Science.gov

Sample records for active arm movements

  1. Cortical Spectral Activity and Connectivity during Active and Viewed Arm and Leg Movement

    PubMed Central

    Kline, Julia E.; Huang, Helen J.; Snyder, Kristine L.; Ferris, Daniel P.

    2016-01-01

    Active and viewed limb movement activate many similar neural pathways, however, to date most comparison studies have focused on subjects making small, discrete movements of the hands and feet. The purpose of this study was to determine if high-density electroencephalography (EEG) could detect differences in cortical activity and connectivity during active and viewed rhythmic arm and leg movements in humans. Our primary hypothesis was that we would detect similar but weaker electrocortical spectral fluctuations and effective connectivity fluctuations during viewed limb exercise compared to active limb exercise due to the similarities in neural recruitment. A secondary hypothesis was that we would record stronger cortical spectral fluctuations for arm exercise compared to leg exercise, because rhythmic arm exercise would be more dependent on supraspinal control than rhythmic leg exercise. We recorded EEG data while ten young healthy subjects exercised on a recumbent stepper with: (1) both arms and legs, (2) just legs, and (3) just arms. Subjects also viewed video playback of themselves or another individual performing the same exercises. We performed independent component analysis, dipole fitting, spectral analysis, and effective connectivity analysis on the data. Cortical areas comprising the premotor and supplementary motor cortex, the anterior cingulate, the posterior cingulate, and the parietal cortex exhibited significant spectral fluctuations during rhythmic limb exercise. These fluctuations tended to be greater for the arms exercise conditions than for the legs only exercise condition, which suggests that human rhythmic arm movements are under stronger cortical control than rhythmic leg movements. We did not find consistent spectral fluctuations in these areas during the viewed conditions, but effective connectivity fluctuated at harmonics of the exercise frequency during both active and viewed rhythmic limb exercise. The right premotor and supplementary motor

  2. Arm position influences the activation patterns of trunk muscles during trunk range-of-motion movements.

    PubMed

    Siu, Aaron; Schinkel-Ivy, Alison; Drake, Janessa Dm

    2016-10-01

    To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions.

  3. The influence of body posture, arm movement, and work stress on trapezius activity during computer work.

    PubMed

    Mork, Paul Jarle; Westgaard, Rolf H

    2007-11-01

    The study aimed to determine the influence of arm posture and movement on trapezius activity of computer workers, considering the full workday. A second aim was to investigate if work periods perceived as stressful were associated with elevated or more sustained muscle activity pattern. Twenty-six computer workers performing call-center (n=11), help desk (n=7), or secretarial (n=8) work tasks participated. Bilateral trapezius surface electromyographic (sEMG) activity and heart rate was recorded throughout the workday. Simultaneous inclinometer recordings from left thigh and upper arms identified periods with sitting, standing, and walking, as well as arm posture and movement. Perceived work stress and tension were recorded on visual analog scales (VAS) every hour. Trapezius sEMG activity was low in seated posture [group median 1.8 and 0.9% of activity at maximal voluntary contraction (%EMGmax) for dominant and non-dominant side] and was elevated in standing (3.0 and 2.5% EMGmax) and walking (3.9 and 3.4% EMGmax). In seated posture (mean duration 79% of workday) arm movement consistently influenced trapezius activity, accounting for approximately 20% of intra-individual variation in trapezius activity. Arm elevation was on average not associated with trapezius activity when seated; however, considerable individual variation was observed. There was no indication of increase in trapezius activity or more sustained activity pattern, nor in heart rate, in high-stress versus low-stress periods, comparing periods with seated posture for the subjects reporting contrasts of at least two VAS units in stress (n=16) or tension (n=14) score. PMID:17653757

  4. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields.

    PubMed

    Yamamoto, Kenji; Kawato, Mitsuo; Kotosaka, Shinya; Kitazawa, Shigeru

    2007-02-01

    It is controversial whether simple-spike activity of cerebellar Purkinje cells during arm movements encodes movement kinematics like velocity or dynamics like muscle activities. To examine this issue, we trained monkeys to flex or extend the elbow by 45 degrees in 400 ms under resistive and assistive force fields but without altering kinematics. During the task movements after training, simple-spike discharges were recorded in the intermediate part of the cerebellum in lobules V-VI, and electromyographic activity was recorded from arm muscles. Velocity profiles (kinematics) in the two force fields were almost identical to each other, whereas not only the electromyographic activities (dynamics) but also simple-spike activities in many Purkinje cells differed distinctly depending on the type of force field. Simple-spike activities encoded much larger mutual information with the type of force field than that with the residual small difference in the height of peak velocity. The difference in simple-spike activities averaged over the recorded Purkinje-cells increased approximately 40 ms before the appearance of the difference in electromyographic activities between the two force fields, suggesting that the difference of simple-spike activities could be the origin of the difference of muscle activities. Simple-spike activity of many Purkinje cells correlated with electromyographic activity with a lead of approximately 80 ms, and these neurons had little overlap with another group of neurons the simple-spike activity of which correlated with velocity profiles. These results show that simple-spike activity of at least a group of Purkinje cells in the intermediate part of cerebellar lobules V-VI encodes movement dynamics.

  5. Arm hand skilled performance in cerebral palsy: activity preferences and their movement components

    PubMed Central

    2014-01-01

    Background Assessment of arm-hand use is very important in children with cerebral palsy (CP) who encounter arm-hand problems. To determine validity and reliability of new instruments to assess actual performance, a set of standardized test situations including activities of daily living (ADL) is required. This study gives information with which such a set for upper extremity skill research may be fine-tuned, relative to a specific research question. Aim of this study is to a) identify upper extremity related ADL children with CP want to improve on, b) determine the 10 most preferred goals of children with CP, and c) identify movement components of all goals identified. Method The Canadian Occupational Performance Measure was used to identify upper extremity-related ADL preferences (goals) of 53 children with CP encountering arm-hand problems (mean age 9 ± 4.5 year). Goals were ranked based on importance attributed to each goal and the number of times a goal was mentioned, resulting in a gross list with goals. Additionally, two studies were performed, i.e. study A to determine the 10 most preferred goals for 3 age groups (2.5-5 years; 6-11 years, 12-19 years), based on the total preference score, and study B to identify movement components, like reaching and grasping, of all goals identified for both the leading and the assisting arm-hand. Results Seventy-two goals were identified. The 10 most preferred goals differed with age, changing from dressing and leisure-related goals in the youngest children to goals regarding personal care and eating for children aged 6-11 years. The oldest children preferred goals regarding eating, personal care and computer use. The movement components ‘positioning’, ‘reach’, ‘grasp’, and ‘hold’ were present in most tasks. ‘Manipulating’ was more important for the leading arm-hand, whereas ‘fixating’ was more important for the assisting arm-hand. Conclusion This study gave insight into the preferences regarding

  6. A reliability study on brain activation during active and passive arm movements supported by an MRI-compatible robot.

    PubMed

    Estévez, Natalia; Yu, Ningbo; Brügger, Mike; Villiger, Michael; Hepp-Reymond, Marie-Claude; Riener, Robert; Kollias, Spyros

    2014-11-01

    In neurorehabilitation, longitudinal assessment of arm movement related brain function in patients with motor disability is challenging due to variability in task performance. MRI-compatible robots monitor and control task performance, yielding more reliable evaluation of brain function over time. The main goals of the present study were first to define the brain network activated while performing active and passive elbow movements with an MRI-compatible arm robot (MaRIA) in healthy subjects, and second to test the reproducibility of this activation over time. For the fMRI analysis two models were compared. In model 1 movement onset and duration were included, whereas in model 2 force and range of motion were added to the analysis. Reliability of brain activation was tested with several statistical approaches applied on individual and group activation maps and on summary statistics. The activated network included mainly the primary motor cortex, primary and secondary somatosensory cortex, superior and inferior parietal cortex, medial and lateral premotor regions, and subcortical structures. Reliability analyses revealed robust activation for active movements with both fMRI models and all the statistical methods used. Imposed passive movements also elicited mainly robust brain activation for individual and group activation maps, and reliability was improved by including additional force and range of motion using model 2. These findings demonstrate that the use of robotic devices, such as MaRIA, can be useful to reliably assess arm movement related brain activation in longitudinal studies and may contribute in studies evaluating therapies and brain plasticity following injury in the nervous system.

  7. Feedforward activity of the cervical flexor muscles during voluntary arm movements is delayed in chronic neck pain.

    PubMed

    Falla, D; Jull, G; Hodges, P W

    2004-07-01

    The objective of this study was to compare onset of deep and superficial cervical flexor muscle activity during rapid, unilateral arm movements between ten patients with chronic neck pain and 12 control subjects. Deep cervical flexor (DCF) electromyographic activity (EMG) was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid (SCM) and anterior scalene (AS) muscles. While standing, subjects flexed and extended the right arm in response to a visual stimulus. For the control group, activation of DCF, SCM and AS muscles occurred less than 50 ms after the onset of deltoid activity, which is consistent with feedforward control of the neck during arm flexion and extension. When subjects with a history of neck pain flexed the arm, the onsets of DCF and contralateral SCM and AS muscles were significantly delayed ( p<0.05). It is concluded that the delay in neck muscle activity associated with movement of the arm in patients with neck pain indicates a significant deficit in the automatic feedforward control of the cervical spine. As the deep cervical muscles are fundamentally important for support of the cervical lordosis and the cervical joints, change in the feedforward response may leave the cervical spine vulnerable to reactive forces from arm movement.

  8. Gravitoinertial force level influences arm movement control

    NASA Technical Reports Server (NTRS)

    Fisk, J.; Lackner, J. R.; DiZio, P.

    1993-01-01

    1. The ability to move the forearm between remembered elbow joint angles immediately after rapid increases or decreases of the background gravitoinertial force (G) level was measured. The movements had been well-practiced in a normal 1G environment before the measurements in high-(1.8G) and low-force (0G) environments. The forearm and upper arm were always unsupported to maximize the influence of altered G-loading and to minimize extraneous cues about arm position. 2. Horizontal and vertical movement planes were studied to measure the effects of varying the G load in the movement plane within a given G background. Rapid and slow movements were studied to assess the role of proprioceptive feedback. 3. G level did not affect the amplitude of rapid movements, indicating that subjects were able to plan and to generate appropriate motor commands for the new G loading of the arm. The amplitude of slow movements was affected by G level, indicating that proprioceptive feedback is influenced by G level. 4. The effects of G level were similar for horizontal and vertical movements, indicating that proprioceptive information from supporting structures, such as the shoulder joint and muscles, had a role in allowing generation of the appropriate motor commands. 5. The incidence and size of dynamic overshoots were greater in 0G and for rapid movements. This G-related change in damping suggests a decrease in muscle spindle activity in 0G. A decrease in muscle spindle activity in 0G and an increase in 1.8G are consistent with the results of our prior studies on the tonic vibration reflex, locomotion, and perception of head movement trajectory in varying force backgrounds.

  9. Movement times of different arm components.

    PubMed

    Hoffmann, Errol R; Hui, Michael C

    2010-08-01

    Data for ballistic and visually controlled movement times of different arm components are presented. Ballistic movement times gave strong support to the theoretical model that movement time is linearly related to the square-root of movement amplitude, for all arm components. It was found that there was a significant effect on movement time of the arm component being used. A scaling analysis showed that this time was linearly related to the product of the square-root of amplitude and the one-tenth power of limb mass moment of inertia. This relationship was found to be approximately true in the experiment. For visually controlled movements, movement time showed a significant interaction between Fitts' Index of Difficulty and arm component. The effect of arm component on movement time was stronger in visually controlled movements than in ballistic movements and did not allow the simple modelling in terms of limb mass moment of inertia as was possible with ballistic moves. STATEMENT OF RELEVANCE: Different arm components take different times to move the same distance, dependent on their mass moments of inertia and muscle strength. The work investigated times for finger, wrist, forearm, and full-arm movements that are relevant to tasks such as manual assembly where there are alternative movement methods available for an operator. PMID:20658392

  10. Computing Arm Movements with a Monkey Brainet.

    PubMed

    Ramakrishnan, Arjun; Ifft, Peter J; Pais-Vieira, Miguel; Byun, Yoon Woo; Zhuang, Katie Z; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2015-07-09

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal.

  11. The effects of arm movement on reaction time in patients with latent and active upper trapezius myofascial trigger point

    PubMed Central

    Yassin, Marzieh; Talebian, Saeed; Ebrahimi Takamjani, Ismail; Maroufi, Nader; Ahmadi, Amir; Sarrafzadeh, Javad; Emrani, Anita

    2015-01-01

    Background: Myofascial pain syndrome is a significant source of mechanical pain. The aim of this study was to investigate the effects of arm movement on reaction time in females with latent and active upper trapezius myofascial trigger point. Methods: In this interventional study, a convenience sample of fifteen women with one active MTP, fifteen women with one latent MTP in the upper trapezius, and fifteen normal healthy women were participated. Participants were asked to stand for 10 seconds in an erect standing position. Muscle reaction times were recorded including anterior deltoid (AD), cervical paraspinal (CP) lumbar paraspinal (LP), both of upper trapezius (UT), sternocleidomastoid (SCM) and medial head of gastrocnemius (GcM). Participants were asked to flex their arms in response to a sound stimulus preceded by a warning sound stimulus. Data were analyzed using one-way ANOVA Test. Results: There was significant differences in motor time and reaction time between active and control groups (p< 0.05) except for GcM. There was no significant difference in motor time between active and passive groups except for UT without MTP and SCM (p< 0.05). Also, there were no significant differences in motor times between latent MTP and control groups. Furthermore, there was no significant difference in premotor times between the three groups. Conclusion: The present study shows that patients with active MTP need more time to react to stimulus, but patients with latent MTP are similar to healthy subjects in the reaction time. Patients with active MTP had less compatibility with environmental stimulations, and they responded to a specific stimulation with variability in Surface Electromyography (SEMG). PMID:26913258

  12. Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements?

    PubMed Central

    Marzocchi, Nicoletta; Breveglieri, Rossella; Galletti, Claudio; Fattori, Patrizia

    2008-01-01

    Parietal area V6A contains neurons modulated by the direction of gaze as well as neurons able to code the direction of arm movement. The present study was aimed to disentangle the gaze effect from the effect of reaching activity upon single V6A neurons. To this purpose, we used a visuomotor task in which the direction of arm movement remained constant while the animal changed the direction of gaze. Gaze direction modulated reach-related activity in about two-thirds of tested neurons. In several cases, modulations were not due to the eye-position signal per se, the apparent eye-position modulation being just an epiphenomenon. The real modulating factor was the location of reaching target with respect to the point gazed by the animal, that is, the retinotopic coordinates towards which the action of reaching occurred. Comparison of neural discharge of the same cell during execution of foveated and non-foveated reaching movements, performed towards the same or different spatial locations, confirmed that in a part of V6A neurons reaching activity is coded retinocentrically. In other neurons, reaching activity is coded spatially, depending on the direction of reaching movement regardless of where the animal was looking at. The majority of V6A reaching neurons use a system that encompasses both of these reference frames. These results are in line with the view of a progressive visuomotor transformation in the dorsal visual stream, that changes the frame of reference from the retinocentric one, typically used by the visual system, to the arm-centred one, typically used by the motor system. PMID:18279330

  13. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.

    PubMed

    Patla, Aftab E; Ishac, Milad G; Winter, David A

    2002-04-01

    Anticipatory control of upright posture is the focus of this study that combines experimental and modeling work. Individuals were asked to raise or lower their arms from two initial postures such that the final posture of the arm was at 90 degrees with respect to the body. Holding different weights in the hand varied the magnitude of perturbation to postural stability generated by the arm movement. Whole body kinematics and ground reaction forces were measured. Inverse dynamic analysis was used to determine the internal joint moments at the shoulder, hip, knee and ankle, and reaction forces at the shoulder. Center of mass (COM) of the arm, posture (rest of the body without the arms) and whole body (net COM) were also determined. Changes in joint moment at the hip, knee and ankle revealed a significant effect of the direction of movement. The polarities of the joint moment response were appropriate for joint stabilization. Net COM change showed a systematic effect of the direction of movement even though the arm COM was displaced by the same amount and in the same direction for both arm raising and lowering conditions. In order to determine the effects of the passive forces and moments on the posture COM, the body was modeled as an inverted pendulum. The model was customized for each participant; the relevant model parameters were estimated from data obtained from each trial. The ankle joint stiffness and viscosity were adjusted to ensure postural equilibrium prior to arm movement. Joint reactive forces and moments generated by the arm movements were applied at the shoulder level of this inverted pendulum; these were the only inputs and no active control was included. The posture COM profile from the model simulation was calculated. Results show that simulated posture COM profile and measured posture COM profile are identical for about 200 ms following the onset of arm movement and then they deviate. Therefore, the initial control of COM is passive in nature and the

  14. A Neuro-Fuzzy System for Characterization of Arm Movements

    PubMed Central

    Balbinot, Alexandre; Favieiro, Gabriela

    2013-01-01

    The myoelectric signal reflects the electrical activity of skeletal muscles and contains information about the structure and function of the muscles which make different parts of the body move. Advances in engineering have extended electromyography beyond the traditional diagnostic applications to also include applications in diverse areas such as rehabilitation, movement analysis and myoelectric control of prosthesis. This paper aims to study and develop a system that uses myoelectric signals, acquired by surface electrodes, to characterize certain movements of the human arm. To recognize certain hand-arm segment movements, was developed an algorithm for pattern recognition technique based on neuro-fuzzy, representing the core of this research. This algorithm has as input the preprocessed myoelectric signal, to disclosed specific characteristics of the signal, and as output the performed movement. The average accuracy obtained was 86% to 7 distinct movements in tests of long duration (about three hours). PMID:23429579

  15. Visual gravity influences arm movement planning.

    PubMed

    Sciutti, Alessandra; Demougeot, Laurent; Berret, Bastien; Toma, Simone; Sandini, Giulio; Papaxanthis, Charalambos; Pozzo, Thierry

    2012-06-01

    When submitted to a visuomotor rotation, subjects show rapid adaptation of visually guided arm reaching movements, indicated by a progressive reduction in reaching errors. In this study, we wanted to make a step forward by investigating to what extent this adaptation also implies changes into the motor plan. Up to now, classical visuomotor rotation paradigms have been performed on the horizontal plane, where the reaching motor plan in general requires the same kinematics (i.e., straight path and symmetric velocity profile). To overcome this limitation, we considered vertical and horizontal movement directions requiring specific velocity profiles. This way, a change in the motor plan due to the visuomotor conflict would be measurable in terms of a modification in the velocity profile of the reaching movement. Ten subjects performed horizontal and vertical reaching movements while observing a rotated visual feedback of their motion. We found that adaptation to a visuomotor rotation produces a significant change in the motor plan, i.e., changes to the symmetry of velocity profiles. This suggests that the central nervous system takes into account the visual information to plan a future motion, even if this causes the adoption of nonoptimal motor plans in terms of energy consumption. However, the influence of vision on arm movement planning is not fixed, but rather changes as a function of the visual orientation of the movement. Indeed, a clear influence on motion planning can be observed only when the movement is visually presented as oriented along the vertical direction. Thus vision contributes differently to the planning of arm pointing movements depending on motion orientation in space.

  16. Using voluntary motor commands to inhibit involuntary arm movements.

    PubMed

    Ghosh, Arko; Rothwell, John; Haggard, Patrick

    2014-11-01

    A hallmark of voluntary motor control is the ability to stop an ongoing movement. Is voluntary motor inhibition a general neural mechanism that can be focused on any movement, including involuntary movements, or is it mere termination of a positive voluntary motor command? The involuntary arm lift, or 'floating arm trick', is a distinctive long-lasting reflex of the deltoid muscle. We investigated how a voluntary motor network inhibits this form of involuntary motor control. Transcranial magnetic stimulation of the motor cortex during the floating arm trick produced a silent period in the reflexively contracting deltoid muscle, followed by a rebound of muscle activity. This pattern suggests a persistent generator of involuntary motor commands. Instructions to bring the arm down voluntarily reduced activity of deltoid muscle. When this voluntary effort was withdrawn, the involuntary arm lift resumed. Further, voluntary motor inhibition produced a strange illusion of physical resistance to bringing the arm down, as if ongoing involuntarily generated commands were located in a 'sensory blind-spot', inaccessible to conscious perception. Our results suggest that voluntary motor inhibition may be a specific neural function, distinct from absence of positive voluntary motor commands. PMID:25253453

  17. Control of arm movements for quick change of movement direction.

    PubMed

    Takatoku, Nozomi; Fujiwara, Motoko

    2014-01-01

    The authors investigated the control strategy for changing movement direction during arm movements by analyzing the changes in a triphasic electromyographic pattern. Subjects performed a 40° flexion (basic) and a 40° flexion-extension to return to the start position (return) under two conditions: performing a predetermined task (SF) and performing each task in response to a signal (ST). The results revealed the agonist burst for the return task under the ST condition resembled that of the basic task under the SF condition, and the antagonist burst increased after presenting the modification signal. In conclusion, the strategy for quick change of movement direction was to increase the antagonist burst by an additional command from the central nervous system without cancelling the planned movement.

  18. Action Sounds Modulate Arm Reaching Movements

    PubMed Central

    Tajadura-Jiménez, Ana; Marquardt, Torsten; Swapp, David; Kitagawa, Norimichi; Bianchi-Berthouze, Nadia

    2016-01-01

    Our mental representations of our body are continuously updated through multisensory bodily feedback as we move and interact with our environment. Although it is often assumed that these internal models of body-representation are used to successfully act upon the environment, only a few studies have actually looked at how body-representation changes influence goal-directed actions, and none have looked at this in relation to body-representation changes induced by sound. The present work examines this question for the first time. Participants reached for a target object before and after adaptation periods during which the sounds produced by their hand tapping a surface were spatially manipulated to induce a representation of an elongated arm. After adaptation, participants’ reaching movements were performed in a way consistent with having a longer arm, in that their reaching velocities were reduced. These kinematic changes suggest auditory-driven recalibration of the somatosensory representation of the arm morphology. These results provide support to the hypothesis that one’s represented body size is used as a perceptual ruler to measure objects’ distances and to accordingly guide bodily actions. PMID:27695430

  19. Action Sounds Modulate Arm Reaching Movements

    PubMed Central

    Tajadura-Jiménez, Ana; Marquardt, Torsten; Swapp, David; Kitagawa, Norimichi; Bianchi-Berthouze, Nadia

    2016-01-01

    Our mental representations of our body are continuously updated through multisensory bodily feedback as we move and interact with our environment. Although it is often assumed that these internal models of body-representation are used to successfully act upon the environment, only a few studies have actually looked at how body-representation changes influence goal-directed actions, and none have looked at this in relation to body-representation changes induced by sound. The present work examines this question for the first time. Participants reached for a target object before and after adaptation periods during which the sounds produced by their hand tapping a surface were spatially manipulated to induce a representation of an elongated arm. After adaptation, participants’ reaching movements were performed in a way consistent with having a longer arm, in that their reaching velocities were reduced. These kinematic changes suggest auditory-driven recalibration of the somatosensory representation of the arm morphology. These results provide support to the hypothesis that one’s represented body size is used as a perceptual ruler to measure objects’ distances and to accordingly guide bodily actions.

  20. Cortical representation of ipsilateral arm movements in monkey and man

    PubMed Central

    Ganguly, Karunesh; Secundo, Lavi; Ranade, Gireeja; Orsborn, Amy; Chang, Edward F.; Dimitrov, Dragan F.; Wallis, Jonathan D.; Barbaro, Nicholas M.; Knight, Robert T.; Carmena, Jose M.

    2009-01-01

    A fundamental organizational principle of the primate motor system is cortical control of contralateral limb movements. Motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-out reaching movements, we found that the ensemble spiking activity in M1 could continuously represent ipsilateral limb position. Interestingly, this representation was more correlated with joint angles than hand position. Using bilateral EMG recordings, we excluded the possibility that postural or mirror movements could exclusively account for these findings. In addition, linear methods could decode limb position from cortical field potentials in both monkeys. We also found that M1 spiking activity could control a biomimetic brain-machine interface reflecting ipsilateral kinematics. Finally, we recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain-machine interface. PMID:19828809

  1. Evaluating Classifiers to Detect Arm Movement Intention from EEG Signals

    PubMed Central

    Planelles, Daniel; Hortal, Enrique; Costa, Álvaro; Úbeda, Andrés; Iáñez, Eduardo; Azorín, José M.

    2014-01-01

    This paper presents a methodology to detect the intention to make a reaching movement with the arm in healthy subjects before the movement actually starts. This is done by measuring brain activity through electroencephalographic (EEG) signals that are registered by electrodes placed over the scalp. The preparation and performance of an arm movement generate a phenomenon called event-related desynchronization (ERD) in the mu and beta frequency bands. A novel methodology to characterize this cognitive process based on three sums of power spectral frequencies involved in ERD is presented. The main objective of this paper is to set the benchmark for classifiers and to choose the most convenient. The best results are obtained using an SVM classifier with around 72% accuracy. This classifier will be used in further research to generate the control commands to move a robotic exoskeleton that helps people suffering from motor disabilities to perform the movement. The final aim is that this brain-controlled robotic exoskeleton improves the current rehabilitation processes of disabled people. PMID:25268915

  2. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation.

    PubMed

    Hanassy, S; Botvinnik, A; Flash, T; Hochner, B

    2015-06-01

    force (<0.0016 for an average strain along the arm of around 0.5). This was not observed and moreover such extremely low value does not seem to be physiologically possible. Hence the assumptions made in applying the dynamic model to behaviors such as static arm stiffening that leads to arm extension through bend propagation and the patterns of activation used to simulate such behaviors should be modified to account for movements combining bend propagation and arm elongation. PMID:25970857

  3. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation.

    PubMed

    Hanassy, S; Botvinnik, A; Flash, T; Hochner, B

    2015-05-13

    force (<0.0016 for an average strain along the arm of around 0.5). This was not observed and moreover such extremely low value does not seem to be physiologically possible. Hence the assumptions made in applying the dynamic model to behaviors such as static arm stiffening that leads to arm extension through bend propagation and the patterns of activation used to simulate such behaviors should be modified to account for movements combining bend propagation and arm elongation.

  4. Repetitive Arm Movements During Sleep: A Polysomnographic Assessment

    PubMed Central

    Torabi-Nami, Mohammad; Mehrabi, Samrad; Derman, Sabri

    2016-01-01

    Sleep-related movement disorders should be differentiated from parasomnias, sleep-associated behavioral disorders, and epilepsy. Polysomnography (PSG) is the gold standard in evaluating such disorders. Periodic leg movement disorder during sleep (PLMS), hypnic jerks, bruxism, rhythmic movement disorder, restless legs syndrome, and nocturnal leg cramps have broadly been discussed in the literature. However, periodic arm movement disorder in sleep (PAMS) is a less-appreciated entity perhaps because arm surface electromyography is not an integral part of the standard polysomnography. Results from our PSG study in a case suspected for PAMS prompted us to herewith discuss this problem. PMID:27563420

  5. Repetitive Arm Movements During Sleep: A Polysomnographic Assessment.

    PubMed

    Torabi-Nami, Mohammad; Mehrabi, Samrad; Derman, Sabri

    2016-07-01

    Sleep-related movement disorders should be differentiated from parasomnias, sleep-associated behavioral disorders, and epilepsy. Polysomnography (PSG) is the gold standard in evaluating such disorders. Periodic leg movement disorder during sleep (PLMS), hypnic jerks, bruxism, rhythmic movement disorder, restless legs syndrome, and nocturnal leg cramps have broadly been discussed in the literature. However, periodic arm movement disorder in sleep (PAMS) is a less-appreciated entity perhaps because arm surface electromyography is not an integral part of the standard polysomnography. Results from our PSG study in a case suspected for PAMS prompted us to herewith discuss this problem. PMID:27563420

  6. Invertebrate neurobiology: visual direction of arm movements in an octopus.

    PubMed

    Niven, Jeremy E

    2011-03-22

    An operant task in which octopuses learn to locate food by a visual cue in a three-choice maze shows that they are capable of integrating visual and mechanosensory information to direct their arm movements to a goal.

  7. Postural adjustments associated with rapid voluntary arm movements 1. Electromyographic data.

    PubMed Central

    Friedli, W G; Hallett, M; Simon, S R

    1984-01-01

    Normal subjects made bilaterally symmetric rapid elbow flexions or extensions ("focal movement") while free standing or when supported by being strapped to a firm wall behind them (different "postural set"). In some trials a load opposed the movement two thirds of the way into its course. Electromyographic activity in leg and trunk muscles ("associated postural adjustments") demonstrated specific patterns for each type of movement. Activity in these muscles began prior to activity in the arm muscles and demonstrated a distal-to-proximal order of activation. The EMG patterns were characterised by alternating activity in the antagonist pairs similar to the triphasic pattern seen in the arm muscles. When the movement type was changed change of the pattern of the postural muscles occurred over several trials. It is concluded that the associated postural adjustments are pre-programmed motor activity linked to the focal movement, specific for the focal movement including anticipated events and the postural set. PMID:6736995

  8. 85 Engaging Movement Activities.

    ERIC Educational Resources Information Center

    Weikart, Phyllis S.; Carlton, Elizabeth B.

    This book presents activities to keep K-6 students moving in a variety of ways as they learn. The movement experiences are planned around key curriculum concepts in movement and music as well as in academic curriculum areas. The experiences develop students' basic timing, language abilities, vocabulary, concentration, planning skills, and…

  9. Single-Trial Neural Correlates of Arm Movement Preparation

    PubMed Central

    Afshar, Afsheen; Santhanam, Gopal; Yu, Byron M.; Ryu, Stephen I.; Sahani, Maneesh; Shenoy, Krishna V.

    2011-01-01

    Summary The process by which neural circuitry in the brain plans and executes arm movements is not well understood. Prevailing data (single-neuron and field potential recordings) do not reveal how individual neurons’ activities are coordinated within the population, and thus inferences about how the neural circuit forms a motor plan have been indirect. Here we frame and test a new ‘initial condition hypothesis’ in which the reaction time (RT) of upcoming movements may be predicted on each trial using neurons’ moment-by-moment firing rates and rates of change of those rates. Using microelectrode array recordings from premotor cortex of monkeys performing delayed-reach movements, we compare such single-trial RT predictions to those of other theories. The initial condition hypothesis model can explain approximately four-fold more RT variance than the best alternative method. Thus, the initial condition hypothesis elucidates a new view of the relationship between single-trial preparatory neural population dynamics and single-trial behavior. PMID:21835350

  10. Naturalistic arm movements during obstacle avoidance in 3D and the identification of movement primitives.

    PubMed

    Grimme, Britta; Lipinski, John; Schöner, Gregor

    2012-10-01

    By studying human movement in the laboratory, a number of regularities and invariants such as planarity and the principle of isochrony have been discovered. The theoretical idea has gained traction that movement may be generated from a limited set of movement primitives that would encode these invariants. In this study, we ask if invariants and movement primitives capture naturalistic human movement. Participants moved objects to target locations while avoiding obstacles using unconstrained arm movements in three dimensions. Two experiments manipulated the spatial layout of targets, obstacles, and the locations in the transport movement where an obstacle was encountered. We found that all movement trajectories were planar, with the inclination of the movement plane reflecting the obstacle constraint. The timing of the movement was consistent with both global isochrony (same movement time for variable path lengths) and local isochrony (same movement time for two components of the obstacle avoidance movement). The identified movement primitives of transport (movement from start to target position) and lift (movement perpendicular to transport within the movement plane) varied independently with obstacle conditions. Their scaling accounted for the observed double peak structure of movement speed. Overall, the observed naturalistic movement was astoundingly regular. Its decomposition into primitives suggests simple mechanisms for movement generation.

  11. Effect of gravity-like torque on goal-directed arm movements in microgravity.

    PubMed

    Bringoux, L; Blouin, J; Coyle, T; Ruget, H; Mouchnino, L

    2012-05-01

    Gravitational force level is well-known to influence arm motor control. Specifically, hyper- or microgravity environments drastically change pointing accuracy and kinematics, particularly during initial exposure. These modifications are thought to partly reflect impairment in arm position sense. Here we investigated whether applying normogravitational constraints at joint level during microgravity episodes of parabolic flights could restore movement accuracy equivalent to that observed on Earth. Subjects with eyes closed performed arm reaching movements toward predefined sagittal angular positions in four environment conditions: normogravity, hypergravity, microgravity, and microgravity with elastic bands attached to the arm to mimic gravity-like torque at the shoulder joint. We found that subjects overshot and undershot the target orientations in hypergravity and microgravity, respectively, relative to a normogravity baseline. Strikingly, adding gravity-like torque prior to and during movements performed in microgravity allowed subjects to be as accurate as in normogravity. In the former condition, arm movement kinematics, as notably illustrated by the relative time to peak velocity, were also unchanged relative to normogravity, whereas significant modifications were found in hyper- and microgravity. Overall, these results suggest that arm motor planning and control are tuned with respect to gravitational information issued from joint torque, which presumably enhances arm position sense and activates internal models optimally adapted to the gravitoinertial environment.

  12. Accuracy of aimed arm movements in changed gravity.

    PubMed

    Bock, O; Howard, I P; Money, K E; Arnold, K E

    1992-11-01

    We studied the accuracy of aimed arm movements in normal gravity, and during the hypergravity (hyper-G) and microgravity (micro-G) episodes of KC-135 parabolic flights. Subjects pointed at mirror-viewed targets without sight of their arm, and final pointing position was measured by a digitizing pad. Compared with the normal gravity (normal-G) baseline, subjects pointed consistently higher in hyper-G, and still higher in micro-G. Results were not different if subjects viewed targets only during normal-G and pointed at their memorized position under changed gravity (changed-G); this suggests that the "elevator illusion" played a minor role in our study. The observed impairments were attributed to degraded proprioceptive feedback and/or inappropriate motor programs in changed-G. Pointing accuracy improved movement-to-movement but not parabola-to-parabola, indicating that prolonged exposure is needed for sustained adaptation.

  13. Time-dependence between upper arm muscles activity during rapid movements: observation of the proportional effects predicted by the kinematic theory.

    PubMed

    Plamondon, Réjean; Djioua, Moussa; Mathieu, Pierre A

    2013-10-01

    Rapid human movements can be assimilated to the output of a neuromuscular system with an impulse response modeled by a Delta-Lognormal equation. In such a model, the main assumption concerns the cumulative time delays of the response as it propagates toward the effector following a command. To verify the validity of this assumption, delays between bursts in electromyographic (EMG) signals of agonist and antagonist muscles activated during a rapid hand movement were investigated. Delays were measured between the surface EMG signals of six muscles of the upper limb during single rapid handwriting strokes. From EMG envelopes, regressions were obtained between the timing of the burst of activity produced by each monitored muscle. High correlation coefficients were obtained supporting the proportionality of the cumulative time delays, the basic hypothesis of the Delta-Lognormal model. A paradigm governing the sequence of muscle activities in a rapid movement could, in the long run, be useful for applications dealing with the analysis and synthesis of human movements.

  14. Combined recruitment of two fixation chains during cyclic movements of one arm.

    PubMed

    Esposti, Roberto; Baldissera, Fausto G

    2011-04-01

    Voluntary adduction-abduction movements of one arm in the horizontal plane discharge a reaction torque which would rotate the trunk in the direction opposite to arm acceleration. Rotation is impeded by muscular fixation chains that exert forces counterbalancing the reaction torque. We examined how two different fixation chains cooperate in stabilising the trunk during the above movements. Standing subjects (n=6), with shoulders ante-flexed, performed cyclic adductions-abductions of the right arm (1.5 Hz) while grasping a fixed handle with the left hand. In this set-up, reaction torque is contrasted by: (1) a leg fixation chain, exerting on the ground a torque around the vertical axis (Tz), recorded by a force platform; and (2) a left arm fixation chain, exerting on the handle a force in the medial-lateral direction (Fh), recorded by a load cell. Subjects performed 20 trials (15 cycles each). It was found that Tz and Fh underwent sinusoidal changes at the same frequency as arm movements and contributed in counteracting the reaction torque. The intensity of the handle grip, monitored by EMG activity in the left Flexor Digitorum Superficialis, was changed from trial to trial and kept constant during each trial. As grip strength increased, Fh amplitude increased linearly while amplitude of Tz linearly decreased. In conclusion, voluntarily strengthening the handle grip progressively deviates the postural actions from the legs to the left arm.

  15. Neuromechanical considerations for incorporating rhythmic arm movement in the rehabilitation of walking

    NASA Astrophysics Data System (ADS)

    Klimstra, Marc D.; Thomas, Evan; Stoloff, Rebecca H.; Ferris, Daniel P.; Zehr, E. Paul

    2009-06-01

    We have extensively used arm cycling to study the neural control of rhythmic movements such as arm swing during walking. Recently rhythmic movement of the arms has also been shown to enhance and shape muscle activity in the legs. However, restricted information is available concerning the conditions necessary to maximally alter lumbar spinal cord excitability. Knowledge on the neuromechanics of a task can assist in the determination of the type, level, and timing of neural signals, yet arm swing during walking and arm cycling have not received a detailed neuromechanical comparison. The purpose of this research was to provide a combined neural and mechanical measurement approach that could be used to assist in the determination of the necessary and sufficient conditions for arm movement to assist in lower limb rehabilitation after stroke and spinal cord injury. Subjects performed three rhythmic arm movement tasks: (1) cycling (cycle); (2) swinging while standing (swing); and (3) swinging while treadmill walking (walk). We hypothesized that any difference in neural control between tasks (i.e., pattern of muscle activity) would reflect changes in the mechanical constraints unique to each task. Three-dimensional kinematics were collected simultaneously with force measurement at the hand and electromyography from the arms and trunk. All data were appropriately segmented to allow a comparison between and across conditions and were normalized and averaged to 100% movement cycle based on shoulder excursion. Separate mathematical principal components analysis of kinematic and neural variables was performed to determine common task features and muscle synergies. The results highlight important neural and mechanical features that distinguish differences between tasks. For example, there are considerable differences in the anatomical positions of the arms during each task, which relate to the moments experienced about the elbow and shoulder. Also, there are differences between

  16. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.

    PubMed

    Zehr, E Paul; Collins, David F; Frigon, Alain; Hoogenboom, Nienke

    2003-01-01

    Although we move our arms rhythmically during walking, running, and swimming, we know little about the neural control of such movements. Our working hypothesis is that neural mechanisms controlling rhythmic movements are similar in the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that seen during leg movement. Our main experimental hypotheses were that the amplitude of H-reflexes in the forearm muscles would be modulated during arm movement (i.e., phase-dependent) and would be inhibited during cycling compared with static contraction (i.e., task-dependent). Furthermore, to determine the locus of any modulation, we tested the effect that active and passive movement of the ipsilateral (relative to stimulated arm) and contralateral arm had on H-reflex amplitude. Subjects performed rhythmic arm cycling on a custom-made hydraulic ergometer in which the two arms could be constrained to move together (180 degrees out of phase) or could rotate independently. Position of the stimulated limb in the movement cycle is described with respect to the clock face. H-reflexes were evoked at 12, 3, 6, and 9 o'clock positions during static contraction as well as during rhythmic arm movements. Reflex amplitudes were compared between tasks at equal M wave amplitudes and similar levels of electromyographic (EMG) activity in the target muscle. Surface EMG recordings were obtained bilaterally from flexor carpi radialis as well as from other muscles controlling the wrist, elbow, and shoulder. Compared with reflexes evoked during static contractions, movement of the stimulated limb attenuated H-reflexes by 50.8% (P < 0.005), 65.3% (P < 0.001), and 52.6% (P < 0.001) for bilateral, active ipsilateral, and passive ipsilateral movements, respectively. In contrast, movement of the contralateral limb did not significantly alter H-reflex amplitude. H-reflexes were also modulated by limb position (P < 0.005). Thus task- and phase

  17. Octopuses use a human-like strategy to control precise point-to-point arm movements.

    PubMed

    Sumbre, Germán; Fiorito, Graziano; Flash, Tamar; Hochner, Binyamin

    2006-04-18

    One of the key problems in motor control is mastering or reducing the number of degrees of freedom (DOFs) through coordination. This problem is especially prominent with hyper-redundant limbs such as the extremely flexible arm of the octopus. Several strategies for simplifying these control problems have been suggested for human point-to-point arm movements. Despite the evolutionary gap and morphological differences, humans and octopuses evolved similar strategies when fetching food to the mouth. To achieve this precise point-to-point-task, octopus arms generate a quasi-articulated structure based on three dynamic joints. A rotational movement around these joints brings the object to the mouth . Here, we describe a peripheral neural mechanism-two waves of muscle activation propagate toward each other, and their collision point sets the medial-joint location. This is a remarkably simple mechanism for adjusting the length of the segments according to where the object is grasped. Furthermore, similar to certain human arm movements, kinematic invariants were observed at the joint level rather than at the end-effector level, suggesting intrinsic control coordination. The evolutionary convergence to similar geometrical and kinematic features suggests that a kinematically constrained articulated limb controlled at the level of joint space is the optimal solution for precise point-to-point movements.

  18. Threshold position control of arm movement with anticipatory increase in grip force.

    PubMed

    Pilon, Jean-François; De Serres, Sophie J; Feldman, Anatol G

    2007-07-01

    The grip force holding an object between fingers usually increases before or simultaneously with arm movement thus preventing the object from sliding. We experimentally analyzed and simulated this anticipatory behavior based on the following notions. (1) To move the arm to a new position, the nervous system shifts the threshold position at which arm muscles begin to be recruited. Deviated from their activation thresholds, arm muscles generate activity and forces that tend to minimize this deviation by bringing the arm to a new position. (2) To produce a grip force, with or without arm motion, the nervous system changes the threshold configuration of the hand. This process defines a threshold (referent) aperture (R(a)) of appropriate fingers. The actual aperture (Q(a)) is constrained by the size of the object held between the fingers whereas, in referent position R(a), the fingers virtually penetrate the object. Deviated by the object from their thresholds of activation, hand muscles generate activity and grip forces in proportion to the gap between the Q(a) and R(a). Thus, grip force emerges since the object prevents the fingers from reaching the referent position. (3) From previous experiences, the system knows that objects tend to slide off the fingers when arm movements are made and, to prevent sliding, it starts narrowing the referent aperture simultaneously with or somewhat before the onset of changes in the referent arm position. (4) The interaction between the fingers and the object is accomplished via the elastic pads on the tips of fingers. The pads are compressed not only due to the grip force but also due to the tangential inertial force ("load") acting from the object on the pads along the arm trajectory. Compressed by the load force, the pads move back and forth in the gap between the finger bones and object, thus inevitably changing the normal component of the grip force, in synchrony with and in proportion to the load force. Based on these notions

  19. Movement Structure in Young and Elderly Adults during Goal-Directed Movements of the Left and Right Arm

    ERIC Educational Resources Information Center

    Poston, Brach; Van Gemmert, Arend W. A.; Barduson, Beth; Stelmach, George E.

    2009-01-01

    Elderly adults often exhibit performance deficits during goal-directed movements of the dominant arm compared with young adults. Recent studies involving hemispheric lateralization have provided evidence that the dominant and non-dominant hemisphere-arm systems are specialized for controlling different movement parameters and that hemispheric…

  20. Postural adjustments associated with rapid voluntary arm movements. II. Biomechanical analysis.

    PubMed Central

    Friedli, W G; Cohen, L; Hallett, M; Stanhope, S; Simon, S R

    1988-01-01

    Normal subjects performed bilaterally symmetric rapid elbow flexions or extensions ("focal movements") while standing. Specific patterns of electromyographic activity in leg and trunk muscles ("associated postural adjustments") were seen for each type of movement. The biomechanical significance of these postural adjustments was analysed by means of the ground reaction forces and motion of the various body segments. Experimental data were compared with that from a theoretical model of the body consisting of a six segment kinetic chain with rigid links. Distinct patterns of the ground reaction forces with elbow flexion were opposite in direction to those seen with elbow extension. Movements of the various body segments were small and specific for a certain focal movement. Dynamic perturbations arising from the arm movement in an anteroposterior direction were found to be compensated by postural adjustments, whereas vertical perturbations were not compensated. The muscular activity acting about different joints in the different movements was found to correlate with the predictions of activity needed to compensate for net joint reaction moments arising from the focal movement. Motion of the various body segments could be understood as resulting from the interplay of the net reaction moments and the net muscular moments at the different joints. Dynamic postural requirements are accomplished by a precise active compensation initiated before the focal movement. PMID:3346688

  1. Core Muscle Activation in One-Armed and Two-Armed Kettlebell Swing.

    PubMed

    Andersen, Vidar; Fimland, Marius S; Gunnarskog, Aril; Jungård, Georg-Andrè; Slåttland, Roy-Andrè; Vraalsen, Øyvind F; Saeterbakken, Atle H

    2016-05-01

    The aim of the study was to compare the electromyographic activity of rectus abdominis, oblique external, and lower and upper erector spinae at both sides of the truncus in 1-armed and 2-armed kettlebell swing. Sixteen healthy men performed 10 repetitions of both exercises using a 16-kg kettlebell in randomized order. For the upper erector spinae, the activation of the contralateral side during 1-armed swing was 24% greater than that of the ipsilateral side during 1-armed swing (p < 0.001) and 11% greater during 2-armed swing (p = 0.026). Furthermore, the activation in 2-armed swing was 12-16% greater than for the ipsilateral side in 1-armed swing (p < 0.001). For rectus abdominis, however, 42% lower activation of the contralateral side was observed during 1-armed swing compared with ipsilateral sides during 2-armed swing (p = 0.038) and 48% compared with the ipsilateral side during 1-armed swing (p = 0.044). Comparing the different phases of the swing, most differences in the upper erector spinae were found in the lower parts of the movement, whereas for the rectus abdominis, the differences were found during the hip extension. In contrast, similar muscle activity in the lower erector spinae and external oblique between the different conditions was observed (p = 0.055-0.969). In conclusion, performing the kettlebell swing with 1 arm resulted in greater neuromuscular activity for the contralateral side of the upper erector spinae and ipsilateral side of the rectus abdominis, and lower activation of the opposite side of the respective muscles.

  2. The electronic counting arm movement test (eCAM test).

    PubMed

    Bodranghien, Florian; Martin, Claire; Ansay, Caroline; Camut, Stephane; Busegnies, Yves; Manto, Mario

    2015-06-01

    A novel transportable electronic platform aiming to characterize the performance of successive fast vertical visually guided pointing movements toward two fixed targets (eCAM test: electronic counting arm movement test) is described and one validation test is presented. This platform is based on an Arduino(®) micro-controller and a Processing(®) routine. It records both the pointing performance (number of clicks) and the elapsed time between two successive pointing movements. Using this novel platform, we studied the effects of functional electrical stimulation (FES) applied on the dominant upper limb in 15 healthy volunteers (mean age ± SD: 22.3 ± 4.3 years; 5 males/10 females). The following muscles were stimulated: flexor carpi radialis (FCR), extensor carpi radialis (ECR), biceps brachii (BB), and triceps brachii (TB). The intensities of the stimulation were 2 and 3 mA above the sensory threshold (ST). Movement times were lesser when performed against gravity and pointing performance improved with FES. We provide the first demonstration that low-intensity FES impacts on motor performances during successive vertical goal-directed pointing movements under visual guidance. The eCAM test is currently the sole electronic tool to assess quickly and easily the performances of successive vertical pointing movements. Future potential applications include, in particular, the follow-up of the effects of neurorehabilitation of neurological/neurosurgical disorders associated with hand-eye incoordination, the functional evaluation of upper limb prosthesis or orthosis, and the analysis of the effects of FES in central or peripheral nervous system disorders.

  3. Differential representation of arm movement direction in relation to cortical anatomy and function

    NASA Astrophysics Data System (ADS)

    Ball, Tonio; Schulze-Bonhage, Andreas; Aertsen, Ad; Mehring, Carsten

    2009-02-01

    Information about arm movement direction in neuronal activity of the cerebral cortex can be used for movement control mediated by a brain-machine interface (BMI). Here we provide a topographic analysis of the information related to arm movement direction that can be extracted from single trials of electrocorticographic (ECoG) signals recorded from the human frontal and parietal cortex based on a precise assignment of ECoG recording channels to the subjects' individual cortical anatomy and function. To this aim, each electrode contact was identified on structural MRI scans acquired while the electrodes were implanted and was thus related to the brain anatomy of each patient. Cortical function was assessed by direct cortical electrical stimulation. We show that activity from the primary motor cortex, in particular from the region showing hand and arm motor responses upon electrical stimulation, carries most directional information. The premotor, posterior parietal and lateral prefrontal cortex contributed gradually less, but still significant information. This gradient was observed for decoding from movement-related potentials, and from spectral amplitude modulations in low frequencies and in the high gamma band. Our findings thus demonstrate a close topographic correlation between cortical functional anatomy and direction-related information in humans that might be used for brain-machine interfacing.

  4. Somatotopic reorganization of hand representation in bilateral arm amputees with or without special foot movement skill.

    PubMed

    Yu, Xiao Jing; He, Hong Jian; Zhang, Qiao Wei; Zhao, Feng; Zee, Chi Shing; Zhang, Shi Zheng; Gong, Xiang Yang

    2014-02-10

    Bilateral arm amputees usually are excellent foot users. To explore the plasticity of the primary motor cortex in upper-extremities amputees and to determine if the acquisition of special foot movement skill is related with the bilateral hand amputation, we studied the primary motor cortex by using combined task and resting state functional magnetic resonance imaging (fMRI). We investigated 6 bilateral arm amputees with or without special foot movement skill. In the task fMRI study, we found that toe tapping of all the amputees activated the bilateral hand area, including cases without special foot skill. In addition, cases without special foot skill mainly activated the precentral gyrus, which differed from those with more adept foot motor skill who activated both the precentral and postcentral gyri. To further understand the plasticity of the hand area, the resting state functional connectivity was investigated between the foot and hand regions. One-tailed two-sample t-test suggested that the connections between two areas became significantly stronger in the amputee group. Our study demonstrates that hand region of the cortex does not remain 'silent' after bilateral arm amputation, but rather is recruited by other modalities such as adjacent or nonadjacent cortexes to process motor information in a functionally relevant manner. From the data presented, it seems that the bilateral arm amputees have a strong potential to develop new skills in their remaining extremities and practice may further enhance this potential.

  5. Detecting Elementary Arm Movements by Tracking Upper Limb Joint Angles With MARG Sensors.

    PubMed

    Mazomenos, Evangelos B; Biswas, Dwaipayan; Cranny, Andy; Rajan, Amal; Maharatna, Koushik; Achner, Josy; Klemke, Jasmin; Jobges, Michael; Ortmann, Steffen; Langendorfer, Peter

    2016-07-01

    This paper reports an algorithm for the detection of three elementary upper limb movements, i.e., reach and retrieve, bend the arm at the elbow and rotation of the arm about the long axis. We employ two MARG sensors, attached at the elbow and wrist, from which the kinematic properties (joint angles, position) of the upper arm and forearm are calculated through data fusion using a quaternion-based gradient-descent method and a two-link model of the upper limb. By studying the kinematic patterns of the three movements on a small dataset, we derive discriminative features that are indicative of each movement; these are then used to formulate the proposed detection algorithm. Our novel approach of employing the joint angles and position to discriminate the three fundamental movements was evaluated in a series of experiments with 22 volunteers who participated in the study: 18 healthy subjects and four stroke survivors. In a controlled experiment, each volunteer was instructed to perform each movement a number of times. This was complimented by a seminaturalistic experiment where the volunteers performed the same movements as subtasks of an activity that emulated the preparation of a cup of tea. In the stroke survivors group, the overall detection accuracy for all three movements was 93.75% and 83.00%, for the controlled and seminaturalistic experiment, respectively. The performance was higher in the healthy group where 96.85% of the tasks in the controlled experiment and 89.69% in the seminaturalistic were detected correctly. Finally, the detection ratio remains close ( ±6%) to the average value, for different task durations further attesting to the algorithms robustness. PMID:25966489

  6. The Averaged EMGs Recorded from the Arm Muscles During Bimanual "Rowing" Movements.

    PubMed

    Tomiak, Tomasz; Gorkovenko, Andriy V; Tal'nov, Arkadii N; Abramovych, Tetyana I; Mishchenko, Viktor S; Vereshchaka, Inna V; Kostyukov, Alexander I

    2015-01-01

    The main purpose was to analyze quantitatively the the average surface EMGs of the muscles that function around the elbow and shoulder joints of both arms in bimanual "rowing" movements, which were produced under identical elastic loads applied to the levers ("oars"). The muscles of PM group ("pulling" muscles: elbow flexors, shoulder extensors) generated noticeable velocity-dependent dynamic EMG components during the pulling and returning phases of movement and supported a steady-state activity during the hold phase. The muscles of RM group ("returning" muscles: elbow extensors, shoulder flexors) co-contracted with PM group during the movement phases and decreased activity during the hold phase. The dynamic components of the EMGs strongly depended on the velocity factor in both muscle groups, whereas the side and load factors and combinations of various factors acted only in PM group. Various subjects demonstrated diverse patterns of activity redistribution among muscles. We assume that central commands to the same muscles in two arms may be essentially different during execution of similar movement programs. Extent of the diversity in the EMG patterns of such muscles may reflect the subject's skilling in motor performance; on the other hand, the diversity can be connected with redistribution of activity between synergic muscles, thus providing a mechanism directed against development of the muscle fatigue. PMID:26640440

  7. Coordinate transformations for eye and arm movements in the brain.

    PubMed

    Snyder, L H

    2000-12-01

    Recent work on the coding of spatial information in the brain has significantly advanced our knowledge of sensory to motor transformations on several fronts. The encoding of information referenced to the retina (eye-centered) but modulated by eye position, called a gain field representation, has proved to be very common throughout parietal and occipital cortex. The use of an eye-centered representation as a working memory of spatial location is problematic if the eyes move during the memory period. Details regarding the manner in which the brain solves this problem are beginning to emerge. Finally, the discovery of eye-centered representations of ongoing or intended arm movements has changed the way we think about the order of operations in the sensory to motor coordinate transformation.

  8. Human movement training with a cable driven ARm EXoskeleton (CAREX).

    PubMed

    Mao, Ying; Jin, Xin; Gera Dutta, Geetanjali; Scholz, John P; Agrawal, Sunil K

    2015-01-01

    In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field.

  9. Constraint-Induced Movement Therapy for Rehabilitation of Arm Dysfunction After Stroke in Adults

    PubMed Central

    2011-01-01

    Executive Summary Objective The purpose of this evidence-based analysis is to determine the effectiveness and cost of CIMT for persons with arm dysfunction after a stroke. Clinical Need: Condition and Target Population A stroke is a sudden loss of brain function caused by the interruption of blood flow to the brain (ischemic stroke) or the rupture of blood vessels in the brain (hemorrhagic stroke). A stroke can affect any number of areas including the ability to move, see, remember, speak, reason, and read and write. Stroke is the leading cause of adult neurological disability in Canada; 300,000 people or 1% of the population live with its effects. Up to 85% of persons experiencing a complete stroke have residual arm dysfunction which will interfere with their ability to live independently. Rehabilitation interventions are the cornerstone of care and recovery after a stroke. Constraint-Induced Movement Therapy Constraint-Induced Movement (CIMT) is a behavioural approach to neurorehabilitation based on the principle of ‘learned non-use’. The term is derived from studies in nonhuman primates in which somatosensory deafferentation of a single forelimb was performed and after which the animal then failed to use that limb. This failure to use the limb was deemed ‘learned non-use’. The major components of CIMT include: i) intense repetitive task-oriented training of the impaired limb ii) immobilization of the unimpaired arm, and iii) shaping. With regard to the first component, persons may train the affected arm for several hours a day for up to 10-15 consecutive days. With immobilization, the unaffected arm may be restrained for up to 90% of waking hours. And finally, with shaping, the difficulty of the training tasks is progressively increased as performance improves and encouraging feedback is provided immediately when small gains are achieved. Research Question What is the effectiveness and cost of CIMT compared with physiotherapy and/or occupational therapy

  10. Strategy of arm movement control is determined by minimization of neural effort for joint coordination.

    PubMed

    Dounskaia, Natalia; Shimansky, Yury

    2016-06-01

    Optimality criteria underlying organization of arm movements are often validated by testing their ability to adequately predict hand trajectories. However, kinematic redundancy of the arm allows production of the same hand trajectory through different joint coordination patterns. We therefore consider movement optimality at the level of joint coordination patterns. A review of studies of multi-joint movement control suggests that a 'trailing' pattern of joint control is consistently observed during which a single ('leading') joint is rotated actively and interaction torque produced by this joint is the primary contributor to the motion of the other ('trailing') joints. A tendency to use the trailing pattern whenever the kinematic redundancy is sufficient and increased utilization of this pattern during skillful movements suggests optimality of the trailing pattern. The goal of this study is to determine the cost function minimization of which predicts the trailing pattern. We show that extensive experimental testing of many known cost functions cannot successfully explain optimality of the trailing pattern. We therefore propose a novel cost function that represents neural effort for joint coordination. That effort is quantified as the cost of neural information processing required for joint coordination. We show that a tendency to reduce this 'neurocomputational' cost predicts the trailing pattern and that the theoretically developed predictions fully agree with the experimental findings on control of multi-joint movements. Implications for future research of the suggested interpretation of the trailing joint control pattern and the theory of joint coordination underlying it are discussed. PMID:26983620

  11. Deficits in startle-evoked arm movements increase with impairment following stroke

    PubMed Central

    Honeycutt, Claire Fletcher; Perreault, Eric Jon

    2014-01-01

    Objective The startle reflex elicits involuntary release of planned movements (startReact). Following stroke, startReact flexion movements are intact but startReact extension movements are impaired by task-inappropriate flexor activity impeding arm extension. Our objective was to quantify deficits in startReact elbow extension movements, particularly how these deficits are influenced by impairment. Methods Data were collected in 8 stroke survivors performing elbow extension following two non-startling acoustic stimuli representing “get ready” and “go” respectively. Randomly, the “go” was replaced with a startling acoustic stimulus. We hypothesized that task-inappropriate flexor activity originates from unsuppressed classic startle reflex. We expected that increasing damage to the cortex (increasing impairment) would relate to increasing task-inappropriate flexor activity causing poor elbow extension movement and target acquisition. Results Task-inappropriate flexor activity increased with impairment resulting in larger flexion deflections away from the subjects’ intended target corresponding to decreased target acquisition. Conclusions We conclude that the task-inappropriate flexor activity likely results from cortical or corticospinal damage leading to an unsuppressed or hypermetric classic startle reflex that interrupts startReact elbow extension. Significance Given startReact’s functional role in compensation during environmental disturbances, our results may have important implications for our understanding deficits in stroke survivor’s response to unexpected environmental disturbances. PMID:24411525

  12. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.

    PubMed

    Sanchez, Robert J; Liu, Jiayin; Rao, Sandhya; Shah, Punit; Smith, Robert; Rahman, Tariq; Cramer, Steven C; Bobrow, James E; Reinkensmeyer, David J

    2006-09-01

    An important goal in rehabilitation engineering is to develop technology that allows individuals with severe motor impairment to practice arm movement without continuous supervision from a rehabilitation therapist. This paper describes the development of such a system, called Therapy WREX or ("T-WREX"). The system consists of an orthosis that assists in arm movement across a large workspace, a grip sensor that detects hand grip pressure, and software that simulates functional activities. The arm orthosis is an instrumented, adult-sized version of the Wilmington Robotic Exoskeleton (WREX), which is a five degrees-of-freedom mechanism that passively counterbalances the weight of the arm using elastic bands. After providing a detailed design description of T-WREX, this paper describes two pilot studies of the system's capabilities. The first study demonstrated that individuals with chronic stroke whose arm function is compromised in a normal gravity environment can perform reaching and drawing movements while using T-WREX. The second study demonstrated that exercising the affected arm of five people with chronic stroke with T-WREX over an eight week period improved unassisted movement ability (mean change in Fugl-Meyer score was 5 points +/- 2 SD; mean change in range of motion of reaching was 10%, p < 0.001). These results demonstrate the feasibility of automating upper-extremity rehabilitation therapy for people with severe stroke using passive gravity assistance, a grip sensor, and simple virtual reality software.

  13. Single-joint rapid arm movements in normal subjects and in patients with motor disorders.

    PubMed

    Berardelli, A; Hallett, M; Rothwell, J C; Agostino, R; Manfredi, M; Thompson, P D; Marsden, C D

    1996-04-01

    In normal subjects the execution of single rapid one-joint movements is characterized by an electromyographic (EMG) pattern composed of three discrete bursts of activity; two bursts (first and second agonist bursts, or AG1 and AG2) are present in the agonist muscle separated by an almost complete period of electrical silence. During this pause, another burst (antagonist burst, or ANT) occurs in the antagonist muscle. If a rapid movement is executed during tonic activation of the agonist muscle, tonic activity is inhibited just prior to AG1 onset (agonist inhibition). Similarly, if the movement is performed during tonic activation of the antagonist muscle, such activity is also inhibited prior to AG1 onset (antagonist inhibition). Antagonist inhibition also starts prior to AG1 onset and lasts until ANT onset. A general descriptor of the kinematic features related to the EMG pattern described above is a symmetrical and unimodal velocity profile that is bell-shaped and shows an acceleration time roughly equal to the deceleration time. This holds true for movements performed under low accuracy constraints; as accuracy demands become stricter and stricter, the peak velocity decreases but, as long as the movement is made with one continuous trajectory, the velocity profile remains roughly symmetrical. In general terms, the function of AG1 is to provide the impulsive force to start the movement; the function of ANT is to halt the movement at the desired end-point; and the function of AG2 is to dampen out the oscillations which might occur at the end of the movement. The timing and size of the bursts vary according to the speed and amplitude of the movement. The origin of the EMG pattern is a central programme, but afferent inputs can modulate the voluntary activity. In this paper, we also review the EMG and kinematic abnormalities that are present during the execution of single-joint, rapid arm movements in patients with Parkinson's disease, Huntington's disease, Sydenham

  14. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    PubMed

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. PMID:26961103

  15. Cortical Activation During Levitation and Tentacular Movements of Corticobasal Syndrome

    PubMed Central

    Onofrj, Marco; Bonanni, Laura; Pizzi, Stefano Delli; Caulo, Massimo; Onofrj, Valeria; Thomas, Astrid; Tartaro, Armando; Franciotti, Raffaella

    2015-01-01

    Abstract Levitation and tentacular movements (LTM) are considered specific, yet rare (30%), features of Corticobasal Syndrome (CBS), and are erroneously classified as alien hand. Our study focuses on these typical involuntary movements and aims to highlight possible neural correlates. LTM were recognizable during functional magnetic resonance imaging (fMRI) in 4 of 19 CBS patients. FMRI activity was evaluated with an activation recognition program for movements, during LTM, consisting of levitaton and finger writhing, and compared with the absence of movement (rest) and voluntary movements (VM), similar to LTM, of affected and unaffected arm-hand. FMRI acquisition blocks were balanced in order to match LTM blocks with rest and VM conditions. In 1 of the 4 patients, fMRI was acquired only during LTM and with a different equipment. Despite variable intensity and range of involuntary movements, evidenced by videos, fMRI showed, during LTM, a significant (P<0.05–0.001) activation only of the contralateral primary motor cortex (M1). Voluntary movements of the affected and unaffected arm elicited the known network including frontal, supplementary, sensory-motor cortex, and cerebellum. Willed movements of the LTM-affected arm induced higher and wider activation of contralateral M1 compared with the unaffected arm. The isolated activation of M1 suggests that LTM is a cortical disinhibition symptom, not involving a network. Higher activation of M1 during VM confirms that M1 excitability changes occur in CBS. Our study calls, finally, attention to the necessity to separate LTM from other alien hand phenomena. PMID:26559277

  16. Cortical Activation During Levitation and Tentacular Movements of Corticobasal Syndrome.

    PubMed

    Onofrj, Marco; Bonanni, Laura; Delli Pizzi, Stefano; Caulo, Massimo; Onofrj, Valeria; Thomas, Astrid; Tartaro, Armando; Franciotti, Raffaella

    2015-11-01

    Levitation and tentacular movements (LTM) are considered specific, yet rare (30%), features of Corticobasal Syndrome (CBS), and are erroneously classified as alien hand. Our study focuses on these typical involuntary movements and aims to highlight possible neural correlates.LTM were recognizable during functional magnetic resonance imaging (fMRI) in 4 of 19 CBS patients. FMRI activity was evaluated with an activation recognition program for movements, during LTM, consisting of levitaton and finger writhing, and compared with the absence of movement (rest) and voluntary movements (VM), similar to LTM, of affected and unaffected arm-hand. FMRI acquisition blocks were balanced in order to match LTM blocks with rest and VM conditions. In 1 of the 4 patients, fMRI was acquired only during LTM and with a different equipment.Despite variable intensity and range of involuntary movements, evidenced by videos, fMRI showed, during LTM, a significant (P<0.05-0.001) activation only of the contralateral primary motor cortex (M1). Voluntary movements of the affected and unaffected arm elicited the known network including frontal, supplementary, sensory-motor cortex, and cerebellum. Willed movements of the LTM-affected arm induced higher and wider activation of contralateral M1 compared with the unaffected arm.The isolated activation of M1 suggests that LTM is a cortical disinhibition symptom, not involving a network. Higher activation of M1 during VM confirms that M1 excitability changes occur in CBS. Our study calls, finally, attention to the necessity to separate LTM from other alien hand phenomena. PMID:26559277

  17. A Donders' Like Law for Arm Movements: The Signal not the Noise.

    PubMed

    Ewart, Steven; Hynes, Stephanie M; Darling, Warren G; Capaday, Charles

    2016-01-01

    Experiments were done to determine whether the starting position of the arm influences its final configuration (posture) when pointing to, or grasping, targets located within the common workspace of the arm. Subjects were asked to point to, or grasp, each of six targets from five, or seven, widely spaced starting positions. We found that the variability (standard deviation) of the arm's configuration, measured as the angle of inclination of the plane delimited by the arm and forearm, averaged about 4° for comfortable speed pointing movements and was only slightly higher for fast pointing movements. Comfortable speed reaches to grasp the targets were associated with slightly lower variability (3.5°) in final arm configuration. The average variability of repeated movements to a given target from a single start position (3.5°) was comparable to that of movements from different start positions to the same target (4.2°). A small difference in final arm inclination angle, averaged across all subjects and targets, of 3° was found between two pairs of starting positions. This small and possibly idiosyncratic effect is within the "noise" of final arm orientation variability for repeated movements (i.e., 3.5°). Thus, the variability of final posture is not for the most part due to different start positions, it is inherent to movement per se. Our results reconcile conflicting previous studies and are consistent with past works suggesting that a Donders' like law is indeed largely upheld for unconstrained visually guided arm movements. In summary, considering movements within a typical work space, when the hand is moved voluntarily to a given spatial location the posture of the arm is nearly the same regardless of its starting position. Importantly, variability is inherent to the rule.

  18. Different temporal bases for body and arm movements in volleyball serve reception.

    PubMed

    Benerink, N H; Bootsma, R J; Zaal, F T J M

    2015-10-01

    In many sports, successfully intercepting a ball requires players to move both their body and their arms. Yet, studies of interception typically focus on one or the other. We performed an analysis of the moments of first foot and arm movements of elite-level volleyball players during serve reception. Video footage of five international matches of the Netherlands men's national volleyball team allowed the systematic coding and analysis of 347 different serve reception events. For each event, we identified the time of serve (TS) and time of contact (TC). Ball flight time (from TS to TC) varied between and within types of serve (power jump serves, n = 193, and jumping float serves, n = 154). Correlation analyses revealed that foot movement was initiated with respect to time from TS, while arm movement was initiated with respect to time until TC. These results suggest that whole-body and arm movements rely on different control processes.

  19. A Donders’ Like Law for Arm Movements: The Signal not the Noise

    PubMed Central

    Ewart, Steven; Hynes, Stephanie M.; Darling, Warren G.; Capaday, Charles

    2016-01-01

    Experiments were done to determine whether the starting position of the arm influences its final configuration (posture) when pointing to, or grasping, targets located within the common workspace of the arm. Subjects were asked to point to, or grasp, each of six targets from five, or seven, widely spaced starting positions. We found that the variability (standard deviation) of the arm’s configuration, measured as the angle of inclination of the plane delimited by the arm and forearm, averaged about 4° for comfortable speed pointing movements and was only slightly higher for fast pointing movements. Comfortable speed reaches to grasp the targets were associated with slightly lower variability (3.5°) in final arm configuration. The average variability of repeated movements to a given target from a single start position (3.5°) was comparable to that of movements from different start positions to the same target (4.2°). A small difference in final arm inclination angle, averaged across all subjects and targets, of 3° was found between two pairs of starting positions. This small and possibly idiosyncratic effect is within the “noise” of final arm orientation variability for repeated movements (i.e., 3.5°). Thus, the variability of final posture is not for the most part due to different start positions, it is inherent to movement per se. Our results reconcile conflicting previous studies and are consistent with past works suggesting that a Donders’ like law is indeed largely upheld for unconstrained visually guided arm movements. In summary, considering movements within a typical work space, when the hand is moved voluntarily to a given spatial location the posture of the arm is nearly the same regardless of its starting position. Importantly, variability is inherent to the rule. PMID:27065836

  20. Brain-machine interface to control a prosthetic arm with monkey ECoGs during periodic movements.

    PubMed

    Morishita, Soichiro; Sato, Keita; Watanabe, Hidenori; Nishimura, Yukio; Isa, Tadashi; Kato, Ryu; Nakamura, Tatsuhiro; Yokoi, Hiroshi

    2014-01-01

    Brain-machine interfaces (BMIs) are promising technologies for rehabilitation of upper limb functions in patients with severe paralysis. We previously developed a BMI prosthetic arm for a monkey implanted with electrocorticography (ECoG) electrodes, and trained it in a reaching task. The stability of the BMI prevented incorrect movements due to misclassification of ECoG patterns. As a trade-off for the stability, however, the latency (the time gap between the monkey's actual motion and the prosthetic arm movement) was about 200 ms. Therefore, in this study, we aimed to improve the response time of the BMI prosthetic arm. We focused on the generation of a trigger event by decoding muscle activity in order to predict integrated electromyograms (iEMGs) from the ECoGs. We verified the achievability of our method by conducting a performance test of the proposed method with actual achieved iEMGs instead of predicted iEMGs. Our results confirmed that the proposed method with predicted iEMGs eliminated the time delay. In addition, we found that motor intention is better reflected by muscle activity estimated from brain activity rather than actual muscle activity. Therefore, we propose that using predicted iEMGs to guide prosthetic arm movement results in minimal delay and excellent performance. PMID:25565947

  1. Implicit advance knowledge effects on the interplay between arm movements and postural adjustments in catching.

    PubMed

    Tijtgat, Pieter; Vanrenterghem, Jos; Bennett, Simon J; De Clercq, Dirk; Savelsbergh, Geert J P; Lenoir, Matthieu

    2012-06-19

    This study examined if, and how, implicit advance knowledge of upcoming ball speed influences the interplay between arm movements and concomitant postural adjustments in one-handed catching. While standing, subjects were asked to catch balls that were presented with or without implicit advance knowledge of four different ball speeds. Full body kinematics and ground reaction forces were measured, which allowed the assessment of arm movements and postural adjustments through the momentum of the arm, rest of the body and whole body. Providing implicit advance knowledge induced a forward arm raising movement scaled to ball speed in the initial transport phase. However, the accompanying backward postural adjustments were unaffected, which is suggestive of a passive control mechanism. In the subsequent grasping phase, the scaling of arm raising movement exhibited in the presence of implicit advance knowledge resulted in a reduced need for postural adjustments, particularly at the highest ball speed. Together, these findings suggest that cortical involvement based on previous experience not only shapes the arm movements but also the subsequent interplaying postural responses.

  2. Rhythmic arm movements are less affected than discrete ones after a stroke.

    PubMed

    Leconte, Patricia; Orban de Xivry, Jean-Jacques; Stoquart, Gaëtan; Lejeune, Thierry; Ronsse, Renaud

    2016-06-01

    Recent reports indicate that rhythmic and discrete upper-limb movements are two different motor primitives which recruit, at least partially, distinct neural circuitries. In particular, rhythmic movements recruit a smaller cortical network than discrete movements. The goal of this paper is to compare the levels of disability in performing rhythmic and discrete movements after a stroke. More precisely, we tested the hypothesis that rhythmic movements should be less affected than discrete ones, because they recruit neural circuitries that are less likely to be damaged by the stroke. Eleven stroke patients and eleven age-matched control subjects performed discrete and rhythmic movements using an end-effector robot (REAplan). The rhythmic movement condition was performed with and without visual targets to further decrease cortical recruitment. Movement kinematics was analyzed through specific metrics, capturing the degree of smoothness and harmonicity. We reported three main observations: (1) the movement smoothness of the paretic arm was more severely degraded for discrete movements than rhythmic movements; (2) most of the patients performed rhythmic movements with a lower harmonicity than controls; and (3) visually guided rhythmic movements were more altered than non-visually guided rhythmic movements. These results suggest a hierarchy in the levels of impairment: Discrete movements are more affected than rhythmic ones, which are more affected if they are visually guided. These results are a new illustration that discrete and rhythmic movements are two fundamental primitives in upper-limb movements. Moreover, this hierarchy of impairment opens new post-stroke rehabilitation perspectives.

  3. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.

    PubMed

    Iuppariello, Luigi; D'Addio, Giovanni; Romano, Maria; Bifulco, Paolo; Lanzillo, Bernardo; Pappone, Nicola; Cesarelli, Mario

    2016-01-01

    Robot-mediated therapy (RMT) has been a very dynamic area of research in recent years. Robotics devices are in fact capable to quantify the performances of a rehabilitation task in treatments of several disorders of the arm and the shoulder of various central and peripheral etiology. Different systems for robot-aided neuro-rehabilitation are available for upper limb rehabilitation but the biomechanical parameters proposed until today, to evaluate the quality of the movement, are related to the specific robot used and to the type of exercise performed. Besides, none study indicated a standardized quantitative evaluation of robot assisted upper arm reaching movements, so the RMT is still far to be considered a standardised tool. In this paper a quantitative kinematic assessment of robot assisted upper arm reaching movements, considering also the effect of gravity on the quality of the movements, is proposed. We studied a group of 10 healthy subjects and results indicate that our advised protocol can be useful for characterising normal pattern in reaching movements.

  4. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.

    PubMed

    Iuppariello, Luigi; D'Addio, Giovanni; Romano, Maria; Bifulco, Paolo; Lanzillo, Bernardo; Pappone, Nicola; Cesarelli, Mario

    2016-01-01

    Robot-mediated therapy (RMT) has been a very dynamic area of research in recent years. Robotics devices are in fact capable to quantify the performances of a rehabilitation task in treatments of several disorders of the arm and the shoulder of various central and peripheral etiology. Different systems for robot-aided neuro-rehabilitation are available for upper limb rehabilitation but the biomechanical parameters proposed until today, to evaluate the quality of the movement, are related to the specific robot used and to the type of exercise performed. Besides, none study indicated a standardized quantitative evaluation of robot assisted upper arm reaching movements, so the RMT is still far to be considered a standardised tool. In this paper a quantitative kinematic assessment of robot assisted upper arm reaching movements, considering also the effect of gravity on the quality of the movements, is proposed. We studied a group of 10 healthy subjects and results indicate that our advised protocol can be useful for characterising normal pattern in reaching movements. PMID:27459844

  5. [The Activation of Interlimb Interactions Increase the Motor Output in Legs in Healthy Subjects under the Conditions of Arm and Leg Unloading].

    PubMed

    Selionov, V A; Solopova, I A; Zhvansky, D S

    2016-01-01

    We studied the effect of arm movements and movements of separate arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements under the conditions of horizontal support of upper and lower limbs. The horizontal support of arms provided a significantly increase in the rate of activation of locomotor automatism by non-invasive impact on tonic sensory inputs. The addition of active arm movements during involuntary rhytmic stepping-like leg movements led to an increase in EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of the knee and hip joints. At the same time, the movement of forearms. and wrists had similar facilitating effect on electrophysiological and kinematic characteristics of rhytmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of sub-threshold vibration of leg muscles, voluntary arm movements led to the activation of involuntary rhytmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhytmic stepping than during involuntary leg movements. Thus, the simultaneous movements of upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries

  6. Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates.

    PubMed

    Stuphorn, V; Bauswein, E; Hoffmann, K P

    2000-03-01

    In the intermediate and deep layers of the superior colliculus (SC), a well-established oculomotor structure, a substantial population of cells is involved in the control of arm movements. To examine the reference frame of these neurons, we recorded in two rhesus monkeys (Macaca mulatta) the discharges of 331 neurons in the SC and the underlying mesencephalic reticular formation (MRF) while monkeys reached to the same target location during different gaze orientations. For 65 reach-related cells with sufficient data and for simultaneously recorded electromyograms (EMGs) of 11 arm muscles, we calculated an ANOVA (factors: target position, gaze angle) and a gaze-dependency (GD) index. EMGs and the activity of many (60%) of the reach-related neurons were not influenced by the target representation on the retina or eye position. We refer to these as "gaze-independent" reach neurons. For 40%, however, the GD fell outside the range of the muscle modulation, and the ANOVA showed a significant influence of gaze. These "gaze-related" reach neurons discharge only when the monkey reaches for targets having specific coordinates in relation to the gaze axis, i.e., for targets in a gaze-related "reach movement field" (RMF). Neuronal activity was not modulated by the specific path of the arm movement, the muscle pattern that is necessary for its realization or the arm that was used for the reach. In each SC we found gaze-related neurons with RMFs both in the contralateral and in the ipsilateral hemifield. The topographical organization of the gaze-related reach neurons in the SC could not be matched with the well-known visual and oculomotor maps. Gaze-related neurons were more modulated in their strength of activity with different directions of arm movements than were gaze-independent reach neurons. Gaze-related reach neurons were recorded at a median depth of 2.03 mm below SC surface in the intermediate layers, where they overlap with saccade-related burst neurons (median depth

  7. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement.

    PubMed

    Debicki, D B; Gribble, P L

    2004-08-01

    When arm movements are perturbed by a load, how does the nervous system adjust control signals to reduce error? While it has been shown that the nervous system is capable of compensating for the effects of limb dynamics and external forces, the strategies used to adapt to novel loads are not well understood. We used a robotic exoskeleton [kinesiological instrument for normal and altered reaching movements (KINARM)] to apply novel loads to the arm during single-joint elbow flexions in the horizontal plane (shoulder rotation was allowed). Loads varied in magnitude with the instantaneous velocity of elbow flexion, and were applied to the shoulder in experiment 1 (interaction loads) and the elbow in experiment 2 (direct loads). Initial exposure to both interaction and direct loads resulted in perturbations at both joints, even though the load was applied to only a single joint. Subjects tended to correct for the kinematics of the elbow joint while perturbations at the shoulder persisted. Electromyograms (EMGs) and computed muscle torque showed that subjects modified muscle activity at the elbow to reduce elbow positional deviations. Shoulder muscle activity was also modified; however, these changes were always in the same direction as those at the elbow. Current models of motor control based on inverse-dynamics calculations and force-control, as well as models based on positional control, predict an uncoupling of shoulder and elbow muscle torques for adaptation to these loads. In contrast, subjects in this study adopted a simple strategy of modulating the natural coupling that exists between elbow and shoulder muscle torque during single-joint elbow movements.

  8. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement.

    PubMed

    Debicki, D B; Gribble, P L

    2004-08-01

    When arm movements are perturbed by a load, how does the nervous system adjust control signals to reduce error? While it has been shown that the nervous system is capable of compensating for the effects of limb dynamics and external forces, the strategies used to adapt to novel loads are not well understood. We used a robotic exoskeleton [kinesiological instrument for normal and altered reaching movements (KINARM)] to apply novel loads to the arm during single-joint elbow flexions in the horizontal plane (shoulder rotation was allowed). Loads varied in magnitude with the instantaneous velocity of elbow flexion, and were applied to the shoulder in experiment 1 (interaction loads) and the elbow in experiment 2 (direct loads). Initial exposure to both interaction and direct loads resulted in perturbations at both joints, even though the load was applied to only a single joint. Subjects tended to correct for the kinematics of the elbow joint while perturbations at the shoulder persisted. Electromyograms (EMGs) and computed muscle torque showed that subjects modified muscle activity at the elbow to reduce elbow positional deviations. Shoulder muscle activity was also modified; however, these changes were always in the same direction as those at the elbow. Current models of motor control based on inverse-dynamics calculations and force-control, as well as models based on positional control, predict an uncoupling of shoulder and elbow muscle torques for adaptation to these loads. In contrast, subjects in this study adopted a simple strategy of modulating the natural coupling that exists between elbow and shoulder muscle torque during single-joint elbow movements. PMID:15056688

  9. Eye-hand coordination: saccades are faster when accompanied by a coordinated arm movement.

    PubMed

    Snyder, Lawrence H; Calton, Jeffrey L; Dickinson, Anthony R; Lawrence, Bonnie M

    2002-05-01

    When primates reach for an object, they very often direct an eye movement toward the object as well. This pattern of directing both eye and limb movements to the same object appears to be fundamental to eye-hand coordination. We investigated interactions between saccades and reaching movements in a rhesus monkey model system. The amplitude and peak velocity of isolated eye movements are positively correlated with one another. This relationship is called the main sequence. We now report that the main sequence relationship for saccades is changed during coordinated eye and arm movements. In particular, peak eye velocity is approximately 4% faster for the same size saccade when the saccade is accompanied by a coordinated arm movement. Saccade duration is reduced by an equivalent amount. The main sequence relationship is unperturbed when the arm moves simultaneously but in the opposite direction as the eyes, suggesting that eye and arm movements must be tightly coordinated to produce the effect. Candidate areas mediating this interaction include the posterior parietal cortex and the superior colliculus.

  10. Modulation of arm reaching movements during processing of arm/hand-related action verbs with and without emotional connotation.

    PubMed

    Spadacenta, Silvia; Gallese, Vittorio; Fragola, Michele; Mirabella, Giovanni

    2014-01-01

    The theory of embodied language states that language comprehension relies on an internal reenactment of the sensorimotor experience associated with the processed word or sentence. Most evidence in support of this hypothesis had been collected using linguistic material without any emotional connotation. For instance, it had been shown that processing of arm-related verbs, but not of those leg-related verbs, affects the planning and execution of reaching movements; however, at present it is unknown whether this effect is further modulated by verbs evoking an emotional experience. Showing such a modulation might shed light on a very debated issue, i.e. the way in which the emotional meaning of a word is processed. To this end, we assessed whether processing arm/hand-related verbs describing actions with negative connotations (e.g. to stab) affects reaching movements differently from arm/hand-related verbs describing actions with neutral connotation (e.g. to comb). We exploited a go/no-go paradigm in which healthy participants were required to perform arm-reaching movements toward a target when verbs expressing emotional hand actions, neutral hand actions or foot actions were shown, and to refrain from moving when no-effector-related verbs were presented. Reaction times and percentages of errors increased when the verb involved the same effector as used to give the response. However, we also found that the size of this interference decreased when the arm/hand-related verbs had a negative emotional connotation. Crucially, we show that such modulation only occurred when the verb semantics had to be retrieved. These results suggest that the comprehension of negatively valenced verbs might require the simultaneous reenactment of the neural circuitry associated with the processing of the emotion evoked by their meaning and of the neural circuitry associated with their motor features.

  11. Modulation of Arm Reaching Movements during Processing of Arm/Hand-Related Action Verbs with and without Emotional Connotation

    PubMed Central

    Spadacenta, Silvia; Gallese, Vittorio; Fragola, Michele; Mirabella, Giovanni

    2014-01-01

    The theory of embodied language states that language comprehension relies on an internal reenactment of the sensorimotor experience associated with the processed word or sentence. Most evidence in support of this hypothesis had been collected using linguistic material without any emotional connotation. For instance, it had been shown that processing of arm-related verbs, but not of those leg-related verbs, affects the planning and execution of reaching movements; however, at present it is unknown whether this effect is further modulated by verbs evoking an emotional experience. Showing such a modulation might shed light on a very debated issue, i.e. the way in which the emotional meaning of a word is processed. To this end, we assessed whether processing arm/hand-related verbs describing actions with negative connotations (e.g. to stab) affects reaching movements differently from arm/hand-related verbs describing actions with neutral connotation (e.g. to comb). We exploited a go/no-go paradigm in which healthy participants were required to perform arm-reaching movements toward a target when verbs expressing emotional hand actions, neutral hand actions or foot actions were shown, and to refrain from moving when no-effector-related verbs were presented. Reaction times and percentages of errors increased when the verb involved the same effector as used to give the response. However, we also found that the size of this interference decreased when the arm/hand-related verbs had a negative emotional connotation. Crucially, we show that such modulation only occurred when the verb semantics had to be retrieved. These results suggest that the comprehension of negatively valenced verbs might require the simultaneous reenactment of the neural circuitry associated with the processing of the emotion evoked by their meaning and of the neural circuitry associated with their motor features. PMID:25093410

  12. Affine differential geometry analysis of human arm movements.

    PubMed

    Flash, Tamar; Handzel, Amir A

    2007-06-01

    Humans interact with their environment through sensory information and motor actions. These interactions may be understood via the underlying geometry of both perception and action. While the motor space is typically considered by default to be Euclidean, persistent behavioral observations point to a different underlying geometric structure. These observed regularities include the "two-thirds power law", which connects path curvature with velocity, and "local isochrony", which prescribes the relation between movement time and its extent. Starting with these empirical observations, we have developed a mathematical framework based on differential geometry, Lie group theory and Cartan's moving frame method for the analysis of human hand trajectories. We also use this method to identify possible motion primitives, i.e., elementary building blocks from which more complicated movements are constructed. We show that a natural geometric description of continuous repetitive hand trajectories is not Euclidean but equi-affine. Specifically, equi-affine velocity is piecewise constant along movement segments, and movement execution time for a given segment is proportional to its equi-affine arc-length. Using this mathematical framework, we then analyze experimentally recorded drawing movements. To examine movement segmentation and classification, the two fundamental equi-affine differential invariants-equi-affine arc-length and curvature are calculated for the recorded movements. We also discuss the possible role of conic sections, i.e., curves with constant equi-affine curvature, as motor primitives and focus in more detail on parabolas, the equi-affine geodesics. Finally, we explore possible schemes for the internal neural coding of motor commands by showing that the equi-affine framework is compatible with the common model of population coding of the hand velocity vector when combined with a simple assumption on its dynamics. We then discuss several alternative explanations

  13. Shift in arm-pointing movements during gravity changes produced by aircraft parabolic flight.

    PubMed

    Chen, Y; Mori, S; Koga, K; Ohta, Y; Wada, Y; Tanaka, M

    1999-06-01

    It has been shown that target-pointing arm movements without visual feedback shift downward in space microgravity and upward in centrifuge hypergravity. Under gravity changes in aircraft parabolic flight, however, arm movements have been reported shifting upward in hypergravity as well, but a downward shift under microgravity is contradicted. In order to explain this discrepancy, we reexamined the pointing movements using an experimental design which was different from prior ones. Arm-pointing movements were measured by goniometry around the shoulder joint of subjects with and without eyes closed or with a weight in the hand, during hyper- and microgravity in parabolic flight. Subjects were fastened securely to the seat with the neck fixed and the elbow maintained in an extended position, and the eyes were kept closed for a period of time before each episode of parabolic flight. Under these new conditions, the arm consistently shifted downward during microgravity and mostly upward during hypergravity, as expected. We concluded that arm-pointing deviation induced by parabolic flight could be also be valid for studying the mechanism underlying disorientation under varying gravity conditions.

  14. Octopus arm movements under constrained conditions: adaptation, modification and plasticity of motor primitives.

    PubMed

    Richter, Jonas N; Hochner, Binyamin; Kuba, Michael J

    2015-04-01

    The motor control of the eight highly flexible arms of the common octopus (Octopus vulgaris) has been the focus of several recent studies. Our study is the first to manage to introduce a physical constraint to an octopus arm and investigate the adaptability of stereotypical bend propagation in reaching movements and the pseudo-limb articulation during fetching. Subjects (N=6) were placed inside a transparent Perspex box with a hole at the center that allowed the insertion of a single arm. Animals had to reach out through the hole toward a target, to retrieve a food reward and fetch it. All subjects successfully adjusted their movements to the constraint without an adaptation phase. During reaching tasks, the animals showed two movement strategies: stereotypical bend propagation reachings, which were established at the hole of the Perspex box and variant waving-like movements that showed no bend propagations. During fetching movements, no complete pseudo-joint fetching was observed outside the box and subjects pulled their arms through the hole in a pull-in like movement. Our findings show that there is some flexibility in the octopus motor system to adapt to a novel situation. However, at present, it seems that these changes are more an effect of random choices between different alternative motor programs, without showing clear learning effects in the choice between the alternatives. Interestingly, animals were able to adapt the fetching movements to the physical constraint, or as an alternative explanation, they could switch the motor primitive fetching to a different motor primitive 'arm pulling'. PMID:25687436

  15. Octopus arm movements under constrained conditions: adaptation, modification and plasticity of motor primitives.

    PubMed

    Richter, Jonas N; Hochner, Binyamin; Kuba, Michael J

    2015-04-01

    The motor control of the eight highly flexible arms of the common octopus (Octopus vulgaris) has been the focus of several recent studies. Our study is the first to manage to introduce a physical constraint to an octopus arm and investigate the adaptability of stereotypical bend propagation in reaching movements and the pseudo-limb articulation during fetching. Subjects (N=6) were placed inside a transparent Perspex box with a hole at the center that allowed the insertion of a single arm. Animals had to reach out through the hole toward a target, to retrieve a food reward and fetch it. All subjects successfully adjusted their movements to the constraint without an adaptation phase. During reaching tasks, the animals showed two movement strategies: stereotypical bend propagation reachings, which were established at the hole of the Perspex box and variant waving-like movements that showed no bend propagations. During fetching movements, no complete pseudo-joint fetching was observed outside the box and subjects pulled their arms through the hole in a pull-in like movement. Our findings show that there is some flexibility in the octopus motor system to adapt to a novel situation. However, at present, it seems that these changes are more an effect of random choices between different alternative motor programs, without showing clear learning effects in the choice between the alternatives. Interestingly, animals were able to adapt the fetching movements to the physical constraint, or as an alternative explanation, they could switch the motor primitive fetching to a different motor primitive 'arm pulling'.

  16. On the nature of motor planning variables during arm pointing movement: Compositeness and speed dependence.

    PubMed

    Vu, Van Hoan; Isableu, Brice; Berret, Bastien

    2016-07-22

    The purpose of this study was to investigate the nature of the variables and rules underlying the planning of unrestrained 3D arm reaching. To identify whether the brain uses kinematic, dynamic and energetic values in an isolated manner or combines them in a flexible way, we examined the effects of speed variations upon the chosen arm trajectories during free arm movements. Within the optimal control framework, we uncovered which (possibly composite) optimality criterion underlays at best the empirical data. Fifteen participants were asked to perform free-endpoint reaching movements from a specific arm configuration at slow, normal and fast speeds. Experimental results revealed that prominent features of observed motor behaviors were significantly speed-dependent, such as the chosen reach endpoint and the final arm posture. Nevertheless, participants exhibited different arm trajectories and various degrees of speed dependence of their reaching behavior. These inter-individual differences were addressed using a numerical inverse optimal control methodology. Simulation results revealed that a weighted combination of kinematic, energetic and dynamic cost functions was required to account for all the critical features of the participants' behavior. Furthermore, no evidence for the existence of a speed-dependent tuning of these weights was found, thereby suggesting subject-specific but speed-invariant weightings of kinematic, energetic and dynamic variables during the motor planning process of free arm movements. This suggested that the inter-individual difference of arm trajectories and speed dependence was not only due to anthropometric singularities but also to critical differences in the composition of the subjective cost function. PMID:27132233

  17. Gating of tactile information through gamma band during passive arm movement in awake primates

    PubMed Central

    Song, Weiguo; Francis, Joseph T.

    2015-01-01

    To make precise and prompt action in a dynamic environment, the sensorimotor system needs to integrate all related information. The inflow of somatosensory information to the cerebral cortex is regulated and mostly suppressed by movement, which is commonly referred to as sensory gating or gating. Sensory gating plays an important role in preventing redundant information from reaching the cortex, which should be considered when designing somatosensory neuroprosthetics. Gating can occur at several levels within the sensorimotor pathway, while the underlying mechanism is not yet fully understood. The average sensory evoked potential is commonly used to assess sensory information processing, however the assumption of a stereotyped response to each stimulus is still an open question. Event related spectral perturbation (ERSP), which is the power spectrum after time-frequency decomposition on single trial evoked potentials (total power), could overcome this limitation of averaging and provide additional information for understanding the underlying mechanism. To this aim, neural activities in primary somatosensory cortex (S1), primary motor cortex (M1), and ventral posterolateral (VPL) nucleus of thalamus were recorded simultaneously in two areas (S1 and M1 or S1 and VPL) during passive arm movement and rest in awake monkeys. Our results showed that neural activity at different recording areas demonstrated specific and unique response frequency characteristics. Tactile input induced early high frequency responses followed by low frequency oscillations within sensorimotor circuits, and passive movement suppressed these oscillations either in a phase-locked or non-phase-locked manner. Sensory gating by movement was non-phase-locked in M1, and complex in sensory areas. VPL showed gating of non-phase-locked at gamma band and mix of phase-locked and non-phase-locked at low frequency, while S1 showed gating of phase-locked and non-phase-locked at gamma band and an early phase

  18. Minimum energy paths for optimal oscillatory movements of PUMA arm

    SciTech Connect

    Olgac, N.; Zhou, S.

    1988-08-01

    This paper employs a geometric approach in reducing the number of time-consuming iterations necessary for the numerical solution of an optimal energy consumption problem for small amplitude oscillatory motions of robot manipulators. A general objective function in joint space is given for the energy needs in the drives, and specific applications for a commercially available manipulator, Unimation-PUMA 560, are carried out by separating the manipulator motions into two parallel segments: arm and wrist. This process, in general, leads to a highly nonlinear and transcendental optimization problem. The geometric study is presented, and the shortened numerical optimization is carried out. For any given point in the workspace, optimal directions of oscillations and their corresponding energy levels are found. This information is translated into a map of minimum energy levels across the workspace. The map will comprise a section of an intelligent control mechanism of larger scope which is conceived for ultimate use in space and subsea robotic operations. 6 references.

  19. Moving Events in Time: Time-Referent Hand-Arm Movements Influence Perceived Temporal Distance to Past Events

    ERIC Educational Resources Information Center

    Blom, Stephanie S. A. H.; Semin, Gun R.

    2013-01-01

    We examine and find support for the hypothesis that time-referent hand-arm movements influence temporal judgments. In line with the concept of "left is associated with earlier times, and right is associated with later times," we show that performing left (right) hand-arm movements while thinking about a past event increases (decreases) the…

  20. Arm and Hand Movement in Children Suspected of Having Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Braddock, Barbara A.; Hilton, Jane C.

    2016-01-01

    The aim of this study was to describe arm and hand movement in children suspected of having autism spectrum disorder (ASD; age range 29-43 months). A videotaped retrospective review of five children with symptoms of ASD during "Communication Temptation Tasks" was completed at two time points (pre-testing and 6 weeks later). Categories of…

  1. Representation of continuous hand and arm movements in macaque areas M1, F5, and AIP: a comparative decoding study

    NASA Astrophysics Data System (ADS)

    Menz, Veera Katharina; Schaffelhofer, Stefan; Scherberger, Hansjörg

    2015-10-01

    Objective. In the last decade, multiple brain areas have been investigated with respect to their decoding capability of continuous arm or hand movements. So far, these studies have mainly focused on motor or premotor areas like M1 and F5. However, there is accumulating evidence that anterior intraparietal area (AIP) in the parietal cortex also contains information about continuous movement. Approach. In this study, we decoded 27 degrees of freedom representing complete hand and arm kinematics during a delayed grasping task from simultaneously recorded activity in areas M1, F5, and AIP of two macaque monkeys (Macaca mulatta). Main results. We found that all three areas provided decoding performances that lay significantly above chance. In particular, M1 yielded highest decoding accuracy followed by F5 and AIP. Furthermore, we provide support for the notion that AIP does not only code categorical visual features of objects to be grasped, but also contains a substantial amount of temporal kinematic information. Significance. This fact could be utilized in future developments of neural interfaces restoring hand and arm movements.

  2. Virtual reality aided training of combined arm and leg movements of children with CP.

    PubMed

    Riener, Robert; Dislaki, Evangelia; Keller, Urs; Koenig, Alexander; Van Hedel, Hubertus; Nagle, Aniket

    2013-01-01

    Cerebral palsy (CP) occurs in over 2 out of 1000 live births and can impair motor control and cognition. Our goal was to create a robotic rehabilitation environment that mimics real-life situations by allowing simultaneous exercise of upper and lower limbs. We chose to use the Lokomat as a gait robot and added a novel removable arm robot, called PASCAL (pediatric arm support robot for combined arm and leg training), that was integrated into the Lokomat environment. We also added a virtual reality (VR) environment that enables the subject to perform motivating game-like scenarios incorporating combined arm and leg movements. In this paper we summarize the design of PASCAL and present the novel virtual environment including first experimental results. The next step will be to test whether a combined application of the virtual environment and the two simultaneously working robots is feasible in healthy participants, and finally to clinically evaluate the entire system on children with CP. PMID:23400183

  3. Arm Orthosis/Prosthesis Movement Control Based on Surface EMG Signal Extraction.

    PubMed

    Suberbiola, Aaron; Zulueta, Ekaitz; Lopez-Guede, Jose Manuel; Etxeberria-Agiriano, Ismael; Graña, Manuel

    2015-05-01

    This paper shows experimental results on electromyography (EMG)-based system control applied to motorized orthoses. Biceps and triceps EMG signals are captured through two biometrical sensors, which are then filtered and processed by an acquisition system. Finally an output/control signal is produced and sent to the actuators, which will then perform the actual movement, using algorithms based on autoregressive (AR) models and neural networks, among others. The research goal is to predict the desired movement of the lower arm through the analysis of EMG signals, so that the movement can be reproduced by an arm orthosis, powered by two linear actuators. In this experiment, best accuracy has achieved values up to 91%, using a fourth-order AR-model and 100ms block length.

  4. Movement - uncontrolled or slow

    MedlinePlus

    Dystonia; Involuntary slow and twisting movements; Choreoathetosis; Leg and arm movements - uncontrollable; Arm and leg movements - uncontrollable; Slow involuntary movements of large muscle groups; Athetoid movements

  5. Active Movement Warm-Up Routines

    ERIC Educational Resources Information Center

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  6. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys

    PubMed Central

    Umeda, Tatsuya; Watanabe, Hidenori; Sato, Masa-aki; Kawato, Mitsuo; Isa, Tadashi; Nishimura, Yukio

    2014-01-01

    Understanding the mechanisms of encoding forelimb kinematics in the activity of peripheral afferents is essential for developing a somatosensory neuroprosthesis. To investigate whether the spike timing of dorsal root ganglion (DRG) neurons could be estimated from the forelimb kinematics of behaving monkeys, we implanted two multi-electrode arrays chronically in the DRGs at the level of the cervical segments in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were recorded simultaneously with the trajectories of hand/arm movements, which were tracked in three-dimensional space using a motion capture system. Sixteen and 13 neurons, including muscle spindles, skin receptors, and tendon organ afferents, were recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear regression (SLiR) analysis, suggesting that DRG neuronal ensembles encoded information about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal ensembles from joint kinematics using an integrate-and-fire model (IF) incorporating the SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons was reconstructed precisely from forelimb kinematics using the SLiR. The estimated firing pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as precisely as the originally recorded neuronal activity. These results suggest that a simple model can be used to generate an accurate estimate of the spike timing of DRG neuronal ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive decoder in a brain machine interface. PMID:24860416

  7. Laboratory Validation of Inertial Body Sensors to Detect Cigarette Smoking Arm Movements

    PubMed Central

    Raiff, Bethany R.; Karataş, Çağdaş; McClure, Erin A.; Pompili, Dario; Walls, Theodore A.

    2014-01-01

    Cigarette smoking remains the leading cause of preventable death in the United States. Traditional in-clinic cessation interventions may fail to intervene and interrupt the rapid progression to relapse that typically occurs following a quit attempt. The ability to detect actual smoking behavior in real-time is a measurement challenge for health behavior research and intervention. The successful detection of real-time smoking through mobile health (mHealth) methodology has substantial implications for developing highly efficacious treatment interventions. The current study was aimed at further developing and testing the ability of inertial sensors to detect cigarette smoking arm movements among smokers. The current study involved four smokers who smoked six cigarettes each in a laboratory-based assessment. Participants were outfitted with four inertial body movement sensors on the arms, which were used to detect smoking events at two levels: the puff level and the cigarette level. Two different algorithms (Support Vector Machines (SVM) and Edge-Detection based learning) were trained to detect the features of arm movement sequences transmitted by the sensors that corresponded with each level. The results showed that performance of the SVM algorithm at the cigarette level exceeded detection at the individual puff level, with low rates of false positive puff detection. The current study is the second in a line of programmatic research demonstrating the proof-of-concept for sensor-based tracking of smoking, based on movements of the arm and wrist. This study demonstrates efficacy in a real-world clinical inpatient setting and is the first to provide a detection rate against direct observation, enabling calculation of true and false positive rates. The study results indicate that the approach performs very well with some participants, whereas some challenges remain with participants who generate more frequent non-smoking movements near the face. Future work may allow for

  8. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.

    PubMed

    Dizio, P; Lackner, J R

    1995-10-01

    1. Reaching movements made in a rotating room generate Coriolis forces that are directly proportional to the cross product of the room's angular velocity and the arm's linear velocity. Such Coriolis forces are inertial forces not involving mechanical contact with the arm. 2. We measured the trajectories of arm movements made in darkness to a visual target that was extinguished at the onset of each reach. Prerotation subjects pointed with both the right and left arms in alternating sets of eight movements. During rotation at 10 rpm, the subjects reached only with the right arm. Postrotation, the subjects pointed with the left and right arms, starting with the left, in alternating sets of eight movements. 3. The initial perrotary reaching movements of the right arm were highly deviated both in movement path and endpoint relative to the prerotation reaches of the right arm. With additional movements, subjects rapidly regained straight movement paths and accurate endpoints despite the absence of visual or tactile feedback about reaching accuracy. The initial postrotation reaches of the left arm followed straight paths to the wrong endpoint. The initial postrotation reaches of the right arm had paths with mirror image curvature to the initial perrotation reaches of the right arm but went to the correct endpoint. 4. These observations are inconsistent with current equilibrium point models of movement control. Such theories predict accurate reaches under our experimental conditions. Our observations further show independent implementation of movement and posture, as evidenced by transfer of endpoint adaptation to the nonexposed arm without transfer of path adaptation. Endpoint control may occur at a relatively central stage that represents general constraints such as gravitoinertial force background or egocentric direction relative to both arms, and control of path may occur at a more peripheral stage that represents moments of inertia and muscle dynamics unique to each

  9. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm

    NASA Technical Reports Server (NTRS)

    Dizio, P.; Lackner, J. R.

    1995-01-01

    1. Reaching movements made in a rotating room generate Coriolis forces that are directly proportional to the cross product of the room's angular velocity and the arm's linear velocity. Such Coriolis forces are inertial forces not involving mechanical contact with the arm. 2. We measured the trajectories of arm movements made in darkness to a visual target that was extinguished at the onset of each reach. Prerotation subjects pointed with both the right and left arms in alternating sets of eight movements. During rotation at 10 rpm, the subjects reached only with the right arm. Postrotation, the subjects pointed with the left and right arms, starting with the left, in alternating sets of eight movements. 3. The initial perrotary reaching movements of the right arm were highly deviated both in movement path and endpoint relative to the prerotation reaches of the right arm. With additional movements, subjects rapidly regained straight movement paths and accurate endpoints despite the absence of visual or tactile feedback about reaching accuracy. The initial postrotation reaches of the left arm followed straight paths to the wrong endpoint. The initial postrotation reaches of the right arm had paths with mirror image curvature to the initial perrotation reaches of the right arm but went to the correct endpoint. 4. These observations are inconsistent with current equilibrium point models of movement control. Such theories predict accurate reaches under our experimental conditions. Our observations further show independent implementation of movement and posture, as evidenced by transfer of endpoint adaptation to the nonexposed arm without transfer of path adaptation. Endpoint control may occur at a relatively central stage that represents general constraints such as gravitoinertial force background or egocentric direction relative to both arms, and control of path may occur at a more peripheral stage that represents moments of inertia and muscle dynamics unique to each

  10. A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation

    NASA Astrophysics Data System (ADS)

    Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.

    2014-11-01

    In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).

  11. Relation between gravitational and arm-movement direction in the mechanism of perception in bimanual steering.

    PubMed

    Sakajiri, Taiji; Tanaka, Yoshihiro; Sano, Akihito

    2013-11-01

    This paper presents the effects of the opposing directions of gravity relative to right- and left-arm movement in bimanual steering. We developed a simulated steering system that permits independent left- and right-hand steering and torque presentations on a single axis, and independent measurements of the steering force exerted by each hand. In a steering force measurement experiment, left and right system units were mechanically combined to function as a single steering unit. Measurements of the force exerted by the participants with their left and right hands revealed that in human bimanual steering, the arm moving with gravity exerts a larger steering force than the one moving against gravity. In a steering force discrimination experiment, the system was mechanically configured to provide independence in both the function of the left and right steering units and the presentation of different left- and right-side steering torques. Each participant was then asked whether the steering force was felt to be larger on the left or the right during bimanual steering. The results of this experiment showed no difference between the left and the right arm in the discrimination threshold, but did reveal a perceptual bias in which the forces exerted in arm movements with gravity were perceived as being smaller than the forces exerted against gravity. Furthermore, there was no significant difference between the measured force and the force that would be predicted from the obtained perceptual bias.

  12. Sensor-enabled RFID system for monitoring arm activity: reliability and validity.

    PubMed

    Barman, Joydip; Uswatte, Gitendra; Ghaffari, Touraj; Sokal, Brad; Byrom, Ezekiel; Trinh, Eva; Brewer, Michael; Varghese, Christopher; Sarkar, Nilanjan

    2012-11-01

    After stroke, capacity to complete tasks in the treatment setting with the more-affected arm is an unreliable index of actual use of that extremity in daily life. Available objective methods for monitoring real-world arm use rely on placing movement sensors on patients. These methods provide information on amount but not type of arm activity, e.g., functional versus nonfunctional movement. This paper presents an approach that places sensors on patients and household objects, overcoming this limitation. An accelerometer and the transmitter component of a radio-frequency proximity sensor are attached to objects; the receiver component is attached to the arm of interest. The receiver triggers an on-board radio-frequency identification tag to signal proximity when that arm is within 23 cm of an instrumented object. In benchmark testing, this system detected perfectly which arm was used to move the target object on 200 trials. In a laboratory study with 35 undergraduates, increasing the amount of time target objects were moved with the arm of interest resulted in a corresponding increase in system output . Moreover, measurement error was low ( ≤ 2.5%). The results support this system's reliability and validity in individuals with unimpaired movement; testing is now warranted in stroke patients. PMID:22875260

  13. Sonification of Arm Movements in Stroke Rehabilitation - A Novel Approach in Neurologic Music Therapy.

    PubMed

    Scholz, Daniel S; Rohde, Sönke; Nikmaram, Nikou; Brückner, Hans-Peter; Großbach, Michael; Rollnik, Jens D; Altenmüller, Eckart O

    2016-01-01

    Gross motor impairments are common after stroke, but efficient and motivating therapies for these impairments are scarce. We present an innovative musical sonification therapy, especially designed to retrain patients' gross motor functions. Sonification should motivate patients and provide additional sensory input informing about relative limb position. Twenty-five stroke patients were included in a clinical pre-post study and took part in the sonification training. The patients' upper extremity functions, their psychological states, and their arm movement smoothness were assessed pre and post training. Patients were randomly assigned to either of two groups. Both groups received an average of 10 days (M = 9.88; SD = 2.03; 30 min/day) of musical sonification therapy [music group (MG)] or a sham sonification movement training [control group (CG)], respectively. The only difference between the two protocols was that in the CG no sound was played back during training. In the beginning, patients explored the acoustic effects of their arm movements in space. At the end of the training, the patients played simple melodies by coordinated arm movements. The 15 patients in the MG showed significantly reduced joint pain (F = 19.96, p < 0.001) in the Fugl-Meyer assessment after training. They also reported a trend to have improved hand function in the stroke impact scale as compared to the CG. Movement smoothness at day 1, day 5, and the last day of the intervention was compared in MG patients and found to be significantly better after the therapy. Taken together, musical sonification may be a promising therapy for motor impairments after stroke, but further research is required since estimated effect sizes point to moderate treatment outcomes. PMID:27445970

  14. Sonification of Arm Movements in Stroke Rehabilitation – A Novel Approach in Neurologic Music Therapy

    PubMed Central

    Scholz, Daniel S.; Rohde, Sönke; Nikmaram, Nikou; Brückner, Hans-Peter; Großbach, Michael; Rollnik, Jens D.; Altenmüller, Eckart O.

    2016-01-01

    Gross motor impairments are common after stroke, but efficient and motivating therapies for these impairments are scarce. We present an innovative musical sonification therapy, especially designed to retrain patients’ gross motor functions. Sonification should motivate patients and provide additional sensory input informing about relative limb position. Twenty-five stroke patients were included in a clinical pre–post study and took part in the sonification training. The patients’ upper extremity functions, their psychological states, and their arm movement smoothness were assessed pre and post training. Patients were randomly assigned to either of two groups. Both groups received an average of 10 days (M = 9.88; SD = 2.03; 30 min/day) of musical sonification therapy [music group (MG)] or a sham sonification movement training [control group (CG)], respectively. The only difference between the two protocols was that in the CG no sound was played back during training. In the beginning, patients explored the acoustic effects of their arm movements in space. At the end of the training, the patients played simple melodies by coordinated arm movements. The 15 patients in the MG showed significantly reduced joint pain (F = 19.96, p < 0.001) in the Fugl–Meyer assessment after training. They also reported a trend to have improved hand function in the stroke impact scale as compared to the CG. Movement smoothness at day 1, day 5, and the last day of the intervention was compared in MG patients and found to be significantly better after the therapy. Taken together, musical sonification may be a promising therapy for motor impairments after stroke, but further research is required since estimated effect sizes point to moderate treatment outcomes. PMID:27445970

  15. The Movement- and Load-Dependent Differences in the EMG Patterns of the Human Arm Muscles during Two-Joint Movements (A Preliminary Study)

    PubMed Central

    Tomiak, Tomasz; Abramovych, Tetiana I.; Gorkovenko, Andriy V.; Vereshchaka, Inna V.; Mishchenko, Viktor S.; Dornowski, Marcin; Kostyukov, Alexander I.

    2016-01-01

    Slow circular movements of the hand with a fixed wrist joint that were produced in a horizontal plane under visual guidance during conditions of action of the elastic load directed tangentially to the movement trajectory were studied. The positional dependencies of the averaged surface EMGs in the muscles of the elbow and shoulder joints were compared for four possible combinations in the directions of load and movements. The EMG intensities were largely correlated with the waves of the force moment computed for a corresponding joint in the framework of a simple geometrical model of the system: arm - experimental setup. At the same time, in some cases the averaged EMGs exit from the segments of the trajectory restricted by the force moment singular points (FMSPs), in which the moments exhibited altered signs. The EMG activities display clear differences for the eccentric and concentric zones of contraction that are separated by the joint angle singular points (JASPs), which present extreme at the joint angle traces. We assumed that the modeled patterns of FMSPs and JASPs may be applied for an analysis of the synergic interaction between the motor commands arriving at different muscles in arbitrary two-joint movements. PMID:27375496

  16. The adaptability of self-action perception and movement control when the limb is passively versus actively moved.

    PubMed

    Cameron, Brendan D; Franks, Ian M; Inglis, J Timothy; Chua, Romeo

    2012-03-01

    Research suggests that perceptual experience of our movements adapts together with movement control when we are the agents of our actions. Is this agency critical for perceptual and motor adaptation? We had participants view cursor feedback during elbow extension-flexion movements when they (1) actively moved their arm, or (2) had their arm passively moved. We probed adaptation of movement perception by having participants report the reversal point of their unseen movement. We probed adaptation of movement control by having them aim to a target. Perception and control of active movement were influenced by both types of exposure, although adaptation was stronger following active exposure. Furthermore, both types of exposure led to a change in the perception of passive movements. Our findings support the notion that perception and control adapt together, and they suggest that some adaptation is due to recalibrated proprioception that arises independently of active engagement with the environment.

  17. Movement analysis of upper limb during resistance training using general purpose robot arm "PA10"

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Yamamoto, Takashi; Suzuki, Takahiro; Hirose, Akinori; Ukai, Hiroyuki; Matsui, Nobuyuki

    2005-12-01

    In this paper we perform movement analysis of an upper limb during resistance training. We selected sanding training, which is one type of resistance training for upper limbs widely performed in occupational therapy. Our final aims in the future are to quantitatively evaluate the therapeutic effect of upper limb motor function during training and to develop a new rehabilitation training support system. For these purposes, first of all we perform movement analysis using a conventional training tool. By measuring upper limb motion during the sanding training we perform feature abstraction. Next we perform movement analysis using the simulated sanding training system. This system is constructed using the general purpose robot arm "PA10". This system enables us to measure the force/torque exerted by subjects and to easily change the load of resistance. The control algorithm is based on impedance control. We found these features of the upper limb motion during the sanding training.

  18. The effects of spinal mobilization with arm movements on shoulder muscle strengthening

    PubMed Central

    Seo, Youngjoon; Lee, Jaeseok; Han, Dongwook

    2015-01-01

    [Purpose] This study was performed to examine the immediate effects of spinal mobilization with arm movements (SMWAMs) for strengthening the shoulder muscles. [Subjects] The subjects of this study were 12 healthy male students who were studying at S University, Busan City. They had no musculoskeletal disease, or upper congenital malformation, and had no history of surgery or neurological disease. [Methods] The SMWAMs were performed on the 4th cervical vertebra (C4). For stimulation of the 5th cervical nerve, the spinous process of the C4 was pushed to the left and held in place. Then the arm was abducted to the point where spinous process was felt, and the range of abduction was examined. Subsequently, the abduction movement was repeated 10 times to the same point, and the gliding of C4 was held until the arm returned to the starting position. During the treatment, the head and the trunk were held in the correct posture. [Results] After SMWAMs had been performed, the muscular strength of shoulder flexion, extension and adduction significantly increased. [Conclusion] In our opinion, the SMWAMs are a very useful method for correcting spinal malalignment, and for stimulating the joint mechanoreceptors without the risks of manipulation. SMWAM is a valuable therapy method that can complement the demerits of mobilization. PMID:25642026

  19. Therapeutic synergism in the treatment of post-stroke arm paresis utilizing botulinum toxin, robotic therapy, and constraint-induced movement therapy.

    PubMed

    Takebayashi, Takashi; Amano, Satoru; Hanada, Keisuke; Umeji, Atsushi; Takahashi, Kayoko; Koyama, Tetsuo; Domen, Kazuhisa

    2014-11-01

    Botulinum toxin type A (BtxA) injection, constraint-induced movement therapy (CIMT), and robotic therapy (RT) each represent promising approaches to enhance arm motor recovery after stroke. To provide more effective treatment for a 50-year-old man with severe left spastic hemiparesis, we attempted to facilitate CIMT with adaptive approaches to extend the wrist and fingers using RT for 10 consecutive weeks after BtxA injection. This combined treatment resulted in substantial improvements in arm function and the amount of arm use in activities of daily living, and may be effective for stroke patients with severe arm paresis. However, we were unable to sufficiently prove the efficacy of combined treatment based only on a single case. To fully elucidate the efficacy of the combined approach for patients with severe hemiparesis after stroke, future studies of a larger number of patients are needed.

  20. Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does?

    PubMed

    Kahn, Leonard E; Lum, Peter S; Rymer, W Zev; Reinkensmeyer, David J

    2006-01-01

    Robot-assisted movement training improves arm movement ability following acute and chronic stroke. Such training involves two interacting processes: the patient trying to move and the robot applying forces to the patient's arm. A fundamental principle of motor learning is that movement practice improves motor function; the role of applied robotic forces in improving motor function is still unclear. This article reviews our work addressing this question. Our pilot study using the Assisted Rehabilitation and Measurement (ARM) Guide, a linear robotic trainer, found that mechanically assisted reaching improved motor recovery similar to unassisted reaching practice. This finding is inconclusive because of the small sample size (n = 19), but suggest that future studies should carefully control the amount of voluntary movement practice delivered to justify the use of robotic forces. We are optimistic that robotic forces will ultimately show additional therapeutic benefits when coupled with movement practice. We justify this optimism here by comparing results from the ARM Guide and the Mirror Image Movement Enabler robotic trainer. This comparison suggests that requiring a patient to generate specific patterns of force before allowing movement is more effective than mechanically completing movements for the patient. We describe the engineering implementation of this "guided-force training" algorithm.

  1. Movement strategies for maintaining standing balance during arm tracking in people with multiple sclerosis.

    PubMed

    Chua, Matthew C; Hyngstrom, Allison S; Ng, Alexander V; Schmit, Brian D

    2014-10-01

    The purpose of this study was to quantify hip and ankle movement strategies during a standing arm tracking task in people with multiple sclerosis (MS). Full-body kinematics and kinetics were assessed with motion analysis cameras and force plates in nine MS and nine age-matched control subjects. While standing, participants used their dominant hand to track a target moving around a large horizontal or vertical figure eight on a screen in front of them. The target moved at constant speed, or linearly increasing speeds, with a frequency between 0.05 Hz and 0.35 Hz. Hip and ankle moments and angles during tracking were calculated from kinematic and kinetic measurements. Ratios of peak-to-peak (PP) hip/ankle moments (kinetics) and angles (kinematics) were calculated to determine the strategies of the hips and ankles used to maintain balance during arm movements. Center of mass (CoM) root mean square (RMS) acceleration was calculated as a measure of overall balance performance. The MS group produced larger PP hip/ankle moments at all speeds compared with the control group (P < 0.05). The CoM RMS acceleration increased with tracking speed for both groups but was not significantly different between groups. Additionally, the ratios of hip to ankle moments were highly correlated with the Berg Balance Scale during horizontal steady-speed tracking in MS. These results suggest that people with MS increase the use of the hip during standing arm tracking compared with age-matched control subjects. This adapted strategy might allow people with MS to achieve balance performance similar to control subjects, possibly increasing the importance of the hip in maintaining balance during voluntary movements.

  2. Central pair apparatus enhances outer-arm dynein activities through regulation of inner-arm dyneins.

    PubMed

    Kikushima, Kenji

    2009-05-01

    The beating of eukaryotic cilia and flagella is controlled by multiple species of inner-arm and outer-arm dyneins. To clarify the regulation on axonemal beating by nucleotide conditions and central-pair microtubules, microtubule sliding in disintegrating Chlamydomonas axonemes of various mutants and in vitro microtubule gliding by isolated axonemal dyneins were examined. In the in vitro motility assays with outer-arm dyneins (alphabeta and gamma), microtubule translocation velocity decreased at high concentrations of ATP, while this inhibition was canceled by the simultaneous presence of ADP or ribose-modified analogues, mantATP/ADP. In contrast, motility of inner-arm dyneins was rather insensitive to these nucleotides. The velocity of sliding disintegration in axonemes lacking the central pair was less than that in wild-type axonemes at high ATP concentrations, but was overcome by the presence of ADP or mantATP/ADP. While these nucleotides did not activate the sliding velocity in other mutant axonemes, they increased the extent of sliding, except for axonemes lacking outer-arm dynein. Experiments with axonemes lacking inner-arm dynein f using casein kinase 1 inhibitor suggest that the regulation of outer-arm dynein by the central pair is effected through the activation of inner-arm dynein f, and possibly by other interactions. These results indicate that the central pair activates outer-arm dyneins on specific outer-doublet, resulting in amplification of the axonemal bending force.

  3. Combined influence of visual scene and body tilt on arm pointing movements: gravity matters!

    PubMed

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R; Bourdin, Christophe; Mestre, Daniel R; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., 'combined' tilts equal to the sum of 'single' tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues.

  4. Effects of bandwidth feedback on the automatization of an arm movement sequence.

    PubMed

    Agethen, Manfred; Krause, Daniel

    2016-02-01

    We examined the effects of a bandwidth feedback manipulation on motor learning. Effects on movement accuracy, as well as on movement consistency, have been addressed in earlier studies. We have additionally investigated the effects on motor automatization. Because providing error feedback is believed to induce attentional control processes, we suppose that a bandwidth method should facilitate motor automatization. Participants (N=48) were assigned to four groups: one control group and three intervention groups. Participants of the intervention groups practiced an arm movement sequence with 760 trials. The BW0-Group practiced with 100% frequency of feedback. For the BW10-Group, feedback was provided when the errors were larger than 10°. The YokedBW10-Group participants were matched to the feedback schedule of research twins from the BW10-Group. All groups performed pre-tests and retention tests with a secondary task paradigm to test for automaticity. The BW10-Group indicated a higher degree of automatization compared with the BW0-Group, which did not exhibit a change in automaticity. The comparison of the YokedBW10-Group, which also exhibited automatization, and the BW10-Group leads to the proposal that reduction of quantitative feedback frequency and additional positive feedback are responsible for the bandwidth effect. Differences in movement accuracy and consistency were not evident. PMID:26605966

  5. Effects of bandwidth feedback on the automatization of an arm movement sequence.

    PubMed

    Agethen, Manfred; Krause, Daniel

    2016-02-01

    We examined the effects of a bandwidth feedback manipulation on motor learning. Effects on movement accuracy, as well as on movement consistency, have been addressed in earlier studies. We have additionally investigated the effects on motor automatization. Because providing error feedback is believed to induce attentional control processes, we suppose that a bandwidth method should facilitate motor automatization. Participants (N=48) were assigned to four groups: one control group and three intervention groups. Participants of the intervention groups practiced an arm movement sequence with 760 trials. The BW0-Group practiced with 100% frequency of feedback. For the BW10-Group, feedback was provided when the errors were larger than 10°. The YokedBW10-Group participants were matched to the feedback schedule of research twins from the BW10-Group. All groups performed pre-tests and retention tests with a secondary task paradigm to test for automaticity. The BW10-Group indicated a higher degree of automatization compared with the BW0-Group, which did not exhibit a change in automaticity. The comparison of the YokedBW10-Group, which also exhibited automatization, and the BW10-Group leads to the proposal that reduction of quantitative feedback frequency and additional positive feedback are responsible for the bandwidth effect. Differences in movement accuracy and consistency were not evident.

  6. Shoulder joint movement of the non-throwing arm during baseball pitch--comparison between skilled and unskilled pitchers.

    PubMed

    Murata, A

    2001-12-01

    The shoulder of a non-throwing arm during a baseball pitch must be in a constant position while the shoulder of the throwing arm moves in a nearly circular path around it. However, it has not been investigated whether a skilled pitch requires less shoulder-joint movement. It was hypothesized that pitchers with less shoulder movement of the non-throwing arm can be considered to have higher skill and to attain higher initial ball velocity. Nine baseball pitchers were used as subjects. The coach classified them into a skilled and an unskilled group. The pitching motions were recorded using two high-speed cameras. The time series of three-dimensional landmark coordinates of the shoulder joint of the non-throwing arm during the baseball pitch were calculated using the direct linear transformation method. The shoulder-joint movement (SJM) index, which expresses the movement (displacement) of the shoulder joint of the non-throwing arm quantitatively, was proposed to compare the SJM at different skill levels and investigate the relationship between SJM and initial ball velocity. The SJM of the skilled pitchers was smaller than that of the unskilled pitchers, and the smaller value of the SJM led to faster initial ball velocity. The data suggest that the less SJM of the non-throwing arm is required to attain a skilled pitch and higher initial ball velocity.

  7. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    PubMed Central

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  8. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy.

    PubMed

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  9. Extravehicular activity translation arm (EVATA) study

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Stammreich, J. R.

    1978-01-01

    The preliminary design of a deployable Extravehicular Activity Translation Arm (EVATA) assembly which will allow an EVA crewman to perform tasks in the vicinity of the External TNK (ET) umbilical doors and to inspect most of the underside of the shuttle spacecraft is reported. The concept chosen for the boom structure was the Astro Extendable Support Structure (ESS) which formed the main structure for the Synthetic Aperture Radar (SAR) Antenna System on the SEASAT A spacecraft. This structure is a deployable triangular truss. A comparison of the EVATA and the SEASAT A ESS is shown. The development of status of the ESS is shown. The satellite configuration, the stowed truss load path, and the envelope deployment sequence for the ESS are also shown.

  10. A Real-time, 3D Musculoskeletal Model for Dynamic Simulation of Arm Movements

    PubMed Central

    Chadwick, Edward K.; Blana, Dimitra; van den Bogert, Antonie J.; Kirsch, Robert F.

    2010-01-01

    Neuroprostheses can be used to restore movement of the upper limb in individuals with high-level spinal cord injury. Development and evaluation of command and control schemes for such devices typically requires real-time, “patient-in-the-loop” experimentation. A real-time, three-dimensional, musculoskeletal model of the upper limb has been developed for use in a simulation environment to allow such testing to be carried out non-invasively. The model provides real-time feedback of human arm dynamics that can be displayed to the user in a virtual reality environment. The model has a three degree-of-freedom gleno-humeral joint as well as elbow flexion/extension and pronation/supination, and contains 22 muscles of the shoulder and elbow divided into multiple elements. The model is able to run in real time on modest desktop hardware and demonstrates that a large-scale, 3D model can be made to run in real time. This is a prerequisite for a real-time, whole arm model that will form part of a dynamic arm simulator for use in the development, testing and user training of neural prosthesis systems. PMID:19272926

  11. Arm weight support training improves functional motor outcome and movement smoothness after stroke

    PubMed Central

    Bartolo, Michelangelo; De Nunzio, Alessandro Marco; Sebastiano, Fabio; Spicciato, Francesca; Tortola, Paolo; Nilsson, Jan; Pierelli, Francesco

    2014-01-01

    Summary The aim of this study was to compare the effectiveness in acute stroke patients of a rehabilitation program performed with or without an arm weight support device. Twenty-eight acute, first-ever unilateral stroke patients were enrolled in a single-blind, randomized controlled trial. Clinical evaluation included Fugl-Mayer Assessment, Functional Independence Measure and kinematic analysis [maximum and mean hand velocity, maximum range of motion (Max RoM), normalized jerk (NJ)]. Patients received 12 daily 30-minute sessions (6/week) of additional upper limb therapy performed using an arm weight support device (study group) or additional traditional physiotherapy (control group). The patients were evaluated on admission and at the end of the rehabilitation intervention. The two groups were clinically comparable on admission (p>0.05). Both groups showed significant improvements in clinical scale scores and in Max RoM in flexion-extension, while only the study group showed improvements in NJ and in Max RoM in adduction-abduction. Rehabilitation training using an arm weight support device appears to be a useful method to supplement conventional therapy in acute stroke patients, increasing smoothness of movement and motor function. PMID:25014045

  12. The Relationship between Reduplicated Babble Onset and Laterality Biases in Infant Rhythmic Arm Movements

    PubMed Central

    Iverson, Jana M.; Hall, Amanda J.; Nickel, Lindsay; Wozniak, Robert H.

    2007-01-01

    This study examined changes in rhythmic arm shaking and laterality biases in infants observed longitudinally at three points: just prior to, at, and just following reduplicated babble onset. Infants (ranging in age from 4 to 9 months at babble onset) were videotaped at home as they played with two visually identical audible and silent rattles presented at midline for 1.5 min each. Rate of rattle shaking increased sharply from the pre-babble to babble onset session; but there was no indication that this increase was specific to the right arm. This finding suggests that the link between babble onset and increased rhythmic arm activity may not be the product of language-specific mechanisms, but is rather part of a broader developmental process that is also perceptual and motor. PMID:17196644

  13. Throwing action from full-cue and motion-only video-models of an arm movement sequence.

    PubMed

    Williams, J G

    1989-02-01

    The purpose of this study was to determine whether videotaped demonstrations of an action which displayed only the motion pattern of a model's limb as compared with one which showed both form and motion provide sufficient information for modelling a given pattern of movement. Video-demonstrations of an arm-movement sequence which ended with a throwing action were shown to adult subjects whose task was to model precisely what they saw. Each demonstration lasted 6 sec. and was shown 6 times. It portrayed the arm of a model, who held a small ball, performing a sequence of movements (flexion and extension of the elbow) which ended in the ball being thrown about 2.5 m with a 'darts-style' action. Three types of demonstration were presented: one showed the whole arm in dark clothing against a light-coloured background, another showed the arm as the relative motion of patches of light situated at the shoulder, elbow, and wrist joints, and the third showed the arm as the relative motion of the upper and lower segments of the arm represented by strips of light-reflectant material. These were the stimuli for the between-groups experimental conditions. Goniometry techniques were used to compare the performance of subjects relative to the model. Analysis showed that the order of the preparatory sequence was correctly produced after 4 trials under all conditions. Range of arm movement in projecting the ball closely approximated that of the model after 4 trials in all conditions. The time taken for the arm to project the ball remained constant across trials under all conditions and was always slower than the demonstrated cadence.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke.

    PubMed

    Culmer, P R; Jackson, A E; Makower, S G; Cozens, J A; Levesley, M C; Mon-Williams, M; Bhakta, B

    2011-04-30

    We developed a system for quantitatively measuring arm movement. Our approach provides a method to simultaneously capture upper limb kinetic and kinematic data during assisted passive arm movements. Data are analysed with respect to Cartesian and upper limb coordinate systems to obtain upper limb joint angles and torques. We undertook an evaluation of the system in participants with stroke to show the feasibility of this approach. During rehabilitation after stroke, one aspect of treatment includes the physiotherapist applying assistive forces to move the impaired arm of the patient who remains passive. There is a dearth of published data on the relationship between upper limb kinematics and the underlying forces (kinetics) in this mode of physiotherapy treatment. Such quantitative data are crucial in facilitating research into therapy practice, for example by measuring variation in practice and determining dosage. An experienced therapist prescribed passive movements tailored to the needs of 16 participants with stroke (41-81 years) with a range of anthropometric sizes and motor impairments. Our novel measurement tool recorded kinematic and kinetic data at 100 Hz for 6-11 movements per participant. The kinetic data show that the majority of movements fall within upper limits of 36.7 N in shoulder elevation, 22.4N in shoulder protraction, 4.6 Nm in shoulder abduction, 12.8 Nm in shoulder flexion, 2.4 Nm in shoulder rotation and 5.5 Nm in elbow flexion. These data show the potential of this system to better understand arm movement, in particular to objectively evaluate physical therapy treatments and support development of robotic devices to facilitate upper limb rehabilitation. PMID:21414360

  15. Influence of static lumbar flexion on the trunk muscles' response to sudden arm movements

    PubMed Central

    Lehman, Gregory J; Story, Stephen; Mabee, Robert

    2005-01-01

    Background Viscoelastic creep of lumbar ligaments (prolonged forward bend) has been shown to negatively influence the spine's muscular reflexive behaviour and spinal stability. No studies to date have investigated the influence of spinall viscoelastic creep on the feedforward response of the trunk muscles to sudden arm raises. Methods Surface myoelectric activity was collected from the transversus abdominis/internal oblique, the lower erector spinae and the deltoid muscle during sudden ballistic arm raising before and after 10 minutes of prolonged forward bend in 11 healthy participants free of low back injury. The timing of trunk muscle activity relative to the deltoid muscle was calculated for 5 trials before and 5 trials after the creep procedure. Results Viscoelastic creep had no influence on the feedforward response of the trunk muscles during sudden arm raises. A feedforward response of the trunk muscles was not seen in every study participant and during every trial. Conclusion Passive trunk muscle fatigue does not appear to influence the timing of the stabilizing role of the investigated trunk muscles to sudden arm flexion. PMID:16305746

  16. Do periodic arm movements during sleep exist in healthy subjects? A polysomnographic study

    PubMed Central

    Gabelia, David; Mitterling, Thomas; Högl, Birgit; Wenning, Gregor K.; Frauscher, Birgit

    2014-01-01

    Background Despite several polysomnographic studies on periodic leg movements (PLM) in healthy sleep, data on the prevalence and characteristics of periodic arm movements (PAM) in normal subjects are lacking. We aimed to investigate PAM and their association with PLM during wakefulness and sleep in healthy subjects. Methods Ninety-one participants underwent video-polysomnography according to American Academy of Sleep Medicine 2007 criteria. In addition to standard electromyographic registration, data for both flexor digitorum superficialis muscles were recorded. Results Sixty-two subjects (68.1%) had a PAM index during wakefulness >5/h (median PAM index during wakefulness, 8.8/h; range, 0–77). Seven subjects (7.7%) had a PAM index >5/h during sleep (median PAM index during sleep, 0.7/h; range, 0–47.4). In 14% of cases, PAM during wakefulness were coincident with PLM during wakefulness. During sleep, this coincidence was not evident. The correlation between PAM and PLM was weak to moderate (during wakefulness: Spearman's ρ = 0.576, P < 0.001; during sleep: Spearman's ρ = 0.222, P = 0.036). Conclusion In healthy subjects, PAM occur predominantly during wakefulness with no apparent true periodicity. In contrast to classical PLM, some PAM may not present a true periodic phenomenon, but rather random voluntary movements meeting the wide range of periodicity criteria for PLM. PMID:25037838

  17. Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects.

    PubMed

    Bourdin, C; Gauthier, G; Blouin, J; Vercher, J L

    2001-03-23

    A classical visuo-manual adaptation protocol carried out on a rotating platform was used to test the ability of subjects to adapt to centrifugal and Coriolis forces when visual feedback of the arm is manipulated. Three main results emerge: (a) an early modification of the initial trajectory of the movements takes place even without visual feedback of the arm; (b) despite the change in the initial trajectory, the new external force decreases the accuracy of the pointing movements when vision is precluded; (c) a visual adaptive phase allows complete adaptation of the pointing movements performed in a modified gravitoinertial field. Therefore vision would be essential for subjects to completely adapt to centrifugal and Coriolis forces. However, other sensory signals (i.e. vestibular and proprioceptive) may constitute the basis for early but partial correction of the pointing movements.

  18. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis

    PubMed Central

    2011-01-01

    Background Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Methods Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. Results The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Conclusions Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training. PMID:21575185

  19. Analysis of scapular kinematics during active and passive arm elevation

    PubMed Central

    Kai, Yoshihiro; Gotoh, Masafumi; Takei, Kazuto; Madokoro, Kazuya; Imura, Takeshi; Murata, Shin; Morihara, Toru; Shiba, Naoto

    2016-01-01

    [Purpose] Early postoperative passive motion exercise after arthroscopic rotator cuff repair remains controversial. To better understand this issue, this study was aimed at evaluating scapular kinematics and muscle activities during passive arm elevation in healthy subjects. [Subjects and Methods] The dominant shoulders of 27 healthy subjects were examined. Electromagnetic sensors attached to the scapula, thorax, and humerus were used to determine three-dimensional scapular kinematics during active arm elevation with or without external loads and passive arm elevation. Simultaneously, the activities of seven shoulder muscles were recorded with surface and intramuscular fine-wire electrodes. [Results] Compared with active arm elevation, passive elevation between 30° and 100° significantly decreased the scapular upward rotation and increased the glenohumeral elevation angle. However, no significant differences in scapular posterior tilt and external rotation were observed between active and passive arm elevation, and scapular plane kinematics were not affected by muscle activity. [Conclusion] Unlike active motion with or without an external load, passive arm elevation significantly decreased the scapular upward rotation and significantly increased the mid-range glenohumeral elevation. These data, which suggest that passive arm elevation should be avoided during the early postoperative period, may expand the understanding of rehabilitation after arthroscopic rotator cuff repair. PMID:27390438

  20. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes

    PubMed Central

    Zehr, E Paul; Kido, Aiko

    2001-01-01

    The organization and pattern of cutaneous reflex modulation during rhythmic cyclical movements of the human upper limbs has received much less attention than that afforded the lower limb. Our working hypothesis is that control mechanisms underlying the modulation of cutaneous reflex amplitude during rhythmic arm movement are similar to those that control reflex modulation in the leg. Thus, we hypothesized that cutaneous reflexes would show task dependency and nerve specificity in the upper limb during rhythmic cyclical arm movement as has been demonstrated in the human lower limb. EMG was recorded from 10 muscles crossing the human shoulder, elbow and wrist joints while bilateral whole arm rhythmic cyclical movements were performed on a custom-made, hydraulic apparatus. Cutaneous reflexes were evoked with trains (5× 1.0 ms pulses at 300 Hz) of electrical stimulation delivered at non-noxious intensities (∼2× threshold for radiating parasthesia) to the superficial radial, median and ulnar nerves innervating the hand. Cutaneous reflexes were typically modulated with the movement cycle (i.e. phase dependency was observed). There was evidence for nerve specificity of cutaneous reflexes during rhythmic movement of the upper limbs. Task-dependent modulation was also seen as cutaneous reflexes were of larger amplitude or inhibitory (reflex reversal) during arm cycling as compared to static contraction. While there are some differences in the patterns of cutaneous reflex modulation seen between the arms and legs, it is concluded that cutaneous reflexes are modulated similarly in the upper and lower limbs implicating similar motor control mechanisms. PMID:11744775

  1. A Developmental Study of Static Postural Control and Superimposed Arm Movements in Normal and Slowly Developing Children.

    ERIC Educational Resources Information Center

    Fisher, Janet M.

    Selected electromyographic parameters underlying static postural control in 4, 6, and 8 year old normally and slowly developing children during performance of selected arm movements were studied. Developmental delays in balance control were assessed by the Cashin Test of Motor Development (1974) and/or the Williams Gross Motor Coordination Test…

  2. The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements.

    PubMed

    Berret, Bastien; Darlot, Christian; Jean, Frédéric; Pozzo, Thierry; Papaxanthis, Charalambos; Gauthier, Jean Paul

    2008-10-01

    An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality

  3. The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements.

    PubMed

    Berret, Bastien; Darlot, Christian; Jean, Frédéric; Pozzo, Thierry; Papaxanthis, Charalambos; Gauthier, Jean Paul

    2008-10-01

    An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality

  4. Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson's disease.

    PubMed

    Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned

    2012-08-01

    Oscillatory activities in the brain within the beta (15-30 Hz) and gamma (70-90 Hz) ranges have been implicated in the generation of voluntary movement. However, their roles remain unclear. Here, we record local field potential activity from the region of the subthalamic nucleus during movement of the contralateral limb in 11 patients with Parkinson's disease. Patients were on their normal dopaminergic medication and were cued to perform arm-reaching movements after a delay period at three different speeds: 'slow', 'normal', and 'fast'. Beta activity desynchronized earlier in response to the cue indicating an upcoming fast reach than to the cues for slow or normal speed movement. There was no difference in the degree of beta desynchronization between reaching speeds and beta desynchronization was established prior to movement onset in all cases. In contrast, synchronization in the gamma range developed during the reaching movement, and was especially pronounced during fast reaching. Thus the timing of suppression in the beta band depended on task demands, whereas the degree of increase in gamma oscillations depended on movement speed. These findings point to functionally segregated roles for different oscillatory frequencies in motor preparation and performance.

  5. Robust adaptive control modeling of human arm movements subject to altered gravity and mechanical loads

    NASA Astrophysics Data System (ADS)

    Tryfonidis, Michail

    It has been observed that during orbital spaceflight the absence of gravitation related sensory inputs causes incongruence between the expected and the actual sensory feedback resulting from voluntary movements. This incongruence results in a reinterpretation or neglect of gravity-induced sensory input signals. Over time, new internal models develop, gradually compensating for the loss of spatial reference. The study of adaptation of goal-directed movements is the main focus of this thesis. The hypothesis is that during the adaptive learning process the neural connections behave in ways that can be described by an adaptive control method. The investigation presented in this thesis includes two different sets of experiments. A series of dart throwing experiments took place onboard the space station Mir. Experiments also took place at the Biomechanics lab at MIT, where the subjects performed a series of continuous trajectory tracking movements while a planar robotic manipulandum exerted external torques on the subjects' moving arms. The experimental hypothesis for both experiments is that during the first few trials the subjects will perform poorly trying to follow a prescribed trajectory, or trying to hit a target. A theoretical framework is developed that is a modification of the sliding control method used in robotics. The new control framework is an attempt to explain the adaptive behavior of the subjects. Numerical simulations of the proposed framework are compared with experimental results and predictions from competitive models. The proposed control methodology extends the results of the sliding mode theory to human motor control. The resulting adaptive control model of the motor system is robust to external dynamics, even those of negative gain, uses only position and velocity feedback, and achieves bounded steady-state error without explicit knowledge of the system's nonlinearities. In addition, the experimental and modeling results demonstrate that

  6. Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton.

    PubMed

    Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza

    2016-01-01

    Assistive technology allows for intensive practice and kinematic measurements during rehabilitation exercises. More recent approaches attach a gravity-compensating multi-joint exoskeleton to the upper extremity to facilitate task-oriented training in three-dimensional space with virtual reality feedback. The movement quality, however, is mostly captured through end-point measures that lack information on proximal inter-joint coordination. This limits the differentiation between compensation strategies and genuine restoration both during the exercise and in the course of rehabilitation. We extended in this proof-of-concept study a commercially available seven degree-of-freedom arm exoskeleton by using the real-time sensor data to display a three-dimensional multi-joint visualization of the user's arm. Ten healthy subjects and three severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living assisted by the attached exoskeleton and received closed-loop online feedback of the three-dimensional movement in virtual reality. Patients in this pilot study differed significantly with regard to motor performance (accuracy, temporal efficiency, range of motion) and movement quality (proximal inter-joint coordination) from the healthy control group. In the course of 20 training and feedback sessions over 4 weeks, these pathological measures improved significantly toward the reference parameters of healthy participants. It was moreover feasible to capture the evolution of movement pattern kinematics of the shoulder and elbow and to quantify the individual degree of natural movement restoration for each patient. The virtual reality visualization and closed-loop feedback of joint-specific movement kinematics makes it possible to detect compensation strategies and may provide a tool to achieve the rehabilitation goals in accordance with the individual capacity for genuine functional restoration; a proposal that warrants

  7. Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton

    PubMed Central

    Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza

    2016-01-01

    Assistive technology allows for intensive practice and kinematic measurements during rehabilitation exercises. More recent approaches attach a gravity-compensating multi-joint exoskeleton to the upper extremity to facilitate task-oriented training in three-dimensional space with virtual reality feedback. The movement quality, however, is mostly captured through end-point measures that lack information on proximal inter-joint coordination. This limits the differentiation between compensation strategies and genuine restoration both during the exercise and in the course of rehabilitation. We extended in this proof-of-concept study a commercially available seven degree-of-freedom arm exoskeleton by using the real-time sensor data to display a three-dimensional multi-joint visualization of the user's arm. Ten healthy subjects and three severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living assisted by the attached exoskeleton and received closed-loop online feedback of the three-dimensional movement in virtual reality. Patients in this pilot study differed significantly with regard to motor performance (accuracy, temporal efficiency, range of motion) and movement quality (proximal inter-joint coordination) from the healthy control group. In the course of 20 training and feedback sessions over 4 weeks, these pathological measures improved significantly toward the reference parameters of healthy participants. It was moreover feasible to capture the evolution of movement pattern kinematics of the shoulder and elbow and to quantify the individual degree of natural movement restoration for each patient. The virtual reality visualization and closed-loop feedback of joint-specific movement kinematics makes it possible to detect compensation strategies and may provide a tool to achieve the rehabilitation goals in accordance with the individual capacity for genuine functional restoration; a proposal that warrants

  8. Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton.

    PubMed

    Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza

    2016-01-01

    Assistive technology allows for intensive practice and kinematic measurements during rehabilitation exercises. More recent approaches attach a gravity-compensating multi-joint exoskeleton to the upper extremity to facilitate task-oriented training in three-dimensional space with virtual reality feedback. The movement quality, however, is mostly captured through end-point measures that lack information on proximal inter-joint coordination. This limits the differentiation between compensation strategies and genuine restoration both during the exercise and in the course of rehabilitation. We extended in this proof-of-concept study a commercially available seven degree-of-freedom arm exoskeleton by using the real-time sensor data to display a three-dimensional multi-joint visualization of the user's arm. Ten healthy subjects and three severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living assisted by the attached exoskeleton and received closed-loop online feedback of the three-dimensional movement in virtual reality. Patients in this pilot study differed significantly with regard to motor performance (accuracy, temporal efficiency, range of motion) and movement quality (proximal inter-joint coordination) from the healthy control group. In the course of 20 training and feedback sessions over 4 weeks, these pathological measures improved significantly toward the reference parameters of healthy participants. It was moreover feasible to capture the evolution of movement pattern kinematics of the shoulder and elbow and to quantify the individual degree of natural movement restoration for each patient. The virtual reality visualization and closed-loop feedback of joint-specific movement kinematics makes it possible to detect compensation strategies and may provide a tool to achieve the rehabilitation goals in accordance with the individual capacity for genuine functional restoration; a proposal that warrants

  9. Feedback control of arm movements using Neuro-Muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation.

    PubMed

    Klauer, Christian; Schauer, Thomas; Reichenfelser, Werner; Karner, Jakob; Zwicker, Sven; Gandolla, Marta; Ambrosini, Emilia; Ferrante, Simona; Hack, Marco; Jedlitschka, Andreas; Duschau-Wicke, Alexander; Gföhler, Margit; Pedrocchi, Alessandra

    2014-01-01

    Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES) to enable reaching functions in people with no residual voluntary control of the arm and shoulder due to high level spinal cord injury. NMES is applied to the deltoids and the biceps muscles and integrated with a three degrees of freedom (DoFs) passive exoskeleton, which partially compensates gravitational forces and allows to lock each DOF. The user is able to choose the target hand position and to trigger actions using an eyetracker system. The target position is selected by using the eyetracker and determined by a marker-based tracking system using Microsoft Kinect. A central controller, i.e., a finite state machine, issues a sequence of basic movement commands to the real-time arm controller. The NMES control algorithm sequentially controls each joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair, pushing an alarm button, etc., can be supported by the system. The robust and easily tunable control approach was evaluated with five healthy subjects during a drinking task. Subjects were asked to remain passive and to allow NMES to induce the movements. In all of them, the controller was able to perform the task, and a mean hand positioning error of less than five centimeters was achieved. The average total time duration for moving the hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and for finally returning the arm to the rest position was 71 s.

  10. Feedback control of arm movements using Neuro-Muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation.

    PubMed

    Klauer, Christian; Schauer, Thomas; Reichenfelser, Werner; Karner, Jakob; Zwicker, Sven; Gandolla, Marta; Ambrosini, Emilia; Ferrante, Simona; Hack, Marco; Jedlitschka, Andreas; Duschau-Wicke, Alexander; Gföhler, Margit; Pedrocchi, Alessandra

    2014-01-01

    Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES) to enable reaching functions in people with no residual voluntary control of the arm and shoulder due to high level spinal cord injury. NMES is applied to the deltoids and the biceps muscles and integrated with a three degrees of freedom (DoFs) passive exoskeleton, which partially compensates gravitational forces and allows to lock each DOF. The user is able to choose the target hand position and to trigger actions using an eyetracker system. The target position is selected by using the eyetracker and determined by a marker-based tracking system using Microsoft Kinect. A central controller, i.e., a finite state machine, issues a sequence of basic movement commands to the real-time arm controller. The NMES control algorithm sequentially controls each joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair, pushing an alarm button, etc., can be supported by the system. The robust and easily tunable control approach was evaluated with five healthy subjects during a drinking task. Subjects were asked to remain passive and to allow NMES to induce the movements. In all of them, the controller was able to perform the task, and a mean hand positioning error of less than five centimeters was achieved. The average total time duration for moving the hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and for finally returning the arm to the rest position was 71 s. PMID:25228853

  11. Dynamic Scapular Movement Analysis: Is It Feasible and Reliable in Stroke Patients during Arm Elevation?

    PubMed Central

    De Baets, Liesbet; Van Deun, Sara; Desloovere, Kaat; Jaspers, Ellen

    2013-01-01

    Knowledge of three-dimensional scapular movements is essential to understand post-stroke shoulder pain. The goal of the present work is to determine the feasibility and the within and between session reliability of a movement protocol for three-dimensional scapular movement analysis in stroke patients with mild to moderate impairment, using an optoelectronic measurement system. Scapular kinematics of 10 stroke patients and 10 healthy controls was recorded on two occasions during active anteflexion and abduction from 0° to 60° and from 0° to 120°. All tasks were executed unilaterally and bilaterally. The protocol’s feasibility was first assessed, followed by within and between session reliability of scapular total range of motion (ROM), joint angles at start position and of angular waveforms. Additionally, measurement errors were calculated for all parameters. Results indicated that the protocol was generally feasible for this group of patients and assessors. Within session reliability was very good for all tasks. Between sessions, scapular angles at start position were measured reliably for most tasks, while scapular ROM was more reliable during the 120° tasks. In general, scapular angles showed higher reliability during anteflexion compared to abduction, especially for protraction. Scapular lateral rotations resulted in smallest measurement errors. This study indicates that scapular kinematics can be measured reliably and with precision within one measurement session. In case of multiple test sessions, further methodological optimization is required for this protocol to be suitable for clinical decision-making and evaluation of treatment efficacy. PMID:24244414

  12. A meta-analysis of the facilitation of arm flexion and extension movements as a function of stimulus valence.

    PubMed

    Laham, Simon M; Kashima, Yoshihisa; Dix, Jennifer; Wheeler, Melissa

    2015-01-01

    This article presents a meta-analysis of research on the affective compatibility effect: the relative facilitation of arm flexion and extension movements, in response to positive and negative stimuli, respectively. Across 68 effect sizes (computed on 3169 participants), a small, significant average compatibility effect emerged (ES = .118; 95% CI [.051, .185]). Importantly, analyses also revealed significant heterogeneity in the set of effect sizes. Moderator analyses were conducted to explain this observed heterogeneity with a view to testing between extant theoretical accounts of the compatibility effect. Affective compatibility effects were significantly larger (1) for face stimuli than for words or pictorial stimuli; (2) when the negative stimuli partly comprising the effect were anger-related; (3) for responses made using vertical button press; (4) when situated aspects of the processing task framed flexion as approach and extension as avoidance; and (5) when explicit response labels framed flexion as positive and extension as negative. Significant reverse compatibility effects emerged (1) when aspects of the processing context framed flexion as avoidance and extension as approach and (2) when explicit response labels framed flexion as negative and extension as positive. The results of the meta-analysis provide little support for the strong embodiment, specific muscle activation account of affective compatibility and are broadly consistent with distance regulation, and, in particular, evaluative coding accounts.

  13. Domestic politics, citizen activism, and U. S. nuclear arms control policy

    SciTech Connect

    Knopf, J.W.

    1991-01-01

    The author seeks to ascertain whether and how citizens' movements concerning nuclear arms control and disarmament affect US arms control policy. The author employs a comparative case study methodology. He examines cases of the Eisenhower and Kennedy Administrations during the period of protest against nuclear testing, and the Reagan Administration during the nuclear weapons freeze campaign and the subsequent campaign for a comprehensive test ban. He hows there are four mechanisms through which public advocacy efforts can influence arms control policy, identifies the conditions under which each can be effective, and details the type of impact each mechanism has. Domestic activism interacts with broader public opinion in a way that creates electoral pressure; with elite-level debates in a way that removes a consensus behind presidential policy or changes the winning coalition in Congress; with bureaucratic politics, by generating ideas that have utility for some agents within the Executive; or with the public diplomacy of foreign governments, especially the Soviet Union. Citizens' movements had an impact on policy in each of the cases studied. The type and extent of impact, and the mechanisms involved in giving activism influence, are different for each case.

  14. Biomechanical aspects of segmented arch mechanics combined with power arm for controlled anterior tooth movement: A three-dimensional finite element study

    PubMed Central

    Ozaki, Hiroya; Tominaga, Jun-ya; Hamanaka, Ryo; Sumi, Mayumi; Chiang, Pao-Chang; Tanaka, Motohiro; Koga, Yoshiyuki

    2015-01-01

    The porpose of this study was to determine the optimal length of power arms for achieving controlled anterior tooth movement in segmented arch mechanics combined with power arm. A three-dimensional finite element method was applied for the simulation of en masse anterior tooth retraction in segmented power arm mechanics. The type of tooth movement, namely, the location of center of rotation of the maxillary central incisor in association with power arm length, was calculated after the retraction force was applied. When a 0.017 × 0.022-in archwire was inserted into the 0.018-in slot bracket, bodily movement was obtained at 9.1 mm length of power arm, namely, at the level of 1.8 mm above the center of resistance. In case a 0.018 × 0.025-in full-size archwire was used, bodily movement of the tooth was produced at the power arm length of 7.0 mm, namely, at the level of 0.3 mm below the center of resistance. Segmented arch mechanics required shorter length of power arms for achieving any type of controlled anterior tooth movement as compared to sliding mechanics. Therefore, this space closing mechanics could be widely applied even for the patients whose gingivobuccal fold is shallow. The segmented arch mechanics combined with power arm could provide higher amount of moment-to-force ratio sufficient for controlled anterior tooth movement without generating friction, and vertical forces when applying retraction force parallel to the occlusal plane. It is, therefore, considered that the segmented power arm mechanics has a simple appliance design and allows more efficient and controllable tooth movement. PMID:25610497

  15. Biomechanical aspects of segmented arch mechanics combined with power arm for controlled anterior tooth movement: A three-dimensional finite element study.

    PubMed

    Ozaki, Hiroya; Tominaga, Jun-Ya; Hamanaka, Ryo; Sumi, Mayumi; Chiang, Pao-Chang; Tanaka, Motohiro; Koga, Yoshiyuki; Yoshida, Noriaki

    2015-01-01

    The porpose of this study was to determine the optimal length of power arms for achieving controlled anterior tooth movement in segmented arch mechanics combined with power arm. A three-dimensional finite element method was applied for the simulation of en masse anterior tooth retraction in segmented power arm mechanics. The type of tooth movement, namely, the location of center of rotation of the maxillary central incisor in association with power arm length, was calculated after the retraction force was applied. When a 0.017 × 0.022-in archwire was inserted into the 0.018-in slot bracket, bodily movement was obtained at 9.1 mm length of power arm, namely, at the level of 1.8 mm above the center of resistance. In case a 0.018 × 0.025-in full-size archwire was used, bodily movement of the tooth was produced at the power arm length of 7.0 mm, namely, at the level of 0.3 mm below the center of resistance. Segmented arch mechanics required shorter length of power arms for achieving any type of controlled anterior tooth movement as compared to sliding mechanics. Therefore, this space closing mechanics could be widely applied even for the patients whose gingivobuccal fold is shallow. The segmented arch mechanics combined with power arm could provide higher amount of moment-to-force ratio sufficient for controlled anterior tooth movement without generating friction, and vertical forces when applying retraction force parallel to the occlusal plane. It is, therefore, considered that the segmented power arm mechanics has a simple appliance design and allows more efficient and controllable tooth movement.

  16. Active upper limb prosthesis based on natural movement trajectories.

    PubMed

    Ramírez-García, Alfredo; Leija, Lorenzo; Muñoz, Roberto

    2010-03-01

    The motion of the current prostheses is sequential and does not allow natural movements. In this work, complex natural motion patterns from a healthy upper limb were characterized in order to be emulated for a trans-humeral prosthesis with three degrees of freedom at the elbow. Firstly, it was necessary to define the prosthesis workspace, which means to establish a relationship using an artificial neural network (ANN), between the arm-forearm (3-D) angles allowed by the prosthesis, and its actuators length. The 3-D angles were measured between the forearm and each axis of the reference system attached at the elbow. Secondly, five activities of daily living (ADLs) were analyzed by means of the elbow flexion (EF), the forearm prono-supination (FPS) and the 3-D angles, from healthy subjects, by using a video-based motion analysis system. The 3-D angles were fed to the prosthesis model (ANN) in order to analyze which ADLs could be emulated by the prosthesis. As a result, a prosthesis kinematics approximation was obtained. In conclusion, in spite of the innovative mechanical configuration of the actuators, it was possible to carry out only three of the five ADLs considered. Future work will include improvement of the mechanical configuration of the prosthesis to have greater range of motion. PMID:20196688

  17. Kinematic analysis of arm and trunk movements in the gait of Parkinson's disease patients based on external signals.

    PubMed

    Son, Hohee; Kim, Eunjung

    2015-12-01

    [Purpose] To investigate the role of external cues on arm swing amplitude and trunk rotation in Parkinson's disease. [Subjects and Methods] The subjects were 13 elderly patients with Parkinson's disease. Subjects walked under four different conditions in a random order: no cue, visual cue, auditory cue, and combined cue. The auditory cue velocity consisted of a metronome beat 20% greater than the subject's general gait speed. For the visual cue condition, bright yellow colored strips of tape placed on the floor at intervals equal to 40% of each subject's height. A motion analysis system was used to measure arm swing amplitude and trunk rotation during walking. [Results] There was a significant difference in the kinematic variables (arm swing amplitude) between different cues, but there was not a significant difference in the kinematic variables with respect to the trunk rotation. [Conclusion] The findings of this study indicate that patients with Parkinson's disease are likely to focus attention on auditory cues. The measurement of arm and trunk kinematics during gait by auditory cues can increase the available methods for the analysis of complex motor programs in movement disorders. PMID:26834352

  18. Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis.

    PubMed

    Sampson, Patrica; Freeman, Chris; Coote, Susan; Demain, Sara; Feys, Peter; Meadmore, Katie; Hughes, Ann-Marie

    2016-02-01

    Few interventions address multiple sclerosis (MS) arm dysfunction but robotics and functional electrical stimulation (FES) appear promising. This paper investigates the feasibility of combining FES with passive robotic support during virtual reality (VR) training tasks to improve upper limb function in people with multiple sclerosis (pwMS). The system assists patients in following a specified trajectory path, employing an advanced model-based paradigm termed iterative learning control (ILC) to adjust the FES to improve accuracy and maximise voluntary effort. Reaching tasks were repeated six times with ILC learning the optimum control action from previous attempts. A convenience sample of five pwMS was recruited from local MS societies, and the intervention comprised 18 one-hour training sessions over 10 weeks. The accuracy of tracking performance without FES and the amount of FES delivered during training were analyzed using regression analysis. Clinical functioning of the arm was documented before and after treatment with standard tests. Statistically significant results following training included: improved accuracy of tracking performance both when assisted and unassisted by FES; reduction in maximum amount of FES needed to assist tracking; and less impairment in the proximal arm that was trained. The system was well tolerated by all participants with no increase in muscle fatigue reported. This study confirms the feasibility of FES combined with passive robot assistance as a potentially effective intervention to improve arm movement and control in pwMS and provides the basis for a follow-up study.

  19. Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis.

    PubMed

    Richardson, Magnus J E; Flash, Tamar

    2002-09-15

    The movements of the human arm have been extensively studied for a variety of goal-directed experimental tasks. Analyses of the trajectory and velocity of the arm have led to many hypotheses for the planning strategies that the CNS might use. One family of control hypotheses, including minimum jerk, snap and their generalizations to higher orders, comprises those that favor smooth movements through the optimization of an integral cost function. The predictions of each order of this family are examined for two standard experimental tasks: point-to-point movements and the periodic tracing of figural forms, and compared both with experiment and the two-thirds power law. The aim of the analyses is to generalize previous numerical observations as well as to examine movement segmentation. It is first shown that contrary to recent statements in the literature, the only members of this family of control theories that match reaching movement experiments well are minimum jerk and snap. Then, for the case of periodic drawing, both the ellipse and cloverleaf are examined and the experimentally observed power law is derived from a first-principles approach. The results for the ellipse are particularly general, representing a unification of the two-thirds power law and smoothness hypotheses for ellipses of all reasonable eccentricities. For complex shapes it is shown that velocity profiles derived from the cost-function approach exhibit the same experimental features that were interpreted as segmented control by the CNS. Because the cost function contains no explicit segmented control, this result casts doubt on such an interpretation of the experimental data.

  20. Interacting noise sources shape patterns of arm movement variability in three-dimensional space.

    PubMed

    Apker, Gregory A; Darling, Timothy K; Buneo, Christopher A

    2010-11-01

    Reaching movements are subject to noise in both the planning and execution phases of movement production. The interaction of these noise sources during natural movements is not well understood, despite its importance for understanding movement variability in neurologically intact and impaired individuals. Here we examined the interaction of planning and execution related noise during the production of unconstrained reaching movements. Subjects performed sequences of two movements to targets arranged in three vertical planes separated in depth. The starting position for each sequence was also varied in depth with the target plane; thus required movement sequences were largely contained within the vertical plane of the targets. Each final target in a sequence was approached from two different directions, and these movements were made with or without visual feedback of the moving hand. These combined aspects of the design allowed us to probe the interaction of execution and planning related noise with respect to reach endpoint variability. In agreement with previous studies, we found that reach endpoint distributions were highly anisotropic. The principal axes of movement variability were largely aligned with the depth axis, i.e., the axis along which visual planning related noise would be expected to dominate, and were not generally well aligned with the direction of the movement vector. Our results suggest that visual planning-related noise plays a dominant role in determining anisotropic patterns of endpoint variability in three-dimensional space, with execution noise adding to this variability in a movement direction-dependent manner.

  1. Failure of Arm Movement Control in Stroke Patients, Characterized by Loss of Complexity.

    PubMed

    Goh, Segun; Han, Kyungreem; Ryu, Jehkwang; Kim, Seonjin; Choi, MooYoung

    2015-01-01

    We study the mechanism of human arm-posture control by means of nonlinear dynamics and quantitative time series analysis methods. Utilizing linear and nonlinear measures in combination, we find that pathological tremors emerge in patient dynamics and serve as a main feature discriminating between normal and patient groups. The deterministic structure accompanied with loss of complexity inherent in the tremor dynamics is also revealed. To probe the underlying mechanism of the arm-posture dynamics, we further analyze the coupling patterns between joints and components, and discuss their roles in breaking of the organization structure. As a result, we elucidate the mechanisms in the arm-posture dynamics of normal subjects responding to the gravitational force and for the reduction of the dynamic degrees of freedom in the patient dynamics. This study provides an integrated framework for the origin of the loss of complexity in the dynamics of patients as well as the coupling structure in the arm-posture dynamics.

  2. Demonstration of motor imagery movement and phantom movement-related neuronal activity in human thalamus.

    PubMed

    Anderson, William S; Weiss, Nirit; Lawson, Herman Christopher; Ohara, Shinji; Rowland, Lance; Lenz, Frederick A

    2011-01-26

    Functional imaging studies show that motor imagery activates multiple structures in the human forebrain. We now show that phantom movements in an amputee and imagined movements in intact individuals elicit responses from neurons in several human thalamic nuclei. These include the somatic sensory nucleus receiving input from the periphery (ventral caudal), and the motor nuclei receiving input from the cerebellum [ventral intermediate (Vim)] and the basal ganglia [ventral oral posterior (Vop)]. Seven neurons in the amputee showed phantom movement-related activity (three Vim, two Vop, and two ventral caudal). In addition, seven neurons in a group of three controls showed motor imagery-related activity (four Vim and three Vop). These studies were performed during single neuron recording sessions in patients undergoing therapeutic treatment of phantom pain, tremor, and chronic pain conditions by thalamic stimulation. The activity of neurons in these sensory and motor nuclei, respectively, may encode the expected sensory consequences and the dynamics of planned movements.

  3. Target switching in curved human arm movements is predicted by changing a single control parameter.

    PubMed

    Hoffmann, Heiko

    2011-01-01

    Straight-line movements have been studied extensively in the human motor-control literature, but little is known about how to generate curved movements and how to adjust them in a dynamic environment. The present work studied, for the first time to my knowledge, how humans adjust curved hand movements to a target that switches location. Subjects (n = 8) sat in front of a drawing tablet and looked at a screen. They moved a cursor on a curved trajectory (spiral or oval shaped) toward a goal point. In half of the trials, this goal switched 200 ms after movement onset to either one of two alternative positions, and subjects smoothly adjusted their movements to the new goal. To explain this adjustment, we compared three computational models: a superposition of curved and minimum-jerk movements (Flash and Henis in J Cogn Neurosci 3(3):220-230, 1991), Vector Planning (Gordon et al. in Exp Brain Res 99(1):97-111, 1994) adapted to curved movements (Rescale), and a nonlinear dynamical system, which could generate arbitrarily curved smooth movements and had a point attractor at the goal. For each model, we predicted the trajectory adjustment to the target switch by changing only the goal position in the model. As result, the dynamical model could explain the observed switch behavior significantly better than the two alternative models (spiral: P = 0.0002 vs. Flash, P = 0.002 vs. Rescale; oval: P = 0.04 vs. Flash; P values obtained from Wilcoxon test on R (2) values). We conclude that generalizing arbitrary hand trajectories to new targets may be explained by switching a single control command, without the need to re-plan or re-optimize the whole movement or superimpose movements.

  4. Failure of Arm Movement Control in Stroke Patients, Characterized by Loss of Complexity

    PubMed Central

    Goh, Segun; Han, Kyungreem; Ryu, Jehkwang; Kim, Seonjin; Choi, MooYoung

    2015-01-01

    We study the mechanism of human arm-posture control by means of nonlinear dynamics and quantitative time series analysis methods. Utilizing linear and nonlinear measures in combination, we find that pathological tremors emerge in patient dynamics and serve as a main feature discriminating between normal and patient groups. The deterministic structure accompanied with loss of complexity inherent in the tremor dynamics is also revealed. To probe the underlying mechanism of the arm-posture dynamics, we further analyze the coupling patterns between joints and components, and discuss their roles in breaking of the organization structure. As a result, we elucidate the mechanisms in the arm-posture dynamics of normal subjects responding to the gravitational force and for the reduction of the dynamic degrees of freedom in the patient dynamics. This study provides an integrated framework for the origin of the loss of complexity in the dynamics of patients as well as the coupling structure in the arm-posture dynamics. PMID:26536132

  5. Akinesia in Parkinsonism. Relation between spontaneous movement (other than tremor) and voluntary movements made on command

    PubMed Central

    Meyer, Carl Ha

    1982-01-01

    In eleven patients with Parkinsonism there was a strong inverse relationship between the frequency of spontaneous activity of the arms and the degree of fatiguing of repetitive finger movements made upon command. The prevalence of spontaneous arm movement was related inversely (but more weakly) to the time taken to complete a pegboard test or to move clothespegs by hand; it had little association with the speed of linear movement or with simple motor reaction time involving the arm. PMID:7119827

  6. Trick maneuvers in cervical dystonia: investigation of movement- and touch-related changes in polymyographic activity.

    PubMed

    Wissel, J; Müller, J; Ebersbach, G; Poewe, W

    1999-11-01

    Antagonistic gestures or trick maneuvers are well-known clinical features to reduce or abolish dystonic posturing in cervical dystonia (CD). The maneuvers typically consist of a finger touch to the facial skin but their physiology remains unknown. To determine the temporal profile of geste maneuver performance, 25 patients with idiopathic CD were studied by means of polymyography of six cervical muscles prior to any botulinum toxin treatment. Two piezoelectric elements fixed to a fingertip of the hand involved in the trick maneuver and to the facial target region, respectively, were used to relate the essential points of the trick maneuver time course (start of geste-arm movement, facial contact, end of contact, end of movement) to changes in polymyographic activity. Thirteen patients (52%) showed marked reductions of electromyographic (EMG) activity (> or =50% in at least one muscle) during arm movement, definitely prior to contact between fingers and facial target area; in the remaining 12 patients (48%), geste-related EMG effects were confined to facial-finger contact. These results might indicate different physiological mechanisms in clinically indistinguishable antagonistic gestures.

  7. Robotic arm

    DOEpatents

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  8. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation.

    PubMed

    Brauchle, Daniel; Vukelić, Mathias; Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input. We tested the feasibility of three-dimensional robotic assistance for reaching movements with a multi-joint exoskeleton during motor imagery (MI)-related desynchronization of sensorimotor oscillations in the β-band. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function. Healthy subjects and stroke survivors showed similar patterns-but different aptitudes-of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e., when the orthosis was actually attached to the subject's arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link three-dimensional robotic training to the participants' efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration, a proposal that warrants

  9. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation

    PubMed Central

    Brauchle, Daniel; Vukelić, Mathias; Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input. We tested the feasibility of three-dimensional robotic assistance for reaching movements with a multi-joint exoskeleton during motor imagery (MI)-related desynchronization of sensorimotor oscillations in the β-band. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function. Healthy subjects and stroke survivors showed similar patterns—but different aptitudes—of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e., when the orthosis was actually attached to the subject’s arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link three-dimensional robotic training to the participants’ efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration, a proposal that

  10. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  11. Horizontal-plane arm movements with direction reversals performed by normal individuals and individuals with down syndrome.

    PubMed

    Almeida, G L; Corcos, D M; Hasan, Z

    2000-10-01

    We examined the systematic variation in shoulder and elbow torque, as well as movement kinematics, for horizontal-plane arm movements with direction reversals performed by normal individuals and individuals with Down syndrome. Eight neurologically normal individuals and eight individuals with Down syndrome performed horizontal, planar reversal movements to four different target locations. The four locations of the targets were chosen such that there is a systematic increase in elbow interaction torque for each of the four different target locations. This systematic increase in interaction torque has previously been shown to lead to progressively larger movement reversal errors, and trajectories that do not show a sharp reversal of direction, for movements to and from the target in patients who have proprioceptive abnormalities. We computed joint torques at the elbow and shoulder and found a high correlation between elbow and shoulder torque for the neurologically normal subjects. The ratio of joint torques varied systematically with target location. These findings extend previously reported findings of a linear synergy between shoulder and elbow joints for a variety of point-to-point movements. There was also a correlation between elbow and shoulder torque in individuals with Down syndrome, but the magnitude of the correlation was less. The ratio of joint torques changed systematically with target direction in individuals with Down syndrome but was slightly different from the ratio observed for neurologically normal individuals. The difference in the ratio was caused by the generation of proportionately more elbow torque than shoulder torque. The fingertip path of individuals with Down syndrome showed a sharp reversal in moving toward and then away from the target. In this respect, they were similar to neurologically normal individuals but dissimilar to individuals with proprioceptive deficits. Finally, we observed that individuals with Down syndrome spend

  12. Neural activation differences in amputees during imitation of intact versus amputee movements

    PubMed Central

    Cusack, William F.; Cope, Michael; Nathanson, Sheryl; Pirouz, Nikta; Kistenberg, Robert; Wheaton, Lewis A.

    2012-01-01

    The mirror neuron system (MNS) has been attributed with increased activation in motor-related cortical areas upon viewing of another's actions. Recent work suggests that limb movements that are similar and dissimilar in appearance to that of the viewer equivalently activate the MNS. It is unclear if this result can be observed in the action encoding areas in amputees who use prosthetic devices. Intact subjects and upper extremity amputee prosthesis users were recruited to view video demonstrations of tools being used by an intact actor and a prosthetic device user. All subjects pantomimed the movements seen in the video while recording electroencephalography (EEG). Intact subjects showed equivalent left parietofrontal activity during imitation planning after watching the intact or prosthetic arm. Likewise, when prosthesis users imitated prosthesis demonstrations, typical left parietofrontal activation was observed. When prosthesis users imitated intact actors, an additional pattern was revealed which showed greater activity in right parietal and occipital regions that are associated with the mentalizing system. This change may be required for prosthesis users to plan imitation movements in which the limb states between the observed and the observer do not match. The finding that prosthesis users imitating other prosthesis users showed typical left parietofrontal activation suggests that these subjects engage normal planning related activity when they are able to imitate a limb matching their own. This result has significant implications on rehabilitation, as standard therapy involves training with an intact occupational therapist, which could necessitate atypical planning mechanisms in amputees when learning to use their prosthesis. PMID:22754516

  13. Effects of Arm Ergometry Exercise on the Reaction, Movement and Response Times of the Lower Extremities.

    ERIC Educational Resources Information Center

    Israel, Richard G.

    A study determined the effects of fatigue produced in the upper extremities on the reaction time, movement time, and response time of the lower extremities in 30 male subjects, 19-25 years old. Each subject participated in a 10 trial practice session one day prior to the experiment and immediately preceding the pre-test. The pre-test consisted of…

  14. Control of multi-joint arm movements for the manipulation of touch in keystroke by expert pianists

    PubMed Central

    2010-01-01

    Background Production of a variety of finger-key touches in the piano is essential for expressive musical performance. However, it remains unknown how expert pianists control multi-joint finger and arm movements for manipulating the touch. The present study investigated differences in kinematics and kinetics of the upper-limb movements while expert pianists were depressing a key with two different touches: pressed and struck. The former starts key-depression with the finger-tip contacting the key, whereas the latter involves preparatory arm-lift before striking the key. To determine the effect of individual muscular torque (MUS) as well as non-muscular torques on joint acceleration, we performed a series of inverse and forward dynamics computations. Results The pressed touch showed smaller elbow extension velocity, and larger shoulder and finger flexion velocities during key-depression compared with the struck touch. The former touch also showed smaller elbow extension acceleration directly attributed to the shoulder MUS. In contrast, the shoulder flexion acceleration induced by elbow and wrist MUS was greater for the pressed touch than the struck touch. Towards the goal of producing the target finger-key contact dynamics, the pressed and struck touches effectively took advantage of the distal-to-proximal and proximal-to-distal inter-segmental dynamics, respectively. Furthermore, a psychoacoustic experiment confirmed that a tone elicited by the pressed touch was perceived softer than that by the struck touch. Conclusion The present findings suggest that manipulation of tone timbre depends on control of inter-segmental dynamics in piano keystroke. PMID:20630085

  15. Making music after stroke: using musical activities to enhance arm function.

    PubMed

    van Wijck, Frederike; Knox, Don; Dodds, Colin; Cassidy, Gianna; Alexander, Gillian; MacDonald, Raymond

    2012-04-01

    A common long-term consequence of stroke is impaired arm function, which affects independence and quality of life in a considerable proportion of stroke survivors. There is a growing need for self-management strategies that enable stroke survivors to continue their recovery after rehabilitation has ceased. Interventions with high-intensity, repetitive task training and feedback are most likely to improve function. Achieving the required amount of self-practice is challenging, however. Innovative approaches are required to translate therapies into rewarding activities that can be undertaken independently. This paper describes the key principles and development of a novel intervention that integrates individuals' preferred music with game technology in upper limb rehabilitation. The "tap tempo" paradigm, which uses rhythmic auditory cueing, provides repetitive upper limb task training, which can be tailored to individual goals and progress (e.g., in terms of movement range and complexity), while providing sensitive quantitative feedback to promote skill acquisition and enhance self-management.

  16. Doing is for thinking! Stereotype activation by stereotypic movements.

    PubMed

    Mussweiler, Thomas

    2006-01-01

    Three studies demonstrate that stereotypic movements activate the corresponding stereotype. In Study 1, participants who were unobtrusively induced to move in the portly manner that is stereotypic of overweight people subsequently ascribed more overweight-stereotypic characteristics to an ambiguous target person than did control participants. In Study 2, participants who were unobtrusively induced to move in the slow manner that is stereotypic of elderly people subsequently ascribed more elderly-stereotypic characteristics to a target than did control participants. In Study 3, participants who were induced to move slowly were faster than control participants to respond to elderly-stereotypic words in a lexical decision task. Using three different movement inductions, two different stereotypes, and two classic measures of stereotype activation, these studies converge in demonstrating that stereotypes may be activated by stereotypic movements.

  17. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

    PubMed

    Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D; Mussa-Ivaldi, Ferdinando A

    2016-04-01

    The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.

  18. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

    PubMed

    Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D; Mussa-Ivaldi, Ferdinando A

    2016-04-01

    The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths. PMID:27035587

  19. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation

    PubMed Central

    Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D.; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths. PMID:27035587

  20. Eye movement analysis for activity recognition using electrooculography.

    PubMed

    Bulling, Andreas; Ward, Jamie A; Gellersen, Hans; Tröster, Gerhard

    2011-04-01

    In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.

  1. Increased movement accuracy and reduced EMG activity as the result of adopting an external focus of attention.

    PubMed

    Zachry, Tiffany; Wulf, Gabriele; Mercer, John; Bezodis, Neil

    2005-10-30

    The performance and learning of motor skills has been shown to be enhanced if the performer adopts an external focus of attention (focus on the movement effect) compared to an internal focus (focus on the movements themselves) [G. Wulf, W. Prinz, Directing attention to movement effects enhances learning: a review, Psychon. Bull. Rev. 8 (2001) 648-660]. While most previous studies examining attentional focus effects have exclusively used performance outcome (e.g., accuracy) measures, in the present study electromyography (EMG) was used to determine neuromuscular correlates of external versus internal focus differences in movement outcome. Participants performed basketball free throws under both internal focus (wrist motion) and external focus (basket) conditions. EMG activity was recorded for m. flexor carpi radialis, m. biceps brachii, m. triceps triceps brachii, and m. deltoid of each participant's shooting arm. The results showed that free throw accuracy was greater when participants adopted an external compared to an internal focus. In addition, EMG activity of the biceps and triceps muscles was lower with an external relative to an internal focus. This suggests that an external focus of attention enhances movement economy, and presumably reduces "noise" in the motor system that hampers fine movement control and makes the outcome of the movement less reliable.

  2. The neck region of the myosin motor domain acts as a lever arm to generate movement.

    PubMed Central

    Uyeda, T Q; Abramson, P D; Spudich, J A

    1996-01-01

    The myosin head consists of a globular catalytic domain that binds actin and hydrolyzes ATP and a neck domain that consists of essential and regulatory light chains bound to a long alpha-helical portion of the heavy chain. The swinging neck-level model assumes that a swinging motion of the neck relative to the catalytic domain is the origin of movement. This model predicts that the step size, and consequently the sliding velocity, are linearly related to the length of the neck. We have tested this point by characterizing a series of mutant Dictyostelium myosins that have different neck lengths. The 2xELCBS mutant has an extra binding site for essential light chain. The delta RLCBS mutant myosin has an internal deletion that removes the regulatory light chain binding site. The delta BLCBS mutant lacks both light chain binding sites. Wild-type myosin and these mutant myosins were subjected to the sliding filament in vitro motility assay. As expected, mutants with shorter necks move slower than wild-type myosin in vitro. Most significantly, a mutant with a longer neck moves faster than the wild type, and the sliding velocities of these myosins are linearly related to the neck length, as predicted by the swinging neck-lever model. A simple extrapolation to zero speed predicts that the fulcrum point is in the vicinity of the SH1-SH2 region in the catalytic domain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8633089

  3. Learning Through Movement: Teaching Cognitive Content through Physical Activities.

    ERIC Educational Resources Information Center

    Werner, Peter H.; Burton, Elsie C.

    Action-oriented learning activities are focused on in this book which attempts to outline an approach for stimulating and motivating children to learn through movement. The book is divided into five parts, each dealing with an aspect of the elementary school curriculum. Part one is concerned with the language arts and is divided into three…

  4. Who Benefits from Cooperative Learning with Movement Activity?

    ERIC Educational Resources Information Center

    Shoval, Ella; Shulruf, Boaz

    2011-01-01

    The goal of this study is to identify learners who are most likely to benefit from a small group cooperative learning strategy, which includes tasks involving movement activities. The study comprised 158 learners from five second and third grade classes learning about angles. The research tools included structured observation of each learner and…

  5. The application of active side arm controllers in helicopters

    NASA Technical Reports Server (NTRS)

    Knorr, R.; Melz, C.; Faulkner, A.; Obermayer, M.

    1993-01-01

    Eurocopter Deutschland (ECD) started simulation trials to investigate the particular problems of Side Arm Controllers (SAC) applied to helicopters. Two simulation trials have been performed. In the first trial, the handling characteristics of a 'passive' SAC and the basic requirements for the application of an 'active' SAC were evaluated in pilot-in-the-loop simulations, performing the tasks in a realistic scenario representing typical phases of a transport mission. The second simulation trial investigated the general control characteristics of the 'active' in comparison to the 'passive' control principle. A description of the SACs developed by ECD and the principle of the 'passive' and 'active' control concept is given, as well as specific ratings for the investigated dynamic and ergonomic parameters effecting SAC characteristics. The experimental arrangements, as well as the trials procedures of both simulation phases, are described and the results achieved are discussed emphasizing the advantages of the 'active' as opposed to the 'passive' SAC concept. This also includes the presentation of some critical aspects still to be improved and proposals to solve them.

  6. Uncontrolled manifold analysis of arm joint angle variability during robotic teleoperation and freehand movement of surgeons and novices.

    PubMed

    Nisky, Ilana; Hsieh, Michael H; Okamura, Allison M

    2014-12-01

    Teleoperated robot-assisted surgery (RAS) is used to perform a wide variety of minimally invasive procedures. However, current understanding of the effect of robotic manipulation on the motor coordination of surgeons is limited. Recent studies in human motor control suggest that we optimize hand movement stability and task performance while minimizing control effort and improving robustness to unpredicted disturbances. To achieve this, the variability of joint angles and muscle activations is structured to reduce task-relevant variability and increase task-irrelevant variability. In this study, we determine whether teleoperation of a da Vinci Si surgical system in a nonclinical task of simple planar movements changes this structure of variability in experienced surgeons and novices. To answer this question, we employ the UnControlled manifold analysis that partitions users' joint angle variability into task-irrelevant and task-relevant manifolds. We show that experienced surgeons coordinate their joint angles to stabilize hand movements more than novices, and that the effect of teleoperation depends on experience--experts increase teleoperated stabilization relative to freehand whereas novices decrease it. We suggest that examining users' exploitation of the task-irrelevant manifold for stabilization of hand movements may be applied to: (1) evaluation and optimization of teleoperator design and control parameters, and (2) skill assessment and optimization of training in RAS.

  7. CHILDREN'S MOVEMENT SKILLS WHEN PLAYING ACTIVE VIDEO GAMES.

    PubMed

    Hulteen, Ryan M; Johnson, Tara M; Ridgers, Nicola D; Mellecker, Robin R; Barnett, Lisa M

    2015-12-01

    Active video games (AVGs) may be useful for movement skill practice. This study examined children's skill execution while playing Xbox Kinect™ and during movement skill assessment. Nineteen children (10 boys, 9 girls; M age=7.9 yr., SD=1.4) had their skills assessed before AVG play and then were observed once a week for 6 wk. while playing AVGs for 50 min. While AVG play showed evidence of correct skill performance (at least 30-50% of the time when playing table tennis, tennis, and baseball), nearly all skills were more correctly performed during skill assessment (generally more than 50% of the time). This study may help researchers to better understand the role AVGs could play in enhancing real life movement skills. PMID:26654991

  8. CHILDREN'S MOVEMENT SKILLS WHEN PLAYING ACTIVE VIDEO GAMES.

    PubMed

    Hulteen, Ryan M; Johnson, Tara M; Ridgers, Nicola D; Mellecker, Robin R; Barnett, Lisa M

    2015-12-01

    Active video games (AVGs) may be useful for movement skill practice. This study examined children's skill execution while playing Xbox Kinect™ and during movement skill assessment. Nineteen children (10 boys, 9 girls; M age=7.9 yr., SD=1.4) had their skills assessed before AVG play and then were observed once a week for 6 wk. while playing AVGs for 50 min. While AVG play showed evidence of correct skill performance (at least 30-50% of the time when playing table tennis, tennis, and baseball), nearly all skills were more correctly performed during skill assessment (generally more than 50% of the time). This study may help researchers to better understand the role AVGs could play in enhancing real life movement skills.

  9. High frequency activity correlates of robust movement in humans.

    PubMed

    Kerr, Matthew S D; Kahn, Kevin; Hyun-Joo Park; Thompson, Susan; Hao, Stephanie; Bulacio, Juan; Gonzalez-Martinez, Jorge A; Gale, John; Sarma, Sridevi V

    2014-01-01

    The neural circuitry underlying fast robust human motor control is not well understood. In this study we record neural activity from multiple stereotactic encephalograph (SEEG) depth electrodes in a human subject while he/she performs a center-out reaching task holding a robotic manipulandum that occasionally introduces an interfering force field. Collecting neural data from humans during motor tasks is rare, and SEEG provides an unusual opportunity to examine neural correlates of movement at a millisecond time scale in multiple brain regions. Time-frequency analysis shows that high frequency activity (50-150 Hz) increases significantly in the left precuneus and left hippocampus when the subject is compensating for a perturbation to their movement. These increases in activity occur with different durations indicating differing roles in the motor control process.

  10. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.

    PubMed

    Gaveau, Jérémie; Paizis, Christos; Berret, Bastien; Pozzo, Thierry; Papaxanthis, Charalambos

    2011-08-01

    After an exposure to weightlessness, the central nervous system operates under new dynamic and sensory contexts. To find optimal solutions for rapid adaptation, cosmonauts have to decide whether parameters from the world or their body have changed and to estimate their properties. Here, we investigated sensorimotor adaptation after a spaceflight of 10 days. Five cosmonauts performed forward point-to-point arm movements in the sagittal plane 40 days before and 24 and 72 h after the spaceflight. We found that, whereas the shape of hand velocity profiles remained unaffected after the spaceflight, hand path curvature significantly increased 1 day after landing and returned to the preflight level on the third day. Control experiments, carried out by 10 subjects under normal gravity conditions, showed that loading the arm with varying loads (from 0.3 to 1.350 kg) did not affect path curvature. Therefore, changes in path curvature after spaceflight cannot be the outcome of a control process based on the subjective feeling that arm inertia was increased. By performing optimal control simulations, we found that arm kinematics after exposure to microgravity corresponded to a planning process that overestimated the gravity level and optimized movements in a hypergravity environment (∼1.4 g). With time and practice, the sensorimotor system was recalibrated to Earth's gravity conditions, and cosmonauts progressively generated accurate estimations of the body state, gravity level, and sensory consequences of the motor commands (72 h). These observations provide novel insights into how the central nervous system evaluates body (inertia) and environmental (gravity) states during sensorimotor adaptation of point-to-point arm movements after an exposure to weightlessness.

  11. Effects of drought on desert tortoise movement and activity

    USGS Publications Warehouse

    Duda, J.J.; Krzysik, A.J.; Freilich, J.E.

    1999-01-01

    We monitored movement and activity patterns of 38 desert tortoises (Gopherus agassizii) at 2 locations in the southcentral Mojave Desert during 2 consecutive years differing markedly in winter rainfall. During the first year, winter precipitation was 225% greater than the long-term average for this region, whereas a drought the following year resulted in precipitation that was 25% of the long-term average. These winter rains produced 2 distinct patterns of annual plant productivity: a bloom of annuals the first year, followed by their complete absence the second year. As measured by radiotelemetry, home range size, the number of different burrows used, average distances traveled per day, and levels of surface versus burrow activity were significantly reduced in both populations during the drought year. The pooled distribution of between-observation distances traveled showed a shift favoring shorter-distance movements during the drought year. Differences in levels of winter precipitation between years and the resulting variation of winter annual biomass in the spring appear to play a significant role in desert tortoise movement and activity patterns. Future management and conservation plans for the desert tortoise should consider weather and productivity as important factors influencing annual home range size, number of burrows used, average distances traveled, and activity levels.

  12. Intra-Cyclic Phases of Arm-Leg Movement and Index of Coordination in Relation to Sprint Breaststroke Swimming in Young Swimmers

    PubMed Central

    Strzala, Marek; Krezalek, Piotr; Glab, Grzegorz; Kaca, Marcin; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K.

    2013-01-01

    Despite the limitations set by FINA regulations, execution technique in breaststroke swimming is being improved thanks to more and more advanced analyses of the efficiency of the swimmer’s movements. The aim of this study was to detect the parameters of the time structure of the cycle correlated with the maximal swimming speed at the of 50 meters distance, in order to focus to specific technical aspects in the breaststroke training. In the group of 23 participants, between the age of 15.0 ± 1.17, the breaststroke cycle movement of the arms and legs was divided into two phases: propulsive or non-propulsive. In addition, indices characterizing the temporal coordination of movements of the upper limbs in relation to the lower limbs were distinguished: 1) Arm-Leg Lag - determines the interval between the phases of propulsion generated by upper and lower limbs; 2) Glide or Overlap - the inter-cyclic glide or overlap of the propulsive movement of the upper on lower limbs. Significant dependence was noted between the swim speed (V50surface breast) and the percentage of time of the arm propulsive in-sweep phase 0.64, p < 0.01. A significant correlation was observed between the V50surface breast with the percentage of partially surfaced hand phase of arm recovery 0.54, p < 0.01. Correlation between total leg propulsion and non-propulsion phases with V50surface breast was 0.49 and -0.49 respectively, both p < 0.01. The Glide or Overlap index was significantly related to the swimming speed V50surface breast 0.48, p < 0.05. This type of analysis suggests how to refine the swimming technique, with the goal to improve the current speed capabilities; furthermore the results also indicate the direction of its development in the future swimmers of the group studied. Key Points This study investigated the influence of the inter- and intra-cyclic time structure of the movements in sprint breaststroke swimming. The distinction of the operations phases of the upper limbs in the

  13. Integration of Gravitational Torques in Cerebellar Pathways Allows for the Dynamic Inverse Computation of Vertical Pointing Movements of a Robot Arm

    PubMed Central

    Gentili, Rodolphe J.; Papaxanthis, Charalambos; Ebadzadeh, Mehdi; Eskiizmirliler, Selim; Ouanezar, Sofiane; Darlot, Christian

    2009-01-01

    Background Several authors suggested that gravitational forces are centrally represented in the brain for planning, control and sensorimotor predictions of movements. Furthermore, some studies proposed that the cerebellum computes the inverse dynamics (internal inverse model) whereas others suggested that it computes sensorimotor predictions (internal forward model). Methodology/Principal Findings This study proposes a model of cerebellar pathways deduced from both biological and physical constraints. The model learns the dynamic inverse computation of the effect of gravitational torques from its sensorimotor predictions without calculating an explicit inverse computation. By using supervised learning, this model learns to control an anthropomorphic robot arm actuated by two antagonists McKibben artificial muscles. This was achieved by using internal parallel feedback loops containing neural networks which anticipate the sensorimotor consequences of the neural commands. The artificial neural networks architecture was similar to the large-scale connectivity of the cerebellar cortex. Movements in the sagittal plane were performed during three sessions combining different initial positions, amplitudes and directions of movements to vary the effects of the gravitational torques applied to the robotic arm. The results show that this model acquired an internal representation of the gravitational effects during vertical arm pointing movements. Conclusions/Significance This is consistent with the proposal that the cerebellar cortex contains an internal representation of gravitational torques which is encoded through a learning process. Furthermore, this model suggests that the cerebellum performs the inverse dynamics computation based on sensorimotor predictions. This highlights the importance of sensorimotor predictions of gravitational torques acting on upper limb movements performed in the gravitational field. PMID:19384420

  14. Lever arm dysfunction in cerebral palsy gait.

    PubMed

    Theologis, Tim

    2013-11-01

    Skeletal structures act as lever arms during walking. Muscle activity and the ground reaction against gravity exert forces on the skeleton, which generate torque (moments) around joints. These lead to the sequence of movements which form normal human gait. Skeletal deformities in cerebral palsy (CP) affect the function of bones as lever arms and compromise gait. Lever arm dysfunction should be carefully considered when contemplating treatment to improve gait in children with CP.

  15. Nrf2 activation attenuates both orthodontic tooth movement and relapse.

    PubMed

    Kanzaki, H; Shinohara, F; Itohiya-Kasuya, K; Ishikawa, M; Nakamura, Y

    2015-06-01

    During orthodontic tooth movement, osteoclasts resorb the alveolar bone at the compress side of periodontium. Reactive oxygen species (ROS) works as intracellular signaling molecules of RANKL during osteoclastogenesis, although ROS has cytotoxicity against cells such as lipid oxidation. To deal with oxidative stress, cells have a defense system that is scavenging ROS by augmented antioxidative stress enzymes via transcriptional regulation with nuclear factor E2-related factor 2 (Nrf2). Previously, we reported that augmented antioxidative stress enzymes by Nrf2-gene transfer inhibited bone destruction. In the present study, we examined the effects of Nrf2 activation on osteoclastogenesis and, thereby, orthodontic tooth movement and orthodontic relapse. Mouse macrophage cell line RAW264.7 cells were used as osteoclast progenitor cells and stimulated with recombinant RANKL (100 ng/mL) with or without Nrf2 activator sulforaphane (SFN) and epigallocatechin gallate (EGCG) or ROS scavenger catechin. Osteoclastogenesis, resorption activity, and osteoclast marker gene expression were examined. Intracellular ROS was analyzed by flow cytometry. Maxillary first molars of C57BL6 male mice were moved palatally with 0.012-inch NiTi wire (100-mN force); SFN or EGCG was injected into the palatal gingiva once a week; and phosphate buffered saline was injected on the contralateral side. Tooth movement was monitored using a stone model with precise impression, and the amount of the tooth movement was compared among groups. SFN and EGCG significantly, but catechin weakly, inhibited RANKL-mediated osteoclastogenesis in vitro. Western blot analysis revealed that SFN and EGCG augmented the nuclear translocation of Nrf2 and the expression of anti-oxidative stress enzymes such as HO-1, although catechin did not. SFN and EGCG significantly, but catechin weakly, attenuated the intracellular ROS. Finally, animal experiment revealed that both SFN and EGCG successfully inhibited the orthodontic

  16. Designing Movement Activities to Develop Children's Creativity in Early Childhood Education

    ERIC Educational Resources Information Center

    Cheung, Rebecca Hun Ping

    2010-01-01

    This article describes the introduction of creative movement activity in three Hong Kong kindergartens to promote children's creativity. The purposes of the study were to examine the effectiveness of creative movement activity in promoting children's creativity and teachers' perceptions of the activities. The movement activities were designed…

  17. Movements and activity of juvenile Brown Treesnakes (Boiga irregularis)

    USGS Publications Warehouse

    Lardner, Bjorn; Savidge, Julie A.; Reed, Robert N.; Rodda, Gordon H.

    2014-01-01

    Understanding the spatial ecology and foraging strategy of invasive animals is essential for success in control or eradication. We studied movements and activity in juvenile Brown Treesnakes on Guam, as this population segment has proven particularly difficult to control. Distance between daytime refugia (from telemetry of 18 juveniles, 423-800 mm snout-vent length) ranged from 0-118 m (n  =  86), with a grand mean of 43 m. There were tendencies for shorter snake movements on nights directly following a full moon and on dry nights, but variation among snakes was of a larger magnitude and would greatly reduce chances to detect moon or rain effects unless corrected for. Snake activity was estimated from audio recordings of signals from “tipping” radio transmitters, analyzed for pulse period and amplitude. Activity was highest in the hours immediately after sunset, and gradually declined throughout the night before dropping abruptly in conjunction with sunrise. Snake activity was higher on rainy nights, and tended to be highest during waning moons and when the moon was below the horizon. We conclude that small Brown Treesnakes forage actively and appear to move far enough to regularly encounter the traps and bait used on Guam for control purposes, suggesting that alternative explanations are required for their low capture rates with these control tools.

  18. Striatal and Pallidal Activation during Reward Modulated Movement using a Translational Paradigm

    PubMed Central

    Bischoff-Grethe, Amanda; Buxton, Richard B.; Paulus, Martin P.; Fleisher, Adam S.; Yang, Tony T.; Brown, Gregory G.

    2015-01-01

    Objective Human neuroimaging studies of reward processing typically involve tasks that engage decision-making processes in the dorsal striatum or focus upon the ventral striatum's response to feedback expectancy. These studies are often compared to the animal literature; however, some animal studies include both feedback and nonfeedback events that activate the dorsal striatum during feedback expectancy. Differences in task parameters, movement complexity, and motoric effort to attain rewards may partly explain ventral and dorsal striatal response differences across species. We therefore used a target capture task during functional neuroimaging that was inspired by a study of single cell modulation in the internal globus pallidus during reward-cued, rotational arm movements in nonhuman primates. Methods In this functional magnetic resonance imaging study, participants used a fiberoptic joystick to make a rotational response to an instruction stimulus that indicated both a target location for a capture movement and whether or not the trial would end with feedback indicating either a small financial gain or a neutral outcome. Results Portions of the dorsal striatum and pallidum demonstrated greater neural activation to visual cues predicting potential gains relative to cues with no associated outcome. Furthermore, both striatal and pallidal regions displayed a greater response to financial gains relative to neutral outcomes. Conclusions This reward-dependent modulation of dorsal striatal and pallidal activation in a target-capture task is consistent with findings from reward studies in animals, supporting the use of motorically complex, tasks as translational paradigms to investigate the neural substrates of reward expectancy and outcome in humans. PMID:26156687

  19. Controlled movement processing: superior colliculus activity associated with countermanded saccades.

    PubMed

    Paré, Martin; Hanes, Doug P

    2003-07-23

    We investigated whether the monkey superior colliculus (SC), an important midbrain structure for the regulation of saccadic eye movements, contains neurons with activity patterns sufficient to control both the cancellation and the production of saccades. We used a countermanding task to manipulate the probability that, after the presentation of a stop signal, the monkeys canceled a saccade that was planned in response to an eccentric visual stimulus. By modeling each animal's behavioral responses, with a race between GO and STOP processes leading up to either saccade initiation or cancellation, we estimated that saccade cancellation took on average 110 msec. Neurons recorded in the superior colliculus intermediate layers during this task exhibited the discharge properties expected from neurons closely involved in behavioral control. Both saccade- and fixation-related discharged differently when saccades were counter-manded instead of executed, and the time at which they changed their activity preceded the behavioral estimate of saccade cancellation obtained from the same trials by 10 and 13 msec, respectively. Furthermore, these intervals exceed the minimal amount of time needed for SC activity to influence eye movements. The additional observation that saccade-related neurons discharged significantly less when saccades were countermanded instead of executed suggests that saccades are triggered when these neurons reach a critical activation level. Altogether, these findings provide solid evidence that the superior colliculus contains the necessary neural signals to be directly involved in the decision process that regulates whether a saccade is to be produced.

  20. Changes in music tempo entrain movement related brain activity.

    PubMed

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength. PMID:25571015

  1. Changes in music tempo entrain movement related brain activity.

    PubMed

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength.

  2. Controlled movement processing: superior colliculus activity associated with countermanded saccades.

    PubMed

    Paré, Martin; Hanes, Doug P

    2003-07-23

    We investigated whether the monkey superior colliculus (SC), an important midbrain structure for the regulation of saccadic eye movements, contains neurons with activity patterns sufficient to control both the cancellation and the production of saccades. We used a countermanding task to manipulate the probability that, after the presentation of a stop signal, the monkeys canceled a saccade that was planned in response to an eccentric visual stimulus. By modeling each animal's behavioral responses, with a race between GO and STOP processes leading up to either saccade initiation or cancellation, we estimated that saccade cancellation took on average 110 msec. Neurons recorded in the superior colliculus intermediate layers during this task exhibited the discharge properties expected from neurons closely involved in behavioral control. Both saccade- and fixation-related discharged differently when saccades were counter-manded instead of executed, and the time at which they changed their activity preceded the behavioral estimate of saccade cancellation obtained from the same trials by 10 and 13 msec, respectively. Furthermore, these intervals exceed the minimal amount of time needed for SC activity to influence eye movements. The additional observation that saccade-related neurons discharged significantly less when saccades were countermanded instead of executed suggests that saccades are triggered when these neurons reach a critical activation level. Altogether, these findings provide solid evidence that the superior colliculus contains the necessary neural signals to be directly involved in the decision process that regulates whether a saccade is to be produced. PMID:12878689

  3. Loss, adaptation and new directions: The impact of arm morbidity on leisure activities following breast cancer.

    PubMed

    Thomas, Roanne; Hack, Thomas F; Quinlan, Elizabeth; Tatemichi, Sue; Towers, Anna; Kwan, Winkle; Miedema, Baukje; Tilley, Andrea; Hamoline, Rita; Morrison, Tricia

    2015-01-01

    The impact of arm morbidity on leisure and quality of life is an understudied area in cancer survivorship. The purpose of this study was to qualitatively describe the impact of breast cancer-related arm morbidity on leisure participation in Canadian women. A grounded theory approach was used to generate thematic categories and a model. Drawing on participants from a larger cohort study (n = 740), 40 women with arm morbidity symptoms were purposively sampled and interviewed. Three themes emerged: a sense of loss, adapting participation, and new directions. Women with arm morbidity may experience an abrupt loss of previously enjoyed leisure activities and engage in a process of adapting to discover new meanings and directions. Comprehensive, person-centred cancer survivorship programs may assist with adaptation to arm morbidity.

  4. Loss, adaptation and new directions: The impact of arm morbidity on leisure activities following breast cancer.

    PubMed

    Thomas, Roanne; Hack, Thomas F; Quinlan, Elizabeth; Tatemichi, Sue; Towers, Anna; Kwan, Winkle; Miedema, Baukje; Tilley, Andrea; Hamoline, Rita; Morrison, Tricia

    2015-01-01

    The impact of arm morbidity on leisure and quality of life is an understudied area in cancer survivorship. The purpose of this study was to qualitatively describe the impact of breast cancer-related arm morbidity on leisure participation in Canadian women. A grounded theory approach was used to generate thematic categories and a model. Drawing on participants from a larger cohort study (n = 740), 40 women with arm morbidity symptoms were purposively sampled and interviewed. Three themes emerged: a sense of loss, adapting participation, and new directions. Women with arm morbidity may experience an abrupt loss of previously enjoyed leisure activities and engage in a process of adapting to discover new meanings and directions. Comprehensive, person-centred cancer survivorship programs may assist with adaptation to arm morbidity. PMID:26642494

  5. Movement of particles using sequentially activated dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2004-02-03

    Manipulation of DNA and cells/spores using dielectrophoretic (DEP) forces to perform sample preparation protocols for polymerized chain reaction (PCR) based assays for various applications. This is accomplished by movement of particles using sequentially activated dielectrophoretic particle trapping. DEP forces induce a dipole in particles, and these particles can be trapped in non-uniform fields. The particles can be trapped in the high field strength region of one set of electrodes. By switching off this field and switching on an adjacent electrodes, particles can be moved down a channel with little or no flow.

  6. Research Activities at Fermilab for Big Data Movement

    SciTech Connect

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

    2013-01-01

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  7. Dreamed movement elicits activation in the sensorimotor cortex.

    PubMed

    Dresler, Martin; Koch, Stefan P; Wehrle, Renate; Spoormaker, Victor I; Holsboer, Florian; Steiger, Axel; Sämann, Philipp G; Obrig, Hellmuth; Czisch, Michael

    2011-11-01

    Since the discovery of the close association between rapid eye movement (REM) sleep and dreaming, much effort has been devoted to link physiological signatures of REM sleep to the contents of associated dreams [1-4]. Due to the impossibility of experimentally controlling spontaneous dream activity, however, a direct demonstration of dream contents by neuroimaging methods is lacking. By combining brain imaging with polysomnography and exploiting the state of "lucid dreaming," we show here that a predefined motor task performed during dreaming elicits neuronal activation in the sensorimotor cortex. In lucid dreams, the subject is aware of the dreaming state and capable of performing predefined actions while all standard polysomnographic criteria of REM sleep are fulfilled [5, 6]. Using eye signals as temporal markers, neural activity measured by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) was related to dreamed hand movements during lucid REM sleep. Though preliminary, we provide first evidence that specific contents of REM-associated dreaming can be visualized by neuroimaging. PMID:22036177

  8. Dreamed movement elicits activation in the sensorimotor cortex.

    PubMed

    Dresler, Martin; Koch, Stefan P; Wehrle, Renate; Spoormaker, Victor I; Holsboer, Florian; Steiger, Axel; Sämann, Philipp G; Obrig, Hellmuth; Czisch, Michael

    2011-11-01

    Since the discovery of the close association between rapid eye movement (REM) sleep and dreaming, much effort has been devoted to link physiological signatures of REM sleep to the contents of associated dreams [1-4]. Due to the impossibility of experimentally controlling spontaneous dream activity, however, a direct demonstration of dream contents by neuroimaging methods is lacking. By combining brain imaging with polysomnography and exploiting the state of "lucid dreaming," we show here that a predefined motor task performed during dreaming elicits neuronal activation in the sensorimotor cortex. In lucid dreams, the subject is aware of the dreaming state and capable of performing predefined actions while all standard polysomnographic criteria of REM sleep are fulfilled [5, 6]. Using eye signals as temporal markers, neural activity measured by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) was related to dreamed hand movements during lucid REM sleep. Though preliminary, we provide first evidence that specific contents of REM-associated dreaming can be visualized by neuroimaging.

  9. Improved orthopedic arm joint

    NASA Technical Reports Server (NTRS)

    Dane, D. H.

    1971-01-01

    Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.

  10. A dynamic model for generating actuator specifications for small arms barrel active stabilization

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; Brei, Diann; Luntz, Jonathan; Lavigna, Chris

    2006-03-01

    Due to stresses encountered in combat, it is known that soldier marksmanship noticeably decreases regardless of prior training. Active stabilization systems in small arms have potential to address this problem to increase soldier survivability and mission effectiveness. The key to success is proper actuator design, but this is highly dependent on proper specification which is challenging due to the human/weapon interaction. This paper presents a generic analytical dynamic model which is capable of defining the necessary actuation specifications for a wide range of small arms platforms. The model is unique because it captures the human interface--shoulder and arm--that introduces the jitter disturbance in addition to the geometry, inertial properties and active stabilization stiffness of the small arms platform. Because no data to date is available for actual shooter-induced disturbance in field conditions, a method is given using the model to back-solve from measured shooting range variability data the disturbance amplitude information relative to the input source (arm or shoulder). As examples of the applicability of the model to various small arms systems, two different weapon systems were investigated: the M24 sniper weapon and the M16 assault rifle. In both cases, model based simulations provided valuable insight into impact on the actuation specifications (force, displacement, phase, frequency) due to the interplay of the human-weapon-active stabilization interface including the effect of shooter-disturbance frequency, disturbance location (shoulder vs. arm), and system parameters (stiffness, barrel rotation).

  11. Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys.

    PubMed

    Kurata, Kiyoshi

    2007-10-01

    The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.

  12. Development and use of an observation tool for active gaming and movement (OTAGM) to measure children's movement skill components during active video game play.

    PubMed

    Rosa, Rita L; Ridgers, Nicola D; Barnett, Lisa M

    2013-12-01

    This article presents a direct observational tool for assessing children's body movements and movement skills during active video games. The Observation Tool of Active Gaming and Movement (OTGAM) was informed by the Test of Gross Motor Development-2. 18 elementary school children (12 boys, 6 girls; M age = 6.1 yr., SD = 0.9) were observed during Nintendo Wii game play. Using the OTAGM, researchers were able to capture and quantify the children's body movements and movement skills during active play of video games. Furthermore, the OTAGM captured specific components of object control skills: strike, throw, and roll. Game designers, health promotion practitioners, and researchers could use this information to enhance children's physical activity and movement skills.

  13. The Effect of Repetitive Passive and Active Movements on Proprioception Ability in Forearm Supination

    PubMed Central

    Kwon, OhSung; Lee, SeungWon; Lee, YoungWoo; Seo, DongKwon; Jung, SangWoo; Choi, WonJae

    2013-01-01

    [Purpose] This study was conducted in order to investigate the effect of repetitive passive movement and repetitive active movement on proprioception in forearm supination. [Subjects] This study had a cross-sectional design. Twenty-three right-handed healthy subjects were recruited. All subjects randomly received both repetitive passive movement and repetitive active movement (repetitive passive/active movement at 120°/s with 60 repetitions over a 0–80° range). Active and passive joint repositioning of all subjects was measured using the error score for position sense, both before and after repositioning intervention. [Results] In the repetitive passive movement test, there was a statistically significant decrease in the pre- versus post-repositioning error scores in the active and passive angle examinations. In the repetitive active movement test, there was a statistically significant increase in pre- versus post-repositioning error scores in the active and passive angle examinations. In the comparison of position sense, there was a statistically significant decrease in both active and passive angle repositioning error scores in repetitive passive movement versus repetitive active movement. [Conclusion] Repetitive passive movement improved the proprioception results for forearm supination, compared to repetitive active movement. Results of this study indicate that repetitive passive movement can be recommended to clinicians for rehabilitation therapy as it provides greater proprioception benefits. PMID:24259808

  14. The Atomic Papers: A citizen's guide to selected books and articles on the bomb, the arms race, nuclear power, the peace movement, and related issues

    SciTech Connect

    Burns, G.

    1984-01-01

    The Atomic Papers annotates over 800 books published since 1945 and approximately 300 periodical articles since 1980 on every facet of the nuclear dilemma: the development and effects of the bomb, the arms race, nuclear proliferation, and the peace movement. Work on both sides of the nuclear power controversy also receives substantial attention. All references are to English-language material, and nearly half are to work published since 1980. The concluding chapter, ''The Art of Fission,'' describes over one hundred novels and stories with nuclear themes published since 1945--and, in a few cases, before that date.

  15. Physical activity and movement skills proficiency of young Filipino children.

    PubMed

    Capio, Catherine M; Sit, Cindy H P; Eguia, Kathlynne F; Abernethy, Bruce

    2014-08-01

    Recent reports indicate an increasing prevalence of overweight among Filipino children. Considering the known association of physical activity (PA) with obesity, this study reports the findings of an objective monitoring of PA in a sample of Filipino children. The study also explores the relationship of PA with fundamental movement skills (FMS) proficiency. Thirty-two children (6.54 ± 2.45 years old) wore an accelerometer for 7 days of PA monitoring and were assessed on five FMS (throw, catch, kick, run, jump). The children met the World Health Organization's recommendation of 60 min of PA per day, with more active time being accrued during weekdays than weekends. Children with greater FMS proficiency were found to spend more time in PA than those who were less skillful during weekends. Further research is recommended to examine PA and FMS proficiency associations, exploring the role of social interactions on weekends and weekdays.

  16. Eye movements and hazard perception in active and passive driving

    PubMed Central

    Mackenzie, Andrew K.; Harris, Julie M.

    2015-01-01

    ABSTRACT Differences in eye movement patterns are often found when comparing passive viewing paradigms to actively engaging in everyday tasks. Arguably, investigations into visuomotor control should therefore be most useful when conducted in settings that incorporate the intrinsic link between vision and action. We present a study that compares oculomotor behaviour and hazard reaction times across a simulated driving task and a comparable, but passive, video-based hazard perception task. We found that participants scanned the road less during the active driving task and fixated closer to the front of the vehicle. Participants were also slower to detect the hazards in the driving task. Our results suggest that the interactivity of simulated driving places increased demand upon the visual and attention systems than simply viewing driving movies. We offer insights into why these differences occur and explore the possible implications of such findings within the wider context of driver training and assessment. PMID:26681913

  17. Error-related electrocorticographic activity in humans during continuous movements.

    PubMed

    Milekovic, Tomislav; Ball, Tonio; Schulze-Bonhage, Andreas; Aertsen, Ad; Mehring, Carsten

    2012-04-01

    Brain-machine interface (BMI) devices make errors in decoding. Detecting these errors online from neuronal activity can improve BMI performance by modifying the decoding algorithm and by correcting the errors made. Here, we study the neuronal correlates of two different types of errors which can both be employed in BMI: (i) the execution error, due to inaccurate decoding of the subjects' movement intention; (ii) the outcome error, due to not achieving the goal of the movement. We demonstrate that, in electrocorticographic (ECoG) recordings from the surface of the human brain, strong error-related neural responses (ERNRs) for both types of errors can be observed. ERNRs were present in the low and high frequency components of the ECoG signals, with both signal components carrying partially independent information. Moreover, the observed ERNRs can be used to discriminate between error types, with high accuracy (≥83%) obtained already from single electrode signals. We found ERNRs in multiple cortical areas, including motor and somatosensory cortex. As the motor cortex is the primary target area for recording control signals for a BMI, an adaptive motor BMI utilizing these error signals may not require additional electrode implants in other brain areas.

  18. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

    PubMed

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  19. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm

    PubMed Central

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A.; Przekwas, Andrzej; Francis, Joseph T.; Lytton, William W.

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  20. Center-of-pressure movements during equine-assisted activities.

    PubMed

    Clayton, Hilary M; Kaiser, Leeann J; de Pue, Bonnie; Kaiser, Lana

    2011-01-01

    We compared anteroposterior and mediolateral range of motion and velocity of the center of pressure (COP) on the horse's back between riders without disabilities and riders with cerebral palsy. An electronic pressure mat was used to track COP movements beneath the saddle in 4 riders without disabilities and 4 riders with cerebral palsy. Comparisons between rider groups were made using the Mann-Whitney test (p < .05). The two rider groups differed significantly in anteroposterior range of COP motion, mediolateral range of COP motion, and mediolateral COP velocity. Anteroposterior COP velocity did not differ between groups. The results suggest that measurements of COP range of motion and velocity are potentially useful for monitoring changes in balance as an indicator of core stability during equine-assisted activities.

  1. Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose.

    PubMed

    Bhattacharyya, Saugat; Konar, Amit; Tibarewala, D N

    2014-12-01

    The paper proposes a novel approach toward EEG-driven position control of a robot arm by utilizing motor imagery, P300 and error-related potentials (ErRP) to align the robot arm with desired target position. In the proposed scheme, the users generate motor imagery signals to control the motion of the robot arm. The P300 waveforms are detected when the user intends to stop the motion of the robot on reaching the goal position. The error potentials are employed as feedback response by the user. On detection of error the control system performs the necessary corrections on the robot arm. Here, an AdaBoost-Support Vector Machine (SVM) classifier is used to decode the 4-class motor imagery and an SVM is used to decode the presence of P300 and ErRP waveforms. The average steady-state error, peak overshoot and settling time obtained for our proposed approach is 0.045, 2.8% and 44 s, respectively, and the average rate of reaching the target is 95%. The results obtained for the proposed control scheme make it suitable for designs of prosthetics in rehabilitative applications.

  2. Cerebral Activations Related to Ballistic, Stepwise Interrupted and Gradually Modulated Movements in Parkinson Patients

    PubMed Central

    Toxopeus, Carolien M.; Maurits, Natasha M.; Valsan, Gopal; Conway, Bernard A.; Leenders, Klaus L.; de Jong, Bauke M.

    2012-01-01

    Patients with Parkinson’s disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced

  3. Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in Parkinson patients.

    PubMed

    Toxopeus, Carolien M; Maurits, Natasha M; Valsan, Gopal; Conway, Bernard A; Leenders, Klaus L; de Jong, Bauke M

    2012-01-01

    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced

  4. Inner dynein arms but not outer dynein arms require the activity of kinesin homologue protein KHP1(FLA10) to reach the distal part of flagella in Chlamydomonas

    PubMed Central

    1996-01-01

    Inner dynein arms, but not outer dynein arms, require the activity of KHP1(FLA10) to reach the distal part of axonemes before binding to outer doublet microtubules. We have analyzed the rescue of inner or outer dynein arms in quadriflagellate dikaryons by immunofluorescence microscopy of p28(IDA4), an inner dynein arm light chain, or IC69(ODA6), an outer dynein arm intermediate chain. In dikaryons two strains with different genetic backgrounds share the cytoplasm. As a consequence, wild-type axonemal precursors are transported to and assembled in mutant axonemes to complement the defects. The rescue of inner dynein arms containing p28 in ida4-wild-type dikaryons progressively occurred from the distal part of the axonemes and with time was extended towards the proximal part. In contrast, the rescue of outer dynein arms in oda2-wild-type dikaryons progressively occurred along the entire length of the axoneme. Rescue of inner dynein arms containing p28 in ida4fla10-fla10 dikaryons was similar to the rescue observed in ida4-wild-type dikaryons at 21 degrees C, whereas it was inhibited at 32 degrees C, a nonpermissive temperature for KHP1(FLA10). In contrast, rescue of outer dynein arms in oda2fla10-fla10 dikaryons was similar to the rescue observed in oda2-wild-type dikaryons at both 21 degrees and 32 degrees C and was not inhibited at 32 degrees C. Positioning of substructures in the internal part of the axonemal shaft requires the activity of kinesin homologue protein 1. PMID:8609169

  5. Muscular Activity in the Arm during Lexical Retrieval: Implications for Gesture-Speech Theories

    ERIC Educational Resources Information Center

    Morsella, Ezequiel; Krauss, Robert M.

    2005-01-01

    The origin and functions of the hand and arm gestures that accompany speech production are poorly understood. It has been proposed that gestures facilitate lexical retrieval, but little is known about when retrieval is accompanied by gestural activity and how this activity is related to the semantics of the word to be retrieved. Electromyographic…

  6. Endurance time, muscular activity and the hand/arm tremor for different exertion forces of holding.

    PubMed

    Lee, Tzu-Hsien

    2016-01-01

    This study aimed to examine the effects of exertion force on endurance time, muscular activity and hand/arm tremor during holding. Fifteen healthy young males were recruited as participants. The independent variable was exertion force (20%, 40%, 60% and 80% maximum holding capacity). The dependent variables were endurance time, muscular activity and hand/arm tremor. The results showed that endurance time decreased with exertion force while muscular activity and hand/arm tremor increased with exertion force. Hand/arm tremor increased with holding time. Endurance time of 40%, 60% and 80% maximum holding capacity was approximately 22.7%, 12.0% and 5.6% of that of 20% maximum holding capacity, respectively. The rms (root mean square) acceleration of hand/arm tremor of the final phase of holding was 2.27-, 1.33-, 1.20- and 1.73-fold of that of the initial phase of holding for 20%, 40%, 60% and 80% maximum holding capacity, respectively.

  7. Syntheses and Characterization of Chiral Arm Liquid Crystals--Containing Active Group

    NASA Astrophysics Data System (ADS)

    Jia, Ying; Zhang, Fang-Di; He, Xiao-Zhi

    2016-05-01

    A new series of chiral two-arm dopant containg active group were first synthesized. Four precursors of C1~C4 were obtained at first and then were esterized separately with isosorbide and got four two-arm liquid crystals (MC1~MC4). The chemical structures and LC properties of the liquid crystalline molecule were measured by spectrum and thermal analysis techniques. XRD curves of MC1~MC4 samples only showed broad peaks at wide-angle, no sharp peak was seen for all the samples. The results showed that MC1~MC4 appeared cholesteric phase with oily streak texture or lined texture and finger print texture. Cholesteric phase was successfully induced by isosorbide. The different active group of two arm liquid crystal and chiral core had effects on their liquid crystalline properties.

  8. Movement of Sediment Associated With Lowered Reservoir Levels in the Rio La Venta Arm of the Presa Netzahualcoyotl, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Hilton, S.; de La Fuente, J.; Lisle, T. E.; Velasquez, J.; Allison, B.; Olson, B.; Quinones, R.

    2003-12-01

    A joint sedimentation study is currently underway at the Netzahualcoyotl reservoir in Chiapas, Mexico, involving the Comision Nacional de Areas Naturales Protegidas (CONANP) of the Secretaria de Medio Ambiente y Recursos Naturales and the USDA Forest Service. The reservoir is adjacent to the Reserva de la Biosfera, Selva El Ocote, administered by CONANP. Ongoing research is intended to provide watershed and reservoir managers with strategies to protect the resources of Rio La Venta canyon. The Rio La Venta arm of the reservoir is incised into karst terrain, with near-vertical limestone walls up to 300 meters high. The canyon is fed by two rivers, Rio La Selva and Rio Negro, and is surrounded by pristine tropical forest. The majority of the clastic sediment (predominantly sand and fine gravel) entering the reservoir originates in the headwaters of the two rivers which are underlain by weathered and dissected granitic terrain. Rapid sedimentation of the partially inundated canyon poses a threat to the aquatic ecosystem, as well as to recreational resources. Longitudinal and transverse profiles were surveyed in the inundated canyon in March of 2002 and repeated in April of 2003 when the reservoir level was 15 meters lower. The 2002 longitudinal profile shows an inflection from a slope of 0.0017 to one of 0.0075 at 7.2 km downstream of the mouth of Rio Negro. In 2003, the two slopes remained the same, but the bed lowered about 5 meters and the inflection point moved downstream about 2.3 km. We calculated that reservoir lowering in 2003 allowed the transport of 2.5 million cubic meters of sand further out into the reservoir. This volume is more than the average annual rate of filling up to the 2002 level since 1984 when sedimentation was not as advanced (De la Fuente et al., 2002), which was calculated disregarding loss of sediment to the main reservoir. Field observations at late dry season low flows in 2003 revealed active transport of sand and pebbles and formation

  9. Right-Left Approach and Reaching Arm Movements of 4-Month Infants in Free and Constrained Conditions

    ERIC Educational Resources Information Center

    Morange-Majoux, Francoise; Dellatolas, Georges

    2010-01-01

    Recent theories on the evolution of language (e.g. Corballis, 2009) emphazise the interest of early manifestations of manual laterality and manual specialization in human infants. In the present study, left- and right-hand movements towards a midline object were observed in 24 infants aged 4 months in a constrained condition, in which the hands…

  10. Measuring Activity Level with Actometers: Reliability, Validity, and Arm Length.

    ERIC Educational Resources Information Center

    Eaton, Warren O.

    1983-01-01

    The gross-motor activity of 27 three- and four- year-olds was assessed through teacher ratings, parent responses to the activity scale of the Colorado Childhood Temperament Inventory, and data from uncalibrated actometers worn by children during free play. Activity scores composited across multiple actometers had high reliability and correlated…

  11. Sensory processing in the vestibular nuclei during active head movements

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; Boyle, R.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    2000-01-01

    Many secondary vestibular neurons are sensitive to head on trunk rotation during reflex-induced and voluntary head movements. During passive whole body rotation the interaction of head on trunk signals related to the vestibulo-collic reflex with vestibular signals increases the rotational gain of many secondary vestibular neurons, including many that project to the spinal cord. In some units, the sensitivity to head on trunk and vestibular input is matched and the resulting interaction produces an output that is related to the trunk velocity in space. In other units the head on trunk inputs are stronger and the resulting interaction produces an output that is larger during the reflex. During voluntary head movements, inputs related to head on trunk movement combine destructively with vestibular signals, and often cancel the sensory reafferent consequences of self-generated movements. Cancellation of sensory vestibular signals was observed in all of the antidromically identified secondary vestibulospinal units, even though many of these units were not significantly affected by reflexive head on trunk movements. The results imply that the inputs to vestibular neurons related to head on trunk rotation during reflexive and voluntary movements arise from different sources. We suggest that the relative strength of reflexive head on trunk input to different vestibular neurons might reflect the different functional roles they have in controlling the posture of the neck and body.

  12. Activity patterns of the diaphragm during voluntary movements in awake cats.

    PubMed

    Uga, Minako; Niwa, Masatoshi; Ochiai, Naoyuki; Sasaki, Sei-Ichi

    2010-05-01

    The diaphragm is an important inspiratory muscle, and is also known to participate in the postural function. However, the activity of the diaphragm during voluntary movements has not been fully investigated in awake animals. In order to investigate the diaphragmatic activity during voluntary movements such as extending or rotating their body, we analyzed the electromyogram (EMG) of the diaphragm and trunk muscles in the cat using a technique for simultaneous recordings of EMG signals and video images. Periodic respiratory discharges occurred in the left and right costal diaphragm when the cat kept still. However, once the cat moved, their periodicity and/or synchrony were sometimes buried by non-respiratory activity. Such non-periodic diaphragmatic activities during voluntary movements are considered as the combination of respiratory activity and non-respiratory activity. Most of the diaphragmatic activities started shortly after the initiation of standing-up movements and occurred after the onset of trunk muscle activities. Those activities were more active compared to the normal respiratory activity. During rotation movements, left and right diaphragmatic activities showed asymmetrical discharge patterns and higher discharges than those during the resting situation. This asymmetrical activity may be caused by taking different lengths of each side of the diaphragm and trunk muscles. During reaching movements, the diaphragmatic activity occurred prior to or with the onset of trunk muscle activities. It is likely that diaphragmatic activities during reaching movements and standing-up movements may have been controlled by some different control mechanisms of the central nervous system. This study will suggest that the diaphragmatic activity is regulated not only by the respiratory center but also by inputs from the center for voluntary movements and/or sensory reflex pathways under the awake condition.

  13. Brain activation during ideomotor praxis: imitation and movements executed by verbal command

    PubMed Central

    Makuuchi, M; Kaminaga, T; Sugishita, M

    2005-01-01

    Background: Ideomotor apraxia is a disorder of both imitation movements and movements executed by verbal command. Lesion studies have identified the left parietal lobe as the neural correlate for ideomotor praxis (IP), although there are opposing views. Objectives: To localise the neural substrates for IP using functional magnetic resonance imaging. Brain regions activated by both imitation and verbal command movements were tested against a simple self paced movement. Methods: Twenty two young, right handed, healthy subjects were examined. Functional and anatomical data were acquired. The experiment comprised three motor conditions (imitation, movements executed by verbal command, and finger bending/unbending) and a rest condition. All motor tasks were performed using the left hand. Eighteen drawings of left hand postures were presented for the imitation condition. Identical postures were instructed verbally for the verbal command condition. The finger bending/unbending movement was self paced. Blood oxygenation level dependent (BOLD) signal increases were compared during two kinds of IP (imitation and verbal command movements) and during finger bending/unbending movements. Results: The depth of the posterior part of the left intraparietal sulcus and bilateral precunei were activated during both imitation and verbal command movements. The difference in BOLD signal between imitation and verbal command movements was localised in the dorsal and ventral occipital areas. BOLD signal differences for movements executed by verbal command against imitation were observed in the superior temporal areas. Conclusions: The depth of the posterior part of the left intraparietal sulcus and bilateral precunei are the neural substrates for IP. PMID:15607991

  14. Lower arm electromyography (EMG) activity detection using local binary patterns.

    PubMed

    McCool, Paul; Chatlani, Navin; Petropoulakis, Lykourgos; Soraghan, John J; Menon, Radhika; Lakany, Heba

    2014-09-01

    This paper presents a new electromyography activity detection technique in which 1-D local binary pattern histograms are used to distinguish between periods of activity and inactivity in myoelectric signals. The algorithm is tested on forearm surface myoelectric signals occurring due to hand gestures. The novel features of the presented method are that: 1) activity detection is performed across multiple channels using few parameters and without the need for majority vote mechanisms, 2) there are no per-channel thresholds to be tuned, which makes the process of activity detection easier and simpler to implement and less prone to errors, 3) it is not necessary to measure the properties of the signal during a quiescent period before using the algorithm. The algorithm is compared to other offline single- and double-threshold activity detection methods and, for the data sets tested, it is shown to have a better overall performance with greater tolerance to the noise in the real data set used.

  15. Adolescents' Perception of the Relationship between Movement Skills, Physical Activity and Sport

    ERIC Educational Resources Information Center

    Barnett, Lisa; Cliff, Ken; Morgan, Philip; van Beurden, Eric

    2013-01-01

    Movement skill competence is important to organised youth physical activity participation, but it is unclear how adolescents view this relationship. The primary aim of this study was to explore adolescents' perception of the relationship between movement skills, physical activity and sport, and whether their perceptions differed according to…

  16. Rapid increases in ventilation accompany the transition from passive to active movement.

    PubMed

    Bell, Harold J; Duffin, James

    2006-06-01

    We used a novel movement transition technique to look for evidence of a rapid onset drive to breathe related to the active component of exercise in humans. Ten volunteers performed the following transitions in a specially designed tandem exercise chair apparatus: rest to passive movement, passive to active movement, and rest to active movement. The transition from rest to active exercise was accompanied by an immediate increase in ventilation, as was the transition from rest to passive leg movement (Delta = 6.06 +/- 1.09 l min(-1), p < 0.001 and Delta = 3.30 +/- 0.57 l min(-1), p = 0.002, respectively). When subjects actively assumed the leg movements, ventilation again increased immediately and significantly (Delta = 2.55 +/- 0.52 l min(-1), p = 0.032). Ventilation at the first point of active exercise was the same when started either from rest or from a background of passive leg movement (p = 1.00). We conclude that the use of a transition from passive to active leg movements in humans recruits a ventilatory drive related to the active component of exercise, and this can be discerned as a rapid increase in breathing.

  17. Movement Actors in the Education Bureaucracy: The Figured World of Activity Based Learning in Tamil Nadu

    ERIC Educational Resources Information Center

    Niesz, Tricia; Krishnamurthy, Ramchandar

    2014-01-01

    Tamil Nadu has gained international recognition for reforming its government school classrooms into active, child-centered learning environments. Our exploration of the history of the Activity Based Learning movement suggests that this reform was achieved by social movement actors serving in and through the state's administration.…

  18. Childhood Movement Skills: Predictors of Physical Activity in Anglo American and Mexican American Adolescents?

    ERIC Educational Resources Information Center

    McKenzie, Thomas L.; Sallis, James F.; Broyles, Sheila L.; Zive, Michelle M.; Nader, Philip R.; Berry, Charles C.; Brennan, Jesse J.

    2002-01-01

    Assessed the relationship between young children's movement skills and their physical activity in early adolescence. Balance, agility, eye-hand coordination, and skinfold thickness were measured in young Mexican and Anglo American. Habitual physical activity was assessed when they were 12 years old. Ethnic differences in movement skills were not…

  19. Summary of the ARM activities at ECMWF from 2007-2009

    SciTech Connect

    Maike Ahlgrimm; Anton Beljaars

    2010-07-13

    The European Centre for Medium-Range Weather Forecasts (ECMWF), as one of the leading centres in numerical weather prediction, has been an active user of observations for model evaluation for many years. Many examples exist where detailed experimental studies have inspired model improvement. To establish a link between the Atmospheric Radiation Measurement (ARM) research and ECMWF's model development, funding was provided for an \\u201cARM fellow\\u201d at ECMWF. Furthermore, ECMWF has been working closely with ARM related projects for many years. ECMWF provides operational analysis data for the ARM stations (permanent and mobile) as background meteorological information and ECMWF has implemented the Rapid Radiative Transport Model long wave and short wave schemes as radiation codes in the operational system. These codes were developed at Atmospheric and Environmental Research Inc. with ARM support and were extensively evaluated using detailed ARM observations. This short report describes the history of the ARM-fellowship at ECMWF and summarizes the achievements over the last 3 years. The emphasis of the ARM funded work over the last 3 years has been on further development and evaluation of a new shallow convection scheme in the context of ECMWF's Numerical Weather Prediction (NWP) system. The shallow convection scheme is based on the DualM approach which combines Eddy Diffusion with a Dual Mass flux concept. One of the mass fluxes describes the dry updraughts, whereas the second updraught saturates at cloud base and penetrates into the cloud. The new scheme was optimized using single column cases from a wide range of climatological regimes. Further evaluation of the 3-dimensional model using Lidar data from space (CALIPSO) clearly indicates that the resulting cloud structures are much more realistic than the ones produced by the control model (Tiedtke mass flux scheme). Additionally, data from the ARM mobile facility in 2006 in Niamey has been used to evaluate the

  20. Moving to Music: Effects of Heard and Imagined Musical Cues on Movement-Related Brain Activity

    PubMed Central

    Schaefer, Rebecca S.; Morcom, Alexa M.; Roberts, Neil; Overy, Katie

    2014-01-01

    Music is commonly used to facilitate or support movement, and increasingly used in movement rehabilitation. Additionally, there is some evidence to suggest that music imagery, which is reported to lead to brain signatures similar to music perception, may also assist movement. However, it is not yet known whether either imagined or musical cueing changes the way in which the motor system of the human brain is activated during simple movements. Here, functional magnetic resonance imaging was used to compare neural activity during wrist flexions performed to either heard or imagined music with self-pacing of the same movement without any cueing. Focusing specifically on the motor network of the brain, analyses were performed within a mask of BA4, BA6, the basal ganglia (putamen, caudate, and pallidum), the motor nuclei of the thalamus, and the whole cerebellum. Results revealed that moving to music compared with self-paced movement resulted in significantly increased activation in left cerebellum VI. Moving to imagined music led to significantly more activation in pre-supplementary motor area (pre-SMA) and right globus pallidus, relative to self-paced movement. When the music and imagery cueing conditions were contrasted directly, movements in the music condition showed significantly more activity in left hemisphere cerebellum VII and right hemisphere and vermis of cerebellum IX, while the imagery condition revealed more significant activity in pre-SMA. These results suggest that cueing movement with actual or imagined music impacts upon engagement of motor network regions during the movement, and suggest that heard and imagined cues can modulate movement in subtly different ways. These results may have implications for the applicability of auditory cueing in movement rehabilitation for different patient populations. PMID:25309407

  1. Moving to music: effects of heard and imagined musical cues on movement-related brain activity.

    PubMed

    Schaefer, Rebecca S; Morcom, Alexa M; Roberts, Neil; Overy, Katie

    2014-01-01

    Music is commonly used to facilitate or support movement, and increasingly used in movement rehabilitation. Additionally, there is some evidence to suggest that music imagery, which is reported to lead to brain signatures similar to music perception, may also assist movement. However, it is not yet known whether either imagined or musical cueing changes the way in which the motor system of the human brain is activated during simple movements. Here, functional magnetic resonance imaging was used to compare neural activity during wrist flexions performed to either heard or imagined music with self-pacing of the same movement without any cueing. Focusing specifically on the motor network of the brain, analyses were performed within a mask of BA4, BA6, the basal ganglia (putamen, caudate, and pallidum), the motor nuclei of the thalamus, and the whole cerebellum. Results revealed that moving to music compared with self-paced movement resulted in significantly increased activation in left cerebellum VI. Moving to imagined music led to significantly more activation in pre-supplementary motor area (pre-SMA) and right globus pallidus, relative to self-paced movement. When the music and imagery cueing conditions were contrasted directly, movements in the music condition showed significantly more activity in left hemisphere cerebellum VII and right hemisphere and vermis of cerebellum IX, while the imagery condition revealed more significant activity in pre-SMA. These results suggest that cueing movement with actual or imagined music impacts upon engagement of motor network regions during the movement, and suggest that heard and imagined cues can modulate movement in subtly different ways. These results may have implications for the applicability of auditory cueing in movement rehabilitation for different patient populations.

  2. An Exploratory Investigation on the Use of Closed-Loop Electrical Stimulation to Assist Individuals with Stroke to Perform Fine Movements with Their Hemiparetic Arm

    PubMed Central

    Lew, Brian; Alavi, Nezam; Randhawa, Bubblepreet K.; Menon, Carlo

    2016-01-01

    Stroke is the leading cause of upper limb impairments resulting in disability. Modern rehabilitation includes training with robotic exoskeletons and functional electrical stimulation (FES). However, there is a gap in knowledge to define the detailed use of FES in stroke rehabilitation. In this paper, we explore applying closed-loop FES to the upper extremities of healthy volunteers and individuals with a hemiparetic arm resulting from stroke. We used a set of gyroscopes to monitor arm movements and used a non-linear controller, namely, the robust integral of the sign of the error (RISE), to assess the viability of controlling FES in closed loop. Further, we explored the application of closed-loop FES in improving functional tasks performed by individuals with stroke. Four healthy individuals of ages 27–32 years old and five individuals with stroke of ages 61–83 years old participated in this study. We used the Rehastim FES unit (Hasomed Ltd.) with real-time modulation of pulse width and amplitude. Both healthy and stroke individuals were tested in RISE-controlled single and multi-joint upper limb motions following first a sinusoidal trajectory. Individuals with stroke were also asked to perform the following functional tasks: picking up a basket, picking and placing an object on a table, cutting a pizza, pulling back a chair, eating with a spoon, as well as using a stapler and grasping a pen. Healthy individuals were instructed to keep their arm relaxed during the experiment. Most individuals with stroke were able to follow the sinusoid trajectories with their arm joints under the sole excitation of the closed-loop-controlled FES. One individual with stroke, who was unable to perform any of the functional tasks independently, succeeded in completing all the tasks when FES was used. Three other individuals with stroke, who were unable to complete a few tasks independently, completed some of them when FES was used. The remaining stroke participant was able to

  3. Corticomotor excitability of wrist flexor and extensor muscles during active and passive movement.

    PubMed

    Chye, Lilian; Nosaka, Ken; Murray, Lynda; Edwards, Dylan; Thickbroom, Gary

    2010-08-01

    The excitability of the corticospinal projection to upper and lower limbs is constantly modulated during voluntary and passive movement; however a direct comparison during a comparable movement has not been reported. In the present study we used transcranial magnetic stimulation (TMS) to compare corticomotor excitability to the extensor and flexor carpi radialis (ECR/FCR) muscles of the forearm during voluntary rhythmic wrist movement (through 45 degrees of range), during a matched (for range and rhythm) passive movement of the wrist, and while the wrist was stationary (in mid-range). TMS was delivered when the wrist was in the neutral position. With passive and active movement, and for both FCR and ECR, corticomotor excitability was reduced during lengthening relative to shortening phases of movement. With active movement, this pattern was maintained and superimposed on an overall increase in excitability to both muscles that was greater for the ECR. The results favor a common pattern of excitability changes shared by extensor and flexor muscles as they undergo lengthening and shortening, which may be mediated by afferent input during both passive and active movement. This is combined with an overall increase in excitability associated with active movement that is greater for extensor muscles perhaps due to differences in the strength of the corticomotor projection to these muscles.

  4. Fusimotor influence on jaw muscle spindle activity during swallowing-related movements in the cat.

    PubMed

    Taylor, A; Hidaka, O; Durbaba, R; Ellaway, P H

    1997-08-15

    1. The activity patterns of muscle spindle afferents in jaw-closer muscles were studied during reflex swallowing movements in anaesthetized cats. Simultaneous records were made of the electromyogram (EMG) in masseter and anterior digastric muscles and of the unloaded jaw movements. The underlying patterns of fusimotor activity were deduced by comparing afferent discharges occurring during active swallowing with those occurring when exactly the same movements were imposed passively. The interpretation of spindle behaviour was greatly facilitated by characterizing the afferents according to the evidence for their contact with the various intrafusal muscle fibres, derived from testing with succinylcholine. It was also valuable to have two different types of afferent recorded simultaneously. 2. There was clear evidence of fusimotor activity occurring during active jaw closing so as to oppose the spindle silencing. This effect was most marked in b2c-type afferents (probably secondaries) and was therefore attributed to a modulation of static fusimotor discharge approximately in parallel with alpha-activity. 3. Afferents with evidence of bag1 fibre contacts (primaries) showed much greater sensitivity to muscle lengthening during active movement than when the movement was imposed. This difference was exaggerated when anaesthesia was deepened for the passive movements. This was interpreted as evidence for a higher level of dynamic fusimotor activity maintained during active movements than at rest. 4. The results support the view that for a variety of active jaw movements, static fusimotor neurone firing is modulated roughly in parallel with alpha-activity but leading it so as to counteract spindle unloading. Dynamic fusimotor neurone firing appears to be set at a raised level during active movements. Anaesthesia appears to depress activity in the alpha-motoneurones more than in gamma-motoneurones.

  5. Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb.

    PubMed

    Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong

    2016-02-01

    A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement. PMID:26441422

  6. Active route learning in virtual environments: disentangling movement control from intention, instruction specificity, and navigation control.

    PubMed

    von Stülpnagel, Rul; Steffens, Melanie C

    2013-09-01

    Active navigation research examines how physiological and psychological involvement in navigation benefits spatial learning. However, existing conceptualizations of active navigation comprise separable, distinct factors. This research disentangles the contributions of movement control (i.e., self-contained vs. observed movement) as a central factor from learning intention (Experiment 1), instruction specificity and instruction control (Experiment 2), as well as navigation control (Experiment 3) to spatial learning in virtual environments. We tested the effects of these factors on landmark recognition (landmark knowledge), tour-integration and route navigation (route knowledge). Our findings suggest that movement control leads to robust advantages in landmark knowledge as compared to observed movement. Advantages in route knowledge do not depend on learning intention, but on the need to elaborate spatial information. Whenever the necessary level of elaboration is assured for observed movement, too, the development of route knowledge is not inferior to that for self-contained movement.

  7. Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS

    PubMed Central

    Scholz-Starke, Joachim; Cesca, Fabrizia

    2016-01-01

    The correct functioning of the nervous system depends on the exquisitely fine control of neuronal excitability and synaptic plasticity, which relies on an intricate network of protein-protein interactions and signaling that shapes neuronal homeostasis during development and in adulthood. In this complex scenario, Kinase D interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning (Kidins220/ARMS) acts as a multi-functional scaffold protein with preferential expression in the nervous system. Engaged in a plethora of interactions with membrane receptors, cytosolic signaling components and cytoskeletal proteins, Kidins220/ARMS is implicated in numerous cellular functions including neuronal survival, neurite outgrowth and maturation and neuronal activity, often in the context of neurotrophin (NT) signaling pathways. Recent studies have highlighted a number of cell- and context-specific roles for this protein in the control of synaptic transmission and neuronal excitability, which are at present far from being completely understood. In addition, some evidence has began to emerge, linking alterations of Kidins220 expression to the onset of various neurodegenerative diseases and neuropsychiatric disorders. In this review, we present a concise summary of our fragmentary knowledge of Kidins220/ARMS biological functions, focusing on the mechanism(s) by which it controls various aspects of neuronal activity. We have tried, where possible, to discuss the available evidence in the wider context of NT-mediated regulation, and to outline emerging roles of Kidins220/ARMS in human pathologies. PMID:27013979

  8. Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS.

    PubMed

    Scholz-Starke, Joachim; Cesca, Fabrizia

    2016-01-01

    The correct functioning of the nervous system depends on the exquisitely fine control of neuronal excitability and synaptic plasticity, which relies on an intricate network of protein-protein interactions and signaling that shapes neuronal homeostasis during development and in adulthood. In this complex scenario, Kinase D interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning (Kidins220/ARMS) acts as a multi-functional scaffold protein with preferential expression in the nervous system. Engaged in a plethora of interactions with membrane receptors, cytosolic signaling components and cytoskeletal proteins, Kidins220/ARMS is implicated in numerous cellular functions including neuronal survival, neurite outgrowth and maturation and neuronal activity, often in the context of neurotrophin (NT) signaling pathways. Recent studies have highlighted a number of cell- and context-specific roles for this protein in the control of synaptic transmission and neuronal excitability, which are at present far from being completely understood. In addition, some evidence has began to emerge, linking alterations of Kidins220 expression to the onset of various neurodegenerative diseases and neuropsychiatric disorders. In this review, we present a concise summary of our fragmentary knowledge of Kidins220/ARMS biological functions, focusing on the mechanism(s) by which it controls various aspects of neuronal activity. We have tried, where possible, to discuss the available evidence in the wider context of NT-mediated regulation, and to outline emerging roles of Kidins220/ARMS in human pathologies. PMID:27013979

  9. The Effect of Integrated Movement Activities on Children's FMS

    ERIC Educational Resources Information Center

    Yang, Shu-Chu; Lin, Shu-Jung; Hsu, Li-Chuan

    2016-01-01

    The purpose of the present study was to determine the effects of an integrated movement course on the FMSs of preschool children. Purposive sampling was used to select two classes at a public preschool in Chiayi City, Taiwan. The experimental group consisted of 9 boys and 12 girls, and the control group consisted of 11 boys and 8 girls. Both were…

  10. Evolution of the environmental justice movement: activism, formalization and differentiation

    NASA Astrophysics Data System (ADS)

    Colsa Perez, Alejandro; Grafton, Bernadette; Mohai, Paul; Hardin, Rebecca; Hintzen, Katy; Orvis, Sara

    2015-10-01

    To complement a recent flush of research on transnational environmental justice movements, we sought a deeper organizational history of what we understand as the contemporary environmental justice movement in the United States. We thus conducted in-depth interviews with 31 prominent environmental justice activists, scholars, and community leaders across the US. Today’s environmental justice groups have transitioned from specific local efforts to broader national and global mandates, and more sophisticated political, technological, and activist strategies. One of the most significant transformations has been the number of groups adopting formal legal status, and emerging as registered environmental justice organizations (REJOs) within complex partnerships. This article focuses on the emergence of REJOs, and describes the respondents’ views about the implications of this for more local grassroots groups. It reveals a central irony animating work across groups in today’s movement: legal formalization of many environmental justice organizations has made the movement increasingly internally differentiated, dynamic, and networked, even as the passage of actual national laws on environmental justice has proven elusive.

  11. Physical Activity and Movement Proficiency: The Need for a Biocultural Approach.

    PubMed

    Malina, Robert M; Cumming, Sean P; Coelho E Silva, Manuel J

    2016-05-01

    "Gaps in Our Knowledge" are discussed in the context of the need to integrate biological and behavioral factors in a biocultural approach to physical activity and movement proficiency. Specific issues considered include outdoor play, organized and informal activity, biological maturation, tracking of activity, development of movement proficiency, and individual differences. Studies considered are largely based on youth in economically better-off, developed countries in the western culture context. There is a need to extend studies of physical activity and movement proficiency to different cultural contexts. PMID:27137170

  12. Measurement of active drag during crawl arm stroke swimming.

    PubMed

    Hollander, A P; De Groot, G; van Ingen Schenau, G J; Toussaint, H M; De Best, H; Peeters, W; Meulemans, A; Schreurs, A W

    1986-01-01

    In order to measure active drag during front crawl swimming a system has been designed, built and tested. A tube (23 m long) with grips is fixed under the water surface and the swimmer crawls on this. At one end of the tube, a force transducer is attached to the wall of the swimming pool. It measures the momentary effective propulsive forces of the hands. During the measurements the subjects' legs are fixed together and supported by a buoy. After filtering and digitizing the electrical force signal, the mean propulsive force over one lane at constant speeds (ranging from about 1 to 2 m s-1) was calculated. The regression equation of the force on the speed turned out to be almost quadratic. At a mean speed of 1.55 m s-1 the mean force was 66.3 N. The accuracy of this force measured on one subject at different days was 4.1 N. The observed force, which is equal to the mean drag force, fits remarkably well with passive drag force values as well as with values calculated for propulsive forces during actual swimming reported in the literature. The use of the system does not interfere to any large extent with normal front crawl swimming; this conclusion is based on results of observations of film by skilled swim coaches. It was concluded that the system provides a good method of studying active drag and its relation to anthropometric variables and swimming technique.

  13. Temporal alignment of electrocorticographic recordings for upper limb movement

    PubMed Central

    Talakoub, Omid; Popovic, Milos R.; Navaro, Jessie; Hamani, Clement; Fonoff, Erich T.; Wong, Willy

    2015-01-01

    The detection of movement-related components of the brain activity is useful in the design of brain-machine interfaces. A common approach is to classify the brain activity into a number of templates or states. To find these templates, the neural responses are averaged over each movement task. For averaging to be effective, one must assume that the neural components occur at identical times over repeated trials. However, complex arm movements such as reaching and grasping are prone to cross-trial variability due to the way movements are performed. Typically initiation time, duration of movement and movement speed are variable even as a subject tries to reproduce the same task identically across trials. Therefore, movement-related neural activity will tend to occur at different times across the trials. Due to this mismatch, the averaging of neural activity will not bring into salience movement-related components. To address this problem, we present a method of alignment that accounts for the variabilities in the way the movements are conducted. In this study, arm speed was used to align neural activity. Four subjects had electrocorticographic (ECoG) electrodes implanted over their primary motor cortex and were asked to perform reaching and retrieving tasks using the upper limb contralateral to the site of electrode implantation. The arm speeds were aligned using a non-linear transformation of the temporal axes resulting in average spectrograms with superior visualization of movement-related neural activity when compared to averaging without alignment. PMID:25628522

  14. Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles.

    PubMed

    Bosco, C; Cardinale, M; Tsarpela, O

    1999-03-01

    The aim of this study was to evaluate the influence of vibration on the mechanical properties of arm flexors. A group of 12 international level boxers, all members of the Italian national team, voluntarily participated in the experiment: all were engaged in regular boxing training. At the beginning of the study they were tested whilst performing forearm flexion with an extra load equal to 5% of the subjects' body mass. Following this. one arm was given the experimental treatment (E; mechanical vibration) and the other was the control (no treatment). The E treatment consisted of five repetitions lasting 1-min each of mechanical vibration applied during arm flexion in isometric conditions with 1 min rest between them. Further tests were performed 5 min immediately after the treatment on both limbs. The results showed statistically significant enhancement of the average power in the arm treated with vibrations. The root mean square electromyogram (EMGrms) had not changed following the treatment but, when divided by mechanical power, (P) as an index of neural efficiency, it showed statistically significant increases. It was concluded that mechanical vibrations enhanced muscle P and decreased the related EMG/P relationship in elite athletes. Moreover, the analysis of EMGrms recorded before the treatment and during the treatment itself showed an enormous increase in neural activity during vibration up to more than twice the baseline values. This would indicate that this type of treatment is able to stimulate the neuromuscular system more than other treatments used to improve neuromuscular properties.

  15. A Magnetoencephalographic Study of Sensorimotor Activity Differences during Unilateral and Bilateral Forearm Movements

    ERIC Educational Resources Information Center

    Nakagawa, Kei

    2010-01-01

    This study compared activation of the sensorimotor area using magnetoencephalography after unilateral and bilateral movements. Thirteen healthy individuals and a patient with mild hemiplegia performed unilateral and bilateral forearm pronation movements. Among healthy participants, there were no significant differences in motor-evoked field during…

  16. Pavlov's conceptualization of voluntary movements within the framework of the theory of higher nervous activity.

    PubMed

    Windholz, G

    1998-01-01

    Pavlov became interested in the nature of voluntary movements after receiving Konorski and Miller's letter in 1928 describing their experiments on conditioning of motor movements in dogs. Their paradigmatic experiment involved presenting an indifferent stimulus, followed by passive raising of the dog's leg and then reinforcement. If the same stimulus was provided during a number of trials, the animal lifted its corresponding leg. In 1928 Pavlov asked his students to condition motor movements in his laboratory. Although their findings were equivocal, Pavlov incorporated the so-called voluntary movements into his theory of higher nervous activity. Voluntary movements were responses to external environmental contingencies. On the cortical level, the motor analyzer's cells had both afferent and efferent functions. In Pavlov's view, the motor analyzer's cells established connections with the afferent cells of other sensory analyzers. Pavlov held that motor movements, as responses to external and internal environments, give humans the illusion of voluntary behavior.

  17. Pavlov's conceptualization of voluntary movements within the framework of the theory of higher nervous activity.

    PubMed

    Windholz, G

    1998-01-01

    Pavlov became interested in the nature of voluntary movements after receiving Konorski and Miller's letter in 1928 describing their experiments on conditioning of motor movements in dogs. Their paradigmatic experiment involved presenting an indifferent stimulus, followed by passive raising of the dog's leg and then reinforcement. If the same stimulus was provided during a number of trials, the animal lifted its corresponding leg. In 1928 Pavlov asked his students to condition motor movements in his laboratory. Although their findings were equivocal, Pavlov incorporated the so-called voluntary movements into his theory of higher nervous activity. Voluntary movements were responses to external environmental contingencies. On the cortical level, the motor analyzer's cells had both afferent and efferent functions. In Pavlov's view, the motor analyzer's cells established connections with the afferent cells of other sensory analyzers. Pavlov held that motor movements, as responses to external and internal environments, give humans the illusion of voluntary behavior. PMID:9805363

  18. Fundamental movement skills and motivational factors influencing engagement in physical activity.

    PubMed

    Kalaja, Sami; Jaakkola, Timo; Liukkonen, Jarmo; Watt, Anthony

    2010-08-01

    To assess whether subgroups based on children's fundamental movement skills, perceived competence, and self-determined motivation toward physical education vary with current self-reported physical activity, a sample of 316 Finnish Grade 7 students completed fundamental movement skills measures and self-report questionnaires assessing perceived competence, self-determined motivation toward physical education, and current physical activity. Cluster analysis indicated a three-cluster structure: "Low motivation/low skills profile," "High skills/low motivation profile," and "High skills/high motivation profile." Analysis of variance indicated that students in the third cluster engaged in significantly more physical activity than students of clusters one and two. These results provide support for previous claims regarding the importance of the relationship of fundamental movement skills with continuing engagement in physical activity. High fundamental movement skills, however, may represent only one element in maintaining adolescents' engagement in physical activity. PMID:21058593

  19. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  20. Muscle activity patterns during quick increase of movement amplitude in rapid elbow extensions.

    PubMed

    Takatoku, Nozomi; Fujiwara, Motoko

    2010-04-01

    In this study, we investigated a motor strategy for increasing the amplitude of movement in rapid extensions at the elbow joint. This study focused on the changes in a triphasic electromyographic (EMG) pattern, i.e., the first agonist burst (AG1), the second agonist burst (AG2) and the antagonist burst (ANT), for increasing the amplitude of movement required after the initiation of movement. Subjects performed 40 degrees (Basic task) and 80 degrees of extension (Wide task). These tasks were performed under two conditions; performing a predetermined task (SF condition) and performing a task in response to a visual stimulus immediately after movement commencement (ST condition). Kinematic parameters and EMG activity from the agonist (triceps brachii) and the antagonist (biceps brachii) muscles were recorded. As a result, the onset latency of AG1 and AG2 and the duration of AG1 were longer under the ST condition than the SF condition. No difference was observed between the SF and ST condition with respect to ANT activity. It is concluded that the motor strategy for increasing the amplitude of movement after the initiation of movement was to control the movement velocity and the timing to stop movement by the coactivation duration of AG1 and ANT and to stop the desired position accurately by AG2 activity.

  1. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information.

    PubMed

    Strauss, Soeren; Woodgate, Philip J W; Sami, Saber A; Heinke, Dietmar

    2015-12-01

    We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain's attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO's predictions and also lessons for neurobiologically inspired robotics emerging from this work.

  2. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information.

    PubMed

    Strauss, Soeren; Woodgate, Philip J W; Sami, Saber A; Heinke, Dietmar

    2015-12-01

    We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain's attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO's predictions and also lessons for neurobiologically inspired robotics emerging from this work. PMID:26667353

  3. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information

    PubMed Central

    Strauss, Soeren; Woodgate, Philip J.W.; Sami, Saber A.; Heinke, Dietmar

    2015-01-01

    We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain’s attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO’s predictions and also lessons for neurobiologically inspired robotics emerging from this work. PMID:26667353

  4. Adaptability and Prediction of Anticipatory Muscular Activity Parameters to Different Movements in the Sitting Position.

    PubMed

    Chikh, Soufien; Watelain, Eric; Faupin, Arnaud; Pinti, Antonio; Jarraya, Mohamed; Garnier, Cyril

    2016-08-01

    Voluntary movement often causes postural perturbation that requires an anticipatory postural adjustment to minimize perturbation and increase the efficiency and coordination during execution. This systematic review focuses specifically on the relationship between the parameters of anticipatory muscular activities and movement finality in sitting position among adults, to study the adaptability and predictability of anticipatory muscular activities parameters to different movements and conditions in sitting position in adults. A systematic literature search was performed using PubMed, Science Direct, Web of Science, Springer-Link, Engineering Village, and EbscoHost. Inclusion and exclusion criteria were applied to retain the most rigorous and specific studies, yielding 76 articles, Seventeen articles were excluded at first reading, and after the application of inclusion and exclusion criteria, 23 were retained. In a sitting position, central nervous system activity precedes movement by diverse anticipatory muscular activities and shows the ability to adapt anticipatory muscular activity parameters to the movement direction, postural stability, or charge weight. In addition, these parameters could be adapted to the speed of execution, as found for the standing position. Parameters of anticipatory muscular activities (duration, order, and amplitude of muscle contractions constituting the anticipatory muscular activity) could be used as a predictive indicator of forthcoming movement. In addition, this systematic review may improve methodology in empirical studies and assistive technology for people with disabilities. PMID:27440765

  5. Cortical Activity during a Highly-Trained Resistance Exercise Movement Emphasizing Force, Power or Volume.

    PubMed

    Flanagan, Shawn D; Dunn-Lewis, Courtenay; Comstock, Brett A; Maresh, Carl M; Volek, Jeff S; Denegar, Craig R; Kraemer, William J

    2012-11-20

    Cortical activity is thought to reflect the biomechanical properties of movement (e.g., force or velocity of movement), but fatigue and movement familiarity are important factors that require additional consideration in electrophysiological research. The purpose of this within-group quantitative electroencephalogram (EEG) investigation was to examine changes in cortical activity amplitude and location during four resistance exercise movement protocols emphasizing rate (PWR), magnitude (FOR), or volume (VOL) of force production, while accounting for movement familiarity and fatigue. EEG signals were recorded during each complete repetition and were then grouped by functional region, processed to eliminate artifacts, and averaged to compare overall differences in the magnitude and location of cortical activity between protocols over the course of six sets. Biomechanical, biochemical, and exertional data were collected to contextualize electrophysiological data. The most fatiguing protocols were accompanied by the greatest increases in cortical activity. Furthermore, despite non-incremental loading and lower force levels, VOL displayed the largest increases in cortical activity over time and greatest motor and sensory activity overall. Our findings suggest that cortical activity is strongly related to aspects of fatigue during a high intensity resistance exercise movement.

  6. Cortical Activity during a Highly-Trained Resistance Exercise Movement Emphasizing Force, Power or Volume

    PubMed Central

    Flanagan, Shawn D.; Dunn-Lewis, Courtenay; Comstock, Brett A.; Maresh, Carl M.; Volek, Jeff S.; Denegar, Craig R.; Kraemer, William J.

    2012-01-01

    Cortical activity is thought to reflect the biomechanical properties of movement (e.g., force or velocity of movement), but fatigue and movement familiarity are important factors that require additional consideration in electrophysiological research. The purpose of this within-group quantitative electroencephalogram (EEG) investigation was to examine changes in cortical activity amplitude and location during four resistance exercise movement protocols emphasizing rate (PWR), magnitude (FOR), or volume (VOL) of force production, while accounting for movement familiarity and fatigue. EEG signals were recorded during each complete repetition and were then grouped by functional region, processed to eliminate artifacts, and averaged to compare overall differences in the magnitude and location of cortical activity between protocols over the course of six sets. Biomechanical, biochemical, and exertional data were collected to contextualize electrophysiological data. The most fatiguing protocols were accompanied by the greatest increases in cortical activity. Furthermore, despite non-incremental loading and lower force levels, VOL displayed the largest increases in cortical activity over time and greatest motor and sensory activity overall. Our findings suggest that cortical activity is strongly related to aspects of fatigue during a high intensity resistance exercise movement. PMID:24961265

  7. Adaptability and Prediction of Anticipatory Muscular Activity Parameters to Different Movements in the Sitting Position.

    PubMed

    Chikh, Soufien; Watelain, Eric; Faupin, Arnaud; Pinti, Antonio; Jarraya, Mohamed; Garnier, Cyril

    2016-08-01

    Voluntary movement often causes postural perturbation that requires an anticipatory postural adjustment to minimize perturbation and increase the efficiency and coordination during execution. This systematic review focuses specifically on the relationship between the parameters of anticipatory muscular activities and movement finality in sitting position among adults, to study the adaptability and predictability of anticipatory muscular activities parameters to different movements and conditions in sitting position in adults. A systematic literature search was performed using PubMed, Science Direct, Web of Science, Springer-Link, Engineering Village, and EbscoHost. Inclusion and exclusion criteria were applied to retain the most rigorous and specific studies, yielding 76 articles, Seventeen articles were excluded at first reading, and after the application of inclusion and exclusion criteria, 23 were retained. In a sitting position, central nervous system activity precedes movement by diverse anticipatory muscular activities and shows the ability to adapt anticipatory muscular activity parameters to the movement direction, postural stability, or charge weight. In addition, these parameters could be adapted to the speed of execution, as found for the standing position. Parameters of anticipatory muscular activities (duration, order, and amplitude of muscle contractions constituting the anticipatory muscular activity) could be used as a predictive indicator of forthcoming movement. In addition, this systematic review may improve methodology in empirical studies and assistive technology for people with disabilities.

  8. Analysis of neck muscle activity and comparison of head movement and body movement during rotational motion.

    PubMed

    Sirikantharajah, Shahini; Valter McConville, Kristiina M; Zolfaghari, Nika

    2015-08-01

    The neck is a very delicate part of the body that is highly prone to whiplash injuries, during jerk. A lot of the research relating to whiplash injuries performed to date has been tested in environments with linear motions and have mostly applied their work to car collisions. Whiplash injuries can also affect disabled individuals during falls, bed transfers, and while travelling in wheelchairs. The primary objective of this paper was to focus on neck and body behaviour during rotational motion, rather than linear motion which has been often associated with car collisions. This paper takes the current motion signal processing technique a step further by computing the differential between head and body motion. Neck electromyogram (EMG) and angular velocity data of the head and body were acquired simultaneously from 20 subjects, as they were rotated 45 degrees in the forward pitch plane, with and without visual input, in a motion simulator. The centre of rotation (COR) on the simulator was located behind the subject Results showed that neck muscle behaviour was affected by the forward rotations, as well as visual input. Anterior neck muscles were most active during forward rotations and trials including VR. Maximum effective muscle power and activity of 10.54% and 55.72 (mV/mV)·s were reached respectively. Furthermore, during forward rotations the motion profiles started off with dominance in body motion, followed by dominance in head motion.

  9. Analysis of neck muscle activity and comparison of head movement and body movement during rotational motion.

    PubMed

    Sirikantharajah, Shahini; Valter McConville, Kristiina M; Zolfaghari, Nika

    2015-08-01

    The neck is a very delicate part of the body that is highly prone to whiplash injuries, during jerk. A lot of the research relating to whiplash injuries performed to date has been tested in environments with linear motions and have mostly applied their work to car collisions. Whiplash injuries can also affect disabled individuals during falls, bed transfers, and while travelling in wheelchairs. The primary objective of this paper was to focus on neck and body behaviour during rotational motion, rather than linear motion which has been often associated with car collisions. This paper takes the current motion signal processing technique a step further by computing the differential between head and body motion. Neck electromyogram (EMG) and angular velocity data of the head and body were acquired simultaneously from 20 subjects, as they were rotated 45 degrees in the forward pitch plane, with and without visual input, in a motion simulator. The centre of rotation (COR) on the simulator was located behind the subject Results showed that neck muscle behaviour was affected by the forward rotations, as well as visual input. Anterior neck muscles were most active during forward rotations and trials including VR. Maximum effective muscle power and activity of 10.54% and 55.72 (mV/mV)·s were reached respectively. Furthermore, during forward rotations the motion profiles started off with dominance in body motion, followed by dominance in head motion. PMID:26737049

  10. Tracking performance of unbalanced QPSK demodulators. II - Biphase Costas loop with active arm filters

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1978-01-01

    In a Costas loop study for biphase modulation conducted by Simon and Lindsey (1977), it was demonstrated that considerable improvement in tracking performance could be obtained by employing active arm filters of the integrate-and-dump type as opposed to passive arm filters. An investigation is conducted concerning the possibility to obtain a similar performance improvement for an unbalanced quadriphase-shift-keying (QPSK) modulation. It is found that the biphase Costas loop can be used as an efficient demodulator of QPSK in cases in which the ratio of data rates is of the same order of magnitude as the inverse of the power ratio. These cases involve approximately equal signal energies in the two channels.

  11. Modified Constraint-Induced Movement Therapy combined with Bimanual Training (mCIMT-BiT) in children with unilateral spastic cerebral palsy: how are improvements in arm-hand use established?

    PubMed

    Aarts, Pauline B; Jongerius, Peter H; Geerdink, Yvonne A; van Limbeek, Jacques; Geurts, Alexander C

    2011-01-01

    A recent randomized controlled trial indicated that modified Constraint-Induced Movement Therapy followed by Bimanual Training (mCIMT-BiT) is an effective intervention to improve spontaneous use of the affected upper limb in children with unilateral spastic cerebral palsy (CP). The present study aimed to investigate how the above-mentioned improvements as a result of 8 weeks mCIMT-BiT were established. 52 children with unilateral spastic CP with Manual Ability Classification System (MACS) scores I, II or III and aged 2.5-8 years were randomly allocated to either mCIMT-BiT (n = 28) or Usual Care (UC) (n = 24). Developmental disregard ('learned non-use') and upper limb capacity and performance scores were derived from the Video Observations Aarts and Aarts, module Determine Developmental Disregard. Active and passive range of motion at the affected wrist and elbow were assessed using goniometry during isolated movements. Upper limb capacity and performance demonstrated significantly greater improvements after mCIMT-BiT compared to UC, which lasted up to 8 weeks follow-up, whereas developmental disregard and passive and active range of motion did not show differential effects. The results support the notion that improvement of capacity and performance of the upper limb through mCIMT-BiT in children with unilateral spastic CP is based on a better utilization of existing motor functions of the affected arm and hand. However, enhancement of the overall amount of use (or the reduction of learned non-use) may still be suboptimal leaving room for improvement of this treatment.

  12. Prediction of switching time between movement preparation and execution by neural activity in monkey premotor cortex.

    PubMed

    Li, Hongbao; Liao, Yuxi; Wang, Yiwen; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-01-01

    Premotor cortex is a higher level cortex than primary motor cortex in movement controlling hierarchy, which contributes to the motor preparation and execution simultaneously during the planned movement. The mediation mechanism from movement preparation to execution has attracted many scientists' attention. Gateway hypothesis is one possible explanation that some neurons act as "gating" to release the movement intention at the "on-go" cue. We propose to utilize a local-learning based feature extraction method to target the neurons in premotor cortex, which functionally contribute mostly to the discrimination between motor preparation and execution without tuning information to either target or movement trajectory. Then the support vector machine is utilized to predict the single trial switching time. With top three functional "gating" neurons, the prediction accuracy rate of the switching time is above 90%, which indicates the potential of asynchronous BMI control using premotor cortical activity. PMID:26736827

  13. [A clinical study on the relationship between chewing movements and masticatory muscle activities].

    PubMed

    Higashi, K

    1989-06-01

    Chewing movement is one of the most important functional and physiological jaw movements, and it is coordinated by the three elements of the functional occlusion system (teeth, TMJs and masticatory muscles). However, the relationship between chewing movement and these elements has not been clarified. The purpose of this study was to investigate the relationship between chewing movement and the activity of the masticatory muscles which directly control jaw movements. 25 subjects with normal stomatognathic function, 5 patients with MPD syndrome (muscle dysfunction group) and 5 patients with unilateral TMJ internal derangement (TMJ dysfunction group) were selected. 6 gums with different hardness were used as the test bolus. Sirognathograph Electromyograph Analysing System was used to simultaneously record chewing movements and electromyograms of the right and left masseter, anterior temporal, posterior temporal and anterior belly of digastric muscles. Using the analysing software which was developed for this study, chewing movements and muscle activities were analysed. The results were as follow; A. In normal subjects 1. Gum hardness influenced durations of the closing and occluding phases, maximum opening and closing speed, opening degree and deviation of opening and closing path. 2. Gum hardness influenced muscle activities except of the time factors of digastric bursts. 3. Durations of the closing and occluding phases were found to be related with the elevator muscle activities. Maximum closing speed was related with the masseter and anterior temporal muscle activities. Deviation of closing path was related with the anterior and posterior temporal muscle activities. B. In abnormal subjects 1. The changes mainly observed in the muscle activities were found to be significantly different between the muscle dysfunction group and normal group. Similarly, the changes mainly observed in the chewing movements were different between the TMJ dysfunction group and normal

  14. Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.

    PubMed

    Hanes, D P; Patterson, W F; Schall, J D

    1998-02-01

    A new approach was developed to investigate the role of visual-, movement-, and fixation-related neural activity in gaze control. We recorded unit activity in the frontal eye fields (FEF), an area in frontal cortex that plays a central role in the production of purposeful eye movements, of monkeys (Macaca mulatta) performing visually and memory-guided saccades. The countermanding paradigm was employed to assess whether single cells generate signals sufficient to control movement production. The countermanding paradigm consists of a task that manipulates the monkeys' ability to withhold planned saccades combined with an analysis based on a race model that provides an estimate of the time needed to cancel the movement that is being prepared. We obtained clear evidence that FEF neurons with eye movement-related activity generate signals sufficient to control the production of gaze shifts. Movement-related activity, which was growing toward a trigger threshold as the saccades were prepared, decayed in response to the stop signal within the time required to cancel the saccade. Neurons with fixation-related activity were less common, but during the countermanding paradigm, these neurons exhibited an equally clear gaze-control signal. Fixation cells that had a pause in firing before a saccade exhibited elevated activity in response to the stop signal within the time that the saccade was cancelled. In contrast to cells with movement or fixation activity, neurons with only visually evoked activity exhibited no evidence of signals sufficient to control the production of gaze shifts. However, a fraction of tonic visual cells exhibited a reduction of activity once a saccade command had been cancelled even though the visual target was still present in the receptive field. These findings demonstrate the use of the countermanding paradigm in identifying neural signatures of motor control and provide new information about the fine balance between gaze shifting and gaze holding

  15. A Visual Analytics Approach to Structured Data Analysis to Enhance Nonproliferation and Arms Control Verification Activities

    SciTech Connect

    Gillen, David S.

    2014-08-07

    Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in this domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of

  16. Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures.

    PubMed

    Poletto, Christopher J; Verdun, Laura P; Strominger, Robert; Ludlow, Christy L

    2004-09-01

    To better understand the role of each of the laryngeal muscles in producing vocal fold movement, activation of these muscles was correlated with laryngeal movement during different tasks such as sniff, cough or throat clear, and speech syllable production. Four muscles [the posterior cricoarytenoid, lateral cricoarytenoid, cricothyroid (CT), and thyroarytenoid (TA)] were recorded with bipolar hooked wire electrodes placed bilaterally in four normal subjects. A nasoendoscope was used to record vocal fold movement while simultaneously recording muscle activity. Muscle activation level was correlated with ipsilateral vocal fold angle for vocal fold opening and closing. Pearson correlation coefficients and their statistical significance were computed for each trial. Significant effects of muscle (P < or = 0.0005) and task (P = 0.034) were found on the r (transformed to Fisher's Z') values. All of the posterior cricoarytenoid recordings related significantly with vocal opening, whereas CT activity was significantly correlated with opening only during sniff. The TA and lateral cricoarytenoid activities were significantly correlated with vocal fold closing during cough. During speech, the CT and TA activity correlated with both opening and closing. Laryngeal muscle patterning to produce vocal fold movement differed across tasks; reciprocal muscle activity only occurred on cough, whereas speech and sniff often involved simultaneous contraction of muscle antagonists. In conclusion, different combinations of muscle activation are used for biomechanical control of vocal fold opening and closing movements during respiratory, airway protection, and speech tasks.

  17. How do octopuses use their arms?

    PubMed

    Mather, J A

    1998-09-01

    A taxonomy of the movement patterns of the 8 flexible arms of octopuses is constructed. Components consist of movements of the arm itself, the ventral suckers and their stalks, as well as the relative position of arms and the skin web between them. Within 1 arm, combinations of components result in a variety of behaviors. At the level of all arms, 1 group of behaviors is described as postures, on the basis of the spread of all arms and the web to make a 2-dimensional surface whose position differs in the 3rd dimension. Another group of arm behaviors is actions, more or less coordinated and involving several to all arms. Arm control appears to be based on radial symmetry, relative equipotentiality of all arms, relative independence of each arm, and separability of components within the arm. The types and coordination of arm behaviors are discussed with relationship to biomechanical limits, muscle structures, and neuronal programming.

  18. Using "Constraints" to Design Developmentally Appropriate Movement Activities for Early Childhood Education

    ERIC Educational Resources Information Center

    Gagen, Linda M.; Getchell, Nancy

    2006-01-01

    Teachers of young children know the importance of designing developmentally appropriate activities to encourage motor development but are not always prepared with the information they need to accomplish this design. When teachers choose movement activities, motor development theory must be understood and utilized in the planning of activities to…

  19. Fundamental Movement Skills and Physical Activity among Children with and without Cerebral Palsy

    ERIC Educational Resources Information Center

    Capio, Catherine M.; Sit, Cindy H. P.; Abernethy, Bruce; Masters, Rich S. W.

    2012-01-01

    Fundamental movement skills (FMS) proficiency is believed to influence children's physical activity (PA), with those more proficient tending to be more active. Children with cerebral palsy (CP), who represent the largest diagnostic group treated in pediatric rehabilitation, have been found to be less active than typically developing children. This…

  20. Analysis of upper arm muscle activation using surface electromyography signals during drum playing

    PubMed Central

    Chong, Hyun Ju; Kwon, Chun-Ki; Kang, Hyun-Joo; Kim, Soo Ji

    2016-01-01

    This study measured surface electromyography of the biceps brachii and triceps brachii during repeated drum playing with and without a drumstick to better understand activation of the upper arm muscles and inform the use of instrument playing for motor rehabilitation. A total of 40 healthy college students participated in this study. All participants were asked to strike a drum with their hand and with a drumstick at three different levels of stroke: soft, medium, and strong. The stroke order was randomly assigned to participants. A sound level meter was used to record the intensity of the drum playing. Surface electromyography signals were recorded at every hit during drum playing both with and without the drumstick in each of the three stroke conditions. The results demonstrated that the highest muscle activation was observed in both biceps brachii and triceps brachii with strong drum playing with and without the drumstick. A two-way repeated measures analysis of variance showed that there was a significant main effect for stroke intensity in muscle activation and produced sound level. While higher activation of the triceps brachii was observed for drum playing without a drumstick, no significant differences were found between the biceps brachii and sound level. This study demonstrated via surface electromyography data that greater muscle activation of the biceps brachii and triceps brachii does not occur with the use of drumsticks in drum playing. With the drum sound controlled, drum playing by hand can be an effective therapeutic intervention for the upper arm muscles. PMID:27419114

  1. Analysis of upper arm muscle activation using surface electromyography signals during drum playing.

    PubMed

    Chong, Hyun Ju; Kwon, Chun-Ki; Kang, Hyun-Joo; Kim, Soo Ji

    2016-06-01

    This study measured surface electromyography of the biceps brachii and triceps brachii during repeated drum playing with and without a drumstick to better understand activation of the upper arm muscles and inform the use of instrument playing for motor rehabilitation. A total of 40 healthy college students participated in this study. All participants were asked to strike a drum with their hand and with a drumstick at three different levels of stroke: soft, medium, and strong. The stroke order was randomly assigned to participants. A sound level meter was used to record the intensity of the drum playing. Surface electromyography signals were recorded at every hit during drum playing both with and without the drumstick in each of the three stroke conditions. The results demonstrated that the highest muscle activation was observed in both biceps brachii and triceps brachii with strong drum playing with and without the drumstick. A two-way repeated measures analysis of variance showed that there was a significant main effect for stroke intensity in muscle activation and produced sound level. While higher activation of the triceps brachii was observed for drum playing without a drumstick, no significant differences were found between the biceps brachii and sound level. This study demonstrated via surface electromyography data that greater muscle activation of the biceps brachii and triceps brachii does not occur with the use of drumsticks in drum playing. With the drum sound controlled, drum playing by hand can be an effective therapeutic intervention for the upper arm muscles. PMID:27419114

  2. Analysis of upper arm muscle activation using surface electromyography signals during drum playing.

    PubMed

    Chong, Hyun Ju; Kwon, Chun-Ki; Kang, Hyun-Joo; Kim, Soo Ji

    2016-06-01

    This study measured surface electromyography of the biceps brachii and triceps brachii during repeated drum playing with and without a drumstick to better understand activation of the upper arm muscles and inform the use of instrument playing for motor rehabilitation. A total of 40 healthy college students participated in this study. All participants were asked to strike a drum with their hand and with a drumstick at three different levels of stroke: soft, medium, and strong. The stroke order was randomly assigned to participants. A sound level meter was used to record the intensity of the drum playing. Surface electromyography signals were recorded at every hit during drum playing both with and without the drumstick in each of the three stroke conditions. The results demonstrated that the highest muscle activation was observed in both biceps brachii and triceps brachii with strong drum playing with and without the drumstick. A two-way repeated measures analysis of variance showed that there was a significant main effect for stroke intensity in muscle activation and produced sound level. While higher activation of the triceps brachii was observed for drum playing without a drumstick, no significant differences were found between the biceps brachii and sound level. This study demonstrated via surface electromyography data that greater muscle activation of the biceps brachii and triceps brachii does not occur with the use of drumsticks in drum playing. With the drum sound controlled, drum playing by hand can be an effective therapeutic intervention for the upper arm muscles.

  3. Contribution of the cerebellar flocculus to gaze control during active head movements

    NASA Technical Reports Server (NTRS)

    Belton, T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    The flocculus and ventral paraflocculus are adjacent regions of the cerebellar cortex that are essential for controlling smooth pursuit eye movements and for altering the performance of the vestibulo-ocular reflex (VOR). The question addressed in this study is whether these regions of the cerebellum are more globally involved in controlling gaze, regardless of whether eye or active head movements are used to pursue moving visual targets. Single-unit recordings were obtained from Purkinje (Pk) cells in the floccular region of squirrel monkeys that were trained to fixate and pursue small visual targets. Cell firing rate was recorded during smooth pursuit eye movements, cancellation of the VOR, combined eye-head pursuit, and spontaneous gaze shifts in the absence of targets. Pk cells were found to be much less sensitive to gaze velocity during combined eye-head pursuit than during ocular pursuit. They were not sensitive to gaze or head velocity during gaze saccades. Temporary inactivation of the floccular region by muscimol injection compromised ocular pursuit but had little effect on the ability of monkeys to pursue visual targets with head movements or to cancel the VOR during active head movements. Thus the signals produced by Pk cells in the floccular region are necessary for controlling smooth pursuit eye movements but not for coordinating gaze during active head movements. The results imply that individual functional modules in the cerebellar cortex are less involved in the global organization and coordination of movements than with parametric control of movements produced by a specific part of the body.

  4. Neostriatal Neuronal Activity Correlates Better with Movement Kinematics under Certain Rewards.

    PubMed

    Opris, Ioan; Lebedev, Mikhail A; Nelson, Randall J

    2016-01-01

    This study investigated how the activity of neostriatal neurons is related to the kinematics of movement when monkeys performed visually and vibratory cued wrist extensions and flexions. Single-unit recordings of 142/236 neostriatal neurons showed pre-movement activity (PMA) in a reaction time task with unpredictable reward. Monkeys were pseudo-randomly (75%) rewarded for correct performance. A regression model was used to determine whether the correlation between neostriatal neuronal activity and the kinematic variables (position, velocity, and acceleration) of wrist movement changes as a function of reward contingency, sensory cues, and movement direction. The coefficients of determination (CoD) representing the proportion of the variance in neuronal activity explained by the regression model on a trial by trial basis, together with their temporal occurrences (time of best regression/correlation, ToC) were compared across sensory modality, movement direction, and reward contingency. The best relationship (correlation) between neuronal activity and movement kinematic variables, given by the average coefficient of determination (CoD), was: (a) greater during trials in which rewards were certain, called "A" trials, as compared with those in which reward was uncertain called ("R") trials, (b) greater during flexion (Flex) trials as compared with extension (Ext) trials, and (c) greater during visual (VIS) cued trials than during vibratory (VIB) cued trials, for the same type of trial and the same movement direction. These results are consistent with the hypothesis that predictability of reward for correct performance is accompanied by faster linkage between neostriatal PMA and the vigor of wrist movement kinematics. Furthermore, the results provide valuable insights for building an upper-limb neuroprosthesis. PMID:27579022

  5. Neostriatal Neuronal Activity Correlates Better with Movement Kinematics under Certain Rewards

    PubMed Central

    Opris, Ioan; Lebedev, Mikhail A.; Nelson, Randall J.

    2016-01-01

    This study investigated how the activity of neostriatal neurons is related to the kinematics of movement when monkeys performed visually and vibratory cued wrist extensions and flexions. Single-unit recordings of 142/236 neostriatal neurons showed pre-movement activity (PMA) in a reaction time task with unpredictable reward. Monkeys were pseudo-randomly (75%) rewarded for correct performance. A regression model was used to determine whether the correlation between neostriatal neuronal activity and the kinematic variables (position, velocity, and acceleration) of wrist movement changes as a function of reward contingency, sensory cues, and movement direction. The coefficients of determination (CoD) representing the proportion of the variance in neuronal activity explained by the regression model on a trial by trial basis, together with their temporal occurrences (time of best regression/correlation, ToC) were compared across sensory modality, movement direction, and reward contingency. The best relationship (correlation) between neuronal activity and movement kinematic variables, given by the average coefficient of determination (CoD), was: (a) greater during trials in which rewards were certain, called “A” trials, as compared with those in which reward was uncertain called (“R”) trials, (b) greater during flexion (Flex) trials as compared with extension (Ext) trials, and (c) greater during visual (VIS) cued trials than during vibratory (VIB) cued trials, for the same type of trial and the same movement direction. These results are consistent with the hypothesis that predictability of reward for correct performance is accompanied by faster linkage between neostriatal PMA and the vigor of wrist movement kinematics. Furthermore, the results provide valuable insights for building an upper-limb neuroprosthesis. PMID:27579022

  6. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    PubMed

    Sieger, Tomáš; Bonnet, Cecilia; Serranová, Tereza; Wild, Jiří; Novák, Daniel; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen; Gaymard, Bertrand; Jech, Robert

    2013-01-01

    The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  7. Cortical activity prior to, and during, observation and execution of sequential finger movements.

    PubMed

    Calmels, Claire; Holmes, Paul; Jarry, Gilbert; Lévèque, Jean-Michel; Hars, Magaly; Stam, Cornelis J

    2006-01-01

    The aim of this study was to provide further evidence for the existence of a mirror neuron system in humans using electroencephalography during the observation and execution of non-object-related movements. Event-related desynchronization and synchronization (ERD/ERS) were used to characterize brain activity prior to, and during, observation and execution of a finger movement in four frequency bands (7-10 Hz, 10-13 Hz, 13-20 Hz, and 20-30 Hz). Electroencephalograms (EEGs) were recorded from 19 electrode sites in eight participants. In all the frequency bands and electrode sites, results revealed that there was no significant differences in EEG cortical activity between the observation condition and the execution conditions. Comparison of the two stages of the movement (i.e., pre-movement and movement) in the observation and execution conditions showed, in most cases, that pre-movement ERD values were less than movement ERD values. Whilst there was not an identical match of EEG cortical indices, this study provides further support for the existence of a mirror neuron system in humans. The incomplete congruence may be explained by the different behaviors, the nature of the task and factors in the observed action coded by the mirror system. PMID:17136468

  8. From sedentary to active: Shifting the movement paradigm in workplaces.

    PubMed

    Das, Bhibha M; Mailey, Emily; Murray, Kate; Phillips, Siobhan M; Torres, Cam; King, Abby C

    2016-06-01

    Increased sedentary behavior and reduced physical activity are risk factors for morbidity and mortality. As adults spend a significant portion of their time at work where the default is to spend the majority of the day sitting, shifting workplace norms to decrease sedentary time and increase active time could have a public health impact. Workplaces offer a unique setting for multi-level interventions that can reach diverse populations. Traditional worksite wellness initiatives have produced equivocal results in terms of increasing physical activity. One reason for this may be the focus on corporate-fitness type programs and health education with little change in workplace culture. More innovative approaches combining theory-based worksite wellness components with behavioral economics approaches promoting incidental physical activity at the workplace to make activity the default may be necessary. This article discusses strategies to shift the workplace paradigm from being sedentary to more active using a range of approaches. PMID:27286083

  9. Recurrence analysis of the mass movement activity at Stambach (Austria) based on radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Unkel, Ingmar; Ehret, Dominik; Rohn, Joachim

    2013-05-01

    The Stambach mass movement (Austria) is a large and deep-seated mass movement in the Austrian Alps. It consists of a complex and compound mass movement system. The latest major reactivation of the Stambach mass movement was initiated in 1982 by rock fall activity that triggered an earth flow, which transformed into a mud flow. Six sediment cores were taken along the entire earth flow body showing a complex mixture of rock fall blocks and earth flow material. Whenever the earth flow was active, numerous wooden remains were buried within the flow mass. Thirteen of these remains sampled from the sediment cores were radiocarbon dated. The results indicate that the first activation of the Stambach mass movement occurred at least around 9750-9900 cal BP, followed by at least three further events during the Holocene, around 6310-5650, 2320-1880, and 1600-1180 cal BP. Accumulation of toppled rock towers in the head area of the earth flow, followed by a sudden collapse and saturated, undrained loading of the earth flow body, is the main trigger for activating the earth flow. These long lasting preparatory processes make it difficult to determine certain recurrence intervals. However, our data show that the Stambach mass movement was (and most probably still can be) reactivated after more than 3000 years of dormancy.

  10. Self-Administered, Home-Based SMART (Sensorimotor Active Rehabilitation Training) Arm Training: A Single-Case Report.

    PubMed

    Hayward, Kathryn S; Neibling, Bridee A; Barker, Ruth N

    2015-01-01

    This single-case, mixed-method study explored the feasibility of self-administered, home-based SMART (sensorimotor active rehabilitation training) Arm training for a 57-yr-old man with severe upper-limb disability after a right frontoparietal hemorrhagic stroke 9 mo earlier. Over 4 wk of self-administered, home-based SMART Arm training, the participant completed 2,100 repetitions unassisted. His wife provided support for equipment set-up and training progressions. Clinically meaningful improvements in arm impairment (strength), activity (arm and hand tasks), and participation (use of arm in everyday tasks) occurred after training (at 4 wk) and at follow-up (at 16 wk). Areas for refinement of SMART Arm training derived from thematic analysis of the participant's and researchers' journals focused on enabling independence, ensuring home and user friendliness, maintaining the motivation to persevere, progressing toward everyday tasks, and integrating practice into daily routine. These findings suggest that further investigation of self-administered, home-based SMART Arm training is warranted for people with stroke who have severe upper-limb disability.

  11. Development of Junior High School Students' Fundamental Movement Skills and Physical Activity in a Naturalistic Physical Education Setting

    ERIC Educational Resources Information Center

    Kalaja, Sami Pekka; Jaakkola, Timo Tapio; Liukkonen, Jarmo Olavi; Digelidis, Nikolaos

    2012-01-01

    Background: There is evidence showing that fundamental movement skills and physical activity are related with each other. The ability to perform a variety of fundamental movement skills increases the likelihood of children participating in different physical activities throughout their lives. However, no fundamental movement skill interventions…

  12. Young School Children's Recess Physical Activity: Movement Patterns and Preferences

    ERIC Educational Resources Information Center

    Woods, Amelia M.; Graber, Kim C.; Daum, David N.; Gentry, Chris

    2015-01-01

    This study examined physical activity (PA) variables related to recess PA patterns of kindergarten, first and second grade children, and the social preferences and individuals influencing their PA. Data collected (N = 147) used the System of Observing Children's Activity and Relationships during Play (SOCARP) instrument. Children were interviewed.…

  13. Using Movement and Intentions to Understand Human Activity

    ERIC Educational Resources Information Center

    Zacks, Jeffrey M.; Kumar, Shawn; Abrams, Richard A.; Mehta, Ritesh

    2009-01-01

    During perception, people segment continuous activity into discrete events. They do so in part by monitoring changes in features of an ongoing activity. Characterizing these features is important for theories of event perception and may be helpful for designing information systems. The three experiments reported here asked whether the body…

  14. Movement and Learning: Integrating Physical Activity into the Classroom

    ERIC Educational Resources Information Center

    Reeves, Emily; Miller, Stacia; Chavez, Crystal

    2016-01-01

    We know the benefits of physical activity, and yet recess and physical education classes are being cut or scaled back to make room for meeting academic standards. Is cutting recess and physical education really benefiting academics? A look at some recent studies suggests that it is not. Integrating physical activity into the classroom may increase…

  15. Do robotic and non-robotic arm movement training drive motor recovery after stroke by a common neural mechanism? Experimental evidence and a computational model.

    PubMed

    Reinkensmeyer, David J; Maier, Marc A; Guigon, Emmanuel; Chan, Vicky; Akoner, O; Wolbrecht, Eric T; Cramer, Steven C; Bobrow, James E

    2009-01-01

    Different dose-matched, upper extremity rehabilitation training techniques, including robotic and non-robotic techniques, can result in similar improvement in movement ability after stroke, suggesting they may elicit a common drive for recovery. Here we report experimental results that support the hypothesis of a common drive, and develop a computational model of a putative neural mechanism for the common drive. We compared weekly motor control recovery during robotic and unassisted movement training techniques after chronic stroke (n = 27), as assessed with quantitative measures of strength, speed, and coordination. The results showed that recovery in both groups followed an exponential time course with a time constant of about 4-5 weeks. Despite the greater range and speed of movement practiced by the robot group, motor recovery was very similar between the groups. The premise of the computational model is that improvements in motor control are caused by improvements in the ability to activate spared portions of the damaged corticospinal system, as learned by a biologically plausible search algorithm. Robot-assisted and unassisted training would in theory equally drive this search process.

  16. Hindlimb movement modulates the activity of rostral fastigial nucleus neurons that process vestibular input

    PubMed Central

    McCall, Andrew A; Miller, Daniel J; Catanzaro, Michael F; Cotter, Lucy A; Yates, Bill J

    2015-01-01

    Integration of vestibular and proprioceptive afferent information within the central nervous system is a critical component of postural regulation. We recently demonstrated that labyrinthine and hindlimb signals converge onto vestibular nucleus neurons, such that hindlimb movement modulates the activity of these cells. However, it is unclear whether similar convergence of hindlimb and vestibular signals also occurs upstream from the vestibular nuclei, particularly in the rostral fastigial nucleus (rFN). We tested the hypothesis that rFN neurons have similar responses to hindlimb movement as vestibular nucleus neurons. Recordings were obtained from 53 rFN neurons that responded to hindlimb movement in decerebrate cats. In contrast to vestibular nucleus neurons, which commonly encoded the direction of hindlimb movement (81% of neurons), few rFN neurons (21%) that responded to leg movement encoded such information. Instead, most rFN neurons responded to both limb flexion and extension. Half of the rFN neurons whose activity was modulated by hindlimb movement received convergent vestibular inputs. These results show that rFN neurons receive somatosensory inputs from the hindlimb, and that a subset of rFN neurons integrates vestibular and hindlimb signals. Such rFN neurons likely perform computations that participate in maintenance of balance during upright stance and movement. Although vestibular nucleus neurons are interconnected with the rFN, the dissimilarity of responses of neurons sensitive to hindlimb movement in the two regions suggest that they play different roles in coordinating postural responses during locomotion and other movements which entail changes in limb position. PMID:25976518

  17. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements.

    PubMed

    Aggarwal, Vikram; Mollazadeh, Mohsen; Davidson, Adam G; Schieber, Marc H; Thakor, Nitish V

    2013-06-01

    The performance of brain-machine interfaces (BMIs) that continuously control upper limb neuroprostheses may benefit from distinguishing periods of posture and movement so as to prevent inappropriate movement of the prosthesis. Few studies, however, have investigated how decoding behavioral states and detecting the transitions between posture and movement could be used autonomously to trigger a kinematic decoder. We recorded simultaneous neuronal ensemble and local field potential (LFP) activity from microelectrode arrays in primary motor cortex (M1) and dorsal (PMd) and ventral (PMv) premotor areas of two male rhesus monkeys performing a center-out reach-and-grasp task, while upper limb kinematics were tracked with a motion capture system with markers on the dorsal aspect of the forearm, hand, and fingers. A state decoder was trained to distinguish four behavioral states (baseline, reaction, movement, hold), while a kinematic decoder was trained to continuously decode hand end point position and 18 joint angles of the wrist and fingers. LFP amplitude most accurately predicted transition into the reaction (62%) and movement (73%) states, while spikes most accurately decoded arm, hand, and finger kinematics during movement. Using an LFP-based state decoder to trigger a spike-based kinematic decoder [r = 0.72, root mean squared error (RMSE) = 0.15] significantly improved decoding of reach-to-grasp movements from baseline to final hold, compared with either a spike-based state decoder combined with a spike-based kinematic decoder (r = 0.70, RMSE = 0.17) or a spike-based kinematic decoder alone (r = 0.67, RMSE = 0.17). Combining LFP-based state decoding with spike-based kinematic decoding may be a valuable step toward the realization of BMI control of a multifingered neuroprosthesis performing dexterous manipulation.

  18. Evaluation of document location during computer use in terms of neck muscle activity and neck movement.

    PubMed

    Goostrey, Sonya; Treleaven, Julia; Johnston, Venerina

    2014-05-01

    This study evaluated the impact on neck movement and muscle activity of placing documents in three commonly used locations: in-line, flat desktop left of the keyboard and laterally placed level with the computer screen. Neck excursion during three standard head movements between the computer monitor and each document location and neck extensor and upper trapezius muscle activity during a 5 min typing task for each of the document locations was measured in 20 healthy participants. Results indicated that muscle activity and neck flexion were least when documents were placed laterally suggesting it may be the optimal location. The desktop option produced both the greatest neck movement and muscle activity in all muscle groups. The in-line document location required significantly more neck flexion but less lateral flexion and rotation than the laterally placed document. Evaluation of other holders is needed to guide decision making for this commonly used office equipment.

  19. The Association Between Eye Movements and Cerebellar Activation in a Verbal Working Memory Task.

    PubMed

    Peterburs, Jutta; Cheng, Dominic T; Desmond, John E

    2016-09-01

    It has been argued that cerebellar activations during cognitive tasks may masquerade as cognition, while actually reflecting processes related to movement planning or motor learning. The present study investigated whether the cerebellar load effect for verbal working memory, that is, increased activations in lobule VI/Crus I and lobule VIIB/VIIIA, is related to eye movements and oculomotor processing. Fifteen participants performed an fMRI-based Sternberg verbal working memory task. Oculomotor and cognitive task demands were manipulated by using closely and widely spaced stimuli, and high and low cognitive load. Trial-based quantitative eye movement parameters were obtained from concurrent eye tracking. Conventional MRI analysis replicated the cerebellar load effect in lobules VI and VIIB/VIIIa. With quantitative eye movement parameters as regressors, analysis yielded very similar activation patterns. While load effect and eye regressor generally recruited spatially distinct neocortical and cerebellar regions, conjunction analysis showed that a small subset of prefrontal areas implicated in the load effect also responded to the eye regressor. The present results indicate that cognitive load-dependent activations in lateral superior and posteroinferior cerebellar regions in the Sternberg task are independent of eye movements occurring during stimulus encoding. This is inconsistent with the notion that cognitive load-dependent cerebellar activations merely reflect oculomotor processing. PMID:26286918

  20. [Dynamics of Brain Activity during Voluntary Movement: fMRI Study].

    PubMed

    Sedov, A S; Devetiarov, D A; Semenova, U N; Zavyalova, V V; Ushakov, V L; Medvednik, R S; Ublinsky, M V; Akhadov, T A; Semenova, N A

    2015-01-01

    The use of event-related fMRI makes it possible to investigate spatio-temporal dynamics of cortical and subcortical human brain structures activity during voluntary movement performance in response to presentation of relevant verbal stimuli. The results of the study showed that voluntary movement was associated with higher contralateral brain activation in a number of areas: primary motor and somatosensory cortex, premotor cortex, supplementary motor area and insula with adjacent regions. Ipsilateral activation of the cerebellum also was observed. It should be emphasized that contralateral strio-pallidal complex and ventral thalamus showed significant response to motor tasks. Similarly, the dynamics of cortex and deep brain structures activation involving in the phasic and tonic components of voluntary movement was uncovered. We showed, in particular, the noticeable difference in brain activation between the right and left hand movement performance. The obtained results enable to enhance understanding of the role of deep brain structures in voluntary movement organization in human and motor control system as a whole. PMID:26601503

  1. Pulmonary C-fiber activation attenuates respiratory-related tongue movements.

    PubMed

    Lee, Kun-Ze; Fuller, David D; Hwang, Ji-Chuu

    2012-11-01

    The functional impact of pulmonary C-fiber activation on upper airway biomechanics has not been evaluated. Here, we tested the hypothesis that pulmonary C-fiber activation alters the respiratory-related control of tongue movements. The force produced by tongue movements was quantified in spontaneously breathing, anesthetized adult rats before and after stimulation of pulmonary C fibers via intrajugular delivery of capsaicin (0.625 and 1.25 μg/kg). Brief occlusion of the trachea was used to increase the respiratory drive to the tongue muscles, and hypoglossal (XII) nerve branches were selectively sectioned to denervate the protrusive and retrusive tongue musculature. Tracheal occlusion triggered inspiratory-related tongue retrusion in rats with XII nerves intact or following section of the medial XII nerve branch, which innervates the genioglossus muscle. Inspiratory-related tongue protrusion was only observed after section of the lateral XII branch, which innervates the primary tongue retrusor muscles. The tension produced by inspiratory-related tongue movement was significantly attenuated by capsaicin, but tongue movements remained retrusive, unless the medial XII branch was sectioned. Capsaicin also significantly delayed the onset of tongue movements such that tongue forces could not be detected until after onset of the inspiratory diaphragm activity. We conclude that altered neural drive to the tongue muscles following pulmonary C-fiber activation has a functionally significant effect on tongue movements. The diminished tongue force and delay in the onset of tongue movements following pulmonary C-fiber activation are potentially unfavorable for upper airway patency. PMID:22936725

  2. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  3. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  4. Children's Recess Physical Activity: Movement Patterns and Preferences

    ERIC Educational Resources Information Center

    Woods, Amelia Mays; Graber, Kim C.; Daum, David Newman

    2012-01-01

    The benefits of recess can be reaped by all students regardless of socioeconomic status, race, or gender and at relatively little cost. The purpose of this study was to examine physical activity (PA) variables related to the recess PA patterns of third and fourth grade children and the social preferences and individuals influencing their PA…

  5. Movement Activity Levels on Traditional and Contemporary Playground Structures.

    ERIC Educational Resources Information Center

    Gabbard, Carl P.; LeBlanc, Elizabeth

    This study investigated playground activity levels of children in grades K-4 and compared levels of use of traditional and creative playground apparatus. The traditional playground area consisted of climbing bars, slides, ladders, chin bars, swings, see saws, and a merry-go-round. The creative playground contained tire hurdles, tire walk, tire…

  6. Association of Orofacial Muscle Activity and Movement during Changes in Speech Rate and Intensity

    ERIC Educational Resources Information Center

    McClean, Michael D.; Tasko, Stephen M.

    2003-01-01

    Understanding how orofacial muscle activity and movement covary across changes in speech rate and intensity has implications for the neural control of speech production and the use of clinical procedures that manipulate speech prosody. The present study involved a correlation analysis relating average lower-lip and jaw-muscle activity to lip and…

  7. First Week Movement Activities for Elementary/Middle School Teachers: Getting to Know You

    ERIC Educational Resources Information Center

    Sawicki, Timothy

    2005-01-01

    This article describes First Week Movement Activities, an activity-based series of lessons designed to help teachers get to know the students, and the students to know each other. This breaks down barriers students may have with each other. Getting to know one another creates an atmosphere that is conducive to learning and sharing for the rest of…

  8. Self-Schemata for Movement Activities: The Influence of Race and Gender.

    ERIC Educational Resources Information Center

    Harrison, Louis, Jr.; And Others

    This study investigated the influence of race and gender on students' self-schema for movement activities. Study participants were 168 male and female seventh- and eighth-grade students, both African American and Euro American, from a semi-rural school in a Southeastern state. The Physical Activity Schema Analysis (PASA) was administered to…

  9. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control

    PubMed Central

    Hoogland, Tycho M.; De Gruijl, Jornt R.; Witter, Laurens; Canto, Cathrin B.; De Zeeuw, Chris I.

    2015-01-01

    Summary It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what extent motor coordination deficits can be correlated with abnormalities in coherent activity within these microzones and to what extent artificially evoked synchronous activity within PC ensembles can elicit multi-joint motor behavior. To study PC ensemble correlates of limb, trunk, and tail movements, we developed a transparent disk treadmill that allows quantitative readout of locomotion and posture parameters in head-fixed mice and simultaneous cellular-resolution imaging and/or optogenetic manipulation. We show that PC ensembles in the ataxic and dystonic mouse mutant tottering have a reduced level of complex spike co-activation, which is delayed relative to movement onset and co-occurs with prolonged swing duration and reduced phase coupling of limb movements as well as with enlarged deflections of body-axis and tail movements. Using optogenetics to increase simple spike rate in PC ensembles, we find that preferred locomotion and posture patterns can be elicited or perturbed depending on the behavioral state. At rest, preferred sequences of limb movements can be elicited, whereas during locomotion, preferred gait-inhibition patterns are evoked. Our findings indicate that synchronous activation of PC ensembles can facilitate initiation and coordination of limb and trunk movements, presumably by tuning downstream systems involved in the execution of behavioral patterns. PMID:25843032

  10. Sequence of Gating Charge Movement and Pore Gating in hERG Activation and Deactivation Pathways

    PubMed Central

    Goodchild, Samuel J.; Macdonald, Logan C.; Fedida, David

    2015-01-01

    KV11.1 voltage-gated K+ channels are noted for unusually slow activation, fast inactivation, and slow deactivation kinetics, which tune channel activity to provide vital repolarizing current during later stages of the cardiac action potential. The bulk of charge movement in human ether-a-go-go-related gene (hERG) is slow, as is return of charge upon repolarization, suggesting that the rates of hERG channel opening and, critically, that of deactivation might be determined by slow voltage sensor movement, and also by a mode-shift after activation. To test these ideas, we compared the kinetics and voltage dependence of ionic activation and deactivation with gating charge movement. At 0 mV, gating charge moved ∼threefold faster than ionic current, which suggests the presence of additional slow transitions downstream of charge movement in the physiological activation pathway. A significant voltage sensor mode-shift was apparent by 24 ms at +60 mV in gating currents, and return of charge closely tracked pore closure after pulses of 100 and 300 ms duration. A deletion of the N-terminus PAS domain, mutation R4AR5A or the LQT2-causing mutation R56Q gave faster-deactivating channels that displayed an attenuated mode-shift of charge. This indicates that charge movement is perturbed by N- and C-terminus interactions, and that these domain interactions stabilize the open state and limit the rate of charge return. We conclude that slow on-gating charge movement can only partly account for slow hERG ionic activation, and that the rate of pore closure has a limiting role in the slow return of gating charges. PMID:25809256

  11. Chronic neck pain alters muscle activation patterns to sudden movements.

    PubMed

    Boudreau, Shellie A; Falla, Deborah

    2014-06-01

    The aim of this study was to assess the activation of the sternocleidomastoid (SCM) and splenius capitis (SC) muscles in response to unanticipated, full body perturbations in individuals with chronic neck pain (NP) and age-matched healthy controls (HC). Individuals with NP had a history of NP for 8.9 ± 7.8 years, rated the intensity of NP as 4.2 ± 2.0 (score out of 10), and scored 15.3 ± 6.5 on the Neck Disability Index. Participants stood on a moveable platform during which 32 randomized postural perturbations (eight repetitions of four perturbation types: 8 cm forward slide (FS), 8 cm backward slides, 10° forward tilt, and 10° backward tilt) with varying inter-perturbation time intervals were performed over a period of 5 min. Bilateral surface electromyography (EMG) from the SCM and SC was recorded, and the onset time and the average rectified value of the EMG signal was determined for epochs of 100 ms; starting 100 ms prior to and 500 ms after the perturbation onset. Individuals with NP, as compared to HC, demonstrated delayed onset times and reduced EMG amplitude of the SCM and SC muscles in response to all postural perturbations. Such findings were most pronounced following the FS postural perturbation (healthy vs. NP for SCM 83.3 ± 8.0 vs. 86.3 ± 4.4 and SC 75.6 ± 3.5 vs. 89.3 ± 4.2), which was also associated with the greatest change (expressed in % relative to baseline) in EMG amplitude (healthy vs. NP for SCM 206.6 ± 50.4 vs. 115.9 ± 15.7 and SC 83.4 ± 19.2 vs. 69.2 ± 10.9) across all postural perturbations types. Individuals with NP display altered neural control of the neck musculature in response to rapid, unanticipated full body postural perturbations. Although the relative timing of neck musculature activity in individuals with NP appears to be intact, simultaneous co-activation of the neck musculature emerges for unanticipated anterior-posterior postural perturbations.

  12. Variable transposition of eight maize activator (ac) elements located on the short arm of chromosome 1.

    PubMed

    Sheridan, William F

    2011-09-01

    Eight Activator (Ac) transposable elements mapped to the maize chromosome arm 1S were assessed for Ac transposition rates. For each of the Ac stocks, plants homozygous for the single Ac element and the Ds reporter r1-sc:m3 on chromosome 10 were crossed as females by a homozygous r1-sc:m3 tester color-converted W22 line. The resulting ears produced mostly coarsely spotted kernels and a low frequency of either near-colorless fine-spotted kernels or nonspotted kernels. The relative frequency of these two types of near-colorless kernels differed among the eight Ac stocks. The extent to which increased Ac dosage results in nonspotted kernels may be Ac-specific. Although all of the Ac elements are in near-isogenic inbred W22 lines, they varied to a large extent in their transposition frequency. These differences might possibly result from structural differences among the Ac elements. Because one pair of Ac elements derived from Ac33 on chromosome arm 5S differed about 13-fold in transposition frequency and a second pair of Ac elements derived from Ac12 on chromosome arm 1S differed about 3-fold in transposition frequency, this is not a likely explanation for all eight Ac elements. The data presented here support the notion that the differences in transposition frequency of the eight Ac elements may be a reflection of variability in Ac transcription or accessibility of the transposase to the Ac element, resulting from differences in the chromatin environments wherein the Ac elements are located. This is the first report of variability in transposition rates among different Ac donor lines.

  13. Protest, Performance and Politics: The Use of "Nano-Media" in Social Movement Activism in South Africa

    ERIC Educational Resources Information Center

    Dawson, Marcelle C.

    2012-01-01

    Considering the lack of coverage in the mass media of certain kinds of social movement activity, many movements make use of smaller scale, independent media to publicise their struggles. From the vantage point of social movements in South Africa, this paper addresses what Mojca Pajnik and John Downing call "nano-media". Based on interviews with…

  14. Brain Activity during Lower-Limb Movement with Manual Facilitation: An fMRI Study

    PubMed Central

    de Almeida, Patrícia Maria Duarte; Vieira, Ana Isabel Correia Matos de Ferreira; Canário, Nádia Isabel Silva; Castelo-Branco, Miguel; de Castro Caldas, Alexandre Lemos

    2015-01-01

    Brain activity knowledge of healthy subjects is an important reference in the context of motor control and reeducation. While the normal brain behavior for upper-limb motor control has been widely explored, the same is not true for lower-limb control. Also the effects that different stimuli can evoke on movement and respective brain activity are important in the context of motor potentialization and reeducation. For a better understanding of these processes, a functional magnetic resonance imaging (fMRI) was used to collect data of 10 healthy subjects performing lower-limb multijoint functional movement under three stimuli: verbal stimulus, manual facilitation, and verbal + manual facilitation. Results showed that, with verbal stimulus, both lower limbs elicit bilateral cortical brain activation; with manual facilitation, only the left lower limb (LLL) elicits bilateral activation while the right lower limb (RLL) elicits contralateral activation; verbal + manual facilitation elicits bilateral activation for the LLL and contralateral activation for the RLL. Manual facilitation also elicits subcortical activation in white matter, the thalamus, pons, and cerebellum. Deactivations were also found for lower-limb movement. Manual facilitation is stimulus capable of generating brain activity in healthy subjects. Stimuli need to be specific for bilateral activation and regarding which brain areas we aim to activate. PMID:25722890

  15. Direction-dependent activation of the insular cortex during vertical and horizontal hand movements.

    PubMed

    Rousseau, C; Fautrelle, L; Papaxanthis, C; Fadiga, L; Pozzo, T; White, O

    2016-06-14

    The planning of any motor action requires a complex multisensory processing by the brain. Gravity - immutable on Earth - has been shown to be a key input to these mechanisms. Seminal fMRI studies performed during visual perception of falling objects and self-motion demonstrated that humans represent the action of gravity in parts of the cortical vestibular system; in particular, the insular cortex and the cerebellum. However, little is known as to whether a specific neural network is engaged when processing non-visual signals relevant to gravity. We asked participants to perform vertical and horizontal hand movements without visual control, while lying in a 3T-MRI scanner. We highlighted brain regions activated in the processing of vertical movements, for which the effects of gravity changed during execution. Precisely, the left insula was activated in vertical movements and not in horizontal movements. Moreover, the network identified by contrasting vertical and horizontal movements overlapped with neural correlates previously associated to the processing of simulated self-motion and visual perception of the vertical direction. Interestingly, we found that the insular cortex activity is direction-dependent which suggests that this brain region processes the effects of gravity on the moving limbs through non-visual signals. PMID:27001175

  16. Temporal modulations of agonist and antagonist muscle activities accompanying improved performance of ballistic movements.

    PubMed

    Liang, Nan; Yamashita, Takamasa; Ni, Zhen; Takahashi, Makoto; Murakami, Tsuneji; Yahagi, Susumu; Kasai, Tatsuya

    2008-02-01

    Although many studies have examined performance improvements of ballistic movement through practice, it is still unclear how performance advances while maintaining maximum velocity, and how the accompanying triphasic electromyographic (EMG) activity is modified. The present study focused on the changes in triphasic EMG activity, i.e., the first agonist burst (AG1), the second agonist burst (AG2), and the antagonist burst (ANT), that accompanied decreases in movement time and error. Twelve healthy volunteers performed 100 ballistic wrist flexion movements in ten 10-trial sessions under the instruction to "maintain maximum velocity throughout the experiment and to stop the limb at the target as fast and accurately as possible". Kinematic parameters (position and velocity) and triphasic EMG activities from the agonist (flexor carpi radialis) and antagonist (extensor carpi radialis) muscles were recorded. Comparison of the results obtained from the first and the last 10 trials, revealed that movement time, movement error, and variability of amplitudes reduced with practice, and that maximum velocity and time to maximum velocity remained constant. EMG activities showed that AG1 and AG2 durations were reduced, whereas ANT duration did not change. Additionally, ANT and AG2 latencies were reduced. Integrated EMG of AG1 was significantly reduced as well. Analysis of the alpha angle (an index of the rate of recruitment of the motoneurons) showed that there was no change in either AG1 or AG2. Correlation analysis of alpha angles between these two bursts further revealed that the close relationship of AG1 and AG2 was kept constant through practice. These findings led to the conclusion that performance improvement in ballistic movement is mainly due to the temporal modulations of agonist and antagonist muscle activities when maximum velocity is kept constant. Presumably, a specific strategy is consistently applied during practice.

  17. Active Tectonics: Part 2: Epeirogenic and intraplate movements

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Reilinger, R. E.

    The major deformations of the Earth's surface are largely consistent with the tenets of plate tectonics, which predict that such activity should be focused at the various boundaries along which massive lithospheric plates collide, pull apart, or slide past one another. Yet crustal deformations also occur well into the interior of these plates. Some may represent the distributed effects of distant plate boundaries, as, for example, the earthquakes of the intermontane western United States. Some, such as the geodetically observed uplift over a deep magma chamber in the Rio Grande rift of New Mexico, may correspond to incipient foundation of a new plate boundary. Others, like the subtle, broad uplifts and subsidences in the nominally stable cratonic interiors, are much more puzzling. Such motions often appear estranged, if not divorced, from accepted plate-tectonic processes. Postglacial rebound, a well-known phenomenon in portions of North America and Europe, also appears to be an inadequate explanation for many observations. Understanding contemporary motions of plate interiors is often hindered by the paucity and uncertain accuracy of relevant geophysical and geodetic observations. Yet intraplate tectonics constitutes more than a scientific enigma. Even seemingly slow vertical motions may threaten river courses or seafront properties on socially relevant time scales, and the subtle strain accumulating elsewhere may portend future earthquakes or volcanoes in the least predictable places.

  18. Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons

    NASA Technical Reports Server (NTRS)

    McCrea, R. A.; Gdowski, G. T.; Boyle, R.; Belton, T.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    The firing behavior of 51 non-eye movement related central vestibular neurons that were sensitive to passive head rotation in the plane of the horizontal semicircular canal was studied in three squirrel monkeys whose heads were free to move in the horizontal plane. Unit sensitivity to active head movements during spontaneous gaze saccades was compared with sensitivity to passive head rotation. Most units (29/35 tested) were activated at monosynaptic latencies following electrical stimulation of the ipsilateral vestibular nerve. Nine were vestibulo-spinal units that were antidromically activated following electrical stimulation of the ventromedial funiculi of the spinal cord at C1. All of the units were less sensitive to active head movements than to passive whole body rotation. In the majority of cells (37/51, 73%), including all nine identified vestibulo-spinal units, the vestibular signals related to active head movements were canceled. The remaining units (n = 14, 27%) were sensitive to active head movements, but their responses were attenuated by 20-75%. Most units were nearly as sensitive to passive head-on-trunk rotation as they were to whole body rotation; this suggests that vestibular signals related to active head movements were cancelled primarily by subtraction of a head movement efference copy signal. The sensitivity of most units to passive whole body rotation was unchanged during gaze saccades. A fundamental feature of sensory processing is the ability to distinguish between self-generated and externally induced sensory events. Our observations suggest that the distinction is made at an early stage of processing in the vestibular system.

  19. Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons.

    PubMed

    McCrea, R A; Gdowski, G T; Boyle, R; Belton, T

    1999-07-01

    The firing behavior of 51 non-eye movement related central vestibular neurons that were sensitive to passive head rotation in the plane of the horizontal semicircular canal was studied in three squirrel monkeys whose heads were free to move in the horizontal plane. Unit sensitivity to active head movements during spontaneous gaze saccades was compared with sensitivity to passive head rotation. Most units (29/35 tested) were activated at monosynaptic latencies following electrical stimulation of the ipsilateral vestibular nerve. Nine were vestibulo-spinal units that were antidromically activated following electrical stimulation of the ventromedial funiculi of the spinal cord at C1. All of the units were less sensitive to active head movements than to passive whole body rotation. In the majority of cells (37/51, 73%), including all nine identified vestibulo-spinal units, the vestibular signals related to active head movements were canceled. The remaining units (n = 14, 27%) were sensitive to active head movements, but their responses were attenuated by 20-75%. Most units were nearly as sensitive to passive head-on-trunk rotation as they were to whole body rotation; this suggests that vestibular signals related to active head movements were cancelled primarily by subtraction of a head movement efference copy signal. The sensitivity of most units to passive whole body rotation was unchanged during gaze saccades. A fundamental feature of sensory processing is the ability to distinguish between self-generated and externally induced sensory events. Our observations suggest that the distinction is made at an early stage of processing in the vestibular system. PMID:10400968

  20. Precise Control of Movement Kinematics by Optogenetic Inhibition of Purkinje Cell Activity

    PubMed Central

    Heiney, Shane A.; Kim, Jinsook; Augustine, George J.

    2014-01-01

    Purkinje cells (PCs) of the cerebellar cortex are necessary for controlling movement with precision, but a mechanistic explanation of how the activity of these inhibitory neurons regulates motor output is still lacking. We used an optogenetic approach in awake mice to show for the first time that transiently suppressing spontaneous activity in a population of PCs is sufficient to cause discrete movements that can be systematically modulated in size, speed, and timing depending on how much and how long PC firing is suppressed. We further demonstrate that this fine control of movement kinematics is mediated by a graded disinhibition of target neurons in the deep cerebellar nuclei. Our results prove a long-standing model of cerebellar function and provide the first demonstration that suppression of inhibitory signals can act as a powerful mechanism for the precise control of behavior. PMID:24501371

  1. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.

    PubMed

    Golkhou, Vahid; Parnianpour, Mohamad; Lucas, Caro

    2005-04-01

    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency.The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like-actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organ-like sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops.A reinforcement learning method with an actor-critic (AC) architecture instead of middle and low level of central nervous system (CNS), is used to track a desired trajectory. The actor in this structure is a two layer feedforward neural network and the critic is a model of the cerebellum. The critic is trained by state-action-reward-state-action (SARSA) method. The critic will train the actor by supervisory learning based on the prior experiences. Simulation studies of oscillatory movements based on the proposed algorithm demonstrate excellent tracking capability and after 280 epochs the RMS error for position and velocity profiles were 0.02, 0.04 rad and rad/s, respectively. PMID:16154874

  2. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.

    PubMed

    Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu

    2015-05-01

    We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination. PMID:25644527

  3. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.

    PubMed

    Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu

    2015-05-01

    We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination.

  4. [Medical support of the Armed Forces of Russia: results of the activities and major tasks for 2012].

    PubMed

    Kalmykov, A A

    2012-01-01

    The article presents whole range of activity of medical service of the Army and Navy. There were defined main directions and peculiarities of medical supply of the Armed Forces in conditions of forming of a new image. A special attention was paid to questions of combat and mobile readiness of medical armed units and institutes taking into account optimization of structure and quantity of medical service of the AF of RF. The main direction of activity of the medical service is organization of treatment-prophylaxis work for saving of life and health of the staff of Army and Navy. The article informs about stabilization of morbidity by the most popular diseases, about capabilities of medical service of armed unit in a new organization-staff structure, about ways of increasing of effectiveness of activeness of military treatment-prophylaxis institutes. PMID:22545446

  5. Vertebral orientations and muscle activation patterns during controlled head movements in cats.

    PubMed

    Keshner, E A

    1994-01-01

    The focus of these experiments was to determine the relationships between head movement, neck muscle activation patterns, and the positions and movements of the cervical vertebrae. One standing cat and one prone cat were trained to produce voluntary sinusoidal movements of the head in the sagittal plane. Video-opaque markers were placed on the cervical vertebrae, and intramuscular patch electrodes implanted in four muscles of the head and neck. Cinefluoroscopic images of cervical vertebral motion and electromyographic responses were simultaneously recorded. Analysis of the spinal movement revealed that the two cats used different strategies to keep their heads aligned with the tracker. In the standing cat, vertebral motion described a more circular arc, compared to a forward diagonal in the prone cat. Intervertebral motion was limited, but more acute angles appeared between the vertebrae of the prone lying than of the standing animal. Data revealed that the central nervous system could control several axes of motion to keep the cervical spine matched to the moving stimulus. Phase relations between the sinusoidal motion of the vertebral column, peak activation of the neck muscles, and that of the stimulus were examined, and several different control strategies were observed both between and within animals. The results suggest that the central nervous system engages in multiple strategies of musculo-skeletal coordination to achieve a single movement outcome. PMID:8056075

  6. Ipilimumab augments antitumor activity of bispecific antibody-armed T cells

    PubMed Central

    2014-01-01

    Background Ipilimumab is an antagonistic monoclonal antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) that enhances antitumor immunity by inhibiting immunosuppressive activity of regulatory T cells (Treg). In this study, we investigated whether inhibiting Treg activity with ipilimumab during ex vivo T cell expansion could augment anti-CD3-driven T cell proliferation and enhance bispecific antibody (BiAb)-redirected antitumor cytotoxicity of activated T cells (ATC). Methods PBMC from healthy individuals were stimulated with anti-CD3 monoclonal antibody with or without ipilimumab and expanded for 10-14 days. ATC were harvested and armed with anti-CD3 x anti-EGFR BiAb (EGFRBi) or anti-CD3 x anti-CD20 BiAb (CD20Bi) to test for redirected cytotoxicity against COLO356/FG pancreatic cancer cell line or Burkitt’s lymphoma cell line (Daudi). Results In PBMC from healthy individuals, the addition of ipilimumab at the initiation of culture significantly enhanced T cell proliferation (p = 0.0029). ATC grown in the presence of ipilimumab showed significantly increased mean tumor-specific cytotoxicity at effector:target (E:T) ratio of 25:1 directed at COLO356/FG and Daudi by 37.71% (p < 0.0004) and 27.5% (p < 0.0004), respectively, and increased the secretion of chemokines (CCL2, CCL3, CCL4,CCL5, CXCL9, and granulocyte-macrophage colony stimulating factor(GM-CSF)) and cytokines (IFN-γ, IL-2R, IL-12, and IL-13), while reducing IL-10 secretion. Conclusions Expansion of ATC in the presence of ipilimumab significantly improves not only the T cell proliferation but it also enhances cytokine secretion and the specific cytotoxicity of T cells armed with bispecific antibodies. PMID:25008236

  7. CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against TERT-positive tumor cells.

    PubMed

    Li, Yang; Li, Yi-Fei; Si, Chong-Zhan; Zhu, Yu-Hui; Jin, Yan; Zhu, Tong-Tong; Liu, Ming-Yuan; Liu, Guang-Yao

    2016-07-15

    Multigene-armed oncolytic adenoviruses are capable of efficiently generating a productive antitumor immune response. The chemokine (C-C motif) ligand 21 (CCL21) binds to CCR7 on naïve T cells and dendritic cells (DCs) to promote their chemoattraction to the tumor and resultant antitumor activity. Interleukin 21 (IL21) promotes survival of naïve T cells while maintaining their CCR7 surface expression, which increases their capacity to transmigrate in response to CCL21 chemoattraction. IL21 is also involved in NK cell differentiation and B cell activation and proliferation. The generation of effective antitumor immune responses is a complex process dependent upon coordinated interactions of various subsets of effector cells. Using the AdEasy system, we aimed to construct an oncolytic adenovirus co-expressing CCL21 and IL21 that could selectively replicate in TERTp-positive tumor cells (Ad-CCL21-IL21 virus). The E1A promoter of these oncolytic adenoviruses was replaced by telomerase reverse transcriptase promoter (TERTp). Ad-CCL21-IL21 was constructed from three plasmids, pGTE-IL21, pShuttle-CMV-CCL21 and AdEasy-1 and was homologously recombined and propagated in the Escherichia coli strain BJ5183 and the packaging cell line HEK-293, respectively. Our results showed that our targeted and armed oncolytic adenoviruses Ad-CCL21-IL21 can induce apoptosis in TERTp-positive tumor cells to give rise to viral propagation, in a dose-dependent manner. Importantly, we confirm that these modified oncolytic adenoviruses do not replicate efficiently in normal cells even under high viral loads. Additionally, we investigate the role of Ad-CCL21-IL21 in inducing antitumor activity and tumor specific cytotoxicity of CTLs in vitro. This study suggests that Ad-CCL21-IL21 is a promising targeted tumor-specific oncolytic adenovirus. PMID:27157859

  8. Attending to Eye Movements and Retinal Eccentricity: Evidence for the Activity Distribution Model of Attention Reconsidered

    ERIC Educational Resources Information Center

    Turk-Browne, Nicholas B.; Pratt, Jay

    2005-01-01

    When testing between spotlight and activity distribution models of visual attention, D. LaBerge, R. L. Carlson, J. K. Williams, and B. G. Bunney (1997) used an experimental paradigm in which targets are embedded in 3 brief displays. This paradigm, however, may be confounded by retinal eccentricity effects and saccadic eye movements. When the…

  9. Social Media and the Idle No More Movement: Citizenship, Activism and Dissent in Canada

    ERIC Educational Resources Information Center

    Tupper, Jennifer

    2014-01-01

    This paper, informed by a critique of traditional understandings of citizenship and civic education, explores the use of social media as a means of fostering activism and dissent. Specifically, the paper explores the ways in which the Idle No More Movement, which began in Canada in 2012 marshalled social media to educate about and protest Bill…

  10. Self-organization in the movement activity of social insects (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Neves, Felipe Marcel; Pie, Marcio Roberto; Viana, Ricardo Luiz

    2012-09-01

    Social insects present behavioral, morphologic and social variation, which bring ideal situations to study emergent temporal-spatial patterns. In this study, we observe the self-organization in the movement activity of social insects in different species and densities. In our preliminary results, all the species observed present a pattern more complex in higher densities and with structural differences between them.

  11. Passive Joint Forces Are Tuned to Limb Use in Insects and Drive Movements without Motor Activity

    PubMed Central

    Ache, Jan M.; Matheson, Thomas

    2013-01-01

    Summary Background Limb movements are generally driven by active muscular contractions working with and against passive forces arising in muscles and other structures. In relatively heavy limbs, the effects of gravity and inertia predominate, whereas in lighter limbs, passive forces intrinsic to the limb are of greater consequence. The roles of passive forces generated by muscles and tendons are well understood, but there has been little recognition that forces originating within joints themselves may also be important, and less still that these joint forces may be adapted through evolution to complement active muscle forces acting at the same joint. Results We examined the roles of passive joint forces in insect legs with different arrangements of antagonist muscles. We first show that passive forces modify actively generated movements of a joint across its working range, and that they can be sufficiently strong to generate completely passive movements that are faster than active movements observed in natural behaviors. We further demonstrate that some of these forces originate within the joint itself. In legs of different species adapted to different uses (walking, jumping), these passive joint forces complement the balance of strength of the antagonist muscles acting on the joint. We show that passive joint forces are stronger where they assist the weaker of two antagonist muscles. Conclusions In limbs where the dictates of a key behavior produce asymmetry in muscle forces, passive joint forces can be coadapted to provide the balance needed for the effective generation of other behaviors. PMID:23871240

  12. Posture and Movement

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.

  13. Activation of the motor cortex during phasic rapid eye movement sleep

    PubMed Central

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio

    2016-01-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. Ann Neurol 2016;79:326–330 PMID:26575212

  14. A computational model for optimal muscle activity considering muscle viscoelasticity in wrist movements

    PubMed Central

    Shin, Duk; Koike, Yasuharu

    2013-01-01

    To understand the mechanism of neural motor control, it is important to clarify how the central nervous system organizes the coordination of redundant muscles. Previous studies suggested that muscle activity for step-tracking wrist movements are optimized so as to reduce total effort or end-point variance under neural noise. However, since the muscle dynamics were assumed as a simple linear system, some characteristic patterns of experimental EMG were not seen in the simulated muscle activity of the previous studies. The biological muscle is known to have dynamic properties in which its elasticity and viscosity depend on activation level. The motor control system is supposed to consider the viscoelasticity of the muscles when generating motor command signals. In this study, we present a computational motor control model that can control a musculoskeletal system with nonlinear dynamics. We applied the model to step-tracking wrist movements actuated by five muscles with dynamic viscoelastic properties. To solve the motor redundancy, we designed the control model to generate motor commands that maximize end-point accuracy under signal-dependent noise, while minimizing the squared sum of them. Here, we demonstrate that the muscle activity simulated by our model exhibits spatiotemporal features of experimentally observed muscle activity of human and nonhuman primates. In addition, we show that the movement trajectories resulting from the simulated muscle activity resemble experimentally observed trajectories. These results suggest that, by utilizing inherent viscoelastic properties of the muscles, the neural system may optimize muscle activity to improve motor performance. PMID:23324321

  15. Sexually transmitted infections, active component, U.S. Armed Forces, 2000-2012.

    PubMed

    2013-02-01

    This report summarizes incidence rates of the five most commonly diagnosed sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2000 to 2012. Human papillomavirus (HPV) infections were the most common, followed in decreasing order of frequency by infections associated with chlamydia, herpes simplex virus, gonorrhea, and syphilis. Compared to their counterparts, women, younger service members, soldiers, and enlisted members had higher incidence rates of each STI. Rates tended to be lower among married personnel. Rates of chlamydia, HPV, and gonorrhea diagnoses were notably higher among women during 2006 to 2008 but rates of the latter two infections have since declined sharply. The relatively recent introduction of STI screening among young service women and the HPV vaccine are discussed.

  16. A study of lip movements during spontaneous dialog and its application to voice activity detection.

    PubMed

    Sodoyer, David; Rivet, Bertrand; Girin, Laurent; Savariaux, Christophe; Schwartz, Jean-Luc; Jutten, Christian

    2009-02-01

    This paper presents a quantitative and comprehensive study of the lip movements of a given speaker in different speech/nonspeech contexts, with a particular focus on silences (i.e., when no sound is produced by the speaker). The aim is to characterize the relationship between "lip activity" and "speech activity" and then to use visual speech information as a voice activity detector (VAD). To this aim, an original audiovisual corpus was recorded with two speakers involved in a face-to-face spontaneous dialog, although being in separate rooms. Each speaker communicated with the other using a microphone, a camera, a screen, and headphones. This system was used to capture separate audio stimuli for each speaker and to synchronously monitor the speaker's lip movements. A comprehensive analysis was carried out on the lip shapes and lip movements in either silence or nonsilence (i.e., speech+nonspeech audible events). A single visual parameter, defined to characterize the lip movements, was shown to be efficient for the detection of silence sections. This results in a visual VAD that can be used in any kind of environment noise, including intricate and highly nonstationary noises, e.g., multiple and/or moving noise sources or competing speech signals. PMID:19206891

  17. Eye Movements during Auditory Attention Predict Individual Differences in Dorsal Attention Network Activity

    PubMed Central

    Braga, Rodrigo M.; Fu, Richard Z.; Seemungal, Barry M.; Wise, Richard J. S.; Leech, Robert

    2016-01-01

    The neural mechanisms supporting auditory attention are not fully understood. A dorsal frontoparietal network of brain regions is thought to mediate the spatial orienting of attention across all sensory modalities. Key parts of this network, the frontal eye fields (FEF) and the superior parietal lobes (SPL), contain retinotopic maps and elicit saccades when stimulated. This suggests that their recruitment during auditory attention might reflect crossmodal oculomotor processes; however this has not been confirmed experimentally. Here we investigate whether task-evoked eye movements during an auditory task can predict the magnitude of activity within the dorsal frontoparietal network. A spatial and non-spatial listening task was used with on-line eye-tracking and functional magnetic resonance imaging (fMRI). No visual stimuli or cues were used. The auditory task elicited systematic eye movements, with saccade rate and gaze position predicting attentional engagement and the cued sound location, respectively. Activity associated with these separate aspects of evoked eye-movements dissociated between the SPL and FEF. However these observed eye movements could not account for all the activation in the frontoparietal network. Our results suggest that the recruitment of the SPL and FEF during attentive listening reflects, at least partly, overt crossmodal oculomotor processes during non-visual attention. Further work is needed to establish whether the network’s remaining contribution to auditory attention is through covert crossmodal processes, or is directly involved in the manipulation of auditory information. PMID:27242465

  18. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    PubMed Central

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2016-01-01

    Objective The goal of this study was to develop a physiologically plausible, computationally robust model for the muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of 3 compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations. PMID:26087477

  19. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway.

    PubMed

    Xue, Hui; Zheng, Jun; Cui, Ziping; Bai, Xiufeng; Li, Gang; Zhang, Caidi; He, Sanhu; Li, Weihong; Lajud, Shayanne A; Duan, Yinzhong; Zhou, Hong

    2013-01-01

    The present study was designed to determine the underlying mechanism of low-intensity pulsed ultrasound (LIPUS) induced alveolar bone remodeling and the role of BMP-2 expression in a rat orthodontic tooth movement model. Orthodontic appliances were placed between the homonymy upper first molars and the upper central incisors in rats under general anesthesia, followed by daily 20-min LIPUS or sham LIPUS treatment beginning at day 0. Tooth movement distances and molecular changes were evaluated at each observation point. In vitro and in vivo studies were conducted to detect HGF (Hepatocyte growth factor)/Runx2/BMP-2 signaling pathways and receptor activator of NFκB ligand (RANKL) expression by quantitative real time PCR (qRT-PCR), Western blot and immunohistochemistry. At day 3, LIPUS had no effect on the rat orthodontic tooth movement distance and BMP-2-induced alveolar bone remodeling. However, beginning at day 5 and for the following time points, LIPUS significantly increased orthodontic tooth movement distance and BMP-2 signaling pathway and RANKL expression compared with the control group. The qRT-PCR and Western blot data in vitro and in vivo to study BMP-2 expression were consistent with the immunohistochemistry observations. The present study demonstrates that LIPUS promotes alveolar bone remodeling by stimulating the HGF/Runx2/BMP-2 signaling pathway and RANKL expression in a rat orthodontic tooth movement model, and LIPUS increased BMP-2 expression via Runx2 regulation.

  20. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    NASA Astrophysics Data System (ADS)

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2015-08-01

    Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.

  1. Ipsilesional arm motor sequence performance after right and left hemisphere damage.

    PubMed

    de Paiva Silva, Flávia Priscila; Freitas, Sandra Maria Sbeghen Ferreira de; Silva, Priscila Viana; Banjai, Renata Morales; Alouche, Sandra Regina

    2014-01-01

    Aiming movements are part of daily activities but the brain hemispheres' role in targeted aiming sequential movements is not fully clear. Start and execution of discrete and sequential tasks toward targets were analyzed in 10 individuals with left-hemisphere damage, 10 right-hemisphere-damaged, and 10 healthy ones. Arm movements were performed over a digitizing tablet, following stimuli on a monitor, from initial position toward right and left-positioned targets. Poststroke individuals used their ipsilesional arm and healthy individuals, both arms. Right-hemisphere-damaged individuals showed higher reaction time and left-hemisphere-damaged individuals, lower smoothness. Due to spatial demand of tasks, the right hemisphere played a major role in movement planning, while the left, in movement execution.

  2. Comparison of lower limb muscle activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults

    PubMed Central

    Kim, Min-Ju; Kim, Joong-Hwi

    2016-01-01

    [Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], adductor longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six muscles for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb muscle enhancement. PMID:26957762

  3. Comparison of lower limb muscle activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults.

    PubMed

    Kim, Min-Ju; Kim, Joong-Hwi

    2016-01-01

    [Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], adductor longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six muscles for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb muscle enhancement. PMID:26957762

  4. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.

    PubMed

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.

  5. Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease.

    PubMed

    Hoier, B; Walker, M; Passos, M; Walker, P J; Green, A; Bangsbo, J; Askew, C D; Hellsten, Y

    2013-12-01

    Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.

  6. Mirroring activity in the brain and movement determinant in the Rorschach test.

    PubMed

    Porcelli, Piero; Giromini, Luciano; Parolin, Laura; Pineda, Jaime A; Viglione, Donald J

    2013-01-01

    Human movement (M) responses to the Rorschach are related to cognitive sophistication, creativity, and empathy. Recent studies also link Ms to EEG-mu suppression, an index of mirroring activity in the brain. In this article, we further investigate the link between Ms and mu suppression by testing some clinical interpretative distinctions. Previously collected EEG data recorded during the administration of the Rorschach were reanalyzed. We hypothesized that (a) among several responses investigated, only M would be associated with mu suppression, and (b) Ms with active movement, ordinary form quality, or whole human figures would be most strongly associated with mu suppression. Hypothesis 1 was fully confirmed, thus supporting that the traditional interpretation of M has a neurobiological foundation. Hypothesis 2 was partially confirmed; that is, active Ms were associated with mu suppression more strongly than passive Ms (p < .05), but no other significant differences emerged. Clinical implications are discussed. PMID:23495976

  7. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  8. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children.

    PubMed

    Choi, Hyungsoo; Park, Sangjun; Kim, Kyekyoon Kevin; Lee, Kwanghee; Rhyu, Hyun-Seung

    2016-08-01

    Acute high-intensity physical exercise is known to improve cognitive performance of children, including those with attention-deficit/hyperactivity disorder (ADHD). In this work, we investigated the acute effect of an aerobic stretching and moderate-intensity, health and happiness improving movement (HHIM) exercise on the cortical activity of children with and without ADHD using electroencephalography (EEG). Children aged 12 to 14 yr with combined-type ADHD and age-matched healthy controls participated in the study, performing two individual movements (n=79, 35 controls) and a single exercise bout (n=45, 18 controls). electroencephalographic signals were recorded before and immediately after each movement, and before and after acute exercise under resting conditions, to obtain absolute and relative power estimates for the theta (3.5-8 Hz), alpha (8-12 Hz), sensory motor rhythm (12-16 Hz), and beta (16-25 Hz) bands. After acute HHIM exercise, all children showed significant changes in their relative EEG, mainly in the theta and alpha bands. Individual movements were found to influence relative theta, alpha and beta, and theta-to-beta ratios. He presents aerobic stretching HHIM exercise has demonstrated acute effect on the cortical activity of children.

  9. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children

    PubMed Central

    Choi, Hyungsoo; Park, Sangjun; Kim, Kyekyoon Kevin; Lee, Kwanghee; Rhyu, Hyun-Seung

    2016-01-01

    Acute high-intensity physical exercise is known to improve cognitive performance of children, including those with attention-deficit/hyperactivity disorder (ADHD). In this work, we investigated the acute effect of an aerobic stretching and moderate-intensity, health and happiness improving movement (HHIM) exercise on the cortical activity of children with and without ADHD using electroencephalography (EEG). Children aged 12 to 14 yr with combined-type ADHD and age-matched healthy controls participated in the study, performing two individual movements (n=79, 35 controls) and a single exercise bout (n=45, 18 controls). electroencephalographic signals were recorded before and immediately after each movement, and before and after acute exercise under resting conditions, to obtain absolute and relative power estimates for the theta (3.5–8 Hz), alpha (8–12 Hz), sensory motor rhythm (12–16 Hz), and beta (16–25 Hz) bands. After acute HHIM exercise, all children showed significant changes in their relative EEG, mainly in the theta and alpha bands. Individual movements were found to influence relative theta, alpha and beta, and theta-to-beta ratios. He presents aerobic stretching HHIM exercise has demonstrated acute effect on the cortical activity of children. PMID:27656629

  10. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children

    PubMed Central

    Choi, Hyungsoo; Park, Sangjun; Kim, Kyekyoon Kevin; Lee, Kwanghee; Rhyu, Hyun-Seung

    2016-01-01

    Acute high-intensity physical exercise is known to improve cognitive performance of children, including those with attention-deficit/hyperactivity disorder (ADHD). In this work, we investigated the acute effect of an aerobic stretching and moderate-intensity, health and happiness improving movement (HHIM) exercise on the cortical activity of children with and without ADHD using electroencephalography (EEG). Children aged 12 to 14 yr with combined-type ADHD and age-matched healthy controls participated in the study, performing two individual movements (n=79, 35 controls) and a single exercise bout (n=45, 18 controls). electroencephalographic signals were recorded before and immediately after each movement, and before and after acute exercise under resting conditions, to obtain absolute and relative power estimates for the theta (3.5–8 Hz), alpha (8–12 Hz), sensory motor rhythm (12–16 Hz), and beta (16–25 Hz) bands. After acute HHIM exercise, all children showed significant changes in their relative EEG, mainly in the theta and alpha bands. Individual movements were found to influence relative theta, alpha and beta, and theta-to-beta ratios. He presents aerobic stretching HHIM exercise has demonstrated acute effect on the cortical activity of children.

  11. Acute effects of aerobic stretching, health and happiness improving movement exercise on cortical activity of children.

    PubMed

    Choi, Hyungsoo; Park, Sangjun; Kim, Kyekyoon Kevin; Lee, Kwanghee; Rhyu, Hyun-Seung

    2016-08-01

    Acute high-intensity physical exercise is known to improve cognitive performance of children, including those with attention-deficit/hyperactivity disorder (ADHD). In this work, we investigated the acute effect of an aerobic stretching and moderate-intensity, health and happiness improving movement (HHIM) exercise on the cortical activity of children with and without ADHD using electroencephalography (EEG). Children aged 12 to 14 yr with combined-type ADHD and age-matched healthy controls participated in the study, performing two individual movements (n=79, 35 controls) and a single exercise bout (n=45, 18 controls). electroencephalographic signals were recorded before and immediately after each movement, and before and after acute exercise under resting conditions, to obtain absolute and relative power estimates for the theta (3.5-8 Hz), alpha (8-12 Hz), sensory motor rhythm (12-16 Hz), and beta (16-25 Hz) bands. After acute HHIM exercise, all children showed significant changes in their relative EEG, mainly in the theta and alpha bands. Individual movements were found to influence relative theta, alpha and beta, and theta-to-beta ratios. He presents aerobic stretching HHIM exercise has demonstrated acute effect on the cortical activity of children. PMID:27656629

  12. Development of a Kinect Software Tool to Classify Movements during Active Video Gaming.

    PubMed

    Rosenberg, Michael; Thornton, Ashleigh L; Lay, Brendan S; Ward, Brodie; Nathan, David; Hunt, Daniel; Braham, Rebecca

    2016-01-01

    While it has been established that using full body motion to play active video games results in increased levels of energy expenditure, there is little information on the classification of human movement during active video game play in relationship to fundamental movement skills. The aim of this study was to validate software utilising Kinect sensor motion capture technology to recognise fundamental movement skills (FMS), during active video game play. Two human assessors rated jumping and side-stepping and these assessments were compared to the Kinect Action Recognition Tool (KART), to establish a level of agreement and determine the number of movements completed during five minutes of active video game play, for 43 children (m = 12 years 7 months ± 1 year 6 months). During five minutes of active video game play, inter-rater reliability, when examining the two human raters, was found to be higher for the jump (r = 0.94, p < .01) than the sidestep (r = 0.87, p < .01), although both were excellent. Excellent reliability was also found between human raters and the KART system for the jump (r = 0.84, p, .01) and moderate reliability for sidestep (r = 0.6983, p < .01) during game play, demonstrating that both humans and KART had higher agreement for jumps than sidesteps in the game play condition. The results of the study provide confidence that the Kinect sensor can be used to count the number of jumps and sidestep during five minutes of active video game play with a similar level of accuracy as human raters. However, in contrast to humans, the KART system required a fraction of the time to analyse and tabulate the results. PMID:27442437

  13. Development of a Kinect Software Tool to Classify Movements during Active Video Gaming.

    PubMed

    Rosenberg, Michael; Thornton, Ashleigh L; Lay, Brendan S; Ward, Brodie; Nathan, David; Hunt, Daniel; Braham, Rebecca

    2016-01-01

    While it has been established that using full body motion to play active video games results in increased levels of energy expenditure, there is little information on the classification of human movement during active video game play in relationship to fundamental movement skills. The aim of this study was to validate software utilising Kinect sensor motion capture technology to recognise fundamental movement skills (FMS), during active video game play. Two human assessors rated jumping and side-stepping and these assessments were compared to the Kinect Action Recognition Tool (KART), to establish a level of agreement and determine the number of movements completed during five minutes of active video game play, for 43 children (m = 12 years 7 months ± 1 year 6 months). During five minutes of active video game play, inter-rater reliability, when examining the two human raters, was found to be higher for the jump (r = 0.94, p < .01) than the sidestep (r = 0.87, p < .01), although both were excellent. Excellent reliability was also found between human raters and the KART system for the jump (r = 0.84, p, .01) and moderate reliability for sidestep (r = 0.6983, p < .01) during game play, demonstrating that both humans and KART had higher agreement for jumps than sidesteps in the game play condition. The results of the study provide confidence that the Kinect sensor can be used to count the number of jumps and sidestep during five minutes of active video game play with a similar level of accuracy as human raters. However, in contrast to humans, the KART system required a fraction of the time to analyse and tabulate the results.

  14. Development of a Kinect Software Tool to Classify Movements during Active Video Gaming

    PubMed Central

    Rosenberg, Michael; Lay, Brendan S.; Ward, Brodie; Nathan, David; Hunt, Daniel; Braham, Rebecca

    2016-01-01

    While it has been established that using full body motion to play active video games results in increased levels of energy expenditure, there is little information on the classification of human movement during active video game play in relationship to fundamental movement skills. The aim of this study was to validate software utilising Kinect sensor motion capture technology to recognise fundamental movement skills (FMS), during active video game play. Two human assessors rated jumping and side-stepping and these assessments were compared to the Kinect Action Recognition Tool (KART), to establish a level of agreement and determine the number of movements completed during five minutes of active video game play, for 43 children (m = 12 years 7 months ± 1 year 6 months). During five minutes of active video game play, inter-rater reliability, when examining the two human raters, was found to be higher for the jump (r = 0.94, p < .01) than the sidestep (r = 0.87, p < .01), although both were excellent. Excellent reliability was also found between human raters and the KART system for the jump (r = 0.84, p, .01) and moderate reliability for sidestep (r = 0.6983, p < .01) during game play, demonstrating that both humans and KART had higher agreement for jumps than sidesteps in the game play condition. The results of the study provide confidence that the Kinect sensor can be used to count the number of jumps and sidestep during five minutes of active video game play with a similar level of accuracy as human raters. However, in contrast to humans, the KART system required a fraction of the time to analyse and tabulate the results. PMID:27442437

  15. Movement of the Earth pole and the seismic activity in 2001-2012

    NASA Astrophysics Data System (ADS)

    Andreev, Aleksey; Zabbarova, Regina; Lapaeva, Valentina; Nefedyev, Yuri

    2014-05-01

    The relationship between the parameters which characterize the movement of the Earth pole and seismic activity are considered. The correlation of the considered parameters is studied. The discussions about the relationship of poles movement and irregularity in speed of Earth rotation with seismic activity were actively performed in 60- 70th years of last century. Mainly, the influence of seismicity on pole movement was considered in this works. In particular, the question about excitation of a pole by earthquakes chandler's fluctuations was studied. An interest in the similar researches continues till now. The chandler's movements investigations and their relation with rotation of the Earth and seismicity were proceeded. The correlation between appearance of earthquakes and abnormal evasion of time and latitude for the observatories located near an epicenter was also discussed. What changes in position of the Earth pole do occur as a result of the strongest earthquakes? To answer on this question it is necessary to study variations of "an average pole", where the basic periodic components in movement of a pole having amplitude 0.1"-0.3" are accepted. To perform the analysis of the pole co-ordinates (X and Y) the International service of the Earth rotation for 1995-2012 have been considered. Linear Orlov-Saharov transformation has been applied to an exception of the periodic movement. On the basis of this positions changes of an average pole (aperiodicity displacement and long periodical variations of an axis of rotation in a Earth body) have been calculated with an interval of 0.1 years. Was found the changes of position of an average pole of the Earth was preceded the most considerable seismic events of the beginning of 21 century. As a whole, the increase of seismic activity has begun after 2002 only. For example, there were 2 strong earthquakes with magnitude 7 and more (Salvador, India) in 2001 , 2 earthquakes (Tajikistan, Taiwan) occurred in 2002, and 5

  16. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    PubMed

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  17. Aberrant Oscillatory Activity during Simple Movement in Task-Specific Focal Hand Dystonia

    PubMed Central

    Hinkley, Leighton B. N.; Dolberg, Rebecca; Honma, Susanne; Findlay, Anne; Byl, Nancy N.; Nagarajan, Srikantan S.

    2012-01-01

    In task-specific focal hand dystonia (tspFHD), the temporal dynamics of cortical activity in the motor system and how these processes are related to impairments in sensory and motor function are poorly understood. Here, we use time-frequency reconstructions of magnetoencephalographic (MEG) data to elaborate the temporal and spatial characteristics of cortical activity during movement. A self-paced finger tapping task during MEG recording was performed by 11 patients with tspFHD and 11 matched healthy controls. In both groups robust changes in beta (12–30 Hz) and high gamma (65–90 Hz) oscillatory activity were identified over sensory and motor cortices during button press. A significant decrease [p < 0.05, 1% False Discovery Rate (FDR) corrected] in high gamma power during movements of the affected hand was identified over ipsilateral sensorimotor cortex in the period prior to (−575 ms) and following (725 ms) button press. Furthermore, an increase (p < 0.05, 1% FDR corrected) in beta power suppression following movement of the affected hand was identified over visual cortex in patients with tspFHD. For movements of the unaffected hand, a significant (p < 0.05, 1% FDR corrected) increase in beta power suppression was identified over secondary somatosensory cortex (S2) in the period following button press in patients with tspFHD. Oscillatory activity within in the tspFHD group was however not correlated with clinical measures. Understanding these aberrant oscillatory dynamics can provide the groundwork for interventions that focus on modulating the timing of this activity. PMID:23226140

  18. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  19. TASK-SPECIFIC STABILITY IN MUSCLE ACTIVATION SPACE DURING UNINTENTIONAL MOVEMENTS

    PubMed Central

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L.

    2014-01-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multi-dimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back towards the initial position. Inter-trial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two sub-spaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former sub-space in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  20. Enhanced Activation of Motor Execution Networks Using Action Observation Combined with Imagination of Lower Limb Movements

    PubMed Central

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S.; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks. PMID:24015241

  1. Comparison of laterality index of upper and lower limb movement using brain activated fMRI

    NASA Astrophysics Data System (ADS)

    Harirchian, Mohammad Hossein; Oghabian, Mohammad Ali; Rezvanizadeh, Alireza; Bolandzadeh, Niousha

    2008-03-01

    Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions such as motor functions. This asymmetry maybe altered in some clinical conditions such as Multiple Sclerosis (MS). The aim of this study was to delineate the laterality differences for upper and lower limbs in healthy subjects to compare this pattern with subjects suffering from MS in advance. Hence 9 Male healthy subjects underwent fMRI assessment, while they were asked to move their limbs in a predetermined pattern. The results showed that hands movement activates the brain with a significant lateralization in pre-motor cortex in comparison with lower limb. Also, dominant hands activate brain more lateralized than the non-dominant hand. In addition, Left basal ganglia were observed to be activated regardless of the hand used, While, These patterns of Brain activation was not detected in lower limbs. We hypothesize that this difference might be attributed to this point that hand is usually responsible for precise and fine voluntary movements, whereas lower limb joints are mainly responsible for locomotion, a function integrating voluntary and automatic bilateral movements.

  2. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis

    PubMed Central

    1988-01-01

    We have found that the spontaneous migration of bovine aortic endothelial cells from the edge of a denuded area in a confluent monolayer is dependent upon the release of endogenous basic fibroblast growth factor (bFGF). Cell movement is blocked by purified polyclonal rabbit IgG to bFGF as well as affinity purified anti-bFGF IgG and anti- bFGF F(ab')2 fragments. The inhibitory effect of the immunoglobulins is dependent upon antibody concentration, is reversible, is overcome by the addition of recombinant bFGF, and is removed by affinity chromatography of the antiserum through a column of bFGF-Sepharose. Cell movement is also reversibly inhibited by the addition of protamine sulfate and suramin; two agents reported to block bFGF binding to its receptor. The addition of recombinant bFGF to wounded monolayers accelerates the movement of cells into the denuded area. Transforming growth factor beta which has been shown to antagonize several other effects of bFGF also inhibits cell movement. The anti-bFGF IgG prevents the movement of bovine capillary endothelial cells, BHK-21, NIH 3T3, and human skin fibroblasts into a denuded area. Antibodies to bFGF, as well as suramin and protamine sulfate also suppress the basal levels of plasminogen activator and DNA synthesis in bovine aortic endothelial cells. PMID:3417781

  3. Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces

    PubMed Central

    Conrad, Megan O.; Gadhoke, Bani; Scheidt, Robert A.; Schmit, Brian D.

    2015-01-01

    Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity. PMID:26633892

  4. Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces.

    PubMed

    Conrad, Megan O; Gadhoke, Bani; Scheidt, Robert A; Schmit, Brian D

    2015-01-01

    Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity.

  5. Adaptation to visual and proprioceptive rearrangement - Origin of the differential effectiveness of active and passive movements

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.

    1977-01-01

    Experiments were conducted to measure and compare the accuracy with which subjects pointed to visual targets before and after an exposure period in which they received systematic proprioceptive misinformation about the locations of visual targets. The crucial factor determining whether adaptation will be elicited is shown to be the presence of a discordance in the positional information being conveyed over two different sensory modalities. Another experiment was carried out to study the effectiveness of active and passive movements in eliciting adaptation when the subjects were exposed to a systematic discordance between the visual and proprioceptive locations of external targets without being permitted sight of their hands. Superiority of active over passive movements in producing adaptation to visual rearrangement is due to the greater accuracy of position sense information about voluntarily moved limbs, partly derived from the contribution of muscle afferent signals.

  6. A Low-cost Method for Analyzing Seizure-like Activity and Movement in Drosophila

    PubMed Central

    Stone, Bryan; Burke, Brian; Pathakamuri, Joseph; Coleman, John; Kuebler, Daniel

    2014-01-01

    Video tracking systems have been used widely to analyze Drosophila melanogaster movement and detect various abnormalities in locomotive behavior. While these systems can provide a wealth of behavioral information, the cost and complexity of these systems can be prohibitive for many labs. We have developed a low-cost assay for measuring locomotive behavior and seizure movement in D. melanogaster. The system uses a web-cam to capture images that can be processed using a combination of inexpensive and free software to track the distance moved, the average velocity of movement and the duration of movement during a specified time-span. To demonstrate the utility of this system, we examined a group of D. melanogaster mutants, the Bang-sensitive (BS) paralytics, which are 3-10 times more susceptible to seizure-like activity (SLA) than wild type flies. Using this novel system, we were able to detect that the BS mutant bang senseless (bss) exhibits lower levels of exploratory locomotion in a novel environment than wild type flies. In addition, the system was used to identify that the drug metformin, which is commonly used to treat type II diabetes, reduces the intensity of SLA in the BS mutants. PMID:24637378

  7. Relationships between fundamental movement skills and objectively measured physical activity in preschool children.

    PubMed

    Cliff, Dylan P; Okely, Anthony D; Smith, Leif M; McKeen, Kim

    2009-11-01

    Gender differences in cross-sectional relationships between fundamental movement skill (FMS) subdomains (locomotor skills, object-control skills) and physical activity were examined in preschool children. Forty-six 3- to 5-year-olds (25 boys) had their FMS video assessed (Test of Gross Motor Development II) and their physical activity objectively monitored (Actigraph 7164 accelerometers). Among boys, object-control skills were associated with physical activity and explained 16.9% (p = .024) and 13.7% (p = .049) of the variance in percent of time in moderate-to-vigorous physical activity (MVPA) and total physical activity, respectively, after controlling for age, SES and z-BMI. Locomotor skills were inversely associated with physical activity among girls, and explained 19.2% (p = .023) of the variance in percent of time in MVPA after controlling for confounders. Gender and FMS subdomain may influence the relationship between FMS and physical activity in preschool children. PMID:20128363

  8. Active-Arm Passive-Leg Exercise Improves Cardiovascular Function in Spinal Cord Injury.

    PubMed

    West, Christopher R; Currie, Katharine D; Gee, Cameron; Krassioukov, Andrei V; Borisoff, Jaimie

    2015-11-01

    In a 43-yr-old male subject with a chronic T3 AIS A spinal cord injury, the acute cardiorespiratory responses to active upper-extremity exercise alone and combined active-arm passive-leg exercise (AAPLE) were investigated, along with the cardiorespiratory, cardiac, vascular, and body composition responses to a 6-wk AAPLE interval training intervention. AAPLE elicited superior acute maximal cardiorespiratory responses compared with upper-extremity exercise alone. In response to a 6-wk interval training regimen, AAPLE caused a 25% increase in peak oxygen uptake, a 10% increase in resting stroke volume, and a 4-fold increase in brachial artery blood flow. Conversely, there were no changes in femoral arterial function, body composition, or bone mineral density in response to training. As a potential clinical intervention, AAPLE may be advantageous over other forms of currently available exercise, owing to the minimal setup time and cost involved and the nonreliance on specialized equipment that is required for other exercise modalities.

  9. [Central Pattern Generators: Mechanisms of the Activity and Their Role in the Control of "Automatic" Movements].

    PubMed

    Arshavsky, I; Deliagina, T G; Orlovsky, G N

    2015-01-01

    Central pattern generators (CPGs) are a set of interconnected neurons capable of generating a basic pattern of motor output underlying "automatic" movements (breathing, locomotion, chewing, swallowing, and so on) in the absence of afferent signals from the executive motor apparatus. They can be divided into the constitutive CPGs active throughout the entire lifetime (respiratory CPGs) and conditional CPGs controlling episodic movements (locomotion, chewing, swallowing, and others). Since a motor output of CPGs is determined by their internal organization, the activities of the conditional CPGs are initiated by simple commands coming from higher centers. We describe the structural and functional organization of the locomotor CPGs in the marine mollusk Clione limacina, lamprey, frog embryo, and laboratory mammals (cat, mouse, and rat), CPGs controlling the respiratory and swallowing movements in mammals, and CPGs controlling discharges of the electric organ in the gymnotiform fish. It is shown that in all these cases, the generation of rhythmic motor output is based both on the endogenous (pacemaker) activity of specific groups of interneurons and on interneural interactions. These two interrelated mechanisms complement each other, ensuring the high reliability of CPG functionality. We discuss how the experience obtained in studying CPGs can be used to understand mechanisms of more complex functions of the brain, including its cognitive functions.

  10. Vibration, acceleration, gravitation, and movement: activity controlled rate adaptive pacing during treadmill exercise testing and daily life activities.

    PubMed

    Candinas, R; Jakob, M; Buckingham, T A; Mattmann, H; Amann, F W

    1997-07-01

    Activity-based sensors for rate adaptive pacing have been available for several years and now include several different types: vibration; acceleration; gravitation; and movement. However, a systematic comparison evaluating the relative advantages and disadvantages of these various sensors has received little study. The purpose of the present study was to compare these sensor subtypes using treadmill testing and an outdoor test circuit, which simulated daily life activities and included both uphill and downhill walking. Pacemakers were strapped on the chest of healthy volunteers and connected to one channel of an ambulatory recording device, which also recorded the subject's intrinsic heart rate. The pacemakers were programmed using an initial treadmill test to standardize the rate responsive parameters for each device. Nine different pacemaker models were studied including 3 vibration-based (Elite, Synchrony, Metros), 4 acceleration-based (Relay, Excel, Ergos, Trilogy), 1 gravitational-based (Swing), and 1 movement-based (Sensorithm) device. All devices demonstrated a prompt rate response with casual walking on flat ground. The vibration-, gravitational-, and movement-based pacemakers showed a pronounced rate decline during more strenuous work, e.g., walking uphill. This phenomenon was absent in the accelerometer-based units. In particular, the vibration- and movement-based units showed a higher rate with walking downhill compared to uphill. An optimally tuned rate behavior on the treadmill usually did not provide an optimal rate behavior during daily activities and there was a tendency to overstimulation during low workload. The development of the two newest sensors (gravitational and movement) did not result in an improved performance of rate response behavior. Overall, the accelerometer-based pacemakers simulated or paralleled sinus rate behavior the most closely.

  11. The Pediatric Motor Activity Log-Revised: Assessing Real-world Arm Use in Children with Cerebral Palsy

    PubMed Central

    Uswatte, Gitendra; Taub, Edward; Griffin, Angi; Vogtle, Laura; Rowe, Jan; Barman, Joydip

    2012-01-01

    Objective Widely accepted models of disability suggest that actual use of an impaired upper-extremity in everyday life frequently deviates from its motor capacity, as measured by laboratory tests. Yet, direct measures of real-world use of an impaired upper-extremity are rare in pediatric neurorehabilitation. This paper examines how well the Pediatric Motor Activity Log-Revised (PMAL-R) measures this parameter, when the PMAL-R is administered as a structured interview as originally designed. Design Parents of sixty children between 2–8 years with upper-extremity hemiparesis due to cerebral palsy (CP) completed the PMAL-R twice. Additionally, the children were videotaped during play structured to elicit spontaneous arm use. More-affected arm use was scored by masked raters; it was thought to reflect everyday activity since no cues were given about which arm to employ. Testing sessions were separated by 3 weeks, during which 29 children received upper-extremity rehabilitation and 31 did not. Results The PMAL-R had high internal consistency (Cronbach's α = .93) and test-retest reliability (r = .89). Convergent validity was supported by a strong correlation between changes in PMAL-R scores and more-affected arm use during play, r(53) = .5, p < .001. Conclusions The PMAL-R interview is a reliable and valid measure of upper-extremity pediatric neurorehabilitation outcome. PMID:22686553

  12. Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement--EEG evidence.

    PubMed

    Leocani, L; Colombo, B; Magnani, G; Martinelli-Boneschi, F; Cursi, M; Rossi, P; Martinelli, V; Comi, G

    2001-06-01

    Converging evidence is consistent with the view that fatigue in Multiple Sclerosis is independent from pyramidal tract involvement, suggesting a possible involvement of frontal areas. During voluntary movement, changes of the EEG rhythms can be observed over sensorimotor areas. Event-related desynchronization (ERD) of the 10 and 20 Hz frequency bands occurs during motor planning and execution and is followed after movement termination by event-related synchronization (ERS), expressing cortical idling or inhibition. We evaluated the pattern of cortical activation to voluntary movement in MS patients complaining of fatigue assessed using the Fatigue Severity Scale. Fifteen MS patients complaining of fatigue, 18 MS patients without fatigue, and 14 normal controls were studied. The two patients groups were similar for age, sex, disease duration, and were not disabled (score <1.5 at the Expanded Disability Status Scale). Twenty-nine channel EEG was recorded during about 60 self-paced extensions of the right thumb. The onset latency and amount of the contralateral sensorimotor (C3 electrode) 10 and 18--22 Hz ERD were similar in the three groups. ERD was more widespread anteriorly in the fatigue group compared with normal controls (P < 0.01 over Fz electrode). Postmovement contralateral sensorimotor 18--22 Hz ERS was significantly lower in fatigue MS patients compared with normal subjects (P < 0.005) and with nonfatigue MS patients (P = 0.02). These findings are consistent with a central origin of fatigue in MS and indicate cortical dysfunction even during a simple motor task, resulting in hyperactivity during movement execution and failure of the inhibitory mechanisms intervening after movement termination. PMID:11352624

  13. Forward and backward arm cycling are regulated by equivalent neural mechanisms.

    PubMed

    Zehr, E Paul; Hundza, Sandra R

    2005-01-01

    It was shown some time ago that cutaneous reflexes were phase-reversed when comparing forward and backward treadmill walking. Activity of central-pattern-generating networks (CPG) regulating neural activity for locomotion was suggested as a mechanism involved in this "program reversal." We have been investigating the neural control of arm movements and the role for CPG mechanisms in regulating rhythmic arm cycling. The purpose of this study was to evaluate the pattern of muscle activity and reflex modulation when comparing forward and backward arm cycling. During rhythmic arm cycling (forward and backward), cutaneous reflexes were evoked with trains (5 x 1.0 ms pulses at 300 Hz) of electrical stimulation delivered to the superficial radial (SR) nerve at the wrist. Electromyographic (EMG) recordings were made bilaterally from muscles acting at the shoulder, elbow, and wrist. Analysis was conducted on specific sections of the movement cycle after phase-averaging contingent on the timing of stimulation in the movement cycle. EMG patterns for rhythmic arm cycling are similar during both forward and backward motion. Cutaneous reflex amplitudes were similarly modulated at both early and middle latency irrespective of arm cycling direction. That is, at similar phases in the movement cycle, responses of corresponding sign and amplitude were seen regardless of movement direction. The results are generally parallel to the observations seen in leg muscles after stimulation of cutaneous nerves in the foot during forward and backward walking and provide further evidence for CPG activity contributing to neural activation and reflex modulation during rhythmic arm movement.

  14. Muscle co-activity tuning in Parkinsonian hand movement: disease-specific changes at behavioral and cerebral level.

    PubMed

    van der Stouwe, A M M; Toxopeus, C M; de Jong, B M; Yavuz, P; Valsan, G; Conway, B A; Leenders, K L; Maurits, N M

    2015-01-01

    We investigated simple directional hand movements based on different degrees of muscle co-activity, at behavioral and cerebral level in healthy subjects and Parkinson's disease (PD) patients. We compared "singular" movements, dominated by the activity of one agonist muscle, to "composite" movements, requiring conjoint activity of multiple muscles, in a center-out (right hand) step-tracking task. Behavioral parameters were obtained by EMG and kinematic recordings. fMRI was used to investigate differences in underlying brain activations between PD patients (N = 12) and healthy (age-matched) subjects (N = 18). In healthy subjects, composite movements recruited the striatum and cortical areas comprising bilaterally the supplementary motor area and premotor cortex, contralateral medial prefrontal cortex, primary motor cortex, primary visual cortex, and ipsilateral superior parietal cortex. Contrarily, the ipsilateral cerebellum was more involved in singular movements. This striking dichotomy between striatal and cortical recruitment vs. cerebellar involvement was considered to reflect the complementary roles of these areas in motor control, in which the basal ganglia are involved in movement selection and the cerebellum in movement optimization. Compared to healthy subjects, PD patients showed decreased activation of the striatum and cortical areas in composite movement, while performing worse at behavioral level. This implies that PD patients are especially impaired on tasks requiring highly tuned muscle co-activity. Singular movement, on the other hand, was characterized by a combination of increased activation of the ipsilateral parietal cortex and left cerebellum. As singular movement performance was only slightly compromised, we interpret this as a reflection of increased visuospatial processing, possibly as a compensational mechanism.

  15. Muscle co-activity tuning in Parkinsonian hand movement: disease-specific changes at behavioral and cerebral level

    PubMed Central

    van der Stouwe, A. M. M.; Toxopeus, C. M.; de Jong, B. M.; Yavuz, P.; Valsan, G.; Conway, B. A.; Leenders, K. L.; Maurits, N. M.

    2015-01-01

    We investigated simple directional hand movements based on different degrees of muscle co-activity, at behavioral and cerebral level in healthy subjects and Parkinson's disease (PD) patients. We compared “singular” movements, dominated by the activity of one agonist muscle, to “composite” movements, requiring conjoint activity of multiple muscles, in a center-out (right hand) step-tracking task. Behavioral parameters were obtained by EMG and kinematic recordings. fMRI was used to investigate differences in underlying brain activations between PD patients (N = 12) and healthy (age-matched) subjects (N = 18). In healthy subjects, composite movements recruited the striatum and cortical areas comprising bilaterally the supplementary motor area and premotor cortex, contralateral medial prefrontal cortex, primary motor cortex, primary visual cortex, and ipsilateral superior parietal cortex. Contrarily, the ipsilateral cerebellum was more involved in singular movements. This striking dichotomy between striatal and cortical recruitment vs. cerebellar involvement was considered to reflect the complementary roles of these areas in motor control, in which the basal ganglia are involved in movement selection and the cerebellum in movement optimization. Compared to healthy subjects, PD patients showed decreased activation of the striatum and cortical areas in composite movement, while performing worse at behavioral level. This implies that PD patients are especially impaired on tasks requiring highly tuned muscle co-activity. Singular movement, on the other hand, was characterized by a combination of increased activation of the ipsilateral parietal cortex and left cerebellum. As singular movement performance was only slightly compromised, we interpret this as a reflection of increased visuospatial processing, possibly as a compensational mechanism. PMID:26300761

  16. Interplay of magnetic interactions and active movements in the formation of magnetosome chains.

    PubMed

    Klumpp, Stefan; Faivre, Damien

    2012-01-01

    Magnetotactic bacteria assemble chains of magnetosomes, organelles that contain magnetic nano-crystals. A number of genetic factors involved in the controlled biomineralization of these crystals and the assembly of magnetosome chains have been identified in recent years, but how the specific biological regulation is coordinated with general physical processes such as diffusion and magnetic interactions remains unresolved. Here, these questions are addressed by simulations of different scenarios for magnetosome chain formation, in which various physical processes and interactions are either switched on or off. The simulation results indicate that purely physical processes of magnetosome diffusion, guided by their magnetic interactions, are not sufficient for the robust chain formation observed experimentally and suggest that biologically encoded active movements of magnetosomes may be required. Not surprisingly, the chain pattern is most resembling experimental results when both magnetic interactions and active movement are coordinated. We estimate that the force such active transport has to generate is compatible with forces generated by the polymerization or depolymerization of cytoskeletal filaments. The simulations suggest that the pleiotropic phenotypes of mamK deletion strains may be due to a defect in active motility of magnetosomes and that crystal formation in magneteosome vesicles is coupled to the activation of their active motility in M. gryphiswaldense, but not in M. magneticum.

  17. Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement.

    PubMed

    Forman, Davis A; Philpott, Devin T G; Button, Duane C; Power, Kevin E

    2016-08-01

    This is the first study to examine changes in corticospinal excitability to the biceps brachii during the onset of arm cycling from a resting position to a point when steady-state arm cycling was obtained. Supraspinal and spinal excitability were assessed using motor-evoked potentials (MEPs) elicited via transcranial magnetic stimulation and cervicomedullary evoked potentials (CMEPs) elicited via transmastoid electrical stimulation, respectively. Evoked responses were recorded from the biceps brachii during elbow flexion (6 o'clock relative to a clock face) for both arm cycling and an intensity-matched tonic contraction at three separate periods: (1) immediately at the onset of motor output and after completion of the (2) 4th revolution and (3) 9th revolution. There was no difference during initiation between tasks for MEP (P = 0.79) or CMEP amplitudes (P = 0.57). However, MEP amplitudes were significantly larger during arm cycling than an intensity-matched tonic contraction after the completion of the 4th (Cycling 76.48 ± 17.35 % of M max, Tonic 63.45 ± 18.45 % of M max, P < 0.05) and 9th revolutions (Cycling 72.37 ± 15.96 % of M max, Tonic 58.1 ± 24.23 % of M max, P < 0.05). There were no differences between conditions in CMEP amplitudes at the 4th (Cycling 49.6 ± 25.4 % of M max, Tonic 41.6 ± 11.2 % of M max, P = 0.31) or the 9th revolution (Cycling 47.2 ± 17.0 % of M max, Tonic 40.8 ± 13.6 % of M max, P = 0.29). These results demonstrate that corticospinal excitability is not different between arm cycling and a tonic contraction at motor output onset, but supraspinal excitability is enhanced during steady-state arm cycling. This suggests a similarity in the way the corticospinal tract initiates motor outputs in humans, regardless of the differences that present themselves in the later, steady-state stages. PMID:27038204

  18. Activation of Visuomotor Systems during Visually Guided Movements: A Functional MRI Study

    NASA Astrophysics Data System (ADS)

    Ellermann, Jutta M.; Siegal, Joel D.; Strupp, John P.; Ebner, Timothy J.; Ugurbil, Kâmil

    1998-04-01

    The dorsal stream is a dominant visuomotor pathway that connects the striate and extrastriate cortices to posterior parietal areas. In turn, the posterior parietal areas send projections to the frontal primary motor and premotor areas. This cortical pathway is hypothesized to be involved in the transformation of a visual input into the appropriate motor output. In this study we used functional magnetic resonance imaging (fMRI) of the entire brain to determine the patterns of activation that occurred while subjects performed a visually guided motor task. In nine human subjects, fMRI data were acquired on a 4-T whole-body MR system equipped with a head gradient coil and a birdcage RF coil using aT*2-weighted EPI sequence. Functional activation was determined for three different tasks: (1) a visuomotor task consisting of moving a cursor on a screen with a joystick in relation to various targets, (2) a hand movement task consisting of moving the joystick without visual input, and (3) a eye movement task consisting of moving the eyes alone without visual input. Blood oxygenation level-dependent (BOLD) contrast-based activation maps of each subject were generated using period cross-correlation statistics. Subsequently, each subject's brain was normalized to Talairach coordinates, and the individual maps were compared on a pixel by pixel basis. Significantly activated pixels common to at least four out of six subjects were retained to construct the final functional image. The pattern of activation during visually guided movements was consistent with the flow of information from striate and extrastriate visual areas, to the posterior parietal complex, and then to frontal motor areas. The extensive activation of this network and the reproducibility among subjects is consistent with a role for the dorsal stream in transforming visual information into motor behavior. Also extensively activated were the medial and lateral cerebellar structures, implicating the cortico

  19. Bacterial skin infections, active component, U.S. Armed Forces, 2000-2012.

    PubMed

    2013-12-01

    From 2000 through 2012, health care records of the Military Health System documented 998,671 incident cases of bacterial skin infections among active component members of the U.S. Armed Forces. Most cases (97.3%) were identified from records of outpatient medical encounters rather than hospitalizations. Cellulitis accounted for half (50.9%) of all cases of bacterial skin infection but 96 percent of associated hospital bed days. Of all cases, 42.3 percent were "other" skin infections (i.e., folliculitis, impetigo, pyoderma, pyogenic granuloma, other and unspecified infections). The remainder were attributable to carbuncles/furuncles (6.6%) and erysipelas (0.1%). Rates of infection were higher among female service members except for "other" skin infections. In general, the highest rates were associated with youth, recruit trainee status, and junior enlisted rank; however, rates of erysipelas were highest among those 50 years and older. Annual incidence rates of all bacterial skin infections have increased greatly since 2000. During the entire period, such infections required more than 1.4 million health care encounters and 94,000 hospital bed-days (equivalent to 257 years of lost duty time). The prevention, early diagnosis, and treatment of bacterial skin infections, particularly in high risk settings, deserve continued emphasis. PMID:24428536

  20. Faster than their prey: new insights into the rapid movements of active carnivorous plants traps.

    PubMed

    Poppinga, Simon; Masselter, Tom; Speck, Thomas

    2013-07-01

    Plants move in very different ways and for different reasons, but some active carnivorous plants perform extraordinary motion: Their snap-, catapult- and suction traps perform very fast and spectacular motions to catch their prey after receiving mechanical stimuli. Numerous investigations have led to deeper insights into the physiology and biomechanics of these trapping devices, but they are far from being fully understood. We review concisely how plant movements are classified and how they follow principles that bring together speed, actuation and architecture of the moving organ. In particular, we describe and discuss how carnivorous plants manage to execute fast motion. We address open questions and assess the prospects for future studies investigating potential universal mechanisms that could be the basis of key characteristic features in plant movement such as stimulus transduction, post-stimulatory mechanical answers, and organ formation.

  1. Detecting the movement and spawning activity of bigheaded carps with environmental DNA.

    PubMed

    Erickson, Richard A; Rees, Christopher B; Coulter, Alison A; Merkes, Christopher M; McCalla, Sunnie G; Touzinsky, Katherine F; Walleser, Liza; Goforth, Reuben R; Amberg, Jon J

    2016-07-01

    Bigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA. We found positive relationships between eDNA and movement and eDNA and hydrography. We did not find a relationship between eDNA and spawning activity in the form of drifting eggs. Our first finding demonstrates how eDNA may be used to monitor species abundance, whereas our second finding illustrates the need for additional research into eDNA methodologies. Current applications of eDNA are widespread, but the relatively new technology requires further refinement.

  2. Detecting the movement and spawning activity of bigheaded carps with environmental DNA

    USGS Publications Warehouse

    Erickson, Richard A.; Rees, Christopher B.; Coulter, Alison A.; Merkes, Christopher; McCalla, Sunnie; Touzinsky, Katherine F; Walleser, Liza R.; Goforth, Reuben R.; Amberg, Jon

    2016-01-01

    Bigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA. We found positive relationships between eDNA and movement and eDNA and hydrography. We did not find a relationship between eDNA and spawning activity in the form of drifting eggs. Our first finding demonstrates how eDNA may be used to monitor species abundance, whereas our second finding illustrates the need for additional research into eDNA methodologies. Current applications of eDNA are widespread, but the relatively new technology requires further refinement.

  3. The Actively Caring for People Movement at Virginia Tech and Beyond: Cultivating Compassion and Relationships in Residence Halls

    ERIC Educational Resources Information Center

    McCarty, Shane M.; Mullins, Taris G.; Geller, E. Scott; Shushok, Frank, Jr.

    2013-01-01

    A professor and a group of student leaders initiated the Actively Caring for People (AC4P) Movement to establish a more civil, compassionate, and inclusive culture by inspiring intentional acts of kindness. This article explores the AC4P Movement in a first-year residence hall at Virginia Tech and a second-year residence hall at University of…

  4. Parkinson's disease: increased motor network activity in the absence of movement.

    PubMed

    Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David

    2013-03-01

    We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.

  5. 26 CFR 31.3401(a)(1)-1 - Remuneration of members of the Armed Forces of the United States for active service in combat...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Remuneration of members of the Armed Forces of... COLLECTION OF INCOME TAX AT SOURCE Collection of Income Tax at Source § 31.3401(a)(1)-1 Remuneration of... as a result of such service. Remuneration paid for active service as a member of the Armed Forces...

  6. Relations among physical activity patterns, lifestyle activities, and fundamental movement skills for Finnish students in grade 7.

    PubMed

    Jaakkola, Timo; Kalaja, Sami; Liukkonen, Jarmo; Jutila, Ari; Virtanen, Petri; Watt, Anthony

    2009-02-01

    To investigate the relations among leisure time physical activity and in sport clubs, lifestyle activities, and the locomotor, balance manipulative skills of Grade 7 students participating in Finnish physical education at a secondary school in central Finland completed self-report questionnaires on their physical activity patterns at leisure time and during sport club participation, and time spent watching television and using the computer and other electronic media. Locomotor skills were analyzed by the leaping test, balance skills by the flamingo standing test, and manipulative skills by the accuracy throwing test. Analysis indicated physical activity in sport clubs positively explained scores on balance and locomotor tests but not on accuracy of throwing. Leisure time physical activity and lifestyle activities were not statistically significant predictors of performance on any movement skill tests. Girls scored higher on the static balance skill and boys higher on the throwing task. Overall, physical activity in sport clubs was more strongly associated with performance on the fundamental movement tasks than was physical activity during leisure. PMID:19425451

  7. How vertical hand movements impact brain activity elicited by literally and metaphorically related words: an ERP study of embodied metaphor

    PubMed Central

    Bardolph, Megan; Coulson, Seana

    2014-01-01

    Embodied metaphor theory suggests abstract concepts are metaphorically linked to more experientially basic ones and recruit sensorimotor cortex for their comprehension. To test whether words associated with spatial attributes reactivate traces in sensorimotor cortex, we recorded EEG from the scalp of healthy adults as they read words while performing a concurrent task involving either upward- or downward- directed arm movements. ERPs were time-locked to words associated with vertical space—either literally (ascend, descend) or metaphorically (inspire, defeat)—as participants made vertical movements that were either congruent or incongruent with the words. Congruency effects emerged 200–300 ms after word onset for literal words, but not until after 500 ms post-onset for metaphorically related words. Results argue against a strong version of embodied metaphor theory, but support a role for sensorimotor simulation in concrete language. PMID:25566041

  8. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements.

    PubMed

    Barow, Ewgenia; Neumann, Wolf-Julian; Brücke, Christof; Huebl, Julius; Horn, Andreas; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

    2014-11-01

    Deep brain stimulation of the globus pallidus internus alleviates involuntary movements in patients with dystonia. However, the mechanism is still not entirely understood. One hypothesis is that deep brain stimulation suppresses abnormally enhanced synchronized oscillatory activity within the motor cortico-basal ganglia network. Here, we explore deep brain stimulation-induced modulation of pathological low frequency (4-12 Hz) pallidal activity that has been described in local field potential recordings in patients with dystonia. Therefore, local field potentials were recorded from 16 hemispheres in 12 patients undergoing deep brain stimulation for severe dystonia using a specially designed amplifier allowing simultaneous high frequency stimulation at therapeutic parameter settings and local field potential recordings. For coherence analysis electroencephalographic activity (EEG) over motor areas and electromyographic activity (EMG) from affected neck muscles were recorded before and immediately after cessation of high frequency stimulation. High frequency stimulation led to a significant reduction of mean power in the 4-12 Hz band by 24.8 ± 7.0% in patients with predominantly phasic dystonia. A significant decrease of coherence between cortical EEG and pallidal local field potential activity in the 4-12 Hz range was revealed for the time period of 30 s after switching off high frequency stimulation. Coherence between EMG activity and pallidal activity was mainly found in patients with phasic dystonic movements where it was suppressed after high frequency stimulation. Our findings suggest that high frequency stimulation may suppress pathologically enhanced low frequency activity in patients with phasic dystonia. These dystonic features are the quickest to respond to high frequency stimulation and may thus directly relate to modulation of pathological basal ganglia activity, whereas improvement in tonic features may depend on long-term plastic changes within the

  9. A method to quantify movement activity of groups of animals using automated image analysis

    NASA Astrophysics Data System (ADS)

    Xu, Jianyu; Yu, Haizhen; Liu, Ying

    2009-07-01

    Most physiological and environmental changes are capable of inducing variations in animal behavior. The behavioral parameters have the possibility to be measured continuously in-situ by a non-invasive and non-contact approach, and have the potential to be used in the actual productions to predict stress conditions. Most vertebrates tend to live in groups, herds, flocks, shoals, bands, packs of conspecific individuals. Under culture conditions, the livestock or fish are in groups and interact on each other, so the aggregate behavior of the group should be studied rather than that of individuals. This paper presents a method to calculate the movement speed of a group of animal in a enclosure or a tank denoted by body length speed that correspond to group activity using computer vision technique. Frame sequences captured at special time interval were subtracted in pairs after image segmentation and identification. By labeling components caused by object movement in difference frame, the projected area caused by the movement of every object in the capture interval was calculated; this projected area was divided by the projected area of every object in the later frame to get body length moving distance of each object, and further could obtain the relative body length speed. The average speed of all object can well respond to the activity of the group. The group activity of a tilapia (Oreochromis niloticus) school to high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were quantified based on these methods. High UIA level condition elicited a marked increase in school activity at the first hour (P<0.05) exhibiting an avoidance reaction (trying to flee from high UIA condition), and then decreased gradually.

  10. EEG activity during movement planning encodes upcoming peak speed and acceleration and improves the accuracy in predicting hand kinematics.

    PubMed

    Yang, Lingling; Leung, Howard; Plank, Markus; Snider, Joe; Poizner, Howard

    2015-01-01

    The relationship between movement kinematics and human brain activity is an important and fundamental question for the development of neural prosthesis. The peak velocity and the peak acceleration could best reflect the feedforward-type movement; thus, it is worthwhile to investigate them further. Most related studies focused on the correlation between kinematics and brain activity during the movement execution or imagery. However, human movement is the result of the motor planning phase as well as the execution phase and researchers have demonstrated that statistical correlations exist between EEG activity during the motor planning and the peak velocity and the peak acceleration using grand-average analysis. In this paper, we examined whether the correlations were concealed in trial-to-trial decoding from the low signal-to-noise ratio of EEG activity. The alpha and beta powers from the movement planning phase were combined with the alpha and beta powers from the movement execution phase to predict the peak tangential speed and acceleration. The results showed that EEG activity from the motor planning phase could also predict the peak speed and the peak acceleration with a reasonable accuracy. Furthermore, the decoding accuracy of the peak speed and the peak acceleration could both be improved by combining band powers from the motor planning phase with the band powers from the movement execution.

  11. Single-neuron activity and eye movements during human REM sleep and awake vision

    PubMed Central

    Andrillon, Thomas; Nir, Yuval; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2015-01-01

    Are rapid eye movements (REMs) in sleep associated with visual-like activity, as during wakefulness? Here we examine single-unit activities (n=2,057) and intracranial electroencephalography across the human medial temporal lobe (MTL) and neocortex during sleep and wakefulness, and during visual stimulation with fixation. During sleep and wakefulness, REM onsets are associated with distinct intracranial potentials, reminiscent of ponto-geniculate-occipital waves. Individual neurons, especially in the MTL, exhibit reduced firing rates before REMs as well as transient increases in firing rate immediately after, similar to activity patterns observed upon image presentation during fixation without eye movements. Moreover, the selectivity of individual units is correlated with their response latency, such that units activated after a small number of images or REMs exhibit delayed increases in firing rates. Finally, the phase of theta oscillations is similarly reset following REMs in sleep and wakefulness, and after controlled visual stimulation. Our results suggest that REMs during sleep rearrange discrete epochs of visual-like processing as during wakefulness. PMID:26262924

  12. Fish Swimming: Patternsin the Mechanical Energy Generation, Transmission and Dissipation from Muscle Activation to Body Movement

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Yu, Y. L.; Tong, B. G.

    2011-09-01

    The power consumption of the undulatory fish swimming is produced by active muscles. The mechanical energy generated by stimulated muscles is dissipated partly by the passive tissues of fish while it is being transmitted to the fluid medium. Furthermore, the effective energy, propelling fish movement, is a part of that delivered by the fish body. The process depends on the interactions of the active muscles, the passive tissues, and the water surrounding the fish body. In the previous works, the body-fluid interactions have been investigated widely, but it is rarely considered how the mechanical energy generates, transmits and dissipates in fish swimming. This paper addresses the regular patterns of energy transfer process from muscle activation to body movement for a cruising lamprey (LAMPREY), a kind of anguilliform swimmer. It is necessary to propose a global modelling of the kinematic chain, which is composed of active muscle force-moment model, fish-body dynamic model and hydrodynamic model in order. The present results show that there are traveling energy waves along the fish body from anterior to posterior, accompanied with energy storing and dissipating due to the viscoelastic property of internal tissues. This study is a preliminary research on the framework of kinematic chain coordination performance in fish swimming.

  13. [Medical support of the Armed Forces of the Russian Federation: results of activity and tasks for 2016].

    PubMed

    Fisun, A Ya

    2016-01-01

    The author gives an analysis of activity of the medical service of the Armed Forces in 2015 concerning development of normative legal basis for the military health care, improvement of the level of operational and mobilization readiness of subunits of army group, and military-medical institutions, improvement of effectiveness of treatment and evacuation measures, health resort treatment, medical stuff training optimization, sanitary-and-epidemiologic support, material and technical support improvement, adoption of advanced scientific achievements focusing on medical care delivery to army group, active development and increase in medical information systems, telehealth. system. The author gives data characterizing state and level of development of medical service of the Armed Forces and its dynamics. Main tasks and parameters of development of the service in 2016 and up to 2020 are formulated. PMID:27120950

  14. Measurement of the vestibulo-ocular reflex by magnetometry during active head movement.

    PubMed

    Aldren, C P; FitzGerald, J E; Kelly, P; Birchall, J P; Murray, A

    1996-10-01

    A new method of measuring the vestibulo-ocular reflex (VOR) during active head movements is presented. Subjects sat and attempted to maintain their gaze upon a fixed point whilst turning their heads from side to side in response to an auditory cue, to attain frequencies of head rotation that increased from 1 Hz to 4 Hz during a 24 s period. Head movements were monitored by a small magnetic field detector worn on the subject's forehead and positioned a set distance from a magnetic field transmitter coil. Eye movements were monitored using the corneo-retinal potential. Gain (eye angle/head angle) and phase difference (eye phase-head phase) were calculated to define the VOR. Three repeat measurements were made on 20 normal subjects. Gain decreased significantly (P < 0.0001) with increasing frequency whilst the phase difference remained unchanged. The 95% prediction intervals were narrow for both gain (+/- 0.28) and phase (+/- 11 degrees). These data, together with the speed and ease of performance of the test, suggest that the test can provide valuable information on the performance of the vestibular system. PMID:8922697

  15. Active movement in vitro of bundle of microfilaments isolated from Nitella cell

    PubMed Central

    1980-01-01

    Subcortical fibrils composed of bundles of F-actin filaments and endoplasmic filaments are responsible for endoplasmic streaming. It is reported here that these fibrils and filaments move actively in an artificial medium containing Mg-ATP and sucrose at neutral pH, when the medium was added to the cytoplasm squeezed out of the cell. The movement was observed by phase-contrast microscopy or dark-field microscopy and recorded on 16-mm film. Chains of chloroplasts linked by subcortical fibrils showed translational movement in the medium. Even after all chloroplasts and the endoplasm were washed away by perfusion with fresh medium, free fibrils and/or filaments (henceforth, referred to as fibers) not attached to chloroplasts continued travelling in the direction of the fiber orientation. Sometimes the fibers formed rings and rotated. Chloroplast chains and free fibers or rings continued moving for 5-30 min at about half the rate of the endoplasmic streaming in vivo. Calcium ion concentrations < 10(-7) M permitted movement to take place. Electron microscopy revealed that both fibers and rings were bundles of F-actin filaments that showed the same polarity after decoration with heavy meromyosin. PMID:7193210

  16. Arm in Arm

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against the blue and white Earth, Mission Specialist (MS) and Payload Commander (PLC) G. David Low and (MS) Peter J.K. Wisoff, wearing Extravehicular Mobility Units (EMUs), simulate handling of large components in space. Above Endeavour's Payload Bay (PLB), Low, anchored by a Portable Foot Restraint (PFR) Manipulator Foot Restraint (MFR) on the Remote Manipulator System (RMS) end effector, maneuvers Wisoff, representing the mass of a large space component. This particular task was rehearsed with eyes toward the servicing of the Hubble Space Telescope (HST) or the assembly and maintenance of Space Station. This Extravehicular Activity (EVA), Detailed Test Objective (DTO) was conducted both with and without intentional disturbances from Endeavour's thrusters and movements of the RMS. The SPACEHAB-01 Commercial Middeck Augmentation Module (CMAM)) is visible in the foreground with the Superfluid Helium On Orbit Transfer (SHOOT) payload liquid helium dewar assembly and the European Retrievable Carrier (EURECA) only partially visible in the aft PLB shadows. The vertical stabilizer and Orbital Maneuvering System (OMS) pods are silhouetted against the Earth's surface.

  17. Post-Movement Beta Activity in Sensorimotor Cortex Indexes Confidence in the Estimations from Internal Models

    PubMed Central

    Wade, Cian; Brown, Peter

    2016-01-01

    Beta oscillations are a dominant feature of the sensorimotor system. A transient and prominent increase in beta oscillations is consistently observed across the sensorimotor cortical-basal ganglia network after cessation of voluntary movement: the post-movement beta synchronization (PMBS). Current theories about the function of the PMBS have been focused on either the closure of motor response or the processing of sensory afferance. Computational models of sensorimotor control have emphasized the importance of the integration between feedforward estimation and sensory feedback, and therefore the putative motor and sensory functions of beta oscillations may reciprocally interact with each other and in fact be indissociable. Here we show that the amplitude of sensorimotor PMBS is modulated by the history of visual feedback of task-relevant errors, and negatively correlated with the trial-to-trial exploratory adjustment in a sensorimotor adaptation task in young healthy human subjects. The PMBS also negatively correlated with the uncertainty associated with the feedforward estimation, which was recursively updated in light of new sensory feedback, as identified by a Bayesian learning model. These results reconcile the two opposing motor and sensory views of the function of PMBS, and suggest a unifying theory in which PMBS indexes the confidence in internal feedforward estimation in Bayesian sensorimotor integration. Its amplitude simultaneously reflects cortical sensory processing and signals the need for maintenance or adaptation of the motor output, and if necessary, exploration to identify an altered sensorimotor transformation. SIGNIFICANCE STATEMENT For optimal sensorimotor control, sensory feedback and feedforward estimation of a movement's sensory consequences should be weighted by the inverse of their corresponding uncertainties, which require recursive updating in a dynamic environment. We show that post-movement beta activity (13–30 Hz) over sensorimotor

  18. The influence of geographic variations on the muscular activity in selected sports movements.

    PubMed

    Clarys, J P; Alewaeters, K; Zinzen, E

    2001-12-01

    Surface EMG (SEMG) has been used frequently to study motion techniques or skills, body positions, material or equipment used, training-methodology and learning processes in sports and ergonomics. Little if any information is available on the effect of the geographical environment on the neuromuscular control of an athlete or workman during his/her performance or effort. Motions were chosen in Alpine skiing and cycling. Thirty-one certified ski instructors and twelve professional road cyclists participated in the study of geographical variance and its impact on muscle activity. SEMG was measured from the agonists and antagonists of the upper- and lower limb. Skiers were measured on downhill slopes ranging from 19 to 51% while the cyclists performed with different saddle positions on 2, 7 and 12% slope inclinations, respectively. Verification of the variation of muscular intensity (IEMG) over the slope inclination during a simulated giant slalom indicated that the muscular activity increased with increasing slope angle and decreased with decreasing slope angle, while heart rate measured with short-range radio telemetry increased at a constant rate between start and finish independent of the geographical variations. In a direct descent on different slopes % levels the integrated EMG is well related to the inclination (r=0.82) confirming the findings of the giant slalom. In cycling we found that, regardless of the pelvis position, the muscular intensity of lower limb muscles increased with increasing slope inclination, while the muscular intensity of the arms decreased with the same increasing slope inclination. In addition the decreased intensity of the arm muscles remained significantly higher with the pelvis (saddle) fully forward. The geography of the terrain did influence the neuromuscular work and therewith probably the performance also. The influence however, varies with specific circumstances and is coupled with items of variability of the equipment used and

  19. Active Ankle Movements Prevent Formation of Lower-Extremity Deep Venous Thrombosis After Orthopedic Surgery

    PubMed Central

    Li, Ye; Guan, Xiang-Hong; Wang, Rui; Li, Bin; Ning, Bo; Su, Wei; Sun, Tao; Li, Hong-Yan

    2016-01-01

    Background The aim of this study was to assess the preventive value of active ankle movements in the formation of lower-extremity deep venous thrombosis (DVT), attempting to develop a new method for rehabilitation nursing after orthopedic surgery. Material/Methods We randomly assigned 193 patients undergoing orthopedic surgery in the lower limbs into a case group (n=96) and a control group (n=97). The control group received routine nursing while the case group performed active ankle movements in addition to receiving routine nursing. Maximum venous outflow (MVO), maximum venous capacity (MVC), and blood rheology were measured and the incidence of DVT was recorded. Results On the 11th and 14th days of the experiment, the case group had significantly higher MVO and MVC than the control group (all P<0.05). The whole-blood viscosity at high shear rate and the plasma viscosity were significantly lower in the case group than in the control group on the 14th day (both P<0.05). During the experiment, a significantly higher overall DVT incidence was recorded in the control group (8 with asymptomatic DVT) compared with the case group (1 with asymptomatic DVT) (P=0.034). During follow-up, the case group presented a significantly lower DVT incidence (1 with symptomatic DVT and 4 with asymptomatic DVT) than in the control group (5 with symptomatic DVT and 10 with asymptomatic DVT) (P=0.031). Conclusions Through increasing MVO and MVC and reducing blood rheology, active ankle movements may prevent the formation of lower-extremity DVT after orthopedic surgery. PMID:27600467

  20. Active Ankle Movements Prevent Formation of Lower-Extremity Deep Venous Thrombosis After Orthopedic Surgery.

    PubMed

    Li, Ye; Guan, Xiang-Hong; Wang, Rui; Li, Bin; Ning, Bo; Su, Wei; Sun, Tao; Li, Hong-Yan

    2016-01-01

    BACKGROUND The aim of this study was to assess the preventive value of active ankle movements in the formation of lower-extremity deep venous thrombosis (DVT), attempting to develop a new method for rehabilitation nursing after orthopedic surgery. MATERIAL AND METHODS We randomly assigned 193 patients undergoing orthopedic surgery in the lower limbs into a case group (n=96) and a control group (n=97). The control group received routine nursing while the case group performed active ankle movements in addition to receiving routine nursing. Maximum venous outflow (MVO), maximum venous capacity (MVC), and blood rheology were measured and the incidence of DVT was recorded. RESULTS On the 11th and 14th days of the experiment, the case group had significantly higher MVO and MVC than the control group (all P<0.05). The whole-blood viscosity at high shear rate and the plasma viscosity were significantly lower in the case group than in the control group on the 14th day (both P<0.05). During the experiment, a significantly higher overall DVT incidence was recorded in the control group (8 with asymptomatic DVT) compared with the case group (1 with asymptomatic DVT) (P=0.034). During follow-up, the case group presented a significantly lower DVT incidence (1 with symptomatic DVT and 4 with asymptomatic DVT) than in the control group (5 with symptomatic DVT and 10 with asymptomatic DVT) (P=0.031). CONCLUSIONS Through increasing MVO and MVC and reducing blood rheology, active ankle movements may prevent the formation of lower-extremity DVT after orthopedic surgery. PMID:27600467

  1. Neural co-activation as a yardstick of implicit motor learning and the propensity for conscious control of movement.

    PubMed

    Zhu, F F; Poolton, J M; Wilson, M R; Maxwell, J P; Masters, R S W

    2011-04-01

    Two studies examined EEG co-activation (coherence) between the verbal-analytical (T3) and motor planning (Fz) regions during a golf putting task. In Study 1, participants with a strong propensity to consciously monitor and control their movements, determined psychometrically by high scores on a movement specific Reinvestment Scale, displayed more alpha2 T3-Fz co-activation than participants with a weak propensity. In Study 2, participants who practiced a golf putting task implicitly (via an errorless learning protocol) displayed less alpha2 T3-Fz co-activation than those who practiced explicitly (by errorful learning). In addition, explicit but not implicit motor learners displayed more T3-Fz co-activation during golf putting under pressure, implying that verbal-analytical processing of putting movements increased under pressure. These findings provide neuropsychological evidence that supports claims that implicit motor learning can be used to limit movement specific reinvestment. PMID:21315795

  2. Prediction of Imagined Single-Joint Movements in a Person with High Level Tetraplegia

    PubMed Central

    Simeral, John D.; Donoghue, John P.; Hochberg, Leigh R.; Kirsch, Robert F.

    2013-01-01

    Cortical neuroprostheses for movement restoration require developing models for relating neural activity to desired movement. Previous studies have focused on correlating single-unit activities (SUA) in primary motor cortex to volitional arm movements in able-bodied primates. The extent of the cortical information relevant to arm movements remaining in severely paralyzed individuals is largely unknown. We record intracortical signals using a microelectrode array chronically implanted in the precentral gyrus of a person with tetraplegia, and estimate positions of imagined single-joint arm movements. Using visually guided motor imagery, the participant imagined performing eight distinct single-joint arm movements while SUA, multi-spike trains (MSP), multi-unit activity (MUA), and local field potential time (LFPrms) and frequency signals (LFPstft) were recorded. Using linear system identification, imagined joint trajectories were estimated with 20 – 60% variance explained, with wrist flexion/extension predicted the best and pronation/supination the poorest. Statistically, decoding of MSP and LFPstft yielded estimates that equaled those of SUA. Including multiple signal types in a decoder increased prediction accuracy in all cases. We conclude that signals recorded from a single restricted region of the precentral gyrus in this person with tetraplegia contained useful information regarding the intended movements of upper extremity joints. PMID:22851229

  3. Prediction of imagined single-joint movements in a person with high-level tetraplegia.

    PubMed

    Ajiboye, A Bolu; Simeral, John D; Donoghue, John P; Hochberg, Leigh R; Kirsch, Robert F

    2012-10-01

    Cortical neuroprostheses for movement restoration require developing models for relating neural activity to desired movement. Previous studies have focused on correlating single-unit activities (SUA) in primary motor cortex to volitional arm movements in able-bodied primates. The extent of the cortical information relevant to arm movements remaining in severely paralyzed individuals is largely unknown. We record intracortical signals using a microelectrode array chronically implanted in the precentral gyrus of a person with tetraplegia, and estimate positions of imagined single-joint arm movements. Using visually guided motor imagery, the participant imagined performing eight distinct single-joint arm movements, while SUA, multispike trains (MSP), multiunit activity, and local field potential time (LFPrms), and frequency signals (LFPstft) were recorded. Using linear system identification, imagined joint trajectories were estimated with 20-60% variance explained, with wrist flexion/extension predicted the best and pronation/supination the poorest. Statistically, decoding of MSP and LFPstft yielded estimates that equaled those of SUA. Including multiple signal types in a decoder increased prediction accuracy in all cases. We conclude that signals recorded from a single restricted region of the precentral gyrus in this person with tetraplegia contained useful information regarding the intended movements of upper extremity joints. PMID:22851229

  4. Activity of identified wrist-related pallidal neurons during step and ramp wrist movements in the monkey.

    PubMed

    Hamada, I; DeLong, M R; Mano, N

    1990-12-01

    1. The activity of globus pallidus (GP) neurons (n = 1,117) was studied in two monkeys to reexamine the relation of neuronal activity to movement type (slow vs. fast) while they performed both a visually guided step and ramp wrist tracking task. To select neurons specifically related to wrist movements, we employed both a somatosensory examination of individual body parts and a statistical analysis of the strength of temporal coupling of neuronal discharges to active wrist movement. 2. Neuronal responses to somatosensory stimulation were studied in 1,000 high-frequency GP neurons, of which 686 exhibited clear responses to manipulation of body parts. Of the latter, 336 responded to passive manipulation of forelimb joints and 58 selectively to passive flexion or extension of the wrist. 3. In the external segment of GP (GPe), most neurons responding to passive wrist movement were found to be clustered in four to five adjacent, closely positioned (separated by 200 microns) tracks in single coronal planes. The clusters were irregular in shape with a maximal width of 800-1,000 microns. Separate clusters of neurons responsive to passive wrist movement were identified in planes 3 mm apart in one monkey and in planes 500 microns apart in the other. Multiple clusters of neurons were also found for neurons responsive to joints other than the wrist. These findings suggest a more discrete and complex representation of individual joints in the primate GP than previously conceived. 4. During the performance of the wrist flexion and extension task, 92 neurons showed clear and consistent changes in activity. For these neurons we measured, with a statistical method on a trial-by-trial basis, the strength of temporal coupling between the onset of active wrist movement and the onset of change in neuronal discharge rate. Fifteen neurons showed changes in activity time-locked to the onset of active wrist movement. 5. Twelve pallidal neurons were classified as "wrist-related" based on

  5. Octopus-inspired multi-arm robotic swimming.

    PubMed

    Sfakiotakis, M; Kazakidi, A; Tsakiris, D P

    2015-06-01

    The outstanding locomotor and manipulation characteristics of the octopus have recently inspired the development, by our group, of multi-functional robotic swimmers, featuring both manipulation and locomotion capabilities, which could be of significant engineering interest in underwater applications. During its little-studied arm-swimming behavior, as opposed to the better known jetting via the siphon, the animal appears to generate considerable propulsive thrust and rapid acceleration, predominantly employing movements of its arms. In this work, we capture the fundamental characteristics of the corresponding complex pattern of arm motion by a sculling profile, involving a fast power stroke and a slow recovery stroke. We investigate the propulsive capabilities of a multi-arm robotic system under various swimming gaits, namely patterns of arm coordination, which achieve the generation of forward, as well as backward, propulsion and turning. A lumped-element model of the robotic swimmer, which considers arm compliance and the interaction with the aquatic environment, was used to study the characteristics of these gaits, the effect of various kinematic parameters on propulsion, and the generation of complex trajectories. This investigation focuses on relatively high-stiffness arms. Experiments employing a compliant-body robotic prototype swimmer with eight compliant arms, all made of polyurethane, inside a water tank, successfully demonstrated this novel mode of underwater propulsion. Speeds of up to 0.26 body lengths per second (approximately 100 mm s(-1)), and propulsive forces of up to 3.5 N were achieved, with a non-dimensional cost of transport of 1.42 with all eight arms and of 0.9 with only two active arms. The experiments confirmed the computational results and verified the multi-arm maneuverability and simultaneous object grasping capability of such systems. PMID:25970151

  6. Octopus-inspired multi-arm robotic swimming.

    PubMed

    Sfakiotakis, M; Kazakidi, A; Tsakiris, D P

    2015-05-13

    The outstanding locomotor and manipulation characteristics of the octopus have recently inspired the development, by our group, of multi-functional robotic swimmers, featuring both manipulation and locomotion capabilities, which could be of significant engineering interest in underwater applications. During its little-studied arm-swimming behavior, as opposed to the better known jetting via the siphon, the animal appears to generate considerable propulsive thrust and rapid acceleration, predominantly employing movements of its arms. In this work, we capture the fundamental characteristics of the corresponding complex pattern of arm motion by a sculling profile, involving a fast power stroke and a slow recovery stroke. We investigate the propulsive capabilities of a multi-arm robotic system under various swimming gaits, namely patterns of arm coordination, which achieve the generation of forward, as well as backward, propulsion and turning. A lumped-element model of the robotic swimmer, which considers arm compliance and the interaction with the aquatic environment, was used to study the characteristics of these gaits, the effect of various kinematic parameters on propulsion, and the generation of complex trajectories. This investigation focuses on relatively high-stiffness arms. Experiments employing a compliant-body robotic prototype swimmer with eight compliant arms, all made of polyurethane, inside a water tank, successfully demonstrated this novel mode of underwater propulsion. Speeds of up to 0.26 body lengths per second (approximately 100 mm s(-1)), and propulsive forces of up to 3.5 N were achieved, with a non-dimensional cost of transport of 1.42 with all eight arms and of 0.9 with only two active arms. The experiments confirmed the computational results and verified the multi-arm maneuverability and simultaneous object grasping capability of such systems.

  7. Microgravity effects on 'postural' muscle activity patterns

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1994-01-01

    Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using electromyography (EMG) to monitor 'postural' muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.

  8. Voluntary motor commands reveal awareness and control of involuntary movement.

    PubMed

    De Havas, Jack; Ghosh, Arko; Gomi, Hiroaki; Haggard, Patrick

    2016-10-01

    The capacity to inhibit actions is central to voluntary motor control. However, the control mechanisms and subjective experience involved in voluntarily stopping an involuntary movement remain poorly understood. Here we examined, in humans, the voluntary inhibition of the Kohnstamm phenomenon, in which sustained voluntary contraction of shoulder abductors is followed by involuntary arm raising. Participants were instructed to stop the involuntary movement, hold the arm in a constant position, and 'release' the inhibition after ∼2s. Participants achieved this by modulating agonist muscle activity, rather than by antagonist contraction. Specifically, agonist muscle activity plateaued during this voluntary inhibition, and resumed its previous increase thereafter. There was no discernible antagonist activation. Thus, some central signal appeared to temporarily counter the involuntary motor drive, without directly affecting the Kohnstamm generator itself. We hypothesise a form of "negative motor command" to account for this novel finding. We next tested the specificity of the negative motor command, by inducing bilateral Kohnstamm movements, and instructing voluntary inhibition for one arm only. The results suggested negative motor commands responsible for inhibition are initially broad, affecting both arms, and then become focused. Finally, a psychophysical investigation found that the perceived force of the aftercontraction was significantly overestimated, relative to voluntary contractions with similar EMG levels. This finding is consistent with the hypothesis that the Kohnstamm generator does not provide an efference copy signal. Our results shed new light on this interesting class of involuntary movement, and provide new information about voluntary inhibition of action. PMID:27399155

  9. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect

    PubMed Central

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants’ behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.’s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out. PMID:26594188

  10. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect.

    PubMed

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants' behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.

  11. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect.

    PubMed

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants' behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out. PMID:26594188

  12. Multicomponent control strategy underlying production of maximal hand velocity during horizontal arm swing.

    PubMed

    Kim, Young-Kwan; Hinrichs, Richard N; Dounskaia, Natalia

    2009-11-01

    Movement control responsible for generation of maximal hand velocity was studied on the example of horizontal arm swing that is a component of various sports activities. The movement was performed with the nondominant arm in similarity with the baseball bat swing. The task was to generate maximum hand velocity at a target. The movement included trunk long-axis rotation and horizontal shoulder and elbow extension. Kinematics and torque analyses were performed to study the organization of fastest movements and to compare trials representing the best and worst performance in each subject. Results revealed complex control strategy, with the trunk, shoulder, and elbow playing unique roles in generation of maximal hand velocity. The trunk provided a crucial contribution, directly, rotating the entire arm, and indirectly, exerting interaction torque that caused swift elbow extension. The major role of the shoulder was to transfer the mechanical effect of trunk motion to the elbow. However, the shoulder became the primary motion generator when the trunk reached its limits of rotation, revealing sequential organization of control. The role of the elbow was to maximally comply with passive influence of proximal joints. The findings are discussed in light of the leading joint hypothesis that offers a straightforward interpretation of control of horizontal arm swing as well as practically efficient recommendations for increases in movement speed. The revealed role of intersegmental dynamics in production of high movement speed suggests that movement slowness characteristic for some motor disorders may be partially a compensatory strategy that facilitates regulation of interaction torque. PMID:19759324

  13. Multicomponent control strategy underlying production of maximal hand velocity during horizontal arm swing.

    PubMed

    Kim, Young-Kwan; Hinrichs, Richard N; Dounskaia, Natalia

    2009-11-01

    Movement control responsible for generation of maximal hand velocity was studied on the example of horizontal arm swing that is a component of various sports activities. The movement was performed with the nondominant arm in similarity with the baseball bat swing. The task was to generate maximum hand velocity at a target. The movement included trunk long-axis rotation and horizontal shoulder and elbow extension. Kinematics and torque analyses were performed to study the organization of fastest movements and to compare trials representing the best and worst performance in each subject. Results revealed complex control strategy, with the trunk, shoulder, and elbow playing unique roles in generation of maximal hand velocity. The trunk provided a crucial contribution, directly, rotating the entire arm, and indirectly, exerting interaction torque that caused swift elbow extension. The major role of the shoulder was to transfer the mechanical effect of trunk motion to the elbow. However, the shoulder became the primary motion generator when the trunk reached its limits of rotation, revealing sequential organization of control. The role of the elbow was to maximally comply with passive influence of proximal joints. The findings are discussed in light of the leading joint hypothesis that offers a straightforward interpretation of control of horizontal arm swing as well as practically efficient recommendations for increases in movement speed. The revealed role of intersegmental dynamics in production of high movement speed suggests that movement slowness characteristic for some motor disorders may be partially a compensatory strategy that facilitates regulation of interaction torque.

  14. Multicomponent Control Strategy Underlying Production of Maximal Hand Velocity During Horizontal Arm Swing

    PubMed Central

    Kim, Young-Kwan; Hinrichs, Richard N.

    2009-01-01

    Movement control responsible for generation of maximal hand velocity was studied on the example of horizontal arm swing that is a component of various sports activities. The movement was performed with the nondominant arm in similarity with the baseball bat swing. The task was to generate maximum hand velocity at a target. The movement included trunk long-axis rotation and horizontal shoulder and elbow extension. Kinematics and torque analyses were performed to study the organization of fastest movements and to compare trials representing the best and worst performance in each subject. Results revealed complex control strategy, with the trunk, shoulder, and elbow playing unique roles in generation of maximal hand velocity. The trunk provided a crucial contribution, directly, rotating the entire arm, and indirectly, exerting interaction torque that caused swift elbow extension. The major role of the shoulder was to transfer the mechanical effect of trunk motion to the elbow. However, the shoulder became the primary motion generator when the trunk reached its limits of rotation, revealing sequential organization of control. The role of the elbow was to maximally comply with passive influence of proximal joints. The findings are discussed in light of the leading joint hypothesis that offers a straightforward interpretation of control of horizontal arm swing as well as practically efficient recommendations for increases in movement speed. The revealed role of intersegmental dynamics in production of high movement speed suggests that movement slowness characteristic for some motor disorders may be partially a compensatory strategy that facilitates regulation of interaction torque. PMID:19759324

  15. Inter-joint coupling and joint angle synergies of human catching movements.

    PubMed

    Bockemühl, Till; Troje, Nikolaus F; Dürr, Volker

    2010-02-01

    A central question in motor control is how the central nervous system (CNS) deals with redundant degrees of freedom (DoFs) inherent in the musculoskeletal system. One way to simplify control of a redundant system is to combine several DoFs into synergies. In reaching movements of the human arm, redundancy occurs at the kinematic level because there is an unlimited number of arm postures for each position of the hand. Redundancy also occurs at the level of muscle forces because each arm posture can be maintained by a set of muscle activation patterns. Both postural and force-related motor synergies may contribute to simplify the control problem. The present study analyzes the kinematic complexity of natural, unrestrained human arm movements, and detects the amount of kinematic synergy in a vast variety of arm postures. We have measured inter-joint coupling of the human arm and shoulder girdle during fast, unrestrained, and untrained catching movements. Participants were asked to catch a ball launched towards them on 16 different trajectories. These had to be reached from two different initial positions. Movement of the right arm was recorded using optical motion capture and was transformed into 10 joint angle time courses, corresponding to 3 DoFs of the shoulder girdle and 7 of the arm. The resulting time series of the arm postures were analyzed by principal components analysis (PCA). We found that the first three principal components (PCs) always captured more than 97% of the variance. Furthermore, subspaces spanned by PC sets associated with different catching positions varied smoothly across the arm's workspace. When we pooled complete sets of movements, three PCs, the theoretical minimum for reaching in 3D space, were sufficient to explain 80% of the data's variance. We assumed that the linearly correlated DoFs of each significant PC represent cardinal joint angle synergies, and showed that catching movements towards a multitude of targets in the arm's workspace

  16. The effects of horseback riding simulator exercises on the muscle activity of the lower extremities according to changes in arm posture

    PubMed Central

    Park, Jungseo; Lee, Sangyong; Lee, Daehee

    2015-01-01

    [Purpose] This study aimed to determine the effects of horseback riding simulator exercise on the muscle activities of the lower extremities according to changes in arm posture. [Subjects] The subjects of this study were 30 normal adult males and females. [Methods] The horseback riding simulator exercise used a horseback riding simulator device; two arm postures were used, posture 1 (holding the handle of the device) and posture 2 (crossing both arms, with both hands on the shoulders). Electromyography was used to compare the muscle activities of the rectus femoris, biceps femoris, and hip adductors in the lower extremities. [Results] Posture 2 had significantly higher muscle activity than posture 1. [Conclusion] Posture 2, which entailed crossing both arms with both hands on the shoulders, was an effective intervention for improved muscle activity in the hip adductors. PMID:26504280

  17. Reduced motor cortex activity during movement preparation following a period of motor skill practice.

    PubMed

    Wright, David J; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  18. Activity in descending dopaminergic neurons represents but is not required for leg movements in the fruit fly Drosophila.

    PubMed

    Tschida, Katherine; Bhandawat, Vikas

    2015-03-01

    Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output.

  19. Activity in descending dopaminergic neurons represents but is not required for leg movements in the fruit fly Drosophila

    PubMed Central

    Tschida, Katherine; Bhandawat, Vikas

    2015-01-01

    Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output. PMID:25742959

  20. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements.

    PubMed

    Hikosaka, O; Sakamoto, M; Usui, S

    1989-04-01

    1. We recorded single cell activities in the caudate nucleus of the monkeys trained to perform a series of visuomotor tasks. In the first part of this paper, we summarize the types and locations of neurons in the monkey caudate nucleus. In the second part, we report the characteristics of neurons related to saccadic eye movements. 2. Neurons were classified into two types in terms of spontaneous discharge pattern. A majority of the neurons (2,287/2,559, 89%) had very low-frequency discharges (mostly less than 1 Hz). The rest (n = 272) showed irregular-tonic discharges (3-8 Hz) with broad spikes. 3. Of 2,559 neurons tested, 867 showed spike activity related to some aspects of the tasks; 502 neurons showed discharges in response to environmental changes outside, not in relation to, the tasks. None of the neurons responsive in or outside the tasks belonged to the irregular-tonic type. 4. The task-related activities were classified as: Saccade-related, Visual, Auditory, Cognitive, Fixation-related, and Reward-related. The activities detected outside the tasks were classified into: Visual, Auditory, Movement-related, Reward-related, and Other. Few neurons had both task-related and task-unrelated activities. 5. The locations of recorded neurons were determined using a coordinate system based on the anterior and posterior commissures. Task-related neurons were clustered longitudinally in the central part of the caudate. Neurons responsive outside the tasks were more widely distributed; specifically, auditory neurons were in the medial part, whereas movement-related neurons were in the lateral part. The irregular-tonic neurons were dispersed all over the caudate. 6. The monkey was trained to fixate on a spot of light on the screen and, when the spot moved, to follow it by making a saccade. A visually guided saccade occurred when the spot moved to another location without a time gap (saccade task). A memory-guided saccade occurred when the spot first disappeared and after a

  1. [Prospective planning of activity of the Medical service of the Armed Forces of the Russian Federation for 2016-2020].

    PubMed

    Fisun, A Ya; Kalachev, O V; Redkin, E E; Bershev, M A; Murzo, A V

    2016-04-01

    The article reflects the characteristics of the Plan of activities of the Ministry of Defence of the Russian Federation for 2016-2020--an important long-term planning document of the Armed Forces. It stressed the need for synchronization of activities for chain of command and deadline. Presented structure of the Medical Service Plan Military District operations (fleet) military medical organization. The attention is focused on the content of its sections. For example, a military hospital layouts presented an action plan and a schedule of events. Reflecting the requirements of the Minister of Defense for the development and adjustment plans, indicators of their performance. PMID:27416714

  2. [Prospective planning of activity of the Medical service of the Armed Forces of the Russian Federation for 2016-2020].

    PubMed

    Fisun, A Ya; Kalachev, O V; Redkin, E E; Bershev, M A; Murzo, A V

    2016-04-01

    The article reflects the characteristics of the Plan of activities of the Ministry of Defence of the Russian Federation for 2016-2020--an important long-term planning document of the Armed Forces. It stressed the need for synchronization of activities for chain of command and deadline. Presented structure of the Medical Service Plan Military District operations (fleet) military medical organization. The attention is focused on the content of its sections. For example, a military hospital layouts presented an action plan and a schedule of events. Reflecting the requirements of the Minister of Defense for the development and adjustment plans, indicators of their performance.

  3. The sup-pf-2 mutations of Chlamydomonas alter the activity of the outer dynein arms by modification of the gamma-dynein heavy chain

    PubMed Central

    1996-01-01

    The sup-pf-2 mutation is a member of a group of dynein regulatory mutations that are capable of restoring motility to paralyzed central pair or radial spoke defective strains. Previous work has shown that the flagellar beat frequency is reduced in sup-pf-2, but little else was known about the sup-pf-2 phenotype (Huang, B., Z. Ramanis, and D.J.L. Luck. 1982. Cell. 28:115-125; Brokaw, C.J., and D.J.L. Luck. 1985. Cell Motil. 5:195-208). We have reexamined sup-pf-2 using improved biochemical and structural techniques and by the analysis of additional sup-pf-2 alleles. We have found that the sup-pf-2 mutations are associated with defects in the outer dynein arms. Biochemical analysis of sup-pf-2-1 axonemes indicates that both axonemal ATPase activity and outer arm polypeptides are reduced by 40-50% when compared with wild type. By thin-section EM, these defects correlate with an approximately 45% loss of outer dynein arm structures. Interestingly, this loss is biased toward a subset of outer doublets, resulting in a radial asymmetry that may reflect some aspect of outer arm assembly. The defects in outer arm assembly do not appear to result from defects in either the outer doublet microtubules or the outer arm docking structures, but rather appear to result from defects in outer dynein arm components. Analysis of new sup-pf-2 mutations indicates that the severity of the outer arm assembly defects varies with different alleles. Complementation tests and linkage analysis reveal that the sup- pf-2 mutations are alleles of the PF28/ODA2 locus, which is thought to encode the gamma-dynein heavy chain subunit of the outer arm. The sup- pf-2 mutations therefore appear to alter the activity of the outer dynein arms by modification of the gamma-dynein heavy chain. PMID:8991096

  4. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  5. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  6. GPi Oscillatory Activity Differentiates Tics from the Resting State, Voluntary Movements, and the Unmedicated Parkinsonian State

    PubMed Central

    Jimenez-Shahed, Joohi; Telkes, Ilknur; Viswanathan, Ashwin; Ince, Nuri F.

    2016-01-01

    Background: Deep brain stimulation (DBS) is an emerging treatment strategy for severe, medication-refractory Tourette syndrome (TS). Thalamic (Cm-Pf) and pallidal (including globus pallidus interna, GPi) targets have been the most investigated. While the neurophysiological correlates of Parkinson's disease (PD) in the GPi and subthalamic nucleus (STN) are increasingly recognized, these patterns are not well characterized in other disease states. Recent findings indicate that the cross-frequency coupling (CFC) between beta band and high frequency oscillations (HFOs) within the STN in PD patients is pathologic. Methods: We recorded intraoperative local field potentials (LFPs) from the postero-ventrolateral GPi in three adult patients with TS at rest, during voluntary movements, and during tic activity and compared them to the intraoperative GPi-LFP activity recorded from four unmedicated PD patients at rest. Results: In all PD patients, we noted excessive beta band activity (13–30 Hz) at rest which consistently modulated the amplitude of the co-existent HFOs observed between 200 and 400 Hz, indicating the presence of beta-HFO CFC. In all 3TS patients at rest, we observed theta band activity (4–7 Hz) and HFOs. Two patients had beta band activity, though at lower power than theta oscillations. Tic activity was associated with increased high frequency (200–400 Hz) and gamma band (35–200 Hz) activity. There was no beta-HFO CFC in TS patients at rest. However, CFC between the phase of 5–10 Hz band activity and the amplitude of HFOs was found in two TS patients. During tics, this shifted to CFC between the phase of beta band activity and the amplitude of HFOs in all subjects. Conclusions: To our knowledge this is the first study that shows that beta-HFO CFC exists in the GPi of TS patients during tics and at rest in PD patients, and suggests that this pattern might be specific to pathologic/involuntary movements. Furthermore, our findings suggest that during tics

  7. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and

  8. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and

  9. Tropomyosin movement on F-actin during muscle activation explained by energy landscapes.

    PubMed

    Orzechowski, Marek; Moore, Jeffrey R; Fischer, Stefan; Lehman, William

    2014-03-01

    Muscle contraction is regulated by tropomyosin movement across the thin filament surface, which exposes or blocks myosin-binding sites on actin. Recent atomic structures of F-actin-tropomyosin have yielded the positions of tropomyosin on myosin-free and myosin-decorated actin. Here, the repositioning of α-tropomyosin between these locations on F-actin was systematically examined by optimizing the energy of the complex for a wide range of tropomyosin positions on F-actin. The resulting energy landscape provides a full-map of the F-actin surface preferred by tropomyosin, revealing a broad energy basin associated with the tropomyosin position that blocks myosin-binding. This is consistent with previously proposed low-energy oscillations of semi-rigid tropomyosin, necessary for shifting of tropomyosin following troponin-binding. In contrast, the landscape shows much less favorable energies when tropomyosin locates near its myosin-induced "open-state" position. This indicates that spontaneous movement of tropomyosin away from its energetic "ground-state" to the open-state is unlikely in absence of myosin. Instead, myosin-binding must drive tropomyosin toward the open-state to activate the thin filament. Additional energy landscapes were computed for disease-causing actin mutants that distort the topology of the actin-tropomyosin energy landscape, explaining their phenotypes. Thus, the computation of such energy landscapes offers a sensitive way to estimate the impact of mutations.

  10. Upper limb activity in children with unilateral spastic cerebral palsy: the role of vision in movement strategies.

    PubMed

    Savelsbergh, Geert J P; Ledebt, Annick; Smorenburg, Ana R P; Deconinck, Frederik

    2013-11-01

    This article reviews the capacity of children with unilateral spastic cerebral palsy (USCP) to (re)organize the available degrees of freedom and to use visual information in interceptive actions during motion with either the impaired or the less-impaired hand. Atypical reaching movements, such as increased trunk movement or slower wrist velocity, are considered adaptive coordination patterns that are the result of a change in the constraints. It is argued that manipulation of the task context facilitates children with USCP to enhance performance. For example, when reducing the time available to intercept a ball, the children are found to exceed their usual maximum walking speed and to increase range of motion of the elbow. In addition, the children appear to rely on a visual information strategy similar to typically developing children ('bearing angle'), although more variability is observed when using the impaired arm. The implications for interventions are, it should be recognized, that these children adapt to the impairment by reorganizing the movement system and that this process can be influenced by changing the task context. Attention should be paid to the importance of using correct visual cues for initiation and guidance of interceptive actions, which may be provoked by using external visual triggers.

  11. Designing and testing lightweight shoulder prostheses with hybrid actuators for movements involved in typical activities of daily living and impact absorption

    PubMed Central

    Sekine, Masashi; Kita, Kahori; Yu, Wenwei

    2015-01-01

    Unlike forearm amputees, transhumeral amputees have residual stumps that are too small to provide a sufficient range of operation for their prosthetic parts to perform usual activities of daily living. Furthermore, it is difficult for small residual stumps to provide sufficient impact absorption for safe manipulation in daily living, as intact arms do. Therefore, substitution of upper limb function in transhumeral amputees requires a sufficient range of motion and sufficient viscoelasticity for shoulder prostheses under critical weight and dimension constraints. We propose the use of two different types of actuators, ie, pneumatic elastic actuators (PEAs) and servo motors. PEAs offer high power-to-weight performance and have intrinsic viscoelasticity in comparison with motors or standard industrial pneumatic cylinder actuators. However, the usefulness of PEAs in large working spaces is limited because of their short strokes. Servo motors, in contrast, can be used to achieve large ranges of motion. In this study, the relationship between the force and stroke of PEAs was investigated. The impact absorption of both types of actuators was measured using a single degree-of-freedom prototype to evaluate actuator compliance for safety purposes. Based on the fundamental properties of the actuators identified, a four degree-of-freedom robotic arm is proposed for prosthetic use. The configuration of the actuators and functional parts was designed to achieve a specified range of motion and torque calculated from the results of a simulation of typical movements performed in usual activities of daily living. Our experimental results showed that the requirements for the shoulder prostheses could be satisfied. PMID:26185472

  12. 49 CFR 234.255 - Gate arm and gate mechanism.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Gate arm and gate mechanism. 234.255 Section 234....255 Gate arm and gate mechanism. (a) Each gate arm and gate mechanism shall be inspected at least once each month. (b) Gate arm movement shall be observed for proper operation at least once each month....

  13. 49 CFR 234.255 - Gate arm and gate mechanism.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Gate arm and gate mechanism. 234.255 Section 234... Maintenance, Inspection, and Testing Inspections and Tests § 234.255 Gate arm and gate mechanism. (a) Each gate arm and gate mechanism shall be inspected at least once each month. (b) Gate arm movement shall...

  14. 49 CFR 234.255 - Gate arm and gate mechanism.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....255 Gate arm and gate mechanism. (a) Each gate arm and gate mechanism shall be inspected at least once each month. (b) Gate arm movement shall be observed for proper operation at least once each month. (c... 49 Transportation 4 2014-10-01 2014-10-01 false Gate arm and gate mechanism. 234.255 Section...

  15. 49 CFR 234.255 - Gate arm and gate mechanism.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Gate arm and gate mechanism. 234.255 Section 234... Maintenance, Inspection, and Testing Inspections and Tests § 234.255 Gate arm and gate mechanism. (a) Each gate arm and gate mechanism shall be inspected at least once each month. (b) Gate arm movement shall...

  16. 49 CFR 234.255 - Gate arm and gate mechanism.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....255 Gate arm and gate mechanism. (a) Each gate arm and gate mechanism shall be inspected at least once each month. (b) Gate arm movement shall be observed for proper operation at least once each month. (c... 49 Transportation 4 2013-10-01 2013-10-01 false Gate arm and gate mechanism. 234.255 Section...

  17. Absent movement-related cortical potentials in children with primary motor stereotypies.

    PubMed

    Houdayer, Elise; Walthall, Jessica; Belluscio, Beth A; Vorbach, Sherry; Singer, Harvey S; Hallett, Mark

    2014-08-01

    The underlying pathophysiologic mechanism for complex motor stereotypies in children is unknown, with hypotheses ranging from an arousal to a motor control disorder. Movement-related cortical potentials (MRCPs), representing the activation of cerebral areas involved in the generation of movements, precede and accompany self-initiated voluntary movements. The goal of this study was to compare cerebral activity associated with stereotypies to that seen with voluntary movements in children with primary complex motor stereotypies. Electroencephalographic (EEG) activity synchronized with video recording was recorded in 10 children diagnosed with primary motor stereotypies and 7 controls. EEG activity related to stereotypies and self-paced arm movements were analyzed for presence or absence of early or late MRCP, a steep negativity beginning about 1 second before the onset of a voluntary movement. Early MRCPs preceded self-paced arm movements in 8 of 10 children with motor stereotypies and in 6 of 7 controls. Observed MRCPs did not differ between groups. No MRCP was identified before the appearance of a complex motor stereotypy. Unlike voluntary movements, stereotypies are not preceded by MRCPs. This indicates that premotor areas are likely not involved in the preparation of these complex movements and suggests that stereotypies are initiated by mechanisms different from voluntary movements. Further studies are required to determine the site of the motor control abnormality within cortico-striatal-thalamo-cortical pathways and to identify whether similar findings would be found in children with secondary stereotypies.

  18. fNIRS: An Emergent Method to Document Functional Cortical Activity during Infant Movements

    PubMed Central

    Nishiyori, Ryota

    2016-01-01

    The neural basis underlying the emergence of goal-directed actions in infants has been severely understudied, with minimal empirical evidence for hypotheses proposed. This was largely due to the technological constraints of traditional neuroimaging techniques. Recently, functional near-infrared spectroscopy (fNIRS) technology has emerged as a tool developmental scientists are finding useful to examine cortical activity, particularly in young children and infants due to its greater tolerance to movements than other neuroimaging techniques. fNIRS provides an opportunity to finally begin to examine the neural underpinnings as infants develop goal-directed actions. In this methodological paper, I will outline the utility, challenges, and outcomes of using fNIRS to measure the changes in cortical activity as infants reach for an object. I will describe the advantages and limitations of the technology, the setup I used to study primary motor cortex activity during infant reaching, and example steps in the analyses processes. I will present exemplar data to illustrate the feasibility of this technique to quantify changes in hemodynamic activity as infants move. The viability of this research method opens the door to expanding studies of the development of neural activity related to goal-directed actions in infants. I encourage others to share details of techniques used, as well, including analyticals, to help this neuroimaging technology grow as others, such as EEG and fMRI have. PMID:27148141

  19. Spatial patterns of neuronal activity in rat cerebral cortex during non-rapid eye movement sleep.

    PubMed

    Wanger, Tim; Wetzel, Wolfram; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2015-11-01

    It is commonly assumed that cortical activity in non-rapid eye movement sleep (NREMS) is spatially homogeneous on the mesoscopic scale. This is partly due to the limited observational scope of common metabolic or imaging methods in sleep. We used the recently developed technique of thallium-autometallography (TlAMG) to visualize mesoscopic patterns of activity in the sleeping cortex with single-cell resolution. We intravenously injected rats with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC) during spontaneously occurring periods of NREMS and mapped the patterns of neuronal uptake of the potassium (K+) probe thallium (Tl+). Using this method, we show that cortical activity patterns are not spatially homogeneous during discrete 5-min episodes of NREMS in unrestrained rats-rather, they are complex and spatially diverse. Along with a relative predominance of infragranular layer activation, we find pronounced differences in metabolic activity of neighboring neuronal assemblies, an observation which lends support to the emerging paradigm that sleep is a distributed process with regulation on the local scale.

  20. Effects of isometric hip movements on electromyographic activities of the trunk muscles during plank exercises.

    PubMed

    Kang, Min-Hyeok; Kim, Soo-Yong; Kang, Myoung-Joo; Yoon, So-Hee; Oh, Jae-Seop

    2016-08-01

    [Purpose] The purpose of this study was to investigate the effect of isometric hip adduction and abduction on trunk muscle activity during plank exercises. [Subjects and Methods] Nineteen healthy male subjects were recruited for this study. All subjects performed the traditional plank exercise (TP), plank exercise with isometric hip adduction (PHAD), and plank exercise with isometric hip abduction (PHAB) by using an elastic band. Electromyographic (EMG) activities of the internal oblique (IO) and external oblique (EO) were measured during the 3 plank exercises by using an Electromyography system. [Results] Internal oblique and external oblique muscle activities were significantly greater during plank exercise with isometric hip adduction and plank exercise with isometric hip abduction than during traditional plank exercise. Internal oblique and external oblique muscle activities did not differ between the plank exercise with isometric hip adduction and plank exercise with isometric hip abduction conditions. [Conclusion] These findings demonstrate that loaded isometric hip movements may be a useful strategy to increase trunk muscle activity during plank exercises. PMID:27630435

  1. Effects of isometric hip movements on electromyographic activities of the trunk muscles during plank exercises

    PubMed Central

    Kang, Min-Hyeok; Kim, Soo-Yong; Kang, Myoung-Joo; Yoon, So-Hee; Oh, Jae-Seop

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effect of isometric hip adduction and abduction on trunk muscle activity during plank exercises. [Subjects and Methods] Nineteen healthy male subjects were recruited for this study. All subjects performed the traditional plank exercise (TP), plank exercise with isometric hip adduction (PHAD), and plank exercise with isometric hip abduction (PHAB) by using an elastic band. Electromyographic (EMG) activities of the internal oblique (IO) and external oblique (EO) were measured during the 3 plank exercises by using an Electromyography system. [Results] Internal oblique and external oblique muscle activities were significantly greater during plank exercise with isometric hip adduction and plank exercise with isometric hip abduction than during traditional plank exercise. Internal oblique and external oblique muscle activities did not differ between the plank exercise with isometric hip adduction and plank exercise with isometric hip abduction conditions. [Conclusion] These findings demonstrate that loaded isometric hip movements may be a useful strategy to increase trunk muscle activity during plank exercises. PMID:27630435

  2. Executive control modulates cross-language lexical activation during L2 reading: evidence from eye movements.

    PubMed

    Pivneva, Irina; Mercier, Julie; Titone, Debra

    2014-05-01

    Models of bilingual reading such as Bilingual Interactive Activation Plus (Dijkstra & van Heuven, 2002) do not predict a central role for domain-general executive control during bilingual reading, in contrast with bilingual models from other domains, such as production (e.g., the Inhibitory Control Model; Green, 1998). We thus investigated whether individual differences among bilinguals in domain-general executive control modulate cross-language activation during L2 sentence reading, over and above other factors such as L2 proficiency. Fifty French-English bilinguals read L2-English sentences while their eye movements were recorded, and they subsequently completed a battery of executive control and L2 proficiency tasks. High- and low-constraint sentences contained interlingual homographs (chat = "casual conversation" in English, "a cat" in French), cognates (piano in English and French), or L2-specific control words. The results showed that greater executive control among bilinguals but not L2 proficiency reduced cross-language activation in terms of interlingual homograph interference. In contrast, increased L2 proficiency but not executive control reduced cross-language activation in terms of cognate facilitation. These results suggest that models of bilingual reading must incorporate mechanisms by which domain-general executive control can alter the earliest stages of bilingual lexical activation.

  3. Effects of isometric hip movements on electromyographic activities of the trunk muscles during plank exercises

    PubMed Central

    Kang, Min-Hyeok; Kim, Soo-Yong; Kang, Myoung-Joo; Yoon, So-Hee; Oh, Jae-Seop

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effect of isometric hip adduction and abduction on trunk muscle activity during plank exercises. [Subjects and Methods] Nineteen healthy male subjects were recruited for this study. All subjects performed the traditional plank exercise (TP), plank exercise with isometric hip adduction (PHAD), and plank exercise with isometric hip abduction (PHAB) by using an elastic band. Electromyographic (EMG) activities of the internal oblique (IO) and external oblique (EO) were measured during the 3 plank exercises by using an Electromyography system. [Results] Internal oblique and external oblique muscle activities were significantly greater during plank exercise with isometric hip adduction and plank exercise with isometric hip abduction than during traditional plank exercise. Internal oblique and external oblique muscle activities did not differ between the plank exercise with isometric hip adduction and plank exercise with isometric hip abduction conditions. [Conclusion] These findings demonstrate that loaded isometric hip movements may be a useful strategy to increase trunk muscle activity during plank exercises.

  4. Fundamental movement skills and physical fitness as predictors of physical activity: A 6-year follow-up study.

    PubMed

    Jaakkola, T; Yli-Piipari, S; Huotari, P; Watt, A; Liukkonen, J

    2016-01-01

    The purpose of this study was to examine the extent to which fundamental movement skills and physical fitness scores assessed in early adolescence predict self-reported physical activity assessed 6 years later. The sample comprised 333 (200 girls, 133 boys; M age = 12.41) students. The effects of previous physical activity, sex, and body mass index (BMI) were controlled in the main analyses. Adolescents' fundamental movement skills, physical fitness, self-report physical activity, and BMI were collected at baseline, and their self-report energy expenditure (metabolic equivalents: METs) and intensity of physical activity were collected using the International Physical Activity Questionnaire 6 years later. Results showed that fundamental movement skills predicted METs, light, moderate, and vigorous intensity physical activity levels, whereas fitness predicted METs, moderate, and vigorous physical activity levels. Hierarchical regression analyses also showed that after controlling for previous levels of physical activity, sex, and BMI, the size of the effect of fundamental movement skills and physical fitness on energy expenditure and physical activity intensity was moderate (R(2) change between 0.06 and 0.15), with the effect being stronger for high intensity physical activity. PMID:25644386

  5. Adaptive tuning functions arise from visual observation of past movement

    PubMed Central

    Howard, Ian S.; Franklin, David W.

    2016-01-01

    Visual observation of movement plays a key role in action. For example, tennis players have little time to react to the ball, but still need to prepare the appropriate stroke. Therefore, it might be useful to use visual information about the ball trajectory to recall a specific motor memory. Past visual observation of movement (as well as passive and active arm movement) affects the learning and recall of motor memories. Moreover, when passive or active, these past contextual movements exhibit generalization (or tuning) across movement directions. Here we extend this work, examining whether visual motion also exhibits similar generalization across movement directions and whether such generalization functions can explain patterns of interference. Both the adaptation movement and contextual movement exhibited generalization beyond the training direction, with the visual contextual motion exhibiting much broader tuning. A second experiment demonstrated that this pattern was consistent with the results of an interference experiment where opposing force fields were associated with two separate visual movements. Overall, our study shows that visual contextual motion exhibits much broader (and shallower) tuning functions than previously seen for either passive or active movements, demonstrating that the tuning characteristics of past motion are highly dependent on their sensory modality. PMID:27341163

  6. Adaptive tuning functions arise from visual observation of past movement.

    PubMed

    Howard, Ian S; Franklin, David W

    2016-01-01

    Visual observation of movement plays a key role in action. For example, tennis players have little time to react to the ball, but still need to prepare the appropriate stroke. Therefore, it might be useful to use visual information about the ball trajectory to recall a specific motor memory. Past visual observation of movement (as well as passive and active arm movement) affects the learning and recall of motor memories. Moreover, when passive or active, these past contextual movements exhibit generalization (or tuning) across movement directions. Here we extend this work, examining whether visual motion also exhibits similar generalization across movement directions and whether such generalization functions can explain patterns of interference. Both the adaptation movement and contextual movement exhibited generalization beyond the training direction, with the visual contextual motion exhibiting much broader tuning. A second experiment demonstrated that this pattern was consistent with the results of an interference experiment where opposing force fields were associated with two separate visual movements. Overall, our study shows that visual contextual motion exhibits much broader (and shallower) tuning functions than previously seen for either passive or active movements, demonstrating that the tuning characteristics of past motion are highly dependent on their sensory modality. PMID:27341163

  7. Nonspecific Arm Pain

    PubMed Central

    Moradi, Ali; Ebrahimzadeh, Mohammad H; Ring, David

    2013-01-01

    Nonspecific activity-related arm pain is characterized by an absence of objective physical findings and symptoms that do not correspond with objective pathophysiology. Arm pain without strict diagnosis is often related to activity, work-related activity in particular, and is often seen in patients with physically demanding work. Psychological factors such as catastrophic thinking, symptoms of depression, and heightened illness concern determine a substantial percentage of the disability associated with puzzling hand and arm pains. Ergonomic modifications can help to control symptoms, but optimal health may require collaborative management incorporating psychosocial and psychological elements of illness. PMID:25207288

  8. Fluid movement and creativity.

    PubMed

    Slepian, Michael L; Ambady, Nalini

    2012-11-01

    Cognitive scientists describe creativity as fluid thought. Drawing from findings on gesture and embodied cognition, we hypothesized that the physical experience of fluidity, relative to nonfluidity, would lead to more fluid, creative thought. Across 3 experiments, fluid arm movement led to enhanced creativity in 3 domains: creative generation, cognitive flexibility, and remote associations. Alternative mechanisms such as enhanced mood and motivation were also examined. These results suggest that creativity can be influenced by certain types of physical movement.

  9. Fear of Movement and Low Self-Efficacy Are Important Barriers in Physical Activity after Renal Transplantation

    PubMed Central

    Zelle, Dorien M.; Corpeleijn, Eva; Klaassen, Gerald; Schutte, Elise; Navis, Gerjan; Bakker, Stephan J. L.

    2016-01-01

    Background Physical activity (PA) and exercise are commonly used as preventive measures for cardiovascular disease in the general population, and could be effective in the management of post-transplantation cardiovascular risk. PA levels are low after renal transplantation and very few renal transplant recipients (RTR) meet the PA guidelines. Identification of barriers to regular PA is important to identify targets for intervention to improve PA levels after renal transplantation. We investigated fear of movement and physical self-efficacy as barriers to PA in RTR. Methods RTR were investigated between 2001–2003. The Tampa Score of Kinesiophobia–Dutch Version (TSK-11) was used to assess fear of movement. Physical self-efficacy was measured with the LIVAS-scale. PA was assessed using validated questionnaires (Tecumseh Occupational Activity Questionnaire and the Minnesota Leisure Time Physical Activity Questionnaire). Results A total of 487 RTR (age 51±12 years, 55% men) were studied. Median score [interquartile range] on TSK-11 was 22 [17–26]. Low physical self-efficacy (Exp B:0.41[0.31–0.54], p<0.001) and history of myocardial infarction, transient ischemic attack and cerebrovascular accident (Exp B:1.30[1.03–1.63],p = 0.03) were independent determinants for fear of movement. Fear of movement was associated with lower daily PA, occupational, sports and leisure time PA. Mediation-analysis showed that a large part (73%) of the effect of fear of movement on PA was explained by low physical self-efficacy. Conclusions This study was the first to examine fear of movement and self-efficacy in relation to PA in RTR. Fear of movement was associated with a low PA level, and the larger part of this relation was mediated by low physical self-efficacy. Both fear of movement and physical self-efficacy level are important targets for intervention during rehabilitation after renal transplantation. PMID:26844883

  10. Speed of mental addition in an abacus expert, estimated by eye movements and neural activities.

    PubMed

    Hamada, Takashi; Iwaki, Sunao

    2012-08-01

    A grand expert of abacus looked at a display on which three-digit numbers were aligned vertically with constant spacing, for sequentially adding the numbers mentally. His eye regularly moved downward by alternating a fixation to one of the numbers with a saccade to another below it, with the average period of the alternations at 271 msec. His magnetoencephalogram averaged with respect to start of the fixations revealed activity in the right superior parietal cortex. This finding not only supported the previous view that abacus experts mentally calculate by manipulating spatial representations of numbers, but also showed that the calculation was synchronized with the periodic eye movements. Thus, each process of the mental sequential addition, which starts with visual recognition of an addend, was estimated to require less than 271 msec. on average.

  11. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep.

    PubMed

    Lu, Jun; Bjorkum, Alvhild A; Xu, Man; Gaus, Stephanie E; Shiromani, Priyattam J; Saper, Clifford B

    2002-06-01

    We found previously that damage to a cluster of sleep-active neurons (Fos-positive during sleep) in the ventrolateral preoptic nucleus (VLPO) decreases non-rapid eye movement (NREM) sleep in rats, whereas injury to the sleep-active cells extending dorsally and medially from the VLPO cluster (the extended VLPO) diminishes REM sleep. These results led us to examine whether neurons in the extended VLPO are activated during REM sleep and the connectivity of these neurons with pontine sites implicated in producing REM sleep: the laterodorsal tegmental nucleus (LDT), dorsal raphe nucleus (DRN), and locus ceruleus (LC). After periods of dark exposure that triggered enrichment of REM sleep, the number of Fos-positive cells in the extended VLPO was highly correlated with REM but not NREM sleep. In contrast, the number of Fos-positive cells in the VLPO cluster was correlated with NREM but not REM sleep. Sixty percent of sleep-active cells in the extended VLPO and 90% of sleep-active cells in the VLPO cluster in dark-treated animals contained galanin mRNA. Retrograde tracing from the LDT, DRN, and LC demonstrated more labeled cells in the extended VLPO than the VLPO cluster, and 50% of these in the extended VLPO were sleep-active. Anterograde tracing showed that projections from the extended VLPO and VLPO cluster targeted the cell bodies and dendrites of DRN serotoninergic neurons and LC noradrenergic neurons but were not apposed to cholinergic neurons in the LDT. The connections and physiological activity of the extended VLPO suggest a specialized role in the regulation of REM sleep.

  12. The functional expression and motile properties of recombinant outer arm dynein from Tetrahymena.

    PubMed

    Edamatsu, Masaki

    2014-05-16

    Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.

  13. The Relationship between Fundamental Movement Skills and Self-Reported Physical Activity during Finnish Junior High School

    ERIC Educational Resources Information Center

    Jaakkola, Timo; Washington, Tracy

    2013-01-01

    Background: Previous studies have shown that fundamental movement skills (FMS) and physical activity are related. Specifically, earlier studies have demonstrated that the ability to perform a variety of FMS increases the likelihood of children participating in a range of physical activities throughout their lives. To date, however, there have not…

  14. Congenital mirror movements.

    PubMed Central

    Schott, G D; Wyke, M A

    1981-01-01

    In this report are described seven patients assessed clinically and neuropsychologically in whom mirror movements affecting predominantly the hands occurred as a congenital disorder. These mirror movements, representing a specific type of abnormal synkinesia, may arise as a hereditary condition, in the presence of a recognisable underlying neurological abnormality, and sporadically, and the seven patients provide more or less satisfactory examples of each of these three groups. Despite the apparent uniformity of the disorder, the heterogeneity and variability may be marked, examples in some of our patients including the pronounced increase in tone that developed with arm movement, and the capacity for modulation of the associated movement by alteration of neck position and bio-feedback. Various possible mechanisms are considered; these include impaired cerebral inhibition of unwanted movements, and functioning of abnormal motor pathways. Emphasis has been placed on the putative role of the direct, crossed corticomotoneurone pathways and on the unilateral and bilateral cerebral events that precede movement. PMID:7288446

  15. Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A.

    PubMed

    Fattori, Patrizia; Breveglieri, Rossella; Marzocchi, Nicoletta; Filippini, Daniela; Bosco, Annalisa; Galletti, Claudio

    2009-02-11

    Reach-to-grasp actions involve several components of forelimb movements needed to direct the hand toward the object to be grasped, and to orient and preshape the hand according to the object axis and shape. Area V6A, which represents a node of the dorsomedial frontoparietal circuits, has so far been implicated only in directing the arm toward different spatial locations. The present results confirm this finding and demonstrate, for the first time, that during reach-to-grasp, V6A neurons are also modulated by the orientation of the hand. In the present work the object to be grasped was a handle that could have different orientations. Reach-to-grasp movements were executed in complete darkness while gazing at a small fixation point. The majority of the tested cells (76/142; 54%) turned out to be sensitive to the orientation of the handle. Neurons could be modulated during preparation or execution of reach-to-grasp movements. The most represented cells were those modulated by hand orientation both during preparatory and movement periods. These data show that reaching and grasping are processed by the same population of neurons, providing evidence that the coordination of reaching and grasping takes place much earlier than previously thought, i.e., in the parieto-occipital cortex. The data here reported are in agreement with results of lesions to the medial posterior parietal cortex in both monkeys and humans, and with recent imaging data in humans, all of them indicating a functional coupling in the control of reaching and grasping by the medial parietofrontal circuit.

  16. An Activation Likelihood Estimation Meta-Analysis Study of Simple Motor Movements in Older and Young Adults

    PubMed Central

    Turesky, Ted K.; Turkeltaub, Peter E.; Eden, Guinevere F.

    2016-01-01

    The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders. PMID:27799910

  17. Throwing and catching movements exhibit post-activation potentiation effects following fatigue.

    PubMed

    Harrison, Andrew J

    2011-09-01

    Many sport and exercise activities require powerful movements of the upper body. Despite their importance, there is a paucity of research examining stretch-shortening cycle (SSC) activities occurring in the upper limbs. The purpose of this study was to examine the effect of fatigue on throwing performance (height of throw) and biomechanical factors of the upper limbs (reactive strength index; hand contact time) using a specially constructed sledge apparatus for the upper body. Ten male subjects aged between 19 and 21 years performed a series of rebound throws (RBT) in a non-fatigued state to obtain a maximal baseline throw score. Subjects then performed a RBT fatiguing protocol on the upper body sledge followed by further RBT, at 15, 45, 120 and 300-seconds post fatigue. Markers on the subjects' limb and the sledge were analysed using Motion Analysis Corporation 3-D kinematic analysis system (200 Hz). Throwing height, contact time and reactive strength index were determined. Mean throwing height and reactive strength index showed significant decreases following fatigue and increases during recovery (p < 0.05). The results confirm the presence ofpost-activation potentiation (PAP) in RBT performance. This finding could be useful when optimising recovery periods in training or implementing complex training methods.

  18. Teaching Creative Movement.

    ERIC Educational Resources Information Center

    Exiner, Johanna; Lloyd, Phyllis

    This guide to creative movement, relevant to all age groups, opens with a discussion of historical and present trends in movement and dance. Chapters treat (a) the body--body awareness, body activities, and relationships; (b) principles of movement--space, force, time, dynamics, and fluency; (c) topics within the sphere of movement, from the world…

  19. Role of movement velocity on the magnitude of grip force while lifting an object with touch from the contralateral finger.

    PubMed

    Iyengar, Veena; Santos, Marcio J; Aruin, Alexander S

    2009-04-01

    We investigated whether slower velocity of arm movement affects grip-force generation in conditions with the finger touch provided to the wrist of the target arm. Nine subjects performed the task of lifting and transporting an object at slow, intermediate, and fast velocities with a light finger touch from the contralateral arm and without it. There was an effect of velocity of arm movement on grip-force generation in both conditions. However, when the no touch and touch trials performed with similar velocity were matched, the effect of touch on grip-force reduction was statistically significant (p < .001). The observed decrease in grip force could not be explained by slower movement execution in the touch conditions and underlines the importance of using a contralateral touch in the performance of activities of daily living. It also points to a possibility of the development of therapeutic advances for the enhancement of grip-force control in patients with neurological impairments.

  20. Fluid Movement and Creativity

    ERIC Educational Resources Information Center

    Slepian, Michael L.; Ambady, Nalini

    2012-01-01

    Cognitive scientists describe creativity as fluid thought. Drawing from findings on gesture and embodied cognition, we hypothesized that the physical experience of fluidity, relative to nonfluidity, would lead to more fluid, creative thought. Across 3 experiments, fluid arm movement led to enhanced creativity in 3 domains: creative generation,…

  1. Playing Active Video Games may not develop movement skills: An intervention trial

    PubMed Central

    Barnett, Lisa M.; Ridgers, Nicola D.; Reynolds, John; Hanna, Lisa; Salmon, Jo

    2015-01-01

    Background: To investigate the impact of playing sports Active Video Games on children's actual and perceived object control skills. Methods: Intervention children played Active Video Games for 6 weeks (1 h/week) in 2012. The Test of Gross Motor Development-2 assessed object control skill. The Pictorial Scale of Perceived Movement Skill Competence assessed perceived object control skill. Repeated measurements of object control and perceived object control were analysed for the whole sample, using linear mixed models, which included fixed effects for group (intervention or control) and time (pre and post) and their interaction. The first model adjusted for sex only and the second model also adjusted for age, and prior ball sports experience (yes/no). Seven mixed-gender focus discussions were conducted with intervention children after programme completion. Results: Ninety-five Australian children (55% girls; 43% intervention group) aged 4 to 8 years (M 6.2, SD 0.95) participated. Object control skill improved over time (p = 0.006) but there was no significant difference (p = 0.913) between groups in improvement (predicted means: control 31.80 to 33.53, SED = 0.748; intervention 30.33 to 31.83, SED = 0.835). A similar result held for the second model. Similarly the intervention did not change perceived object control in Model 1 (predicted means: control: 19.08 to 18.68, SED = 0.362; intervention 18.67 to 18.88, SED = 0.406) or Model 2. Children found the intervention enjoyable, but most did not perceive direct equivalence between Active Video Games and ‘real life’ activities. Conclusions: Whilst Active Video Game play may help introduce children to sport, this amount of time playing is unlikely to build skill. PMID:26844136

  2. The impact of aging on the spatial accuracy of quick corrective arm movements in response to sudden target displacement during reaching

    PubMed Central

    Kimura, Daisuke; Kadota, Koji; Kinoshita, Hiroshi

    2015-01-01

    Age-related declines in visuomotor processing speed can have a large impact on motor performance in elderly individuals. Contrary to previous findings, however, recent studies revealed that elderly individuals are able to quickly react to displacement of a visual target during reaching. Here, we investigated the influence of aging on quick, corrective responses to perturbations during reaching in the terms of their functional contribution to accuracy. Elderly and young adults performed reaching movements to a visual target that could be displaced during reaching, and they were requested to move their hand to reach the final target location as quickly as possible. Results showed that, for the younger group, the variance in the directional error of the corrective response correlated with the variance in the reaching trajectory at the halfway point of the reach, but the correlation decreased at the end of the reaching. On the other hand, such correlations were not significant in elderly participants, although the variance of the directional error did not show a significant difference between age groups. Thus, the quick, corrective response seems to play an important role in decreasing variability, especially before the end of reaching, and aging can impair this process. PMID:26441641

  3. ARM for Platform Application

    NASA Astrophysics Data System (ADS)

    Patte, Mathieu; Poupat, Jean-Luc; Le Meur, Patrick

    2015-09-01

    The activities described in this paper are part of the CNES R&T “Study of a Cortex-R ARM based architecture” performed by Airbus DS Space System & Electronics in 2014. With the support of CNES, Airbus DS has performed the porting of a representative space application software on an ARM based demonstration platform. This paper presents the platform itself, the activities performed at software level and the first results on this evaluation study.

  4. Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe.

    PubMed

    Lin, Cheng-Feng; Lee, Wan-Chin; Chen, Yi-An; Hsue, Bih-Jen

    2016-08-01

    Fatigue in ballet dancers may lead to injury, particularly in the lower extremities. However, few studies have investigated the effects of fatigue on ballet dancers' performance and movement patterns. Thus, the current study examines the effect of fatigue on the balance, movement pattern, and muscle activities of the lower extremities in ballet dancers. Twenty healthy, female ballet dancers performed releve on demi-pointe before and after fatigue. The trajectory of the whole body movement and the muscle activities of the major lower extremity muscles were recorded continuously during task performance. The results show that fatigue increases the medial-lateral center of mass (COM) displacement and hip and trunk motion, but decreases the COM velocity and ankle motion. Moreover, fatigue reduces the activities of the hamstrings and tibialis anterior, but increases that of the soleus. Finally, greater proximal hip and trunk motions are applied to compensate for the effects of fatigue, leading to a greater COM movement. Overall, the present findings show that fatigue results in impaired movement control and may therefore increase the risk of dance injury. PMID:26955753

  5. Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe.

    PubMed

    Lin, Cheng-Feng; Lee, Wan-Chin; Chen, Yi-An; Hsue, Bih-Jen

    2016-08-01

    Fatigue in ballet dancers may lead to injury, particularly in the lower extremities. However, few studies have investigated the effects of fatigue on ballet dancers' performance and movement patterns. Thus, the current study examines the effect of fatigue on the balance, movement pattern, and muscle activities of the lower extremities in ballet dancers. Twenty healthy, female ballet dancers performed releve on demi-pointe before and after fatigue. The trajectory of the whole body movement and the muscle activities of the major lower extremity muscles were recorded continuously during task performance. The results show that fatigue increases the medial-lateral center of mass (COM) displacement and hip and trunk motion, but decreases the COM velocity and ankle motion. Moreover, fatigue reduces the activities of the hamstrings and tibialis anterior, but increases that of the soleus. Finally, greater proximal hip and trunk motions are applied to compensate for the effects of fatigue, leading to a greater COM movement. Overall, the present findings show that fatigue results in impaired movement control and may therefore increase the risk of dance injury. PMID:27622498

  6. Ipsilateral motor cortex activation on functional magnetic resonance imaging during unilateral hand movements is related to interhemispheric interactions.

    PubMed

    Kobayashi, Masahito; Hutchinson, Siobhan; Schlaug, Gottfried; Pascual-Leone, Alvaro

    2003-12-01

    Distal, unilateral hand movements can be associated with activation of both sensorimotor cortices on functional MRI. The neurophysiological significance of the ipsilateral activation remains unclear. We examined 10 healthy right-handed subjects with and without activation of the ipsilateral sensorimotor area during unilateral index-finger movements, to examine ipsilateral, uncrossed-descending pathways and interhemispheric interaction between bilateral motor areas, using transcranial magnetic stimulation (TMS). No subject showed ipsilateral activation during right hand movement. Five subjects showed ipsilateral sensorimotor cortical activation during left hand movement (IpsiLM1). In these subjects, paired-pulse TMS revealed a significant interhemispheric inhibition of the left motor cortex by the right hemisphere that was not present in the 5 subjects without IpsiLM1. Neither ipsilateral MEPs nor ipsilateral silent periods were evoked by TMS in any subjects. Our observation suggests that IpsiLM1 is not associated with the presence of ipsilateral uncrossed-descending projections. Instead, IpsiLM1 may reveal an enhanced interhemispheric inhibition from the right hemisphere upon the left to suppress superfluous, excessive activation.

  7. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    PubMed

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  8. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    PubMed

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-01-01

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy. PMID:27583794

  9. Bionic robot arm with compliant actuators

    NASA Astrophysics Data System (ADS)

    Moehl, Bernhard

    2000-10-01

    Traditional robotics uses non-compliant materials for all components involved in the production of movement. Elasticity is avoided as far as possible, because it leads to hazardous oscillations and makes control of precise movements very difficult. Due to this deliberate stiffness, robots are typically heavy and clumsy structures in comparison to their living counterparts (i.e. man and animals). Yet, moving systems in nature cope not only with the difficulties introduced by compliant materials, they also take advantage of the elasticity in muscles and tendons to produce smooth and even rapid movements. It is understood, that elasticity in a multi-jointed moving system requires sophisticated control mechanisms- as provided by a nervous system or a suitably programmed computer. In this contribution I shall describe a two-jointed robot with purpose-built elasticity in its actuators. This is accomplished by spiral springs places in series with a conventional electric motor and a tendon to the arm. It is shown that, with sufficiently soft elasticity, oscillations can be avoided by active oscillation damping. (Such active oscillation damping presumably also governs movement control in man and animals.) Furthermore, once the major problem has been overcome, elasticity is found to offer a wide spectrum of valuable advantages, as far as the most serious problems in traditional robotics are concerned. They are summarized by terms such as less dangerous, position tolerant, lightweight construction, controlled forces, and ballistic movements. These will be explained in detail and presented for discussion.

  10. Some possible applications of measurements on mu mesons to nuclear safeguards, nonproliferation, and arms control activities

    SciTech Connect

    Kane, W.R.; Vanier, P.E.

    1997-10-01

    In the nuclear safeguards and arms control areas, well-developed methodologies exist for determining the properties of nuclear materials via measurements of the gamma rays and neutrons emitted from these materials, or in the arms control area, by the use of radiography. In certain favorable instances, it may by feasible to perform comparable measurements with the use of a ubiquitous, naturally-occurring radiation--cosmic ray mu mesons (muons). At the earth`s surface these charged particles have a broad energy distribution peaking at about 500 MeV with a flux of approximately 10{sup {minus}2}/cm{sup 2}-sec-steradian. In traversing matter, muons lose energy at a rate of approximately 2 MeV/gram almost independent of atomic number. Muons can readily be detected by either plastic scintillators or wire planes. While the flux is small, a scintillator of one meter area, for example, will register about 20,000 events/min. these particles should have utility in the detection and imaging of objects with sectional densities of a few hundred grams/cm{sup 2}. The degree of intrusiveness of the imaging can be controlled through the detector configuration. Some possible applications include: (1) mass measurements on large UF{sub 6} cylinders, (2) determination of the size of treaty-limited objects, e.g., missiles, in rail cars or other containment; (3) verification of single or multiple warheads or components; (4) the detection of concealed, underground cavities. Examples will be presented.

  11. Context-Dependent Neural Activation: Internally and Externally Guided Rhythmic Lower Limb Movement in Individuals With and Without Neurodegenerative Disease

    PubMed Central

    Hackney, Madeleine E.; Lee, Ho Lim; Battisto, Jessica; Crosson, Bruce; McGregor, Keith M.

    2015-01-01

    Parkinson’s disease is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, and Tai Chi) have shown improvements to motor symptoms, lower limb control, and postural stability in people with PD (1–6). However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task-specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG) and externally guided (EG) movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG vs. EG designs. Because of the potential task-specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training) and highlight research gaps. We believe better understanding of lower limb neural activity with respect to PD impairment during rhythmic IG and EG movement will facilitate the development of novel and effective therapeutic approaches to mobility limitations and postural instability. PMID:26696952

  12. Constraint-induced movement therapy after stroke.

    PubMed

    Kwakkel, Gert; Veerbeek, Janne M; van Wegen, Erwin E H; Wolf, Steven L

    2015-02-01

    Constraint-induced movement therapy (CIMT) was developed to overcome upper limb impairments after stroke and is the most investigated intervention for the rehabilitation of patients. Original CIMT includes constraining of the non-paretic arm and task-oriented training. Modified versions also apply constraining of the non-paretic arm, but not as intensive as original CIMT. Behavioural strategies are mostly absent for both modified and original CIMT. With forced use therapy, only constraining of the non-paretic arm is applied. The original and modified types of CIMT have beneficial effects on motor function, arm-hand activities, and self-reported arm-hand functioning in daily life, immediately after treatment and at long-term follow-up, whereas there is no evidence for the efficacy of constraint alone (as used in forced use therapy). The type of CIMT, timing, or intensity of practice do not seem to affect patient outcomes. Although the underlying mechanisms that drive modified and original CIMT are still poorly understood, findings from kinematic studies suggest that improvements are mainly based on adaptations through learning to optimise the use of intact end-effectors in patients with some voluntary motor control of wrist and finger extensors after stroke.

  13. Human, Nature, Dynamism: The Effects of Content and Movement Perception on Brain Activations during the Aesthetic Judgment of Representational Paintings.

    PubMed

    Di Dio, Cinzia; Ardizzi, Martina; Massaro, Davide; Di Cesare, Giuseppe; Gilli, Gabriella; Marchetti, Antonella; Gallese, Vittorio

    2015-01-01

    Movement perception and its role in aesthetic experience have been often studied, within empirical aesthetics, in relation to the human body. No such specificity has been defined in neuroimaging studies with respect to contents lacking a human form. The aim of this work was to explore, through functional magnetic imaging (f MRI), how perceived movement is processed during the aesthetic judgment of paintings using two types of content: human subjects and scenes of nature. Participants, untutored in the arts, were shown the stimuli and asked to make aesthetic judgments. Additionally, they were instructed to observe the paintings and to rate their perceived movement in separate blocks. Observation highlighted spontaneous processes associated with aesthetic experience, whereas movement judgment outlined activations specifically related to movement processing. The ratings recorded during aesthetic judgment revealed that nature scenes received higher scored than human content paintings. The imaging data showed similar activation, relative to baseline, for all stimuli in the three tasks, including activation of occipito-temporal areas, posterior parietal, and premotor cortices. Contrast analyses within aesthetic judgment task showed that human content activated, relative to nature, precuneus, fusiform gyrus, and posterior temporal areas, whose activation was prominent for dynamic human paintings. In contrast, nature scenes activated, relative to human stimuli, occipital and posterior parietal cortex/precuneus, involved in visuospatial exploration and pragmatic coding of movement, as well as central insula. Static nature paintings further activated, relative to dynamic nature stimuli, central and posterior insula. Besides insular activation, which was specific for aesthetic judgment, we found a large overlap in the activation pattern characterizing each stimulus dimension (content and dynamism) across observation, aesthetic judgment, and movement judgment tasks. These

  14. Human, Nature, Dynamism: The Effects of Content and Movement Perception on Brain Activations during the Aesthetic Judgment of Representational Paintings

    PubMed Central

    Di Dio, Cinzia; Ardizzi, Martina; Massaro, Davide; Di Cesare, Giuseppe; Gilli, Gabriella; Marchetti, Antonella; Gallese, Vittorio

    2016-01-01

    Movement perception and its role in aesthetic experience have been often studied, within empirical aesthetics, in relation to the human body. No such specificity has been defined in neuroimaging studies with respect to contents lacking a human form. The aim of this work was to explore, through functional magnetic imaging (f MRI), how perceived movement is processed during the aesthetic judgment of paintings using two types of content: human subjects and scenes of nature. Participants, untutored in the arts, were shown the stimuli and asked to make aesthetic judgments. Additionally, they were instructed to observe the paintings and to rate their perceived movement in separate blocks. Observation highlighted spontaneous processes associated with aesthetic experience, whereas movement judgment outlined activations specifically related to movement processing. The ratings recorded during aesthetic judgment revealed that nature scenes received higher scored than human content paintings. The imaging data showed similar activation, relative to baseline, for all stimuli in the three tasks, including activation of occipito-temporal areas, posterior parietal, and premotor cortices. Contrast analyses within aesthetic judgment task showed that human content activated, relative to nature, precuneus, fusiform gyrus, and posterior temporal areas, whose activation was prominent for dynamic human paintings. In contrast, nature scenes activated, relative to human stimuli, occipital and posterior parietal cortex/precuneus, involved in visuospatial exploration and pragmatic coding of movement, as well as central insula. Static nature paintings further activated, relative to dynamic nature stimuli, central and posterior insula. Besides insular activation, which was specific for aesthetic judgment, we found a large overlap in the activation pattern characterizing each stimulus dimension (content and dynamism) across observation, aesthetic judgment, and movement judgment tasks. These

  15. Lateral occipitotemporal cortex (LOTC) activity is greatest while viewing dance compared to visualization and movement: learning and expertise effects.

    PubMed

    Di Nota, Paula M; Levkov, Gabriella; Bar, Rachel; DeSouza, Joseph F X

    2016-07-01

    The lateral occipitotemporal cortex (LOTC) is comprised of subregions selectively activated by images of human bodies (extrastriate body area, EBA), objects (lateral occipital complex, LO), and motion (MT+). However, their role in motor imagery and movement processing is unclear, as are the influences of learning and expertise on its recruitment. The purpose of our study was to examine putative changes in LOTC activation during action processing following motor learning of novel choreography in professional ballet dancers. Subjects were scanned with functional magnetic resonance imaging up to four times over 34 weeks and performed four tasks: viewing and visualizing a newly learned ballet dance, visualizing a dance that was not being learned, and movement of the foot. EBA, LO, and MT+ were activated most while viewing dance compared to visualization and movement. Significant increases in activation were observed over time in left LO only during visualization of the unlearned dance, and all subregions were activated bilaterally during the viewing task after 34 weeks of performance, suggesting learning-induced plasticity. Finally, we provide novel evidence for modulation of EBA with dance experience during the motor task, with significant activation elicited in a comparison group of novice dancers only. These results provide a composite of LOTC activation during action processing of newly learned ballet choreography and movement of the foot. The role of these areas is confirmed as primarily subserving observation of complex sequences of whole-body movement, with new evidence for modification by experience and over the course of real world ballet learning. PMID:26960739

  16. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.

    PubMed

    Xu, Zhiming; So, Rosa Q; Toe, Kyaw Kyar; Ang, Kai Keng; Guan, Cuntai

    2014-01-01

    This paper presents an asynchronously intracortical brain-computer interface (BCI) which allows the subject to continuously drive a mobile robot. This system has a great implication for disabled patients to move around. By carefully designing a multiclass support vector machine (SVM), the subject's self-paced instantaneous movement intents are continuously decoded to control the mobile robot. In particular, we studied the stability of the neural representation of the movement directions. Experimental results on the nonhuman primate showed that the overt movement directions were stably represented in ensemble of recorded units, and our SVM classifier could successfully decode such movements continuously along the desired movement path. However, the neural representation of the stop state for the self-paced control was not stably represented and could drift. PMID:25570634

  17. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.

    PubMed

    Xu, Zhiming; So, Rosa Q; Toe, Kyaw Kyar; Ang, Kai Keng; Guan, Cuntai

    2014-01-01

    This paper presents an asynchronously intracortical brain-computer interface (BCI) which allows the subject to continuously drive a mobile robot. This system has a great implication for disabled patients to move around. By carefully designing a multiclass support vector machine (SVM), the subject's self-paced instantaneous movement intents are continuously decoded to control the mobile robot. In particular, we studied the stability of the neural representation of the movement directions. Experimental results on the nonhuman primate showed that the overt movement directions were stably represented in ensemble of recorded units, and our SVM classifier could successfully decode such movements continuously along the desired movement path. However, the neural representation of the stop state for the self-paced control was not stably represented and could drift.

  18. Coordination of human upper arm and forearm motion in rapid extensions

    NASA Technical Reports Server (NTRS)

    Nahvi, Mahmood

    1991-01-01

    In many movements of the upper limb such as reaching, positioning, and displacing the objects, the hand moves smoothly along a uni-directional planar trajectory with a bell-shaped speed profile. Because of variability of the load, gravitational and velocity interaction forces between its segments, the dynamics of the arm during the motion is very complex. Motion of the upper arm and the forearm are coordinated to produce smooth movements despite such complex dynamics. This coordination constitutes an important organizational feature of arm movement. The present paper describes some experimental results related to the above and interprets their role in producing smooth motion of the hand. Trajectories of the right upper limb in vertical plane and the simultaneous muscles' EMG activities were recorded for extensions of various amplitudes under four loads. The forearm trajectories are smooth with bell-shaped speed profiles. The upper arm trajectories may have bimodal speed profiles and three segments, resembling an inverted 'Z.' Segmentation is sharper for the points near the shoulder joint, and is accentuated by load. As one moves from the central points near the shoulder joint to the peripheral points near the hand, the three segments merge and result in smooth curves with single-peaked speed profiles. The three segments have a coherent time course and can be identified rather accurately and non-ambiguously. The observed trajectories and the EMG patterns reveal an effective coordination strategy which utilizes the structure and the dynamics of the moving arm to produce smooth movement.

  19. Great Lakes Climate and Water Movement. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Miller, Heidi, Ed.; Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes climate and water movement. Students learn about land-sea…

  20. The Effects of Constraint-Induced Movement Therapy on Activities Important to Independent School Participation of Children with Hemiparesis

    ERIC Educational Resources Information Center

    Carney, Joan

    2012-01-01

    This study investigated the efficacy of constraint-induced