9.26% and tended to increase along the depth profile. T-RFLP and phylogenetic analyses revealed that the structure of archaeal communities in cinnamon soils, brown soils, and fluvo-aquic soils was similar and dominated by Crenarchaeota group 1.1b and 1.1a. These were different from those in red soils, which were dominated by Crenarchaeota group 1.3 and 1.1c. Canonical correspondence analysis indicated that the archaeal community was primarily influenced by soil pH.

  6. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil.

    PubMed

    Navarro-Noya, Yendi E; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G; Marsch, Rodolfo; Dendooven, Luc

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH.

  7. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    PubMed Central

    Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  8. Drying effects on archaeal community composition and methanogenesis in bromeliad tanks.

    PubMed

    Brandt, Franziska B; Martinson, Guntars O; Pommerenke, Bianca; Pump, Judith; Conrad, Ralf

    2015-02-01

    Tank bromeliads are highly abundant epiphytes in neotropical forests and form a unique canopy wetland ecosystem which is involved in the global methane cycle. Although the tropical climate is characterized by high annual precipitation, the plants can face periods of restricted water. Thus, we hypothesized that water is an important controller of the archaeal community composition and the pathway of methane formation in tank bromeliads. Greenhouse experiments were established to investigate the resident and active archaeal community targeting the 16S rDNA and 16S rRNA in the tank slurry of bromeliads at three different moisture levels. Archaeal community composition and abundance were determined using terminal restriction fragment length polymorphism and quantitative PCR. Release of methane and its stable carbon isotopic signature were determined in a further incubation experiment under two moisture levels. The relative abundance of aceticlastic Methanosaetaceae increased up to 34% and that of hydrogenotrophic Methanobacteriales decreased by more than half with decreasing moisture. Furthermore, at low moisture levels, methane production was up to 100-fold lower (≤0.1-1.1 nmol gdw(-1) d(-1)) than under high moisture levels (10-15 nmol gdw(-1) d(-1)). The rapid response of the archaeal community indicates that the pathway of methane formation in bromeliad tanks may indeed be strongly susceptible to periods of drought in neotropical forest canopies.

  9. Bacterial and archaeal communities in bleached mottles of tropical podzols.

    PubMed

    Silva, K J; Vidal-Torrado, P; Lambais, M R

    2015-02-01

    Podzols frequently show bleached mottles depleted in organic matter, most readily visible in the Bh horizons. Even though the process of bleached mottles development is not understood, it has been suggested that the selective degradation of organic matter by soil microorganisms has a major contribution. In this study, we examined the bacterial and archaeal communities along three Brazilian coastal podzol profiles, as well as in bleached mottles and their immediate vicinity, using 16S rRNA gene profiling. Our results showed that the bacterial and archaeal community structures in the studied podzols varied with depth and that the bacterial communities in the bleached mottles were significantly different from that in their immediate vicinity. In contrast, the archaeal communities in bleached mottles were significantly different from their vicinity only in the Bertioga (BT) profile, based on sequencing of amplicons of the 16S rRNA gene. Redundancy analyses showed that the bacterial community structures in the bleached mottles of BT were negatively associated mostly with the levels of organic carbon, exchangeable-aluminum (Al), exchangeable potassium, and Al-saturation, whereas in the surrounding soil, the opposite was observed. In the Ilha Comprida (IC) profiles, no such relationships were observed, suggesting distinct drivers of the bacterial community structures in bleached mottles of different podzols. In the bleached mottles of the BT profile, operational taxonomic units (OTUs) phylogenetically related to Pseudomonas were the most abundant Bacteria, whereas in the IC profiles, OTUs related to Acidobacteria were predominant. Thermoprotei (Crenarchaeota) were the most abundant Archaea in the bleached mottles and in their immediate vicinity. Based on the diverse metabolic capabilities of Pseudomonas and Acidobacteria, our data suggest that these groups of bacteria may be involved in the development of bleached mottles in the podzols studied and that the selection of

  10. Relating the Diversity, Abundance, and Activity of Ammonia-Oxidizing Archaeal Communities to Nitrification Rates in the Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Tolar, B. B.; Smith, J. M.; Chavez, F.; Francis, C.

    2015-12-01

    Ammonia oxidation, the rate-limiting first step of nitrification, is an important link between reduced (ammonia) and oxidized (nitrate) nitrogen, and controls the relative distribution of these forms of inorganic nitrogen. This process is catalyzed via the ammonia monooxygenase enzyme of both ammonia-oxidizing Bacteria (AOB) and Archaea (AOA); the α subunit of this enzyme is encoded by the amoA gene and has been used as the molecular marker to detect this process. In the ocean, AOA are typically 10-1000 times more and are likely more active than AOB, and thus are key players in the marine nitrogen cycle. Monterey Bay is a dynamic site to study nitrification, as seasonal upwelling brings deep water and nutrients into surface waters, which can promote phytoplankton blooms and impact biogeochemical processes such as the nitrogen cycle. We have sampled two sites within Monterey Bay bimonthly for two years as part of the ongoing Monterey Bay Time Series (MBTS) to quantify AOA genes, transcripts, and nitrification rates. Two ecotypes of AOA are routinely found in Monterey Bay - the 'shallow' water column A (WCA) and 'deep' water column B (WCB) clades, which are thought to have distinct physiological properties and can be distinguished based on the amoA gene sequence. Previous work has shown a strong relationship between nitrification rates in Monterey Bay with the abundance of WCA amoA genes and transcripts. Additionally, we found a correlation between the relative abundance of Marine Group I (MGI) Thaumarchaeota 16S rRNA reads (as % of total) and the absolute abundance of AOA amoA genes (determined via qPCR) in Monterey Bay and the California Current System. AOA 16S rRNA gene abundances in turn correlated significantly with changes in nitrification rate with depth, while the relative abundance of genes and transcripts binned to a single AOA (Nitrosopumilus maritimus) was not significantly correlated to nitrification rate. Further analysis of the sequenced AOA

  11. Temporal and Spatial Dynamics of Archaeal Communities in Two Freshwater Lakes at Different Trophic Status

    PubMed Central

    Yang, Yuyin; Dai, Yu; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2016-01-01

    In either eutrophic Dianchi Lake or mesotrophic Erhai Lake, the abundance, diversity, and structure of archaeaplankton communities in spring were different from those in summer. In summer, archaeaplankton abundance generally decreased in Dianchi Lake but increased in Erhai Lake, while archaeaplankton diversity increased in both lakes. These two lakes had distinct archaeaplankton community structure. Archaeaplankton abundance was influenced by organic content, while trophic status determined archaeaplankton diversity and structure. Moreover, in summer, lake sediment archaeal abundance considerably decreased. Sediment archaeal abundance showed a remarkable spatial change in spring but only a slight one in summer. The evident spatial change of sediment archaeal diversity occurred in both seasons. In Dianchi Lake, sediment archaeal community structure in summer was remarkably different from that in spring. Compared to Erhai Lake, Dianchi Lake had relatively high sediment archaeal abundance but low diversity. These two lakes differed remarkably in sediment archaeal community structure. Trophic status determined sediment archaeal abundance, diversity and structure. Archaeal diversity in sediment was much higher than that in water. Water and sediment habitats differed greatly in archaeal community structure. Euryarchaeota predominated in water column, but showed much lower proportion in sediment. Bathyarchaeota was an important component of sediment archaeal community. PMID:27065997

  12. Temporal and Spatial Dynamics of Archaeal Communities in Two Freshwater Lakes at Different Trophic Status.

    PubMed

    Yang, Yuyin; Dai, Yu; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2016-01-01

    In either eutrophic Dianchi Lake or mesotrophic Erhai Lake, the abundance, diversity, and structure of archaeaplankton communities in spring were different from those in summer. In summer, archaeaplankton abundance generally decreased in Dianchi Lake but increased in Erhai Lake, while archaeaplankton diversity increased in both lakes. These two lakes had distinct archaeaplankton community structure. Archaeaplankton abundance was influenced by organic content, while trophic status determined archaeaplankton diversity and structure. Moreover, in summer, lake sediment archaeal abundance considerably decreased. Sediment archaeal abundance showed a remarkable spatial change in spring but only a slight one in summer. The evident spatial change of sediment archaeal diversity occurred in both seasons. In Dianchi Lake, sediment archaeal community structure in summer was remarkably different from that in spring. Compared to Erhai Lake, Dianchi Lake had relatively high sediment archaeal abundance but low diversity. These two lakes differed remarkably in sediment archaeal community structure. Trophic status determined sediment archaeal abundance, diversity and structure. Archaeal diversity in sediment was much higher than that in water. Water and sediment habitats differed greatly in archaeal community structure. Euryarchaeota predominated in water column, but showed much lower proportion in sediment. Bathyarchaeota was an important component of sediment archaeal community.

  13. Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.

    PubMed

    Lupatini, Manoeli; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Suleiman, Afnan Khalil Ahmad; Fulthorpe, Roberta R; Roesch, Luiz Fernando Würdig

    2013-02-01

    The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.

  14. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge.

    PubMed

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-12

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  15. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    NASA Astrophysics Data System (ADS)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  16. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    PubMed Central

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-01-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents. PMID:27169490

  17. The Vertical Distribution of Sediment Archaeal Community in the “Black Bloom” Disturbing Zhushan Bay of Lake Taihu

    PubMed Central

    Fan, Xianfang; Xing, Peng

    2016-01-01

    Using the Illumina sequencing technology, we investigated the vertical distribution of archaeal community in the sediment of Zhushan Bay of Lake Taihu, where the black bloom frequently occurred in summer. Overall, the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), and Methanobacterium dominated the archaeal community. However, we observed significant difference in composition of archaeal community among different depths of the sediment. DHVEG-6 dominated in the surface layer (0–3 cm) sediment. Methanobacterium was the dominating archaeal taxa in the L2 (3–6 cm) and L3 (6–10) sediment. MCG was most abundant in the L4 (10–15 cm) and L5 (15–20 cm) sediment. Besides, DHVEG-6 was significantly affected by the concentration of total phosphorus (TP). And loss on ignition (LOI) was an important environmental factor for Methanobacterium. As the typical archaeal taxa in the surface layer sediment, DHVEG-6 and Methanobacterium might be more adapted to abundant substrate supply from cyanobacterial blooms and take active part in the biomass transformation. We propose that DHVEG-6 and Methanobacterium could be the key archaeal taxa correlated with the “black bloom” formation in Zhushan Bay. PMID:26884723

  18. Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa)

    PubMed Central

    Tiodjio, Rosine E.; Sakatoku, Akihiro; Nakamura, Akihiro; Tanaka, Daisuke; Fantong, Wilson Y.; Tchakam, Kamtchueng B.; Tanyileke, Gregory; Ohba, Takeshi; Hell, Victor J.; Kusakabe, Minoru; Nakamura, Shogo; Ueda, Akira

    2014-01-01

    The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial sequences suggest a close correspondence of the potential microbial functions to the physico-chemical pattern of the lake. We also obtained evidence of a rich microbial diversity likely to include several novel microorganisms of environmental importance in the large unexplored microbial reservoir of Lake Nyos. PMID:25141868

  19. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia

    EPA Science Inventory

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...

  20. Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage

    PubMed Central

    Breidenbach, Björn; Conrad, Ralf

    2015-01-01

    We studied the resident (16S rDNA) and the active (16S rRNA) members of soil archaeal and bacterial communities during rice plant development by sampling three growth stages (vegetative, reproductive and maturity) under field conditions. Additionally, the microbial community was investigated in two non-flooded fields (unplanted, cultivated with upland maize) in order to monitor the reaction of the microbial communities to non-flooded, dry conditions. The abundance of Bacteria and Archaea was monitored by quantitative PCR showing an increase in 16S rDNA during reproductive stage and stable 16S rRNA copies throughout the growth season. Community profiling by T-RFLP indicated a relatively stable composition during rice plant growth whereas pyrosequencing revealed minor changes in relative abundance of a few bacterial groups. Comparison of the two non-flooded fields with flooded rice fields showed that the community composition of the Bacteria was slightly different, while that of the Archaea was almost the same. Only the relative abundance of Methanosarcinaceae and Soil Crenarchaeotic Group increased in non-flooded vs. flooded soil. The abundance of bacterial and archaeal 16S rDNA copies was highest in flooded rice fields, followed by non-flooded maize and unplanted fields. However, the abundance of ribosomal RNA (active microbes) was similar indicating maintenance of a high level of ribosomal RNA under the non-flooded conditions, which were unfavorable for anaerobic bacteria and methanogenic archaea. This maintenance possibly serves as preparedness for activity when conditions improve. In summary, the analyses showed that the bacterial and archaeal communities inhabiting Philippine rice field soil were relatively stable over the season but reacted upon change in field management. PMID:25620960

  1. The biogeography of soil archaeal communities on the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Adams, Jonathan M.; Ni, Yingying; Yang, Teng; Jing, Xin; Chen, Litong; He, Jin-Sheng; Chu, Haiyan

    2016-12-01

    The biogeographical distribution of soil bacterial communities has been widely investigated. However, there has been little study of the biogeography of soil archaeal communities on a regional scale. Here, using high-throughput sequencing, we characterized the archaeal communities of 94 soil samples across the eastern Tibetan Plateau. Thaumarchaeota was the predominant archael phylum in all the soils, and Halobacteria was dominant only in dry soils. Archaeal community composition was significantly correlated with soil moisture content and C:N ratio, and archaeal phylotype richness was negatively correlated with soil moisture content (r = ‑0.47, P < 0.01). Spatial distance, a potential measure of the legacy effect of evolutionary and dispersal factors, was less important than measured environmental factors in determining the broad scale archaeal community pattern. These results indicate that soil moisture and C:N ratio are the key factors structuring soil archaeal communities on the eastern Tibetan Plateau. Our findings suggest that archaeal communities have adjusted their distributions rapidly enough to reach range equilibrium in relation to past environmental changes e.g. in water availability and soil nutrient status. This responsiveness may allow better prediction of future responses of soil archaea to environmental change in these sensitive ecosystems.

  2. The biogeography of soil archaeal communities on the eastern Tibetan Plateau

    PubMed Central

    Shi, Yu; Adams, Jonathan M.; Ni, Yingying; Yang, Teng; Jing, Xin; Chen, Litong; He, Jin-Sheng; Chu, Haiyan

    2016-01-01

    The biogeographical distribution of soil bacterial communities has been widely investigated. However, there has been little study of the biogeography of soil archaeal communities on a regional scale. Here, using high-throughput sequencing, we characterized the archaeal communities of 94 soil samples across the eastern Tibetan Plateau. Thaumarchaeota was the predominant archael phylum in all the soils, and Halobacteria was dominant only in dry soils. Archaeal community composition was significantly correlated with soil moisture content and C:N ratio, and archaeal phylotype richness was negatively correlated with soil moisture content (r = −0.47, P < 0.01). Spatial distance, a potential measure of the legacy effect of evolutionary and dispersal factors, was less important than measured environmental factors in determining the broad scale archaeal community pattern. These results indicate that soil moisture and C:N ratio are the key factors structuring soil archaeal communities on the eastern Tibetan Plateau. Our findings suggest that archaeal communities have adjusted their distributions rapidly enough to reach range equilibrium in relation to past environmental changes e.g. in water availability and soil nutrient status. This responsiveness may allow better prediction of future responses of soil archaea to environmental change in these sensitive ecosystems. PMID:27958324

  3. Diverse archaeal community of a bat guano pile in Domica Cave (Slovak Karst, Slovakia).

    PubMed

    Chronáková, A; Horák, A; Elhottová, D; Kristůfek, V

    2009-09-01

    The molecular diversity of Archaea in a bat guano pile in Cave Domica (Slovakia), temperate cave ecosystem with significant bat colony (about 1600 individuals), was examined. The guano pile was created mainly by an activity of the Mediterranean horseshoe bat (Rhinolophus euryale) and provides a source of organic carbon and other nutrients in the oligotrophic subsurface ecosystem. The upper and the basal parts of guano surface were sampled where the latter one had higher pH and higher admixture of limestone bedrock and increased colonization of invertebrates. The relative proportion of Archaea determined using CARD-FISH in both parts was 3.5-3.9 % (the basal and upper part, respectively). The archaeal community was dominated by non-thermophilic Crenarchaeota (99 % of clones). Phylogenetic analysis of 115 16S rDNA sequences revealed the presence of Crenarchaeota previously isolated from temperate surface soils (group 1.1b, 62 clones), deep subsurface acid waters (group 1.1a, 52 clones) and Euryarchaeota (1 clone). Four of the analyzed sequences were found to have little similarity to those in public databases. The composition of both archaeal communities differed, with respect to higher diversity of Archaea in the upper part of the bat guano pile. High diversity archaeal population is present in the bat guano deposit and consists of both soil- and subsurface-born Crenarchaeota.

  4. Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices.

    PubMed

    Ahn, Jae-Hyung; Song, Jaekyeong; Kim, Byung-Yong; Kim, Myung-Sook; Joa, Jae-Ho; Weon, Hang-Yeon

    2012-10-01

    The bacterial and archaeal communities in rice field soils subjected to different fertilization regimes for 57 years were investigated in two different seasons, a non-planted, drained season (April) and a rice-growing, flooded season (August), by performing soil dehydrogenase assay, real-time PCR assay and pyrosequencing analysis. All fertilization regimes increased the soil dehydrogenase activity while the abundances of bacteria and archaea increased in the plots receiving inorganic fertilizers plus compost and not in those receiving inorganic fertilizers only. Rice-growing and flooding decreased the soil dehydrogenase activity while they increased the bacterial diversity in rice field soils. The bacterial communities were dominated by Chloroflexi, Proteobacteria, and Actinobacteria and the archaeal communities by Crenarchaeota at the phylum level. In principal coordinates analysis based on the weighted Fast UniFrac metric, the bacterial and archaeal communities were separated primarily by season, and generally distributed along with soil pH, the variation of which had been caused by long-term fertilization. Variations in the relative abundance according to the season or soil pH were observed for many bacterial and archaeal groups. In conclusion, the microbial activity, prokaryotic abundance and diversity, and prokaryotic community structure in the rice field soils were changed by season and long-term fertilization.

  5. Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils

    PubMed Central

    Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão

    2012-01-01

    Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712

  6. Differences in the Composition of Archaeal Communities in Sediments from Contrasting Zones of Lake Taihu.

    PubMed

    Fan, Xianfang; Xing, Peng

    2016-01-01

    In shallow lakes, different primary producers might impact the physiochemical characteristics of the sediment and the associated microbial communities. Until now, little was known about the features of sediment Archaea and their variation across different primary producer-dominated ecosystems. Lake Taihu provides a suitable study area with cyanobacteria- and macrophyte-dominated zones co-occurring in one ecosystem. The composition of the sediment archaeal community was assessed using 16S rRNA gene amplicon sequencing technology, based on which the potential variation with respect to the physiochemical characteristics of the sediment was analyzed. Euryarchaeota (30.19% of total archaeal sequences) and Bathyarchaeota (28.00%) were the two most abundant phyla, followed by Crenarchaeota (11.37%), Aigarchaeota (10.24%) and Thaumarchaeota (5.98%). The differences found in the composition of the archaeal communities between the two zones was significant (p = 0.005). Sediment from macrophyte-dominated zones had high TOC and TN content and an abundance of archaeal lineages potentially involved in the degradation of complex organic compounds, such as the order Thermoplasmatales. In the area dominated by Cyanobacteria, archaeal lineages related to sulfur metabolism, for example, Sulfolobales and Desulfurococcales, were significantly enriched. Among Bathyarchaeota, subgroups MCG-6 and MCG-15 were significantly accumulated in the sediment of areas dominated by macrophytes whereas MCG-4 was consistently dominant in both type of sediments. The present study contributes to the knowledge of sediment archaeal communities with different primary producers and their possible biogeochemical functions in sediment habitats.

  7. Effect of soil properties and hydrology on archaeal community composition in three temperate grasslands on peat.

    PubMed

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-08-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4 ) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark. We used terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and clone libraries to characterize the soils' archaeal community composition to gain a better understanding of relationships between peat properties and land use, respectively, and CH4 dynamics. Samples were taken at three different depths and at four different seasons. Archaeal community composition varied considerably between the three peatlands and, to a certain degree, also with peat depth, but seemed to be quite stable at individual sampling depths throughout the year. Archaeal community composition was mainly linked to soil pH. No methanogens were detected at one fen site with soil pH ranging from 3.2 to 4.4. The methanogenic community of the bog (soil pH 3.9-4.6) was dominated by hydrogenotrophs, whereas the second fen site (soil pH 5.0-5.3) comprised both aceticlastic and hydrogenotrophic methanogens. Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling.

  8. Spatiotemporal variation of bacterial and archaeal communities in sediments of a drinking reservoir, Beijing, China.

    PubMed

    Chen, Yongjuan; Liu, Yang; Wang, Xiaoyan

    2017-04-01

    Bacterial and archaeal assemblages are one of the most important contributors to the recycling of nutrients and the decomposition of organic matter in aquatic sediments. However, their spatiotemporal variation and its driving factors remain unclear, especially for drinking reservoirs, which are strongly affected by human consumption. Using quantitative PCR and Illumina MiSeq sequencing, we investigated the bacterial and archaeal communities in the sediments of a drinking reservoir, the Miyun Reservoir, one of the most important drinking sources for Beijing City. The abundance of bacteria and archaea presented no spatiotemporal variation. With respect to community diversity, visible spatial and temporal differences were observed in archaea, whereas the bacterial community showed minor variation. The bacterial communities in the reservoir sediment mainly included Proteobacteria, Bacteroidetes, Nitrospirae, Acidobacteria, and Verrucomicrobia. The bacterial community structure showed obvious spatial variation. The composition of the bacterial operational taxonomic units (OTUs) and main phyla were dam-specific; the composition of samples in front of the dam were significantly different from the composition of the other samples. The archaeal communities were mainly represented by Woesearchaeota and Euryarchaeota. Distinctly spatial and seasonal variation was observed in the archaeal community structure. The sediment NH4(+)-N, pH, and water depth were identified as the key driving factors of changes in the composition of the bacterial and archaeal communities. Water depth might have the greatest influence on the microbial community structure. The dam-specific community structure may be related to the greater water depth in front of the dam. This finding indicates that water depth might be the greatest contributor to the microbial community structure in the Miyun Reservoir.

  9. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    PubMed Central

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  10. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    NASA Astrophysics Data System (ADS)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-12-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats.

  11. pH dominates variation in tropical soil archaeal diversity and community structure.

    PubMed

    Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M

    2013-11-01

    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities.

  12. Duration-Related Variations in Archaeal Communities after a Change from Upland Fields to Paddy Fields.

    PubMed

    Jiang, Nan; Wei, Kai; Chen, Lijun; Chen, Rui

    2016-05-28

    Archaea substantially contribute to global geochemical cycling and energy cycling and are impacted by land-use change. However, the response of archaeal communities to a change from upland field to paddy field has been poorly characterized. Here, soil samples were collected at two depths (0-20 cm and 20-40 cm) from one upland field and six paddy fields that were established on former upland fields at different times (1, 5, 10, 20, 30, and 40 years before the study). Barcoded pyrosequencing was employed to assess the archaeal communities from the samples at taxonomic resolutions from phylum to genus levels. The total archaeal operational taxonomic unit (OTU) richness showed a significant positive correlation with the land-use change duration. Two phyla, Euryarchaeota and Crenarchaeota, were recorded throughout the study. Both the relative abundance and OTU richness of Euryarchaeota increased at both depths but increased more steadily at the subsurface rather than at the surface. However, these data of Crenarchaeota were the opposite. Additionally, the archaeal composition exhibited a significant relationship with C/N ratios, total phosphorus, soil pH, Olsen phosphorus, and the land-use change duration at several taxonomic resolutions. Our results emphasize that after a change from upland fields to paddy fields, the archaeal diversity and composition changed, and the duration is an important factor in addition to the soil chemical properties.

  13. Differences in the Composition of Archaeal Communities in Sediments from Contrasting Zones of Lake Taihu

    PubMed Central

    Fan, Xianfang; Xing, Peng

    2016-01-01

    In shallow lakes, different primary producers might impact the physiochemical characteristics of the sediment and the associated microbial communities. Until now, little was known about the features of sediment Archaea and their variation across different primary producer-dominated ecosystems. Lake Taihu provides a suitable study area with cyanobacteria- and macrophyte-dominated zones co-occurring in one ecosystem. The composition of the sediment archaeal community was assessed using 16S rRNA gene amplicon sequencing technology, based on which the potential variation with respect to the physiochemical characteristics of the sediment was analyzed. Euryarchaeota (30.19% of total archaeal sequences) and Bathyarchaeota (28.00%) were the two most abundant phyla, followed by Crenarchaeota (11.37%), Aigarchaeota (10.24%) and Thaumarchaeota (5.98%). The differences found in the composition of the archaeal communities between the two zones was significant (p = 0.005). Sediment from macrophyte-dominated zones had high TOC and TN content and an abundance of archaeal lineages potentially involved in the degradation of complex organic compounds, such as the order Thermoplasmatales. In the area dominated by Cyanobacteria, archaeal lineages related to sulfur metabolism, for example, Sulfolobales and Desulfurococcales, were significantly enriched. Among Bathyarchaeota, subgroups MCG-6 and MCG-15 were significantly accumulated in the sediment of areas dominated by macrophytes whereas MCG-4 was consistently dominant in both type of sediments. The present study contributes to the knowledge of sediment archaeal communities with different primary producers and their possible biogeochemical functions in sediment habitats. PMID:27708641

  14. The putative functional ecology and distribution of archaeal communities in sponges, sediment and seawater in a coral reef environment.

    PubMed

    Polónia, Ana R M; Cleary, Daniel F R; Freitas, Rossana; de Voogd, Nicole J; Gomes, Newton C M

    2015-01-01

    Archaea play crucial roles in a number of key ecological processes including nitrification and methanogenesis. Although several studies have been conducted on these organisms, the roles and dynamics of coral reef archaeal communities are still poorly understood, particularly in host and nonhost biotopes and in high (HMA) and low microbial abundance (LMA) sponges. Here, archaeal communities detected in six distinct biotopes, namely, sediment, seawater and four different sponge species Stylissa carteri, Stylissa massa, Xestospongia testudinaria and Hyrtios erectus from the Spermonde Archipelago, SW Sulawesi, Indonesia were investigated using 454-pyrosequencing of 16S rRNA genes (OTU cut-off 97%). Archaeal communities from sediment and sponges were dominated by Crenarchaeota, while the seawater community was dominated by Euryarchaeota. The biotope explained almost 75% of the variation in archaeal composition, with clear separation between microbial assemblages from sediment, X. testudinaria and H. erectus (HMA). In contrast, samples from seawater and both Stylissa species (LMA) showed considerable overlap in the ordination and, furthermore, shared most abundant OTUs with the exception of a single dominant OTU specifically enriched in both Stylissa species. Predicted functional gene content in archaeal assemblages also revealed significant differences among biotopes. Different ammonia assimilation strategies were exhibited by the archaeal communities: X. testudinaria, H. erectus and sediment archaeal communities were enriched for glutamate dehydrogenase with mixed specificity (NAD(P)(+) ) pathways, while archaeal planktonic communities were enriched for specific glutamate dehydrogenase (NADP(+) ) and glutamate synthase pathways. Archaeal communities in Stylissa had intermediate levels of enrichment. Our results indicate that archaeal communities in different biotopes have distinct ecophysiological roles.

  15. Characterization of Archaeal Community in Contaminated and Uncontaminated Surface Stream Sediments

    SciTech Connect

    Porat, Iris; Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Brandt, Craig C; Yang, Zamin; Brooks, Scott C; Liang, Liyuan; Drake, Meghan M; Podar, Mircea; Brown, Steven D; Palumbo, Anthony Vito

    2010-01-01

    Abstract Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle.

  16. Archaeal ammonia oxidizers respond to soil factors at smaller spatial scales than the overall archaeal community does in a high Arctic polar oasis.

    PubMed

    Banerjee, Samiran; Kennedy, Nabla; Richardson, Alan E; Egger, Keith N; Siciliano, Steven D

    2016-06-01

    Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.

  17. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia.

    PubMed

    Devereux, R; Mosher, J J; Vishnivetskaya, T A; Brown, S D; Beddick, D L; Yates, D F; Palumbo, A V

    2015-09-01

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4-region gene fragments obtained by PCR amplification of community genomic DNA with bacterial- or archaeal-specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158,686 bacterial and 225,591 archaeal sequences from 20 sediment samples, representing five 2-cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor-joining analysis using Chao-Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96-99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus-related sequence abundance was correlated with high solid-phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between

  18. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards.

    PubMed

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-11-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle.

  19. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards* #

    PubMed Central

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-01-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle. PMID:25367788

  20. Archaeal communities associated with roots of the common reed (Phragmites australis) in Beijing Cuihu Wetland.

    PubMed

    Liu, Yin; Li, Hong; Liu, Qun Fang; Li, Yan Hong

    2015-05-01

    The richness, phylogeny and composition of archaeal community associated with the roots of common reed (Phragmites australis) growing in the Beijing Cuihu Wetland, China was investigated using a 16S rDNA library. In total, 235 individual sequences were collected, and a phylogenetic analysis revealed that 69.4 and 11.5 % of clones were affiliated with the Euryarchaeota and the Crenarchaeota, respectively. In Euryarchaeota, the archaeal community was dominated by species in following genera: Methanobacterium in the order Methanobacteriales (60.7 %); Methanoregula and Methanospirillum in the order Methanomicrobiales (20.2 %), and Methanomethylovorans, Methanosarcina and Methanosaeta in the order Methanosarcinales (17.2 %). Of 27 sequences assigned to uncultured Crenarchaeota, 22 were grouped into Group 1.3, and five grouped into Group 1.1b. Hence, the archaeal communities associated with reed roots are largely involved in methane production, and, to a lesser extent, in ammonia oxidization. Quantification of the archaeal amoA gene indicated that ammonia oxidizing archaea were more numerous in the rhizosphere soil than in the root tissue or surrounding water. A total of 19.1 % of the sequences were unclassified, suggesting that many unidentified archaea are probably involved in the reed wetland ecosystem.

  1. Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem

    NASA Astrophysics Data System (ADS)

    Galand, Pierre E.; Lovejoy, Connie; Pouliot, Jérémie; Vincent, Warwick F.

    2008-12-01

    We evaluated the phylogenetic diversity of particle-associated and free-living archaeal assemblages from the Mackenzie River and Beaufort Sea in the western Canadian Arctic. The physico-chemical characteristics of the water separated the sampling sites into three groups: riverine, coastal and marine water, which had strikingly different archaeal communities. The riverine water was characterised by the presence of Euryarchaeota mainly belonging to the LDS and RC-V clusters. The coastal water was also dominated by Euryarchaeota but they were mostly affiliated to Group II.a. The marine waters contained most exclusively Crenarchaeota belonging to the Marine Group I.1a. The results suggest that Euryarchaeota in the coastal surface layer are associated with particle-rich waters, while Crenarchaeota are more characteristic of Arctic Ocean waters that have been less influenced by riverine inputs. The particle-associated communities were similar to the free-living ones at the riverine and marine sites but differed from each other at the coastal site in terms of the presence or absence of some taxonomic groups in one of the fractions, or differences in the proportion of the phylogenetic groups. However, there was no specific archaeal group that was exclusively restricted to the free-living or particle fraction, and the diversity of the particle-associated archaeal assemblages did not significantly differ from the diversity of the free-living communities.

  2. Comparison of archaeal and bacterial communities in two sponge species and seawater from an Indonesian coral reef environment.

    PubMed

    Polónia, Ana Rita Moura; Cleary, Daniel Francis Richard; Freitas, Rossana; Coelho, Francisco José Riso da Costa; de Voogd, Nicole Joy; Gomes, Newton Carlos Marcial

    2016-10-01

    Most existing coral reef studies have focused on a single biotope and a single domain (Archaea or Bacteria). Few coral reef studies have explored the archaeal and bacterial community simultaneously. In this study, we compare the diversity and composition of archaeal and bacterial communities in seawater and two closely related sponge species (Stylissa carteri and Stylissa massa) in the Berau reef system, Indonesia. A 16S rRNA gene barcoded pyrosequencing approach was used to test to what extent seawater, S. carteri and S. massa host compositionally distinct communities of Archaea and Bacteria. Proteobacteria dominated the bacterial communities of all three studied biotopes whereas Euryarchaeota was the most abundant archaeal phylum in seawater and Crenarchaeota the most abundant archaeal phylum in both Stylissa species. Biotopes explained 56% and 53% of the variation in archaeal and bacterial composition respectively and there was significant congruence between the composition of archaeal and bacterial communities. These results suggest that the processes that drive bacterial composition within the studied biotopes may be fundamentally similar to those that drive archaeal composition.

  3. Assessment of Ruminal Bacterial and Archaeal Community Structure in Yak (Bos grunniens)

    PubMed Central

    Zhou, Zhenming; Fang, Lei; Meng, Qingxiang; Li, Shengli; Chai, Shatuo; Liu, Shujie; Schonewille, Jan Thomas

    2017-01-01

    The aim of this study was to determine the microbial community composition in the rumen of yaks under different feeding regimes. Microbial communities were assessed by sequencing bacterial and archaeal 16S ribosomal RNA gene fragments obtained from yaks (Bos grunniens) from Qinghai-Tibetan Plateau, China. Samples were obtained from 14 animals allocated to either pasture grazing (Graze), a grazing and supplementary feeding regime (GSF), or an indoor feeding regime (Feed). The predominant bacterial phyla across feeding regimes were Bacteroidetes (51.06%) and Firmicutes (32.73%). At genus level, 25 genera were shared across all samples. The relative abundance of Prevotella in the graze and GSF regime group were significantly higher than that in the feed regime group. Meanwhile, the relative abundance of Ruminococcus was lower in the graze group than the feed and GSF regime groups. The most abundant archaeal phylum was Euryarchaeota, which accounted for 99.67% of the sequences. Ten genera were detected across feeding regimes, seven genera were shared by all samples, and the most abundant was genus Methanobrevibacter (91.60%). The relative abundance of the most detected genera were similar across feeding regime groups. Our results suggest that the ruminal bacterial community structure differs across yak feeding regimes while the archaeal community structures are largely similar. PMID:28223980

  4. Structure of archaeal communities in membrane-bioreactor and submerged-biofilter wastewater treatment plants.

    PubMed

    Gómez-Silván, C; Molina-Muñoz, M; Poyatos, J M; Ramos, A; Hontoria, E; Rodelas, B; González-López, J

    2010-04-01

    A cultivation independent approach (PCR-TGGE) was used to evaluate the occurrence of Archaea in four wastewater treatments based on technologies other than activated sludge, and to comparatively analyze their community structure. TGGE fingerprints (based on partial archaeal 16S-rRNA amplicons) were obtained from sludge samples taken from a pilot-scale aerated MBR fed with urban wastewater and operated under two different sets of conditions (MBR1 and MBR2 treatments), and also from biofilms sampled from two pilot-scale submerged biofilters (SBs) consisting of one aerated and one anoxic column each, fed with urban (USB treatment) or industrial (ISB treatment) wastewater, respectively. Analysis of TGGE fingerprints revealed clear and significant differences of the community structure of Archaea between the wastewater treatments studied, primarily according to wastewater origin and the type of technology. Thirty-two different band classes were detected among the 23 sludge and biofilm samples analyzed, from which five were selected as dominant or distinctive of the four treatments studied. Sixteen predominant TGGE bands were identified, revealing that all of them were related to methanogenic Archaea. Neither other Euryarchaeota groups nor Crenarchaeota members were identified amongst the 16S-rRNA fragments sequenced from separated TGGE bands.

  5. Changes in Bacterial And Archaeal Community Structure And Functional Diversity Along a Geochemically Variable Soil Profile

    SciTech Connect

    Hansel, C.M.; Fendorf, S.; Jardine, P.M.; Francis, C.A.

    2009-05-18

    Spatial heterogeneity in physical, chemical, and biological properties of soils allows for the proliferation of diverse microbial communities. Factors influencing the structuring of microbial communities, including availability of nutrients and water, pH, and soil texture, can vary considerably with soil depth and within soil aggregates. Here we investigated changes in the microbial and functional communities within soil aggregates obtained along a soil profile spanning the surface, vadose zone, and saturated soil environments. The composition and diversity of microbial communities and specific functional groups involved in key pathways in the geochemical cycling of nitrogen, Fe, and sulfur were characterized using a coupled approach involving cultivation-independent analysis of both 16S rRNA (bacterial and archaeal) and functional genes (amoA and dsrAB) as well as cultivation-based analysis of Fe(III)-reducing organisms. Here we found that the microbial communities and putative ammonia-oxidizing and Fe(III)-reducing communities varied greatly along the soil profile, likely reflecting differences in carbon availability, water content, and pH. In particular, the Crenarchaeota 16S rRNA sequences are largely unique to each horizon, sharing a distribution and diversity similar to those of the putative (amoA-based) ammonia-oxidizing archaeal community. Anaerobic microenvironments within soil aggregates also appear to allow for both anaerobic- and aerobic-based metabolisms, further highlighting the complexity and spatial heterogeneity impacting microbial community structure and metabolic potential within soils.

  6. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    PubMed

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production.

  7. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California).

    PubMed

    Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Caprais, Jean-Claude; Cambon-Bonavita, Marie-Anne; Godfroy, Anne; Toffin, Laurent

    2013-08-01

    Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the 'BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel 'ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support

  8. Depth Distribution of Archaeal Diversity and Community Composition Across Steep Geochemical Gradients in Anoxic Sediments of a Hypersaline Lake

    NASA Astrophysics Data System (ADS)

    Swan, B. K.; Valentine, D. L.

    2006-12-01

    Patterns in Archaeal diversity and community composition were investigated in the anoxic sediments of the Salton Sea, California's largest lake. The sediments of this lake contain strong gradients in salinity and organic carbon, which provide a natural setting to examine the influence of these gradients on Archaeal communities. Measurements of sediment and porewater geochemistry and Archaeal diversity were made within the top 33cm of sediment. Porewater sulfate and total salinity, organic carbon and mineral content of the bulk sediment were measured at 1-cm intervals; Archaeal diversity was determined at 2-cm intervals using T-RFLP analysis to identify unique phylotypes. To examine Archaeal community composition 16S rDNA clone libraries were constructed at three depth intervals across the gradients. Between 4-23 Archaeal phylotypes were identified across the gradients, and the number of phylotypes was negatively correlated with organic carbon content. 16S rDNA clone libraries revealed the presence of members within the Euryarchaeota and Crenarchaeota groups. The biogeochemical role of these uncultured anaerobic Archaea remains unknown, but we hypothesize that the high-salt and low organic carbon conditions that exist in the deeper sediments provide an environmental niche that Archaea exploit to compete with the Bacterial community.

  9. Combined monitoring of changes in delta13CH4 and archaeal community structure during mesophilic methanization of municipal solid waste.

    PubMed

    Qu, Xian; Mazéas, Laurent; Vavilin, Vasily A; Epissard, Jonathan; Lemunier, Mélanie; Mouchel, Jean-Marie; He, Pin-jing; Bouchez, Théodore

    2009-05-01

    Reconstituted municipal solid waste (MSW) with varying contents of putrescible and cellulosic waste was incubated anaerobically under mesophilic conditions. Standard physicochemical parameters were monitored, together with stable isotopic signatures of produced CH(4) and CO(2). delta(13)C values for CH(4) indicated a change of methanogenic metabolism with time. CH(4) was predominantly produced from H(2)/CO(2) at the beginning of the incubations. This period was associated with important shifts in archaeal communities monitored by automated ribosomal intergenic spacer analysis (ARISA) and FISH of oligonucleotidic probes targeting specifically 16S rRNA gene of various methanogenic groups. The onset of the active methane generation phase was characterized by an increase of CH(4)delta(13)C, indicating a progressive shift toward an aceticlastic metabolism. When the methane production levelled off, a decrease in the isotopic signature was observed toward values characteristics of hydrogenotrophic metabolism. ARISA profiles were, however, found to be stable from the beginning of the active methane generation phase until the end of the experiment. FISH observation indicated that members of the family Methanosarcinaceae were predominant in the archaeal community during this period, suggesting that these methanogens might exhibit a high metabolic versatility during methanization of waste.

  10. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering

    PubMed Central

    Chroňáková, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottová, Dana; Šimek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning. PMID:26274496

  11. Quantifying Archaeal Community Autotrophy in the Mesopelagic Ocean Using Natural Radiocarbon

    NASA Astrophysics Data System (ADS)

    Shah, S. R.; Ingalls, A. E.; Hansman, R. L.; Aluwihare, L. I.; Santos, G. M.; Druffel, E.; Pearson, A.

    2006-12-01

    Multiple lines of evidence indicate that there is chemoautotrophic potential among the marine pelagic Archaea and that their energetic requirements may be fueled by the oxidation of ammonia to nitrite (e.g., 1). However, in other incubation studies, pelagic archaea also were capable of using organic carbon (e.g., 2). While culture and incubation studies can demonstrate the metabolic potential of the marine archaea, they do not necessarily represent the archaeal mode of growth in the water column, nor do they provide quantitative information on the biogeochemical role(s) of the total population. We have used the natural distribution of radiocarbon in archaeal membrane lipids to quantify the bulk carbon metabolism of archaea at two depths in the subtropical North Pacific gyre. Our compound-specific radiocarbon data show that the archaea in surface waters incorporate modern carbon into their membrane lipids, and archaea at 670 m incorporate carbon that is slightly more isotopically enriched than inorganic carbon at the same depth. An isotopic mass balance model shows that the dominant metabolism at depth indeed is autotrophy (83%), whereas heterotrophic consumption of modern organic carbon accounts for the remainder of archaeal biomass. These results reflect the in situ production of the total community that produces tetraether lipids. The data are not subject to biases associated with incubation and/or culture experiments. The data suggest that the archaeal community includes both autotrophs and heterotrophs or is a single population with a uniformly mixotrophic metabolism. Regardless, the preponderance of available evidence now indicates that the autotrophic fraction of the archaeal population plays a significant role in oceanic nitrification. An additional, significant question is how the Archaea are able to gain access to sufficient substrate in the form of ammonium or other reduced nitrogen species, such that the energy yield of the oxidation reaction is

  12. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm.

    PubMed

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied.

  13. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm

    PubMed Central

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied. PMID:27006640

  14. Optical properties of dissolved organic matter relate to different depth-specific patterns of archaeal and bacterial community structure in the North Atlantic Ocean.

    PubMed

    Guerrero-Feijóo, Elisa; Nieto-Cid, Mar; Sintes, Eva; Dobal-Amador, Vladimir; Hernando-Morales, Víctor; Álvarez, Marta; Balagué, Vanessa; Varela, Marta M

    2017-01-01

    Prokaryotic abundance, activity and community composition were studied in the euphotic, intermediate and deep waters off the Galician coast (NW Iberian margin) in relation to the optical characterization of dissolved organic matter (DOM). Microbial (archaeal and bacterial) community structure was vertically stratified. Among the Archaea, Euryarchaeota, especially Thermoplasmata, was dominant in the intermediate waters and decreased with depth, whereas marine Thaumarchaeota, especially Marine Group I, was the most abundant archaeal phylum in the deeper layers. The bacterial community was dominated by Proteobacteria through the whole water column. However, Cyanobacteria and Bacteroidetes occurrence was considerable in the upper layer and SAR202 was dominant in deep waters. Microbial composition and abundance were not shaped by the quantity of dissolved organic carbon, but instead they revealed a strong connection with the DOM quality. Archaeal communities were mainly related to the fluorescence of DOM (which indicates respiration of labile DOM and generation of refractory subproducts), while bacterial communities were mainly linked to the aromaticity/age of the DOM produced along the water column. Taken together, our results indicate that the microbial community composition is associated with the DOM composition of the water masses, suggesting that distinct microbial taxa have the potential to use and/or produce specific DOM compounds.

  15. Annual periodicity in planktonic bacterial and archaeal community composition of eutrophic Lake Taihu

    PubMed Central

    Li, Junfeng; Zhang, Junyi; Liu, Liyang; Fan, Yucai; Li, Lianshuo; Yang, Yunfeng; Lu, Zuhong; Zhang, Xuegong

    2015-01-01

    Bacterioplankton plays a key role in nutrient cycling and is closely related to water eutrophication and algal bloom. We used high-throughput 16S rRNA gene sequencing to profile archaeal and bacterial community compositions in the surface water of Lake Taihu. It is one of the largest lakes in China and has suffered from recurring cyanobacterial bloom. A total of 81 water samples were collected from 9 different sites in 9 different months of 2012. We found that temporal variation of the microbial community was significantly greater than spatial variation (adonis, n = 9999, P < 1e−4). The composition of bacterial community in December was similar to that in January, and so was the archaeal community, suggesting potential annual periodicity. Unsupervised K-means clustering was used to identify the synchrony of abundance variations between different taxa. We found that the cluster consisting mostly of ACK-M1, C111 (members of acIV), Pelagibacteraceae (alfV-A) and Synechococcaceae showed relatively higher abundance in autumn. On the contrary, the cluster of Comamonadaceae and Methylophilaceae (members of lineage betI and betIV) had higher abundance in spring. The co-occurrence relationships between taxa were greatly altered during the cyanobacterial bloom according to our further network module analysis. PMID:26503553

  16. Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload

    SciTech Connect

    Lerm, S.; Kleyboecker, A.; Miethling-Graff, R.; Alawi, M.; Kasina, M.; Liebrich, M.; Wuerdemann, H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Two types of methanogens are necessary to respond successfully to perturbation. Black-Right-Pointing-Pointer Diversity of methanogens correlates with the VFA concentration and methane yield. Black-Right-Pointing-Pointer Aggregates indicate tight spatial relationship between minerals and microorganisms. - Abstract: Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit the gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study

  17. Bacterial and Archaeal Community Dynamics at CO2-RICH Shallow-Sea Hydrothermal Vents (panarea, Italy)

    NASA Astrophysics Data System (ADS)

    Schubotz, F.; Huang, C.; Meyerdierks, A.; Amend, J.; Price, R. E.; Amann, R.; Hinrichs, K.; Summons, R. E.

    2013-12-01

    Shallow marine hydrothermal vents are highly dynamic systems with unique habitats that can support both chemosynthetic and photosynthetic communities at steep temperature and geochemical gradients. Here, we present a combined organic geochemical and microbiological approach to describe the microbial community composition and their metabolism at the CO2-rich shallow hydrothermal vents off Panarea Island, in Sicily. We investigated two contrasting hydrothermal environments: Hot Lake, a depression filled with hydrothermal fluids diffusing gradually out of the seafloor, with temperatures ranging from 40 to 70°C, and Blackpoint, a site with vigorous venting of hydrothermal gasses and fluids with temperatures as high as 135°C. At Hot Lake, Bacteria dominate the microbial community composition in the sediments. 16S rRNA clone libraries revealed Bacteriodetes-, Epsilonproteobacteria- and Deltaproteobacteria-related sequences as the most abundant members. Bacterial intact polar membrane lipids (IPLs) were dominated by the non-phosphorous containing ornithine lipids throughout all depths, indicating an important role of this aminolipid at elevated temperatures and/or low pH. At Hot Lake, archaeal IPLs were comprised mainly of glycosidic tetraethers and increased up to 20% of total IPLs with increasing temperature and depth. At the same site, archaeal 16S rRNA clone libraries were mainly comprised of Euryarchaea-affiliated sequences; crenarchaeotal sequences were only found in deeper sediment layers with temperatures of ca. 70°C. In contrast to Hot Lake, Archaea dominated sediments at the much hotter site at Blackpoint. Here, novel methylated H-shaped archaeal tetraethers, with multiple sugars as head groups, were the most abundant membrane lipids. Reports on these lipids in cultures are very limited, but their abundant occurrence at elevated temperatures suggests an important role in membrane homeostastis in thermophilic Archaea. Stable carbon isotope values of -35‰ to

  18. Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil.

    PubMed

    Mao, Yuejian; Yannarell, Anthony C; Davis, Sarah C; Mackie, Roderick I

    2013-03-01

    Biomass production for bioenergy may change soil microbes and influence ecosystem properties. To explore the impact of different bioenergy cropping systems on soil microorganisms, the compositions and quantities of soil microbial communities (16S rRNA gene) and N-cycling functional groups (nifH, bacterial amoA, archaeal amoA and nosZ genes) were assessed under maize, switchgrass and Miscanthus x giganteus at seven sites representing a climate gradient (precipitation and temperature) in Illinois, USA. Overall, the site-to-site variation in community composition surpassed the variation due to plant type, and microbial communities under each crop did not converge on a 'typical' species assemblage. Fewer than 5% of archaeal amoA, bacterial amoA, nifH and nosZ OTUs were significantly different among these crops, but the largest differences observed at each site were found between maize and the two perennial grasses. Quantitative PCR revealed that the abundance of the nifH gene was significantly higher in the perennial grasses than in maize, and we also found significantly higher total N in the perennial grass soils than in maize. Thus, we conclude that cultivation of these perennial grasses, instead of maize, as bioenergy feedstocks can improve soil ecosystem nitrogen sustainability by increasing the population size of N-fixing bacteria.

  19. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China

    NASA Astrophysics Data System (ADS)

    Gao, Peike; Tian, Huimei; Wang, Yansen; Li, Yanshu; Li, Yan; Xie, Jinxia; Zeng, Bing; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2016-02-01

    To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs.

  20. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China

    PubMed Central

    Gao, Peike; Tian, Huimei; Wang, Yansen; Li, Yanshu; Li, Yan; Xie, Jinxia; Zeng, Bing; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2016-01-01

    To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs. PMID:26838035

  1. Archaeal diversity and community development in deep-sea hydrothermal vents.

    PubMed

    Takai, Ken; Nakamura, Kentaro

    2011-06-01

    Over the past 35 years, researchers have explored deep-sea hydrothermal vent environments around the globe and studied a number of archaea, their unique metabolic and physiological properties, and their vast phylogenetic diversity. Although the pace of discovery of new archaeal taxa, phylotypes and phenotypes in deep-sea hydrothermal vents has slowed recently, bioinformatics and interdisciplinary geochemistry-microbiology approaches are providing new information on the diversity and community composition of archaea living in deep-sea vents. Recent investigations have revealed that archaea could have originated and dispersed from ancestral communities endemic to hydrothermal vents into other biomes on Earth, and the community structure and productivity of chemolithotrophic archaea are controlled primarily by variations in the geochemical composition of hydrothermal fluids.

  2. Record of archaeal activity at the serpentinite-hosted Lost City Hydrothermal Field.

    PubMed

    Méhay, S; Früh-Green, G L; Lang, S Q; Bernasconi, S M; Brazelton, W J; Schrenk, M O; Schaeffer, P; Adam, P

    2013-11-01

    Samples of young, outer surfaces of brucite-carbonate deposits from the ultramafic-hosted Lost City hydrothermal field were analyzed for DNA and lipid biomarker distributions and for carbon and hydrogen stable isotope compositions of the lipids. Methane-cycling archaeal communities, notably the Lost City Methanosarcinales (LCMS) phylotype, are specifically addressed. Lost City is unlike all other hydrothermal systems known to date and is characterized by metal- and CO2 -poor, high pH fluids with high H2 and CH4 contents resulting from serpentinization processes at depth. The archaeal fraction of the microbial community varies widely within the Lost City chimneys, from 1-81% and covaries with concentrations of hydrogen within the fluids. Archaeal lipids include isoprenoid glycerol di- and tetraethers and C25 and C30 isoprenoid hydrocarbons (pentamethylicosane derivatives - PMIs - and squalenoids). In particular, unsaturated PMIs and squalenoids, attributed to the LCMS archaea, were identified for the first time in the carbonate deposits at Lost City and probably record processes exclusively occurring at the surface of the chimneys. The carbon isotope compositions of PMIs and squalenoids are remarkably heterogeneous across samples and show highly (13) C-enriched signatures reaching δ(13) C values of up to +24.6‰. Unlike other environments in which similar structural and isotopic lipid heterogeneity has been observed and attributed to diversity in the archaeal assemblage, the lipids here appear to be synthesized solely by the LCMS. Some of the variations in lipid isotope signatures may, in part, be due to unusual isotopic fractionation during biosynthesis under extreme conditions. However, we argue that the diversity in archaeal abundances, lipid structure and carbon isotope composition rather reflects the ability of the LCMS archaeal biofilms to adapt to chemical gradients in the hydrothermal chimneys and possibly to perform either methanotrophy or methanogenesis

  3. Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms.

    PubMed

    Sanni, Gbemisola O; Coulon, Frédéric; McGenity, Terry J

    2015-10-01

    Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0-2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0-2-mm section of sediment were only significant at days 12 to 28, and the 2-4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2-4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were

  4. Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM

    PubMed Central

    Xu, Yuli; Gristwood, Tamzin; Hodgson, Ben; Trinidad, Jonathan C.; Albers, Sonja-Verena; Bell, Stephen D.

    2016-01-01

    The regulated recruitment of Cdc45 and GINS is key to activating the eukaryotic MCM(2-7) replicative helicase. We demonstrate that the homohexameric archaeal MCM helicase associates with orthologs of GINS and Cdc45 in vivo and in vitro. Association of these factors with MCM robustly stimulates the MCM helicase activity. In contrast to the situation in eukaryotes, archaeal Cdc45 and GINS form an extremely stable complex before binding MCM. Further, the archaeal GINS•Cdc45 complex contains two copies of Cdc45. Our analyses give insight into the function and evolution of the conserved core of the archaeal/eukaryotic replisome. PMID:27821767

  5. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    PubMed Central

    Frade, Pedro R.; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity. PMID:26788724

  6. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    PubMed

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  7. Forest strata drive spatial structure of bacterial and archaeal communities and microbial methane cycling in neotropical bromeliad wetlands

    NASA Astrophysics Data System (ADS)

    Martinson, Guntars; Brandt, Franziska; Conrad, Ralf

    2016-04-01

    Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that harbors diverse communities of archaea and bacteria and emit substantial amounts of methane. We studied spatial distribution of archaeal and bacterial communities, microbial methane cycling and their environmental drivers in tank bromeliad wetlands. We selected tank bromeliads of different species and functional types (terrestrial and canopy bromeliads) in a neotropical montane forest of Southern Ecuador and sampled the organic tank slurry. Archaeal and bacterial communities were characterized using terminal-restriction fragment length polymorphism (T-RFLP) and Illumina MiSeq sequencing, respectively, and linked with physico-chemical tank-slurry properties. Additionally, we performed tank-slurry incubations to measure methane production potential, stable carbon isotope fractionation and pathway of methane formation. Archaeal and bacterial community composition in bromeliad wetlands was dominated by methanogens and by Alphaproteobacteria, respectively, and did not differ between species but between functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens among all bromeliads but the relative abundance of aceticlastic Methanosaetaceae increased in terrestrial bromeliads. Complementary, hydrogenotrophic methanogenesis was the dominant pathway of methane formation but the relative contribution of aceticlastic methanogenesis increased in terrestrial bromeliads and led to a concomitant increase in total methane production. Rhodospirillales were characteristic for canopy bromeliads, Planctomycetales and Actinomycetalis for terrestrial bromeliads. While nitrogen concentration and pH explained 32% of the archaeal community variability, 29% of the bacterial community variability was explained by nitrogen, acetate and propionate concentrations. Our study demonstrates that bromeliad functional types, associated with different forest strata

  8. Comparison of the archaeal community in the fermentative compartment and faeces of the cow and the rabbit.

    PubMed

    Michelland, Rory Julien; Monteils, Valérie; Combes, Sylvie; Cauquil, Laurent; Gidenne, Thierry; Fortun-Lamothe, Laurence

    2010-08-01

    The archaeal community in the fermentative compartment and faeces of the cow and the rabbit were compared by analysis capillary electrophoresis single-stranded conformation polymorphism (CE-SSCP) profiles of 16S rRNA genes. Ruminal and faecal contents were sampled in five cows for three weeks. Hard and soft faeces were collected in 14 rabbits for three consecutive weeks and caecal contents were sampled in the third week. The archaeal community differed according to the host species (ANOSIM-R=0.53 and 0.72 respectively for the comparison of the fermentative compartments and faeces; P<0.001) and to the location within the digestive tract of both species (ANOSIM-R=0.37, 0.52 respectively for the cow and the rabbit; P<0.001). In both species, the archaeal community of the digestive tract was stable over weeks and varied very little between individual animals. The structure (NS) and the richness index (9.9+/-2.7, 10.1+/-3.1 respectively, NS) of the archaeal community were similar for the caecal content and the soft faeces which permitted to use the latter as a representative indicator.

  9. Comparative metagenomic and rRNA microbial diversity characterization using Archaeal and Bacterial synthetic communities

    PubMed Central

    Shakya, Migun; Quince, Christopher; Campbell, James H.; Yang, Zamin K.; Schadt, Christopher W.; Podar, Mircea

    2013-01-01

    Summary Next generation sequencing has dramatically changed the landscape of microbial ecology, large-scale and in-depth diversity studies being now widely accessible. However, determining the accuracy of taxonomic and quantitative inferences and comparing results obtained with different approaches are complicated by incongruence of experimental and computational data types and also by lack of knowledge of the true ecological diversity. Here we used highly diverse bacterial and archaeal synthetic communities assembled from pure genomic DNAs to compare inferences from metagenomic and SSU rRNA amplicon sequencing. Both Illumina and 454 metagenomic data outperformed amplicon sequencing in quantifying the community composition, but the outcome was dependent on analysis parameters and platform. New approaches in processing and classifying amplicons can reconstruct the taxonomic composition of the community with high reproducibility within primer sets, but all tested primers sets lead to significant taxon-specific biases. Controlled synthetic communities assembled to broadly mimic the phylogenetic richness in target environments can provide important validation for fine-tuning experimental and computational parameters used to characterize natural communities. PMID:23387867

  10. Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters.

    PubMed

    Johnson, Riegardt M; Ramond, Jean-Baptiste; Gunnigle, Eoin; Seely, Mary; Cowan, Don A

    2017-03-01

    The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial community fingerprinting, we compared the assembly of the bacterial, fungal and archaeal populations of microbial communities across nine soil niches from four Namib Desert soil habitats (riverbed, dune, gravel plain and salt pan). Permutational multivariate analysis of variance indicated that the nine soil niches presented significantly different physicochemistries (R (2) = 0.8306, P ≤ 0.0001) and that bacterial, fungal and archaeal populations were soil niche specific (R (2) ≥ 0.64, P ≤ 0.001). However, the abiotic drivers of community structure were Domain-specific (P < 0.05), with P, clay and sand fraction, and NH4 influencing bacterial, fungal and archaeal communities, respectively. Soil physicochemistry and soil niche explained over 50% of the variation in community structure, and communities displayed strong non-random patterns of co-occurrence. Taken together, these results demonstrate that in central Namib Desert soil microbial communities, assembly is principally driven by deterministic processes.

  11. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw.

    PubMed

    Bao, Qiong-Li; Xiao, Ke-Qing; Chen, Zheng; Yao, Huai-Ying; Zhu, Yong-Guan

    2014-05-01

    Soil type and returning straw to the field are the important factors that regulate CH4 formation in paddy soil, and the variations of biogeochemical parameters and methanogens communities play important roles in the formation of CH4 . In the present study, two paddy soil types [silt loam soil (JX) and silty clay loam soil (GD)] with different amounts of rice straw additions were incubated under anaerobic conditions to investigate the relationship between CH4 production, biogeochemical variations, and methanogenic archaeal communities. Straw incorporation significantly stimulated CH4 production in two soil types. CH4 production in JX soil was higher than the GD soil with equal straw addition. Significant differences between biogeochemical parameters and methanogenic archaeal communities were observed between two soil types. Straw addition increased archaeal 16S rRNA genes and mcrA genes copy numbers, especially in JX soil. Multiple regression analysis indicated that variations in H2 , sulfate, Fe (II) concentrations, archaeal 16S rRNA genes and mcrA genes copy numbers, methanogens diversity index, and the relative abundance of Methanosarcinaceae and Methanobacteriaceae together influenced CH4 production in two soil types. These results indicated that methane production was influenced by the comprehensive effects of biotic and abiotic factors in paddy soils.

  12. Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body.

    PubMed

    Irianni-Renno, Maria; Akhbari, Daria; Olson, Mitchell R; Byrne, Adam P; Lefèvre, Emilie; Zimbron, Julio; Lyverse, Mark; Sale, Thomas C; De Long, Susan K

    2016-04-01

    Advances in our understanding of the microbial ecology at sites impacted by light non-aqueous phase liquids (LNAPLs) are needed to drive development of optimized bioremediation technologies, support longevity models, and develop culture-independent molecular tools. In this study, depth-resolved characterization of geochemical parameters and microbial communities was conducted for a shallow hydrocarbon-impacted aquifer. Four distinct zones were identified based on microbial community structure and geochemical data: (i) an aerobic, low-contaminant mass zone at the top of the vadose zone; (ii) a moderate to high-contaminant mass, low-oxygen to anaerobic transition zone in the middle of the vadose zone; (iii) an anaerobic, high-contaminant mass zone spanning the bottom of the vadose zone and saturated zone; and (iv) an anaerobic, low-contaminant mass zone below the LNAPL body. Evidence suggested that hydrocarbon degradation is mediated by syntrophic fermenters and methanogens in zone III. Upward flux of methane likely contributes to promoting anaerobic conditions in zone II by limiting downward flux of oxygen as methane and oxygen fronts converge at the top of this zone. Observed sulfate gradients and microbial communities suggested that sulfate reduction and methanogenesis both contribute to hydrocarbon degradation in zone IV. Pyrosequencing revealed that Syntrophus- and Methanosaeta-related species dominate bacterial and archaeal communities, respectively, in the LNAPL body below the water table. Observed phylotypes were linked with in situ anaerobic hydrocarbon degradation in LNAPL-impacted soils.

  13. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing.

    PubMed

    Wang, Lei; Huang, Xu; Zheng, Tian-Ling

    2016-08-15

    This study aimed to investigate microbial responses to nitrate stimulation in oiled mangrove mesocosm. Both supplementary oil and nitrate changed the water and sediment chemical properties contributing to the shift of microbial communities. Denitrifying genes nirS and nirK were increased several times by the interaction of oil spiking and nitrate addition. Bacterial chao1 was reduced by oil spiking and further by nitrate stimulation, whereas archaeal chao1 was only inhibited by oil pollution on early time. Sampling depth explained most of variation and significantly impacted bacterial and archaeal communities, while oil pollution only significantly impacted bacterial communities (p<0.05). Despite explaining less variation, nitrate addition coupled with oil spiking enhanced the growth of hydrocarbon degraders in mangrove. The findings demonstrate the impacts of environmental factors and their interactions in shaping microbial communities during nitrate stimulation. Our study suggests introducing genera Desulfotignum and Marinobacter into oiled mangrove for bioaugmentation.

  14. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

    PubMed

    Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida

    2017-02-23

    Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected

  15. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska.

    PubMed

    Deng, Jie; Gu, Yunfu; Zhang, Jin; Xue, Kai; Qin, Yujia; Yuan, Mengting; Yin, Huaqun; He, Zhili; Wu, Liyou; Schuur, Edward A G; Tiedje, James M; Zhou, Jizhong

    2015-01-01

    Understanding the response of permafrost microbial communities to climate warming is crucial for evaluating ecosystem feedbacks to global change. This study investigated soil bacterial and archaeal communities by Illumina MiSeq sequencing of 16S rRNA gene amplicons across a permafrost thaw gradient at different depths in Alaska with thaw progression for over three decades. Over 4.6 million passing 16S rRNA gene sequences were obtained from a total of 97 samples, corresponding to 61 known classes and 470 genera. Soil depth and the associated soil physical-chemical properties had predominant impacts on the diversity and composition of the microbial communities. Both richness and evenness of the microbial communities decreased with soil depth. Acidobacteria, Verrucomicrobia, Alpha- and Gamma-Proteobacteria dominated the microbial communities in the upper horizon, whereas abundances of Bacteroidetes, Delta-Proteobacteria and Firmicutes increased towards deeper soils. Effects of thaw progression were absent in microbial communities in the near-surface organic soil, probably due to greater temperature variation. Thaw progression decreased the abundances of the majority of the associated taxa in the lower organic soil, but increased the abundances of those in the mineral soil, including groups potentially involved in recalcitrant C degradation (Actinomycetales, Chitinophaga, etc.). The changes in microbial communities may be related to altered soil C sources by thaw progression. Collectively, this study revealed different impacts of thaw in the organic and mineral horizons and suggests the importance of studying both the upper and deeper soils while evaluating microbial responses to permafrost thaw.

  16. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater.

    PubMed

    Lee, Changsoo; Kim, Jaai; Shin, Seung Gu; Hwang, Seokhwan

    2008-09-01

    Shifts in bacterial and archaeal communities, associated with changes in chemical profiles, were investigated in an anaerobic batch reactor treating dairy-processing wastewater prepared with whey permeate powder. The dynamics of bacterial and archaeal populations were monitored by quantitative real-time PCR and showed good agreement with the process data. A rapid increase in bacterial populations and a high rate of substrate fermentation were observed during the initial period. Growth and regrowth of archaeal populations occurred with biphasic production of methane, corresponding to the diauxic consumption of acetate and propionate. Bacterial community structure was examined by denaturing gel gradient electrophoresis (DGGE) targeting 16S rRNA genes. An Aeromonas-like organism was suggested to be mainly responsible for the rapid fermentation of carbohydrate during the initial period. Several band sequences closely related to the Clostridium species, capable of carbohydrate fermentation, lactate or ethanol fermentation, and/or homoacetogenesis, were also detected. Statistical analyses of the DGGE profiles showed that the bacterial community structure, as well as the process performance, varied with the incubation time. Our results demonstrated that the bacterial community shifted, reflecting the performance changes and, particularly, that a significant community shift corresponded to a considerable process event. This suggested that the diagnosis of an anaerobic digestion process could be possible by monitoring bacterial community shifts.

  17. Phylogenetic diversity of the archaeal community in a continental high-temperature, water-flooded petroleum reservoir.

    PubMed

    Li, Hui; Yang, Shi-Zhong; Mu, Bo-Zhong

    2007-11-01

    The diversity of an archaeal community was analyzed in the water from a continental high-temperature, long-term water-flooded petroleum reservoir in Huabei Oilfield in China. The archaea were characterized by their 16S rRNA genes. An archaeal 16S rDNA clone library was constructed from the DNA isolated from the formation water, and 237 randomly selected positive clones were clustered in 28 phylotypes by sequencing analyses. Phylogenetic analysis of these sequences indicated that the dominant members of the archaeal phylotypes were affiliated with the order Methanomicrobiales. Totally, the archaeal community was composed of methanogens belonging to four orders: Methanobacteriales, Methanococcales, Methanomicrobiales, and Methanosarcinales. Most of the clones clustered with sequences previously described for methanogens, but there was a difference in the relative distribution of sequences detected here as compared to that of previous studies. Some thermophilic methanogens detected had been previously isolated from a number of high-temperature petroleum reservoirs worldwide; thus, they might exhibit adaptations to the environments and be the common habitants of geothermally heated subsurface environments.

  18. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

    PubMed

    Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L

    2010-02-01

    Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.

  19. Archaeal Communities in an Arsenic-Rich Shallow-Sea Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Akerman, N. H.; Meyer-Dombard, D. R.; Osburn, M. R.; Amend, J. P.

    2006-12-01

    Arsenic is toxic to many life forms, but a number of microbes can tolerate and even metabolize it. Numerous Bacteria, particularly among the Proteobacteria, can gain energy from arsenate (AsV) reduction or arsenite (AsIII) oxidation. With few exceptions (Pyrobaculum arsenaticum and P. aerophilum), Archaea are not known to metabolize arsenic. The shallow-sea hydrothermal system in Tutum Bay, Ambitle Island, Papua New Guinea provides an ideal setting to investigate the presence, phylogenetic diversity, and biogeochemical role of Archaea in arsenic-rich environments. The hydrothermal fluids in Tutum Bay are characterized by highly elevated AsIII concentrations (up to 950 μg/L); the rocks and coral near vent orifices are coated with 2-line ferrihydrite and co-precipitated AsV (up to 7 wt%). With increasing distance from the vent, the arsenic concentrations analyzed in porewater samples decrease exponentially to ~6 μg/L at 300m. Archaeal 16S rRNA gene surveys of DNA extracted from the vent fluids, rock coatings, and sediment samples along the transect revealed only one Crenarchaeotal sequence in the vent fluid, but rich archaeal communities in the biofilm coating the rocks and in the sediments. Both these communities consist predominantly of uncultured Crenarchaeota, but the sediment communities also include members of the Euryarchaeota and the Korarchaeota. Detailed chemical analyses were combined with standard Gibbs energies to compute the potential energy yields of numerous redox reactions at in situ temperatures. These calculations showed that AsV reduction reactions using sulfide and ferrous iron as electron donors were exergonic (yielding 4 to 24 kJ/mol e-). AsIII oxidation reactions, using oxygen, nitrate, and nitrite as terminal electron acceptors, yielded significantly more energy (27 to 84 kJ/mol e-). Such calculations show that abundant energy exists in this system for microorganisms that can metabolize arsenic, and they suggest that microbes involved in As

  20. Phylogenetic Diversity of Bacterial and Archaeal Communities in the Anoxic Zone of the Cariaco Basin†

    PubMed Central

    Madrid, Vanessa M.; Taylor, Gordon T.; Scranton, Mary I.; Chistoserdov, Andrei Y.

    2001-01-01

    Microbial community samples were collected from the anoxic zone of the Cariaco Basin at depths of 320, 500, and 1,310 m on a November 1996 cruise and were used to construct 16S ribosomal DNA libraries. Of 60 nonchimeric sequences in the 320-m library, 56 belonged to the ɛ subdivision of the Proteobacteria (ɛ-Proteobacteria) and 53 were closely related to ectosymbionts of Rimicaris exoculata and Alvinella pompejana, which are referred to here as epsilon symbiont relatives (ESR). The 500-m library contained sequences affiliated with the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the division Verrucomicrobia, the division Proteobacteria, and the OP3 candidate division. The Proteobacteria included members of the γ, δ, ɛ and new candidate subdivisions, and γ-proteobacterial sequences were dominant (25.6%) among the proteobacterial sequences. As in the 320-m library, the majority of the ɛ-proteobacteria belonged to the ESR group. The genus Fibrobacter and its relatives were the second largest group in the library (23.6%), followed by the δ-proteobacteria and the ɛ-proteobacteria. The 1,310-m library had the greatest diversity; 59 nonchimeric clones in the library contained 30 unique sequences belonging to the planctomycetes, the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the Proteobacteria, and the OP3 and OP8 candidate divisions. The proteobacteria included members of new candidate subdivisions and the β, γ, δ, and ɛ-subdivisions. ESR sequences were still present in the 1,310-m library but in a much lower proportion (8.5%). One archaeal sequence was present in the 500-m library (2% of all microorganisms in the library), and eight archaeal sequences were present in the 1,310-m library (13.6%). All archaeal sequences fell into two groups; two clones in the 1,310-m library belonged to the kingdom Crenarchaeota and the remaining sequences in both libraries belonged to the kingdom Euryarchaeota. The latter group appears to

  1. Reducing Salinity by Flooding an Extremely Alkaline and Saline Soil Changes the Bacterial Community but Its Effect on the Archaeal Community Is Limited.

    PubMed

    de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Domínguez-Mendoza, Cristina; Navarro-Noya, Yendi E; Luna-Guido, Marco; Dendooven, Luc

    2017-01-01

    Regular flooding of the soil to reduce salinity will change soil characteristics, but also the microbial community structure. Soil of the former lake Texcoco with electrolytic conductivity (EC) 157.4 dS m-1 and pH 10.3 was flooded monthly in the laboratory under controlled conditions for 10 months while soil characteristics were determined and the archaeal and bacterial community structure monitored by means of 454 pyrosequencing of the 16S rRNA gene. The EC of the soil dropped from 157.8 to 1.7 dS m-1 and the clay content decreased from 430 to 270 g kg-1 after ten floodings, but the pH (10.3) did not change significantly over time. Flooding the soil had a limited effect on the archaeal community structure and only the relative abundance of Haloferax-like 16S rRNA phylotypes changed significantly. Differences in archaeal population structure were more defined by the initial physicochemical properties of the soil sample than by a reduction in salinity. Flooding, however, had a stronger effect on bacterial community structure than on the archaeal community structure. A wide range of bacterial taxa was affected significantly by changes in the soil characteristics, i.e., four phyla, nine classes, 17 orders, and 28 families. The most marked change occurred after only one flooding characterized by a sharp decrease in the relative abundance of bacterial groups belonging to the Gammaproteobacteria, e.g., Halomonadaceae (Oceanospirillales), Pseudomonadaceae, and Xanthomonadaceae and an increase in that of the [Rhodothermales] (Bacteroidetes), Nitriliruptorales (Actinobacteria), and unassigned Bacteria. It was found that flooding the soil sharply reduced the EC, but also the soil clay content. Flooding the soil had a limited effect on the archaeal community structure, but altered the bacterial community structure significantly.

  2. Reducing Salinity by Flooding an Extremely Alkaline and Saline Soil Changes the Bacterial Community but Its Effect on the Archaeal Community Is Limited

    PubMed Central

    de León-Lorenzana, Arit S.; Delgado-Balbuena, Laura; Domínguez-Mendoza, Cristina; Navarro-Noya, Yendi E.; Luna-Guido, Marco; Dendooven, Luc

    2017-01-01

    Regular flooding of the soil to reduce salinity will change soil characteristics, but also the microbial community structure. Soil of the former lake Texcoco with electrolytic conductivity (EC) 157.4 dS m-1 and pH 10.3 was flooded monthly in the laboratory under controlled conditions for 10 months while soil characteristics were determined and the archaeal and bacterial community structure monitored by means of 454 pyrosequencing of the 16S rRNA gene. The EC of the soil dropped from 157.8 to 1.7 dS m-1 and the clay content decreased from 430 to 270 g kg-1 after ten floodings, but the pH (10.3) did not change significantly over time. Flooding the soil had a limited effect on the archaeal community structure and only the relative abundance of Haloferax-like 16S rRNA phylotypes changed significantly. Differences in archaeal population structure were more defined by the initial physicochemical properties of the soil sample than by a reduction in salinity. Flooding, however, had a stronger effect on bacterial community structure than on the archaeal community structure. A wide range of bacterial taxa was affected significantly by changes in the soil characteristics, i.e., four phyla, nine classes, 17 orders, and 28 families. The most marked change occurred after only one flooding characterized by a sharp decrease in the relative abundance of bacterial groups belonging to the Gammaproteobacteria, e.g., Halomonadaceae (Oceanospirillales), Pseudomonadaceae, and Xanthomonadaceae and an increase in that of the [Rhodothermales] (Bacteroidetes), Nitriliruptorales (Actinobacteria), and unassigned Bacteria. It was found that flooding the soil sharply reduced the EC, but also the soil clay content. Flooding the soil had a limited effect on the archaeal community structure, but altered the bacterial community structure significantly.

  3. Archaeal Diversity in Waters from Deep South African Gold Mines

    SciTech Connect

    Takai, Ken; Moser, Duane P.; Deflaun, Mary; Onstott, Tullis C.; Fredrickson, Jim K.

    2001-12-01

    Culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold (Au) mines was performed by PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with sequencing analysis of archaeal rDNA clone libraries. Water samples represented various environments including: deep fissure water; mine service water; and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied directly with the source of the water. The archaeal communities in the deep Au mine environments revealed a large phylogenetic diversity; the majority of members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to the environmental rDNA clones from surface soil (Soil clones) and marine environments (Marine Group I; MGI). Other clones possessed an intermediate phylogenetic affiliation between soil clones and MGI within the Crenarchaea. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences of novel phylogeny including a novel lineage of Euryarchaeota. These results suggest that deep South African Au mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including these newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea is reevaluated.

  4. Archaeal Diversity in Waters from Deep South African Gold Mines

    PubMed Central

    Takai, Ken; Moser, Duane P.; DeFlaun, Mary; Onstott, Tullis C.; Fredrickson, James K.

    2001-01-01

    A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated. PMID:11722932

  5. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park.

    PubMed

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M; Fields, Matthew W

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

  6. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest.

    PubMed

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.

  7. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest

    PubMed Central

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633

  8. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico).

    PubMed

    Valenzuela-Encinas, César; Neria-González, Isabel; Alcántara-Hernández, Rocio J; Enríquez-Aragón, J Arturo; Estrada-Alvarado, Isabel; Hernández-Rodríguez, César; Dendooven, Luc; Marsch, Rodolfo

    2008-03-01

    The soil of the former lake Texcoco is an extreme environment localized in the valley of Mexico City, Mexico. It is highly saline and alkaline, where Na+, Cl(-), HCO3(-) and CO3(2-) are the predominant ions, with a pH ranging from 9.8 to 11.7 and electrolytic conductivities in saturation extracts from 22 to 150 dS m(-1). Metagenomic DNA from the archaeal community was extracted directly from soil and used as template to amplify 16S ribosomal gene by PCR. PCR products were used to construct gene libraries. The ribosomal library showed that the archaeal diversity included Natronococcus sp., Natronolimnobius sp., Natronobacterium sp., Natrinema sp., Natronomonas sp., Halovivax sp., "Halalkalicoccus jeotgali" and novel clades within the family of Halobacteriaceae. Four clones could not be classified. It was found that the archaeal diversity in an alkaline-saline soil of the former lake Texcoco, Mexico, was low, but showed yet uncharacterized and unclassified species.

  9. A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico.

    PubMed

    Newell, Silvia E; Eveillard, Damien; McCarthy, Mark J; Gardner, Wayne S; Liu, Zhanfei; Ward, Bess B

    2014-02-01

    The Gulf of Mexico is affected by hurricanes and suffers seasonal hypoxia. The Deepwater Horizon oil spill impacted every trophic level in the coastal region. Despite their importance in bioremediation and biogeochemical cycles, it is difficult to predict the responses of microbial communities to physical and anthropogenic disturbances. Here, we quantify sediment ammonia-oxidizing archaeal (AOA) community diversity, resistance and resilience, and important geochemical factors after major hurricanes and the oil spill. Dominant AOA archetypes correlated with different geochemical factors, suggesting that different AOA are constrained by distinct parameters. Diversity was lowest after the hurricanes, showing weak resistance to physical disturbances. However, diversity was highest during the oil spill and coincided with a community shift, suggesting a new alternative stable state sustained for at least 1 year. The new AOA community was not significantly different from that at the spill site 1 year after the spill. This sustained shift in nitrifier community structure may be a result of oil exposure.

  10. Buccal Swabbing as a Noninvasive Method To Determine Bacterial, Archaeal, and Eukaryotic Microbial Community Structures in the Rumen

    PubMed Central

    Kirk, Michelle R.; Jonker, Arjan; McCulloch, Alan

    2015-01-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. PMID:26276109

  11. Archaeal and bacterial communities in deep-sea hydrogenetic ferromanganese crusts on old seamounts of the northwestern Pacific.

    PubMed

    Nitahara, Shota; Kato, Shingo; Usui, Akira; Urabe, Tetsuro; Suzuki, Katsuhiko; Yamagishi, Akihiko

    2017-01-01

    Deep-sea ferromanganese crusts are found ubiquitously on the surface of seamounts of the world's oceans. Considering the wide distribution of the crusts, archaeal and bacterial communities on these crusts potentially play a significant role in biogeochemical cycling between oceans and seamounts; however little is known about phylogenetic diversity, abundance and function of the crust communities. To this end, we collected the crusts from the northwest Pacific basin and the Philippine Sea. We performed comprehensive analysis of the archaeal and bacterial communities of the collected crust samples by culture-independent molecular techniques. The distance between the sampling points was up to approximately 2,000 km. Surrounding sediments and bottom seawater were also collected as references near the sampling points of the crusts, and analyzed together. 16S rRNA gene analyses showed that the community structure of the crusts was significantly different from that of the seawater. Several members related to ammonia-oxidizers of Thaumarchaeota and Betaproteobacteria were detected in the crusts at most of all regions and depths by analyses of 16S rRNA and amoA genes, suggesting that the ammonia-oxidizing members are commonly present in the crusts. Although members related to the ammonia-oxidizers were also detected in the seawater, they differed from those in the crusts phylogenetically. In addition, members of uncultured groups of Alpha-, Delta- and Gammaproteobacteria were commonly detected in the crusts but not in the seawater. Comparison with previous studies of ferromanganese crusts and nodules suggests that the common members determined in the present study are widely distributed in the crusts and nodules on the vast seafloor. They may be key microbes for sustaining microbial ecosystems there.

  12. Analysis of Bacterial and Archaeal Communities along a High-Molecular-Weight Polyacrylamide Transportation Pipeline System in an Oil Field

    PubMed Central

    Li, Cai-Yun; Li, Jing-Yan; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Viscosity loss of high-molecular-weight partially hydrolyzed polyacrylamide (HPAM) solution was observed in a water injection pipeline before being injected into subterranean oil wells. In order to investigate the possible involvement of microorganisms in HPAM viscosity loss, both bacterial and archaeal community compositions of four samples collected from different points of the transportation pipeline were analyzed using PCR-amplification of the 16S rRNA gene and clone library construction method together with the analysis of physicochemical properties of HPAM solution and environmental factors. Further, the relationship between environmental factors and HPAM properties with microorganisms were delineated by canonical correspondence analysis (CCA). Diverse bacterial and archaeal groups were detected in the four samples. The microbial community of initial solution S1 gathered from the make-up tank is similar to solution S2 gathered from the first filter, and that of solution S3 obtained between the first and the second filter is similar to that of solution S4 obtained between the second filter and the injection well. Members of the genus Acinetobacter sp. were detected with high abundance in S3 and S4 in which HPAM viscosity was considerably reduced, suggesting that they likely played a considerable role in HPAM viscosity loss. This study presents information on microbial community diversity in the HPAM transportation pipeline and the possible involvement of microorganisms in HPAM viscosity loss and biodegradation. The results will help to understand the microbial community contribution made to viscosity change and are beneficial for providing information for microbial control in oil fields. PMID:25849654

  13. Archaeal and bacterial communities in deep-sea hydrogenetic ferromanganese crusts on old seamounts of the northwestern Pacific

    PubMed Central

    Usui, Akira; Urabe, Tetsuro; Suzuki, Katsuhiko; Yamagishi, Akihiko

    2017-01-01

    Deep-sea ferromanganese crusts are found ubiquitously on the surface of seamounts of the world’s oceans. Considering the wide distribution of the crusts, archaeal and bacterial communities on these crusts potentially play a significant role in biogeochemical cycling between oceans and seamounts; however little is known about phylogenetic diversity, abundance and function of the crust communities. To this end, we collected the crusts from the northwest Pacific basin and the Philippine Sea. We performed comprehensive analysis of the archaeal and bacterial communities of the collected crust samples by culture-independent molecular techniques. The distance between the sampling points was up to approximately 2,000 km. Surrounding sediments and bottom seawater were also collected as references near the sampling points of the crusts, and analyzed together. 16S rRNA gene analyses showed that the community structure of the crusts was significantly different from that of the seawater. Several members related to ammonia-oxidizers of Thaumarchaeota and Betaproteobacteria were detected in the crusts at most of all regions and depths by analyses of 16S rRNA and amoA genes, suggesting that the ammonia-oxidizing members are commonly present in the crusts. Although members related to the ammonia-oxidizers were also detected in the seawater, they differed from those in the crusts phylogenetically. In addition, members of uncultured groups of Alpha-, Delta- and Gammaproteobacteria were commonly detected in the crusts but not in the seawater. Comparison with previous studies of ferromanganese crusts and nodules suggests that the common members determined in the present study are widely distributed in the crusts and nodules on the vast seafloor. They may be key microbes for sustaining microbial ecosystems there. PMID:28235095

  14. Archaeal and Bacterial Diversity and Enzymatic Activities Associated With Particulate Matter in the Laptev Sea, a River-Impacted Arctic Shelf Environment

    NASA Astrophysics Data System (ADS)

    Evans, C. T.; Deming, J. W.

    2006-12-01

    Arctic Ocean shelves are influenced by riverine input of terrestrial, relatively refractory particulate organic matter (POM) as well as fresh material from marine phytoplankton blooms. The fate of organic particles and aggregates depends in large part on their associated microbes and the effectiveness of hydrolytic enzymes. The Laptev Sea provides an ideal setting to test for connections between Archaeal and Bacterial communities, the quality of the POM they colonize, and the activities of extracellular enzymes. Aboard the Russian icebreaker Kapitan Dranitsyn during the NABOS 2005 cruise to the Laptev Sea, we sampled various size fractions of particulate matter, from 0.2 to 70 μm. Patterns of Archaeal and Bacterial diversity were analyzed using terminal restriction fragment length polymorphism (T-RFLP). Extracellular enzymatic activities were evaluated using fluorescent substrate analogs. Thus far, we have observed a statistically significant difference between particle-associated and free-living Bacteria, many of which appear (by clone library) to be gamma-proteobacteria or CFB. Bacterial community richness associated with the largest particle fractions, where protease and glucosidase activities were the highest, was best explained by indicators of primary productivity (chlorophyll a and phaeopigments), while richness associated with smaller size fractions was best explained by general particle indicators (and depth and salinity). In contrast, particle-associated Archaea were not significantly different from their free-living counterparts. Archaeal clone library results indicate a predominance of Marine Group 1 Crenarchaea, the group containing a recently isolated nitrifying Archaeon. Given all these results, we hypothesize that in the Laptev Sea cold-active Bacteria are the primary agents in the enzymatic degradation of POM, whether terrestrial or marine, while Archaea play other roles in the elemental cycles of Arctic waters, perhaps especially in the nitrogen

  15. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay.

    PubMed

    Allen, M A; Goh, F; Burns, B P; Neilan, B A

    2009-01-01

    The bacterial, archaeal and eukaryotic populations of nonlithifying mats with pustular and smooth morphology from Hamelin Pool, Shark Bay were characterised using small subunit rRNA gene analysis and microbial isolation. A highly diverse bacterial population was detected for each mat, with 16S rDNA clones related to Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonas, Planctomycetes, Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Verrucomicrobia and candidate division TM6 present in each mat. Spirochaetes were detected in the smooth mat only, whereas candidate division OP11 was only detected in the pustular mat. Targeting populations with specific primers revealed additional cyanobacterial diversity. The archaeal population of the pustular mat was comprised purely of Halobacteriales, whereas the smooth mat contained 16S rDNA clones from the Halobacteriales, two groups of Euryarchaea with no close characterised matches, and the Thaumarchaea. Nematodes and fungi were present in each mat type, with diatom 18S rDNA clones only obtained from the smooth mat, and tardigrade and microalgae clones only retrieved from the pustular mat. Cultured isolates belonged to the Firmicutes, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, and Halobacteriales. The mat populations were significantly more diverse than those previously reported for Hamelin Pool stromatolites, suggesting specific microbial populations may be associated with the nonlithifying and lithifying microbial communities of Hamelin Pool.

  16. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs

    PubMed Central

    Fischer, Martin A.; Güllert, Simon; Neulinger, Sven C.; Streit, Wolfgang R.; Schmitz, Ruth A.

    2016-01-01

    The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis

  17. From mesophilic to thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples.

    PubMed

    Sun, Weimin; Yu, Guangwei; Louie, Tiffany; Liu, Tong; Zhu, Chengsheng; Xue, Gang; Gao, Pin

    2015-12-01

    The shift of microbial communities during a transition from mesophilic anaerobic digestion (MAD) to thermophilic anaerobic digestion (TAD) was characterized in two treatments. One treatment was inoculated with sludge and the other was inoculated with manure. In this study, methane was produced both in MAD and TAD, but TAD has slightly more methane produced than MAD. A broad phylogenetic spectrum of bacterial, archaeal, and fungal taxa at thermophilic conditions was detected. Coprothermobacter, Bacillus, Haloplasma, Clostridiisalibacter, Methanobacterium, Methanothermobacter, Saccharomycetales, Candida, Alternaria, Cladosporium, and Penicillium were found almost exclusively in TAD, suggesting their adaptation to thermophilic conditions and ecological roles in digesting the organic compounds. The characterization of the lesser-known fungal community revealed that fungi probably constituted an important portion of the overall community within TAD and contributed to this process by degrading complex organic compounds. The shift of the microbial communities between MAD and TAD implied that temperature drastically affected the microbial diversity in anaerobic digestion. In addition, the difference in microbial communities between sludge and manure indicated that different source of inoculum also affected the microbial diversity and community.

  18. Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska

    SciTech Connect

    Kao-Kniffin, J.; Woodcroft, B. J.; Carver, S. M.; Bockheim, J. G.; Handelsman, J.; Tyson, G. W.; Hinkel, K. M.; Mueller, C. W.

    2015-12-18

    We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the active layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.

  19. Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska

    PubMed Central

    Kao-Kniffin, J.; Woodcroft, B.J.; Carver, S.M.; Bockheim, J.G.; Handelsman, J.; Tyson, G.W.; Hinkel, K.M.; Mueller, C.W.

    2015-01-01

    We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the active layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures. PMID:26681584

  20. Archaeal and bacterial communities across a chronosequence of drained lake basins in Arctic Alaska.

    PubMed

    Kao-Kniffin, J; Woodcroft, B J; Carver, S M; Bockheim, J G; Handelsman, J; Tyson, G W; Hinkel, K M; Mueller, C W

    2015-12-18

    We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus 'Methanoflorens stordalenmirensis' were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the active layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus 'M. stordalenmirensis' across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.

  1. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.

    PubMed

    Xie, Wei; Zhang, Chuanlun L; Wang, Jinxiang; Chen, Yufei; Zhu, Yuanqing; de la Torre, José R; Dong, Hailiang; Hartnett, Hilairy E; Hedlund, Brian P; Klotz, Martin G

    2015-05-01

    Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community.

  2. Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska

    DOE PAGES

    Kao-Kniffin, J.; Woodcroft, B. J.; Carver, S. M.; ...

    2015-12-18

    We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the activemore » layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.« less

  3. Linking Archaeal Molecular Diversity and Lipid Biomarker Composition in a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Turk, Kendra; Embaye, Tsegereda; Kubo, Mike; Summons, Roger

    2005-01-01

    Lipid biomarkers for discrete microbial groups are a valuable tool for establishing links to ancient microbial ecosystems. Lipid biomarkers can establish organism source and function in contemporary microbial ecosystems (membrane lipids) and by analogy, potential relevance to the fossilized carbon skeletons (geolipids) extracted from ancient sedimentary rock. The Mars Exploration Rovers have provided clear evidence for an early wet Mars and the presence of hypersaline evaporitic basins. Ongoing work on an early Earth analog, the hypersaline benthic mats in Guerrero Negro, Baja California Sur, may provide clues to what may have evolved and flourished on an early wet Mars, if only for a short period. Cyanobacterial mats are a pertinent early Earth analog for consideration of evolutionary and microbial processes within the aerobic photosynthetic and adjacent anoxic layers. Fluctuations in physio-chemical parameters associated with spatial and temporal scales are expressed through vast microbial metabolic diversity. Our recent work hopes to establish the dynamic of archaeal diversity, particularly as it relates to methane production in this high sulfate environment, through the use of lipid biomarker and phylogenetic analyses. Archaeal 16s rRNA and mcrA gene assemblages, demonstrated distinct spatial separation over the 130 mm core of at least three distinct genera within the order Methanosarcinales, as well as an abundance of uncultured members of the Thermoplasmales and Crenarchaeota. Ether-bound lipid analysis identified abundant 0-alkyl and 0-isopranyl chains throughout the core, and the presence of sn-2 hydroxyarchaeol, a biomarker for methylotrophic methanogens. A unique ether isoprenoid chain, a C30:1 , possibly related to the geolipid squalane, a paleobiomarker associated with hypersaline environments, was most abundant within the oxic-anoxic transition zone.

  4. Spatial homogeneity of bacterial and archaeal communities in the deep eastern Mediterranean Sea surface sediments.

    PubMed

    Keuter, Sabine; Rinkevich, Baruch

    2016-06-01

    The diversity of microorganisms inhabiting the deep sea surface sediments was investigated in 9 stations (700-1900 m depth) in the Levantine basin by 454 massive tag sequencing of the 16S rDNA V4 region using universal primers. In total, 108,811 reads (an average of 10,088 per sample) were assigned to 5014 bacterial and 966 archaeal operational taxonomic units (OTUs; at 97% cut off). The 55% of the reads were of archaea, indicating dominance of archaea over bacteria at eight of the stations. The diversity and estimated richness values were high (e.g., H´ ranged from 5.66 to 7.41 for bacteria). The compositions of the microorganisms at all stations were remarkably similar, with Bray-Curtis similarities of 0.53-0.91 and 0.74-0.99 for bacterial and archaeal orders respectively. At two stations, very high abundances of only a few genera (Marinobacterium, Bacillus, Vibrio, Photobacterium) were accountable for the dissimilarities documented compared to the other deep sea stations. Half of the bacterial reads (51%) belonged to the phylum Proteobacteria, comprising mainly Gammaproteobacteria (41-72% of the proteobacterial reads per sample), Deltaproteobacteria (12-29%), Alphaproteobacteria (7-18%) and Betaproteobacteria (3-14%). The most abundant bacterial family was Sinobacteraceae (order Xanthomonadales) with 5-10% of total bacterial reads per sample. Most abundant reads (15.4% of all microbial reads) were affiliated with Marine Group 1 archaea, putatively capable of ammonia oxidation (213 OTUs), and bacteria involved in nitrification were found in all samples. The data point to the significant role that chemolithotrophic carbon assimilation and nitrification fill in the oligotrophic deep sea Levant sediments. [Int Microbiol 19(2): 109-119 (2016)].

  5. Community Composition and Abundance of Bacterial, Archaeal and Nitrifying Populations in Savanna Soils on Contrasting Bedrock Material in Kruger National Park, South Africa

    PubMed Central

    Rughöft, Saskia; Herrmann, Martina; Lazar, Cassandre S.; Cesarz, Simone; Levick, Shaun R.; Trumbore, Susan E.; Küsel, Kirsten

    2016-01-01

    Savannas cover at least 13% of the global terrestrial surface and are often nutrient limited, especially by nitrogen. To gain a better understanding of their microbial diversity and the microbial nitrogen cycling in savanna soils, soil samples were collected along a granitic and a basaltic catena in Kruger National Park (South Africa) to characterize their bacterial and archaeal composition and the genetic potential for nitrification. Although the basaltic soils were on average 5 times more nutrient rich than the granitic soils, all investigated savanna soil samples showed typically low nutrient availabilities, i.e., up to 38 times lower soil N or C contents than temperate grasslands. Illumina MiSeq amplicon sequencing revealed a unique soil bacterial community dominated by Actinobacteria (20–66%), Chloroflexi (9–29%), and Firmicutes (7–42%) and an increase in the relative abundance of Actinobacteria with increasing soil nutrient content. The archaeal community reached up to 14% of the total soil microbial community and was dominated by the thaumarchaeal Soil Crenarchaeotic Group (43–99.8%), with a high fraction of sequences related to the ammonia-oxidizing genus Nitrosopshaera sp. Quantitative PCR targeting amoA genes encoding the alpha subunit of ammonia monooxygenase also revealed a high genetic potential for ammonia oxidation dominated by archaea (~5 × 107 archaeal amoA gene copies g−1 soil vs. mostly < 7 × 104 bacterial amoA gene copies g−1 soil). Abundances of archaeal 16S rRNA and amoA genes were positively correlated with soil nitrate, N and C contents. Nitrospira sp. was detected as the most abundant group of nitrite oxidizing bacteria. The specific geochemical conditions and particle transport dynamics at the granitic catena were found to affect soil microbial communities through clay and nutrient relocation along the hill slope, causing a shift to different, less diverse bacterial and archaeal communities at the footslope. Overall, our

  6. Structures and activities of archaeal members of the LigD 3'-phosphoesterase DNA repair enzyme superfamily.

    PubMed

    Smith, Paul; Nair, Pravin A; Das, Ushati; Zhu, Hui; Shuman, Stewart

    2011-04-01

    LigD 3'-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3'-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis-à-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the end-healing activities of two archaeal PEs--Candidatus Korarchaeum cryptofilum PE (CkoPE; 117 amino acids) and Methanosarcina barkeri PE (MbaPE; 151 amino acids)--and we report their atomic structures at 1.1 and 2.1 Å, respectively. Archaeal PEs are minimized versions of bacterial PE, consisting of an eight-stranded β barrel and a 3(10) helix. Their active sites are located in a crescent-shaped groove on the barrel's outer surface, wherein two histidines and an aspartate coordinate manganese in an octahedral complex that includes two waters and a phosphate anion. The phosphate is in turn coordinated by arginine and histidine side chains. The conservation of active site architecture in bacterial and archaeal PEs, and the concordant effects of active site mutations, underscore a common catalytic mechanism, entailing transition state stabilization by manganese and the phosphate-binding arginine and histidine. Our results fortify the proposal that PEs comprise a DNA repair superfamily distributed widely among taxa.

  7. Structures and Activities of Archaeal Members of the LigD 3-Phosphoesterase DNA Repair Enzyme Superfamily

    SciTech Connect

    P Smith; P Nair; U Das; H Zhu; S Shuman

    2011-12-31

    LigD 3'-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3'-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis-a-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the end-healing activities of two archaeal PEs - Candidatus Korarchaeum cryptofilum PE (CkoPE; 117 amino acids) and Methanosarcina barkeri PE (MbaPE; 151 amino acids) - and we report their atomic structures at 1.1 and 2.1 {angstrom}, respectively. Archaeal PEs are minimized versions of bacterial PE, consisting of an eight-stranded {beta} barrel and a 3{sub 10} helix. Their active sites are located in a crescent-shaped groove on the barrel's outer surface, wherein two histidines and an aspartate coordinate manganese in an octahedral complex that includes two waters and a phosphate anion. The phosphate is in turn coordinated by arginine and histidine side chains. The conservation of active site architecture in bacterial and archaeal PEs, and the concordant effects of active site mutations, underscore a common catalytic mechanism, entailing transition state stabilization by manganese and the phosphate-binding arginine and histidine. Our results fortify the proposal that PEs comprise a DNA repair superfamily distributed widely among taxa.

  8. Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column.

    PubMed

    Durisch-Kaiser, Edith; Klauser, Lucia; Wehrli, Bernhard; Schubert, Carsten

    2005-12-01

    In the northwestern Black Sea, methane oxidation rates reveal that above shallow and deep gas seeps methane is removed from the water column as efficiently as it is at sites located off seeps. Hence, seeps should not have a significant impact on the estimated annual flux of approximately 4.1 x 10(9) mol methane to the atmosphere [W. S. Reeburgh, B. B. Ward, S. C. Wahlen, K. A. Sandbeck, K. A. Kilatrick, and L. J. Kerkhof, Deep-Sea Res. 38(Suppl. 2):S1189-S1210, 1991]. Both the stable carbon isotopic composition of dissolved methane and the microbial community structure analyzed by fluorescent in situ hybridization provide strong evidence that microbially mediated methane oxidation occurs. At the shelf, strong isotope fractionation was observed above high-intensity seeps. This effect was attributed to bacterial type I and II methanotrophs, which on average accounted for 2.5% of the DAPI (4',6'-diamidino-2-phenylindole)-stained cells in the whole oxic water column. At deep sites, in the oxic-anoxic transition zone, strong isotopic fractionation of methane overlapped with an increased abundance of Archaea and Bacteria, indicating that these organisms are involved in the oxidation of methane. In underlying anoxic water, we successfully identified the archaeal methanotrophs ANME-1 and ANME-2, eachof which accounted for 3 to 4% of the total cell counts. ANME-1 and ANME-2 appear as single cells in anoxicwater, compared to the sediment, where they may form cell aggregates with sulfate-reducing bacteria (A. Boetius, K. Ravenschlag, C. J. Schubert, D. Rickert, F. Widdel, A. Giesecke, R. Amann, B. B. Jørgensen, U. Witte, and O. Pfannkuche, Nature 407:623-626, 2000; V. J. Orphan, C. H. House, K.-U. Hinrichs, K. D. McKeegan, and E. F. DeLong, Proc. Natl. Acad. Sci. USA 99:7663-7668, 2002).

  9. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments.

    PubMed

    Webster, Gordon; O'Sullivan, Louise A; Meng, Yiyu; Williams, Angharad S; Sass, Andrea M; Watkins, Andrew J; Parkes, R John; Weightman, Andrew J

    2015-02-01

    Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2-8 × 10(7) 16S rRNA gene copies cm(-3)) than the high-salinity marine sites from BR and AR (2 × 10(4)-2 × 10(7) and 4 × 10(6)-2 × 10(7) 16S rRNA gene copies cm(-3), respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the 'Bathyarchaeota' (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only 'marine' group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments.

  10. Pyrosequencing reveals the influence of elevated atmospheric CO2 on the composition of archaeal communities in the rhizosphere of C3 and C4 crops

    NASA Astrophysics Data System (ADS)

    Nelson, D. M.; Cann, I. K.; Mackie, R. I.

    2008-12-01

    The projected increase in atmospheric CO2 concentrations throughout the 21st century is likely to increase aboveground and belowground plant productivity and cause changes in the quantity and quality of plant root exudates, although plants using C4 photosynthesis are likely to be only affected during times of drought (Leakey et al., 2006, Plant Physiology, 140, 779). Evidence is emerging from molecular tools that these changes may influence the abundance and composition of soil microbial communities that regulate key soil processes, such as nitrogen cycling (Lesaulnier et al., 2008, Environmental Microbiology, 10, 926). However, most molecular tools are not well-suited for comparing multiple samples at great sequencing depth, which is critical when considering soil microbial communities of high diversity. To overcome these limitations we used pyrosequencing and quantitative PCR (qPCR) of two genes (the V3 region of 16S rDNA and the amoA gene) to examine intra- and inter-treatment variability in the abundance and composition of microbial communities in the rhizosphere of soybean (C3) and maize (C4) grown in field conditions under ambient (~380 ppm) and elevated (~550 ppm) CO2 using FACE (free-air concentration enrichment) technology during the 2006 growing season in central Illinois. We specifically focused on archaeal communities because of their key role in nitrification (Leininger et al., 2006, Nature, 442, 806). The majority (>97%) of recovered sequences were from members of the phylum Crenarchaeota. Principle component analysis of sequence results from the V3 and amoA genes indicated significant (p<0.05) differences in the composition of rhizosphere archaeal communities between ambient and elevated CO2 beneath soybean, but not maize. qPCR suggested no significant difference in the abundance of archaea between treatments for soybean and maize. The lack of response of archaeal community composition beneath maize to elevated CO2 is consistent with relatively high

  11. Phylogenetic diversity of dominant bacterial and archaeal communities in plant-microbial fuel cells using rice plants.

    PubMed

    Ahn, Jae-Hyung; Jeong, Woo-Suk; Choi, Min-Young; Kim, Byung-Yong; Song, Jaekyeong; Weon, Hang-Yeon

    2014-12-28

    In this study, the phylogenetic diversities of bacterial and archaeal communities in a plantmicrobial fuel cell (P-MFC) were investigated together with the environmental parameters, affecting its performance by using rice as a model plant. The beneficial effect of the plant appeared only during a certain period of the rice-growing season, at which point the maximum power density was approximately 3-fold higher with rice plants. The temperature, electrical conductivity (EC), and pH in the cathodic and anodic compartments changed considerably during the rice-growing season, and a higher temperature, reduced difference in pH between the cathodic and anodic compartments, and higher EC were advantageous to the performance of the P-MFC. A 16S rRNA pyrosequencing analysis showed that the 16S rRNAs of Deltaproteobacteria and those of Gammaproteobacteria were enriched on the anodes and the cathodes, respectively, when the electrical circuit was connected. At the species level, the operational taxonomic units (OTUs) related to Rhizobiales, Geobacter, Myxococcus, Deferrisoma, and Desulfobulbus were enriched on the anodes, while an OTU related to Acidiferrobacter thiooxydans occupied the highest proportion on the cathodes and occurred only when the circuit was connected. Furthermore, the connection of the electrical circuit decreased the abundance of 16S rRNAs of acetotrophic methanogens and increased that of hydrogenotrophic methanogens. The control of these physicochemical and microbiological factors is expected to be able to improve the performance of P-MFCs.

  12. Archaeal and bacterial communities of Xestospongia testudinaria and sediment differ in diversity, composition and predicted function in an Indonesian coral reef environment

    NASA Astrophysics Data System (ADS)

    Polónia, Ana Rita Moura; Cleary, Daniel Francis Richard; Freitas, Rossana; Gomes, Newton Carlos Marcial; de Voogd, Nicole Joy

    2017-01-01

    Little is known about the microbial diversity, composition and predicted functional similarities and dissimilarities between prokaryotic kingdoms and among coral reef biotopes located in close spatial proximity to one other. In this study, we compared communities of Archaea and Bacteria in two distinct biotopes, namely, the sponge Xestospongia testudinaria and sediment of the Berau reef system, Indonesia. Using a 16S rRNA gene barcoded pyrosequencing approach and a recently developed predictive metagenomic approach (PICRUSt), we tested to what extent sediment and X. testudinaria host compositionally and functionally distinct communities of Archaea and Bacteria. Although Crenarchaeota (Archaea) and Proteobacteria (Bacteria) were the dominant phyla in the microbial communities of both sediment and sponge, there were significant differences in composition between them. Biotope proved to be the main identifiable factor affecting composition. In line with the compositional differences between sediment and sponge prokaryote communities, there were also differences in predicted functions. The archaeal and bacterial communities of sediment were enriched for functions associated with the Metabolism and Environmental Information Processing categories; those of X. testudinaria were enriched for functions associated with the Genetic Information Processing category. The significant levels of concordance between archaeal and bacterial communities and the similar enrichment of these communities in the same functional categories suggests a certain degree of functional redundancy between Archaea and Bacteria in the studied biotopes, which for the sponge may result in an increased resilience to environmental perturbations.

  13. Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste.

    PubMed

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2015-02-01

    Duplicate carefully-characterized municipal solid waste (MSW) specimens were reconstituted with waste constituents obtained from a MSW landfill and biodegraded in large-scale landfill simulators for about a year. Repeatability and relationships between changes in physical, chemical, and microbial characteristics taking place during the biodegradation process were evaluated. Parameters such as rate of change of soluble chemical oxygen demand in the leachate (rsCOD), rate of methane generation (rCH4), rate of specimen volume reduction (rVt), DNA concentration in the leachate, and archaeal community structures in the leachate and solid waste were monitored during operation. The DNA concentration in the leachate was correlated to rCH4 and rVt. The rCH4 was related to rsCOD and rVt when waste biodegradation was intensive. The structures of archaeal communities in the leachate and solid waste of both simulators were very similar and Methanobacteriaceae were the dominant archaeal family throughout the testing period. Monitoring the chemical and microbial characteristics of the leachate was informative of the biodegradation process and volume reduction in the simulators, suggesting that leachate monitoring could be informative of the extent of biodegradation in a full-scale landfill.

  14. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter.

    PubMed

    Collins, R Eric; Rocap, Gabrielle; Deming, Jody W

    2010-07-01

    The structure of bacterial communities in first-year spring and summer sea ice differs from that in source seawaters, suggesting selection during ice formation in autumn or taxon-specific mortality in the ice during winter. We tested these hypotheses by weekly sampling (January-March 2004) of first-year winter sea ice (Franklin Bay, Western Arctic) that experienced temperatures from -9 degrees C to -26 degrees C, generating community fingerprints and clone libraries for Bacteria and Archaea. Despite severe conditions and significant decreases in microbial abundance, no significant changes in richness or community structure were detected in the ice. Communities of Bacteria and Archaea in the ice, as in under-ice seawater, were dominated by SAR11 clade Alphaproteobacteria and Marine Group I Crenarchaeota, neither of which is known from later season sea ice. The bacterial ice library contained clones of Gammaproteobacteria from oligotrophic seawater clades (e.g. OM60, OM182) but no clones from gammaproteobacterial genera commonly detected in later season sea ice by similar methods (e.g. Colwellia, Psychrobacter). The only common sea ice bacterial genus detected in winter ice was Polaribacter. Overall, selection during ice formation and mortality during winter appear to play minor roles in the process of microbial succession that leads to distinctive spring and summer sea ice communities.

  15. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  16. The Primary Results of Analyses on The Archaeal and Bacterial Diversity of Active Cave Environments Settled in Limestones at Southern Turkey

    NASA Astrophysics Data System (ADS)

    Tok, Ezgi; Kurt, Halil; Tunga Akarsubasi, A.

    2016-04-01

    The microbial diversity of cave sediments which are obtained from three different caves named Insuyu, Balatini and Altınbeşik located at Southern Turkey has been investigated using molecular methods for biomineralization . The total number of 22 samples were taken in duplicates from the critical zones of the caves at where the water activity is observed all year round. Microbial communities were monitored by 16S rRNA gene based PCR-DGGE (Polymerase Chain Reaction - Denaturating Gradient Gel Electrophoresis) methodology. DNA were extracted from the samples by The PowerSoil® DNA Isolation Kit (MO BIO Laboratories inc., CA) with the modifications on the producer's protocol. The synthetic DNA molecule poly-dIdC was used to increase the yield of PCR amplification via blocking the reaction between CaCO3 and DNA molecules. Thereafter samples were amplified by using both Archaeal and Bacterial universal primers (ref). Subsequently, archaeal and bacterial diversities in cave sediments, were investigated to be able to compare with respect to their similarities by using DGGE. DGGE patterns were analysed with BioNumerics software 5.1. Similarity matrix and dendograms of the DGGE profiles were generated based on the Dice correlation coefficient (band-based) and unweighted pair-group method with arithmetic mean (UPGMA). The structural diversity of the microbial community was examined by the Shannon index of general diversity (H). Similtaneously, geochemical analyses of the sediment samples were performed within the scope of this study. Total organic carbon (TOC), x-ray diffraction spectroscopy (XRD) and x-ray fluorescence spectroscopy (XRF) analysis of sediments were also implemented. The extensive results will be obtained at the next stages of the study currently carried on.

  17. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.

    PubMed

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-09-29

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.

  18. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil

    PubMed Central

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-01-01

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710

  19. ACS Community Activities Contests

    NASA Astrophysics Data System (ADS)

    Burgener, Marisa

    2007-08-01

    The Committee on Community Activities and the Office of Community Activities announce the winners of the Illustrated Haiku Contest, Earth Day 2007 and the Poster Contest, National Chemistry Week 2006.

  20. Phylogenetic Diversity of Archaea and the Archaeal Ammonia Monooxygenase Gene in Uranium Mining-Impacted Locations in Bulgaria

    PubMed Central

    Radeva, Galina; Kenarova, Anelia; Bachvarova, Velina; Popov, Ivan; Selenska-Pobell, Sonja

    2014-01-01

    Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP) discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA). Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity. PMID:24711725

  1. Phylogenetic diversity of archaea and the archaeal ammonia monooxygenase gene in uranium mining-impacted locations in Bulgaria.

    PubMed

    Radeva, Galina; Kenarova, Anelia; Bachvarova, Velina; Flemming, Katrin; Popov, Ivan; Vassilev, Dimitar; Selenska-Pobell, Sonja

    2014-01-01

    Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP) discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA). Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity.

  2. Visualization and quantification of archaeal and bacterial metabolically active cells in soil using fluorescence in situ hybridization method

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Manucharova, Natalia; Stepanov, Alexey

    2015-04-01

    The method of in situ hybridization using fluorescent labeled 16S rRNA-targeted oligonucleotide probes (FISH - fluorescence in situ hybridization) combines identification and quantification of groups of microorganisms at different phylogenetic levels, from domain to species. The FISH method enables to study the soil microbial community in situ, avoiding plating on nutrient media, and allows to identify and quantify living, metabolically active cells of Bacteria and Archaea. The full procedure consists of the following steps: desorption of the cells from the soil particles, fixation of cells, coating a fixed sample on the glass slide, hybridization with the specific probes and, finally, microscopic observation and cell counting. For the FISH analysis of Bacteria and Archaea, the paraformaldehyde-fixed samples were hybridized with Cy3-labeled Archaea-specific probe(Arc915) and 6-carboxyfluorescein (FAM)-labeled Bacteria-specific probe(EUB338). When a molecular probe is incorporated into a cell, it can hybridize solely with a complementary rRNA sequence. The hybridization can be visualized under the fluorescent microscope and counted. The application of FISH will be demonstrated by the abundance of metabolically active cells of Archaea and Bacteria depending on soil properties, depth and land use. The research was carried out at field and natural ecosystems of European part of Russia. Samples were collected within the soil profiles (3-6 horizons) of Chernozem and Kastanozem with distinct land use. Quantification of metabolically active cells in virgin and arable Chernozem revealed that the abundance of Archaea in topsoil of virgin Chernozem was doubled as compared with arable soil, but it leveled off in the deeper horizons. Plowing of Chernozem decreased an amount of archaeal and bacterial active cells simultaneously, however, Bacteria were more resistant to agrogenic impact than Archaea. In Kastanozem, a significant change in the abundance of metabolically active

  3. Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane.

    PubMed

    Singh, Durgesh Narain; Kumar, Ashok; Sarbhai, Munish Prasad; Tripathi, Anil Kumar

    2012-02-01

    Biogenic origin of the significant proportion of coal bed methane has indicated the role of microbial communities in methanogenesis. By using cultivation-independent approach, we have analysed the archaeal and bacterial community present in the formation water of an Indian coal bed at 600-700 m depth to understand their role in methanogenesis. Presence of methanogens in the formation water was inferred by epifluorescence microscopy and PCR amplification of mcrA gene. Archaeal 16S rRNA gene clone library from the formation water metagenome was dominated by methanogens showing similarity to Methanobacterium, Methanothermobacter and Methanolinea whereas the clones of bacterial 16S rRNA gene library were closely related to Azonexus, Azospira, Dechloromonas and Thauera. Thus, microbial community of the formation water consisted of predominantly hydrogenotrophic methanogens and the proteobacteria capable of nitrogen fixation, nitrate reduction and polyaromatic compound degradation. Methanogenic potential of the microbial community present in the formation water was elucidated by the production of methane in the enrichment culture, which contained 16S rRNA gene sequences showing close relatedness to the genus Methanobacterium. Microcosm using formation water as medium as well as a source of inoculum and coal as carbon source produced significant amount of methane which increased considerably by the addition of nitrite. The dominance of Diaphorobacter sp. in nitrite amended microcosm indicated their important role in supporting methanogenesis in the coal bed. This is the first study indicating existence of methanogenic and bacterial community in an Indian coal bed that is capable of in situ biotransformation of coal into methane.

  4. Distinctive non-methanogen archaeal populations in anaerobic digestion.

    PubMed

    Chen, Si; He, Qiang

    2016-01-01

    Methanogens define the archaeal communities involved in anaerobic digestion. Recently, non-methanogen archaeal populations have been unexpectedly identified in anaerobic digestion processes. To gain insight into the ecophysiology of these uncharacterized archaeal populations, for the first time, a phylogenetic analysis was performed on a collection of non-methanogen archaeal 16S rRNA gene sequences from anaerobic digesters of broad geographic distribution, revealing a distinct clade formed by these sequences in subgroup 6 of the Miscellaneous Crenarchaeotal Group in the newly proposed archaeal phylum Bathyarchaeota. This exclusive phylogenetic assemblage enabled the development of a real-time quantitative PCR (qPCR) assay specifically targeting these non-methanogen archaeal populations in anaerobic digestion. Application of the qPCR assay in continuous anaerobic digesters indicated that these archaeal populations were minor constituents of the archaeal communities, and the abundance of these populations remained relatively constant irrespective of process perturbations. Analysis of the archaeal populations in methanogenic communities further revealed the co-occurrence of these non-methanogen archaea with acetoclastic methanogens. Nevertheless, the low abundance of non-methanogen archaea as compared with acetoclastic methanogens suggests that the non-methanogen archaeal populations were not major players in animal waste-fed methanogenic processes investigated in this study and the functions of these archaeal populations remain to be identified.

  5. Investigation of Archaeal and Bacterial community structure of five different small drinking water networks with special regard to the nitrifying microorganisms.

    PubMed

    Nagymáté, Zsuzsanna; Homonnay, Zalán G; Márialigeti, Károly

    2016-01-01

    Total microbial community structure, and particularly nitrifying communities inhabiting five different small drinking water networks characterized with different water physical and chemical parameters was investigated, using cultivation-based methods and sequence aided Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis. Ammonium ion, originated from well water, was only partially oxidized via nitrite to nitrate in the drinking water distribution systems. Nitrification occurred at low ammonium ion concentration (27-46μM), relatively high pH (7.6-8.2) and over a wide range of dissolved oxygen concentrations (0.4-9.0mgL(-1)). The nitrifying communities of the distribution systems were characterized by variable most probable numbers (2×10(2)-7.1×10(4) MPN L(-1)) and probably originated from the non-treated well water. The sequence aided T-RFLP method revealed that ammonia-oxidizing microorganisms and nitrite-oxidizing Bacteria (Nitrosomonas oligotropha, Nitrosopumilus maritimus, and Nitrospira moscoviensis, 'Candidatus Nitrospira defluvii') were present in different ratios in the total microbial communities of the distinct parts of the water network systems. The nitrate generated by nitrification was partly utilized by nitrate-reducing (and denitrifying) Bacteria, present in low MPN and characterized by sequence aided T-RFLP as Comamonas sp. and Pseudomonas spp. Different environmental factors, like pH, chemical oxygen demand, calculated total inorganic nitrogen content (moreover nitrite and nitrate concentration), temperature had important effect on the total bacterial and archaeal community distribution.

  6. Activation of SsoPK4, an Archaeal eIF2α Kinase Homolog, by Oxidized CoA

    PubMed Central

    Ray, William K.; Potters, Mark B.; Haile, January D.; Kennelly, Peter J.

    2015-01-01

    The eukaryotic protein kinase (ePK) paradigm provides integral components for signal transduction cascades throughout nature. However, while so-called typical ePKs permeate the Eucarya and Bacteria, atypical ePKs dominate the kinomes of the Archaea. Intriguingly, the catalytic domains of the handful of deduced typical ePKs from the archaeon Sulfolobus solfataricus P2 exhibit significant resemblance to the protein kinases that phosphorylate translation initiation factor 2α (eIF2α) in response to cellular stresses. We cloned and expressed one of these archaeal eIF2α protein kinases, SsoPK4. SsoPK4 exhibited protein-serine/threonine kinase activity toward several proteins, including the S. solfataricus homolog of eIF2α, aIF2α. The activity of SsoPK4 was inhibited in vitro by 3ʹ,5ʹ-cyclic AMP (Ki of ~23 µM) and was activated by oxidized Coenzyme A, an indicator of oxidative stress in the Archaea. Activation enhanced the apparent affinity for protein substrates, Km, but had little effect on Vmax. Autophosphorylation activated SsoPK4 and rendered it insensitive to oxidized Coenzyme A. PMID:28248264

  7. Revealing archaeal diversity patterns and methane fluxes in Admiralty Bay, King George Island, and their association to Brazilian Antarctic Station activities

    NASA Astrophysics Data System (ADS)

    Nakayama, C. R.; Kuhn, E.; Araújo, A. C. V.; Alvalá, P. C.; Ferreira, W. J.; Vazoller, R. F.; Pellizari, V. H.

    2011-03-01

    The study of Antarctic archaeal communities adds information on the biogeography of this group and helps understanding the dynamics of biogenic methane production in such extreme habitats. Molecular methods were combined to methane flux determinations in Martel Inlet, Admiralty Bay, to assess archaeal diversity, to obtain information about contribution of the area to atmospheric methane budget and to detect possible interferences of the Antarctic Brazilian Station Comandante Ferraz (EACF) wastewater discharge on local archaeal communities and methane emissions. Methane fluxes in Martel Inlet ranged from 3.2 to 117.9 μmol CH 4 m -2 d -1, with an average of 51.3±8.5 μmol CH 4 m -2 d -1 and a median of 57.6 μmol CH 4 m -2d -1. However, three negative fluxes averaging -11.3 μmol CH 4 m -2 d -1 were detected in MacKellar Inlet, indicating that Admiralty Bay can be either a source or sink of atmospheric methane. Denaturing gradient gel electrophoresis (DGGE) showed that archaeal communities at EACF varied with depth and formed a group separated from the reference sites. Granulometric analysis indicated that differences observed may be mostly related to sediment type. However, an influence of wastewater input could not be discarded, since higher methane fluxes were found at CF site, suggesting stimulation of local methanogenesis. DGGE profile of the wastewater sample grouped separated from all other samples, suggesting that methanogenesis stimulation may be due to changes in environmental conditions rather than to the input of allochtonous species from the wastewater. 16S ribosomal DNA clone libraries analysis showed that all wastewater sequences were related to known methanogenic groups belonging to the hydrogenotrophic genera Methanobacterium and Methanobrevibacter and the aceticlastic genus Methanosaeta. EACF and Botany Point sediment clone libraries retrieved only groups of uncultivated Archaea, with predominance of Crenarchaeota representatives (MCG, MG1, MBG

  8. Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities

    PubMed Central

    Yu, Hongguang; Wang, Qiaoying; Wang, Zhiwei; Sahinkaya, Erkan; Li, Yongli; Ma, Jinxing; Wu, Zhichao

    2014-01-01

    An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests. PMID:24695488

  9. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities.

    PubMed

    Guo, Yang; Kragelund, Birthe B; White, Malcolm F; Peng, Xu

    2015-06-19

    The majority of archaeal viral genes are of unknown function hindering our understanding of the virus life cycle and viral interactions with their host. Here, we first describe functional characterization of ORF131b (gp17) and ORF436 (gp18) of Sulfolobus islandicus rod-shaped virus 2 (SIRV2), both encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5' → 3' ssDNA exonuclease activity, in addition to the previously demonstrated ssDNA endonuclease activity. Further, in vitro pull-down assay demonstrated interactions between gp17 and gp18 and between gp18 and gp19 with the former being mediated by the intrinsically disordered C-terminus of gp17. The strand-displacement replication mode proposed previously for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair.

  10. Archaeal Extrachromosomal Genetic Elements

    PubMed Central

    Wang, Haina; Peng, Nan; Shah, Shiraz A.

    2015-01-01

    SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade. PMID

  11. Diversity, abundance, and activity of archaeal populations in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity.

    PubMed

    Watanabe, Kazuya; Kodama, Yumiko; Hamamura, Natsuko; Kaku, Nobuo

    2002-08-01

    Fluorescence in situ hybridization has shown that cells labeled with an Archaea-specific probe (ARCH915) accounted for approximately 10% of the total cell count in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity. Although chemical analyses have revealed vigorous consumption of nitrate in cavity groundwater, the present study found that the methane production rate was higher than the nitrate consumption rate. To characterize the likely archaeal populations responsible for methane production in this system, fragments of 16S ribosomal DNA (rDNA) were amplified by PCR using eight different combinations of universal and Archaea-specific primers. Sequence analysis of 324 clones produced 23 different archaeal sequence types, all of which were affiliated with the kingdom EURYARCHAEOTA: Among them, five sequence types (KuA1, KuA6, KuA12, KuA16, and KuA22) were obtained in abundance. KuA1 and KuA6 were closely related to the known methanogens Methanosaeta concilii (99% identical) and Methanomethylovorans hollandica (98%), respectively. Although no closely related organism was found for KuA12, it could be affiliated with the family METHANOMICROBIACEAE: KuA16 and KuA22 showed substantial homology only to some environmental clones. Both of these branched deeply in the Euryarchaeota, and may represent novel orders. Quantitative competitive PCR showed that KuA12 was the most abundant, accounting for approximately 50% of the total archaeal rDNA copies detected. KuA1 and KuA16 also constituted significant proportions of the total archaeal rDNA copies (7 and 17%, respectively). These results suggest that limited species of novel archaea were enriched in the oil storage cavity. An estimate of specific methane production rates suggests that they were active methanogens.

  12. Microbial community changes along the active seepage site of one cold seep in the Red Sea

    PubMed Central

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep. PMID:26284035

  13. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    PubMed

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.

  14. Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNA.

    PubMed

    Mikkonen, Anu; Santalahti, Minna; Lappi, Kaisa; Pulkkinen, Anni-Mari; Montonen, Leone; Suominen, Leena

    2014-10-01

    Soil RNA and DNA were coextracted along a contamination gradient at a landfarming field with aged crude oil contamination to investigate pollution-dependent differences in 16S rRNA and rRNA gene pools. Microbial biomass correlated with nucleic acid yields as well as bacterial community change, indicating that the same factors controlled community size and structure. In surface soil, bacterial community evenness, estimated through length heterogeneity PCR (LH-PCR) fingerprinting, appeared higher for RNA-based than for DNA-based communities. The RNA-based community profiles resembled the DNA-based communities of soil with a lower contamination level. Cloning-based identification of bacterial hydrocarbon-degrading taxa in the RNA pool, representing the viable community with high protein synthesis potential, indicated that decontamination processes still continue. Analyses of archaea revealed that only Thaumarchaeota were present in the aerobic samples, whereas more diverse communities were found in the compacted subsurface soil with more crude oil. For subsurface bacteria, hydrocarbon concentration explained neither the community structure nor the difference between RNA-based and DNA-based communities. However, rRNA of bacterial taxa associated with syntrophic and sulphate-reducing alkane degradation was detected. Although the same prokaryotic taxa were identified in DNA and RNA, comparison of the two nucleic acid pools can aid in the assessment of past and future restoration success.

  15. Archaeal DNA replication.

    PubMed

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.

  16. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Kim, Ji Hyun; Ha, Jeong Hyub; Park, Jong Moon

    2014-08-01

    Single-stage anaerobic digestion (AD) was operated to treat high-strength food wastewater (FWW) derived from food waste recycling facilities at two different organic loading rates (OLRs) of 3.5 (Phase I) and 7 (Phase II) kgCOD/m(3)d. Changes in composition of microbial communities were investigated using quantitative real-time PCR (qPCR) and barcoded-pyrosequencing. At the high FWW loading rate, AD showed efficient performance (i.e., organic matter removal and methane production). Bacterial communities were represented by the phyla Bacteroidetes, Firmicutes, Synergistetes and Actinobacteria. During the entire digestion process, the relative abundance phylum Chloroflexi decreased significantly. The qPCR analysis demonstrated that the methanogenic communities shifted from aceticlastic (Methanosarcinales) to hydrogenotrophic methanogens (Methanobacteriales and Methanomicrobiales) with high increase in the proportion of syntrophic bacterial communities. Canonical correspondence analysis revealed a strong relationship between reactor performance and microbial community shifts.

  17. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community.

    PubMed

    Breidenbach, Björn; Blaser, Martin B; Klose, Melanie; Conrad, Ralf

    2016-09-01

    Crop rotation of flooded rice with upland crops is a common management scheme allowing the reduction of water consumption along with the reduction of methane emission. The introduction of an upland crop into the paddy rice ecosystem leads to dramatic changes in field conditions (oxygen availability, redox conditions). However, the impact of this practice on the archaeal and bacterial communities has scarcely been studied. Here, we provide a comprehensive study focusing on the crop rotation between flooded rice in the wet season and upland maize (RM) in the dry season in comparison with flooded rice (RR) in both seasons. The composition of the resident and active microbial communities was assessed by 454 pyrosequencing targeting the archaeal and bacterial 16S rRNA gene and 16S rRNA. The archaeal community composition changed dramatically in the rotational fields indicated by a decrease of anaerobic methanogenic lineages and an increase of aerobic Thaumarchaeota. Members of Methanomicrobiales, Methanosarcinaceae, Methanosaetaceae and Methanocellaceae were equally suppressed in the rotational fields indicating influence on both acetoclastic and hydrogenotrophic methanogens. On the contrary, members of soil crenarchaeotic group, mainly Candidatus Nitrososphaera, were higher in the rotational fields, possibly indicating increasing importance of ammonia oxidation during drainage. In contrast, minor effects on the bacterial community were observed. Acidobacteria and Anaeromyxobacter spp. were enriched in the rotational fields, whereas members of anaerobic Chloroflexi and sulfate-reducing members of Deltaproteobacteria were found in higher abundance in the rice fields. Combining quantitative polymerase chain reaction and pyrosequencing data revealed increased ribosomal numbers per cell for methanogenic species during crop rotation. This stress response, however, did not allow the methanogenic community to recover in the rotational fields during re-flooding and rice

  18. Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents.

    PubMed

    McMillan, Lana J; Hepowit, Nathaniel L; Maupin-Furlow, Julie A

    2015-11-06

    Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg(-1) for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg(2+). Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a "salt-loving" noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies.

  19. Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents

    PubMed Central

    McMillan, Lana J.; Hepowit, Nathaniel L.

    2015-01-01

    Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg−1 for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg2+. Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a “salt-loving” noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies. PMID:26546423

  20. Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase.

    PubMed

    Merone, Luigia; Mandrich, Luigi; Porzio, Elena; Rossi, Mosé; Müller, Susanne; Reiter, Georg; Worek, Franz; Manco, Giuseppe

    2010-12-01

    The thermostable Phosphotriesterase-Like Lactonase from Sulfolobus solfataricus (SsoPox) hydrolyzes lactones and, at a lower rate, neurotoxic organophosphorus compounds. The persistent demand of detoxification tools in the field of agricultural wastes and restoring of conditions after terrorist acts prompted us to exploit SsoPox as a "starter" to evolve its ancillary nerve agents hydrolytic capability. A directed evolution strategy yielded, among several variants, the single mutant W263F with k(cat) and specificity constant against paraoxon 16- and 6-fold enhanced, respectively, compared to the wild type. Furthermore, a phenomenon of enzyme activation by SDS has been observed, which allowed to increase those values 150- and 28-fold, respectively. The activity of SsoPox against the deadly nerve gas Cyclosarin has been reported for the first time and proved to be substantially unaffected for variant W263F. Finally, outperforming efficiency of W263F was demonstrated, under severe stressing conditions, with respect to the best known phosphotriesterase PTE from Brevundimonas diminuta.

  1. Pyrosequencing of mcrA and Archaeal 16S rRNA Genes Reveals Diversity and Substrate Preferences of Methanogen Communities in Anaerobic Digesters

    PubMed Central

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng

    2014-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield. PMID:25381241

  2. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors.

    PubMed

    Shehab, Noura; Li, Dong; Amy, Gary L; Logan, Bruce E; Saikaly, Pascal E

    2013-11-01

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m(2)), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities.

  3. Effects on enteric methane production and bacterial and archaeal communities by the addition of cashew nut shell extract or glycerol-an in vitro evaluation.

    PubMed

    Danielsson, Rebecca; Werner-Omazic, Anna; Ramin, Mohammad; Schnürer, Anna; Griinari, Mikko; Dicksved, Johan; Bertilsson, Jan

    2014-09-01

    The objective of the study was to evaluate the effect of cashew nut shell extract (CNSE) and glycerol (purity >99%) on enteric methane (CH4) production and microbial communities in an automated gas in vitro system. Microbial communities from the in vitro system were compared with samples from the donor cows, in vivo. Inoculated rumen fluid was mixed with a diet with a 60:40 forage:concentrate ratio and, in total, 5 different treatments were set up: 5mg of CNSE (CNSE-L), 10mg of CNSE (CNSE-H), 15mmol of glycerol/L (glycerol-L), and 30mmol of glycerol/L (glycerol-H), and a control without feed additive. Gas samples were taken at 2, 4, 8, 24, 32, and 48h of incubation, and the CH4 concentration was measured. Samples of rumen fluid were taken for volatile fatty acid analysis and for microbial sequence analyses after 8, 24, and 48h of incubation. In vivo rumen samples from the cows were taken 2h after the morning feeding at 3 consecutive days to compare the in vitro system with in vivo conditions. The gas data and data from microbial sequence analysis (454 sequencing) were analyzed using a mixed model and principal components analysis. These analyses illustrated that CH4 production was reduced with the CNSE treatment, by 8 and 18%, respectively, for the L and H concentration. Glycerol instead increased CH4 production by 8 and 12%, respectively, for the L and H concentration. The inhibition with CNSE could be due to the observed shift in bacterial population, possibly resulting in decreased production of hydrogen or formate, the methanogenic substrates. Alternatively the response could be explained by a shift in the methanogenic community. In the glycerol treatments, no main differences in bacterial or archaeal population were detected compared with the in vivo control. Thus, the increase in CH4 production may be explained by the increase in substrate in the in vitro system. The reduced CH4 production in vitro with CNSE suggests that CNSE can be a promising inhibitor of

  4. Temporal and spatial archaeal colonization of hydrothermal vent deposits.

    PubMed

    Pagé, Antoine; Tivey, Margaret K; Stakes, Debra S; Reysenbach, Anna-Louise

    2008-04-01

    Thermocouple arrays were deployed on two deep-sea hydrothermal vents at Guaymas Basin (27 degrees 0.5'N, 111 degrees 24.5'W) in order to measure in situ temperatures at which microorganisms colonize the associated mineral deposits. Intact sections of three structures that formed around the arrays were collected after 4 and 72 day deployments (named BM4, BM72 and TS72). Archaeal diversity associated with discreet subsamples collected across each deposit was determined by polymerase chain reaction amplification of 16S rRNA genes. Spatial differences in archaeal diversity were observed in all deposits and appeared related to in situ temperature. In BM4, no 16S rRNA genes were detected beyond about 1.5 cm within the sample (> 200 degrees C). Phylotypes detected on the outside of this deposit belong to taxonomic groups containing mesophiles and (hyper)thermophiles, whereas only putative hyperthermophiles were detected 1.5 cm inside the structure (approximately 110 degrees C). In contrast, the more moderate thermal gradient recorded across TS72 was associated with a deeper colonization (2-3 cm inside the deposit) of putative hyperthermophilic phylotypes. Although our study does not provide a precise assessment of the highest temperature for the existence of microbial habitats inside the deposits, archaeal 16S rRNA genes were detected directly next to thermocouples that measured 110 degrees C (Methanocaldococcus spp. in BM4) and 116 degrees C (Desulfurococcaceae in TS72). The successive array deployments conducted at the Broken Mushroom (BM) site also revealed compositional differences in archaeal communities associated with immature (BM4) and mature chimneys (BM72) formed by the same fluids. These differences suggest a temporal transition in the primary carbon sources used by the archaeal communities, with potential CO(2)/H(2) methanogens prevalent in BM4 being replaced by possible methylotroph or acetoclastic methanogens and heterotrophs in BM72. This study is the first

  5. Unexplored Archaeal Diversity in the Great Ape Gut Microbiome.

    PubMed

    Raymann, Kasie; Moeller, Andrew H; Goodman, Andrew L; Ochman, Howard

    2017-01-01

    Archaea are habitual residents of the human gut flora but are detected at substantially lower frequencies than bacteria. Previous studies have indicated that each human harbors very few archaeal species. However, the low diversity of human-associated archaea that has been detected could be due to the preponderance of bacteria in these communities, such that relatively few sequences are classified as Archaea even when microbiomes are sampled deeply. Moreover, the universal prokaryotic primer pair typically used to interrogate microbial diversity has low specificity to the archaeal domain, potentially leaving vast amounts of diversity unobserved. As a result, the prevalence, diversity, and distribution of archaea may be substantially underestimated. Here we evaluate archaeal diversity in gut microbiomes using an approach that targets virtually all known members of this domain. Comparing microbiomes across five great ape species allowed us to examine the dynamics of archaeal lineages over evolutionary time scales. These analyses revealed hundreds of gut-associated archaeal lineages, indicating that upwards of 90% of the archaeal diversity in the human and great ape gut microbiomes has been overlooked. Additionally, these results indicate a progressive reduction in archaeal diversity in the human lineage, paralleling the decline reported for bacteria. IMPORTANCE Our findings show that Archaea are a habitual and vital component of human and great ape gut microbiomes but are largely ignored on account of the failure of previous studies to realize their full diversity. Here we report unprecedented levels of archaeal diversity in great ape gut microbiomes, exceeding that detected by conventional 16S rRNA gene surveys. Paralleling what has been reported for bacteria, there is a vast reduction of archaeal diversity in humans. Our study demonstrates that archaeal diversity in the great ape gut microbiome greatly exceeds that reported previously and provides the basis for

  6. Unexplored Archaeal Diversity in the Great Ape Gut Microbiome

    PubMed Central

    Moeller, Andrew H.; Goodman, Andrew L.; Ochman, Howard

    2017-01-01

    ABSTRACT Archaea are habitual residents of the human gut flora but are detected at substantially lower frequencies than bacteria. Previous studies have indicated that each human harbors very few archaeal species. However, the low diversity of human-associated archaea that has been detected could be due to the preponderance of bacteria in these communities, such that relatively few sequences are classified as Archaea even when microbiomes are sampled deeply. Moreover, the universal prokaryotic primer pair typically used to interrogate microbial diversity has low specificity to the archaeal domain, potentially leaving vast amounts of diversity unobserved. As a result, the prevalence, diversity, and distribution of archaea may be substantially underestimated. Here we evaluate archaeal diversity in gut microbiomes using an approach that targets virtually all known members of this domain. Comparing microbiomes across five great ape species allowed us to examine the dynamics of archaeal lineages over evolutionary time scales. These analyses revealed hundreds of gut-associated archaeal lineages, indicating that upwards of 90% of the archaeal diversity in the human and great ape gut microbiomes has been overlooked. Additionally, these results indicate a progressive reduction in archaeal diversity in the human lineage, paralleling the decline reported for bacteria. IMPORTANCE Our findings show that Archaea are a habitual and vital component of human and great ape gut microbiomes but are largely ignored on account of the failure of previous studies to realize their full diversity. Here we report unprecedented levels of archaeal diversity in great ape gut microbiomes, exceeding that detected by conventional 16S rRNA gene surveys. Paralleling what has been reported for bacteria, there is a vast reduction of archaeal diversity in humans. Our study demonstrates that archaeal diversity in the great ape gut microbiome greatly exceeds that reported previously and provides the basis

  7. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat.

    PubMed

    Huber, Julie A; Butterfield, David A; Baross, John A

    2002-04-01

    The temporal variation in archaeal diversity in vent fluids from a midocean ridge subseafloor habitat was examined using PCR-amplified 16S rRNA gene sequence analysis and most-probable-number (MPN) cultivation techniques targeting hyperthermophiles. To determine how variations in temperature and chemical characteristics of subseafloor fluids affect the microbial communities, we performed molecular phylogenetic and chemical analyses on diffuse-flow vent fluids from one site shortly after a volcanic eruption in 1998 and again in 1999 and 2000. The archaeal population was divided into particle-attached (>3-microm-diameter cells) and free-living fractions to test the hypothesis that subseafloor microorganisms associated with active hydrothermal systems are adapted for a lifestyle that involves attachment to solid surfaces and formation of biofilms. To delineate between entrained seawater archaea and the indigenous subseafloor microbial community, a background seawater sample was also examined and found to consist only of Group I Crenarchaeota and Group II Euryarchaeota, both of which were also present in vent fluids. The indigenous subseafloor archaeal community consisted of clones related to both mesophilic and hyperthermophilic Methanococcales, as well as many uncultured Euryarchaeota, some of which have been identified in other vent environments. The particle-attached fraction consistently showed greater diversity than the free-living fraction. The fluid and MPN counts indicate that while culturable hyperthermophiles represent less than 1% of the total microbial community, the subseafloor at new eruption sites does support a hyperthermophilic microbial community. The temperature and chemical indicators of the degree of subseafloor mixing appear to be the most important environmental parameters affecting community diversity, and it is apparent that decreasing fluid temperatures correlated with increased entrainment of seawater, decreased concentrations of

  8. Microbial community signature of high-solid content methanogenic ecosystems.

    PubMed

    Abbassi-Guendouz, Amel; Trably, Eric; Hamelin, Jérôme; Dumas, Claire; Steyer, Jean Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2013-04-01

    In this study, changes in bacterial and archaeal communities involved in anaerobic digestion processes operated with high solid contents were investigated. Batch tests were performed within a range of total solids (TS) of 10-35%. Between 10% and 25% TS, high methanogenic activity was observed and no overall specific structure of active bacterial communities was found. At 30% and 35%, methanogenesis was inhibited as a consequence of volatile fatty acids accumulation. Here, a specific bacterial signature was observed with three main dominant bacteria related to Clostridium sp., known for their ability to grow at low pH. Additionally, archaeal community was gradually impacted by TS content. Three archaeal community structures were observed with a gradual shift from Methanobacterium sp. to Methanosarcina sp., according to the TS content. Overall, several species were identified as biomarkers of methanogenesis inhibition, since bacterial and archaeal communities were highly specific at high TS contents.

  9. Examining the global distribution of dominant archaeal populations in soil.

    PubMed

    Bates, Scott T; Berg-Lyons, Donna; Caporaso, J Gregory; Walters, William A; Knight, Rob; Fierer, Noah

    2011-05-01

    Archaea, primarily Crenarchaeota, are common in soil; however, the structure of soil archaeal communities and the factors regulating their diversity and abundance remain poorly understood. Here, we used barcoded pyrosequencing to comprehensively survey archaeal and bacterial communities in 146 soils, representing a multitude of soil and ecosystem types from across the globe. Relative archaeal abundance, the percentage of all 16S rRNA gene sequences recovered that were archaeal, averaged 2% across all soils and ranged from 0% to >10% in individual soils. Soil C:N ratio was the only factor consistently correlated with archaeal relative abundances, being higher in soils with lower C:N ratios. Soil archaea communities were dominated by just two phylotypes from a constrained clade within the Crenarchaeota, which together accounted for >70% of all archaeal sequences obtained in the survey. As one of these phylotypes was closely related to a previously identified putative ammonia oxidizer, we sampled from two long-term nitrogen (N) addition experiments to determine if this taxon responds to experimental manipulations of N availability. Contrary to expectations, the abundance of this dominant taxon, as well as archaea overall, tended to decline with increasing N. This trend was coupled with a concurrent increase in known N-oxidizing bacteria, suggesting competitive interactions between these groups.

  10. EPA Community Activities

    EPA Pesticide Factsheets

    EPA supports community-based problem solving through grants and assistance to address health threats posed by a range of environmental hazards in San Joaquin Valley, including drinking water contamination and revitalization plans for downtown Fresno.

  11. Geochemical Constraints on Archaeal Diversity in the Vulcano Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Rogers, K. L.; Amend, J. P.

    2006-12-01

    The shallow marine hydrothermal system of Vulcano, Italy hosts a wide diversity of cultured thermophilic Archaea, including Palaeococcus helgesonii, Archaeoglobus fulgidus, and Pyrococcus furiosus, to name a few. However, recent studies have revealed a plethora of uncultured archaeal lineages in the Vulcano system. For example, a 16S rRNA gene survey of an onshore geothermal well identified a diverse archaeal community including deeply-branching uncultured Crenarchaeota, Korarchaeota, and Euryarchaeota. Additionally, culture-independent hybridization techniques suggested that Archaea account for nearly half of the microbial community in the Vulcano system. Furthermore, geochemical characterization of fluids revealed numerous lithotrophic and heterotrophic exergonic reactions that could support as yet uncultured organisms. Archaeal diversity throughout the Vulcano hydrothermal system was investigated using 16S rRNA gene surveys at five submarine vents and an onshore sediment seep. Overall, archaeal diversity was higher (10 groups) at submarine vents with moderate temperatures (59°C) compared with higher temperature (94°C) vents (4 groups). Archaeal communities at the moderately thermal vents were dominated by Thermococcales and also contained Archaeoglobales, Thermoproteales, and uncultured archaea among the Korarchaeota, Marine Group I, and the Deep-sea Hydrothermal Vent Euryarchaeota (DHVE). Fluid composition also affects the microbial community structure. At two high-temperature sites variations in archaeal diversity can be attributed to differences in iron and hydrogen concentrations, and pH. Comparing sites with similar temperature and pH conditions suggests that the presence of Desulfurococcales is limited to sites at which metabolic energy yields exceed 10 kJ per mole of electrons transferred. The Vulcano hydrothermal system hosts diverse archaeal communities, containing both cultured and uncultured species, whose distribution appears to be constrained by

  12. Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter.

    PubMed

    Waldron, Patricia J; Petsch, Steven T; Martini, Anna M; Nüsslein, Klaus; Nüslein, Klaus

    2007-07-01

    The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl(-) in a subsurface shale rich in CH(4) derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH(4)-producing zone lacked electron acceptors such as O(2), NO(3)(-), Fe(3+), or SO(4)(2-). Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl(-) concentrations above approximately 1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H(2)/CO(2)) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links between archaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH(4)-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters.

  13. Salinity Constraints on Subsurface Archaeal Diversity and Methanogenesis in Sedimentary Rock Rich in Organic Matter▿

    PubMed Central

    Waldron, Patricia J.; Petsch, Steven T.; Martini, Anna M.; Nüslein, Klaus

    2007-01-01

    The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl− in a subsurface shale rich in CH4 derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH4-producing zone lacked electron acceptors such as O2, NO3−, Fe3+, or SO42−. Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl− concentrations above ∼1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H2/CO2) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links between archaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH4-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters. PMID:17468287

  14. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses

    PubMed Central

    2014-01-01

    Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages. PMID:25105011

  15. Shaping the Archaeal Cell Envelope

    PubMed Central

    Ellen, Albert F.; Zolghadr, Behnam; Driessen, Arnold M. J.; Albers, Sonja-Verena

    2010-01-01

    Although archaea have a similar cellular organization as other prokaryotes, the lipid composition of their membranes and their cell surface is unique. Here we discuss recent developments in our understanding of the archaeal protein secretion mechanisms, the assembly of macromolecular cell surface structures, and the release of S-layer-coated vesicles from the archaeal membrane. PMID:20671907

  16. Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment.

    PubMed

    Gittel, Antje; Sørensen, Ketil Bernt; Skovhus, Torben Lund; Ingvorsen, Kjeld; Schramm, Andreas

    2009-11-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80 degrees C) oil reservoirs, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed that archaeal SRP (Archaeoglobus) dominated the SRP communities, but with lower relative abundance at the nitrate-treated site. Bacterial SRP were found in only low abundance at both sites and were nearly exclusively affiliated with thermophilic genera (Desulfacinum and Desulfotomaculum). Despite the high abundance of archaeal SRP, no archaeal SRP activity was detected in [(35)S]sulfate incubations at 80 degrees C. Sulfate reduction was found at 60 degrees C in samples from the untreated field and accompanied by the growth of thermophilic bacterial SRP in batch cultures. Samples from the nitrate-treated field generally lacked SRP activity. These results indicate that (i) Archaeoglobus can be a major player in hot oil reservoirs, and (ii) nitrate may act in souring control-not only by inhibiting SRP, but also by changing the overall community structure, including the stimulation of competitive nitrate reducers.

  17. Identification of residues important for the activity of Haloferax volcanii AglD, a component of the archaeal N-glycosylation pathway.

    PubMed

    Kaminski, Lina; Eichler, Jerry

    2010-05-06

    In Haloferax volcanii, AglD adds the final hexose to the N-linked pentasaccharide decorating the S-layer glycoprotein. Not knowing the natural substrate of the glycosyltransferase, together with the challenge of designing assays compatible with hypersalinity, has frustrated efforts at biochemical characterization of AglD activity. To circumvent these obstacles, an in vivo assay designed to identify amino acid residues important for AglD activity is described. In the assay, restoration of AglD function in an Hfx. volcanii aglD deletion strain transformed to express plasmid-encoded versions of AglD, generated through site-directed mutagenesis at positions encoding residues conserved in archaeal homologues of AglD, is reflected in the behavior of a readily detectable reporter of N-glycosylation. As such Asp110 and Asp112 were designated as elements of the DXD motif of AglD, a motif that interacts with metal cations associated with nucleotide-activated sugar donors, while Asp201 was predicted to be the catalytic base of the enzyme.

  18. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    PubMed

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing.

  19. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  20. Archaeal chromatin proteins.

    PubMed

    Zhang, ZhenFeng; Guo, Li; Huang, Li

    2012-05-01

    Archaea, along with Bacteria and Eukarya, are the three domains of life. In all living cells, chromatin proteins serve a crucial role in maintaining the integrity of the structure and function of the genome. An array of small, abundant and basic DNA-binding proteins, considered candidates for chromatin proteins, has been isolated from the Euryarchaeota and the Crenarchaeota, the two major phyla in Archaea. While most euryarchaea encode proteins resembling eukaryotic histones, crenarchaea appear to synthesize a number of unique DNA-binding proteins likely involved in chromosomal organization. Several of these proteins (e.g., archaeal histones, Sac10b homologs, Sul7d, Cren7, CC1, etc.) have been extensively studied. However, whether they are chromatin proteins and how they function in vivo remain to be fully understood. Future investigation of archaeal chromatin proteins will lead to a better understanding of chromosomal organization and gene expression in Archaea and provide valuable information on the evolution of DNA packaging in cellular life.

  1. Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes.

    PubMed

    Scholten, J C M; Joye, S B; Hollibaugh, J T; Murrell, J C

    2005-07-01

    Sulfate reduction is the most important process involved in the mineralization of carbon in the anoxic bottom waters of Mono Lake, an alkaline, hypersaline, meromictic Lake in California. Another important biogeochemical process in Mono Lake is thought to be sulfate-dependent methane oxidation (SDMO). However little is known about what types of organisms are involved in these processes in Mono Lake. Therefore, the sulfate-reducing and archaeal microbial community in Mono Lake was analyzed by targeting 16S rRNA, methyl-coenzyme M reductase (mcrA), adenosine-5'-phosphosulfate (apsA), and dissimilatory sulfite reductase (dsrAB) genes to investigate the sulfate-reducing and archaeal community with depth. Most of the 16S rRNA gene sequences retrieved from the samples fell into the delta-subdivision of the Proteobacteria. Phylogenetic analyses suggested that the clones obtained represented sulfate-reducing bacteria, which are probably involved in the mineralization of carbon in Mono Lake, many of them belonging to a novel line of descent in the delta-Proteobacteria. Only 6% of the sequences retrieved from the samples affiliated to the domain Euryarchaeota but did not represent Archaea, which is considered to be responsible for SDMO [Orphan et al. 2001: Appl Environ Microbiol 67:1922-1934; Teske et al.: Appl Environ Microbiol 68:1994-2007]. On the basis of our results and thermodynamic arguments, we proposed that SDMO in hypersaline environments is presumably carried out by SRB alone. Polymerase chain reaction (PCR) amplifications of the mcrA-, apsA-, and dsrAB genes in Mono Lake samples were, in most cases, not successful. Only the PCR amplification of the apsA gene was partially successful. The amplification of these functional genes was not successful because there was either insufficient "target" DNA in the samples, or the microorganisms in Mono Lake have divergent functional genes.

  2. Impacts of bioturbation on temporal variation in bacterial and archaeal nitrogen-cycling gene abundance in coastal sediments

    PubMed Central

    Laverock, B; Tait, K; Gilbert, J A; Osborn, A M; Widdicombe, S

    2014-01-01

    In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments. PMID:24596269

  3. High archaeal diversity in Antarctic circumpolar deep waters.

    PubMed

    Alonso-Sáez, Laura; Andersson, Anders; Heinrich, Friederike; Bertilsson, Stefan

    2011-12-01

    Archaea are abundant in polar oceans but important ecological aspects of this group remain enigmatic, such as patterns of diversity and biogeography. Here, we provide the first high-throughput sequencing population study of Antarctic archaea based on 198 bp fragments of the 16S rRNA gene, targeting different water masses across the Amundsen and Ross Seas. Our results suggest that archaeal community composition is strongly shaped by hydrography and significantly influenced by environmental parameters. Archaeal communities from cold continental shelf waters (SW) of the Ross Sea were similar over depth with a single thaumarchaeal phylotype dominating Antarctic surface waters (AASW) and deeper SW (contributing up to 80% of reads). However, this phylotype contributed less than 8% of reads in circumpolar deep waters (CDW). A related thaumarchaeon (98% identity) was almost absent in AASW, but contributed up to 30% of reads in CDW, suggesting ecological differentiation of closely related phylotypes. Significantly higher archaeal richness and evenness were observed in CDW, with Shannon indices (c. 2.5) twice as high as for AASW, and high contributions of Group II Euryarchaeota. Based on these results, we suggest that CDW is a hotspot of archaeal diversity and may play an important role in the dispersal of archaeal phylotypes to other oceanic water masses.

  4. Niche specialization of terrestrial archaeal ammonia oxidizers.

    PubMed

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C; James, Phillip; Schloter, Michael; Griffiths, Robert I; Prosser, James I; Nicol, Graeme W

    2011-12-27

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were examined in soils at global, regional, and local scales. Globally distributed database sequences clustered into 18 well-supported phylogenetic lineages that dominated specific soil pH ranges classified as acidic (pH <5), acido-neutral (5 ≤ pH <7), or alkalinophilic (pH ≥ 7). To determine whether patterns were reproduced at regional and local scales, amoA gene fragments were amplified from DNA extracted from 47 soils in the United Kingdom (pH 3.5-8.7), including a pH-gradient formed by seven soils at a single site (pH 4.5-7.5). High-throughput sequencing and analysis of amoA gene fragments identified an additional, previously undiscovered phylogenetic lineage and revealed similar pH-associated distribution patterns at global, regional, and local scales, which were most evident for the five most abundant clusters. Archaeal amoA abundance and diversity increased with soil pH, which was the only physicochemical characteristic measured that significantly influenced community structure. These results suggest evolution based on specific adaptations to soil pH and niche specialization, resulting in a global distribution of archaeal lineages that have important consequences for soil ecosystem function and nitrogen cycling.

  5. Structure and function of the archaeal exosome.

    PubMed

    Evguenieva-Hackenberg, Elena; Hou, Linlin; Glaeser, Stefanie; Klug, Gabriele

    2014-01-01

    The RNA-degrading exosome in archaea is structurally very similar to the nine-subunit core of the essential eukaryotic exosome and to bacterial polynucleotide phosphorylase (PNPase). In contrast to the eukaryotic exosome, PNPase and the archaeal exosome exhibit metal ion-dependent, phosphorolytic activities and synthesize heteropolymeric RNA tails in addition to the exoribonucleolytic RNA degradation in 3' → 5' direction. The archaeal nine-subunit exosome consists of four orthologs of eukaryotic exosomal subunits: the RNase PH-domain-containing subunits Rrp41 and Rrp42 form a hexameric ring with three active sites, whereas the S1-domain-containing subunits Rrp4 and Csl4 form an RNA-binding trimeric cap on the top of the ring. In vivo, this cap contains Rrp4 and Csl4 in variable amounts. Rrp4 confers poly(A) specificity to the exosome, whereas Csl4 is involved in the interaction with the archaea-specific subunit of the complex, the homolog of the bacterial primase DnaG. The archaeal DnaG is a highly conserved protein and its gene is present in all sequenced archaeal genomes, although the exosome was lost in halophilic archaea and some methanogens. In exosome-containing archaea, DnaG is tightly associated with the exosome. It functions as an additional RNA-binding subunit with poly(A) specificity in the reconstituted exosome of Sulfolobus solfataricus and enhances the degradation of adenine-rich transcripts in vitro. Not only the RNA-binding cap but also the hexameric Rrp41-Rrp42 ring alone shows substrate selectivity and prefers purines over pyrimidines. This implies a coevolution of the exosome and its RNA substrates resulting in 3'-ends with different affinities to the exosome.

  6. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    PubMed

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  7. Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Van Geel, Maarten; Dewil, Raf; Lievens, Bart; Appels, Lise

    2016-06-01

    Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23-26 % to 11-13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data.

  8. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil.

    PubMed

    Bao, Qiongli; Huang, Yizong; Wang, Fenghua; Nie, Sanan; Nicol, Graeme W; Yao, Huaiying; Ding, Longjun

    2016-07-01

    Nitrogen fertilization and returning straw to paddy soil are important factors that regulate CH4 production. To evaluate the effect of rice straw and/or nitrate amendment on methanogens, a paddy soil was anaerobically incubated for 40 days. The results indicated that while straw addition increased CH4 production and the abundances of mcrA genes and their transcripts, nitrate amendment showed inhibitory effects on them. The terminal restriction fragment length polymorphism (T-RFLP) analysis based on mcrA gene revealed that straw addition obviously changed methanogenic community structure. Based on mcrA gene level, straw-alone addition stimulated Methanosarcinaceaes at the early stage of incubation (first 11 days), but nitrate showed inhibitory effect. The relative abundance of Methanobacteriaceae was also stimulated by straw addition during the first 11 days. Furthermore, Methanosaetaceae were enriched by nitrate-alone addition after 11 days, while Methanocellaceae were enriched by nitrate addition especially within the first 5 days. The transcriptional methanogenic community indicated more dynamic and complicated responses to straw and/or nitrate addition. Based on mcrA transcript level, nitrate addition alone resulted in the increase of Methanocellaceae and the shift from Methanosarcinaceae to Methanosaetaceae during the first 5 days of incubation. Straw treatments increased the relative abundance of Methanobacteriaceae after 11 days. These results demonstrate that nitrate addition influences methanogens which are transcriptionally and functionally active and can alleviate CH4 production associated with straw amendment in paddy soil incubations, presumably through competition for common substrates between nitrate-utilizing organisms and methanogens.

  9. Archaeal Distribution in Moonmilk Deposits from Alpine Caves and Their Ecophysiological Potential.

    PubMed

    Reitschuler, Christoph; Spötl, Christoph; Hofmann, Katrin; Wagner, Andreas O; Illmer, Paul

    2016-04-01

    (Alpine) caves are, in general, windows into the Earth's subsurface. Frequently occurring structures in caves such as moonmilk (secondary calcite deposits) offer the opportunity to study intraterrestrial microbial communities, adapted to oligotrophic and cold conditions. This is an important research field regarding the dimensions of subsurface systems and cold regions on Earth. On a methodological level, moonmilk deposits from 11 caves in the Austrian Alps were collected aseptically and investigated using a molecular (qPCR and DGGE sequencing-based) methodology in order to study the occurrence, abundance, and diversity of the prevailing native Archaea community. Furthermore, these Archaea were enriched in complex media and studied regarding their physiology, with a media selection targeting different physiological requirements, e.g. methanogenesis and ammonia oxidation. The investigation of the environmental samples showed that all moonmilk deposits were characterized by the presence of the same few habitat-specific archaeal species, showing high abundances and constituting about 50 % of the total microbial communities. The largest fraction of these Archaea was ammonia-oxidizing Thaumarchaeota, while another abundant group was very distantly related to extremophilic Euryarchaeota (Moonmilk Archaea). The archaeal community showed a depth- and oxygen-dependent stratification. Archaea were much more abundant (around 80 %), compared to bacteria, in the actively forming surface part of moonmilk deposits, decreasing to about 5 % down to the bedrock. Via extensive cultivation efforts, it was possible to enrich the enigmatic Moonmilk Archaea and also AOA significantly above the level of bacteria. The most expedient prerequisites for cultivating Moonmilk Archaea were a cold temperature, oligotrophic conditions, short incubation times, a moonmilk surface inoculum, the application of erythromycin, and anaerobic (microaerophilic) conditions. On a physiological level, it seems

  10. Archaeal Lineages within the Human Microbiome: Absent, Rare or Elusive?

    PubMed Central

    Horz, Hans-Peter

    2015-01-01

    Archaea are well-recognized components of the human microbiome. However, they appear to be drastically underrepresented compared to the high diversity of bacterial taxa which can be found on various human anatomic sites, such as the gastrointestinal environment, the oral cavity and the skin. As our “microbial” view of the human body, including the methodological concepts used to describe them, has been traditionally biased towards bacteria, the question arises whether our current knowledge reflects the actual ratio of archaea versus bacteria or whether we have failed so far to unravel the full diversity of human-associated archaea. This review article hypothesizes that distinct archaeal lineages within humans exist, which still await our detection. First, previously unrecognized taxa might be quite common but they have eluded conventional detection methods. Two recent prime examples are described that demonstrate that this might be the case for specific archaeal lineages. Second, some archaeal taxa might be overlooked because they are rare and/or in low abundance. Evidence for this exists for a broad range of phylogenetic lineages, however we currently do not know whether these sporadically appearing organisms are mere transients or important members of the so called “rare biosphere” with probably basic ecosystem functions. Lastly, evidence exists that different human populations harbor different archaeal taxa and/or the abundance and activity of shared archaeal taxa may differ and thus their impact on the overall microbiome. This research line is rather unexplored and warrants further investigation. While not recapitulating exhaustively all studies on archaeal diversity in humans, this review highlights pertinent recent findings that show that the choice of appropriate methodological approaches and the consideration of different human populations may lead to the detection of archaeal lineages previously not associated with humans. This in turn will help

  11. Prokaryotic Community Structure and Sulfate Reducer Activity in Water from High-Temperature Oil Reservoirs with and without Nitrate Treatment▿ †

    PubMed Central

    Gittel, Antje; Sørensen, Ketil Bernt; Skovhus, Torben Lund; Ingvorsen, Kjeld; Schramm, Andreas

    2009-01-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed that archaeal SRP (Archaeoglobus) dominated the SRP communities, but with lower relative abundance at the nitrate-treated site. Bacterial SRP were found in only low abundance at both sites and were nearly exclusively affiliated with thermophilic genera (Desulfacinum and Desulfotomaculum). Despite the high abundance of archaeal SRP, no archaeal SRP activity was detected in [35S]sulfate incubations at 80°C. Sulfate reduction was found at 60°C in samples from the untreated field and accompanied by the growth of thermophilic bacterial SRP in batch cultures. Samples from the nitrate-treated field generally lacked SRP activity. These results indicate that (i) Archaeoglobus can be a major player in hot oil reservoirs, and (ii) nitrate may act in souring control—not only by inhibiting SRP, but also by changing the overall community structure, including the stimulation of competitive nitrate reducers. PMID:19801479

  12. Lessons in Community Health Activism

    PubMed Central

    Maldonado, Linda

    2016-01-01

    This study employed historical methodologies to explore the means through which the Maternity Care Coalition used grassroots activism to dismantle the power structures and other obstacles that contributed to high infant mortality rates in Philadelphia’s health districts 5 and 6 during the 1980s. Infant mortality within the black community has been a persistent phenomenon in the United States. Refusing to accept poverty as a major determinant of infant mortality within marginalized populations of women, activists during the 1980s harnessed momentum from a postcivil rights context and sought alternative methods toward change and improvement of infant mortality rates. PMID:24892861

  13. Archaeal Diversity in Marine Sediments in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Wang, P.; Liu, Z.; Zhao, M.; Zhang, C.

    2010-12-01

    Archaea are widespread and play an important role in the global carbon and nitrogen cycles. However, we still have limited knowledge about archaeal diversity and their function in the natural environment. The purpose of this study was to examine the diversity, distribution and abundance of archaea associated with methane-rich sediments in the South China Sea. A gravity core (HQ08-48PC, 714 cm) was collected from the northern South China Sea and aseptically sliced into 20-cm sections. Samples from near the surface (0-20 cm), middle (350-370 cm) and bottom (630-650 cm) of the core were used for the construction of archaeal clone libraries. Chemical analysis indicated that the core was rich in methane (13.6-58.8 ppm) and had low TOC/TN ratios (< 8), which indicated a marine source of the organic matter. Total amino acids ranged between 2.72 µmol/g and 8.75 µmol/g. Phylogenetic analysis revealed that archaeal community structures were dramatically different and Crenarchaeaota dominates over Euryarchaeota among the surface, middle and bottom sediments of the core. The dominant archaeal groups were MGI (40%), MBGB (27%) and MCG (9%) in the surface sediment, MCG (35%), MBGD (20%) and MCG (20%) in the middle sediment, and MCG (52%) and MBGD (33%) in the bottom sediment. MCG and MBGD increased in phytotypes with increasing depth of the core, indicating their potential importance in deeper marine subsurface. The archaeal lipids (GDGTs) showed an increase in abundance with depth. Calculations of TEX86 based on certain types of GDGTs suggested a dramatic change in sea surface temperature (SST) that might correspond to the transition from the last glacial maximum (LGM) to post-glacial period. This study will enhance our understanding of archaeal diversity and function as well as their paleoclimate applications in the South China Sea.

  14. Archaeal Nitrification in Hot Springs

    NASA Astrophysics Data System (ADS)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  15. 28 CFR 551.109 - Community activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Community activities. 551.109 Section 551... MISCELLANEOUS Pretrial Inmates § 551.109 Community activities. (a) The Warden may not grant a furlough to a... in community programs....

  16. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing.

    PubMed

    Galand, Pierre E; Casamayor, Emilio O; Kirchman, David L; Potvin, Marianne; Lovejoy, Connie

    2009-07-01

    The Arctic Ocean plays a critical role in controlling nutrient budgets between the Pacific and Atlantic Ocean. Archaea are key players in the nitrogen cycle and in cycling nutrients, but their community composition has been little studied in the Arctic Ocean. Here, we characterize archaeal assemblages from surface and deep Arctic water masses using massively parallel tag sequencing of the V6 region of the 16S rRNA gene. This approach gave a very high coverage of the natural communities, allowing a precise description of archaeal assemblages. This first taxonomic description of archaeal communities by tag sequencing reported so far shows that it is possible to assign an identity below phylum level to most (95%) of the archaeal V6 tags, and shows that tag sequencing is a powerful tool for resolving the diversity and distribution of specific microbes in the environment. Marine group I Crenarchaeota was overall the most abundant group in the Arctic Ocean and comprised between 27% and 63% of all tags. Group III Euryarchaeota were more abundant in deep-water masses and represented the largest archaeal group in the deep Atlantic layer of the central Arctic Ocean. Coastal surface waters, in turn, harbored more group II Euryarchaeota. Moreover, group II sequences that dominated surface waters were different from the group II sequences detected in deep waters, suggesting functional differences in closely related groups. Our results unveiled for the first time an archaeal community dominated by group III Euryarchaeota and show biogeographical traits for marine Arctic Archaea.

  17. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    PubMed Central

    Daebeler, Anne; Abell, Guy C. J.; Bodelier, Paul L. E.; Bodrossy, Levente; Frampton, Dion M. F.; Hefting, Mariet M.; Laanbroek, Hendrikus J.

    2012-01-01

    The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA) gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative polymerase chain reaction suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while soil physio-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization. PMID:23060870

  18. Polymetallic nodules, sediments, and deep waters in the equatorial North Pacific exhibit highly diverse and distinct bacterial, archaeal, and microeukaryotic communities.

    PubMed

    Shulse, Christine N; Maillot, Brianne; Smith, Craig R; Church, Matthew J

    2017-04-01

    Concentrated seabed deposits of polymetallic nodules, which are rich in economically valuable metals (e.g., copper, nickel, cobalt, manganese), occur over vast areas of the abyssal Pacific Ocean floor. Little is currently known about the diversity of microorganisms inhabiting abyssal habitats. In this study, sediment, nodule, and water column samples were collected from the Clarion-Clipperton Zone of the Eastern North Pacific. The diversities of prokaryote and microeukaryote communities associated with these habitats were examined. Microbial community composition and diversity varied with habitat type, water column depth, and sediment horizon. Thaumarchaeota were relatively enriched in the sediments and nodules compared to the water column, whereas Gammaproteobacteria were the most abundant sequences associated with nodules. Among the Eukaryota, rRNA genes belonging to the Cryptomonadales were relatively most abundant among organisms associated with nodules, whereas rRNA gene sequences deriving from members of the Alveolata were relatively enriched in sediments and the water column. Nine operational taxonomic unit (OTU)s were identified that occur in all nodules in this dataset, as well as all nodules found in a study 3000-9000 km from our site. Microbial communities in the sediments had the highest diversity, followed by nodules, and then by the water column with <1/3 the number of OTUs as in the sediments.

  19. Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli mud volcano.

    PubMed

    Lazar, Cassandre Sara; L'haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-05-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.

  20. Symbiotic archaea in marine sponges show stability and host specificity in community structure and ammonia oxidation functionality.

    PubMed

    Zhang, Fan; Pita, Lucía; Erwin, Patrick M; Abaid, Summara; López-Legentil, Susanna; Hill, Russell T

    2014-12-01

    Archaea associated with marine sponges are active and influence the nitrogen metabolism of sponges. However, we know little about their occurrence, specificity, and persistence. We aimed to elucidate the relative importance of host specificity and biogeographic background in shaping the symbiotic archaeal communities. We investigated these communities in sympatric sponges from the Mediterranean (Ircinia fasciculata and Ircinia oros, sampled in summer and winter) and from the Caribbean (Ircinia strobilina and Mycale laxissima). PCR cloning and sequencing of archaeal 16S rRNA and amoA genes showed that the archaeal community composition and structure were different from that in seawater and varied among sponge species. We found that the communities were dominated by ammonia-oxidizing archaea closely related to Nitrosopumilus. The community in M. laxissima differed from that in Ircinia spp., including the sympatric sponge I. strobilina; yet, geographical clusters within Ircinia spp. were observed. Whereas archaeal phylotypes in Ircinia spp. were persistent and belong to 'sponge-enriched' clusters, archaea in M. laxissima were closely related with those from diverse habitats (i.e. seawater and sediments). For all four sponge species, the expression of the archaeal amoA gene was confirmed. Our results indicate that host-specific processes, such as host ecological strategy and evolutionary history, control the sponge-archaeal communities.

  1. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements.

    PubMed

    Iranzo, Jaime; Koonin, Eugene V; Prangishvili, David; Krupovic, Mart

    2016-12-15

    Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere.

  2. Higher Education Active Community Fund: Proposals. Consultation.

    ERIC Educational Resources Information Center

    Higher Education Funding Council for England, Bristol.

    This document outlines proposals for a Higher Education Active Community Fund (HEACF) in England to enhance the key role played by higher education institutions in the community. The initiative follows from the objectives of the Higher Education Reach-Out to Business and the Community Fund and proposals from the British Department of the…

  3. Archaeal Populations in Hypersaline Sediments Underlying Orange Microbial Mats in the Napoli Mud Volcano▿†

    PubMed Central

    Lazar, Cassandre Sara; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-01-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the “active” archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano. PMID:21335391

  4. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage.

    PubMed

    McCliment, Elizabeth A; Voglesonger, Kenneth M; O'Day, Peggy A; Dunn, Eileen E; Holloway, John R; Cary, S Craig

    2006-01-01

    Active deep-sea hydrothermal vents are areas of intense mixing and severe thermal and chemical gradients, fostering a biotope rich in novel hyperthermophilic microorganisms and metabolic pathways. The goal of this study was to identify the earliest archaeal colonizers of nascent hydrothermal chimneys, organisms that may be previously uncharacterized as they are quickly replaced by a more stable climax community. During expeditions in 2001 and 2002 to the hydrothermal vents of the East Pacific Rise (EPR) (9 degrees 50'N, 104 degrees 17'W), we removed actively venting chimneys and in their place deployed mineral chambers and sampling units that promoted the growth of new, natural hydrothermal chimneys and allowed their collection within hours of formation. These samples were compared with those collected from established hydrothermal chimneys from EPR and Guaymas Basin vent sites. Using molecular and phylogenetic analysis of the 16S rDNA, we show here that at high temperatures, early colonization of a natural chimney is dominated by members of the archaeal genus Ignicoccus and its symbiont, Nanoarchaeum. We have identified 19 unique sequences closely related to the nanoarchaeal group, and five archaeal sequences that group closely with Ignicoccus. These organisms were found to colonize a natural, high temperature protochimney and vent-like mineral assemblages deployed over high temperature outflows within 92 h. When compared phylogenetically, several of these colonizing organisms form a unique clade independent of those found in mature chimneys and low-temperature mineral chamber samples. As a model ecosystem, the identification of pioneering consortia in deep-sea hydrothermal vents may help advance the understanding of how early microbial life forms gained a foothold in hydrothermal systems on early Earth and potentially on other planetary bodies.

  5. Unusually High Archaeal Diversity in a Crystallizer Pond, Pomorie Salterns, Bulgaria, Revealed by Phylogenetic Analysis

    PubMed Central

    Tomova, Iva; Boyadzhieva, Ivanka; Radchenkova, Nadja; Vasileva-Tonkova, Evgenia

    2016-01-01

    Recent studies on archaeal diversity in few salterns have revealed heterogeneity between sites and unique structures of separate places that hinder drawing of generalized conclusions. Investigations on the archaeal community composition in P18, the biggest crystallizer pond in Pomorie salterns (PS) (34% salinity), demonstrated unusually high number of presented taxa in hypersaline environment. Archaeal clones were grouped in 26 different operational taxonomic units (OTUs) assigned to 15 different genera from two orders, Halobacteriales and Haloferacales. All retrieved sequences were related to culturable halophiles or unculturable clones from saline (mostly hypersaline) niches. New sequences represented 53.9% of archaeal OTUs. Some of them formed separate branches with 90% similarity to the closest neighbor. Present results significantly differed from the previous investigations in regard to the number of presented genera, the domination of some genera not reported before in such extreme niche, and the identification of previously undiscovered 16S rRNA sequences. PMID:27974879

  6. Archaeon and archaeal virus diversity classification via sequence entropy and fractal dimension

    NASA Astrophysics Data System (ADS)

    Tremberger, George, Jr.; Gallardo, Victor; Espinoza, Carola; Holden, Todd; Gadura, N.; Cheung, E.; Schneider, P.; Lieberman, D.; Cheung, T.

    2010-09-01

    Archaea are important potential candidates in astrobiology as their metabolism includes solar, inorganic and organic energy sources. Archaeal viruses would also be expected to be present in a sustainable archaeal exobiological community. Genetic sequence Shannon entropy and fractal dimension can be used to establish a two-dimensional measure for classification and phylogenetic study of these organisms. A sequence fractal dimension can be calculated from a numerical series consisting of the atomic numbers of each nucleotide. Archaeal 16S and 23S ribosomal RNA sequences were studied. Outliers in the 16S rRNA fractal dimension and entropy plot were found to be halophilic archaea. Positive correlation (R-square ~ 0.75, N = 18) was observed between fractal dimension and entropy across the studied species. The 16S ribosomal RNA sequence entropy correlates with the 23S ribosomal RNA sequence entropy across species with R-square 0.93, N = 18. Entropy values correspond positively with branch lengths of a published phylogeny. The studied archaeal virus sequences have high fractal dimensions of 2.02 or more. A comparison of selected extremophile sequences with archaeal sequences from the Humboldt Marine Ecosystem database (Wood-Hull Oceanography Institute, MIT) suggests the presence of continuous sequence expression as inferred from distributions of entropy and fractal dimension, consistent with the diversity expected in an exobiological archaeal community.

  7. Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees

    PubMed Central

    Müller, Henry; Berg, Christian; Landa, Blanca B.; Auerbach, Anna; Moissl-Eichinger, Christine; Berg, Gabriele

    2015-01-01

    Endophytes have an intimate and often symbiotic interaction with their hosts. Less is known about the composition and function of endophytes in trees. In order to evaluate our hypothesis that plant genotype and origin have a strong impact on both, endophytes of leaves from 10 Olea europaea L. cultivars from the Mediterranean basin growing at a single agricultural site in Spain and from nine wild olive trees located in natural habitats in Greece, Cyprus, and on Madeira Island were studied. The composition of the bacterial endophytic communities as revealed by 16S rRNA gene amplicon sequencing and the subsequent PCoA analysis showed a strong correlation to the plant genotypes. The bacterial distribution patterns were congruent with the plant origins in “Eastern” and “Western” areas of the Mediterranean basin. Subsequently, the endophytic microbiome of wild olives was shown to be closely related to those of cultivated olives of the corresponding geographic origins. The olive leaf endosphere harbored mostly Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroidetes. The detection of a high portion of archaeal taxa belonging to the phyla Thaumarchaeota, Crenarchaeota, and Euryarchaeota in the amplicon libraries was an unexpected discovery, which was confirmed by quantitative real-time PCR revealing an archaeal portion of up to 35.8%. Although the function of these Archaea for their host plant remains speculative, this finding suggests a significant relevance of archaeal endophytes for plant–microbe interactions. In addition, the antagonistic potential of culturable endophytes was determined; all isolates with antagonistic activity against the olive-pathogenic fungus Verticillium dahliae Kleb. belong to Bacillus amyloliquefaciens. In contrast to the specific global structural diversity, BOX-fingerprints of the antagonistic Bacillus isolates were highly similar and independent of the olive genotype from which they were isolated. PMID:25784898

  8. Discovering Community: Activities for Afterschool Programs

    ERIC Educational Resources Information Center

    National Institute on Out-of-School Time, Wellesley College, 2006

    2006-01-01

    The project activities highlighted in this publication were conducted within the framework of school-based afterschool programs operated by community-based organizations. The intention of the Discovering Community initiative, created by The After-School Corporation and MetLife Foundation, is to foster greater collaborations and mutual respect…

  9. Archaeal nitrification in the ocean

    PubMed Central

    Wuchter, Cornelia; Abbas, Ben; Coolen, Marco J. L.; Herfort, Lydie; van Bleijswijk, Judith; Timmers, Peer; Strous, Marc; Teira, Eva; Herndl, Gerhard J.; Middelburg, Jack J.; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2006-01-01

    Marine Crenarchaeota are the most abundant single group of prokaryotes in the ocean, but their physiology and role in marine biogeochemical cycles are unknown. Recently, a member of this clade was isolated from a sea aquarium and shown to be capable of nitrification, tentatively suggesting that Crenarchaeota may play a role in the oceanic nitrogen cycle. We enriched a crenarchaeote from North Sea water and showed that its abundance, and not that of bacteria, correlates with ammonium oxidation to nitrite. A time series study in the North Sea revealed that the abundance of the gene encoding for the archaeal ammonia monooxygenase alfa subunit (amoA) is correlated with a decline in ammonium concentrations and with the abundance of Crenarchaeota. Remarkably, the archaeal amoA abundance was 1–2 orders of magnitude higher than those of bacterial nitrifiers, which are commonly thought to mediate the oxidation of ammonium to nitrite in marine environments. Analysis of Atlantic waters of the upper 1,000 m, where most of the ammonium regeneration and oxidation takes place, showed that crenarchaeotal amoA copy numbers are also 1–3 orders of magnitude higher than those of bacterial amoA. Our data thus suggest a major role for Archaea in oceanic nitrification. PMID:16894176

  10. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography.

    PubMed

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-08-22

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

  11. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography

    PubMed Central

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-01-01

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. PMID:27548043

  12. Archaeal β diversity patterns under the seafloor along geochemical gradients

    NASA Astrophysics Data System (ADS)

    Koyano, Hitoshi; Tsubouchi, Taishi; Kishino, Hirohisa; Akutsu, Tatsuya

    2014-09-01

    Recently, deep drilling into the seafloor has revealed that there are vast sedimentary ecosystems of diverse microorganisms, particularly archaea, in subsurface areas. We investigated the β diversity patterns of archaeal communities in sediment layers under the seafloor and their determinants. This study was accomplished by analyzing large environmental samples of 16S ribosomal RNA gene sequences and various geochemical data collected from a sediment core of 365.3 m, obtained by drilling into the seafloor off the east coast of the Shimokita Peninsula. To extract the maximum amount of information from these environmental samples, we first developed a method for measuring β diversity using sequence data by applying probability theory on a set of strings developed by two of the authors in a previous publication. We introduced an index of β diversity between sequence populations from which the sequence data were sampled. We then constructed an estimator of the β diversity index based on the sequence data and demonstrated that it converges to the β diversity index between sequence populations with probability of 1 as the number of sampled sequences increases. Next, we applied this new method to quantify β diversities between archaeal sequence populations under the seafloor and constructed a quantitative model of the estimated β diversity patterns. Nearly 90% of the variation in the archaeal β diversity was explained by a model that included as variables the differences in the abundances of chlorine, iodine, and carbon between the sediment layers.

  13. Status of the Archaeal and Bacterial Census: an Update

    PubMed Central

    Girard, Rene A.; Martin, Thomas; Edwards, Joshua

    2016-01-01

    ABSTRACT A census is typically carried out for people across a range of geographical levels; however, microbial ecologists have implemented a molecular census of bacteria and archaea by sequencing their 16S rRNA genes. We assessed how well the census of full-length 16S rRNA gene sequences is proceeding in the context of recent advances in high-throughput sequencing technologies because full-length sequences are typically used as references for classification of the short sequences generated by newer technologies. Among the 1,411,234 and 53,546 full-length bacterial and archaeal sequences, 94.5% and 95.1% of the bacterial and archaeal sequences, respectively, belonged to operational taxonomic units (OTUs) that have been observed more than once. Although these metrics suggest that the census is approaching completion, 29.2% of the bacterial and 38.5% of the archaeal OTUs have been observed more than once. Thus, there is still considerable diversity to be explored. Unfortunately, the rate of new full-length sequences has been declining, and new sequences are primarily being deposited by a small number of studies. Furthermore, sequences from soil and aquatic environments, which are known to be rich in bacterial diversity, represent only 7.8 and 16.5% of the census, while sequences associated with host-associated environments represent 55.0% of the census. Continued use of traditional approaches and new technologies such as single-cell genomics and short-read assembly are likely to improve our ability to sample rare OTUs if it is possible to overcome this sampling bias. The success of ongoing efforts to use short-read sequencing to characterize archaeal and bacterial communities requires that researchers strive to expand the depth and breadth of this census. PMID:27190214

  14. Diverse communities of active Bacteria and Archaea along oxygen gradients in coral reef sediments

    NASA Astrophysics Data System (ADS)

    Rusch, A.; Hannides, A. K.; Gaidos, E.

    2009-03-01

    Microbial communities inhabiting highly permeable sediments of Checker Reef in Kaneohe Bay, Hawaii, were characterized in relation to porewater geochemistry (O2, NO3 -, NO2 -, NH4 +, phosphate). The physiologically active part of the population, assessed by sequencing cDNA libraries of 16S rRNA amplicons, was very diverse, with an estimated ribotype richness ≥1,380 in anoxic sediment. Quantitative analysis of community structure by rRNA-targeted fluorescence in situ hybridization (FISH) indicated that the archaeal population (9-18%) was dominated by marine Crenarchaeota (5-9%). Planctomycetales were the most abundant group in the oxic and interfacial habitat (17-19%) but were a minority (<5%) in anoxic reef sediment, where γ-Proteobacteria were numerically dominant (18%). Another 9-14% of the microbial benthos belonged to β-Proteobacteria, predominantly within the order Nitrosomonadales, many cultured representatives of which are NH4 + oxidizers. The results of this study contribute to the phylogenetic characterization of benthic microbial communities that are important in organic matter degradation and nutrient recycling in coral reef ecosystems.

  15. Physical Activity among Community College Students

    ERIC Educational Resources Information Center

    Young, Sarah J.; Sturts, Jill R.; Ross, Craig M.

    2015-01-01

    This exploratory study provides insight into the perceived physical activity levels of students attending a Midwestern 2-year community college. Over 60% of respondents were classified as overweight or obese based on a BMI measurement. The majority of respondents were not participating regularly in physical activity to gain any health benefits,…

  16. Detection Methods for Archaeal RNA Virus Discovery

    NASA Astrophysics Data System (ADS)

    Bolduc, B.; Roberto, F.; Young, M.

    2010-04-01

    We have a poor understanding in the relationship between cellular and viral evolution. We have successfully amplified archaeal, viral-enriched samples shown to be RNA-rich showing similarity to reverse transcriptases and RNA-directed RNA polymerases.

  17. Archaeal Enzymes and Applications in Industrial Biocatalysts

    PubMed Central

    Littlechild, Jennifer A.

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches. PMID:26494981

  18. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    PubMed

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  19. Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze estuary.

    PubMed

    Zheng, Yanling; Hou, Lijun; Newell, Silvia; Liu, Min; Zhou, Junliang; Zhao, Hui; You, Lili; Cheng, Xunliang

    2014-01-01

    Diversity, abundance, and activity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated using the ammonia monooxygenase α subunit (amoA) in the intertidal sediments of the Yangtze Estuary. Generally, AOB had a lower diversity of amoA genes than did AOA in this study. Clone library analysis revealed great spatial variations in both AOB and AOA communities along the estuary. The UniFrac distance matrix showed that all the AOB communities and 6 out of 7 AOA communities in the Yangtze Estuary were statistically indistinguishable between summer and winter. The studied AOB and AOA community structures were observed to correlate with environmental parameters, of which salinity, pH, ammonium, total phosphorus, and organic carbon had significant correlations with the composition and distribution of both communities. Also, the AOA communities were significantly correlated with sediment clay content. Quantitative PCR (qPCR) results indicated that the abundance of AOB amoA genes was greater than that of AOA amoA genes in 10 of the 14 samples analyzed in this study. Potential nitrification rates were significantly greater in summer than in winter and had a significant negative correlation with salinity. In addition, potential nitrification rates were correlated strongly only with archaeal amoA gene abundance and not with bacterial amoA gene abundance. However, no significant differences were observed between rates measured with and without ampicillin (AOB inhibitor). These results implied that archaea might play a more important role in mediating the oxidation of ammonia to nitrite in the Yangtze estuarine sediments.

  20. Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica.

    PubMed

    Richter, Ingrid; Herbold, Craig W; Lee, Charles K; McDonald, Ian R; Barrett, John E; Cary, Stephen C

    2014-08-01

    Archaea are the least understood members of the microbial community in Antarctic mineral soils. Although their occurrence in Antarctic coastal soils has been previously documented, little is known about their distribution in soils across the McMurdo Dry Valleys, Victoria Land. In this study, terminal-restriction fragment length polymorphism (t-RFLP) analysis and 454 pyrosequencing were coupled with a detailed analysis of soil physicochemical properties to characterize archaeal diversity and identify environmental factors that might shape and maintain archaeal communities in soils of the three southern most McMurdo Dry Valleys (Garwood, Marshall, and Miers Valley). Archaea were successfully detected in all inland and coastal mineral soils tested, revealing a low overall richness (mean of six operational taxonomic units [OTUs] per sample site). However, OTU richness was higher in some soils and this higher richness was positively correlated with soil water content, indicating water as a main driver of archaeal community richness. In total, 18 archaeal OTUs were detected, predominately Thaumarchaeota affiliated with Marine Group 1.1b (> 80% of all archaeal sequences recovered). Less abundant OTUs (2% of all archaeal sequences) were loosely related to members of the phylum Euryarchaeota. This is the first comprehensive study showing a widespread presence and distribution of Archaea in inland Antarctic soils.

  1. Community benefit activities of private, nonprofit hospitals.

    PubMed

    Bazzoli, Gloria J; Clement, Jan P; Hsieh, Hui-Min

    2010-12-01

    The definition of hospital community benefits has been intensely debated for many years. Recently, consensus has developed about one group of activities being central to community benefits because of its focus on care for the poor and on needed community services for which any payments received are low relative to costs. Disagreements continue, however, about the treatment of bad debt expense and Medicare shortfalls. A recent revision of the Internal Revenue Service's Form 990 Schedule H, which is required of all nonprofit hospitals, highlights the agreed-on set of activities but does not dismiss the disputed items. Our study is the first to apply definitions used in the new IRS form to assess how conclusions about the adequacy of nonprofit hospital community benefits could be affected if bad debt expenses and Medicare shortfalls are included or excluded. Specifically, we examine 2005 financial data for California and Florida hospitals. Overall, we find that conclusions about community benefit adequacy are very different depending on which definition of community benefits is used. We provide thoughts on new directions for the current policy debate about the treatment of bad debts and Medicare shortfalls in light of these findings.

  2. Assembly and function of the archaeal flagellum.

    PubMed

    Ghosh, Abhrajyoti; Albers, Sonja-Verena

    2011-01-01

    Motility is a common behaviour in prokaryotes. Both bacteria and archaea use flagella for swimming motility, but it has been well documented that structures of the flagellum from these two domains of life are completely different, although they contribute to a similar function. Interestingly, information available to date has revealed that structurally archaeal flagella are more similar to bacterial type IV pili rather than to bacterial flagella. With the increasing genome sequence information and advancement in genetic tools for archaea, identification of the components involved in the assembly of the archaeal flagellum is possible. A subset of these components shows similarities to components from type IV pilus-assembly systems. Whereas the molecular players involved in assembly of the archaeal flagellum are being identified, the mechanics and dynamics of the assembly of the archaeal flagellum have yet to be established. Recent computational analysis in our laboratory has identified conserved highly charged loop regions within one of the core proteins of the flagellum, the membrane integral protein FlaJ, and predicted that these are involved in the interaction with the assembly ATPase FlaI. Interestingly, considerable variation was found among the loops of FlaJ from the two major subkingdoms of archaea, the Euryarchaeota and the Crenarchaeota. Understanding the assembly pathway and creating an interaction map of the molecular players in the archaeal flagellum will shed light on the details of the assembly and also the evolutionary relationship to the bacterial type IV pili-assembly systems.

  3. Biodiversity and fermentative activity of caecal microbial communities in wild and farm rabbits from Spain.

    PubMed

    Abecia, L; Rodríguez-Romero, N; Yañez-Ruiz, D R; Fondevila, M

    2012-06-01

    In order to study the microbial caecal ecosystem of wild and domestic rabbits through the fermentation characteristics and concentration and diversity of bacterial and archaeal communities, caecal samples from sixteen wild rabbits (WR) were contrasted with two groups (n = 4) of farm rabbits receiving low (LSF) or high (HSF) soluble fibre diets from 28 (weaning) to 51 days of age. DNA was extracted for quantifying bacteria and Archaea by qPCR and for biodiversity analysis of microbial communities by DGGE. Samples from WR had lower caecal pH and ammonia and higher volatile fatty acids concentration than farm animals. Lower acetate and higher butyrate proportions were detected in WR. Bacterial and archaeal DGGE profiles were clearly different between wild and farm rabbits, and diet-affected population of farm rabbits. Similarity index of bacteria was lower than 0.40 among WR, and 0.52 among farm rabbits. In conclusion, caecal fermentation characteristics differ between wild and farm rabbits, which harbour clearly different bacterial and archaeal communities. In farm rabbits, diversity is influenced by the dietary level of soluble fibre.

  4. The Dispersed Archaeal Eukaryome and the Complex Archaeal Ancestor of Eukaryotes

    PubMed Central

    Koonin, Eugene V.; Yutin, Natalya

    2014-01-01

    The ancestral set of eukaryotic genes is a chimera composed of genes of archaeal and bacterial origins thanks to the endosymbiosis event that gave rise to the mitochondria and apparently antedated the last common ancestor of the extant eukaryotes. The proto-mitochondrial endosymbiont is confidently identified as an α-proteobacterium. In contrast, the archaeal ancestor of eukaryotes remains elusive, although evidence is accumulating that it could have belonged to a deep lineage within the TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) superphylum of the Archaea. Recent surveys of archaeal genomes show that the apparent ancestors of several key functional systems of eukaryotes, the components of the archaeal “eukaryome,” such as ubiquitin signaling, RNA interference, and actin-based and tubulin-based cytoskeleton structures, are identifiable in different archaeal groups. We suggest that the archaeal ancestor of eukaryotes was a complex form, rooted deeply within the TACK superphylum, that already possessed some quintessential eukaryotic features, in particular, a cytoskeleton, and perhaps was capable of a primitive form of phagocytosis that would facilitate the engulfment of potential symbionts. This putative group of Archaea could have existed for a relatively short time before going extinct or undergoing genome streamlining, resulting in the dispersion of the eukaryome. This scenario might explain the difficulty with the identification of the archaeal ancestor of eukaryotes despite the straightforward detection of apparent ancestors to many signature eukaryotic functional systems. PMID:24691961

  5. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes.

    PubMed

    Koonin, Eugene V; Yutin, Natalya

    2014-04-01

    The ancestral set of eukaryotic genes is a chimera composed of genes of archaeal and bacterial origins thanks to the endosymbiosis event that gave rise to the mitochondria and apparently antedated the last common ancestor of the extant eukaryotes. The proto-mitochondrial endosymbiont is confidently identified as an α-proteobacterium. In contrast, the archaeal ancestor of eukaryotes remains elusive, although evidence is accumulating that it could have belonged to a deep lineage within the TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) superphylum of the Archaea. Recent surveys of archaeal genomes show that the apparent ancestors of several key functional systems of eukaryotes, the components of the archaeal "eukaryome," such as ubiquitin signaling, RNA interference, and actin-based and tubulin-based cytoskeleton structures, are identifiable in different archaeal groups. We suggest that the archaeal ancestor of eukaryotes was a complex form, rooted deeply within the TACK superphylum, that already possessed some quintessential eukaryotic features, in particular, a cytoskeleton, and perhaps was capable of a primitive form of phagocytosis that would facilitate the engulfment of potential symbionts. This putative group of Archaea could have existed for a relatively short time before going extinct or undergoing genome streamlining, resulting in the dispersion of the eukaryome. This scenario might explain the difficulty with the identification of the archaeal ancestor of eukaryotes despite the straightforward detection of apparent ancestors to many signature eukaryotic functional systems.

  6. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters.

    PubMed

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-08-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity--ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts--varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification.

  7. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.

    PubMed

    Xie, Sitan; Lipp, Julius S; Wegener, Gunter; Ferdelman, Timothy G; Hinrichs, Kai-Uwe

    2013-04-09

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL(-1) sediment⋅y(-1) at the surface to 0.2 pg⋅mL(-1)⋅y(-1) at 1 km depth, equivalent to production of 7 × 10(5) to 140 archaeal cells⋅mL(-1) sediment⋅y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

  8. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments.

    PubMed

    Orphan, Victoria J; House, Christopher H; Hinrichs, Kai-Uwe; McKeegan, Kevin D; DeLong, Edward F

    2002-05-28

    No microorganism capable of anaerobic growth on methane as the sole carbon source has yet been cultivated. Consequently, information about these microbes has been inferred from geochemical and microbiological observations of field samples. Stable isotope analysis of lipid biomarkers and rRNA gene surveys have implicated specific microbes in the anaerobic oxidation of methane (AOM). Here we use combined fluorescent in situ hybridization and secondary ion mass spectrometry analyses, to identify anaerobic methanotrophs in marine methane-seep sediments. The results provide direct evidence for the involvement of at least two distinct archaeal groups (ANME-1 and ANME-2) in AOM at methane seeps. Although both archaeal groups often occurred in direct physical association with bacteria, they also were observed as monospecific aggregations and as single cells. The ANME-1 archaeal group more frequently existed in monospecific aggregations or as single filaments, apparently without a bacterial partner. Bacteria associated with both archaeal groups included, but were not limited to, close relatives of Desulfosarcina species. Isotopic analyses suggest that monospecific archaeal cells and cell aggregates were active in anaerobic methanotrophy, as were multispecies consortia. In total, the data indicate that the microbial species and biotic interactions mediating anaerobic methanotrophy are diverse and complex. The data also clearly show that highly structured ANME-2/Desulfosarcina consortia are not the sole entities responsible for AOM at marine methane seeps. Other microbial groups, including ANME-1 archaea, are capable of anaerobic methane consumption either as single cells, in monospecific aggregates, or in multispecies consortia.

  9. Archaeal diversity in surface sediments of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, P.; Wei, Y.; Zhang, C.

    2010-12-01

    The South China Sea is one of the largest marginal seas on Earth and known to be one of the global hot spots of biodiversity. Yet, little is known about the abundance, diversity, and distribution of archaea in it. In this study the diversity and distribution of archaea in the surface sediments of the South China Sea were investigated. The samples were collected from seven sites from south to north of the sea with water depths ranging from 1455 m to 3697 m. Phylogenetic analysis revealed that the relative abundances of Euryarchaeota and Crenarchaeota species (OTUs at 2% cutoff) varied from site to site (Eury: 19.4%-67.6%, Cren: 32.4%-80.6%); however, they were about equal in species distribution (46.9% and 53.1%, respectively) for the total seven archaeal clone libraries. The Crenarchaeota predominates in MD05-2902 and MD05-2904 (80.6% and 70.4%); the Euryarchaeota predominates in MD05-2894 (67.6%). The archaeal groups MGI, MBGB, MCG and SAGMEG were dominant in most of the surface samples. MBGE was only dominant in MD05-2894 (64.7%). Overall, these results indicate that the community structures of archaea vary considerably in the surface sediments of the South China Sea.

  10. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    PubMed

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  11. Minor impact of ocean acidification to the composition of the active microbial community in an Arctic sediment.

    PubMed

    Tait, Karen; Laverock, Bonnie; Shaw, Jennifer; Somerfield, Paul J; Widdicombe, Steve

    2013-12-01

    Effects of ocean acidification on the composition of the active bacterial and archaeal community within Arctic surface sediment was analysed in detail using 16S rRNA 454 pyrosequencing. Intact sediment cores were collected and exposed to one of five different pCO(2) concentrations [380 (present day), 540, 750, 1120 and 3000 μatm] and RNA extracted after a period of 14 days exposure. Measurements of diversity and multivariate similarity indicated very little difference between pCO(2) treatments. Only when the highest and lowest pCO(2) treatments were compared were significant differences evident, namely increases in the abundance of operational taxonomic units most closely related to the Halobacteria and differences to the presence/absence structure of the Planctomycetes. The relative abundance of members of the classes Planctomycetacia and Nitrospira increased with increasing pCO(2) concentration, indicating that these groups may be able to take advantage of changing pH or pCO(2) conditions. The modest response of the active microbial communities associated with these sediments may be due to the low and fluctuating pore-water pH already experienced by sediment microbes, a result of the pH buffering capacity of marine sediments, or due to currently unknown factors. Further research is required to fully understand the impact of elevated CO(2) on sediment physicochemical parameters, biogeochemistry and microbial community dynamics.

  12. Molecular Phylogenetic Analysis of Archaeal Intron-Containing Genes Coding for rRNA Obtained from a Deep-Subsurface Geothermal Water Pool

    PubMed Central

    Takai, Ken; Horikoshi, Koki

    1999-01-01

    Molecular phylogenetic analysis of a naturally occurring microbial community in a deep-subsurface geothermal environment indicated that the phylogenetic diversity of the microbial population in the environment was extremely limited and that only hyperthermophilic archaeal members closely related to Pyrobaculum were present. All archaeal ribosomal DNA sequences contained intron-like sequences, some of which had open reading frames with repeated homing-endonuclease motifs. The sequence similarity analysis and the phylogenetic analysis of these homing endonucleases suggested the possible phylogenetic relationship among archaeal rRNA-encoded homing endonucleases. PMID:10584021

  13. Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core.

    PubMed

    Kaci, Assia; Petit, Fabienne; Fournier, Matthieu; Cécillon, Sébastien; Boust, Dominique; Lesueur, Patrick; Berthe, Thierry

    2016-03-01

    In estuarine ecosystems, metallic and organic contaminants are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediment accumulate and are then transformed by diagenetic processes mainly controlled by microbial activity, recording the history of the estuary's chemical contamination. In an environment of this specific type, we investigated the evolution of the chemical contamination and the structure of both total and active microbial communities, based on PhyloChip analysis of a 4.6-m core corresponding to a 40-year sedimentary record. While the archaeal abundance remained constant along the core, a decrease by one order of magnitude in the bacterial abundance was observed with depth. Both total and active microbial communities were dominated by Proteobacteria, Actinobacteria, and Firmicutes in all sediment samples. Among Proteobacteria, alpha-Proteobacteria dominated both total (from 37 to 60 %) and metabolically active (from 19.7 to 34.6 %) communities, including the Rhizobiales, Rhodobacter, Caulobacterales, and Sphingomonadales orders. Co-inertia analysis revealed a relationship between polycyclic aromatic hydrocarbons, zinc and some polychlorobiphenyls concentrations, and the structure of total and active microbial communities in the oldest and most contaminated sediments (from 1970 to 1975), suggesting that long-term exposure to chemicals shaped the structure of the microbial community.

  14. Global Analysis of Viral Infection in an Archaeal Model System

    PubMed Central

    Maaty, Walid S.; Steffens, Joseph D.; Heinemann, Joshua; Ortmann, Alice C.; Reeves, Benjamin D.; Biswas, Swapan K.; Dratz, Edward A.; Grieco, Paul A.; Young, Mark J.; Bothner, Brian

    2012-01-01

    The origin and evolutionary relationship of viruses is poorly understood. This makes archaeal virus-host systems of particular interest because the hosts generally root near the base of phylogenetic trees, while some of the viruses have clear structural similarities to those that infect prokaryotic and eukaryotic cells. Despite the advantageous position for use in evolutionary studies, little is known about archaeal viruses or how they interact with their hosts, compared to viruses of bacteria and eukaryotes. In addition, many archaeal viruses have been isolated from extreme environments and present a unique opportunity for elucidating factors that are important for existence at the extremes. In this article we focus on virus-host interactions using a proteomics approach to study Sulfolobus Turreted Icosahedral Virus (STIV) infection of Sulfolobus solfataricus P2. Using cultures grown from the ATCC cell stock, a single cycle of STIV infection was sampled six times over a 72 h period. More than 700 proteins were identified throughout the course of the experiments. Seventy one host proteins were found to change their concentration by nearly twofold (p < 0.05) with 40 becoming more abundant and 31 less abundant. The modulated proteins represent 30 different cell pathways and 14 clusters of orthologous groups. 2D gel analysis showed that changes in post-translational modifications were a common feature of the affected proteins. The results from these studies showed that the prokaryotic antiviral adaptive immune system CRISPR-associated proteins (CAS proteins) were regulated in response to the virus infection. It was found that regulated proteins come from mRNAs with a shorter than average half-life. In addition, activity-based protein profiling (ABPP) profiling on 2D-gels showed caspase, hydrolase, and tyrosine phosphatase enzyme activity labeling at the protein isoform level. Together, this data provides a more detailed global view of archaeal cellular responses

  15. Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks.

    PubMed

    Komori, Kayoko; Hidaka, Masumi; Horiuchi, Takashi; Fujikane, Ryosuke; Shinagawa, Hideo; Ishino, Yoshizumi

    2004-12-17

    Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.

  16. High-resolution sequencing reveals unexplored archaeal diversity in freshwater wetland soils.

    PubMed

    Narrowe, Adrienne B; Angle, Jordan C; Daly, Rebecca A; Stefanik, Kay C; Wrighton, Kelly C; Miller, Christopher S

    2017-02-20

    Despite being key contributors to biogeochemical processes, archaea are frequently outnumbered by bacteria, and consequently are underrepresented in combined molecular surveys. Here, we demonstrate an approach to concurrently survey the archaea alongside the bacteria with high-resolution 16S rRNA gene sequencing, linking these community data to geochemical parameters. We applied this integrated analysis to hydric soils sampled across a model methane-emitting freshwater wetland. Geochemical profiles, archaeal communities, and bacterial communities were independently correlated with soil depth and water cover. Centimeters of soil depth and corresponding geochemical shifts consistently affected microbial community structure more than hundreds of meters of lateral distance. Methanogens with diverse metabolisms were detected across the wetland, but displayed surprising OTU-level partitioning by depth. Candidatus Methanoperedens spp. archaea thought to perform anaerobic oxidation of methane linked to iron reduction were abundant. Domain-specific sequencing also revealed unexpectedly diverse non-methane-cycling archaeal members. OTUs within the underexplored Woesearchaeota and Bathyarchaeota were prevalent across the wetland, with subgroups and individual OTUs exhibiting distinct occupancy and abundance distributions aligned with environmental gradients. This study adds to our understanding of ecological range for key archaeal taxa in a model freshwater wetland, and links these taxa and individual OTUs to hypotheses about processes governing biogeochemical cycling. This article is protected by copyright. All rights reserved.

  17. Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology

    PubMed Central

    Chambers, Cecilia R.; Patrick, Wayne M.

    2015-01-01

    With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area. PMID:26494982

  18. Geochemical Approach to Archaeal Ecology: δ13C of GDGTs

    NASA Astrophysics Data System (ADS)

    Lichtin, S.; Warren, C.; Pearson, A.; Pagani, M.

    2015-12-01

    Over the last decade and a half, glycerol dialkyl glycerol tetraethers (GDGTs) have increasingly been used to reconstruct environmental temperatures; proxies like TEX86 that correlate the relative abundance of these archaeal cell membrane lipids to sea surface temperature are omnipresent in paleoclimatology literature. While it has become common to make claims about past temperatures using GDGTs, our present understanding of the organisms that synthesize the compounds is still quite limited. The generally accepted theory states that microorganisms like the Thaumarchaeota modify the structure of membrane lipids to increase intermolecular interactions, strengthening the membrane at higher temperatures. Yet to date, culture experiments have been largely restricted to a single species, Nitrosopumilus maritimes, and recent studies on oceanic archaeal rRNA have revealed that these biomarkers are produced in diverse, heterogeneous, and site-specific communities. This brings up questions as to whether different subclasses of GDGTs, and all subsequent proxies, represent adaptation within a single organismal group or a shift in community composition. To investigate whether GDGTs with different chain structures, from the simple isoprenoidal GDGT-0 to Crenarchaeol with its many cyclopentane groups, are sourced from archaea with similar or disparate metabolic pathways—and if that information is inherited in GDGTs trapped in marine sediments—this study examines the stable carbon isotope values (δ13C) of GDGTs extracted from the uppermost meters of sediment in the Orca Basin, Gulf of Mexico, using spooling-wire microcombustion isotope-ratio mass spectrometer (SWiM-IRMS), tackling a fundamental assumption of the TEX86 proxy that influences the way we perceive the veracity of existing temperature records.

  19. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease.

    PubMed

    Lyu, Zhe; Whitman, William B

    2017-01-01

    Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.

  20. Archaeal and eukaryotic homologs of Hfq

    PubMed Central

    Mura, Cameron; Randolph, Peter S.; Patterson, Jennifer; Cozen, Aaron E.

    2013-01-01

    Hfq and other Sm proteins are central in RNA metabolism, forming an evolutionarily conserved family that plays key roles in RNA processing in organisms ranging from archaea to bacteria to human. Sm-based cellular pathways vary in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in each of these pathways being mediated by an RNA-associated molecular assembly built upon Sm proteins. Though the first structures of Sm assemblies were from archaeal systems, the functions of Sm-like archaeal proteins (SmAPs) remain murky. Our ignorance about SmAP biology, particularly vis-à-vis the eukaryotic and bacterial Sm homologs, can be partly reduced by leveraging the homology between these lineages to make phylogenetic inferences about Sm functions in archaea. Nevertheless, whether SmAPs are more eukaryotic (RNP scaffold) or bacterial (RNA chaperone) in character remains unclear. Thus, the archaeal domain of life is a missing link, and an opportunity, in Sm-based RNA biology. PMID:23579284

  1. Biosynthesis of archaeal membrane ether lipids

    PubMed Central

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria. PMID:25505460

  2. Archaeal dominance in the mesopelagic zone of the Pacific Ocean.

    PubMed

    Karner, M B; DeLong, E F; Karl, D M

    2001-01-25

    The ocean's interior is Earth's largest biome. Recently, cultivation-independent ribosomal RNA gene surveys have indicated a potential importance for archaea in the subsurface ocean. But quantitative data on the abundance of specific microbial groups in the deep sea are lacking. Here we report a year-long study of the abundance of two specific archaeal groups (pelagic euryarchaeota and pelagic crenarchaeota) in one of the ocean's largest habitats. Monthly sampling was conducted throughout the water column (surface to 4,750 m) at the Hawai'i Ocean Time-series station. Below the euphotic zone (> 150 m), pelagic crenarchaeota comprised a large fraction of total marine picoplankton, equivalent in cell numbers to bacteria at depths greater than 1,000 m. The fraction of crenarchaeota increased with depth, reaching 39% of total DNA-containing picoplankton detected. The average sum of archaea plus bacteria detected by rRNA-targeted fluorescent probes ranged from 63 to 90% of total cell numbers at all depths throughout our survey. The high proportion of cells containing significant amounts of rRNA suggests that most pelagic deep-sea microorganisms are metabolically active. Furthermore, our results suggest that the global oceans harbour approximately 1.3 x 10(28) archaeal cells, and 3.1 x 10(28) bacterial cells. Our data suggest that pelagic crenarchaeota represent one of the ocean's single most abundant cell types.

  3. Proteomic characterization of archaeal ribosomes reveals the presence of novel archaeal-specific ribosomal proteins.

    PubMed

    Márquez, Viter; Fröhlich, Thomas; Armache, Jean-Paul; Sohmen, Daniel; Dönhöfer, Alexandra; Mikolajka, Aleksandra; Berninghausen, Otto; Thomm, Michael; Beckmann, Roland; Arnold, Georg J; Wilson, Daniel N

    2011-02-04

    Protein synthesis occurs in macromolecular particles called ribosomes. All ribosomes are composed of RNA and proteins. While the protein composition of bacterial and eukaryotic ribosomes has been well-characterized, a systematic analysis of archaeal ribosomes has been lacking. Here we report the first comprehensive two-dimensional PAGE and mass spectrometry analysis of archaeal ribosomes isolated from the thermophilic Pyrobaculum aerophilum and the thermoacidophilic Sulfolobus acidocaldarius Crenarchaeota. Our analysis identified all 66 ribosomal proteins (r-proteins) of the P. aerophilum small and large subunits, as well as all but two (62 of 64; 97%) r-proteins of the S. acidocaldarius small and large subunits that are predicted genomically. Some r-proteins were identified with one or two lysine methylations and N-terminal acetylations. In addition, we identify three hypothetical proteins that appear to be bona fide r-proteins of the S. acidocaldarius large subunit. Dissociation of r-proteins from the S. acidocaldarius large subunit indicates that the novel r-proteins establish tighter interactions with the large subunit than some integral r-proteins. Furthermore, cryo electron microscopy reconstructions of the S. acidocaldarius and P. aerophilum 50S subunits allow for a tentative localization of the binding site of the novel r-proteins. This study illustrates not only the potential diversity of the archaeal ribosomes but also the necessity to experimentally analyze the archaeal ribosomes to ascertain their protein composition. The discovery of novel archaeal r-proteins and factors may be the first step to understanding how archaeal ribosomes cope with extreme environmental conditions.

  4. Age 55 or better: active adult communities and city planning.

    PubMed

    Trolander, Judith Ann

    2011-01-01

    Active adult, age-restricted communities are significant to urban history and city planning. As communities that ban the permanent residence of children under the age of nineteen with senior zoning overlays, they are unique experiments in social planning. While they do not originate the concept of the common interest community with its shared amenities, the residential golf course community, or the gated community, Sun Cities and Leisure Worlds do a lot to popularize those physical planning concepts. The first age-restricted community, Youngtown, AZ, opened in 1954. Inspired by amenity-rich trailer courts in Florida, Del Webb added the “active adult” element when he opened Sun City, AZ, in 1960. Two years later, Ross Cortese opened the first of his gated Leisure Worlds. By the twenty-first century, these “lifestyle” communities had proliferated and had expanded their appeal to around 18 percent of retirees, along with influencing the design of intergenerational communities.

  5. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  6. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community.

    PubMed

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  7. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  8. Bacterial and Archaeal Diversity in the Gastrointestinal Tract of the North American Beaver (Castor canadensis).

    PubMed

    Gruninger, Robert J; McAllister, Tim A; Forster, Robert J

    2016-01-01

    The North American Beaver (Castor canadensis) is the second largest living rodent and an iconic symbol of Canada. The beaver is a semi-aquatic browser whose diet consists of lignocellulose from a variety of plants. The beaver is a hindgut fermenter and has an enlarged ceacum that houses a complex microbiome. There have been few studies examining the microbial diversity in gastrointestinal tract of hindgut fermenting herbivores. To examine the bacterial and archaeal communities inhabiting the gastrointestinal tract of the beaver, the microbiome of the ceacum and feaces was examined using culture-independent methods. DNA from the microbial community of the ceacum and feaces of 4 adult beavers was extracted, and the16S rRNA gene was sequenced using either bacterial or archaeal specific primers. A total of 1447 and 1435 unique bacterial OTUs were sequenced from the ceacum and feaces, respectively. On average, the majority of OTUs within the ceacum were classified as Bacteroidetes (49.2%) and Firmicutes (47.6%). The feaces was also dominated by OTUs from Bacteroidetes (36.8%) and Firmicutes (58.9%). The composition of bacterial community was not significantly different among animals. The composition of the ceacal and feacal microbiome differed, but this difference is due to changes in the abundance of closely related OTUs, not because of major differences in the taxonomic composition of the communities. Within these communities, known degraders of lignocellulose were identified. In contrast, to the bacterial microbiome, the archaeal community was dominated by a single species of methanogen, Methanosphaera stadtmanae. The data presented here provide the first insight into the microbial community within the hindgut of the beaver.

  9. Bacterial and Archaeal Diversity in the Gastrointestinal Tract of the North American Beaver (Castor canadensis)

    PubMed Central

    Gruninger, Robert J.; McAllister, Tim A.; Forster, Robert J.

    2016-01-01

    The North American Beaver (Castor canadensis) is the second largest living rodent and an iconic symbol of Canada. The beaver is a semi-aquatic browser whose diet consists of lignocellulose from a variety of plants. The beaver is a hindgut fermenter and has an enlarged ceacum that houses a complex microbiome. There have been few studies examining the microbial diversity in gastrointestinal tract of hindgut fermenting herbivores. To examine the bacterial and archaeal communities inhabiting the gastrointestinal tract of the beaver, the microbiome of the ceacum and feaces was examined using culture-independent methods. DNA from the microbial community of the ceacum and feaces of 4 adult beavers was extracted, and the16S rRNA gene was sequenced using either bacterial or archaeal specific primers. A total of 1447 and 1435 unique bacterial OTUs were sequenced from the ceacum and feaces, respectively. On average, the majority of OTUs within the ceacum were classified as Bacteroidetes (49.2%) and Firmicutes (47.6%). The feaces was also dominated by OTUs from Bacteroidetes (36.8%) and Firmicutes (58.9%). The composition of bacterial community was not significantly different among animals. The composition of the ceacal and feacal microbiome differed, but this difference is due to changes in the abundance of closely related OTUs, not because of major differences in the taxonomic composition of the communities. Within these communities, known degraders of lignocellulose were identified. In contrast, to the bacterial microbiome, the archaeal community was dominated by a single species of methanogen, Methanosphaera stadtmanae. The data presented here provide the first insight into the microbial community within the hindgut of the beaver. PMID:27227334

  10. Community Vision and Interagency Alignment: A Community Planning Process to Promote Active Transportation.

    PubMed

    DeGregory, Sarah Timmins; Chaudhury, Nupur; Kennedy, Patrick; Noyes, Philip; Maybank, Aletha

    2016-04-01

    In 2010, the Brooklyn Active Transportation Community Planning Initiative launched in 2 New York City neighborhoods. Over a 2-year planning period, residents participated in surveys, school and community forums, neighborhood street assessments, and activation events-activities that highlighted the need for safer streets locally. Consensus among residents and key multisectoral stakeholders, including city agencies and community-based organizations, was garnered in support of a planned expansion of bicycling infrastructure. The process of building on community assets and applying a collective impact approach yielded changes in the built environment, attracted new partners and resources, and helped to restore a sense of power among residents.

  11. Community Integration, Media Use and Political Activity.

    ERIC Educational Resources Information Center

    Reagan, Joey

    A study examined data from 1,828 adults in 17 cities in the United States to test a model of how community integration (sense of community) and use of media affected voting and other political participation. The portion of the model dealing with mass media included the new concept "quasi-mass media," which involves more personalized…

  12. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Takanashi, A.; Yamada, T.; Hiraishi, A.

    2012-03-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO2--Ng-1 h-1 and were positively correlated with the soil pH (r2 = 0.382, p<0.001). Bulk DNA was extracted from a tea orchard soil (pH 4.8; PNR, 0.078 μg NO2--Ng-1 h-1) and subjected to PCR-aided clone library analyses targeting archaeal and bacterial amoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  13. Abundance and Composition of Epiphytic Bacterial and Archaeal Ammonia Oxidizers of Marine Red and Brown Macroalgae

    PubMed Central

    Trias, Rosalia; García-Lledó, Arantzazu; Sánchez, Noemí; López-Jurado, José Luis; Hallin, Sara

    2012-01-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae's potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities on three species of macroalgae, Osmundaria volubilis, Phyllophora crispa, and Laminaria rodriguezii, from the Balearic Islands (western Mediterranean Sea). Quantitative PCR of bacterial and archaeal 16S rRNA and amoA genes was performed. In contrast to what has been shown for most other marine environments, the macroalgae's surfaces were dominated by bacterial amoA genes rather than those from the archaeal counterpart. On the basis of the sequences retrieved from AOB and AOA amoA gene clone libraries from each algal species, the bacterial ammonia-oxidizing communities were related to Nitrosospira spp. and to Nitrosomonas europaea and only 6 out of 15 operational taxonomic units (OTUs) were specific for the host species. Conversely, the AOA diversity was higher (43 OTUs) and algal species specific, with 17 OTUs specific for L. rodriguezii, 3 for O. volubilis, and 9 for P. crispa. Altogether, the results suggest that marine macroalgae may exert an ecological niche for AOB in marine environments, potentially through specific microbe-host interactions. PMID:22081571

  14. 101 Activities for Building More Effective School-Community Involvement.

    ERIC Educational Resources Information Center

    Rich, Dorothy; Mattox, Beverly

    This booklet contains a collection of more than 100 activities designed to promote school-home and school-community relations. Activities are organized into seven categories: (1) communicating word from home to school, (2) people to people, (3) educational events, (4) volunteers--hands on in the classroom, (5) utilizing community resources, (6)…

  15. Bacterial and Archaeal Diversity in an Iron-Rich Coastal Hydrothermal Field in Yamagawa, Kagoshima, Japan

    PubMed Central

    Kawaichi, Satoshi; Ito, Norihiro; Yoshida, Takashi; Sako, Yoshihiko

    2013-01-01

    Physicochemical characteristics and archaeal and bacterial community structures in an iron-rich coastal hydrothermal field, where the temperature of the most active hot spot reaches above 100°C, were investigated to obtain fundamental information on microbes inhabiting a coastal hydrothermal field. The environmental settings of the coastal hydrothermal field were similar in some degree to those of deep-sea hydrothermal environments because of its emission of H2, CO2, and sulfide from the bottom of the hot spot. The results of clone analyses based on the 16S rRNA gene led us to speculate the presence of a chemo-synthetic microbial ecosystem, where chemolithoautotrophic thermophiles, primarily the bacterial order Aquificales, function as primary producers using H2 or sulfur compounds as their energy source and CO2 as their carbon source, and the organic compounds synthesized by them support the growth of chemoheterotrophic thermophiles, such as members of the order Thermales and the family Desulfurococcaceae. In addition, the dominance of members of the bacterial genus Herbaspirillum in the high temperature bottom layer led us to speculate the temporal formation of mesophilic zones where they can also function as primary producing or nitrogen-fixing bacteria. PMID:24256999

  16. Bacterial and archaeal diversity in an iron-rich coastal hydrothermal field in Yamagawa, Kagoshima, Japan.

    PubMed

    Kawaichi, Satoshi; Ito, Norihiro; Yoshida, Takashi; Sako, Yoshihiko

    2013-01-01

    Physicochemical characteristics and archaeal and bacterial community structures in an iron-rich coastal hydrothermal field, where the temperature of the most active hot spot reaches above 100 °C, were investigated to obtain fundamental information on microbes inhabiting a coastal hydrothermal field. The environmental settings of the coastal hydrothermal field were similar in some degree to those of deep-sea hydrothermal environments because of its emission of H2, CO2, and sulfide from the bottom of the hot spot. The results of clone analyses based on the 16S rRNA gene led us to speculate the presence of a chemo-synthetic microbial ecosystem, where chemolithoautotrophic thermophiles, primarily the bacterial order Aquificales, function as primary producers using H2 or sulfur compounds as their energy source and CO2 as their carbon source, and the organic compounds synthesized by them support the growth of chemoheterotrophic thermophiles, such as members of the order Thermales and the family Desulfurococcaceae. In addition, the dominance of members of the bacterial genus Herbaspirillum in the high temperature bottom layer led us to speculate the temporal formation of mesophilic zones where they can also function as primary producing or nitrogen-fixing bacteria.

  17. EPA's Startup Crowdsourcing Tool for Community Activism

    EPA Pesticide Factsheets

    Demonstration and discussion of Urban Waters Mapper, an online mapping tool that allows community groups to share information about volunteer events and increase partnerships to achieve even more progress toward improving local and regional water quality.

  18. Community Involvement Activities: Research into Action

    ERIC Educational Resources Information Center

    Mattox, Beverly; Rich, Dorothy

    1977-01-01

    The Home and School Institute operates to develop specific, easy, low cost, practical ways to share educational accountability between home and school, and to develop ways in which schools can enhance school-community interaction. (MB)

  19. Extracting archaeal populations from iron oxidizing systems

    NASA Astrophysics Data System (ADS)

    Whitmore, L. M.; Hutchison, J.; Chrisler, W.; Jay, Z.; Moran, J.; Inskeep, W.; Kreuzer, H.

    2013-12-01

    Unique environments in Yellowstone National Park offer exceptional conditions for studying microorganisms in extreme and constrained systems. However, samples from some extreme systems often contain inorganic components that pose complications during microbial and molecular analysis. Several archaeal species are found in acidic, geothermal ferric-oxyhydroxide mats; these species have been shown to adhere to mineral surfaces in flocculated colonies. For optimal microbial analysis, (microscopy, flow cytometry, genomic extractions, proteomic analysis, stable isotope analysis, and others), improved techniques are needed to better facilitate cell detachment and separation from mineral surfaces. As a requirement, these techniques must preserve cell structure while simultaneously minimizing organic carryover to downstream analysis. Several methods have been developed for removing sediments from mixed prokaryotic populations, including ultra-centrifugation, nycodenz gradient, sucrose cushions, and cell straining. In this study we conduct a comparative analysis of mechanisms used to detach archaeal cell populations from the mineral interface. Specifically, we evaluated mechanical and chemical approaches for cell separation and homogenization. Methods were compared using confocal microscopy, flow cytometry analyses, and real-time PCR detection. The methodology and approaches identified will be used to optimize biomass collection from environmental specimens or isolates grown with solid phases.

  20. The archaeal Ced system imports DNA

    PubMed Central

    van Wolferen, Marleen; Wagner, Alexander; van der Does, Chris; Albers, Sonja-Verena

    2016-01-01

    The intercellular transfer of DNA is a phenomenon that occurs in all domains of life and is a major driving force of evolution. Upon UV-light treatment, cells of the crenarchaeal genus Sulfolobus express Ups pili, which initiate cell aggregate formation. Within these aggregates, chromosomal DNA, which is used for the repair of DNA double-strand breaks, is exchanged. Because so far no clear homologs of bacterial DNA transporters have been identified among the genomes of Archaea, the mechanisms of archaeal DNA transport have remained a puzzling and underinvestigated topic. Here we identify saci_0568 and saci_0748, two genes from Sulfolobus acidocaldarius that are highly induced upon UV treatment, encoding a transmembrane protein and a membrane-bound VirB4/HerA homolog, respectively. DNA transfer assays showed that both proteins are essential for DNA transfer between Sulfolobus cells and act downstream of the Ups pili system. Our results moreover revealed that the system is involved in the import of DNA rather than the export. We therefore propose that both Saci_0568 and Saci_0748 are part of a previously unidentified DNA importer. Given the fact that we found this transporter system to be widely spread among the Crenarchaeota, we propose to name it the Crenarchaeal system for exchange of DNA (Ced). In this study we have for the first time to our knowledge described an archaeal DNA transporter. PMID:26884154

  1. The archaeal Ced system imports DNA.

    PubMed

    van Wolferen, Marleen; Wagner, Alexander; van der Does, Chris; Albers, Sonja-Verena

    2016-03-01

    The intercellular transfer of DNA is a phenomenon that occurs in all domains of life and is a major driving force of evolution. Upon UV-light treatment, cells of the crenarchaeal genus Sulfolobus express Ups pili, which initiate cell aggregate formation. Within these aggregates, chromosomal DNA, which is used for the repair of DNA double-strand breaks, is exchanged. Because so far no clear homologs of bacterial DNA transporters have been identified among the genomes of Archaea, the mechanisms of archaeal DNA transport have remained a puzzling and underinvestigated topic. Here we identify saci_0568 and saci_0748, two genes from Sulfolobus acidocaldarius that are highly induced upon UV treatment, encoding a transmembrane protein and a membrane-bound VirB4/HerA homolog, respectively. DNA transfer assays showed that both proteins are essential for DNA transfer between Sulfolobus cells and act downstream of the Ups pili system. Our results moreover revealed that the system is involved in the import of DNA rather than the export. We therefore propose that both Saci_0568 and Saci_0748 are part of a previously unidentified DNA importer. Given the fact that we found this transporter system to be widely spread among the Crenarchaeota, we propose to name it the Crenarchaeal system for exchange of DNA (Ced). In this study we have for the first time to our knowledge described an archaeal DNA transporter.

  2. Composition of archaeal, bacterial, and eukaryal RuBisCO genotypes in three Western Pacific arc hydrothermal vent systems.

    PubMed

    Elsaied, Hosam Easa; Kimura, Hiroyuki; Naganuma, Takeshi

    2007-01-01

    We studied the diversity of all forms of the RuBisCO large subunit-encoding gene cbbL in three RuBisCO uncharacterized hydrothermal vent communities. This diversity included the archaeal cbbL and the forms IC and ID, which have not previously been studied in the deep-sea environment, in addition to the forms IA, IB and II. Vent plume sites were Fryer and Pika in the Mariana arc and the Suiyo Seamount, Izu-Bonin, Japan. The cbbL forms were PCR amplified from plume bulk microbial DNA and then cloned and sequenced. Archaeal cbbL was detected in the Mariana samples only. Both forms IA and II were amplified from all samples, while the form IC was amplified only from the Pika and Suiyo samples. Only the Suiyo sample showed amplification of the form ID. The form IB was not recorded in any sample. Based on rarefaction analysis, nucleotide diversity and average pairwise difference, the archaeal cbbL was the most diverse form in Mariana samples, while the bacterial form IA was the most diverse form in the Suiyo sample. Also, the Pika sample harbored the highest diversity of cbbL phylogenetic lineages. Based on pairwise reciprocal library comparisons, the Fryer and Pika archaeal cbbL libraries showed the most significant difference, while Pika and Suiyo showed the highest similarity for forms IA and II libraries. This suggested that the Fryer supported the most divergent sequences. All archaeal cbbL sequences formed unique phylogenetic lineages within the branches of anaerobic thermophilic archaea of the genera Pyrococcus, Archaeoglobus, and Methanococcus. The other cbbL forms formed novel phylogenetic clusters distinct from any recorded previously in other deep-sea habitats. This is the first evidence for the diversity of archaeal cbbL in environmental samples.

  3. Analysis of methane-producing and metabolizing archaeal and bacterial communities in sediments of the northern South China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA and pmoA genes

    PubMed Central

    Zhou, Zhichao; Chen, Jing; Cao, Huiluo; Han, Ping; Gu, Ji-Dong

    2015-01-01

    Communities of methanogens, anaerobic methanotrophic archaea and aerobic methanotrophic bacteria (MOB) were compared by profiling polymerase chain reaction (PCR)-amplified products of mcrA and pmoA genes encoded by methyl-coenzyme M reductase alpha subunit and particulate methane monooxygenase alpha subunit, respectively, in sediments of northern South China Sea (nSCS) and Mai Po mangrove wetland. Community structures representing by mcrA gene based on 12 clone libraries from nSCS showed separate clusters indicating niche specificity, while, Methanomicrobiales, Methanosarcinales clades 1,2, and Methanomassiliicoccus-like groups of methanogens were the most abundant groups in nSCS sediment samples. Novel clusters specific to the SCS were identified and the phylogeny of mcrA gene-harboring archaea was updated. Quantitative polymerase chain reaction was used to detect mcrA gene abundance in all samples: similar abundance of mcrA gene in the surface layers of mangrove (3.4∼3.9 × 106 copies per gram dry weight) and of intertidal mudflat (5.5∼5.8 × 106 copies per gram dry weight) was observed, but higher abundance (6.9 × 106 to 1.02 × 108 copies per gram dry weight) was found in subsurface samples of both sediment types. Aerobic MOB were more abundant in surface layers (6.7∼11.1 × 105 copies per gram dry weight) than the subsurface layers (1.2∼5.9 × 105 copies per gram dry weight) based on pmoA gene. Mangrove surface layers harbored more abundant pmoA gene than intertidal mudflat, but less pmoA genes in the subsurface layers. Meanwhile, it is also noted that in surface layers of all samples, more pmoA gene copies were detected than the subsurface layers. Reedbed rhizosphere exhibited the highest gene abundance of mcrA gene (8.51 × 108 copies per gram dry weight) and pmoA gene (1.56 × 107 copies per gram dry weight). This study investigated the prokaryotic communities responsible for methane cycling in both marine and coastal wetland ecosystems, showing

  4. Bacterial and Archaeal Diversities in Maotai Section of the Chishui River, China.

    PubMed

    Feng, Qingqing; Han, Lu; Tan, Xu; Zhang, Yali; Meng, Tianyi; Lu, Jun; Lv, Jie

    2016-12-01

    The Chishui River is the last undammed tributary of the upper Yangtze River, extends cross Sichuan, Yunnan and Guizhou provinces, and it is the significant water source of Maotai liquor, Southwest of China. We investigated microbial community of the Chishui River in the Maotai town section, because of deep relationship between the water and the most famous Chinese liquor, Maotai liquor. In this study, diversities of bacteria and archaea of four seasons were analyzed in two different sampling sites using a barcoded 16S rRNA gene-pyrosequencing approach. The results show that the predominant community among all bacteria is Proteobacteria (70.16-94.29 %), of which Gamma-proteobacteria made up the largest portion. Bacterial community structure in spring and autumn tended to group together, and the operational taxonomic units of bacteria peaked in summer. The quantitative PCR (q-PCR) results revealed significantly higher number of gene copies in the downstream than that in the upstream, and were slightly higher in summer and spring than other seasons. Archaeal community structures had no obvious regular pattern, and species richness was higher in downstream in all seasons. Euryarchaeota and Thaumarchaeota were the dominant groups in archaeal populations, and abundant ammonia-oxidizing archaea was detected. The study significantly improved our understanding of microbial community in Maotai section of the Chishui River, where the unique and world-famous Maotai liquor is produced.

  5. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  6. Modularized Evolution in Archaeal Methanogens Phylogenetic Forest

    PubMed Central

    Li, Jun; Wong, Chi-Fat; Wong, Mabel Ting; Huang, He; Leung, Frederick C.

    2014-01-01

    Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species. PMID:25502908

  7. Surrounding community residents’ expectations of HOPE VI for their community, health and physical activity

    PubMed Central

    Dulin-Keita, Akilah; Hannon, Lonnie; Buys, David; Casazza, Krista; Clay, Olivio

    2016-01-01

    Using a community-engaged participatory research approach, this study identified surrounding community residents’ expectations for how a HOPE VI housing initiative might affect their community and individual health and physical activity. Fifty-nine women and men engaged in concept mapping, which is a mixed methods approach, where participants generate, sort, and rate ideas. Participants generated 197 unique statements. Thirteen thematic clusters related to expected changes for the community, health and physical activity emerged. Residents’ rated ‘Increased Pride in the Neighborhood’ and ‘Increased Safety’ as the most important factors related to HOPE VI whereas ‘Drawbacks of HOPE VI’ was rated as least important. This research provides insight into the potential impacts of housing initiatives from the perspective of those most affected by such initiatives. The findings also highlight environmental changes as potential mechanisms that may improve residents’ perceptions of the community and encourage healthy lifestyles. PMID:27667912

  8. Community Update on Site Activities, July 19, 2013

    EPA Pesticide Factsheets

    In an effort to engage and inform community members interested in the New Bedford Harbor Superfund Site cleanup, EPA will be issuing periodic topic-based fact sheets that will provide background information and updates about ongoing activities.

  9. Survey of Archaeal Diversity in Sediments of Qinghai Lake, China and Implications for Paleoclimate Change

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Jiang, H.; Ji, S.; Dong, H.; Zhang, C.

    2006-12-01

    Qinghai Lake, the largest inland saline lake in China, is located in the northeastern corner of Tibetan Plateau at an altitude of 3200 m above the sea level. Previous research suggests that sediments in Qinghai Lake may be a good recorder of changes in climate during the last 18,000 years. But it is not clear if microbial record can be used to help reconstruct paleoclimate. The goal of this study was to explore the relationship between archaeal microbial communities and paleoclimatic changes. A 5-m long sediment core was collected with a drilling rig and two subsamples from 0-10 cm and 345-355 cm depth intervals were used for this study. These two subsamples (corresponding to present and ~7 cal. Kyr BP, respectively) represent cold/arid and warm/wet conditions (Shen et al., 2004) . 16S archaeal rRNA gene and lipid biomarker analyses were performed on these two samples. The archaeal 16S rRNA gene fragments were PCR-amplified from extracted nucleic acids and cloned for sequence determination. A total of 90 clones were sequenced for the two samples studied. Rarefaction analysis indicated that the number of unique clones reached saturation. Phylogenetic analysis of both clone libraries revealed the presence of two major lineages, belonging to the Euryarchaeota and Crenarchaeota phyla. Sequences from different libraries formed distinct clusters in both phyla, and clonal sequences were not closely related to any known isolates. LIBSHUFF analysis displayed the significant dissimilarity of archaeal diversity between two studied samples. In addition, Crenarchaeotal biomarker (GDGT) was only detected in the top layer by lipid analyses.The crenarchaeotal abundance at the bottom sample may be below the detection limit and much lower than that of the top one. In summary, our results suggest that the composition and structure of archaeal community is significantly different under different climatic condition, and may affect the biological carbon cycling in this unique Qinghai

  10. High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study.

    PubMed

    Llirós, Marc; Casamayor, Emilio O; Borrego, Carles

    2008-11-01

    We surveyed the archaeal assemblage in a stratified sulfurous lake (Lake Vilar, Banyoles, Spain) over 5 consecutive years to detect potential seasonal and interannual trends in the free-living planktonic Archaea composition. The combination of different primer pairs and nested PCR steps revealed an unexpectedly rich archaeal community. Overall, 140 samples were analyzed, yielding 169 different 16S rRNA gene sequences spread over 14 Crenarchaeota (109 sequences) and six Euryarchaeota phylogenetic clusters. Most of the Crenarchaeota (98% of the total crenarchaeotal sequences) affiliated within the Miscellaneous Crenarchaeota Group (MCG) and were related to both marine and freshwater phylotypes. Euryarchaeota mainly grouped within the Deep Hydrothermal Vent Euryarchaeota (DHVE) cluster (80% of the euryarchaeotal sequences) and the remaining 20% distributed into three less abundant taxa, most of them composed of soil and sediment clones. The largest fraction of phylotypes from the two archaeal kingdoms (79% of the Crenarchaeota and 54% of the Euryarchaeota) was retrieved from the anoxic hypolimnion, indicating that these cold and sulfide-rich waters constitute an unexplored source of archaeal richness. The taxon rank-frequency distribution showed two abundant taxa (MCG and DHVE) that persisted in the water column through seasons, plus several rare ones that were only detected occasionally. Differences in richness distribution and seasonality were observed, but no clear correlations were obtained when multivariate statistical analyses were carried out.

  11. 40 Years of archaeal virology: Expanding viral diversity.

    PubMed

    Snyder, Jamie C; Bolduc, Benjamin; Young, Mark J

    2015-05-01

    The first archaeal virus was isolated over 40 years ago prior to the recognition of the three domain structure of life. In the ensuing years, our knowledge of Archaea and their viruses has increased, but they still remain the most mysterious of life's three domains. Currently, over 100 archaeal viruses have been discovered, but few have been described in biochemical or structural detail. However, those that have been characterized have revealed a new world of structural, biochemical and genetic diversity. Several model systems for studying archaeal virus-host interactions have been developed, revealing evolutionary linkages between viruses infecting the three domains of life, new viral lysis systems, and unusual features of host-virus interactions. It is likely that the study of archaeal viruses will continue to provide fertile ground for fundamental discoveries in virus diversity, structure and function.

  12. Facing extremes: archaeal surface-layer (glyco)proteins.

    PubMed

    Eichler, Jerry

    2003-12-01

    Archaea are best known in their capacities as extremophiles, i.e. micro-organisms able to thrive in some of the most drastic environments on Earth. The protein-based surface layer that envelopes many archaeal strains must thus correctly assemble and maintain its structural integrity in the face of the physical challenges associated with, for instance, life in high salinity, at elevated temperatures or in acidic surroundings. Study of archaeal surface-layer (glyco)proteins has thus offered insight into the strategies employed by these proteins to survive direct contact with extreme environments, yet has also served to elucidate other aspects of archaeal protein biosynthesis, including glycosylation, lipid modification and protein export. In this mini-review, recent advances in the study of archaeal surface-layer (glyco)proteins are discussed.

  13. The Archaeal Legacy of Eukaryotes: A Phylogenomic Perspective

    PubMed Central

    Guy, Lionel; Saw, Jimmy H.; Ettema, Thijs J.G.

    2014-01-01

    The origin of the eukaryotic cell can be regarded as one of the hallmarks in the history of life on our planet. The apparent genomic chimerism in eukaryotic genomes is currently best explained by invoking a cellular fusion at the root of the eukaryotes that involves one archaeal and one or more bacterial components. Here, we use a phylogenomics approach to reevaluate the evolutionary affiliation between Archaea and eukaryotes, and provide further support for scenarios in which the nuclear lineage in eukaryotes emerged from within the archaeal radiation, displaying a strong phylogenetic affiliation with, or even within, the archaeal TACK superphylum. Further taxonomic sampling of archaeal genomes in this superphylum will certainly provide a better resolution in the events that have been instrumental for the emergence of the eukaryotic lineage. PMID:24993577

  14. The archaeal legacy of eukaryotes: a phylogenomic perspective.

    PubMed

    Guy, Lionel; Saw, Jimmy H; Ettema, Thijs J G

    2014-07-03

    The origin of the eukaryotic cell can be regarded as one of the hallmarks in the history of life on our planet. The apparent genomic chimerism in eukaryotic genomes is currently best explained by invoking a cellular fusion at the root of the eukaryotes that involves one archaeal and one or more bacterial components. Here, we use a phylogenomics approach to reevaluate the evolutionary affiliation between Archaea and eukaryotes, and provide further support for scenarios in which the nuclear lineage in eukaryotes emerged from within the archaeal radiation, displaying a strong phylogenetic affiliation with, or even within, the archaeal TACK superphylum. Further taxonomic sampling of archaeal genomes in this superphylum will certainly provide a better resolution in the events that have been instrumental for the emergence of the eukaryotic lineage.

  15. Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea.

    PubMed

    Lazar, Cassandre Sara; Dinasquet, Julie; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-11-01

    Pockmarks are seabed geological structures sustaining methane seepage in cold seeps. Based on RNA-derived sequences the active fraction of the archaeal community was analysed in sediments associated with the G11 pockmark, in the Nyegga region of the Norwegian Sea. The anaerobic methanotrophic Archaea (ANME) and sulfate-reducing bacteria (SRB) communities were studied as well. The vertical distribution of the archaeal community assessed by PCR-DGGE highlighted the presence of ANME-2 in surface sediments, and ANME-1 in deeper sediments. Enrichments of methanogens showed the presence of hydrogenotrophic methanogens of the Methanogenium genus in surface sediment layers as well. The active fraction of the archaeal community was uniquely composed of ANME-2 in the shallow sulfate-rich sediments. Functional methyl coenzyme M reductase gene libraries showed that sequences affiliated with the ANME-1 and ANME-3 groups appeared in the deeper sediments but ANME-2 dominated both surface and deeper layers. Finally, dissimilatory sulfite reductase gene libraries revealed a high SRB diversity (i.e. Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae and Firmicutes) in the shallow sulfate-rich sediments. The SRB diversity was much lower in the deeper section. Overall, these results show that the microbial community in sediments associated with a pockmark harbour classical cold seep ANME and SRB communities.

  16. Spatial Structure and Activity of Sedimentary Microbial Communities Underlying a Beggiatoa spp. Mat in a Gulf of Mexico Hydrocarbon Seep

    PubMed Central

    Lloyd, Karen G.; Albert, Daniel B.; Biddle, Jennifer F.; Chanton, Jeffrey P.; Pizarro, Oscar; Teske, Andreas

    2010-01-01

    Background Subsurface fluids from deep-sea hydrocarbon seeps undergo methane- and sulfur-cycling microbial transformations near the sediment surface. Hydrocarbon seep habitats are naturally patchy, with a mosaic of active seep sediments and non-seep sediments. Microbial community shifts and changing activity patterns on small spatial scales from seep to non-seep sediment remain to be examined in a comprehensive habitat study. Methodology/Principal Findings We conducted a transect of biogeochemical measurements and gene expression related to methane- and sulfur-cycling at different sediment depths across a broad Beggiatoa spp. mat at Mississippi Canyon 118 (MC118) in the Gulf of Mexico. High process rates within the mat (∼400 cm and ∼10 cm from the mat's edge) contrasted with sharply diminished activity at ∼50 cm outside the mat, as shown by sulfate and methane concentration profiles, radiotracer rates of sulfate reduction and methane oxidation, and stable carbon isotopes. Likewise, 16S ribosomal rRNA, dsrAB (dissimilatory sulfite reductase) and mcrA (methyl coenzyme M reductase) mRNA transcripts of sulfate-reducing bacteria (Desulfobacteraceae and Desulfobulbaceae) and methane-cycling archaea (ANME-1 and ANME-2) were prevalent at the sediment surface under the mat and at its edge. Outside the mat at the surface, 16S rRNA sequences indicated mostly aerobes commonly found in seawater. The seep-related communities persisted at 12–20 cm depth inside and outside the mat. 16S rRNA transcripts and V6-tags reveal that bacterial and archaeal diversity underneath the mat are similar to each other, in contrast to oxic or microoxic habitats that have higher bacterial diversity. Conclusions/Significance The visual patchiness of microbial mats reflects sharp discontinuities in microbial community structure and activity over sub-meter spatial scales; these discontinuities have to be taken into account in geochemical and microbiological inventories of seep environments. In

  17. Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary.

    PubMed

    Abell, Guy C J; Revill, Andrew T; Smith, Craig; Bissett, Andrew P; Volkman, John K; Robert, Stanley S

    2010-02-01

    Nitrification and denitrification are key steps in nitrogen (N) cycling. The coupling of these processes, which affects the flow of N in ecosystems, requires close interaction of nitrifying and denitrifying microorganisms, both spatially and temporally. The diversity, temporal and spatial variations in the microbial communities affecting these processes was examined, in relation to N cycling, across 12 sites in the Fitzroy river estuary, which is a turbid subtropical estuary in central Queensland. The estuary is a major source of nutrients discharged to the Great Barrier Reef near-shore zone. Measurement of nitrogen fluxes showed an active denitrifying community during all sampling months. Archaeal ammonia monooxygenase (amoA of AOA, functional marker for nitrification) was significantly more abundant than Betaproteobacterial (beta-AOB) amoA. Nitrite reductase genes, functional markers for denitrification, were dominated by nirS and not nirK types at all sites during the year. AOA communities were dominated by the soil/sediment cluster of Crenarchaeota, with sequences found in estuarine sediment, marine and terrestrial environments, whereas nirS sequences were significantly more diverse (where operational taxonomic units were defined at both the threshold of 5% and 15% sequence similarity) and were closely related to sequences originating from estuarine sediments. Terminal-restriction fragment length polymorphism (T-RFLP) analysis revealed that AOA population compositions varied spatially along the estuary, whereas nirS populations changed temporally. Statistical analysis of individual T-RF dominance suggested that salinity and C:N were associated with the community succession of AOA, whereas the nirS-type denitrifier communities were related to salinity and chlorophyll-alpha in the Fitzroy river estuary.

  18. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Houtmeyers, Sofie; Meerbergen, Ken; Van Geel, Maarten; Lievens, Bart; Appels, Lise

    2016-10-01

    The restricted hydrolytic degradation rate of complex organic matter presents a considerable challenge in anaerobic digestion of waste activated sludge (WAS). Within this context, application of pre-treatment of digester substrate has potential for improved waste management and enhanced biogas production. Anaerobic degradation of untreated or electrokinetically pre-treated WAS was performed in two pilot-scale digesters for 132days. WAS electrokinetically pre-treated with energy input 0.066kJ/kg sludge was used in a first phase of operation and WAS pre-treated with energy input 0.091kJ/kg sludge was used in a second phase (each phase lasted at least three hydraulic retention times). Substrate characteristics before and after pre-treatment and effects on biogas digester performance were comprehensively analysed. To gain insights into influences of altered substrate characteristics on microbial communities, the dynamics within the bacterial and archaeal communities in the two digesters were investigated using 16S rRNA gene sequencing (pyrosequencing) and quantitative PCR (qPCR). Specific primers targeting dominant operation taxonomic units (OTUs) and members of the candidate phylum Cloacimonetes were designed to further evaluate their abundance and dynamics in the digesters. Electrokinetic pre-treatment significantly improved chemical oxygen demand (COD) and carbohydrate solubility and increased biogas production by 10-11% compared with untreated sludge. Compositional similarity of the bacterial community during initial operation and diversification during later operation indicated gradual adaptation of the community to the higher solubility of organic material in the pre-treated substrate. Further analyses revealed positive correlations between gene abundance of dominant OTUs related to Clostridia and Cloacimonetes and increased substrate availability and biogas production. Among the methanogens, the genus Methanosaeta dominated in both digesters. Overall, the

  19. Community Service-Learning and Cultural-Historical Activity Theory

    ERIC Educational Resources Information Center

    Taylor, Alison

    2014-01-01

    This paper explores the potential of cultural-historical activity theory (CHAT), to provide new insights into community service-learning (CSL) in higher education. While CSL literature acknowledges the influences of John Dewey and Paolo Freire, discussion of the potential contribution of cultural-historical activity theory, rooted in the work of…

  20. Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy).

    PubMed

    Maugeri, Teresa Luciana; Lentini, Valeria; Gugliandolo, Concetta; Italiano, Francesco; Cousin, Sylvie; Stackebrandt, Erko

    2009-01-01

    The aim of this study was to investigate the microbial community thriving at two shallow hydrothermal vents off Panarea Island (Italy). Physico-chemical characteristics of thermal waters were examined in order to establish the effect of the vents on biodiversity of both Bacteria and Archaea. Water and adjacent sediment samples were collected at different times from two vents, characterised by different depth and temperature, and analysed to evaluate total microbial abundances, sulphur-oxidising and thermophilic aerobic bacteria. Total microbial abundances were on average of the order of 10(5) cells ml(-1), expressed as picoplanktonic size fraction. Picophytoplanktonic cells accounted for 0.77-3.83% of the total picoplanktonic cells. The contribution of bacterial and archaeal taxa to prokaryotic community diversity was investigated by PCR-DGGE fingerprinting method. The number of bands derived from bacterial DNA was highest in the DGGE profiles of water sample from the warmest and deepest site (site 2). In contrast, archaeal richness was highest in the water of the coldest and shallowest site (site 1). Sulphur-oxidising bacteria were detected by both culture-dependent and -independent methods. The primary production at the shallow hydrothermal system of Panarea is supported by a complex microbial community composed by phototrophs and chemolithotrophs.

  1. Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation.

    PubMed

    Galand, Pierre E; Lovejoy, Connie; Hamilton, Andrew K; Ingram, R Grant; Pedneault, Estelle; Carmack, Eddy C

    2009-04-01

    Evidence of microbial zonation in the open ocean is rapidly accumulating, but while the distribution of communities is often described according to depth, the other physical factors structuring microbial diversity and function remain poorly understood. Here we identify three different water masses in the North Water (eastern Canadian Arctic), defined by distinct temperature and salinity characteristics, and show that they contained distinct archaeal communities. Moreover, we found that one of the water masses contained an increased abundance of the archaeal alpha-subunit of the ammonia monooxygenase gene (amoA) and accounted for 70% of the amoA gene detected overall. This indicates likely differences in putative biogeochemical capacities among different water masses. The ensemble of our results strongly suggest that the widely accepted view of depth stratification did not explain microbial diversity, but rather that parent water masses provide the framework for predicting communities and potential microbial function in an Arctic marine system. Our results emphasize that microbial distributions are strongly influenced by oceanic circulation, implying that shifting currents and water mass boundaries resulting from climate change may well impact patterns of microbial diversity by displacing whole biomes from their historic distributions. This relocation could have the potential to establish a substantially different geography of microbial-driven biogeochemical processes and associated oceanic production.

  2. Metabolically active microbial communities in uranium-contaminated subsurface sediments.

    PubMed

    Akob, Denise M; Mills, Heath J; Kostka, Joel E

    2007-01-01

    In order to develop effective bioremediation strategies for radionuclide contaminants, the composition and metabolic potential of microbial communities need to be better understood, especially in highly contaminated subsurface sediments for which little cultivation-independent information is available. In this study, we characterized metabolically active and total microbial communities associated with uranium-contaminated subsurface sediments along geochemical gradients. DNA and RNA were extracted and amplified from four sediment-depth intervals representing moderately acidic (pH 3.7) to near-neutral (pH 6.7) conditions. Phylotypes related to Proteobacteria (Alpha-, Beta-, Delta- and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Firmicutes and Planctomycetes were detected in DNA- and RNA-derived clone libraries. Diversity and numerical dominance of phylotypes were observed to correspond to changes in sediment geochemistry and rates of microbial activity, suggesting that geochemical conditions have selected for well-adapted taxa. Sequences closely related to nitrate-reducing bacteria represented 28% and 43% of clones from the total and metabolically active fractions of the microbial community, respectively. This study provides the first detailed analysis of total and metabolically active microbial communities in radionuclide-contaminated subsurface sediments. Our microbial community analysis, in conjunction with rates of microbial activity, points to several groups of nitrate-reducers that appear to be well adapted to environmental conditions common to radionuclide-contaminated sites.

  3. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  4. [Archaeal diversity in permafrost deposits of Bunger Hills Oasis and King George Island (Antarctica) according to the 16S rRNA gene sequencing].

    PubMed

    Karaevskaia, E S; Demchenko, L S; Demidov, N É; Rivkina, E M; Bulat, S A; Gilichinskiĭ, D A

    2014-01-01

    Archaeal communities of permafrost deposits of King George Island and Bunger Hills Oasis (Antarctica) differing in the content of biogenic methane were analyzed using clone libraries of two 16S rRNA gene regions. Phylotypes belonging to methanogenic archaea were identified in all horizons.

  5. Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

    PubMed

    Guillière, Florence; Danioux, Chloé; Jaubert, Carole; Desnoues, Nicole; Delepierre, Muriel; Prangishvili, David; Sezonov, Guennadi; Guijarro, J Iñaki

    2013-01-01

    While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.

  6. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland.

    PubMed

    Lin, X; Green, S; Tfaily, M M; Prakash, O; Konstantinidis, K T; Corbett, J E; Chanton, J P; Cooper, W T; Kostka, J E

    2012-10-01

    The abundances, compositions, and activities of microbial communities were investigated at bog and fen sites in the Glacial Lake Agassiz Peatland of northwestern Minnesota. These sites contrast in the reactivity of dissolved organic matter (DOM) and the presence or absence of groundwater inputs. Microbial community composition was characterized using pyrosequencing and clone library construction of phylogenetic marker genes. Microbial distribution patterns were linked to pH, concentrations of dissolved organic carbon and nitrogen, C/N ratios, optical properties of DOM, and activities of laccase and peroxidase enzymes. Both bacterial and archaeal richness and rRNA gene abundance were >2 times higher on average in the fen than in the bog, in agreement with a higher pH, labile DOM content, and enhanced enzyme activities in the fen. Fungi were equivalent to an average of 1.4% of total prokaryotes in gene abundance assayed by quantitative PCR. Results revealed statistically distinct spatial patterns between bacterial and fungal communities. Fungal distribution did not covary with pH and DOM optical properties and was vertically stratified, with a prevalence of Ascomycota and Basidiomycota near the surface and much higher representation of Zygomycota in the subsurface. In contrast, bacterial community composition largely varied between environments, with the bog dominated by Acidobacteria (61% of total sequences), while the Firmicutes (52%) dominated in the fen. Acetoclastic Methanosarcinales showed a much higher relative abundance in the bog, in contrast to the dominance of diverse hydrogenotrophic methanogens in the fen. This is the first quantitative and compositional analysis of three microbial domains in peatlands and demonstrates that the microbial abundance, diversity, and activity parallel with the pronounced differences in environmental variables between bog and fen sites.

  7. Microbial biomass, activity and community composition in constructed wetlands.

    PubMed

    Truu, Marika; Juhanson, Jaanis; Truu, Jaak

    2009-06-15

    The aim of the current article is to give an overview about microbial communities and their functioning but also about factors affecting microbial activity in the three most common types (surface flow and two types of sub-surface flow) of constructed wetlands. The paper reviews the community composition and structural diversity of the microbial biomass, analyzing different aspects of microbial activity with respect to wastewater properties, specific wetland type, and environmental parameters. A brief introduction about the application of different novel molecular techniques for the assessment of microbial communities in constructed wetlands is also given. Microbially mediated processes in constructed wetlands are mainly dependent on hydraulic conditions, wastewater properties, including substrate and nutrient quality and availability, filter material or soil type, plants, and different environmental factors. Microbial biomass is within similar ranges in both horizontal and vertical subsurface flow and surface flow constructed wetlands. Stratification of the biomass but also a stratified structural pattern of the bacterial community can be seen in subsurface flow systems. Microbial biomass C/N ratio is higher in horizontal flow systems compared to vertical flow systems, indicating the structural differences in microbial communities between those two constructed wetland types. The total activity of the microbial community is in the same range, but heterotrophic growth is higher in the subsurface (vertical flow) system compared to the surface flow systems. Available species-specific data about microbial communities in different types of wetlands is scarce and therefore it is impossible make any general conclusions about the dynamics of microbial community structure in wetlands, its relationship to removal processes and operational parameters.

  8. the Deep Biosphere Archaeal Microbial Community in Igneous Ocean Crust

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.

    2014-12-01

    Ridge flank hydrothermal systems represent vast environments that may be habitable by subseafloor microbial life. Oceanic ridge flanks, areas far from the magmatic and tectonic influence of seafloor spreading, comprise one of the largest and least explored microbial habitats on the planet. These potential ecosystems may play a significant role in biogeochemical processes and elemental fluxes that are known to be regulated by these systems. I will discuss the nature of ridge flank hydrothermal environments, and present a framework for delineating a continuum of conditions and processes that are likely to be important for defining subseafloor microbial "provinces." The basis for this framework is three governing conditions that help to determine the nature of subseafloor biomes: crustal age, extent of fluid flow, and thermal state. A brief overview of subseafloor conditions, within the context of these three characteristics for select sites will be described. Technical challenges remain and likely will limit progress in studies of microbial ridge flank hydrothermal ecosystems, which is why it is vital to select and design future studies so as to leverage as much general understanding as possible from work focused at a small number of sites. A characterization framework that perhaps includes alternative or additional physical or chemical characteristics is essential for achieving the greatest benefit from multidisciplinary microbial investigations of oceanic ridge flank hydrothermal systems.

  9. Archaeal communities of Arctic methane-containing permafrost.

    PubMed

    Shcherbakova, Victoria; Yoshimura, Yoshitaka; Ryzhmanova, Yana; Taguchi, Yukihiro; Segawa, Takahiro; Oshurkova, Victoria; Rivkina, Elizaveta

    2016-10-01

    In the present study, we used culture-independent methods to investigate the diversity of methanogenic archaea and their distribution in five permafrost samples collected from a borehole in the Kolyma River Lowland (north-east of Russia). Total DNA was extracted from methane-containing permafrost samples of different age and amplified by PCR. The resulting DNA fragments were cloned. Phylogenetic analysis of the sequences showed the presence of archaea in all studied samples; 60%-95% of sequences belonged to the Euryarchaeota. Methanogenic archaea were novel representatives of Methanosarcinales, Methanomicrobiales, Methanobacteriales and Methanocellales orders. Bathyarchaeota (Miscellaneous Crenarchaeota Group) representatives were found among nonmethanogenic archaea in all the samples studied. The Thaumarchaeota representatives were not found in the upper sample, whereas Woesearchaeota (formerly DHVEG-6) were found in the three deepest samples. Unexpectedly, the greatest diversity of archaea was observed at a depth of 22.3 m, probably due to the availability of the labile organic carbon and/or due to the migration of the microbial cells during the freezing front towards the bottom.

  10. Controlling mechanisms in directional growth of aggregated archaeal cells.

    PubMed

    Milkevych, Viktor; Batstone, Damien J

    2014-12-28

    Members of the family Methanosarcinaceae are important archaeal representatives due to their broad functionality, ubiquitous presence, and functionality in harsh environments. A key characteristic is their multicellular (packet) morphology represented by aggregates of spatially confined cells. This morphology is driven by directed growth of cells in confinement with sequential variation in growth direction. To further understand why spatially confined Methanosarcina cells (and in general, confined prokaryotes) change their direction of growth during consecutive growth-division stages, and how a particular cell senses its wall topology and responds to changes on it a theoretical model for stress dependent growth of aggregated archaeal cells was developed. The model utilizes a confined elastic shell representation of aggregated archaeal cell and is derived based on a work-energy principle. The growth law takes into account the fine structure of archaeal cell wall, polymeric nature of methanochondroitin layer, molecular-biochemical processes and is based on thermodynamic laws. The developed model has been applied to three typical configurations of aggregated cell in 3D. The developed model predicted a geometry response with delayed growth of aggregated archaeal cells explained from mechanistic principles, as well as continuous changes in direction of growth during the consecutive growth-division stages. This means that cell wall topology sensing and growth anisotropy can be predicted using simple cellular mechanisms without the need for dedicated cellular machinery.

  11. Physical Activity Influences in a Disadvantaged African American Community and the Communities' Proposed Solutions

    PubMed Central

    Griffin, Sarah F.; Wilson, Dawn K.; Wilcox, Sara; Buck, Jacqueline; Ainsworth, Barbara E.

    2008-01-01

    The purpose of this assessment is to increase our understanding of how safety and environmental factors influence physical activity among African American residents living in a low-income, high-crime neighborhood and to get input from these residents about how to best design physical activity interventions for their neighborhood. Twenty-seven African American adult residents of a low-income, high-crime neighborhood in a suburban southeastern community participated in three focus groups. Participants were asked questions about perceptions of what would help them, their families, and their neighbors be more physically active. Two independent raters coded the responses into themes. Participants suggested three environmental approaches in an effort to increase physical activity: increasing law enforcement, community connectedness and social support, and structured programs. Findings suggest that safety issues are an important factor for residents living in disadvantaged conditions and that the residents know how they want to make their neighborhoods healthier. PMID:17728204

  12. Global occurrence of archaeal amoA genes in terrestrial hot springs.

    PubMed

    Zhang, Chuanlun L; Ye, Qi; Huang, Zhiyong; Li, Wenjun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S; Shock, Everett L; Hedlund, Brian P

    2008-10-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86 degrees C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were

  13. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea.

    PubMed

    Koch, Katharina; Knoblauch, Christian; Wagner, Dirk

    2009-03-01

    The Siberian Laptev Sea shelf contains submarine permafrost, which was formed by flooding of terrestrial permafrost with ocean water during the Holocene sea level rise. This flooding resulted in a warming of the permafrost to temperatures close below 0 degrees C. The impact of these environmental changes on methanogenic communities and carbon dynamics in the permafrost was studied in a submarine permafrost core of the Siberian Laptev Sea shelf. Total organic carbon (TOC) content varied between 0.03% and 8.7% with highest values between 53 and 62 m depth below sea floor. In the same depth, maximum methane concentrations (284 nmol CH(4) g(-1)) and lowest carbon isotope values of methane (-72.2 per thousand VPDB) were measured, latter indicating microbial formation of methane under in situ conditions. The archaeal community structure was assessed by a nested polymerase chain reaction (PCR) amplification for DGGE, followed by sequencing of reamplified bands. Submarine permafrost samples showed a different archaeal community than the nearby terrestrial permafrost. Samples with high methane concentrations were dominated by sequences affiliated rather to the methylotrophic genera Methanosarcina and Methanococcoides as well as to uncultured archaea. The presented results give the first insights into the archaeal community in submarine permafrost and the first evidence for their activity at in situ conditions.

  14. Black Educational Activism for Community Empowerment: International Leadership Perspectives

    ERIC Educational Resources Information Center

    Wilson, Camille; Johnson, Lauri

    2015-01-01

    This article discusses themes emerging from studies of Black educational activism conducted in London, Toronto, and Detroit. An analysis of narrative data reveals that Black educational activists resist racism and other forms of oppression; act as border crossers and/or boundary spanners as they navigate complex community-based, institutional, and…

  15. Community Information and Services Centers: Concepts for Activation.

    ERIC Educational Resources Information Center

    Hopkins, Cleve

    An experimental program based on a study by the Department of Housing and Urban Development was activated to deliver services to urban residents via automated communications technology. Designed to contribute to improvement in the quality of life, the program of a Community Information and Services Center (CISC) included: outreach programs, i.e.,…

  16. Baby Boomers in an Active Adult Retirement Community: Comity Interrupted

    ERIC Educational Resources Information Center

    Roth, Erin G.; Keimig, Lynn; Rubinstein, Robert L.; Morgan, Leslie; Eckert, J. Kevin; Goldman, Susan; Peeples, Amanda D.

    2012-01-01

    Purpose of the Study: This article explores a clash between incoming Baby Boomers and older residents in an active adult retirement community (AARC). We examine issues of social identity and attitudes as these groups encounter each other. Design and Methods: Data are drawn from a multiyear ethnographic study of social relations in senior housing.…

  17. Community Resources for Promoting Youth Nutrition and Physical Activity

    ERIC Educational Resources Information Center

    Moore, Kelly R.; McGowan, Melissa K.; Donato, Karen A.; Kollipara, Sobha; Roubideaux, Yvette

    2009-01-01

    Childhood obesity is a national public health crisis. The National Diabetes Education Program (NDEP), the National Institutes of Health and Kaiser Permanente have developed community tools and resources for children and families to lower their risk for obesity through healthier, active lifestyles. The authors describe innovative practices and…

  18. Social Work with Religious Volunteers: Activating and Sustaining Community Involvement

    ERIC Educational Resources Information Center

    Garland, Diana R.; Myers, Dennis M.; Wolfer, Terry A.

    2008-01-01

    Social workers in diverse community practice settings recruit and work with volunteers from religious congregations. This article reports findings from two surveys: 7,405 congregants in 35 Protestant congregations, including 2,570 who were actively volunteering, and a follow-up survey of 946 volunteers. It compares characteristics of congregation…

  19. Biogeochemical drivers of microbial community convergence across actively retreating glaciers

    SciTech Connect

    Castle, Sarah C.; Nemergut, Diana R.; Grandy, A. Stuart; Leff, Jonathan W.; Graham, Emily B.; Hood, Eran; Schmidt, Steven K.; Wickings, Kyle; Cleveland, Cory C.

    2016-10-01

    The ecological processes that influence biogeographical patterns of microorganisms are actively debated. To investigate how such patterns emerge during ecosystem succession, we examined the biogeochemical drivers of bacterial community assembly in soils over two environmentally distinct, recently deglaciated chronosequences separated by a distance of more than 1,300 kilometers. Our results show that despite different geographic, climatic, and soil chemical and physical characteristics at the two sites, soil bacterial community structure and decomposer function converged during plant succession. In a comparative analysis, we found that microbial communities in early succession soils were compositionally distinct from a group of diverse, mature forest soils, but that the differences between successional soils and mature soils decreased from early to late stages of succession. Differences in bacterial community composition across glacial sites were largely explained by pH. However, successional patterns and community convergence across sites were more consistently related to soil organic carbon and organic matter chemistry, which appeared to be tightly coupled with bacterial community structure across both young and mature soils.

  20. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry

    PubMed Central

    Inskeep, William P.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Rusch, Douglas B.; Tringe, Susannah G.; Macur, Richard E.; Jennings, Ryan deM.; Boyd, Eric S.; Spear, John R.; Roberto, Francisco F.

    2013-01-01

    Geothermal habitats in Yellowstone National Park (YNP) provide an unparalleled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze, and synthesize metagenomic and geochemical data collected from seven high-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40–45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and/or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G + C content) and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport, and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.g., sulfide, oxygen, pH). These observations provide an ecological basis for understanding the distribution of indigenous archaeal lineages across high-temperature systems of YNP. PMID:23720654

  1. Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins

    PubMed Central

    Samson, Rachel Y.; Abeyrathne, Priyanka D.; Bell, Stephen D.

    2015-01-01

    Summary Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins. PMID:26725007

  2. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape

    PubMed Central

    Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2015-01-01

    Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km2, by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships

  3. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape.

    PubMed

    Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2015-06-01

    Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km(2) , by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships

  4. Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters.

    PubMed

    Martínez-Fernández, Gonzalo; Abecia, Leticia; Martín-García, A Ignacio; Ramos-Morales, Eva; Denman, Stuart E; Newbold, Charles J; Molina-Alcaide, Eduarda; Yáñez-Ruiz, David R

    2015-08-01

    Study of the efficacy of methanogenesis inhibitors in the rumen has given inconsistent results, mainly due to poorly understood effects on the key microbial groups involved in pathways for methane (CH4) synthesis. The experiment described in this report was designed to assess the effect of propyl propane thiosulfinate (PTS), diallyl disulfide (DDS) and bromochloromethane (BCM) on rumen fermentation, methane production and microbial populations in continuous culture fermenters. No effects on total volatile fatty acids (VFA) were observed with PTS or DDS, but VFA were decreased with BCM. Amylase activity increased with BCM as compared with the other treatments. A decrease in methane production was observed with PTS (48%) and BCM (94%) as compared with control values. The concentration of methanogenic archaea decreased with BCM from day 4 onward and with PTS on days 4 and 8. Pyrosequencing analysis revealed that PTS and BCM decreased the relative abundance of Methanomicrobiales and increased that of Methanobrevibacter and Methanosphaera. The total concentration of bacteria was not modified by any treatment, although treatment with BCM increased the relative abundance of Prevotella and decreased that of Ruminococcus. These results suggest that the inhibition of methane production in the rumen by PTS and BCM is associated with a shift in archaeal biodiversity and changes in the bacterial community with BCM.

  5. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge.

    PubMed

    Jørgensen, Steffen L; Thorseth, Ingunn H; Pedersen, Rolf B; Baumberger, Tamara; Schleper, Christa

    2013-01-01

    In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG) is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria, and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001). Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000), indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.

  6. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota.

    PubMed

    Brochier-Armanet, Céline; Boussau, Bastien; Gribaldo, Simonetta; Forterre, Patrick

    2008-03-01

    The archaeal domain is currently divided into two major phyla, the Euryarchaeota and Crenarchaeota. During the past few years, diverse groups of uncultivated mesophilic archaea have been discovered and affiliated with the Crenarchaeota. It was recently recognized that these archaea have a major role in geochemical cycles. Based on the first genome sequence of a crenarchaeote, Cenarchaeum symbiosum, we show that these mesophilic archaea are different from hyperthermophilic Crenarchaeota and branch deeper than was previously assumed. Our results indicate that C. symbiosum and its relatives are not Crenarchaeota, but should be considered as a third archaeal phylum, which we propose to name Thaumarchaeota (from the Greek 'thaumas', meaning wonder).

  7. Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate

    PubMed Central

    Nakamura, Tsutomu; Yamamoto, Takahiko; Abe, Manabu; Matsumura, Hiroyoshi; Hagihara, Yoshihisa; Goto, Tadashi; Yamaguchi, Takafumi; Inoue, Tsuyoshi

    2008-01-01

    The oxidation of thiol groups in proteins is a common event in biochemical processes involving disulfide bond formation and in response to an increased level of reactive oxygen species. It has been widely accepted that the oxidation of a cysteine side chain is initiated by the formation of cysteine sulfenic acid (Cys-SOH). Here, we demonstrate a mechanism of thiol oxidation through a hypervalent sulfur intermediate by presenting crystallographic evidence from an archaeal peroxiredoxin (Prx), the thioredoxin peroxidase from Aeropyrum pernix K1 (ApTPx). The reaction of Prx, which is the reduction of a peroxide, depends on the redox active cysteine side chains. Oxidation by hydrogen peroxide converted the active site peroxidatic Cys-50 of ApTPx to a cysteine sulfenic acid derivative, followed by further oxidation to cysteine sulfinic and sulfonic acids. The crystal structure of the cysteine sulfenic acid derivative was refined to 1.77 Å resolution with Rcryst and Rfree values of 18.8% and 22.0%, respectively. The refined structure, together with quantum chemical calculations, revealed that the sulfenic acid derivative is a type of sulfurane, a hypervalent sulfur compound, and that the Sγ atom is covalently linked to the Nδ1 atom of the neighboring His-42. The reaction mechanism is revealed by the hydrogen bond network around the peroxidatic cysteine and the motion of the flexible loop covering the active site and by quantum chemical calculations. This study provides evidence that a hypervalent sulfur compound occupies an important position in biochemical processes. PMID:18436649

  8. Measurements of Microbial Community Activities in Individual Soil Macroaggregates

    SciTech Connect

    Bailey, Vanessa L.; Bilskis, Christina L.; Fansler, Sarah J.; McCue, Lee Ann; Smith, Jeff L.; Konopka, Allan

    2012-05-01

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for {beta}-glucosidase, N-acetyl-{beta}-D-glucosaminidase, lipase, and leucine aminopeptidase to measure of the enzyme potential of individual aggregates (250-1000 {mu}m diameter). Across all enzymes, the smallest aggregates had the greatest activity and the range of enzyme activities observed in all aggregates supports the hypothesis that functional potential in soil may be distributed in a patchy fashion. Paired analyses of ATP as a surrogate for active microbial biomass and {beta}-glucosidase on the same aggregates suggest the presence of both extracellular {beta}-glucosidase functioning in aggregates with no detectable ATP and also of relatively active microbial communities (high ATP) that have low {beta}-glucosidase potentials. Studying function at a scale more consistent with microbial habitat presents greater opportunity to link microbial community structure to microbial community function.

  9. Physical Activity Measures in the Healthy Communities Study

    PubMed Central

    Pate, Russell R.; McIver, Kerry; Colabianchi, Natalie; Troiano, Richard P.; Reis, Jared P.; Carroll, Dianna D.; Fulton, Janet E.

    2015-01-01

    The risk of obesity is reduced when youth engage in recommended levels of physical activity (PA). For that reason, public health organizations in the U.S. have encouraged communities to implement programs and policies designed to increase PA in youth, and many communities have taken on that challenge. However, the long-term effects of those programs and policies on obesity are largely unknown. The Healthy Communities Study (HCS) is a large-scale observational study of U.S. communities that is examining the characteristics of programs and policies designed to promote healthy behaviors (e.g., increase PA and improve diet) and determining their association with obesity-related outcomes. The purpose of this paper is to describe the methods used to measure PA in children and the personal and community factors that may influence it. The study used both self-reported and objective measures of PA, and measured personal, family, and home influences on PA via three constructs: (1) PA self-schema; (2) parental support; and (3) parental rules regarding PA. Neighborhood and community factors related to PA were assessed using three measures: (1) child perceptions of the neighborhood environment; (2) availability of PA equipment; and (3) attributes of the child's street segment via direct observation. School influences on children's PA were assessed via three constructs: (1) school PA policies; (2) child perceptions of the school PA environment; and (3) school outdoor PA environment. These measures will enable examination of the associations between characteristics of community PA programs and policies and obesity-related outcomes in children and youth. PMID:26384937

  10. Physical Activity Measures in the Healthy Communities Study.

    PubMed

    Pate, Russell R; McIver, Kerry L; Colabianchi, Natalie; Troiano, Richard P; Reis, Jared P; Carroll, Dianna D; Fulton, Janet E

    2015-10-01

    The risk of obesity is reduced when youth engage in recommended levels of physical activity (PA). For that reason, public health organizations in the U.S. have encouraged communities to implement programs and policies designed to increase PA in youth, and many communities have taken on that challenge. However, the long-term effects of those programs and policies on obesity are largely unknown. The Healthy Communities Study is a large-scale observational study of U.S. communities that is examining the characteristics of programs and policies designed to promote healthy behaviors (e.g., increase PA and improve diet) and determining their association with obesity-related outcomes. The purpose of this paper is to describe the methods used to measure PA in children and the personal and community factors that may influence it. The study used both self-reported and objective measures of PA, and measured personal, family, and home influences on PA via three constructs: (1) PA self-schema; (2) parental support; and (3) parental rules regarding PA. Neighborhood and community factors related to PA were assessed using three measures: (1) child perceptions of the neighborhood environment; (2) availability of PA equipment; and (3) attributes of the child's street segment via direct observation. School influences on children's PA were assessed via three constructs: (1) school PA policies; (2) child perceptions of the school PA environment; and (3) school outdoor PA environment. These measures will enable examination of the associations between characteristics of community PA programs and policies and obesity-related outcomes in children and youth.

  11. The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity

    SciTech Connect

    Payne, Samuel H.; Monroe, Matthew E.; Overall, Christopher C.; Kiebel, Gary R.; Degan, Michael G.; Gibbons, Bryson C.; Fujimoto, Grant M.; Purvine, Samuel O.; Adkins, Joshua N.; Lipton, Mary S.; Smith, Richard D.

    2015-08-18

    This dataset deposition announces the submission to public repositories of the PNNL Biodiversity Library, a large collection of global proteomics data for 112 bacterial and archaeal organisms. The data comprises 35,162 tandem mass spectrometry (MS/MS) datasets from ~10 years of research. All data has been searched, annotated and organized in a consistent manner to promote reuse by the community. Protein identifications were cross-referenced with KEGG functional annotations which allows for pathway oriented investigation. We present the data as a freely available community resource. A variety of data re-use options are described for computational modeling, proteomics assay design and bioengineering. Instrument data and analysis files are available at ProteomeXchange via the MassIVE partner repository under the identifiers PXD001860 and MSV000079053.

  12. The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity

    DOE PAGES

    Payne, Samuel H.; Monroe, Matthew E.; Overall, Christopher C.; ...

    2015-08-18

    This dataset deposition announces the submission to public repositories of the PNNL Biodiversity Library, a large collection of global proteomics data for 112 bacterial and archaeal organisms. The data comprises 35,162 tandem mass spectrometry (MS/MS) datasets from ~10 years of research. All data has been searched, annotated and organized in a consistent manner to promote reuse by the community. Protein identifications were cross-referenced with KEGG functional annotations which allows for pathway oriented investigation. We present the data as a freely available community resource. A variety of data re-use options are described for computational modeling, proteomics assay design and bioengineering. Instrumentmore » data and analysis files are available at ProteomeXchange via the MassIVE partner repository under the identifiers PXD001860 and MSV000079053.« less

  13. Influence of fertilizer draw solution properties on the process performance and microbial community structure in a side-stream anaerobic fertilizer-drawn forward osmosis - ultrafiltration bioreactor.

    PubMed

    Kim, Youngjin; Li, Sheng; Chekli, Laura; Phuntsho, Sherub; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2017-02-27

    In this study, a side-stream anaerobic fertilizer-drawn forward osmosis (FDFO) and ultrafiltration (UF) membrane bioreactor (MBR) hybrid system was proposed and operated for 55days. The FDFO performance was first investigated in terms of flux decline with various fertilizers draw solution. Flux decline was very severe with all fertilizers due to the absence of aeration and the sticky property of sludge. Flux recovery by physical cleaning varied significantly amongst tested fertilizers which seriously affected biofouling in FDFO via reverse salt flux (RSF). Besides, RSF had a significant impact on nutrient accumulation in the bioreactor. These results indicated that nutrient accumulation negatively influenced the anaerobic activity. To elucidate these phenomena, bacterial and archaeal community structures were analyzed by pyrosequencing. Results showed that bacterial community structure was affected by fertilizer properties with less impact on archaeal community structure, which resulted in a reduction in biogas production and an increase in nitrogen content.

  14. Prokaryotic diversity of an active mud volcano in the Usu City of Xinjiang, China.

    PubMed

    Yang, Hong-Mei; Lou, Kai; Sun, Jian; Zhang, Tao; Ma, Xiao-Long

    2012-02-01

    The Usu mud volcanoes are the largest group of terrestrial mud volcanoes in China. The volcanoes are located in a typical arid and semi-arid region, and the group consists of 36 erupting active mud volcanoes. In this study, the prokaryotic diversity and community structure in the sediment of an active mud volcano were investigated by constructing bacterial and archaeal clone libraries of the 16S rRNA gene. A total of 100 bacterial and 100 archaeal clones were analysed and found to comprise 11 and 7 distinct phylotypes, respectively. The bacterial phylotypes were classified into three phyla (Proteobacteria, Actinobacteria, and Fusobacteria). Of these, Proteobacteria were the most abundant bacterial group, with Deltaproteobacteria dominating the sediment community, and these were affiliated with the order Desulfuromonadales. The archaeal phylotypes were all closely related to uncultivated species, and the majority of the members were related to the orders Methanosarcinales and Halobacteriales of the Euryarchaeota originating from methane hydrate bearing or alkaline sediments. The rest of the archaeal phylotypes belonged to the phylum Crenarchaeota, with representatives from similar habitats. These results suggested that a large number of novel microbial groups and potential methanogenesis may exist in this unique ecosystem.

  15. Community-Service Activities Versus Traditional Activities in an Intergenerational Visiting Program

    ERIC Educational Resources Information Center

    Marx, Marcia S.; Hubbard, Pamela; Cohen-Mansfield, Jiska; Dakheel-Ali, Maha; Thein, Khin

    2005-01-01

    The impact of traditional activities (e.g., playing board games) were compared with community-service activities (e.g., making first aid kits for a homeless shelter) during a monthly intergenerational visiting program. The participating seniors (n =19) gave high ratings to both types of activities. However, they felt that they had helped others…

  16. Vertical profiles of sediment methanogenic potential and communities in two plateau freshwater lakes

    NASA Astrophysics Data System (ADS)

    Yang, Yuyin; Li, Ningning; Wang, Wei; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-01-01

    Microbial methanogenesis in sediment plays a crucial role in CH4 emission from freshwater lake ecosystems. However, knowledge of the layer-depth-related changes of methanogen community structure and activities in freshwater lake sediment is still limited. The present study was conducted to characterize the methanogenesis potential in different sediment-layer depths and the vertical distribution of microbial communities in two freshwater lakes of different trophic status on the Yunnan Plateau (China). Incubation experiments and inhibitor studies were carried out to determine the methanogenesis potential and pathways. 16S rRNA and mcrA genes were used to investigate the abundance and structure of methanogen and archaeal communities, respectively. Hydrogenotrophic methanogenesis was mainly responsible for methane production in sediments of both freshwater lakes. The layer-depth-related changes of methanogenesis potential and the abundance and community structure of methanogens were observed in both Dianchi Lake and Erhai Lake. Archaeal 16S rRNA and mcrA genes displayed a similar abundance change pattern in both lakes, and the relative abundance of methanogens decreased with increasing sediment-layer depth. Archaeal communities differed considerably in Dianchi Lake and Erhai Lake, but methanogen communities showed a slight difference between these two lakes. However, methanogen communities illustrated a remarkable layer-depth-related change. Order Methanomicrobiales was the dominant methanogen group in all sediments, while Methanobacteriales showed a high proportion only in upper layer sediments. The trophic status of the lake might have a notable influence on the depth-related change pattern of methanogenesis activity, while the methanogen community structure was mainly influenced by sediment depth.

  17. Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2.

    PubMed

    Dubiez, Etienne; Aleksandrov, Alexey; Lazennec-Schurdevin, Christine; Mechulam, Yves; Schmitt, Emmanuelle

    2015-03-11

    Eukaryotic and archaeal translation initiation processes involve a heterotrimeric GTPase e/aIF2 crucial for accuracy of start codon selection. In eukaryotes, the GTPase activity of eIF2 is assisted by a GTPase-activating protein (GAP), eIF5. In archaea, orthologs of eIF5 are not found and aIF2 GTPase activity is thought to be non-assisted. However, no in vitro GTPase activity of the archaeal factor has been reported to date. Here, we show that aIF2 significantly hydrolyses GTP in vitro. Within aIF2γ, H97, corresponding to the catalytic histidine found in other translational GTPases, and D19, from the GKT loop, both participate in this activity. Several high-resolution crystal structures were determined to get insight into GTP hydrolysis by aIF2γ. In particular, a crystal structure of the H97A mutant was obtained in the presence of non-hydrolyzed GTP. This structure reveals the presence of a second magnesium ion bound to GTP and D19. Quantum chemical/molecular mechanical simulations support the idea that the second magnesium ion may assist GTP hydrolysis by helping to neutralize the developing negative charge in the transition state. These results are discussed in light of the absence of an identified GAP in archaea to assist GTP hydrolysis on aIF2.

  18. Measurement of functional activities in older adults in the community.

    PubMed

    Pfeffer, R I; Kurosaki, T T; Harrah, C H; Chance, J M; Filos, S

    1982-05-01

    Two measures of social function designed for community studies of normal aging and mild senile dementia were evaluated in 195 older adults who underwent neurological, cognitive, and affective assessment. An examining and a reviewing neurologist and a neurologically trained nurse independently rated each on a Scale of Functional Capacity. Interrater reliability was high (examining vs. reviewing neurologist, r = .97; examining neurologist vs. nurse, tau b = .802; p less than .001 for both comparisons). Estimates correlated well with an established measure of social function and with results of cognitive tests. Alternate informants evaluated participants on the Functional Activities Questionnaire and the Instrumental Activities of Daily Living Scale. The Functional Activities Questionnaire was superior to the Instrumental Activities of Daily scores. Used alone as a diagnostic tool, the Functional Activities Questionnaire was more sensitive than distinguishing between normal and demented individuals.

  19. Microbial community composition controls the effects of climate change on methane emission from rice paddies.

    PubMed

    Liu, Guang Cheng; Tokida, Takesi; Matsunami, Toshinori; Nakamura, Hirofumi; Okada, Masumi; Sameshima, Ryoji; Hasegawa, Toshihiro; Sugiyama, Shu-Ichi

    2012-12-01

    Rice paddies are one of the most important sources of CH4 emission from the terrestrial ecosystem. A Free-air CO2 Enrichment (FACE) experiment, which included a soil warming treatment, was conducted in a rice paddy at Shizukuishi, Japan. In this study, the changes in CH4 emission from a rice paddy, caused by global climate change, were explored in relation to the structural changes that have occurred in the methanogenic archaeal communities found in the soil and roots. The composition of the archaeal community was examined by terminal restriction fragment length polymorphism (T-RFLP) using the 16S rRNA gene, while its abundance was measured by real-time PCR using the methyl coenzyme M reductase (mcrA) gene. The archaeal community in the roots showed considerable change, characterized by the dominance of hydrogenotrophic methanogens and a corresponding decrease in acetoclastic methanogens. Seasonal changes in CH4 flux were closely related to the changes in methanogen abundance in the roots. Elevated CO2 caused an increase in root mass, which increased the abundance of methanogens leading to a rise in CH4 emissions. However, soil warming stimulated CH4 emissions by increasing CH4 production per individual methanogen. These results demonstrated that climate warming stimulates CH4 emission in a rice paddy by altering the abundance and activity of methanogenic archaea in the roots.

  20. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  1. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.

    PubMed

    Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong

    2013-02-01

    Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.

  2. Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39

    PubMed Central

    Blombach, Fabian; Salvadori, Enrico; Fouqueau, Thomas; Yan, Jun; Reimann, Julia; Sheppard, Carol; Smollett, Katherine L; Albers, Sonja V; Kay, Christopher WM; Thalassinos, Konstantinos; Werner, Finn

    2015-01-01

    Transcription initiation of archaeal RNA polymerase (RNAP) and eukaryotic RNAPII is assisted by conserved basal transcription factors. The eukaryotic transcription factor TFIIE consists of α and β subunits. Here we have identified and characterised the function of the TFIIEβ homologue in archaea that on the primary sequence level is related to the RNAPIII subunit hRPC39. Both archaeal TFEβ and hRPC39 harbour a cubane 4Fe-4S cluster, which is crucial for heterodimerization of TFEα/β and its engagement with the RNAP clamp. TFEα/β stabilises the preinitiation complex, enhances DNA melting, and stimulates abortive and productive transcription. These activities are strictly dependent on the β subunit and the promoter sequence. Our results suggest that archaeal TFEα/β is likely to represent the evolutionary ancestor of TFIIE-like factors in extant eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.08378.001 PMID:26067235

  3. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  4. Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses

    NASA Astrophysics Data System (ADS)

    di Meo, C. A.; Giovannoni, S.; Fisk, M.

    2002-12-01

    Terrestrial and marine volcanic glasses become mineralogically and chemically altered, and in many cases this alteration has been attributed to microbial activity. We have used molecular techniques to study the resident microbial communities from three different volcanic environments that may be responsible for this crustal alteration. Total microbial DNA was extracted from rhyolite glass of the 7 million year old Rattlesnake Tuff in eastern Oregon. The DNA was amplified using the polymerase chain reaction (PCR) with bacterial primers targeting the 16S rRNA gene. This 16S rDNA was cloned and screened with restriction fragment length polymorphism (RFLP). Out of 89 total clones screened, 46 belonged to 13 different clone families containing two or more members, while 43 clones were unique. Sequences of eight clones representing the most dominant clone families in the library were 92 to 97% similar to soil bacterial species. In a separate study, young pillow basalts (<20 yrs old) from six different sites along the ridge axis at 9°N, East Pacific Rise were examined for microbial life. Total DNA was extracted from the basalt glass and screened for the presence of both bacteria and archaea using the PCR. Repeated attempts with different primer sets yielded no bacterial genes, whereas archaeal genes were quite abundant. A genetic fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP), was used to compare the archaeal community compositions among the six different basalts. Filtered deep-sea water samples (~15 L) were examined in parallel to identify any overlap between rock- and seawater-associated archaea. The six rock community profiles were quite similar to each other, and the background water communities were also similar, respectively. Both the rock and water communities shared the same dominant peak. To identify the T-RFLP peaks corresponding to the individual members of the rock and seawater communities, clone libraries of the archaeal

  5. Archaeal Viruses of the Sulfolobales: Isolation, Infection, and CRISPR Spacer Acquisition.

    PubMed

    Erdmann, Susanne; Garrett, Roger A

    2015-01-01

    Infection of archaea with phylogenetically diverse single viruses, performed in different laboratories, has failed to activate spacer acquisition into host CRISPR loci. The first successful uptake of archaeal de novo spacers was observed on infection of Sulfolobus solfataricus P2 with an environmental virus mixture isolated from Yellowstone National Park (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012). Experimental studies of isolated genetic elements from this mixture revealed that SMV1 (S ulfolobus Monocauda Virus 1), a tailed spindle-shaped virus, can induce spacer acquisition in CRISPR loci of Sulfolobus species from a second coinfecting conjugative plasmid or virus (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012; Erdmann et al. Mol Microbiol 91:900-917, 2014). Here we describe, firstly, the isolation of archaeal virus mixtures from terrestrial hot springs and the techniques used both to infect laboratory strains with these virus mixtures and to obtain purified virus particles. Secondly, we present the experimental conditions required for activating SMV1-induced spacer acquisition in two different Sulfolobus species.

  6. Exploring Park Director Roles in Promoting Community Physical Activity

    PubMed Central

    Marsh, Terence; Derose, Kathryn Pitkin; Cohen, Deborah A.

    2013-01-01

    Background Parks provide numerous opportunities for physical activity (PA). Previous studies have evaluated parks’ physical features, but few have assessed how park staff influence PA. Methods We conducted semi -structured interviews with 49 park directors, focusing on perceptions of their role, park programs, marketing and outreach, external collaborations, and PA promotion. Directors also completed a questionnaire providing demographics, education and training, and other personal characteristics. Results Park directors’ descriptions of their roles varied widely, from primarily administrative to emphasizing community interaction, though most (70–80%) reported offering programs and community interaction as primary. Including PA in current programs and adding PA-specific programs were the most commonly reported ways of increasing PA. Also noted were facility and staffing improvements, and conducting citywide marketing. Many directors felt inadequately trained in marketing. Most parks reported community collaborations, but they appeared fairly superficial. An increasing administrative burden and bureaucracy were recurring themes throughout the interviews. Conclusions Staff training in marketing and operation of PA programs is needed. Partnerships with health departments and organizations can help facilitate the PA promotion potential of parks. As there are competing views of how parks should be managed, standardized benchmarks to evaluate efficiency may help to optimize usage and PA promotion. PMID:22733875

  7. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase.

    PubMed

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi

    2013-07-05

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  8. Orthologs of a novel archaeal and of the bacterial peptidyl–tRNA hydrolase are nonessential in yeast

    PubMed Central

    Rosas-Sandoval, Guillermina; Ambrogelly, Alexandre; Rinehart, Jesse; Wei, David; Cruz-Vera, L. Rogelio; Graham, David E.; Stetter, Karl O.; Guarneros, Gabriel; Söll, Dieter

    2002-01-01

    Peptidyl–tRNA hydrolase (encoded by pth) is an essential enzyme in all bacteria, where it releases tRNA from the premature translation termination product peptidyl–tRNA. Archaeal genomes lack a recognizable peptidyl–tRNA hydrolase (Pth) ortholog, although it is present in most eukaryotes. However, we detected Pth-like activity in extracts of the archaeon Methanocaldococcus jannaschii. The uncharacterized MJ0051 ORF was shown to correspond to a protein with Pth activity. Heterologously expressed MJ0051 enzyme catalyzed in vitro the cleavage of the Pth substrates diacetyl-[14C]lysyl–tRNA and acetyl-[14C]phenylalanyl–tRNA. On transformation of an Escherichia coli pthts mutant, the MJ0051 gene (named pth2) rescued the temperature-sensitive phenotype of the strain. Analysis of known genomes revealed the presence of highly conserved orthologs of the archaeal pth2 gene in all archaea and eukaryotes but not in bacteria. The phylogeny of pth2 homologs suggests that the gene has been vertically inherited throughout the archaeal and eukaryal domains. Deletions in Saccharomyces cerevisiae of the pth2 (YBL057c) or pth (YHR189w) orthologs were viable, as was the double deletion strain, implying that the canonical Pth and Pth2 enzymes are not essential for yeast viability. PMID:12475929

  9. An analysis of amino acid sequences surrounding archaeal glycoprotein sequons.

    PubMed

    Abu-Qarn, Mehtap; Eichler, Jerry

    2007-05-01

    Despite having provided the first example of a prokaryal glycoprotein, little is known of the rules governing the N-glycosylation process in Archaea. As in Eukarya and Bacteria, archaeal N-glycosylation takes place at the Asn residues of Asn-X-Ser/Thr sequons. Since not all sequons are utilized, it is clear that other factors, including the context in which a sequon exists, affect glycosylation efficiency. As yet, the contribution to N-glycosylation made by sequon-bordering residues and other related factors in Archaea remains unaddressed. In the following, the surroundings of Asn residues confirmed by experiment as modified were analyzed in an attempt to define sequence rules and requirements for archaeal N-glycosylation.

  10. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    SciTech Connect

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  11. Crystal structure of archaeal homolog of proteasome-assembly chaperone PbaA.

    PubMed

    Sikdar, Arunima; Satoh, Tadashi; Kawasaki, Masato; Kato, Koichi

    2014-10-24

    Formation of the eukaryotic proteasome is not a spontaneous process but a highly ordered process assisted by several assembly chaperones. In contrast, archaeal proteasome subunits can spontaneously assemble into an active form. Recent bioinformatic analysis identified the proteasome-assembly chaperone-like proteins, PbaA and PbaB, in archaea. Our previous study showed that the PbaB homotetramer functions as a proteasome activator through its tentacle-like C-terminal segments. However, a functional role of the other homolog PbaA has remained elusive. Here we determined the 2.25-Å resolution structure of PbaA, illustrating its disparate tertiary and quaternary structures compared with PbaB. PbaA forms a homopentamer in which the C-terminal segments, with a putative proteasome-activating motif, are packed against the core. These findings offer deeper insights into the molecular evolution relationships between the proteasome-assembly chaperones and the proteasome activators.

  12. The active bacterial community in a pristine confined aquifer

    NASA Astrophysics Data System (ADS)

    Flynn, Theodore M.; Sanford, Robert A.; Santo Domingo, Jorge W.; Ashbolt, Nicholas J.; Levine, Audrey D.; Bethke, Craig M.

    2012-09-01

    This study of the active bacteria residing in a pristine confined aquifer provides unexpected insights into the ecology of iron-reducing and sulfate-reducing bacteria in the subsurface. At 18 wells, we trapped the microbes that attached to aquifer sediment and used molecular techniques to examine the bacterial populations. We used multivariate statistics to compare the composition of bacterial communities among the wells with respect to the chemistry of the groundwater. We found groundwater at each well was considerably richer in ferrous iron than sulfide, indicating iron-reducing bacteria should, by established criteria, dominate the sulfate reducers. Our results show, however, that areas where groundwater contains more than a negligible amount of sulfate (>0.03 mM), populations related to sulfate reducers of the generaDesulfobacter and Desulfobulbus were of nearly equal abundance with putative iron reducers related to Geobacter, Geothrix, and Desulfuromonas. Whereas sulfate is a key discriminant of bacterial community structure, we observed no statistical relationship between the distribution of bacterial populations in this aquifer and the concentration of either ferrous iron or dissolved sulfide. These results call into question the validity of using the relative concentration of these two ions to predict the nature of bacterial activity in an aquifer. Sulfate reducers and iron reducers do not appear to be segregated into discrete zones in the aquifer, as would be predicted by the theory of competitive exclusion. Instead, we find the two groups coexist in the subsurface in what we suggest is a mutualistic relationship.

  13. Sample storage for soil enzyme activity and bacterial community profiles.

    PubMed

    Wallenius, K; Rita, H; Simpanen, S; Mikkonen, A; Niemi, R M

    2010-04-01

    Storage of samples is often an unavoidable step in environmental data collection, since available analytical capacity seldom permits immediate processing of large sample sets needed for representative data. In microbiological soil studies, sample pretreatments may have a strong influence on measurement results, and thus careful consideration is required in the selection of storage conditions. The aim of this study was to investigate the suitability of prolonged (up to 16 weeks) frozen or air-dried storage for divergent soil materials. The samples selected to this study were mineral soil (clay loam) from an agricultural field, humus from a pine forest and compost from a municipal sewage sludge composting field. The measured microbiological parameters included functional profiling with ten different hydrolysing enzyme activities determined by artificial fluorogenic substrates, and structural profiling with bacterial 16S rDNA community fingerprints by amplicon length heterogeneity analysis (LH-PCR). Storage of samples affected the observed fluorescence intensity of the enzyme assay's fluorophor standards dissolved in soil suspension. The impact was highly dependent on the soil matrix and storage method, making it important to use separate standardisation for each combination of matrix type, storage method and time. Freezing proved to be a better storage method than air-drying for all the matrices and enzyme activities studied. The effect of freezing on the enzyme activities was small (<20%) in clay loam and forest humus and moderate (generally 20-30%) in compost. The most dramatic decreases (>50%) in activity were observed in compost after air-drying. The bacterial LH-PCR community fingerprints were unaffected by frozen storage in all matrices. The effect of storage treatments was tested using a new statistical method based on showing similarity rather than difference of results.

  14. Temperature, template topology, and factor requirements of archaeal transcription

    PubMed Central

    Bell, Stephen D.; Jaxel, Christine; Nadal, Marc; Kosa, Peter F.; Jackson, Stephen P.

    1998-01-01

    Although Archaea are prokaryotic and resemble Bacteria morphologically, their transcription apparatus is remarkably similar to those of eukaryotic cell nuclei. Because some Archaea exist in environments with temperatures of around 100°C, they are likely to have evolved unique strategies for transcriptional control. Here, we investigate the effects of temperature and DNA template topology in a thermophilic archaeal transcription system. Significantly, and in marked contrast with characterized eucaryal systems, archaeal DNA template topology has negligible effect on transcription levels at physiological temperatures using highly purified polymerase and recombinant transcription factors. Furthermore, archaeal transcription does not require hydrolysis of the β-γ phosphoanhydride bond of ATP. However, at lower temperatures, negatively supercoiled templates are transcribed more highly than those that are positively supercoiled. Notably, the block to transcription on positively supercoiled templates at lowered temperatures is at the level of polymerase binding and promoter opening. These data imply that Archaea do not possess a functional homologue of transcription factor TFIIH, and that for the promoters studied, transcription is mediated by TATA box-binding protein, transcription factor TFB, and RNA polymerase alone. Furthermore, they suggest that the reduction of plasmid linking number by hyperthermophilic Archaea in vivo in response to cold shock is a mechanism to maintain gene expression under these adverse circumstances. PMID:9860949

  15. Archaeal “Dark Matter” and the Origin of Eukaryotes

    PubMed Central

    Williams, Tom A.; Embley, T. Martin

    2014-01-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis. PMID:24532674

  16. Archaeal "dark matter" and the origin of eukaryotes.

    PubMed

    Williams, Tom A; Embley, T Martin

    2014-03-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis.

  17. Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein.

    PubMed

    Willkomm, Sarah; Oellig, Christine A; Zander, Adrian; Restle, Tobias; Keegan, Ronan; Grohmann, Dina; Schneider, Sabine

    2017-03-20

    Argonaute (Ago) proteins in eukaryotes are known as key players in post-transcriptional gene silencing(1), while recent studies on prokaryotic Agos hint at their role in the protection against invading DNA(2,3). Here, we present crystal structures of the apo enzyme and a binary Ago-guide complex of the archaeal Methanocaldococcus jannaschii (Mj) Ago. Binding of a guide DNA leads to large structural rearrangements. This includes the structural transformation of a hinge region containing a switch helix, which has been shown for human Ago2 to be critical for the dynamic target search process(4-6). To identify key residues crucial for MjAgo function, we analysed the effect of several MjAgo mutants. We observe that the nature of the 3' and 5' nucleotides in particular, as well as the switch helix, appear to impact MjAgo cleavage activity. In summary, we provide insights into the molecular mechanisms that drive DNA-guided DNA silencing by an archaeal Ago.

  18. Bacterial, archaeal and fungal succession in the forefield of a receding glacier.

    PubMed

    Zumsteg, Anita; Luster, Jörg; Göransson, Hans; Smittenberg, Rienk H; Brunner, Ivano; Bernasconi, Stefano M; Zeyer, Josef; Frey, Beat

    2012-04-01

    Glacier forefield chronosequences, initially composed of barren substrate after glacier retreat, are ideal locations to study primary microbial colonization and succession in a natural environment. We characterized the structure and composition of bacterial, archaeal and fungal communities in exposed rock substrates along the Damma glacier forefield in central Switzerland. Soil samples were taken along the forefield from sites ranging from fine granite sand devoid of vegetation near the glacier terminus to well-developed soils covered with vegetation. The microbial communities were studied with genetic profiling (T-RFLP) and sequencing of clone libraries. According to the T-RFLP profiles, bacteria showed a high Shannon diversity index (H) (ranging from 2.3 to 3.4) with no trend along the forefield. The major bacterial lineages were Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Cyanobacteria. An interesting finding was that Euryarchaeota were predominantly colonizing young soils and Crenarchaeota mainly mature soils. Fungi shifted from an Ascomycota-dominated community in young soils to a more Basidiomycota-dominated community in old soils. Redundancy analysis indicated that base saturation, pH, soil C and N contents and plant coverage, all related to soil age, correlated with the microbial succession along the forefield.

  19. Distinct composition signatures of archaeal and bacterial phylotypes in the Wanda Glacier forefield, Antarctic Peninsula.

    PubMed

    Pessi, Igor S; Osorio-Forero, César; Gálvez, Eric J C; Simões, Felipe L; Simões, Jefferson C; Junca, Howard; Macedo, Alexandre J

    2015-01-01

    Several studies have shown that microbial communities in Antarctic environments are highly diverse. However, considering that the Antarctic Peninsula is among the regions with the fastest warming rates, and that regional climate change has been linked to an increase in the mean rate of glacier retreat, the microbial diversity in Antarctic soil is still poorly understood. In this study, we analysed more than 40 000 sequences of the V5-V6 hypervariable region of the 16S rRNA gene obtained by 454 pyrosequencing from four soil samples from the Wanda Glacier forefield, King George Island, Antarctic Peninsula. Phylotype diversity and richness were surprisingly high, and taxonomic assignment of sequences revealed that communities are dominated by Proteobacteria, Bacteroidetes and Euryarchaeota, with a high frequency of archaeal and bacterial phylotypes unclassified at the genus level and without cultured representative strains, representing a distinct microbial community signature. Several phylotypes were related to marine microorganisms, indicating the importance of the marine environment as a source of colonizers for this recently deglaciated environment. Finally, dominant phylotypes were related to different microorganisms possessing a large array of metabolic strategies, indicating that early successional communities in Antarctic glacier forefield can be also functionally diverse.

  20. Prelude: The ISME Commission on Community Music Activity and Its Oslo Seminar

    ERIC Educational Resources Information Center

    Drummond, John

    2010-01-01

    This short introduction to the proceedings of the 1990 Commission of Community Music Activity spells out a prevailing spirit of those involved. Describing community music as the cutting edge in music education, this prelude suggests that community music activity should play a vital role in the future of music education training.

  1. Promoting physical activity among children and youth in disadvantaged South Australian CALD communities through alternative community sport opportunities.

    PubMed

    Rosso, Edoardo; McGrath, Richard

    2016-02-29

    Issue addressed: Recently arrived migrants and refugees from a culturally and linguistically diverse background (CALD) may be particularly vulnerable to social exclusion. Participation in sport is endorsed as a vehicle to ease the resettlement process; however, in Australia, this is often thought as a simple matter of integration into existing sport structures (e.g. clubs). This approach fails to place actual community needs at the centre of sport engagement efforts.Methods: A consultation framework was established with South Australian CALD community leaders and organisations to scope needs for community-based alternatives to participation in traditional sport (e.g. clubs), co-design a suitable community sport program and pilot it in five communities. Interviews and questionnaire surveys were conducted with participants, community representatives, stakeholders and volunteers.Results: Regular, free soccer activities engaged 263 young people from a great variety of nationalities, including over 50% refugees, in secondary state school and community-based sites.Conclusion: Alternative community sport programs can provide a basic but valuable forum to promote physical activity and associated well being in CALD and refugee communities.So what?: Alternative approaches can extend the health benefits of sport participation to disadvantaged children and youth who are excluded from traditional sport participation opportunities.

  2. Are self-reported physical activity levels associated with perceived desirability of activity-friendly communities?

    PubMed

    Librett, John J; Yore, Michelle M; Schmid, Thomas L; Kohl, Harold W

    2007-09-01

    People living in activity-friendly communities (AFCs) are more active but the self-selection influence is unknown. From 4856 respondents we explored mediating variables with expressed desire to live in AFCs. Association with desire to live in AFCs included ages 18-24 years (odds ratio [OR]=1.9), African American (OR=1.9) or Hispanic (OR=1.5), and believing AFCs would support activity-based transportation (OR=2.4). Regular physical activity (PA) was marginally associated with desire to live in AFCs (OR=1.3). These findings suggest that PA may be a significant factor in communities of this style. Strategies for social marketing along with changes to the built environment to increase PA levels are discussed.

  3. Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California.

    PubMed

    Beman, J Michael; Steele, Joshua A; Fuhrman, Jed A

    2011-07-01

    Microorganisms remineralize and respire half of marine primary production, yet the niches occupied by specific microbial groups, and how these different groups may interact, are poorly understood. In this study, we identify co-occurrence patterns for marine Archaea and specific bacterial groups in the chlorophyll maximum of the Southern California Bight. Quantitative PCR time series of marine group 1 (MG1) Crenarchaeota 16S rRNA genes varied substantially over time but were well-correlated (r(2)=0.94, P<0.001) with ammonia monooxygenase subunit A (amoA) genes, and were more weakly related to 16S rRNA genes for all Archaea (r(2)=0.39), indicating that other archaeal groups (for example, Euryarchaeota) were numerically important. These data sets were compared with variability in bacterial community composition based on automated ribosomal intergenic spacer analysis (ARISA). We found that archaeal amoA gene copies and a SAR11 (or Pelagibacter) group Ib operational taxonomic unit (OTU) displayed strong co-variation through time (r(2)=0.55, P<0.05), and archaeal amoA and MG1 16S rRNA genes also co-occurred with two SAR86 and two Bacteroidetes OTUs. The relative abundance of these groups increased and decreased in synchrony over the course of the time series, and peaked during periods of seasonal transition. By using a combination of quantitative and relative abundance estimates, our findings show that abundant microbial OTUs-including the marine Crenarchaeota, SAR11, SAR86 and the Bacteroidetes-co-occur non-randomly; they consequently have important implications for our understanding of microbial community ecology in the sea.

  4. A Case Study Analysis of a Constructionist Knowledge Building Community with Activity Theory

    ERIC Educational Resources Information Center

    Ang, Chee S.; Zaphiris, Panayiotis; Wilson, Stephanie

    2011-01-01

    This article investigates how activity theory can help research a constructionist community. We present a constructionist activity model called CONstructionism Through ACtivity Theory (CONTACT) model and explain how it can be used to analyse the constructionist activity in knowledge building communities. We then illustrate the model through its…

  5. Community Pride: An Oregon 4-H Activity Relating to Beautification and Conservation.

    ERIC Educational Resources Information Center

    Oregon State Univ., Corvallis. Cooperative Extension Service.

    The Community Pride program is a 4-H activity in conservation and beautification. Instructions for selecting and carrying out a Community Pride activity are presented: planning, organizing, and doing the project. Suggestions for possible activities are offered, and instructions for reporting the activity to the county extension office are given.…

  6. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Womack, A. M.; Artaxo, P. E.; Ishida, F. Y.; Mueller, R. C.; Saleska, S. R.; Wiedemann, K. T.; Bohannan, B. J. M.; Green, J. L.

    2015-11-01

    Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughput DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, may be abundant members of active atmospheric fungal communities over the forest canopy.

  7. Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion

    PubMed Central

    Wilkins, David; Rao, Subramanya; Lu, Xiaoying; Lee, Patrick K. H.

    2015-01-01

    Anaerobic digestion (AD) is a widespread microbial technology used to treat organic waste and recover energy in the form of methane (“biogas”). While most AD systems have been designed to treat a single input, mixtures of digester sludge and solid organic waste are emerging as a means to improve efficiency and methane yield. We examined laboratory anaerobic cultures of AD sludge from two sources amended with food waste, xylose, and xylan at mesophilic temperatures, and with cellulose at meso- and thermophilic temperatures, to determine whether and how the inoculum and substrate affect biogas yield and community composition. All substrate and inoculum combinations yielded methane, with food waste most productive by mass. Pyrosequencing of transcribed bacterial and archaeal 16S rRNA showed that community composition varied across substrates and inocula, with differing ratios of hydrogenotrophic/acetoclastic methanogenic archaea associated with syntrophic partners. While communities did not cluster by either inoculum or substrate, additional sequencing of the bacterial 16S rRNA gene in the source sludge revealed that the bacterial communities were influenced by their inoculum. These results suggest that complete and efficient AD systems could potentially be assembled from different microbial inocula and consist of taxonomically diverse communities that nevertheless perform similar functions. PMID:26528262

  8. Response of Ammonia-oxidizing Bacterial and Archaeal Populations to Organic Nitrogen Amendments in Low-Nutrient Groundwater

    SciTech Connect

    David W. Reed; Yoshiko Fujita; Jason M. Smith; Christopher A. Francis

    2010-02-01

    To better understand the fate of ammonia introduced into low-nutrient groundwater as a result of the application of a novel remediation approach for trace metal contaminants, the diversity and abundance of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) were examined in samples collected during a field trial of the approach. The ammonia is derived from microbial urea hydrolysis, which has the potential to induce the formation of calcite and remove contaminants by coprecipitation in the calcite. The in situ oxidation of the ammonia by AOB and AOA could, however, potentially destabilize the calcite and lead to elevated nitrate levels in the groundwater. To evaluate the potential for stimulating ammonia oxidation by addition of urea, samples were collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea, and subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. AOB and AOA were present in all of the samples tested, with the AOA amoA genes more numerous in all of the samples except those collected following urea addition, when AOB genes were slightly more abundant. Following urea addition, nitrate levels rose and ammonia-oxidizing microorganisms (AOB + AOA) increased relative to the total microbial population, evidence that nitrification was stimulated by urea hydrolysis. Bacterial amoA diversity was limited to two sequence types, whereas the archaeal amoA analyses revealed 20 unique operational taxonomic units (OTUs), including several that were significantly different from any reported previously from other environments. In view of the results from this study, the potential for stimulation of ammonia-oxidizing communities should be considered in field-scale engineering activities involving microbial urea hydrolysis in groundwater.

  9. Phylogenetic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Yakimov, Michail M.; Cappello, Simone; Crisafi, Ermanno; Tursi, Angelo; Savini, Alessandra; Corselli, Cesare; Scarfi, Simona; Giuliano, Laura

    2006-01-01

    diversity was considerably higher in this sample than archaeal diversity, with four abundant eubacterial phylotypes: Proteobacteria, Verrucomicrobia, Actinobacteria and Planctomycetes (95% of all clones analyzed). This is one of the first phylogenetic evaluation of the presumed metabolically active microbial community structure associated with the deep-sea scleratinian coral L. pertusa.

  10. Circuit Design: An Inquiry Lab Activity at Maui Community College

    NASA Astrophysics Data System (ADS)

    Morzinski, K.; Azucena, O.; Downs, C.; Favaloro, T.; Park, J.; U, Vivian

    2010-12-01

    We present an inquiry lab activity on Circuit Design that was conducted in Fall 2009 with first-year community college students majoring in Electrical Engineering Technology. This inquiry emphasized the use of engineering process skills, including circuit assembly and problem solving, while learning technical content. Content goals of the inquiry emphasized understanding voltage dividers (Kirchoff's voltage law) and analysis and optimization of resistive networks (Thévenin equivalence). We assumed prior exposure to series and parallel circuits and Ohm's law (the relationship between voltage, current, and resistance) and designed the inquiry to develop these skills. The inquiry utilized selection of engineering challenges on a specific circuit (the Wheatstone Bridge) to realize these learning goals. Students generated questions and observations during the starters, which were categorized into four engineering challenges or design goals. The students formed teams and chose one challenge to focus on during the inquiry. We created a rubric for summative assessment which helped to clarify and solidify project goals while designing the inquiry and aided in formative assessment during the activity. After describing implementation, we compare and contrast engineering-oriented inquiry design as opposed to activities geared toward science learning.

  11. Diversity of Microbial Communities in Production and Injection Waters of Algerian Oilfields Revealed by 16S rRNA Gene Amplicon 454 Pyrosequencing

    PubMed Central

    Lenchi, Nesrine; İnceoğlu, Özgül; Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Llirós, Marc; Servais, Pierre; García-Armisen, Tamara

    2013-01-01

    The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations). Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC) revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera retrieved had already

  12. Diversity of Microbial Communities in Production and Injection Waters of Algerian Oilfields Revealed by 16S rRNA Gene Amplicon 454 Pyrosequencing.

    PubMed

    Lenchi, Nesrine; Inceoğlu, Ozgül; Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Llirós, Marc; Servais, Pierre; García-Armisen, Tamara

    2013-01-01

    The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations). Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC) revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera retrieved had already

  13. Application of quantitative real-time PCR for enumeration of total bacterial, archaeal, and yeast populations in kimchi.

    PubMed

    Park, Eun-Jin; Chang, Ho-Won; Kim, Kyoung-Ho; Nam, Young-Do; Roh, Seong Woon; Bae, Jin-Woo

    2009-12-01

    Kimchi is a Korean traditional fermented food made of brined vegetables, with a variety of spices. Various microorganisms are associated with the kimchi fermentation process. This study was undertaken in order to apply quantitative real-time PCR targeting the 16S and 26S rRNA genes for the investigation of dynamics of bacterial, archaeal, and yeast communities during fermentation of various types of kimchi. Although the total bacterial and archaeal rRNA gene copy numbers increased during kimchi fermentation, the number of yeasts was not significantly altered. In 1 ng of bulk DNA, the mean number of rRNA gene copies for all strains of bacteria was 5.45 x 10(6) which was 360 and 50 times greater than those for archaea and yeast, respectively. The total gene copy number for each group of microorganisms differed among the different types of kimchi, although the relative ratios among them were similar. The common dominance of bacteria in the whole microbial communities of various types of kimchi suggests that bacteria play a principal role in the kimchi fermentation process.

  14. An Inquiry "Warm-Up" Activity: Preparing Students for an Active Classroom Community

    NASA Astrophysics Data System (ADS)

    Seagroves, S.

    2010-12-01

    An active learning community that engages in inquiry activities will employ strategies and structures that students from traditional classrooms may find unfamiliar or uncomfortable. These include group work, voicing questions, shifting from one part of an activity to another (and sometimes shifting groups at the same time), presenting informally to the group, and many others. In addition, the role of the instructor as facilitator rather than teacher may not be familiar to students. As inquiry activities become incorporated into the regular classroom curriculum at Maui Community College (through collaboration with the Professional Development Program as part of the Akamai Workforce Initiative), a need emerged to give students a "warm-up" early in the semester to help them practice these participation structures. This activity was designed to be used on the very first day of class, to be easy and accessible to students, and to give them practice with these features of inquiry activities that they would see again throughout the semester. In addition, the activity introduces the engineering technology concepts of requirements, trade-offs, and limitations. It is important to note that this activity is not in and of itself an inquiry activity; in fact the content and processes featured in the activity are not particularly challenging nor are they the main focus. Instead, this is a "warm-up" for inquiry, so that students gain some comfort with the unconventional features of inquiry activities. The particular activity presented is for 20-30 students in a ˜90 minute lab period, and highlights different imaging technologies of cameras; however, it is easily adaptable to other requirements, to different technology, or other needs.

  15. Novel archaeal adhesion pilins with a conserved N terminus.

    PubMed

    Esquivel, Rianne N; Xu, Rachel; Pohlschroder, Mechthild

    2013-09-01

    Type IV pili play important roles in a wide array of processes, including surface adhesion and twitching motility. Although archaeal genomes encode a diverse set of type IV pilus subunits, the functions for most remain unknown. We have now characterized six Haloferax volcanii pilins, PilA[1-6], each containing an identical 30-amino-acid N-terminal hydrophobic motif that is part of a larger highly conserved domain of unknown function (Duf1628). Deletion mutants lacking up to five of the six pilin genes display no significant adhesion defects; however, H. volcanii lacking all six pilins (ΔpilA[1-6]) does not adhere to glass or plastic. Consistent with these results, the expression of any one of these pilins in trans is sufficient to produce functional pili in the ΔpilA[1-6] strain. PilA1His and PilA2His only partially rescue this phenotype, whereas ΔpilA[1-6] strains expressing PilA3His or PilA4His adhere even more strongly than the parental strain. Most surprisingly, expressing either PilA5His or PilA6His in the ΔpilA[1-6] strain results in microcolony formation. A hybrid protein in which the conserved N terminus of the mature PilA1His is replaced with the corresponding N domain of FlgA1 is processed by the prepilin peptidase, but it does not assemble functional pili, leading us to conclude that Duf1628 can be annotated as the N terminus of archaeal PilA adhesion pilins. Finally, the pilin prediction program, FlaFind, which was trained primarily on archaeal flagellin sequences, was successfully refined to more accurately predict pilins based on the in vivo verification of PilA[1-6].

  16. Electroporation of archaeal lipid membranes using MD simulations.

    PubMed

    Polak, Andraž; Tarek, Mounir; Tomšič, Matija; Valant, Janez; Ulrih, Nataša Poklar; Jamnik, Andrej; Kramar, Peter; Miklavčič, Damijan

    2014-12-01

    Molecular dynamics (MD) simulations were used to investigate the electroporation of archaeal lipid bilayers when subjected to high transmembrane voltages induced by a charge imbalance, mimicking therefore millisecond electric pulse experiments. The structural characteristics of the bilayer, a 9:91 mol% 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-myo-inositol (AI) and 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-1'(2'-O-α-D-glucosyl)-myo-inositol (AGI) were compared to small angle X-ray scattering data. A rather good agreement of the electron density profiles at temperatures of 298 and 343 K was found assessing therefore the validity of the protocols and force fields used in simulations. Compared to dipalmitoyl-phosphatidylcholine (DPPC), the electroporation threshold for the bilayer was found to increase from ~2 V to 4.3 V at 323 K, and to 5.2 V at 298 K. Comparing the electroporation thresholds of the archaeal lipids to those of simple diphytanoyl-phosphatidylcholine (DPhPC) bilayers (2.5 V at 323 K) allowed one to trace back the stability of the membranes to the structure of their lipid head groups. Addition of DPPC in amounts of 50 mol% to the archaeal lipid bilayers decreases their stability and lowers the electroporation thresholds to 3.8 V and 4.1 V at respectively 323 and 298 K. The present study therefore shows how membrane compositions can be selected to cover a wide range of responses to electric stimuli. This provides new routes for the design of liposomes that can be efficiently used as drug delivery carriers, as the selection of their composition allows one to tune in their electroporation threshold for subsequent release of their load.

  17. Bacterial community dynamics in full-scale activated sludge bioreactors: operational and ecological factors driving community assembly and performance.

    PubMed

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a "structure-function" paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors' communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation.

  18. Bacterial Community Dynamics in Full-Scale Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community Assembly and Performance

    PubMed Central

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A.

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation. PMID:22880016

  19. 24 CFR 1003.204 - Special activities by Community-Based Development Organizations (CBDOs).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Special activities by Community... INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMMUNITY DEVELOPMENT BLOCK GRANTS FOR INDIAN TRIBES AND ALASKA NATIVE VILLAGES Eligible Activities § 1003.204 Special activities by...

  20. 24 CFR 1003.204 - Special activities by Community-Based Development Organizations (CBDOs).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Special activities by Community... INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMMUNITY DEVELOPMENT BLOCK GRANTS FOR INDIAN TRIBES AND ALASKA NATIVE VILLAGES Eligible Activities § 1003.204 Special activities by...

  1. 24 CFR 1003.204 - Special activities by Community-Based Development Organizations (CBDOs).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Special activities by Community... INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMMUNITY DEVELOPMENT BLOCK GRANTS FOR INDIAN TRIBES AND ALASKA NATIVE VILLAGES Eligible Activities § 1003.204 Special activities by...

  2. 24 CFR 1003.204 - Special activities by Community-Based Development Organizations (CBDOs).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Special activities by Community... INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMMUNITY DEVELOPMENT BLOCK GRANTS FOR INDIAN TRIBES AND ALASKA NATIVE VILLAGES Eligible Activities § 1003.204 Special activities by...

  3. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    NASA Astrophysics Data System (ADS)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  4. Archaeal viruses from Yellowstone’s high temperature environments

    SciTech Connect

    M. Young; B. Wiedenheft; J. Snyder; J. Spuhler; F. Roberto; T. Douglas

    2005-01-01

    In general, our understanding of Archaea lags far behind our knowledge of the other two domains of life—Bacteria and Eukarya. Unlike the other domains of life, very few viruses of Archaea have been characterized. Of the approximately 4000 viruses described to date, only 36 are associated with archaeal hosts--many of these from thermophilic Crenarchaeota. In this work we describe the discovery, isolation and preliminary characterization of viruses and novel virus-like particles isolated directly from diverse thermal environments in Yellowstone National Park.

  5. Bridging the Gap: Linking Co-Curricular Activities to Student Learning Outcomes in Community College Students

    ERIC Educational Resources Information Center

    Storey, Katie Lauren

    2010-01-01

    This study investigated the extent to which participation in co-curricular events enhances the achievement of student-learning outcomes in community college students. One community college in Illinois--Chicago Metropolitan Area Community College (CMACC), a pseudonym--was selected to research based on its robust co-curricular activity programming.…

  6. Promoting Physical Activity among Youth through Community-Based Prevention Marketing

    ERIC Educational Resources Information Center

    Bryant, Carol A.; Courtney, Anita H.; McDermott, Robert J.; Alfonso, Moya L.; Baldwin, Julie A.; Nickelson, Jen; Brown, Kelli R. McCormack; DeBate, Rita D.; Phillips, Leah M.; Thompson, Zachary; Zhu, Yiliang

    2010-01-01

    Background: Community-based prevention marketing (CBPM) is a program planning framework that blends community-organizing principles with a social marketing mind-set to design, implement, and evaluate public health interventions. A community coalition used CBPM to create a physical activity promotion program for tweens (youth 9-13 years of age)…

  7. Non-extremophilic 'extremophiles' - Archaeal dominance in the subsurface and their implication for life

    NASA Astrophysics Data System (ADS)

    Reitschuler, Christoph; Lins, Philipp; Illmer, Paul

    2014-05-01

    Archaea - besides bacteria and eukaryota constituting the third big domain of life - were so far regarded as typical inhabitants of extreme environments, as indicated by the name (Archaeon, Greek: 'original', 'primal'). Previous research and cultivation successes were basically carried out in habitats characterized by extreme temperature, pH and salinity regimes. Such extreme conditions, as expected at the beginning of the Earth's evolution, are occasionally also prevalent on extraterrestrial planets and moons and make the Archaeal domain a key group to be studied concerning life's evolution and the most likely pioneer organisms to colonize environments that are regarded as hostile. However, in recent years it became obvious that Archaea, in particular non-extremophilic species, can be found almost ubiquitously in marine, freshwater, terrestrial and also subsurface habitats and occasionally outnumber other microbial domains and hold key positions in globally relevant energy and nutrient cycles. Besides extreme environments - the big question remains how to define a parameter as extreme - subsurface and cave environments present a window to the past, where adaptions to early life's conditions can be studied and how microbiomes may be structured in a habitat that represents a refugium on extraterrestrial celestial bodies, were surface conditions might be at first sight too extreme for life. The lower part of the alpine Hundsalm cave in Tyrol (Austria) offered a unique opportunity to study an almost pristine cave habitat, which is separated from the touristic part of the ice cave. The main focus of our research was laid on the microbial communities that were supposed to be in connection with secondary carbonate precipitations ('moonmilk'). For the ascertainment of these so far poorly evaluated structures a multiple approach assessment was chosen to generate a virtually complete picture of these subsurface microbiomes. Thereby, a combination of different cultivation

  8. Tropical Aquatic Archaea Show Environment-Specific Community Composition

    PubMed Central

    Silveira, Cynthia B.; Cardoso, Alexander M.; Coutinho, Felipe H.; Lima, Joyce L.; Pinto, Leonardo H.; Albano, Rodolpho M.; Clementino, Maysa M.; Martins, Orlando B.; Vieira, Ricardo P.

    2013-01-01

    The Archaea domain is ubiquitously distributed and extremely diverse, however, environmental factors that shape archaeal community structure are not well known. Aquatic environments, including the water column and sediments harbor many new uncultured archaeal species from which metabolic and ecological roles remain elusive. Some environments are especially neglected in terms of archaeal diversity, as is the case of pristine tropical areas. Here we investigate the archaeal composition in marine and freshwater systems from Ilha Grande, a South Atlantic tropical environment. All sampled habitats showed high archaeal diversity. No OTUs were shared between freshwater, marine and mangrove sediment samples, yet these environments are interconnected and geographically close, indicating environment-specific community structuring. Group II Euryarchaeota was the main clade in marine samples, while the new putative phylum Thaumarchaeota and LDS/RCV Euryarchaeota dominated freshwaters. Group III Euryarchaeota, a rare clade, was also retrieved in reasonable abundance in marine samples. The archaeal community from mangrove sediments was composed mainly by members of mesophilic Crenarchaeota and by a distinct clade forming a sister-group to Crenarchaeota and Thaumarchaeota. Our results show strong environment-specific community structuring in tropical aquatic Archaea, as previously seen for Bacteria. PMID:24086729

  9. Tropical aquatic Archaea show environment-specific community composition.

    PubMed

    Silveira, Cynthia B; Cardoso, Alexander M; Coutinho, Felipe H; Lima, Joyce L; Pinto, Leonardo H; Albano, Rodolpho M; Clementino, Maysa M; Martins, Orlando B; Vieira, Ricardo P

    2013-01-01

    The Archaea domain is ubiquitously distributed and extremely diverse, however, environmental factors that shape archaeal community structure are not well known. Aquatic environments, including the water column and sediments harbor many new uncultured archaeal species from which metabolic and ecological roles remain elusive. Some environments are especially neglected in terms of archaeal diversity, as is the case of pristine tropical areas. Here we investigate the archaeal composition in marine and freshwater systems from Ilha Grande, a South Atlantic tropical environment. All sampled habitats showed high archaeal diversity. No OTUs were shared between freshwater, marine and mangrove sediment samples, yet these environments are interconnected and geographically close, indicating environment-specific community structuring. Group II Euryarchaeota was the main clade in marine samples, while the new putative phylum Thaumarchaeota and LDS/RCV Euryarchaeota dominated freshwaters. Group III Euryarchaeota, a rare clade, was also retrieved in reasonable abundance in marine samples. The archaeal community from mangrove sediments was composed mainly by members of mesophilic Crenarchaeota and by a distinct clade forming a sister-group to Crenarchaeota and Thaumarchaeota. Our results show strong environment-specific community structuring in tropical aquatic Archaea, as previously seen for Bacteria.

  10. Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan.

    PubMed

    Chaudhary, Anita; Haack, Sheridan Kidd; Duris, Joseph W; Marsh, Terence L

    2009-08-01

    Studies of sulfidic springs have provided new insights into microbial metabolism, groundwater biogeochemistry, and geologic processes. We investigated Great Sulphur Spring on the western shore of Lake Erie and evaluated the phylogenetic affiliations of 189 bacterial and 77 archaeal 16S rRNA gene sequences from three habitats: the spring origin (11-m depth), bacterial-algal mats on the spring pond surface, and whitish filamentous materials from the spring drain. Water from the spring origin water was cold, pH 6.3, and anoxic (H(2), 5.4 nM; CH(4), 2.70 microM) with concentrations of S(2-) (0.03 mM), SO(4)(2-) (14.8 mM), Ca(2+) (15.7 mM), and HCO(3)(-) (4.1 mM) similar to those in groundwater from the local aquifer. No archaeal and few bacterial sequences were >95% similar to sequences of cultivated organisms. Bacterial sequences were largely affiliated with sulfur-metabolizing or chemolithotrophic taxa in Beta-, Gamma-, Delta-, and Epsilonproteobacteria. Epsilonproteobacteria sequences similar to those obtained from other sulfidic environments and a new clade of Cyanobacteria sequences were particularly abundant (16% and 40%, respectively) in the spring origin clone library. Crenarchaeota sequences associated with archaeal-bacterial consortia in whitish filaments at a German sulfidic spring were detected only in a similar habitat at Great Sulphur Spring. This study expands the geographic distribution of many uncultured Archaea and Bacteria sequences to the Laurentian Great Lakes, indicates possible roles for epsilonproteobacteria in local aquifer chemistry and karst formation, documents new oscillatorioid Cyanobacteria lineages, and shows that uncultured, cold-adapted Crenarchaeota sequences may comprise a significant part of the microbial community of some sulfidic environments.

  11. Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan

    USGS Publications Warehouse

    Chaudhary, A.; Haack, S.K.; Duris, J.W.; Marsh, T.L.

    2009-01-01

    Studies of sulfidic springs have provided new insights into microbial metabolism, groundwater biogeochemistry, and geologic processes. We investigated Great Sulphur Spring on the western shore of Lake Erie and evaluated the phylogenetic affiliations of 189 bacterial and 77 archaeal 16S rRNA gene sequences from three habitats: the spring origin (11-m depth), bacterial-algal mats on the spring pond surface, and whitish filamentous materials from the spring drain. Water from the spring origin water was cold, pH 6.3, and anoxic (H2, 5.4 nM; CH4, 2.70 ??M) with concentrations of S2- (0.03 mM), SO42- (14.8 mM), Ca2+ (15.7 mM), and HCO3- (4.1 mM) similar to those in groundwater from the local aquifer. No archaeal and few bacterial sequences were >95% similar to sequences of cultivated organisms. Bacterial sequences were largely affiliated with sulfur-metabolizing or chemolithotrophic taxa in Beta-, Gamma-, Delta-, and Epsilonproteobacteria. Epsilonproteobacteria sequences similar to those obtained from other sulfidic environments and a new clade of Cyanobacteria sequences were particularly abundant (16% and 40%, respectively) in the spring origin clone library. Crenarchaeota sequences associated with archaeal-bacterial consortia in whitish filaments at a German sulfidic spring were detected only in a similar habitat at Great Sulphur Spring. This study expands the geographic distribution of many uncultured Archaea and Bacteria sequences to the Laurentian Great Lakes, indicates possible roles for epsilonproteobacteria in local aquifer chemistry and karst formation, documents new oscillatorioid Cyanobacteria lineages, and shows that uncultured, cold-adapted Crenarchaeota sequences may comprise a significant part of the microbial community of some sulfidic environments. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  12. Partnering with those we serve: using experiential learning activities to support community nursing practice.

    PubMed

    Fries, Kathleen; Stewart, Julie G

    2012-01-01

    The concept of community is multidimensional and may include geographical boundaries and/or the shared interests of its members. Community nursing practice involves nurses, patients, and families who collaborate to address health issues and to promote positive health initiatives. Informed by community health theorists, experiential learning activities provide the structure to promote partnering in community nursing practice to achieve outcomes that benefit those who serve and those who are served.

  13. Integrating cultural community psychology: activity settings and the shared meanings of intersubjectivity.

    PubMed

    O'Donnell, Clifford R; Tharp, Roland G

    2012-03-01

    Cultural and community psychology share a common emphasis on context, yet their leading journals rarely cite each other's articles. Greater integration of the concepts of culture and community within and across their disciplines would enrich and facilitate the viability of cultural community psychology. The contextual theory of activity settings is proposed as one means to integrate the concepts of culture and community in cultural community psychology. Through shared activities, participants develop common experiences that affect their psychological being, including their cognitions, emotions, and behavioral development. The psychological result of these experiences is intersubjectivity. Culture is defined as the shared meanings that people develop through their common historic, linguistic, social, economic, and political experiences. The shared meanings of culture arise through the intersubjectivity developed in activity settings. Cultural community psychology presents formidable epistemological challenges, but overcoming these challenges could contribute to the transformation and advancement of community psychology.

  14. Energy for two: New archaeal lineages and the origin of mitochondria.

    PubMed

    Martin, William F; Neukirchen, Sinje; Zimorski, Verena; Gould, Sven B; Sousa, Filipa L

    2016-09-01

    Metagenomics bears upon all aspects of microbiology, including our understanding of mitochondrial and eukaryote origin. Recently, ribosomal protein phylogenies show the eukaryote host lineage - the archaeal lineage that acquired the mitochondrion - to branch within the archaea. Metagenomic studies are now uncovering new archaeal lineages that branch more closely to the host than any cultivated archaea do. But how do they grow? Carbon and energy metabolism as pieced together from metagenome assemblies of these new archaeal lineages, such as the Deep Sea Archaeal Group (including Lokiarchaeota) and Bathyarchaeota, do not match the physiology of any cultivated microbes. Understanding how these new lineages live in their environment is important, and might hold clues about how mitochondria arose and how the eukaryotic lineage got started. Here we look at these exciting new metagenomic studies, what they say about archaeal physiology in modern environments, how they impact views on host-mitochondrion physiological interactions at eukaryote origin.

  15. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

    PubMed

    Nicol, Graeme W; Leininger, Sven; Schleper, Christa; Prosser, James I

    2008-11-01

    Autotrophic ammonia oxidation occurs in acid soils, even though laboratory cultures of isolated ammonia oxidizing bacteria fail to grow below neutral pH. To investigate whether archaea possessing ammonia monooxygenase genes were responsible for autotrophic nitrification in acid soils, the community structure and phylogeny of ammonia oxidizing bacteria and archaea were determined across a soil pH gradient (4.9-7.5) by amplifying 16S rRNA and amoA genes followed by denaturing gradient gel electrophoresis (DGGE) and sequence analysis. The structure of both communities changed with soil pH, with distinct populations in acid and neutral soils. Phylogenetic reconstructions of crenarchaeal 16S rRNA and amoA genes confirmed selection of distinct lineages within the pH gradient and high similarity in phylogenies indicated a high level of congruence between 16S rRNA and amoA genes. The abundance of archaeal and bacterial amoA gene copies and mRNA transcripts contrasted across the pH gradient. Archaeal amoA gene and transcript abundance decreased with increasing soil pH, while bacterial amoA gene abundance was generally lower and transcripts increased with increasing pH. Short-term activity was investigated by DGGE analysis of gene transcripts in microcosms containing acidic or neutral soil or mixed soil with pH readjusted to that of native soils. Although mixed soil microcosms contained identical archaeal ammonia oxidizer communities, those adapted to acidic or neutral pH ranges showed greater relative activity at their native soil pH. Findings indicate that different bacterial and archaeal ammonia oxidizer phylotypes are selected in soils of different pH and that these differences in community structure and abundances are reflected in different contributions to ammonia oxidizer activity. They also suggest that both groups of ammonia oxidizers have distinct physiological characteristics and ecological niches, with consequences for nitrification in acid soils.

  16. Diversity of Archaeal Consortia in an Arsenic-Rich Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Franks, M.; Bennett, P.; Omelon, C.; Engel, A.

    2008-12-01

    Characterizing microbial communities within their geochemical environment is essential to understanding microbial distribution and microbial adaptations to extreme physical and chemical conditions. The hydrothermal waters at El Tatio geyser field demonstrate extreme conditions, with water at local boiling (85°C), arsenic concentrations at 0.5 mM, and inorganic carbon concentrations as low as 0.02mM. Yet many of El Tatio's hundred plus hydrothermal features are associated with extensive microbial mat communities. Recent work has shown phylogenetic variation in the communities that correlates to variations in water chemistry between features. MPN analysis indicates variations in metabolic function between hydrothermal features, such as the ability of the community to fix nitrogen, and the presence of methanogens within the community. Methanogenic archaea, which are typical of hydrothermal environments, are found in very few of the sampled hydrothermal features at El Tatio. MPN enumeration shows that nonspecific microbial mat samples from sites with dissolved methane contain 106 cells of methanogenic archaea per gram while non-specific samples from sites lacking dissolved methane contain 100 cells per gram or less. An acetylene assay showed evidence for nitrogen fixation in a sample associated with methanogenesis, but microbial transformation of acetylene to ethylene did not occur in non-methanogenic sites. More specific sampling of microbial mats indicates that methanogenic archaea are dominated by microorganisms within the genus Methanospirillum and Methanobrevibacter. These microbes are associated with a number of unclassified archaea in the class Thermoplasmata Halobacteriales, and unclassifiec Crenarchaeota. In addition, preliminary results include an unclassified Thaumarchaeota clone, a member of the recently proposed third archaeal phylum Thaumarchaeota. Nonspecific microbial mat sample from a non- methanogenic site included only Crenarchaeal clones within the

  17. Millennials, Technology and Perceived Relevance of Community Service Organizations: Is Social Media Replacing Community Service Activities?

    ERIC Educational Resources Information Center

    Hoffman, August John

    2017-01-01

    This mixed-methods qualitative study examined the relationship between perceptions of the importance of social media (i.e., Facebook, Twitter) with community service projects and volunteerism. Participants (n = 80) were interviewed and surveyed regarding their experiences in participating in a variety of community service work (CSW) projects…

  18. Short-term effect of elevated temperature on the abundance and diversity of bacterial and archaeal amoA genes in Antarctic Soils.

    PubMed

    Han, Jiwon; Jung, Jaejoon; Park, Minsuk; Hyun, Seunghun; Park, Woojun

    2013-09-28

    Global warming will have far-reaching effects on our ecosystem. However, its effects on Antarctic soils have been poorly explored. To assess the effects of warming on microbial abundance and community composition, we sampled Antarctic soils from the King George Island in the Antarctic Peninsula and incubated these soils at elevated temperatures of 5°C and 8°C for 14 days. The reduction in total organic carbon and increase in soil respiration were attributed to the increased proliferation of Bacteria, Fungi, and Archaea. Interestingly, bacterial ammonia monooxygenase (amoA) genes were predominant over archaeal amoA, unlike in many other environments reported previously. Phylogenetic analyses of bacterial and archaeal amoA communities via clone libraries revealed that the diversity of amoA genes in Antarctic ammonia-oxidizing prokaryotic communities were temperature-insensitive. Interestingly, our data also showed that the amoA of Antarctic ammonia-oxidizing bacteria (AOB) communities differed from previously described amoA sequences of cultured isolates and clone library sequences, suggesting the presence of novel Antarctic-specific AOB communities. Denitrification-related genes were significantly reduced under warming conditions, whereas the abundance of amoA and nifH increased. Barcoded pyrosequencing of the bacterial 16S rRNA gene revealed that Proteobacteria, Acidobacteria, and Actinobacteria were the major phyla in Antarctic soils and the effect of short-term warming on the bacterial community was not apparent.

  19. Archaeal type IV pili and their involvement in biofilm formation

    PubMed Central

    Pohlschroder, Mechthild; Esquivel, Rianne N.

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation. PMID:25852657

  20. Handling tRNA introns, archaeal way and eukaryotic way

    PubMed Central

    Yoshihisa, Tohru

    2014-01-01

    Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages. PMID:25071838

  1. Archaeal type IV pili and their involvement in biofilm formation.

    PubMed

    Pohlschroder, Mechthild; Esquivel, Rianne N

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.

  2. Archaeal viruses multiply: temporal screening in a solar saltern.

    PubMed

    Atanasova, Nina S; Demina, Tatiana A; Buivydas, Andrius; Bamford, Dennis H; Oksanen, Hanna M

    2015-04-10

    Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.

  3. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    PubMed Central

    Koga, Yosuke

    2012-01-01

    The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1) the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2) the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3) the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.” PMID:22927779

  4. Archaeal ancestors of eukaryotes: not so elusive any more.

    PubMed

    Koonin, Eugene V

    2015-10-05

    The origin of eukaryotes is one of the hardest problems in evolutionary biology and sometimes raises the ominous specter of irreducible complexity. Reconstruction of the gene repertoire of the last eukaryotic common ancestor (LECA) has revealed a highly complex organism with a variety of advanced features but no detectable evolutionary intermediates to explain their origin. Recently, however, genome analysis of diverse archaea led to the discovery of apparent ancestral versions of several signature eukaryotic systems, such as the actin cytoskeleton and the ubiquitin network, that are scattered among archaea. These findings inspired the hypothesis that the archaeal ancestor of eukaryotes was an unusually complex form with an elaborate intracellular organization. The latest striking discovery made by deep metagenomic sequencing vindicates this hypothesis by showing that in phylogenetic trees eukaryotes fall within a newly identified archaeal group, the Lokiarchaeota, which combine several eukaryotic signatures previously identified in different archaea. The discovery of complex archaea that are the closest living relatives of eukaryotes is most compatible with the symbiogenetic scenario for eukaryogenesis.

  5. Sense of Cohesion among Community Activists Engaging in Volunteer Activity

    ERIC Educational Resources Information Center

    Levy, Drorit; Itzhaky, Haya; Zanbar, Lea; Schwartz, Chaya

    2012-01-01

    The present article attempts to shed light on the direct and indirect contribution of personal resources and community indices to Sense of Cohesion among activists engaging in community volunteer work. The sample comprised 481 activists. Based on social systems theory, three levels of variables were examined: (1) inputs, which included personal…

  6. Community Based Education Activities in Southeastern Region Teacher Corps Projects.

    ERIC Educational Resources Information Center

    White, Martha; Bonney, Nancy

    To gather information on the community councils mandated for each Teacher Corps project, this pilot study surveyed 34 project directors and council chairpersons in 24 southeastern projects initiated in 1978 and 1979. The study's questionnaires asked about community council elections, membership, training, leadership, meetings, procedures, interest…

  7. Archaeal enrichment in the hypoxic zone in the northern Gulf of Mexico.

    PubMed

    Gillies, Lauren E; Thrash, J Cameron; deRada, Sergio; Rabalais, Nancy N; Mason, Olivia U

    2015-10-01

    Areas of low oxygen have spread exponentially over the past 40 years, and are cited as a key stressor on coastal ecosystems. The world's second largest coastal hypoxic (≤ 2 mg of O2 l(-1)) zone occurs annually in the northern Gulf of Mexico. The net effect of hypoxia is the diversion of energy flow away from higher trophic levels to microorganisms. This energy shunt is consequential to the overall productivity of hypoxic water masses and the ecosystem as a whole. In this study, water column samples were collected at 39 sites in the nGOM, 21 of which were hypoxic. Analysis of the microbial community along a hypoxic to oxic dissolved oxygen gradient revealed that the relative abundance (iTag) of Thaumarchaeota species 16S rRNA genes (> 40% of the microbial community in some hypoxic samples), the absolute abundance (quantitative polymerase chain reaction; qPCR) of Thaumarchaeota 16S rRNA genes and archaeal ammonia-monooxygenase gene copy number (qPCR) were significantly higher in hypoxic samples. Spatial interpolation of the microbial and chemical data revealed a continuous, shelfwide band of low dissolved oxygen waters that were dominated by Thaumarchaeota (and Euryarchaeota), amoA genes and high concentrations of phosphate in the nGOM, thus implicating physicochemical forcing on microbial abundance.

  8. Archaeal populations in two distinct sedimentary facies of the subsurface of the Dead Sea.

    PubMed

    Thomas, C; Ionescu, D; Ariztegui, D

    2014-10-01

    Archaeal metabolism was studied in aragonitic and gypsum facies of the Dead Sea subsurface using high-throughput DNA sequencing. We show that the communities are well adapted to the peculiar environment of the Dead Sea subsurface. They harbor the necessary genes to deal with osmotic pressure using high- and low-salt-in strategies, and to cope with unusually high concentrations of heavy metals. Methanogenesis was identified for the first time in the Dead Sea and appears to be an important metabolism in the aragonite sediment. Fermentation of residual organic matter, probably performed by some members of the Halobacteria class is common to both types of sediments. The latter group represents more than 95% of the taxonomically identifiable Archaea in the metagenome of the gypsum sediment. The potential for sulfur reduction has also been revealed and is associated in the sediment with EPS degradation and Fe-S mineralization as revealed by SEM imaging. Overall, we show that distinct communities of Archaea are associated with the two different facies of the Dead Sea, and are adapted to the harsh chemistry of its subsurface, in different ways.

  9. Microbial Diversity Analysis of the Bacterial and Archaeal Population in Present Day Stromatolites

    NASA Technical Reports Server (NTRS)

    Ortega, Maya C.

    2011-01-01

    Stromatolites are layered sedimentary structures resulting from microbial mat communities that remove carbon dioxide from their environment and biomineralize it as calcium carbonate. Although prevalent in the fossil record, stromatolites are rare in the modem world and are only found in a few locations including Highbome Cay in the Bahamas. The stromatolites found at this shallow marine site are analogs to ancient microbial mat ecosystems abundant in the Precambrian period on ancient Earth. To understand how stromatolites form and develop, it is important to identify what microorganisms are present in these mats, and how these microbes contribute to geological structure. These results will provide insight into the molecular and geochemical processes of microbial communities that prevailed on ancient Earth. Since stromatolites are formed by lithifying microbial mats that are able to mineralize calcium carbonate, understanding the biological mechanisms involved may lead to the development of carbon sequestration technologies that will be applicable in human spaceflight, as well as improve our understanding of global climate and its sustainability. The objective of my project was to analyze the archaeal and bacterial dIversity in stromatolites from Highborn Cay in the Bahamas. The first step in studying the molecular processes that the microorganisms carry out is to ascertain the microbial complexity within the mats, which includes identifying and estimating the numbers of different microbes that comprise these mats.

  10. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs.

    PubMed

    Kumaresan, Deepak; Héry, Marina; Bodrossy, Levente; Singer, Andrew C; Stralis-Pavese, Nancy; Thompson, Ian P; Murrell, J Colin

    2011-12-01

    Landfills represent a major source of methane in the atmosphere. In a previous study, we demonstrated that earthworm activity in landfill cover soil can increase soil methane oxidation capacity. In this study, a simulated landfill cover soil mesocosm (1 m × 0.15 m) was used to observe the influence of earthworms (Eisenia veneta) on the active methanotroph community composition, by analyzing the expression of the pmoA gene, which is responsible for methane oxidation. mRNA-based pmoA microarray analysis revealed that earthworm activity in landfill cover soil stimulated activity of type I methanotrophs (Methylobacter, Methylomonas, Methylosarcina spp.) compared to type II methanotrophs (particularly Methylocystis spp.). These results, along with previous studies of methanotrophs in landfill cover soil, can now be used to plan in situ field studies to integrate earthworm-induced methanotrophy with other landfill management practises in order to maximize soil methane oxidation and reduce methane emissions from landfills.

  11. Phylogenetic and functional diversity of microbial communities associated with subsurface sediments of the Sonora Margin, Guaymas Basin.

    PubMed

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A; Parkes, John R; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments.

  12. Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin

    PubMed Central

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369

  13. Linking Nitrogen-Cycling Microbial Communities to Environmental Fluctuations and Biogeochemical Activity in a Large, Urban Estuary: the San Francisco Bay-Delta

    NASA Astrophysics Data System (ADS)

    Francis, C.

    2015-12-01

    Nitrogen (N) availability is an important factor controlling productivity and thus carbon cycling in estuaries. The fate of N in estuaries depends on the activities of the microbes that carry out the N-cycle, which in turn depend on factors such as organic matter availability, dissolved inorganic N, salinity, oxygen, and temperature. Key microbial N transformations include nitrification (the aerobic oxidation of ammonia to nitrite and nitrate) and denitrification (the anaerobic reduction of nitrate to dinitrogen gas). While denitrification leads to N loss, nitrification is the only link between reduced N (produced by decomposition) and oxidized N (substrates for N loss processes), and both processes are known to produce nitrous oxide (N2O), a potent greenhouse gas. Understanding controls of N-cycling in the San Francisco Bay-Delta (SFBD)—the largest estuary on the west coast of North America—is particularly important, as this urban estuary is massively polluted with N, even compared to classic "eutrophic" systems. Interestingly, the SFBD has been spared the detrimental consequences of nutrient enrichment, largely due to high suspended sediment concentrations (and thus low light penetration) throughout the water column, combined with high grazing pressure. However, the recent "clearing" of SFBD waters due to a sharp decrease in suspended sediments may significantly alter the ecology of the estuary, by increasing phytoplankton growth. Thus, the SFBD may be losing its historical resilience to eutrophication, and may soon be "high-nutrient, low-chlorophyll" no more. Elucidating the environmental factors affecting the community structure, activity, and functioning of N-cycling microbes in SFBD is crucial for determining how changes in turbidity and productivity will be propagated throughout the ecosystem. While substantial ecological research in the SFBD has focused on phytoplankton and food webs, bacterial and archaeal communities have received far less attention

  14. A Validation and Reliability Study of Community Service Activities Scale in Turkey: A Social Evaluation

    ERIC Educational Resources Information Center

    Demir, Özden; Kaya, Halil Ibrahim; Tasdan, Murat

    2014-01-01

    The purpose of this study is to test the reliability and validity of Community Service Activities Scale (CSAS) developed by Demir, Kaya and Tasdan (2012) with a view to identify perceptions of Faculty of Education students regarding community service activities. The participants of the study are 313 randomly chosen students who attend six…

  15. Do Sedentary Older Adults Benefit from Community-Based Exercise? Results from the Active Start Program

    ERIC Educational Resources Information Center

    Yan, Tingjian; Wilber, Kathleen H.; Aguirre, Rosa; Trejo, Laura

    2009-01-01

    Purpose: This study assessed the effectiveness of Active Start, a community-based behavior change and fitness program, designed to promote physical activity among sedentary community-dwelling older adults. Design and Methods: A quasi-experimental design was used. Data were analyzed using a within-group pretest-post-test design to calculate changes…

  16. Newspaper Content Analysis in Evaluation of a Community-Based Participatory Project to Increase Physical Activity

    ERIC Educational Resources Information Center

    Granner, Michelle L.; Sharpe, Patricia A.; Burroughs, Ericka L.; Fields, Regina; Hallenbeck, Joyce

    2010-01-01

    This study conducted a newspaper content analysis as part of an evaluation of a community-based participatory research project focused on increasing physical activity through policy and environmental changes, which included activities related to media advocacy and media-based community education. Daily papers (May 2003 to December 2005) from both…

  17. 24 CFR 1003.204 - Special activities by Community-Based Development Organizations (CBDOs).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TRIBES AND ALASKA NATIVE VILLAGES Eligible Activities § 1003.204 Special activities by Community-Based... other local documents as a neighborhood, village, or similar geographical designation; or the...

  18. Community Links

    ERIC Educational Resources Information Center

    Nelson, Mary

    1975-01-01

    At Moraine Valley Community College (Illinois), a chain of events, programs, activities, and services has linked the college and community in such areas as fine arts, ethnic groups, public services, community action, community service, and community education. (Author/NHM)

  19. Significance of archaeal nitrification in hypoxic waters of the Baltic Sea

    PubMed Central

    Berg, Carlo; Vandieken, Verona; Thamdrup, Bo; Jürgens, Klaus

    2015-01-01

    Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification. AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and little is known about the factors, for example sulfide, that regulate nitrification in this system. In the present work, we assessed the contribution of AOA to ammonia oxidation rates in Baltic deep basins and elucidated the impact of sulfide on this process. Rate measurements with 15N-labeled ammonium, CO2 dark fixation measurements and quantification of AOA by catalyzed reporter deposition–fluorescence in situ hybridization revealed that among the three investigated sites the highest potential nitrification rates (122–884 nmol l−1per day) were measured within gradients of decreasing oxygen, where thaumarchaeotal abundance was maximal (2.5–6.9 × 105 cells per ml) and CO2 fixation elevated. In the presence of the archaeal-specific inhibitor GC7, nitrification was reduced by 86–100%, confirming the assumed dominance of AOA in this process. In samples spiked with sulfide at concentrations similar to those of in situ conditions, nitrification activity was inhibited but persisted at reduced rates. This result together with the substantial nitrification potential detected in sulfidic waters suggests the tolerance of AOA to periodic mixing of anoxic and sulfidic waters. It begs the question of whether the globally distributed Thaumarchaeota respond similarly in other stratified water columns or whether the observed robustness against sulfide is a specific feature of the thaumarchaeotal subcluster present in the Baltic Deeps. PMID:25423026

  20. Significance of archaeal nitrification in hypoxic waters of the Baltic Sea.

    PubMed

    Berg, Carlo; Vandieken, Verona; Thamdrup, Bo; Jürgens, Klaus

    2015-06-01

    Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification. AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and little is known about the factors, for example sulfide, that regulate nitrification in this system. In the present work, we assessed the contribution of AOA to ammonia oxidation rates in Baltic deep basins and elucidated the impact of sulfide on this process. Rate measurements with (15)N-labeled ammonium, CO(2) dark fixation measurements and quantification of AOA by catalyzed reporter deposition-fluorescence in situ hybridization revealed that among the three investigated sites the highest potential nitrification rates (122-884 nmol l(-1)per day) were measured within gradients of decreasing oxygen, where thaumarchaeotal abundance was maximal (2.5-6.9 × 10(5) cells per ml) and CO(2) fixation elevated. In the presence of the archaeal-specific inhibitor GC(7), nitrification was reduced by 86-100%, confirming the assumed dominance of AOA in this process. In samples spiked with sulfide at concentrations similar to those of in situ conditions, nitrification activity was inhibited but persisted at reduced rates. This result together with the substantial nitrification potential detected in sulfidic waters suggests the tolerance of AOA to periodic mixing of anoxic and sulfidic waters. It begs the question of whether the globally distributed Thaumarchaeota respond similarly in other stratified water columns or whether the observed robustness against sulfide is a specific feature of the thaumarchaeotal subcluster present in the Baltic Deeps.

  1. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep.

    PubMed

    Heijs, Sander K; Haese, Ralf R; van der Wielen, Paul W J J; Forney, Larry J; van Elsas, Jan Dirk

    2007-04-01

    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22-34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0-6 cm). Communities in the middle layer (6-22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study.

  2. Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient.

    PubMed

    Gough, Heidi L; Stahl, David A

    2011-03-01

    Contamination, such as by heavy metals, has frequently been implicated in altering microbial community structure. However, this association has not been extensively studied for anaerobic communities, or in freshwater lake sediments. We investigated microbial community structure in the metal-contaminated anoxic sediments of a eutrophic lake that were impacted over the course of 80 years by nearby zinc-smelting activities. Microbial community structure was inferred for bacterial, archaeal and eukaryotic populations by evaluating terminal restriction fragment length polymorphism (TRFLP) patterns in near-surface sediments collected in triplicate from five areas of the lake that had differing levels of metal contamination. The majority of the fragments in the bacterial and eukaryotic profiles showed no evidence of variation in association with metal contamination levels, and diversity revealed by these profiles remained consistent even as metal concentrations varied from 3000 to 27,000 mg kg(-1) total Zn, 0.125 to 11.2 μ pore water Zn and 0.023 to 5.40 μM pore water As. Although most archaeal fragments also showed no evidence of variation, the prevalence of a fragment associated with mesophilic Crenarchaeota showed significant positive correlation with total Zn concentrations. This Crenarchaeota fragment dominated the archaeal TRFLP profiles, representing between 35% and 79% of the total measured peak areas. Lake DePue 16S rRNA gene sequences corresponding to this TRFLP fragment clustered with anaerobic and soil mesophilic Crenarchaeota sequences. Although Crenarchaeota have been associated with metal-contaminated groundwater and soils, this is a first report (to our knowledge) documenting potential increased prevalence of Crenarchaeota associated with elevated levels of metal contamination.

  3. System analysis of synonymous codon usage biases in archaeal virus genomes.

    PubMed

    Li, Sen; Yang, Jie

    2014-08-21

    Recent studies of geothermally heated aquatic ecosystems have found widely divergent viruses with unusual morphotypes. Archaeal viruses isolated from these hot habitats usually have double-stranded DNA genomes, linear or circular, and can infect members of the Archaea domain. In this study, the synonymous codon usage bias (SCUB) and dinucleotide composition in the available complete archaeal virus genome sequences have been investigated. It was found that there is a significant variation in SCUB among different Archaeal virus species, which is mainly determined by the base composition. The outcome of correspondence analysis (COA) and Spearman׳s rank correlation analysis shows that codon usage of selected archaeal virus genes depends mainly on GC richness of genome, and the gene׳s function, albeit with smaller effects, also contributes to codon usage in this virus. Furthermore, this investigation reveals that aromaticity of each protein is also critical in affecting SCUB of these viral genes although it was less important than that of the mutational bias. Especially, mutational pressure may influence SCUB in SIRV1, SIRV2, ARV1, AFV1, and PhiCh1 viruses, whereas translational selection could play a leading role in HRPV1׳s SCUB. These conclusions not only can offer an insight into the codon usage biases of archaeal virus and subsequently the possible relationship between archaeal viruses and their host, but also may help in understanding the evolution of archaeal viruses and their gene classification, and more helpful to explore the origin of life and the evolution of biology.

  4. Which Members of the Microbial Communities Are Active? Microarrays

    NASA Astrophysics Data System (ADS)

    Morris, Brandon E. L.

    only at the early stages of understanding the microbial processes that occur in petroliferous formations and the surrounding subterranean environment. Important first steps in characterising the microbiology of oilfield systems involve identifying the microbial community structure and determining how population diversity changes are affected by the overall geochemical and biological parameters of the system. This is relatively easy to do today by using general 16S rRNA primers for PCR and building clone libraries. For example, previous studies using molecular methods characterised many dominant prokaryotes in petroleum reservoirs (Orphan et al., 2000) and in two Alaskan North Slope oil facilities (Duncan et al., 2009; Pham et al., 2009). However, the problem is that more traditional molecular biology approaches, such as 16S clone libraries, fail to detect large portions of the community perhaps missing up to half of the biodiversity (see Hong et al., 2009) and require significant laboratory time to construct large libraries necessary to increase the probability of detecting the majority of even bacterial biodiversity. In the energy sector, the overarching desire would be to quickly assess the extent of in situ hydrocarbon biodegradation or to disrupt detrimental processes such as biofouling, and in these cases it may not be necessary to identify specific microbial species. Rather, it would be more critical to evaluate metabolic processes or monitor gene products that are implicated in the specific activity of interest. Research goals such as these are well suited for a tailored application of microarray technology.

  5. A community-organizing approach to promoting physical activity in older adults: the southeast senior physical activity network.

    PubMed

    Cheadle, Allen; Egger, Ruth; LoGerfo, James P; Walwick, Julie; Schwartz, Sheryl

    2010-03-01

    This article describes a community organizing approach to promoting physical activity among underserved older adults in southeast Seattle: the Southeast Senior Physical Activity Network (SESPAN). The organizing strategy involves networking with a variety of community-based organizations, with two broad objectives: (a) program objective-to make connections between two (or more) community-based organizations to create senior physical activity programs where none existed before; and (b) coalition objective-to build a broader network or coalition of groups and organizations to assist in making larger scale environmental and policy changes. Networking among organizations led to the creation of a number of potentially sustainable walking and exercise programs that are reaching previously underserved communities within Southeast Seattle. In addition, a major community event led to the establishment of a health coalition that has the potential to continue to generate new broad-based programs and larger scale environmental changes.

  6. Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants.

    PubMed

    Meerbergen, Ken; Van Geel, Maarten; Waud, Michael; Willems, Kris A; Dewil, Raf; Van Impe, Jan; Appels, Lise; Lievens, Bart

    2017-02-01

    It is assumed that microbial communities involved in the biological treatment of different wastewaters having a different chemical composition harbor different microbial populations which are specifically adapted to the environmental stresses encountered in these systems. Yet, little is known about the composition of these microbial communities. Therefore, the aim of this study was to assess the microbial community composition over two seasons (winter and summer) in activated sludge from well-operating textile wastewater treatment plants (WWTPs) in comparison with municipal WWTPs, and to explain observed differences by environmental variables. 454-pyrosequencing generated 160 archaeal and 1645 bacterial species-level Operational Taxonomic Units (OTUs), with lower observed richness in activated sludge from textile WWTPs compared to municipal WWTPs. The bacterial phyla Planctomycetes, Chloroflexi, Chlorobi, and Acidobacteria were more abundant in activated sludge samples from textile WWTPs, together with archaeal members of Thaumarchaeota. Nonmetric multidimensional scaling analysis of the microbial communities showed that microbial communities from textile and municipal WWTPs were significantly different, with a seasonal effect on archaea. Nitrifying and denitrifying bacteria as well as phosphate-accumulation bacteria were more abundant in municipal WWTPs, while sulfate-reducing bacteria were almost only detected in textile WWTPs. Additionally, microbial communities from textile WWTPs were more dissimilar than those of municipal WWTPs, possibly due to a wider diversity in environmental stresses to which microbial communities in textile WWTPs are subjected to. High salinity, high organic loads, and a higher water temperature were important potential variables driving the microbial community composition in textile WWTPs. This study provides a general view on the composition of microbial communities in activated sludge of textile WWTPs, and may provide novel insights

  7. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin.

    PubMed

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y; Lipp, Julius S; Ruff, S Emil; Biddle, Jennifer F; McKay, Luke J; MacGregor, Barbara J; Lloyd, Karen G; Albert, Daniel B; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed "Mat Mound") were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  8. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin

    PubMed Central

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y.; Lipp, Julius S.; Ruff, S. Emil; Biddle, Jennifer F.; McKay, Luke J.; MacGregor, Barbara J.; Lloyd, Karen G.; Albert, Daniel B.; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed “Mat Mound”) were characterized by porewater geochemistry of methane, C2–C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates. PMID:26858698

  9. Community.

    ERIC Educational Resources Information Center

    Grauer, Kit, Ed.

    1995-01-01

    Art in context of community is the theme of this newsletter. The theme is introduced in an editorial "Community-Enlarging the Definition" (Kit Grauer). Related articles include: (1) "The Children's Bridge is not Destroyed: Heart in the Middle of the World" (Emil Robert Tanay); (2) "Making Bridges: The Sock Doll…

  10. Evaluation of a Community-Based Intervention To Promote Physical Activity in Youth: Lessons from Active Winners.

    ERIC Educational Resources Information Center

    Pate, Russell R.; Saunders, Ruth P.; Ward, Dianne S.; Felton, Gwen; Trost, Stewart G.; Dowda, Marsha

    2003-01-01

    Tested the effectiveness of a community-based intervention designed to promote physical activity among rural fifth graders. Data on students who participated in after-school and summer programs and home, school, and community interventions indicated that the after-school and summer interventions were implemented as planned, but the home, school,…

  11. Useful scars: Physics of the capsids of archaeal viruses

    NASA Astrophysics Data System (ADS)

    Perotti, L. E.; Dharmavaram, S.; Klug, W. S.; Marian, J.; Rudnick, J.; Bruinsma, R. F.

    2016-07-01

    We propose a physical model for the capsids of tailed archaeal viruses as viscoelastic membranes under tension. The fluidity is generated by thermal motion of scarlike structures that are an intrinsic feature of the ground state of large particle arrays covering surfaces with nonzero Gauss curvature. The tension is generated by a combination of the osmotic pressure of the enclosed genome and an extension force generated by filamentous structure formation that drives the formation of the tails. In continuum theory, the capsid has the shape of a surface of constant mean curvature: an unduloid. Particle arrays covering unduloids are shown to exhibit pronounced subdiffusive and diffusive single-particle transport at temperatures that are well below the melting temperature of defect-free particle arrays on a surface with zero Gauss curvature.

  12. Targeted diversity generation by intraterrestrial archaea and archaeal viruses

    PubMed Central

    Paul, Blair G.; Bagby, Sarah C.; Czornyj, Elizabeth; Arambula, Diego; Handa, Sumit; Sczyrba, Alexander; Ghosh, Partho; Miller, Jeff F.; Valentine, David L.

    2015-01-01

    In the evolutionary arms race between microbes, their parasites, and their neighbours, the capacity for rapid protein diversification is a potent weapon. Diversity-generating retroelements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad variants of a target gene. Originally discovered in pathogens, these retroelements have been identified in bacteria and their viruses, but never in archaea. Here we report the discovery of intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding domains, potentially generating >1018 protein variants. The two single-cell nanoarchaeal genomes each possess ≥4 distinct DGRs. Against an expected background of low genome-wide mutation rates, these results demonstrate a previously unsuspected potential for rapid, targeted sequence diversification in intraterrestrial archaea and their viruses. PMID:25798780

  13. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota.

    PubMed

    Vanwonterghem, Inka; Evans, Paul N; Parks, Donovan H; Jensen, Paul D; Woodcroft, Ben J; Hugenholtz, Philip; Tyson, Gene W

    2016-10-03

    Methanogenesis is the primary biogenic source of methane in the atmosphere and a key contributor to climate change. The long-standing dogma that methanogenesis originated within the Euryarchaeota was recently challenged by the discovery of putative methane-metabolizing genes in members of the Bathyarchaeota, suggesting that methanogenesis may be more phylogenetically widespread than currently appreciated. Here, we present the discovery of divergent methyl-coenzyme M reductase genes in population genomes recovered from anoxic environments with high methane flux that belong to a new archaeal phylum, the Verstraetearchaeota. These archaea encode the genes required for methylotrophic methanogenesis, and may conserve energy using a mechanism similar to that proposed for the obligate H2-dependent methylotrophic Methanomassiliicoccales and recently described Candidatus 'Methanofastidiosa'. Our findings indicate that we are only beginning to understand methanogen diversity and support an ancient origin for methane metabolism in the Archaea, which is changing our understanding of the global carbon cycle.

  14. Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Kim, Mi-Sun; Kim, Jong-Oh; Kim, Young Mo; Park, Jong Moon

    2016-08-01

    In recent years, anaerobic co-digestion (AcoD) has been widely used to improve reactor performance, especially methane production. In this study, we applied two different operating temperatures (thermophilic and mesophilic) and gradually increased the load of food wastewater (FWW) to investigate the bacterial communities during the AcoD of waste activated sludge (WAS) and FWW. As the load of FWW was increased, methane production rate (MPR; L CH4/L d) and methane content (%) in both Thermophilic AcoD (TAcoD) and Mesophilic AcoD (MAcoD) increased significantly; the highest MPR and methane content in TAcoD (1.423 L CH4/L d and 68.24%) and MAcoD (1.233 L CH4/L d and 65.21%) were observed when the FWW mixing ratio was 75%. However, MPR and methane yield in both reactors decreased markedly and methane production in TAcoD ceased completely when only FWW was fed into the reactor, resulting from acidification of the reactor caused by accumulation of organic acids. Pyrosequencing analysis revealed a decrease in bacterial diversity in TAcoD and a markedly different composition of bacterial communities between TAcoD and MAcoD with an increase in FWW load. For example, Bacterial members belonging to two genera Petrotoga (assigned to phylum Thermotogae) and Petrimonas (assigned to phylum Bacteroidetes) became dominant in TAcoD and MAcoD with an increase in FWW load, respectively. In addition, quantitative real-time PCR (qPCR) results showed higher bacterial and archaeal populations (expressed as 16S rRNA gene concentration) in TAcoD than MAcoD with an increase in FWW load and showed maximum population when the FWW mixing ratio was 75% in both reactors. Collectively, this study demonstrated the dynamics of key bacterial communities in TAcoD and MAcoD, which were highly affected by the load of FWW.

  15. Molecular dynamics study of the archaeal aquaporin AqpM

    PubMed Central

    2011-01-01

    Background Aquaporins are a large family of transmembrane channel proteins that are present throughout all domains of life and are implicated in human disorders. These channels, allow the passive but selective movement of water and other small neutral solutes across cell membranes. Aquaporins have been classified into two sub-families: i) strict aquaporins that only allow the passage of water and ii) the less selective aquaglyceroporins that transport water and other neutral solutes, such as glycerol, CO2 or urea. Recently, the identification and characterization of a number of archaeal and bacterial aquaporins suggested the existence of a third sub-family; one that is neither a strict aquaporin nor an aquaglyceroporin. The function and phylogeny of this third family is still a matter of debate. Results Twenty nanosecond molecular dynamics (MD) simulation of a fully hydrated tetramer of AqpM embedded in a lipid bilayer permitted predictions to be made of key biophysical parameters including: single channel osmotic permeability constant (pf), single channel diffusive permeability constant (pd), channel radius, potential water occupancy of the channel and water orientation inside the pore. These properties were compared with those of well characterized representatives of the two main aquaporin sub-families. Results show that changes in the amino acid composition of the aromatic/arginine region affect the size and polarity of the selectivity filter (SF) and could help explain the difference in water permeability between aquaporins. In addition, MD simulation results suggest that AqpM combines characteristics of strict aquaporins, such as the narrow SF and channel radius, with those of aquaglyceroporins, such as a more hydrophobic and less polar SF. Conclusions MD simulations of AqpM extend previous evidence that this archaeal aquaporin exhibits hybrid features intermediate between the two known aquaporin sub-families, supporting the idea that it may constitute a

  16. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  17. Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems

    PubMed Central

    Deng, Jie; Deng, Ye; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Qin, Yujia; Zhou, Jiti; Zhou, Jizhong

    2015-01-01

    Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied using pure cultures, but less has been done to characterize the indigo production by microbial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated from activated sludge and the recombinant Escherichia coli nagAc carrying the naphthalene dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant E. coli nagAc), were constructed to investigate indigo production. After 132-day operation, G3 produced the highest yields of indigo (99.5 ± 3.0 mg/l), followed by G2 (27.3 ± 1.3 mg/l) and G1 (19.2 ± 1.2 mg/l). The microbial community dynamics and activities associated with indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene amplicons. The inoculated strain MQ survived for at least 30 days, whereas E. coli nagAc was undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was strongly correlated with indigo yields in early stages (0–30 days) (P < 0.001) but not in later stages (30–132 days) (P > 0.10) of operation. Based on detrended correspondence analysis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during the operation. Among the four major genera (> 1% on average), the commonly reported indigo-producing populations Comamonas and Pseudomonas showed no positive relationship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo yields (P < 0.05). This study should provide new insights into our understanding of indigo bio-production by microbial communities

  18. Methanosarcina acetivorans C2A Topoisomerase IIIα, an Archaeal Enzyme with Promiscuity in Divalent Cation Dependence

    PubMed Central

    Morales, Raymond; Sriratana, Palita; Zhang, Jing; Cann, Isaac K. O.

    2011-01-01

    Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα) as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30–35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+). Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin) and type II (etoposide, novobiocin and nalidixic acid) inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain) is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1–586) and a C-terminal (587–752) fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn2+ binding of the enzyme is also provided. PMID:22046402

  19. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls.

    PubMed

    Panyakaew, P; Boon, N; Goel, G; Yuangklang, C; Schonewille, J Th; Hendriks, W H; Fievez, V

    2013-12-01

    Medium-chain fatty acids (MCFA), for example, capric acid (C10:0), myristic (C14:0) and lauric (C12:0) acid, have been suggested to decrease rumen archaeal abundance and protozoal numbers. This study aimed to compare the effect of MCFA, either supplied through krabok (KO) or coconut (CO) oil, on rumen fermentation, protozoal counts and archaeal abundance, as well as their diversity and functional organization. KO contains similar amounts of C12:0 as CO (420 and 458 g/kg FA, respectively), but has a higher proportion of C14:0 (464 v. 205 g/kg FA, respectively). Treatments contained 35 g supplemental fat per kg DM: a control diet with tallow (T); a diet with supplemental CO; and a diet with supplemental KO. A 4th treatment consisted of a diet with similar amounts of MCFA (i.e. C10:0+C12:0+C14:0) from CO and KO. To ensure isolipidic diets, extra tallow was supplied in the latter treatment (KO+T). Eight fistulated bulls (two bulls per treatment), fed a total mixed ration predominantly based on cassava chips, rice straw, tomato pomace, rice bran and soybean meal (1.5% of BW), were used. Both KO and CO increased the rumen volatile fatty acids, in particular propionate and decreased acetate proportions. Protozoal numbers were reduced through the supplementation of an MCFA source (CO, KO and KO+T), with the strongest reduction by KO. Quantitative real-time polymerase chain reaction assays based on archaeal primers showed a decrease in abundance of Archaea when supplementing with KO and KO+T compared with T and CO. The denaturing gradient gel electrophoresis profiles of the rumen archaeal population did not result in a grouping of treatments. Richness indices were calculated from the number of DGGE bands, whereas community organization was assessed from the Pareto-Lorenz evenness curves on the basis of DGGE band intensities. KO supplementation (KO and KO+T treatments) increased richness and evenness within the archaeal community. Further research including methane

  20. Youth Activism in the Urban Community: Learning Critical Civic Praxis within Community Organizations

    ERIC Educational Resources Information Center

    Ginwright, Shawn; Cammarota, Julio

    2007-01-01

    Research on African-American and Latina/o youth has been dominated by studies that focus on "problem" adolescent behavior. Typically, they explain youth crime, delinquency, and violence as individual pathological behavior or cultural adaptations stemming from social disorganization in their communities. This article argues for a more…

  1. Patient Engagement and Activation in Three Underserved Beacon Communities.

    PubMed

    Jardins, Terrisca Des; Drone, Shenetta A; Hashisaka, Susan; Hazzard, Jobyna; Hunt, Susan B; Massey, Kimberly; Rein, Alison; Schachter, Abigail; Turske, Scott

    2015-08-01

    Whether the setting is urban, rural, or somewhere in between, engagement strategies for the underserved require a great deal of flexibility and sensitivity to the socioeconomic, cultural, and geographic conditions of the patient population. The following report details how three unique communities designed specific strategies to engage underserved populations in the management of their chronic conditions.

  2. Building Active Online Interaction via a Collaborative Learning Community

    ERIC Educational Resources Information Center

    Tu, Chih-Hsiung; Corry, Michael

    2003-01-01

    Online interaction creates a desirable learning situation. Transferring traditional instruction to an online environment usually does not generate effective interaction for learning. This paper discusses theories and practices for an interactive collaborative learning community in an online environment. Three theoretical constructs--interactivity,…

  3. Affinity through Mathematical Activity: Cultivating Democratic Learning Communities

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha

    2014-01-01

    In this article, the author demonstrates how a broader view of what shapes affinity is ideologically and practically linked to creating democratic learning communities. Specifically, the author explores how a teacher employed complex instruction (an equity pedagogy) with her ethnically and racially diverse students in the "lowest track"…

  4. Harmonizing Self and Community in the Activity of Teaching.

    ERIC Educational Resources Information Center

    Schultz, Dayvid

    Using a sixth grade classroom as an example, this paper discusses balance within the classroom, including balance of instruction and learning, of intentions and actions, and of relationships. This balance holds teachers in positive tension with students, parents, and the school community. Three metaphors describe pedagogic judgment as the…

  5. Measuring Physical Activity in Outdoor Community Recreational Environments: Implications for Research, Policy, and Practice.

    PubMed

    Aytur, Semra A; Jones, Sydney A; Stransky, Michelle; Evenson, Kelly R

    2015-01-01

    Chronic diseases such as cardiovascular disease (CVD) are major contributors to escalating health care costs in the USA. Physical activity is an important protective factor against CVD, and the National Prevention Strategy recognizes active living (defined as a way of life that integrates physical activity into everyday routines) as a priority for improving the nation's health. This paper focuses on developing more inclusive measures of physical activity in outdoor community recreational environments, specifically parks and trails, to enhance their usability for at-risk populations such as persons with mobility limitations. We develop an integrated conceptual framework for measuring physical activity in outdoor community recreational environments, describe examples of evidence-based tools for measuring physical activity in these settings, and discuss strategies to improve measurement of physical activity for persons with mobility limitations. Addressing these measurement issues is critically important to making progress towards national CVD goals pertaining to active community environments.

  6. Measuring Physical Activity in Outdoor Community Recreational Environments: Implications for Research, Policy, and Practice

    PubMed Central

    Jones, Sydney A.; Stransky, Michelle; Evenson, Kelly R.

    2015-01-01

    Chronic diseases such as cardiovascular disease (CVD) are major contributors to escalating health care costs in the USA. Physical activity is an important protective factor against CVD, and the National Prevention Strategy recognizes active living (defined as a way of life that integrates physical activity into everyday routines) as a priority for improving the nation’s health. This paper focuses on developing more inclusive measures of physical activity in outdoor community recreational environments, specifically parks and trails, to enhance their usability for at-risk populations such as persons with mobility limitations. We develop an integrated conceptual framework for measuring physical activity in outdoor community recreational environments, describe examples of evidence-based tools for measuring physical activity in these settings, and discuss strategies to improve measurement of physical activity for persons with mobility limitations. Addressing these measurement issues is critically important to making progress towards national CVD goals pertaining to active community environments. PMID:26005510

  7. Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste.

    PubMed

    Merlino, Giuseppe; Rizzi, Aurora; Schievano, Andrea; Tenca, Alberto; Scaglia, Barbara; Oberti, Roberto; Adani, Fabrizio; Daffonchio, Daniele

    2013-04-15

    The microbial community of a thermophilic two-stage process was monitored during two-months operation and compared to a conventional single-stage process. Qualitative and quantitative microbial dynamics were analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and real-time PCR techniques, respectively. The bacterial community was dominated by heat-shock resistant, spore-forming clostridia in the two-stage process, whereas a more diverse and dynamic community (Firmicutes, Bacteroidetes, Synergistes) was observed in the single-stage process. A significant evolution of bacterial community occurred over time in the acidogenic phase of the two-phase process with the selection of few dominant species associated to stable hydrogen production. The archaeal community, dominated by the acetoclastic Methanosarcinales in both methanogen reactors, showed a significant diversity change in the single-stage process after a period of adaptation to the feeding conditions, compared to a constant stability in the methanogenic reactor of the two-stage process. The more diverse and dynamic bacterial and archaeal community of single-stage process compared to the two-stage process accounted for the best degradation activity, and consequently the best performance, in this reactor. The microbiological perspective proved a useful tool for a better understanding and comparison of anaerobic digestion processes.

  8. A Community-Based Activities Survey: Systematically Determining the Impact on and of Faculty

    ERIC Educational Resources Information Center

    Perry, Lane; Farmer, Betty; Onder, David; Tanner, Benjamin; Burton, Carol

    2015-01-01

    As a descriptive case study from Western Carolina University (WCU), this article describes the development of a measuring, monitoring, and tracking system (the WCU Community-based Activities Survey) for faculty engagement in, adoption of, and impact through community engagement practices both internal and external to their courses. This paper will…

  9. 24 CFR 570.204 - Special activities by Community-Based Development Organizations (CBDOs).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 503 Company under the Small Business Investment Act of 1958, as amended; or (iii) Is a Community... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Special activities by Community... Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR...

  10. 24 CFR 570.204 - Special activities by Community-Based Development Organizations (CBDOs).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 503 Company under the Small Business Investment Act of 1958, as amended; or (iii) Is a Community... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Special activities by Community... Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR...

  11. 24 CFR 570.204 - Special activities by Community-Based Development Organizations (CBDOs).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 503 Company under the Small Business Investment Act of 1958, as amended; or (iii) Is a Community... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Special activities by Community... Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR...

  12. 24 CFR 570.204 - Special activities by Community-Based Development Organizations (CBDOs).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 503 Company under the Small Business Investment Act of 1958, as amended; or (iii) Is a Community... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Special activities by Community... Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR...

  13. Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments

    EPA Science Inventory

    Sulfate-reducing prokaryotes (SRP) play a key role in the carbon and nutrient cycles of coastal marine, vegetated ecosystems, but the interactions of SRP communities with aquatic plants remain little studied. The abundance, activity, and community composition of SRP was studied i...

  14. A Process of Environmental Education Communication through Community Cultural Activity Area

    ERIC Educational Resources Information Center

    Wongpaibool, Duangporn; Rawang, Wee; Supapongpichate, Ratchanont; Pichayapibool, Pataraboon

    2016-01-01

    The purpose of this research was: 1. To investigate social context, environment, way of life and community culture. 2. To gather the views and opinions regarding environmental conservation and restoration. 3. To synthesize a process of environmental education communication based on community cultural activity area. 4. To evaluate the efficacy of…

  15. A Framework for Physical Activity Programs within School-Community Partnerships

    ERIC Educational Resources Information Center

    Van Acker, Ragnar; De Bourdeaudhuij, Ilse; De Martelaer, Kristine; Seghers, Jan; Kirk, David; Haerens, Leen; De Cocker, Katrien; Cardon, Greet

    2011-01-01

    School-community partnerships have shown their potential as incubators for innovations and for contributing to comprehensive physical activity (PA) programs. However, implementation frameworks for school-community partnerships that allow local tailoring of PA programs remain scarce. The present paper aims at documenting the composition of a…

  16. Teachers' Professional Agency and Learning--From Adaption to Active Modification in the Teacher Community

    ERIC Educational Resources Information Center

    Pyhältö, Kirsi; Pietarinen, Janne; Soini, Tiina

    2015-01-01

    The aim of this study was to examine teacher learning in terms of teachers' professional agency in the professional community of the school. Altogether 2310 Finnish comprehensive school teachers completed a survey. Results showed that teachers' active efforts to learn in the professional community and to promote school development cannot be…

  17. Sediment Enzyme Activities and Microbial Community Diversity in an Oligotrophic Drinking Water Reservoir, Eastern China

    PubMed Central

    Zhang, Haihan; Huang, Tinglin; Liu, Tingting

    2013-01-01

    Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs), nested polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH3-N/(g·24h). The highest average well color development (AWCD) was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA) revealed tremendous differences in the functional (metabolic) diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir. PMID:24205265

  18. Data for Free: Using LMS Activity Logs to Measure Community in Online Courses

    ERIC Educational Resources Information Center

    Black, Erik W.; Dawson, Kara; Priem, Jason

    2008-01-01

    In the study of online learning community, many investigators have turned attention to automatically logged web data. This study aims to further this work by seeking to determine whether logs of student activity within online graduate level courses related to student perceptions of course community. Researchers utilized the data logging features…

  19. Using Phenomenography to Build an Understanding of How University People Conceptualise Their Community-Engaged Activities

    ERIC Educational Resources Information Center

    Brown, Kim; Shephard, Kerry; Warren, David; Hesson, Gala; Fleming, Jean

    2016-01-01

    Higher education institutions are seeking greater community engagement through academic, social and civic activity. In response, researcher attention has turned to impacts on students' education, and benefits to both university and community partners. This phenomenographic study examines how a diverse group of teachers, researchers and…

  20. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments.

    PubMed

    He, Y; Li, M; Perumal, V; Feng, X; Fang, J; Xie, J; Sievert, S M; Wang, F

    2016-04-04

    Members of the archaeal phylum Bathyarchaeota are widespread and abundant in the energy-deficient marine subsurface sediments. However, their life strategies have remained largely elusive. Here, we provide genetic evidence that some lineages of Bathyarchaeota are acetogens, being capable of homoacetogenesis, a metabolism so far restricted to the domain Bacteria. Metabolic reconstruction based on genomic bins assembled from the metagenome of deep-sea subsurface sediments shows that the metabolism of some lineages of Bathyarchaeota is similar to that of bona fide bacterial homoacetogens, by having pathways for acetogenesis and for the fermentative utilization of a variety of organic substrates. Heterologous expression and activity assay of the acetate kinase gene ack from Bathyarchaeota, demonstrate further the capability of these Bathyarchaeota to grow as acetogens. The presence and expression of bathyarchaeotal genes indicative of active acetogenesis was also confirmed in Peru Margin subsurface sediments where Bathyarchaeota are abundant. The analyses reveal that this ubiquitous and abundant subsurface archaeal group has adopted a versatile life strategy to make a living under energy-limiting conditions. These findings further expand the metabolic potential of Archaea and argue for a revision of the role of Archaea in the carbon cycle of marine sediments.

  1. Linking DNRA community structure and activity in a shallow lagoonal estuarine system

    PubMed Central

    Song, Bongkeun; Lisa, Jessica A.; Tobias, Craig R.

    2014-01-01

    Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification are two nitrate respiration pathways in the microbial nitrogen cycle. Diversity and abundance of denitrifying bacteria have been extensively examined in various ecosystems. However, studies on DNRA bacterial diversity are limited, and the linkage between the structure and activity of DNRA communities has yet to be discovered. We examined the composition, diversity, abundance, and activities of DNRA communities at five sites along a salinity gradient in the New River Estuary, North Carolina, USA, a shallow temporal/lagoonal estuarine system. Sediment slurry incubation experiments with 15N-nitrate were conducted to measure potential DNRA rates, while the abundance of DNRA communities was calculated using quantitative PCR of nrfA genes encoding cytochrome C nitrite reductase, commonly found in DNRA bacteria. A pyrosequencing method targeting nrfA genes was developed using an Ion Torrent sequencer to examine the diversity and composition of DNRA communities within the estuarine sediment community. We found higher levels of nrfA gene abundance and DNRA activities in sediments with higher percent organic content. Pyrosequencing analysis of nrfA genes revealed spatial variation of DNRA communities along the salinity gradient of the New River Estuary. Percent abundance of dominant populations was found to have significant influence on overall activities of DNRA communities. Abundance of dominant DNRA bacteria and organic carbon availability are important regulators of DNRA activities in the eutrophic New River Estuary. PMID:25232351

  2. 78 FR 24226 - Agency Information Collection Activities; Proposed Collection; Comment Request: Community Drill...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency Agency Information Collection Activities; Proposed Collection; Comment Request: Community Drill Day Registration AGENCY: Federal Emergency Management Agency, DHS....

  3. 78 FR 1866 - Agency Information Collection Activities: Submission for OMB Review; Comment Request; Community...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency Agency Information Collection Activities: Submission for OMB Review; Comment Request; Community Rating System (CRS) Program-- Application Worksheets and...

  4. Impacts of Human Activity on the Microbial Communities of Devon Island, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bywaters, K. B.; Burton, A. S.; Wallace, S. L.; Glass, B. J.

    2016-09-01

    The impacts of human activities on microbial communities in arctic environments are poorly understood. This project compares the distribution of microbes at the HMP Mars analog site prior to and after human settlement.

  5. Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities

    PubMed Central

    Carvalhais, Lilia C.; Dennis, Paul G.; Badri, Dayakar V.; Tyson, Gene W.; Vivanco, Jorge M.; Schenk, Peer M.

    2013-01-01

    Jasmonic acid (JA) signalling plays a central role in plant defences against necrotrophic pathogens and herbivorous insects, which afflict both roots and shoots. This pathway is also activated following the interaction with beneficial microbes that may lead to induced systemic resistance. Activation of the JA signalling pathway via application of methyl jasmonate (MeJA) alters the composition of carbon containing compounds released by roots, which are implicated as key determinants of rhizosphere microbial community structure. In this study, we investigated the influence of the JA defence signalling pathway activation in Arabidopsis thaliana on the structure of associated rhizosphere bacterial communities using 16S rRNA gene amplicon pyrosequencing. Application of MeJA did not directly influence bulk soil microbial communities but significant changes in rhizosphere community composition were observed upon activation of the jasmonate signalling pathway. Our results suggest that JA signalling may mediate plant-bacteria interactions in the soil upon necrotrophic pathogen and herbivorous insect attacks. PMID:23424661

  6. 77 FR 59221 - Information Collection Activities: Timpanogos Cave National Monument Visitor and Community Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... fees. (3) Concession service quality and selection. (4) Safety concerns and user conflict while using... National Park Service Information Collection Activities: Timpanogos Cave National Monument Visitor and Community Survey AGENCY: National Park Service (NPS), Interior. ACTION: Notice; request for...

  7. Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil)

    NASA Astrophysics Data System (ADS)

    Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.

    2014-06-01

    Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.

  8. Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France.

    PubMed

    Volant, A; Desoeuvre, A; Casiot, C; Lauga, B; Delpoux, S; Morin, G; Personné, J C; Héry, M; Elbaz-Poulichet, F; Bertin, P N; Bruneel, O

    2012-07-01

    The Carnoulès mine is an extreme environment located in the South of France. It is an unusual ecosystem due to its acidic pH (2-3), high concentration of heavy metals, iron, and sulfate, but mainly due to its very high concentration of arsenic (up to 10 g L⁻¹ in the tailing stock pore water, and 100-350 mg L⁻¹ in Reigous Creek, which collects the acid mine drainage). Here, we present a survey of the archaeal community in the sediment and its temporal variation using a culture-independent approach by cloning of 16S rRNA encoding genes. The taxonomic affiliation of Archaea showed a low degree of biodiversity with two different phyla: Euryarchaeota and Thaumarchaeota. The archaeal community varied in composition and richness throughout the sampling campaigns. Many sequences were phylogenetically related to the order Thermoplasmatales represented by aerobic or facultatively anaerobic, thermoacidophilic autotrophic or heterotrophic organisms like the organotrophic genus Thermogymnomonas. Some members of Thermoplasmatales can also derive energy from sulfur/iron oxidation or reduction. We also found microorganisms affiliated with methanogenic Archaea (Methanomassiliicoccus luminyensis), which are involved in the carbon cycle. Some sequences affiliated with ammonia oxidizers, involved in the first and rate-limiting step in nitrification, a key process in the nitrogen cycle were also observed, including Candidatus Nitrososphaera viennensis and Candidatus nitrosopumilus sp. These results suggest that Archaea may be important players in the Reigous sediments through their participation in the biochemical cycles of elements, including those of carbon and nitrogen.

  9. Atomic structure of an archaeal GAN suggests its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication

    PubMed Central

    Oyama, Takuji; Ishino, Sonoko; Shirai, Tsuyoshi; Yamagami, Takeshi; Nagata, Mariko; Ogino, Hiromi; Kusunoki, Masami; Ishino, Yoshizumi

    2016-01-01

    In eukaryotic DNA replication initiation, hexameric MCM (mini-chromosome maintenance) unwinds the template double-stranded DNA to form the replication fork. MCM is activated by two proteins, Cdc45 and GINS, which constitute the ‘CMG’ unwindosome complex together with the MCM core. The archaeal DNA replication system is quite similar to that of eukaryotes, but only limited knowledge about the DNA unwinding mechanism is available, from a structural point of view. Here, we describe the crystal structure of an archaeal GAN (GINS-associated nuclease) from Thermococcus kodakaraensis, the homolog of eukaryotic Cdc45, in both the free form and the complex with the C-terminal domain of the cognate Gins51 subunit (Gins51C). This first archaeal GAN structure exhibits a unique, ‘hybrid’ structure between the bacterial RecJ and the eukaryotic Cdc45. GAN possesses the conserved DHH and DHH1 domains responsible for the exonuclease activity, and an inserted CID (CMG interacting domain)-like domain structurally comparable to that in Cdc45, suggesting its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication. A structural comparison of the GAN–Gins51C complex with the GINS tetramer suggests that GINS uses the mobile Gins51C as a hook to bind GAN for CMG formation. PMID:27599844

  10. Environmental microarray analyses of Antarctic soil microbial communities.

    PubMed

    Yergeau, Etienne; Schoondermark-Stolk, Sung A; Brodie, Eoin L; Déjean, Sébastien; DeSantis, Todd Z; Gonçalves, Olivier; Piceno, Yvette M; Andersen, Gary L; Kowalchuk, George A

    2009-03-01

    Antarctic ecosystems are fascinating in their limited trophic complexity, with decomposition and nutrient cycling functions being dominated by microbial activities. Not only are Antarctic habitats exposed to extreme environmental conditions, the Antarctic Peninsula is also experiencing unequalled effects of global warming. Owing to their uniqueness and the potential impact of global warming on these pristine systems, there is considerable interest in determining the structure and function of microbial communities in the Antarctic. We therefore utilized a recently designed 16S rRNA gene microarray, the PhyloChip, which targets 8741 bacterial and archaeal taxa, to interrogate microbial communities inhabiting densely vegetated and bare fell-field soils along a latitudinal gradient ranging from 51 degrees S (Falkland Islands) to 72 degrees S (Coal Nunatak). Results indicated a clear decrease in diversity with increasing latitude, with the two southernmost sites harboring the most distinct Bacterial and Archaeal communities. The microarray approach proved more sensitive in detecting the breadth of microbial diversity than polymerase chain reaction-based bacterial 16S rRNA gene libraries of modest size ( approximately 190 clones per library). Furthermore, the relative signal intensities summed for phyla and families on the PhyloChip were significantly correlated with the relative occurrence of these taxa in clone libraries. PhyloChip data were also compared with functional gene microarray data obtained earlier, highlighting numerous significant relationships and providing evidence for a strong link between community composition and functional gene distribution in Antarctic soils. Integration of these PhyloChip data with other complementary methods provides an unprecedented understanding of the microbial diversity and community structure of terrestrial Antarctic habitats.

  11. Archaeal S-layer glycoproteins: post-translational modification in the face of extremes

    PubMed Central

    Kandiba, Lina; Eichler, Jerry

    2014-01-01

    Corresponding to the sole or basic component of the surface (S)-layer surrounding the archaeal cell in most known cases, S-layer glycoproteins are in direct contact with the harsh environments that characterize niches where Archaea can thrive. Accordingly, early work examining archaeal S-layer glycoproteins focused on identifying those properties that allow members of this group of proteins to maintain their structural integrity in the face of extremes of temperature, pH, and salinity, as well as other physical challenges. However, with expansion of the list of archaeal strains serving as model systems, as well as growth in the number of molecular tools available for the manipulation of these strains, studies on archaeal S-layer glycoproteins are currently more likely to consider the various post-translational modifications these polypeptides undergo. For instance, archaeal S-layer glycoproteins can undergo proteolytic cleavage, both N- and O-glycosylation, lipid-modification and oligomerization. In this mini-review, recent findings related to the post-translational modification of archaeal S-layer glycoproteins are considered. PMID:25505464

  12. aglgenes, A curated and searchable database of archaeal N-glycosylation pathway components.

    PubMed

    Godin, Noa; Eichler, Jerry

    2014-01-01

    Whereas N-glycosylation is a posttranslational modification performed across evolution, the archaeal version of this protein-processing event presents a degree of diversity not seen in either bacteria or eukarya. Accordingly, archaeal N-glycosylation relies on a large number of enzymes that are often species-specific or restricted to a select group of species. As such, there is a need for an organized platform upon which amassing information about archaeal glycosylation (agl) genes can rest. Accordingly, the aglgenes database provides detailed descriptions of experimentally characterized archaeal N-glycosyation pathway components. For each agl gene, genomic information, supporting literature and relevant external links are provided at a functional intuitive web-interface designed for data browsing. Routine updates ensure that novel experimental information on genes and proteins contributing to archaeal N-glycosylation is incorporated into aglgenes in a timely manner. As such, aglgenes represents a specialized resource for sharing validated experimental information online, providing support for workers in the field of archaeal protein glycosylation. Database URL: www.bgu.ac.il/aglgenes.

  13. Comparison of the structural basis for thermal stability between archaeal and bacterial proteins.

    PubMed

    Ding, Yanrui; Cai, Yujie; Han, Yonggang; Zhao, Bingqiang

    2012-01-01

    In this study, the structural basis for thermal stability in archaeal and bacterial proteins was investigated. There were many common factors that confer resistance to high temperature in both archaeal and bacterial proteins. These factors include increases in the Lys content, the bends and blanks of secondary structure, the Glu content of salt bridge; decreases in the number of main-side chain hydrogen bond and exposed surface area, and changes in the bends and blanks of amino acids. Certainly, the utilization of charged amino acids to form salt bridges is a primary factor. In both heat-resistant archaeal and bacterial proteins, most Glu and Asp participate in the formation of salt bridges. Other factors may influence either archaeal or bacterial protein thermostability, which includes the more frequent occurrence of shorter 3(10)-helices and increased hydrophobicity in heat-resistant archaeal proteins. However, there were increases in average helix length, the Glu content in salt bridges, temperature factors and decreases in the number of main-side chain hydrogen bonds, uncharged-uncharged hydrogen bonds, hydrophobicity, and buried and exposed polar surface area in heat-resistant bacterial proteins. Evidently, there are few similarities and many disparities between the heat-resistant mechanisms of archaeal and bacterial proteins.

  14. Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P

    PubMed Central

    Samanta, Manoj P.; Lai, Stella M.; Daniels, Charles J.; Gopalan, Venkat

    2016-01-01

    RNase P, a ribozyme-based ribonucleoprotein (RNP) complex that catalyzes tRNA 5′-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs) is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous) RPPs, which are unrelated to the single bacterial RPP. Here, we analyzed the sequence and structure of archaeal RPPs from over 600 available genomes. All five RPPs are found in eight archaeal phyla, suggesting that these RPPs arose early in archaeal evolutionary history. The putative ancestral genomic loci of archaeal RPPs include genes encoding several members of ribosome, exosome, and proteasome complexes, which may indicate coevolution/coordinate regulation of RNase P with other core cellular machineries. Despite being ancient, RPPs generally lack sequence conservation compared to other universal proteins. By analyzing the relative frequency of residues at every position in the context of the high-resolution structures of each of the RPPs (either alone or as functional binary complexes), we suggest residues for mutational analysis that may help uncover structure-function relationships in RPPs. PMID:27104580

  15. Active semi-supervised community detection based on must-link and cannot-link constraints.

    PubMed

    Cheng, Jianjun; Leng, Mingwei; Li, Longjie; Zhou, Hanhai; Chen, Xiaoyun

    2014-01-01

    Community structure detection is of great importance because it can help in discovering the relationship between the function and the topology structure of a network. Many community detection algorithms have been proposed, but how to incorporate the prior knowledge in the detection process remains a challenging problem. In this paper, we propose a semi-supervised community detection algorithm, which makes full utilization of the must-link and cannot-link constraints to guide the process of community detection and thereby extracts high-quality community structures from networks. To acquire the high-quality must-link and cannot-link constraints, we also propose a semi-supervised component generation algorithm based on active learning, which actively selects nodes with maximum utility for the proposed semi-supervised community detection algorithm step by step, and then generates the must-link and cannot-link constraints by accessing a noiseless oracle. Extensive experiments were carried out, and the experimental results show that the introduction of active learning into the problem of community detection makes a success. Our proposed method can extract high-quality community structures from networks, and significantly outperforms other comparison methods.

  16. Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii.

    PubMed

    Zander, Adrian; Willkomm, Sarah; Ofer, Sapir; van Wolferen, Marleen; Egert, Luisa; Buchmeier, Sabine; Stöckl, Sarah; Tinnefeld, Philip; Schneider, Sabine; Klingl, Andreas; Albers, Sonja-Verena; Werner, Finn; Grohmann, Dina

    2017-03-20

    Prokaryotic Argonaute proteins acquire guide strands derived from invading or mobile genetic elements, via an unknown pathway, to direct guide-dependent cleavage of foreign DNA. Here, we report that Argonaute from the archaeal organism Methanocaldococcus jannaschii (MjAgo) possesses two modes of action: the canonical guide-dependent endonuclease activity and a non-guided DNA endonuclease activity. The latter allows MjAgo to process long double-stranded DNAs, including circular plasmid DNAs and genomic DNAs. Degradation of substrates in a guide-independent fashion primes MjAgo for subsequent rounds of DNA cleavage. Chromatinized genomic DNA is resistant to MjAgo degradation, and recombinant histones protect DNA from cleavage in vitro. Mutational analysis shows that key residues important for guide-dependent target processing are also involved in guide-independent MjAgo function. This is the first characterization of guide-independent cleavage activity for an Argonaute protein potentially serving as a guide biogenesis pathway in a prokaryotic system.

  17. Cleavage of amyloid precursor protein by an archaeal presenilin homologue PSH

    PubMed Central

    Dang, Shangyu; Wu, Shenjie; Wang, Jiawei; Li, Hongbo; Huang, Min; He, Wei; Li, Yue-Ming; Wong, Catherine C. L.; Shi, Yigong

    2015-01-01

    Aberrant cleavage of amyloid precursor protein (APP) by γ-secretase contributes to the development of Alzheimer’s disease. More than 200 disease-derived mutations have been identified in presenilin (the catalytic subunit of γ-secretase), making modulation of γ-secretase activity a potentially attractive therapeutic opportunity. Unfortunately, the technical challenges in dealing with intact γ-secretase have hindered discovery of modulators and demand a convenient substitute approach. Here we report that, similar to γ-secretase, the archaeal presenilin homolog PSH faithfully processes the substrate APP C99 into Aβ42, Aβ40, and Aβ38. The molar ratio of the cleavage products Aβ42 over Aβ40 by PSH is nearly identical to that by γ-secretase. The proteolytic activity of PSH is specifically suppressed by presenilin-specific inhibitors. Known modulators of γ-secretase also modulate PSH similarly in terms of the Aβ42/Aβ40 ratio. Structural analysis reveals association of a known γ-secretase inhibitor with PSH between its two catalytic aspartate residues. These findings identify PSH as a surrogate protease for the screening of agents that may regulate the protease activity and the cleavage preference of γ-secretase. PMID:25733893

  18. Assessing microbial communities for a metabolic profile similar to activated sludge.

    PubMed

    Paixão, S M; Sàágua, M C; Tenreiro, R; Anselmo, A M

    2007-05-01

    To search for reliable testing inocula alternatives to activated sludge cultures, several model microbial consortia were compared with activated sludge populations for their functional diversity. The evaluation of the metabolic potential of these mixed inocula was performed using the Biolog EcoPlates and GN and GP MicroPlates (Biolog, Inc., Hayward, California). The community-level physiological profiles (CLPPs) obtained for model communities and activated sludge samples were analyzed by principal component analysis and hierarchic clustering methods, to evaluate the ability of Biolog plates to distinguish among the different microbial communities. The effect of different inocula preparation methodologies on the community structure was also studied. The CLPPs obtained with EcoPlates and GN MicroPlates showed that EcoPlates are suitable to screen communities with a metabolic profile similar to activated sludge. New, well-defined, standardized, and safe inocula presenting the same metabolic community profile as activated sludge were selected and can be tested as surrogate cultures in activated-sludge-based bioassays.

  19. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams.

    PubMed

    Wilhelm, Linda; Besemer, Katharina; Fasching, Christina; Urich, Tim; Singer, Gabriel A; Quince, Christopher; Battin, Tom J

    2014-08-01

    Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams.

  20. Acceptability of wristband activity trackers among community dwelling older adults.

    PubMed

    O'Brien, Tara; Troutman-Jordan, Meredith; Hathaway, Donna; Armstrong, Shannon; Moore, Michael

    2015-01-01

    Wristband activity trackers have become widely used among young adults. However, few studies have explored their use for monitoring and improving health outcomes among older adults. The purpose of this study was to evaluate the feasibility and utility of activity tracker use among older adults for monitoring activity, improving self-efficacy, and health outcomes. A 12-week pilot study was conducted to evaluate the feasibility and utility of mobile wristband activity trackers. The sample (N = 34) was 65% women 73.5 ± 9.4 years of age who had a high school diploma or GED (38%) and reported an income ≤$35,000 (58%). Participants completing the study (95%) experienced a decrease in waist circumference (p > 0.009), however no change in self-efficacy. Participants found activity trackers easy to use which contributed to minimal study withdrawals. It was concluded that activity trackers could be useful for monitoring and promoting physical activity and improving older adults' health.

  1. Insights on FlaI Functions in Archaeal Motor Assembly and Motility from Structures, Conformations and Genetics

    PubMed Central

    Reindl, Sophia; Ghosh, Abhrajyoti; Williams, Gareth J.; Lassak, Kerstin; Neiner, Tomasz; Henche, Anna-Lena; Albers, Sonja-Verena; Tainer, John A.

    2013-01-01

    SUMMARY Superfamily ATPases in Type IV pili (T4P), Type 2 secretion (T2S), and archaella (formerly archaeal flagella) employ similar sequences for distinct biological processes. Here we structurally and functionally characterize prototypical superfamily ATPase FlaI from Sulfolobus acidocaldarius showing FlaI activities in archaeal swimming organelle assembly and movement. FlaI solution X-ray scattering and crystal structures with and without nucleotide reveal a hexameric crown assembly with key cross-subunit interactions: rigid building blocks form between N-terminal domains (points) and neighboring subunit C-terminal domains (crown ring). Upon nucleotide binding, these six cross-subunit blocks move with respect to each other distinctly from secretion and pilus ATPases. Crown interactions and conformations regulate assembly, motility and force direction by a basic-clamp switching mechanism driving conformational changes between stable, backbone-interconnected moving blocks. Collective structural and mutational results identify in vivo functional components for assembly and motility, phosphate triggered rearrangements by ATP-hydrolysis, and molecular predictors for distinct ATPase superfamily functions. PMID:23416110

  2. The influence of hydrogeological disturbance and mining on coal seam microbial communities.

    PubMed

    Raudsepp, M J; Gagen, E J; Evans, P; Tyson, G W; Golding, S D; Southam, G

    2016-03-01

    The microbial communities present in two underground coal mines in the Bowen Basin, Queensland, Australia, were investigated to deduce the effect of pumping and mining on subsurface methanogens and methanotrophs. The micro-organisms in pumped water from the actively mined areas, as well as, pre- and post-mining formation waters were analyzed using 16S rRNA gene amplicon sequencing. The methane stable isotope composition of Bowen Basin coal seam indicates that methanogenesis has occurred in the geological past. More recently at the mine site, changing groundwater flow dynamics and the introduction of oxygen in the subsurface has increased microbial biomass and diversity. Consistent with microbial communities found in other coal seam environments, pumped coal mine waters from the subsurface were dominated by bacteria belonging to the genera Pseudomonas and the family Rhodocyclaceae. These environments and bacterial communities supported a methanogen population, including Methanobacteriaceae, Methanococcaceae and Methanosaeta. However, one of the most ubiquitous micro-organisms in anoxic coal mine waters belonged to the family 'Candidatus Methanoperedenaceae'. As the Archaeal family 'Candidatus Methanoperedenaceae' has not been extensively defined, the one studied species in the family is capable of anaerobic methane oxidation coupled to nitrate reduction. This introduces the possibility that a methane cycle between archaeal methanogenesis and methanotrophy may exist in the anoxic waters of the coal seam after hydrogeological disturbance.

  3. Recruiting Older Adults into a Physical Activity Promotion Program: "Active Living Every Day" Offered in a Naturally Occurring Retirement Community

    ERIC Educational Resources Information Center

    Hildebrand, Mary; Neufeld, Peggy

    2009-01-01

    Purpose: This article explores recruitment strategies based on the transtheoretical model (TTM) with older adults living in a naturally occurring retirement community (NORC) to encourage enrollment in a physical activity promotion program, "Active Living Every Day" (ALED). Reasons for participation or nonparticipation are identified. Design and…

  4. Shared Use of Physical Activity Facilities Among North Carolina Faith Communities, 2013

    PubMed Central

    Edwards, Michael B.; Bocarro, Jason N.; Stein, Anna; Kanters, Michael A.; Sherman, Danielle Marie; Rhew, Lori K.; Stallings, Willona Marie; Bowen, Sarah K.

    2017-01-01

    Introduction Shared use of recreational facilities is a promising strategy for increasing access to places for physical activity. Little is known about shared use in faith-based settings. This study examined shared use practices and barriers in faith communities in North Carolina. Methods Faith communities in North Carolina (n = 234) completed an online survey (October–December 2013) designed to provide information about the extent and nature of shared use of recreational facilities. We used binary logistic regression to examine differences between congregations that shared use and those that did not share use. Results Most of the faith communities (82.9%) that completed the survey indicated that they share their facilities with outside individuals and organizations. Formal agreements were more common when faith communities shared indoor spaces such as gymnasiums and classroom meeting spaces than when they shared outdoor spaces such as playgrounds or athletic fields. Faith communities in the wealthiest counties were more likely to share their spaces than were faith communities in poorer counties. Faith communities in counties with the best health rankings were more likely to share facilities than faith communities in counties that had lower health rankings. The most frequently cited reasons faith communities did not share their facilities were that they did not know how to initiate the process of sharing their facilities or that no outside groups had ever asked. Conclusion Most faith communities shared their facilities for physical activity. Research is needed on the relationship between shared use and physical activity levels, including the effect of formalizing shared-use policies. PMID:28152362

  5. Community Audit of Social, Civil, and Activity Domains in Diverse Environments (CASCADDE).

    PubMed

    Knapp, Emily A; Nau, Claudia; Brandau, Sy; DeWalle, Joseph; Hirsch, Annemarie G; Bailey-Davis, Lisa; Schwartz, Brian S; Glass, Thomas A

    2017-02-10

    There are currently no direct observation environmental audit tools that measure diverse aspects of the obesity-related environment efficiently and reliably in a variety of geographic settings. The goal was to develop a new instrument to reliably characterize the overall properties and features of rural, suburban, and urban settings along multiple dimensions. The Community Audit of Social, Civil, and Activity Domains in Diverse Environments (CASCADDE) is an iPad-based instrument that incorporates GPS coordinates and photography and comprises 214 items yielding seven summary indices. A comprehensive spatial sampling strategy, training manual, and supporting data analysis code were also developed. Random geospatial sampling using GIS was used to capture features of the community as a whole. A single auditor collected 510 observation points in 30 communities (2013-2015). This analysis was done in 2015-2016. Correlation coefficients were used to compare items and indices to each other and to standard measures. Multilevel unconditional means models were used to calculate intraclass correlation coefficients to determine if there was significant variation between communities. Results suggest that CASCADDE measures aspects of communities not previously captured by secondary data sources. Additionally, seven summary indices capture meaningful differences between communities based on 15 observations per community. Community audit tools such as CASCADDE complement secondary data sources and have the potential to offer new insights about the mechanisms through which communities affect obesity and other health outcomes.

  6. Protein phosphorylation and its role in archaeal signal transduction

    PubMed Central

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  7. Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases.

    PubMed

    Maita, Nobuo; Nyirenda, James; Igura, Mayumi; Kamishikiryo, Jun; Kohda, Daisuke

    2010-02-12

    Oligosaccharyltransferase (OST) catalyzes the transfer of an oligosaccharide from a lipid donor to an asparagine residue in nascent polypeptide chains. In the bacterium Campylobacter jejuni, a single-subunit membrane protein, PglB, catalyzes N-glycosylation. We report the 2.8 A resolution crystal structure of the C-terminal globular domain of PglB and its comparison with the previously determined structure from the archaeon Pyrococcus AglB. The two distantly related oligosaccharyltransferases share unexpected structural similarity beyond that expected from the sequence comparison. The common architecture of the putative catalytic sites revealed a new catalytic motif in PglB. Site-directed mutagenesis analyses confirmed the contribution of this motif to the catalytic function. Bacterial PglB and archaeal AglB constitute a protein family of the catalytic subunit of OST along with STT3 from eukaryotes. A structure-aided multiple sequence alignment of the STT3/PglB/AglB protein family revealed three types of OST catalytic centers. This novel classification will provide a useful framework for understanding the enzymatic properties of the OST enzymes from Eukarya, Archaea, and Bacteria.

  8. Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma.

    PubMed Central

    Tumbula, D; Vothknecht, U C; Kim, H S; Ibba, M; Min, B; Li, T; Pelaschier, J; Stathopoulos, C; Becker, H; Söll, D

    1999-01-01

    Accurate aminoacyl-tRNA synthesis is essential for faithful translation of the genetic code and consequently has been intensively studied for over three decades. Until recently, the study of aminoacyl-tRNA synthesis in archaea had received little attention. However, as in so many areas of molecular bio