Science.gov

Sample records for active auroral research

  1. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    SciTech Connect

    Eccles, V.; Armstrong, R.

    1993-05-01

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed model of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.

  2. Mapping auroral activity with Twitter

    NASA Astrophysics Data System (ADS)

    Case, N. A.; MacDonald, E. A.; Heavner, M.; Tapia, A. H.; Lalone, N.

    2015-05-01

    Twitter is a popular, publicly accessible, social media service that has proven useful in mapping large-scale events in real time. In this study, for the first time, the use of Twitter as a measure of auroral activity is investigated. Peaks in the number of aurora-related tweets are found to frequently coincide with geomagnetic disturbances (detection rate of 91%). Additionally, the number of daily aurora-related tweets is found to strongly correlate with several auroral strength proxies (ravg≈0.7). An examination is made of the bias for location and time of day within Twitter data, and a first-order correction of these effects is presented. Overall, the results suggest that Twitter can provide both specific details about an individual aurora and accurate real-time indication of when, and even from where, an aurora is visible.

  3. Adam Paulsen, a Pioneer in Auroral Research

    NASA Astrophysics Data System (ADS)

    Jørgensen, Torben S.; Rasmussen, Ole

    2006-02-01

    The 20 to 30 years following the first International Polar Year in 1882-1883 was a period of quickly advancing knowledge and understanding of auroral phenomena. This was the time when hypotheses of aurora being due to, for example, reflections of fires from the interior of the Earth or sunlight from ice particles were abandoned and replaced by the mechanism of precipitating electrons. One of the auroral researchers at that time was the Dane Adam Frederik Wivet Paulsen (1833-1907). However, when reading literature about auroral history, his ideas and work do not seem to have attracted much interest outside his own and neighboring countries. For example, in his sweeping historical account Majestic Lights: The Aurora in Science, History, and the Arts [1980], author Robert Eather only referred to Paulsen in a couple of lines.

  4. Do interplanetary Alfven waves cause auroral activity?

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron; Goldstein, Melvyn L.

    1990-01-01

    A recent theory holds that high-intensity, long-duration, continuous auroral activity (HILDCAA) is caused by interplanetary Alfven waves propagating outward from the sun. A survey of Alfvenic intervals in over a year of ISEE 3 data shows that while Alfvenic intervals often accompany HILDCAAs, the reverse is often not true. There are many Alfvenic intervals during which auroral activity (measured by high values of the AE index) is very low, as well as times of high auroral activity that are not highly Alfvenic. This analysis supports the common conclusion that large AE values are associated with a southward interplanetary field of sufficient strength and duration. This field configuration is independent of the presence of Alfven waves (whether solar generated or not) and is expected to occur at random intervals in the large-amplitude stochastic fluctuations in the solar wind.

  5. New imaging spectrometer for auroral research

    SciTech Connect

    Rairden, R.; Swenson, G.

    1994-12-31

    A Loral 1024 x 1024 CCD array with 15-micron pixels has been incorporated as the focal plane detector in a new imaging spectrometer for auroral research. The large format low-noise CCD provides excellent dynamic range and signal to noise characteristics with image integration times on the order of 60 seconds using f/1.4 camera optics. Further signal enhancement is achieved through on-CCD pixel binning. In the nominal binned mode the instrument wavelength resolution varies from 15 to 30 {angstrom} across the 5000 to 8600 {angstrom} spectral range. Images are acquired and stored digitally on a Macintosh computer. This instrument was operated at a field site in Godhavn, Greenland during the past two winters (1993, 1994) to measure the altitude distribution of the various spectral emissions within auroral arcs. The height resolution on an auroral feature 300 km distant is {approximately}1 km. Examples of these measurements are presented here in snapshot and summary image formats illustrating the wealth of quantitative information provided by this new imaging spectrometer.

  6. The Utility of Auroral Image-based Activities Metrics

    NASA Technical Reports Server (NTRS)

    Germany, G.; Spann, J.; Deverapalli, C.; Hung, C.-C.

    2004-01-01

    Auroral activity indices such as Hemispheric Power and Auroral Boundary are currently key data products used for space weather predictions and nowcasting. However, these products are necessarily based on limited observations which must be extrapolated to provide global coverage. The advent of routine space-based auroral imaging in the last decade offers the seeming advantage of more detailed measures of auroral activity. Examples of image-derived products include energy deposition maps, oval location, cap size, and morphological classification. However, activity metrics derived from auroral images have shortcomings, as well. For example, limited fields-of-view and orbital motion prevent full coverage of the auroral regions. This paper will examine the utility of activity metrics derived h m auroral images for operational purposes. The eight-year collection of Polar UVI images databased in the UVI Online Search Tool (OST) will be used to illustrate the advantages and shortcomings of auroral activity metrics. The potential role of other currently-active imaging missions will also be examined and correlative studies to date using auroral imaging will be summarized.

  7. ENA diagnostics of auroral activity at Mars

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    2012-04-01

    One prominent feature of solar wind - Mars interaction has to do with the presence of strong crustal magnetic fields, especially, in the southern hemisphere. This physical property has set Mars apart from Venus as far as the kinetic effect in detail. In this paper, we review briefly the recent particles-and-fields measurements at Mars in connection to the auroral activity driven by magnetic field reconnection between the crustal magnetic fields and the interplanetary fields. It is suggested that the subsolar ENA (energetic neutral atoms) jets discovered by the NPD instrument of Mars Express could be resulting from charge exchange effect of the shocked solar wind protons at the magnetopause-like regions of the Martian mini-magnetospheres and at the cusp regions of the crustal magnetic fields. It also means that ENA and LENA (low energy neutral atom) detectors could be important experiments for diagnostics of the auroral process unique to Mars, which might contribute to the overall atmospheric loss budget.

  8. A study of auroral activity in the nightside polar cap

    SciTech Connect

    Wu, Q.

    1989-01-01

    Using various ground observations at South Pole, Antarctica (invariant magnetic latitude -74{degree}) and its conjugate point, Frobisher Bay, Canada, the author has studied the following aspects of nightside polar cap auroral activity: the appearance and disappearance of polar cap auroras (diffuse and discrete) associated with substorms and interplanetary magnetic field (IMF) variations; auroral optical emission line intensities; and the seasonal variation of auroral conjugacy. The observations show that the polar cap auroras usually fade away before the expansive phase of a substorm and bright auroral arcs reach high latitude (-74{degree}) near the recovery phase. Just before the auroras fade away the discrete polar cap auroral arcs, which are usually on the poleward boundary of the diffuse aurora, intensify for 1 to 2 minutes. The observations also indicate the IMF may have stronger control over polar cap auroral activity than do substorms. A search for energy spectral variation of precipitating electrons using the intensities of 630.0 nm (0) and 427 nm (N{sub 2}{sup +}) auroral emission lines reveals no dramatic changes in the energy spectrum; instead, the data show possible atmospheric scattering and geometric effects on the photometric measurements while the bright auroral arc is moving into the polar cap. The conjugate observations show that the stormtime auroral electrojet current, which is associated with the bright auroral arc, in most cases reaches higher (lower) latitudes in the winter (summer) hemisphere. An asymmetric plasma sheet (with respect to the neutral sheet) is proposed, which expands deeper into the winter lobe, under a tilted geomagnetic dipole. Accordingly, the winter polar cap would have smaller area and the auroral electrojet would be at higher latitude.

  9. Sophus Peter Tromholt: an outstanding pioneer in auroral research

    NASA Astrophysics Data System (ADS)

    Moss, K.; Stauning, P.

    2012-03-01

    The Danish school teacher Sophus Peter Tromholt (1851-1896) was self-taught in physics, astronomy, and auroral sciences. Still, he was one of the brightest auroral researchers of the 19th century. He was the first scientist ever to organize and analyse correlated auroral observations over a wide area (entire Scandinavia) moving away from incomplete localized observations. Tromholt documented the relation between auroras and sunspots and demonstrated the daily, seasonal and solar cycle-related variations in high-latitude auroral occurrence frequencies. Thus, Tromholt was the first ever to deduce from auroral observations the variations associated with what is now known as the auroral oval termed so by Khorosheva (1962) and Feldstein (1963) more than 80 yr later. He made reliable and accurate estimates of the heights of auroras several decades before this important issue was finally settled through Størmer's brilliant photographic technique. In addition to his three major scientific works (Tromholt, 1880a, 1882a, and 1885a), he wrote numerous short science notes and made huge efforts to collect historical auroral observations (Tromholt, 1898). Furthermore, Tromholt wrote a large number of popular science articles in newspapers and journals and made lecture tours all over Scandinavia and Germany, contributing to enhance the public educational level and awareness. He devoted most of his life to auroral research but as a self-taught scientist, he received little acclaim within the contemporary academic scientific society. With his non-academic background, trained at a college of education - not a university - he was never offered a position at a university or a research institution. However, Sophus Tromholt was an outstanding pioneer in auroral research.

  10. Tail reconnection region versus auroral activity inferred from conjugate ARTEMIS plasma sheet flow and auroral observations

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Lyons, L. R.; Xing, X.; Angelopoulos, V.; Donovan, E. F.; Mende, S. B.; Bonnell, J. W.; Auster, U.

    2013-09-01

    sheet flow bursts have been suggested to correspond to different types of auroral activity, such as poleward boundary intensifications (PBIs), ensuing auroral streamers, and substorms. The flow-aurora association leads to the important question of identifying the magnetotail source region for the flow bursts and how this region depends on magnetic activity. The present study uses the ARTEMIS spacecraft coordinated with conjugate ground-based auroral imager observations to identify flow bursts beyond 45 RE downtail and corresponding auroral forms. We find that quiet-time flows are directed dominantly earthward with a one-to-one correspondence with PBIs. Flow bursts during the substorm recovery phase and during steady magnetospheric convection (SMC) periods are also directed earthward, and these flows are associated with a series of PBIs/streamers lasting for tens of minutes with similar durations to that of the series of earthward flows. Presubstorm onset flows are also earthward and associated with PBIs/streamers. The earthward flows during those magnetic conditions suggest that the flow bursts, which lead to PBIs and streamers, originate from further downtail of ARTEMIS, possibly from the distant-tail neutral line (DNL) or tailward-retreated near-Earth neutral line (NENL) rather than from the nominal NENL location in the midtail. We find that tailward flows are limited primarily to the substorm expansion phase. They continue throughout the period of auroral poleward expansion, indicating that the expansion-phase flows originate from the NENL and that NENL activity is closely related to the auroral expansion of the substorm expansion phase.

  11. Dayside Auroral Activity During Solar Maximum and Minimum Periods

    NASA Astrophysics Data System (ADS)

    Rawie, M.; Fasel, G. J.; Flicker, J.; Angelo, A.; Bender, S.; Alyami, M.; Sibeck, D. G.; Sigernes, F.; Lorentzen, D. A.; Green, D.

    2014-12-01

    It is well documented that the dayside auroral oval shifts equatorward when the interplanetary magnetic field (IMF) Bz-component turns southward [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. During these periods of oval expansion dayside transients are observed to move away from the poleward edge of the auroral oval and drift poleward. These poleward-moving auroral forms are believed to be ionospheric signatures of dayside merging. The dayside auroral oval usually begins to contract when the interplanetary magnetic field turns sharply northward, Bz>0. Eighteen years of meridian scanning photometer (MSP) data from the Kjell Henriksen Observatory in Longyearbyen, Norway are analyzed. During the boreal winter the Sun is several degrees below the horizon. This permits optical observations throughout the daytime period. The MSP Data is selected two hours before and after local noon in Longyearbeyn. Solar wind data (solar wind pressure and speed, along with the IMF Bx, By, Bz components) are collected for each interval and combined with the MSP observations. This data is then separated using solar maximum and minimum periods. Auroral activity (oval expansions and contractions along with the frequency and number of poleward-moving auroral forms) is documented for both solar maximum and minimum periods.

  12. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    SciTech Connect

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  13. Kinetic processes in the plasma sheet observed during auroral activity

    NASA Astrophysics Data System (ADS)

    Fillingim, Matthew Owen

    In this dissertation we analyze plasma sheet magnetic field and plasma data observed during varying levels of auroral activity from very small, isolated events known as pseudobreakups to large, global events known as substorms. The plasma and magnetic field data are taken from instruments onboard the WIND spacecraft while it traverses the near-Earth plasma sheet. Simultaneous global auroral images from POLAR/UVI allow us to determine the auroral activity level. The goal of this dissertation is to provide the most complete set of plasma sheet observations during auroral activity currently available. The kinetic aspects of the plasma dynamics which have largely been ingnored in other works are emphasized here. We have the capability to resolve changes in the three dimensional ion distribution functions with a time resolution comparable to or faster than the local ion gyroperiod. In addition, we consider the typically neglected electron dynamics when relating plasma sheet processes to the aurora. We find that the plasma sheet signatures of both pseudobreakups and substorms appear very similar. During both types of events, increases in auroral precipitation into the ionosphere are associated with large amplitude, high frequency magnetic field fluctuations, large Earthward ion < v>, increases in the fluxes of high energy ions and electrons, and hardening of the electron spectrum. Both ion and electron distributions appear to be composed of multiple components. Electromagnetic waves with power at frequencies up to and above the local proton gyrofrequency area also observed. Additionally, the ion distributions can change significantly in one gyroperiod. Together, these results imply that the microphysical processes occurring in the plasma sheet during pseudobreakups and substorms are the same and that kinetic effects are important. Therefore, magnetohydrodynamics (MHD) cannot adequately describe the physics occurring during large ion < v> events.

  14. Approximating ambient D-region electron densities using dual-beam HF heating experiments at the high-frequency Active Auroral Research Program (HAARP)

    NASA Astrophysics Data System (ADS)

    Agrawal, Divya

    Dual-beam ELF/VLF wave generation experiments performed at the High-frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are critically compared with the predictions of a newly developed ionospheric high frequency (HF) heating model that accounts for the simultaneous propagation and absorption of multiple HF beams. The dual-beam HF heating experiments presented herein consist of two HF beams transmitting simultaneously: one amplitude modulated (AM) HF beam modulates the conductivity of the lower ionosphere in the extremely low frequency (ELF, 30 Hz to 3 kHz) and/or very low frequency (VLF, 3 kHz to 30 kHz) band while a second HF beam broadcasts a continuous waveform (CW) signal, modifying the efficiency of ELF/VLF conductivity modulation and thereby the efficiency of ELF/VLF wave generation. Ground-based experimental observations are used together with the predictions of the theoretical model to identify the property of the received ELF/VLF wave that is most sensitive to the effects of multi-beam HF heating, and that property is determined to be the ELF/VLF signal magnitude. The dependence of the generated ELF/VLF wave magnitude on several HF transmission parameters (HF power, HF frequency, and modulation waveform) is then experimentally measured and analyzed within the context of the multi-beam HF heating model. For all cases studied, the received ELF/VLF wave magnitude as a function of transmission parameter is analyzed to identify the dependence on the ambient D-region electron density (Ne) and/or electron temperature ( Te), in turn identifying the HF transmission parameters that provide significant independent information regarding the ambient conditions of the D-region ionosphere. A theoretical analysis is performed to determine the conditions under which the effects of Ne and Te can be decoupled, and the results of this analysis are applied to identify an electron density profile that can reproduce the unusually high level of ELF

  15. On the nature of ULF wave power during nightside auroral activations and substorms: 2. Temporal evolution

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Murphy, K. R.; Watt, C. E. J.; Mann, I. R.

    2011-01-01

    We present a statistical analysis of the time evolution of ground magnetic fluctuations in three (12-48 s, 24-96 s and 48-192 s) period bands during nightside auroral activations. We use an independently derived auroral activation list composed of both substorms and pseudo-breakups to provide an estimate of the activation times of nightside aurora during periods with comprehensive ground magnetometer coverage. One hundred eighty-one events in total are studied to demonstrate the statistical nature of the time evolution of magnetic wave power during the ˜30 min surrounding auroral activations. We find that the magnetic wave power is approximately constant before an auroral activation, starts to grow up to 90 s prior to the optical onset time, maximizes a few minutes after the auroral activation, then decays slightly to a new, and higher, constant level. Importantly, magnetic ULF wave power always remains elevated after an auroral activation, whether it is a substorm or a pseudo-breakup. We subsequently divide the auroral activation list into events that formed part of ongoing auroral activity and events that had little preceding geomagnetic activity. We find that the evolution of wave power in the ˜10-200 s period band essentially behaves in the same manner through auroral onset, regardless of event type. The absolute power across ULF wave bands, however, displays a power law-like dependency throughout a 30 min period centered on auroral onset time. We also find evidence of a secondary maximum in wave power at high latitudes ˜10 min following isolated substorm activations. Most significantly, we demonstrate that magnetic wave power levels persist after auroral activations for ˜10 min, which is consistent with recent findings of wave-driven auroral precipitation during substorms. This suggests that magnetic wave power and auroral particle precipitation are intimately linked and key components of the substorm onset process.

  16. Joseph Henry and John Henry Lefroy A common 19th century vision of auroral research

    NASA Astrophysics Data System (ADS)

    Silverman, S. M.

    Research on solar-terrestrial relationships today relies primarily on in situ space data. These data, however, cover only a short period of about 30 years. Many solar and related phenomena vary on much longer time scales. For the study of these, parameters such as sunspots, magnetic activity, auroral occurrence, or other proxy data are required. Historical records of aurora are particularly useful in this connection.

  17. Danish auroral science history

    NASA Astrophysics Data System (ADS)

    Stauning, P.

    2011-01-01

    Danish auroral science history begins with the early auroral observations made by the Danish astronomer Tycho Brahe during the years from 1582 to 1601 preceding the Maunder minimum in solar activity. Included are also the brilliant observations made by another astronomer, Ole Rømer, from Copenhagen in 1707, as well as the early auroral observations made from Greenland by missionaries during the 18th and 19th centuries. The relations between auroras and geomagnetic variations were analysed by H. C. Ørsted, who also played a vital role in the development of Danish meteorology that came to include comprehensive auroral observations from Denmark, Iceland and Greenland as well as auroral and geomagnetic research. The very important auroral investigations made by Sophus Tromholt are outlined. His analysis from 1880 of auroral observations from Greenland prepared for the significant contributions from the Danish Meteorological Institute, DMI, (founded in 1872) to the first International Polar Year 1882/83, where an expedition headed by Adam Paulsen was sent to Greenland to conduct auroral and geomagnetic observations. Paulsen's analyses of the collected data gave many important results but also raised many new questions that gave rise to auroral expeditions to Iceland in 1899 to 1900 and to Finland in 1900 to 1901. Among the results from these expeditions were 26 unique paintings of the auroras made by the artist painter, Harald Moltke. The expedition to Finland was headed by Dan la Cour, who later as director of the DMI came to be in charge of the comprehensive international geomagnetic and auroral observations made during the Second International Polar Year in 1932/33. Finally, the article describes the important investigations made by Knud Lassen during, among others, the International Geophysical Year 1957/58 and during the International Quiet Sun Year (IQSY) in 1964/65. With his leadership the auroral and geomagnetic research at DMI reached a high international

  18. Continuous auroral activity related to high speed streams with interplaneraty ALFV&N wave trains

    NASA Technical Reports Server (NTRS)

    Guarnieri, Fernando L.; Tsurutani, Bruce T.; Gonzalez, Walter D.; Kamide, Yosuke; Zhou, Xiaoyan

    2004-01-01

    We discuss a type of intense magnetospheric/auroral activity that is not always substorms: High-Intensity, Long-Duration, Continuous AE Activity (HILDCAA) events, which occur during high speed solar wind streams. The high speed streams contain large-amplitude, nonlinear Alfvtn waves. Analyses of POLAR UV images, demonstrate that the AE increases/AL decreases in HILDCAAs are not always substorm expansion phases (although some substorms may occur). The associated auroral W energy deposition is throughout a continuous (360') auroral oval. During some image intervals, the dayside aurora is the most remarkable feature. Our hypothesis is that solar wind energy transfer from the solar wind to the magnetosphere/ionosphere is primarily directly driven due to the finite wavelength Alfv6n waves and the rapid dBz/dt variability.

  19. Statistical analysis of extreme auroral electrojet indices

    NASA Astrophysics Data System (ADS)

    Nakamura, Masao; Yoneda, Asato; Oda, Mitsunobu; Tsubouchi, Ken

    2015-09-01

    Extreme auroral electrojet activities can damage electrical power grids due to large induced currents in the Earth, degrade radio communications and navigation systems due to the ionospheric disturbances and cause polar-orbiting satellite anomalies due to the enhanced auroral electron precipitation. Statistical estimation of extreme auroral electrojet activities is an important factor in space weather research. For this estimation, we utilize extreme value theory (EVT), which focuses on the statistical behavior in the tail of a distribution. As a measure of auroral electrojet activities, auroral electrojet indices AL, AU, and AE, are used, which describe the maximum current strength of the westward and eastward auroral electrojets and the sum of the two oppositely directed in the auroral latitude ionosphere, respectively. We provide statistical evidence for finite upper limits to AL and AU and estimate the annual expected number and probable intensity of their extreme events. We detect two different types of extreme AE events; therefore, application of the appropriate EVT analysis to AE is difficult.

  20. Field-aligned current signatures during auroral activations of Feb. 16, 0220 UT substorm

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Angelopoulos, V.; Frey, H.; Auster, U.

    2009-04-01

    Two auroral activations with poleward/equatorward expansion were observed starting around 0216 UT and 0243 UT on 16 Feb 2008, when the five THEMIS spacecraft were distributed in the premidnight to midnight (22-24 MLT) region between 8 and 18 RE downtail. We compare and contrast the possible field-aligned current signatures associated with dipolarization accompanied by Earthward flows observed at the THD(P3) and THE(P4) spacecraft in the premidnight sector at downtail distances between 8 and 9 RE by referring also to the mid-tail spacecraft, THC(P2) and THB(P1), which provide information on the current sheet configuration. Both dipolarization events started from the tailward side, THD(P3), but had quite different profiles in the magnetic shear components relevant to the field aligned current, as well as in the magnetotail current sheet configuration and auroral signatures. The 0216 UT event occurred in a thinner near-Earth current sheet condition and THD(P3) and THE(P4) detected dipolarization accompanied by fast flows and enhanced shear in the magnetic field, while conjugate ground signatures suggest development of a slant North-south aligned aurora, east of a small surge. During the 0243 UT event, X-line signatures at a midtail thin current sheet were observed, followed by a large-scale plasma sheet expansion and the associated auroral activation took place more poleward. Dipolarization was again observed at THD(P3) and THE(P4) but accompanied by less significant shear component and delay in the fast flow signatures compared to the magnetic signatures. We discuss these two different dipolarization/field aligned current signatures in terms of different stages of the fast flows interacting with the ambient field in a different configuration of the tail current sheet.

  1. Interplanetary Alfven waves and auroral (substorm) activity: IMP 8

    SciTech Connect

    Tsurutani, B.T.; Gould, T.; Goldstein, B.E. ); Gonzalez, W.D. ); Sugiura, Masahisa )

    1990-03-01

    Almost year of IMP 8 interplanetary magnetic field and plasma data (Days 1-312, 1979) have been examined to determine the interplanetary causes of geomagnetic AE activity. The nature of the interplanetary medium (Alfvenic or non-Alfvenic) and the B{sub 2} correlation with AE were examined over 12-hour increments throughout the study. It is found that Alfvenic wave intervals (defined as V{sub x}-B{sub x} cross-correlation coefficients of >0.6) are present over 60% of the time and the southward component of the Alfven waves is well correlated with AE (average peak correlation coefficient 0.62), with a median lag of 43 min. The most probable delay of AE from B{sub s} is considerably shorter, about 20-25 min. Southward magnetic fields during non-Alfvenic intervals (V{sub x}-B{sub x} cross-correlation coefficients of < 0.4) are equally effective in producing geomagnetic activity. Peak correlation coefficients and lags are similar to those of Alfvenic intervals. From this statistical study, no major differences in the magnetospheric response to Alfvenic and non-Alfvenic intervals were obvious. The high-intensity long-duration continuous AE activity (HILDCAA) events discussed previously by Tsurutani and Gonzalez (1987) are demosntrated to be caused by the southward components of the Alfven waves, presumably through the process of magnetic reconnection. The lag times of AE from B{sub s} were variable from event to event (and at different times within the Alfven wave train), ranging from 45 min to as little as 0 min. The cause of this variable delay is somewhat surprising and is not presently well understood.

  2. Variability of Mass Dependence of Auroral Acceleration Processes with Solar Activity

    NASA Technical Reports Server (NTRS)

    Ghielmetti, Arthur G.

    1997-01-01

    The objectives of this investigation are to improve understanding of the mass dependent variability of the auroral acceleration processes and so to clarify apparent discrepancies regarding the altitude and local time variations with solar cycle by investigating: (1) the global morphological relationships between auroral electric field structures and the related particle signatures under varying conditions of solar activity, and (2) the relationships between the electric field structures and particle signatures in selected events that are representative of the different conditions occurring during a solar cycle. The investigation is based in part on the Lockheed UFI data base of UpFlowing Ion (UFI) events in the 5OO eV to 16keV energy range and associated electrons in the energy range 7O eV to 24 keV. This data base was constructed from data acquired by the ion mass spectrometer on the S3-3 satellite in the altitude range of I to 1.3 Re. The launch of the POLAR spacecraft in early 1996 and successful operation of its TIMAS ion mass spectrometer has provided us with data from within the auroral acceleration regions during the current solar minimum. The perigee of POLAR is at about 1 Re, comparable to that of S3-3. The higher sensitivity and time resolution of TIMAS compared to the ion mass spectrometer on S3-3 together with its wider energy range, 15 eV to 33 keV, facilitate more detailed studies of upflowing ions.

  3. Engaging the Athabascan Native American students of Venetie, Alaska in the auroral research occurring over their village

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Powell, D.; Samara, M.; Jahn, J.; Pfeifer, M.; Ibarra, S.; Hampton, D. L.

    2012-12-01

    During February 2012, an optical auroral obversing campaign was conducted from the remote village of Venetie, located in North-central Alaska. The approximately 200 people in the village of are mostly Gwich'in Athabaskan. Venetie is in a unique location in that it is one of the only villages that has sounding rockets launched directly over it. While there for the research campaign of approximately one week, I spent several days meeting with and talking to the students about the auroral research that occurs literaly over their village. The John Fredson School in Venetie is a K-12 school and I was able to talk with all of the classes. They were very receptive and interested in science, but have very limited connectivity with the rest of the world, even with a slow internet connection at the school. Their perspective about the aurora is completely different, for them, the aurora is a nearly everyday experience in the winter and therefore they do not think much of it, much like students in the lower 48 would think of clouds. Using the internet, we were able to connect the 4th and 5th grade students in Venetie (through Skype) with a group of 4th and 5th grade students at Sunshine Cottage School for Deaf Children in San Antonio, TX. This was very successful on both ends and resulted in many ideas for future activities. We will discuss the experiences from this trip and the lessons learned for conducting K-12 outreach in such remote schools.; Dr. Michell presenting to the students in Venetie, AK. ; Tribal office building in Venetie, AK, with the aurora overhead.

  4. Investigations of the auroral luminosity distribution and the dynamics of discrete auroral forms in a historical retrospective

    NASA Astrophysics Data System (ADS)

    Feldstein, Y. I.; Vorobjev, V. G.; Zverev, V. L.; Förster, M.

    2014-05-01

    Research results about planetary-scale auroral distributions are presented in a historical retrospective, beginning with the first "maps of isochasms" - lines of equal visibility of auroras in the firmament (Fig. 2) - up to "isoaurora maps" - lines of equal occurrence frequency of auroras in the zenith (Fig. 4). The exploration of auroras in Russia from Lomonosov in the 18th century (Fig. 1) until the start of the International Geophysical Year (IGY) in 1957 is shortly summed up. A generalised pattern of discrete auroral forms along the auroral oval during geomagnetically very quiet intervals is presented in Fig. 5. The changes of discrete auroral forms versus local time exhibit a fixed pattern with respect to the sun. The auroral forms comprise rays near noon, homogeneous arcs during the evening, and rayed arcs and bands during the night and in the morning. This fixed auroral pattern is unsettled during disturbances, which occur sometimes even during very quiet intervals. The azimuths of extended auroral forms vary with local time. Such variations in the orientation of extended forms above stations in the auroral zone have been used by various investigators to determine the position of the auroral oval (Fig. 9). Auroral luminosity of the daytime and nighttime sectors differ owing to different luminosity forms, directions of motion of the discrete forms, the height of the luminescent layers, and the spectral composition (predominant red emissions during daytime and green emissions during the night). Schemes that summarise principal peculiarities of daytime luminosity, its structure in MLT (magnetic local time) and MLat (magnetic latitude) coordinates, and the spectral composition of the luminosity are presented in Figs. 15 and 19. We discuss in detail the daytime sector dynamics of individual discrete forms for both quiet conditions and auroral substorms. The most important auroral changes during substorms occur in the nighttime sector. We present the evolution of

  5. Equatorial magnetospheric particles and auroral precipitations

    NASA Astrophysics Data System (ADS)

    McIlwain, C. E.

    The injection boundary beyond which fresh hot plasma appears each magnetospheric substorm is generalized and extended to circle the Earth. The concept of an auroral shell representing the inner limit of active auroral processes is introduced. It is proposed that at low altitudes, this shell marks the equatorward edge of the auroral ovals, and that at high altitudes, it marks the injection boundary. The auroral ring is defined as the intersection of the auroral shell with the magnetic equator. A simple equation for computing the expected location of the auroral ring as a function of local time and magnetic disturbance level is obtained. Tests indicate that the model is valid and reasonably accurate.

  6. Origins of the Earth's Diffuse Auroral Precipitation

    NASA Astrophysics Data System (ADS)

    Ni, Binbin; Thorne, Richard M.; Zhang, Xiaojia; Bortnik, Jacob; Pu, Zuyin; Xie, Lun; Hu, Ze-jun; Han, Desheng; Shi, Run; Zhou, Chen; Gu, Xudong

    2016-04-01

    The Earth's diffuse auroral precipitation provides the major source of energy input into the nightside upper atmosphere and acts as an essential linkage of the magnetosphere-ionosphere coupling. Resonant wave-particle interactions play a dominant role in the scattering of injected plasma sheet electrons, leading to the diffuse auroral precipitation. We review the recent advances in understanding the origin of the diffuse aurora and in quantifying the exact roles of various magnetospheric waves in producing the global distribution of diffuse auroral precipitation and its variability with the geomagnetic activity. Combined scattering by upper-and lower-band chorus accounts for the most intense inner magnetospheric electron diffuse auroral precipitation on the nightside. Dayside chorus can be responsible for the weaker dayside electron diffuse auroral precipitation. Pulsating auroras, the dynamic auroral structures embedded in the diffuse aurora, can be mainly caused by modulation of the excitation of lower band chorus due to macroscopic density variations in the magnetosphere. Electrostatic electron cyclotron harmonic waves are an important or even dominant cause for the nightside electron diffuse auroral precipitation beyond {˜}8Re and can also contribute to the occurrence of the pulsating aurora at high L-shells. Scattering by electromagnetic ion cyclotron waves could quite possibly be the leading candidate responsible for the ion precipitation (especially the reversed-type events of the energy-latitude dispersion) in the regions of the central plasma sheet and ring current. We conclude the review with a summary of current understanding, outstanding questions, and a number of suggestions for future research.

  7. Experimental studies of auroral arc generators

    SciTech Connect

    Suszcynsky, D.M.; Borovsky, J.E.; Thomsen, M.F.

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). An all-sky video camera system was deployed in Eagle, Alaska at the foot of the magnetic field line that threads geosynchronous satellite 1989-046 as part of a campaign to study correlations of ground-based auroral activity with satellite-based plasma and energetic particle measurements. The overall intent of the project was to study magnetosphere-ionosphere coupling as it relates to the aurora, and, in particular, to look for signatures that may help to identify various auroral generator mechanism(s). During this study, our efforts were primarily directed towards identifying the generator mechanism(s) for pulsating aurora. Our data, though not conclusive, are found to support theories that propose a cyclotron resonance mechanism for the generation of auroral pulsations.

  8. Substorm evolution of auroral structures

    NASA Astrophysics Data System (ADS)

    Partamies, N.; Juusola, L.; Whiter, D.; Kauristie, K.

    2015-07-01

    Auroral arcs are often associated with magnetically quiet time and substorm growth phases. We have studied the evolution of auroral structures during global and local magnetic activity to investigate the occurrence rate of auroral arcs during different levels of magnetic activity. The ground-magnetic and auroral conditions are described by the magnetometer and auroral camera data from five Magnetometers — Ionospheric radars — All-sky cameras Large Experiment stations in Finnish and Swedish Lapland. We identified substorm growth, expansion, and recovery phases from the local electrojet index (IL) in 1996-2007 and analyzed the auroral structures during the different phases. Auroral structures were also analyzed during different global magnetic activity levels, as described by the planetary Kp index. The distribution of auroral structures for all substorm phases and Kp levels is of similar shape. About one third of all detected structures are auroral arcs. This suggests that auroral arcs occur in all conditions as the main element of the aurora. The most arc-dominated substorm phases occur in the premidnight sector, while the least arc-dominated substorm phases take place in the dawn sector. Arc event lifetimes and expectation times calculated for different substorm phases show that the longest arc-dominated periods are found during growth phases, while the longest arc waiting times occur during expansion phases. Most of the arc events end when arcs evolve to more complex structures. This is true for all substorm phases. Based on the number of images of auroral arcs and the durations of substorm phases, we conclude that a randomly selected auroral arc most likely belongs to a substorm expansion phase. A small time delay, of the order of a minute, is observed between the magnetic signature of the substorm onset (i.e., the beginning of the negative bay) and the auroral breakup (i.e., the growth phase arc changing into a dynamic display). The magnetic onset was

  9. Altitude Variations of the Peak Auroral Emissions within Auroral Structures

    NASA Astrophysics Data System (ADS)

    Sangalli, L.

    2015-12-01

    The MIRACLE network monitors auroral activity in the Fennoscandian sector of Europe. Network stations cover the range of 55° to 57° magnetic latitude North and span two hours in magnetic local time. Some of the MIRACLE network stations include digital all-sky cameras (ASC) with overlapping field-of-views located at the latitude aurora occurs. The ASCs in this network operate at three different wavelengths: 427.8 nm (blue line), 557.7 nm (green line) and 630.0 nm (red line). These wavelengths are selected using narrow band filters. The new ASC systems are based on electron multiplying CCDs (emCCD), which allow higher time and spatial resolutions. The peak auroral emission altitude is determined using two ASC images from a station pair. Different auroral events are used to evaluate the altitude variations of the peak auroral emissions within auroral structures and its evolution in time.

  10. Auroral research at the Tromsø Northern Lights Observatory: the Harang directorship, 1928-1946

    NASA Astrophysics Data System (ADS)

    Egeland, Alv; Burke, William J.

    2016-03-01

    The Northern Lights Observatory in Tromsø began as Professor Lars Vegard's dream for a permanent facility in northern Norway, dedicated to the continuous study of auroral phenomenology and dynamics. Fortunately, not only was Vegard an internationally recognized spectroscopist, he was a great salesman and persuaded the Rockefeller Foundation that such an observatory represented an important long-term investment. A shrewd judge of talent, Vegard recognized the scientific and managerial skills of Leiv Harang, a recent graduate from the University of Oslo, and recommended that he become the observatory's first director. In 1929, subsequent to receiving the Rockefeller Foundation grant, the University of Oslo established a low temperature laboratory to support Vegard's spectroscopic investigations. This paper follows the scientific accomplishments of observatory personnel during the 18 years of Harang's directorship. These include: identifying the chemical sources of auroral emissions, discovering the Vegard-Kaplan bands, quantifying height distributions of different auroral forms, interpreting patterns of magnetic field variations, remotely probing auroral electron distribution profiles in the polar ionosphere, and monitoring the evolving states of the ozone layer. The Rockefeller Foundation judges got it right: the Tromsø Nordlysobservatoriet was, and for decades remained, an outstanding scientific investment.

  11. Auroral particles

    NASA Technical Reports Server (NTRS)

    Evans, David S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries.

  12. GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison

    NASA Astrophysics Data System (ADS)

    Jin, Yaqi; Moen, Jøran I.; Miloch, Wojciech J.

    2014-08-01

    We directly compare the relative GPS scintillation levels associated with regions of enhanced plasma irregularities called auroral arcs, polar cap patches, and auroral blobs that frequently occur in the polar ionosphere. On January 13, 2013 from Ny-Ålesund, several polar cap patches were observed to exit the polar cap into the auroral oval, and were then termed auroral blobs. This gave us an unprecedented opportunity to compare the relative scintillation levels associated with these three phenomena. The blobs were associated with the strongest phase scintillation (σϕ), followed by patches and arcs, with σϕ up to 0.6, 0.5, and 0.1 rad, respectively. Our observations indicate that most patches in the nightside polar cap have produced significant scintillations, but not all of them. Since the blobs are formed after patches merged into auroral regions, in space weather predictions of GPS scintillations, it will be important to enable predictions of patches exiting the polar cap.

  13. The application of soft x-ray imaging techniques to auroral research. Final report

    SciTech Connect

    Not Available

    1981-06-01

    The feasibility of building and operating a grazing incidence X-ray telescope for auroral zone studies from the Polar Plasma Laboratory (PPL) is discussed. A detailed structural analysis of the preferred design, an array of seven nested Wolter mirrors, is presented. An engineering evaluation of the requirements for the instrumental configuration, power, weight and telemetry is included. The problems of radiation hardening and thermal control are discussed. The resulting strawman instrument is presented.

  14. The application of soft X-ray imaging techniques to auroral research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of building and operating a grazing incidence X-ray telescope for auroral zone studies from the Polar Plasma Laboratory (PPL) is discussed. A detailed structural analysis of the preferred design, an array of seven nested Wolter mirrors, is presented. An engineering evaluation of the requirements for the instrumental configuration, power, weight and telemetry is included. The problems of radiation hardening and thermal control are discussed. The resulting strawman instrument is presented.

  15. The Auroral Spatial Structures Probe: magnetic and electric field measurements during an active aurora at fine spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Martineau, R. J.; Pratt, J.; Swenson, C.

    2015-12-01

    The Auroral Spatial Structures Probe was a rocket campaign that launched from Poker Flat on January 28, 2015 at 10:41:01 UTC to make multi-point vector observations of the magnetic and electric fields during an active aurora. With 6 instrumented payloads deployed from the rocket in addition to the main payload, each payload making simultaneous measurements of the magnetic and electric fields, the goals of this mission are to resolve the temporal-spatial ambiguity concerning the structures of the electric and magnetic fields during an active auroral event. The vector nature of these measurements requires an accurate knowledge of attitude throughout the flight. Each payload was equipped with gyroscopes to obtain a post-processed attitude solution after the flight. While the main payload's inertial sensors functioned well, the spin axis gyroscope on the subpayloads saturated due to a design flaw. To obtain the attitude and render the vector measurements useful, a least-squares based approach to estimate the attitude history of the payloads was devised using the magnetic and electric field measurements. Once the attitude solution was applied the temporal structures seen in the magnetic and electric fields while flying through the auroral arc are strongly correlated between payloads. We present the new attitude history estimation approach and discuss its strengths and weaknesses compared to traditional attitude methods. We also present preliminary findings from the magnetic and electric field instruments.The Auroral Spatial Structures Probe was a rocket campaign that launched from Poker Flat on January 28, 2015 at 10:41:01 UTC to make multi-point vector observations of the magnetic and electric fields during an active aurora. With 6 instrumented payloads deployed from the rocket in addition to the main payload, each payload making simultaneous measurements of the magnetic and electric fields, the goals of this mission are to resolve the temporal-spatial ambiguity

  16. Energetic auroral and polar ion outflow at DE 1 altitudes Magnitude, composition, magnetic activity dependence, and long-term variations

    NASA Technical Reports Server (NTRS)

    Yau, A. W.; Lenchyshyn, L.; Shelley, E. G.; Peterson, W. K.

    1985-01-01

    Data acquired from the Dynamics Explorer I Energetic Ion Composition Spectrometer in the period from September 1981 to May 1984 are used to determine the magnitude of the terrestrial ion outflow in the 0.01-17 keV/el range. The data are also employed to investigate the mass composition and topology (local time and invariant latitude distributions) of the ion outflow, as well as the outflow's magnetic activity dependence and long-term variation. The relative importance of auroral versus polar cap upflowing ions as a source of energetic plasma for various parts of the magnetosphere is examined.

  17. Quantifying the auroral response from measured source populations of electrons and electromagnetic wave activity

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R.; Grubbs, G. A., II; Davidson, R. K.; Khazanov, G. V.; Glocer, A.; Hampton, D.

    2015-12-01

    A case study is presented, where a quantitative connection is made between the measured auroral intensities and the source populations of electromagnetic waves and trapped electrons measured by THEMIS. We combine a theoretical model and high-resolution multi-spectral ground based imaging of the aurora at the THEMIS footpoint in order to interpret these data in the context of the coupled magnetosphere-ionosphere system. The THEMIS wave and particle measurements form the inputs into the Khazanov, et al., 2014 model that uses a Boltzman-Landau kinetic equation, uniformly describing the entire electron distribution function, which includes the affiliated production of secondary electrons (E < 600 eV) and their associated ionosphere-magnetosphere coupling processes. The model output will in turn be used to determine the expected auroral intensities (in Rayleighs) when considering only the primary precipitating electrons and also when both the primary and mirroring secondary electrons are included. These predicted auroral intensities will be compared to measured ones from several ground-based imagers at Poker Flat, AK, where we have high-resolution multiple emission line (557.7 nm and 427.8 nm) data at a 3.3 Hz frame rate.

  18. High frequency active auroral research program (HAARP) imager

    NASA Astrophysics Data System (ADS)

    Lance, Cyril; Eather, Robert

    1993-09-01

    A low-light-level monochromatic imaging system was designed and fabricated which was optimized to detect and record optical emissions associated with high-power RF heating of the ionosphere. The instrument is capable of detecting very low intensities, of the order of 1 Rayleigh, from typical ionospheric atomic and molecular emissions. This is achieved through co-adding of ON images during heater pulses and subtraction of OFF (background) images between pulses. Images can be displayed and analyzed in real time and stored in optical disc for later analysis. Full image processing software is provided which was customized for this application and uses menu or mouse user interaction.

  19. Two substorm studies of relations between westward electric fields in the outer plasmasphere, auroral activity, and geomagnetic perturbations

    NASA Technical Reports Server (NTRS)

    Carpenter, D. L.; Akasofu, S.

    1972-01-01

    Temporal variations of the westward component of the magnetospheric convection electric field in the outer plasmasphere were compared to auroral activity near L = 7, and to variations in the geomagnetic field at middle and high latitudes. The substorms occurred on July 29, 1965 near 0530 UT and on August 20, 1965 near 0730 UT. The results on westward electric field E(w) were obtained by the whistler method using data from Eights, Antarctica (L is approximately 4). All sky camera records were obtained from Byrd, Antarctica, (L is approximately 7), located within about 1 hour of Eights in magnetic local time. It was found that E(w) within the outer plasmasphere increased rapidly to substorm levels about the time of auroral expansion at nearby longitudes. This behavior is shown to differ from results on E(w) from balloons, which show E(w) reaching enhanced levels prior to the expansion. A close temporal relation was found between the rapid, substorm associated increases in E(w) and a well known type of nightside geomagnetic perturbation. Particularly well defined was the correlation of E(w) rise and a large deviation of the D component at middle latitudes.

  20. Evaluating auroral processes within a magnotospheric model. Final report

    SciTech Connect

    Lyons, L.R.

    1989-01-01

    A summary of the research performed is included. Topics covered include magnetospheric model; association between discrete auroras and ion precipitation from the tail current sheet; auroral arc scale sizes and structures; polar cap size variation; low-altitude auroral boundary; auroral wave-particle interactions; thermospheric interactions; and the neutral wind flywheel.

  1. Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere. Final Report

    SciTech Connect

    Chiu, Y.T.; Gorney, D.J.

    1982-01-01

    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector, morning and dayside auroras, auroral plasma formation, electrodynamic coupling with the thermosphere, and auroral electron interaction with the atmosphere.

  2. Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.

    1982-01-01

    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.

  3. 250 MHz/GHz scintillation parameters in the equatorial, polar, and auroral environments. Environmental research papers

    SciTech Connect

    Basu; MacKenzie, E.; Basu; Costa, E.; Fougere, P.F.

    1986-03-28

    Ionospheric scintillation effects encountered in the equatorial-anomaly crest, polar-cap, and auroral regions have been contrasted to provide information for the design and evaluation of the performance of satellite communication links in these regions. The equatorial-anomaly region is identified as the most-disturbed irregularity environment where the amplitude and phase structures of VHF/L-band scintillations are primarily dictated by the strength of scattering rather than ionospheric motion. In the anomaly region, the spectra of intense amplitude scintillations at VHF and L-band are characterized by uniform power spectral density from the lowest frequency (10 MHz) to 4 Hz at VHF and to 1 Hz at L-band and steep rolloff at higher fluctuation frequencies with power law indices of -5 to 07. Such structures are compatible with intensity decorrelation times of 0.1 and 0.3 sec at VHF and L-band frequencies, respectively. The phase spectra are described by power-law variation of psd with frequency with typical spectral indices of -2. 4. The strong scattering at VHF induces extreme phase rates of 200 deg. in 0.1 sec. The 90th percentile values of rms phase deviation at 250 MHz with 100-sec detrend are found to be 16 rads in the early evening hours whereas amplitude scintillation can cover the entire dynamic range of 30 dB not only at 250 MHz but at L-band as well.

  4. On the uniqueness of linear moving-average filters for the solar wind-auroral geomagnetic activity coupling

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D.; Klimas, A. J.

    1995-01-01

    The relation between the solar wind input to the magetosphere, VB(sub South), and the auroral geomagnetic index AL is modeled with two linear moving-average filtering methods: linear prediction filters and a driven harmonic oscillator in the form of an electric circuit. Although the response of the three-parameter oscillator is simpler than the filter's, the methods yield similar linear timescales and values of the prediction-observation correlation and the prediction Chi(exp 2). Further the filter responses obtained by the two methods are similar in their long-term features. In these aspects the circuit model is equivalent to linear prediction filtering. This poses the question of uniqueness and proper interpretation of detailed features of the filters such as response peaks. Finally, the variation of timescales and filter responses with the AL activity level is discussed.

  5. Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    2015-09-01

    The magnetosphere substorm plays a crucial role in the solar wind energy dissipation into the ionosphere. We report on the intensity of the high-latitude ionospheric irregularities during one of the largest storms of the current solar cycle—the St. Patrick's Day storm of 17 March 2015. The database of more than 2500 ground-based Global Positioning System (GPS) receivers was used to estimate the irregularities occurrence and dynamics over the auroral region of the Northern Hemisphere. We analyze the dependence of the GPS-detected ionospheric irregularities on the auroral activity. The development and intensity of the high-latitude irregularities during this geomagnetic storm reveal a high correlation with the auroral hemispheric power and auroral electrojet indices (0.84 and 0.79, respectively). Besides the ionospheric irregularities caused by particle precipitation inside the polar cap region, evidences of other irregularities related to the storm enhanced density (SED), formed at mid-latitudes and its further transportation in the form of tongue of ionization (TOI) towards and across the polar cap, are presented. We highlight the importance accounting contribution of ionospheric irregularities not directly related with particle precipitation in overall irregularities distribution and intensity.

  6. Observations of auroral fading before breakup

    NASA Technical Reports Server (NTRS)

    Pellinen, R. J.; Heikkila, W. J.

    1978-01-01

    The onset of auroral breakup was studied by using a variety of instruments with time resolution of some tens of second. Rapid sequences of all-sky photographs, and fast meridian scans by photometers, show that breakup is usually preceded by moderate brightening, followed by fading of the auroral brightness lasting one or two minutes, before the actual breakup itself. This optical activity is closely correlated with the development of auroral radar echoes. Data from a magnetometer network provide some indication of a correlated response by the local auroral and ionospheric currents. Riometer recordings show a slow decrease in ionspheric radio wave absorption over a period of about ten minutes prior to breakup, with the largest decrease essentially to quiet-time values in the region of auroral fading and subsequent breakup.

  7. Trigger, an active release experiment that stimulated auroral particle precipitation and wave emissions

    NASA Technical Reports Server (NTRS)

    Holmgren, G.; Bostroem, R.; Kelley, M. C.; Kintner, P. M.; Lundin, R.; Fahleson, U. V.; Bering, E. A.; Sheldon, W. R.

    1979-01-01

    The experiment design, including a description of the diagnostic and chemical release payload, and the general results are given for an auroral process simulation experiment. A drastic increase of the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about one second. The is evidence of a second particle burst, starting one second after the release and lasting for tens of seconds, and evidence for a periodic train of particle bursts occurring with a 7.7 second period from 40 to 130 seconds after the release. A transient electric field pulse of 200 mv/m appeared just before the particle flux increase started. Electrostatic wave emissions around 2 kHz, as well as a delayed perturbation of the E-region below the plasma cloud were also observed. Some of the particle observations are interpreted in terms of field aligned electrostatic acceleration a few hundred kilometers above the injected plasma cloud. It is suggested that the acceleration electric field was created by an instability driven by field aligned currents originating in the plasma cloud.

  8. Auroral fragmentation into patches

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Hashimoto, Ayumi; Hori, Tomoaki; Sakaguchi, Kaori; Ogawa, Yasunobu; Donovan, Eric; Spanswick, Emma; Connors, Martin; Otsuka, Yuichi; Oyama, Shin-Ichiro; Nozawa, Satonori; McWilliams, Kathryn

    2014-10-01

    Auroral patches in diffuse auroras are very common features in the postmidnight local time. However, the processes that produce auroral patches are not yet well understood. In this paper we present two examples of auroral fragmentation which is the process by which uniform aurora is broken into several fragments to form auroral patches. These examples were observed at Athabasca, Canada (geomagnetic latitude: 61.7°N), and Tromsø, Norway (67.1°N). Captured in sequences of images, the auroral fragmentation occurs as finger-like structures developing latitudinally with horizontal-scale sizes of 40-100 km at ionospheric altitudes. The structures tend to develop in a north-south direction with speeds of 150-420 m/s without any shearing motion, suggesting that pressure-driven instability in the balance between the earthward magnetic-tension force and the tailward pressure gradient force in the magnetosphere is the main driving force of the auroral fragmentation. Therefore, these observations indicate that auroral fragmentation associated with pressure-driven instability is a process that creates auroral patches. The observed slow eastward drift of aurora during the auroral fragmentation suggests that fragmentation occurs in low-energy ambient plasma.

  9. Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere?

    NASA Astrophysics Data System (ADS)

    Kita, Hajime; Kimura, Tomoki; Tao, Chihiro; Tsuchiya, Fuminori; Misawa, Hiroaki; Sakanoi, Takeshi; Kasaba, Yasumasa; Murakami, Go; Yoshioka, Kazuo; Yamazaki, Atsushi; Yoshikawa, Ichiro; Fujimoto, Masaki

    2016-07-01

    While the Jovian magnetosphere is known to have the internal source for its activity, it is reported to be under the influence of the solar wind as well. Here we report the statistical relationship between the total power of the Jovian ultraviolet aurora and the solar wind properties found from long-term monitoring by the spectrometer EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) on board the Hisaki satellite. Superposed epoch analysis indicates that auroral total power increases when an enhanced solar wind dynamic pressure hits the magnetosphere. Furthermore, the auroral total power shows a positive correlation with the duration of a quiescent interval of the solar wind that is present before a rise in the dynamic pressure, more than with the amplitude of dynamic pressure increase. These statistical characteristics define the next step to unveil the physical mechanism of the solar wind control on the Jovian magnetospheric dynamics.

  10. The enigma of auroral spirals

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    One of the most spectacular forms that the aurora borealis can assume is the large-scale spiral Spirals are dominantly observed along the poleward boundary of the auroral oval during active periods Two concepts have been pursued in explaining their origin and in particular the counterclockwise sense of rotation of the luminous structures when viewed along the magnetic field direction An essentially magnetostatic theory following Hallinan 1976 attributes the spiral pattern to the twisting of field-lines caused by a centrally located upward field-aligned current According to Oguti 1981 and followers a clockwise rotation of the plasma flow produces the anticlockwise structure There are observations seemingly confirming or contradicting either theory In this paper it is argued that both concepts are insufficient in that only parts of the underlying physics are considered Besides field-aligned currents and plasma flow one has to take into at least two further aspects The ionospheric conductivity modified by particle precipitation has an impact on the magnetospheric plasma dynamics Furthermore auroral arcs are not fixed entities subject to distortions by plasma flows or twisted field-lines but sites of transient releases of energy We suggest that auroral spirals are ports of entry or exit of plasma into or out of the auroral oval This way it can be understood why a clockwise plasma flow can create an anticlockwise luminous pattern

  11. Characterization and diagnostic methods for geomagnetic auroral infrasound waves

    NASA Astrophysics Data System (ADS)

    Oldham, Justin J.

    Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with

  12. Research Activities.

    ERIC Educational Resources Information Center

    Santa Fe Community Coll., Gainesville, FL.

    The five parts of this report are: research on instruction; faculty dissertations; inter-institutional research; in-college research; and college-endorsed research. The first covers experiments in teaching French, practical nursing, English, math, and chemistry, and in giving examinations. Faculty dissertations include studies of post-graduate…

  13. Auroral spirals at Saturn

    NASA Astrophysics Data System (ADS)

    Radioti, A.; Grodent, D.; Gérard, J.-C.; Roussos, E.; Mitchell, D.; Bonfond, B.; Pryor, W.

    2015-10-01

    We report observations of auroral spirals at Saturn propagating from midnight to noon via dawn, based on Cassini/UVIS measurements. The aurora during that sequence is observed for the first time to consist of detached features swirling as they propagate from dawn to early afternoon. The features have a diameter of ˜6000 km in the ionosphere, which would correspond to 12 to 15 RS wide plasma regions in the magnetosphere. Simultaneous ENA enhancements are observed; however, they do not show a clear spiral form. We estimate the velocity of the UV auroral features to decrease from 85% of rigid corotation (28°/h) near the equatorward edge to 68% of rigid corotation (22°/h) in the poleward edge. We discuss two possible scenarios which could explain the generation of the auroral spirals. First, we suggest that the auroral spirals could be related to large dynamic hot populations which create regions with strong velocity gradients. Alternatively, a less possible theory could be that the auroral spirals are related to field line deformation from the magnetosphere to the ionosphere, similar to the scenario proposed to explain auroral spirals at Earth. Such field line twist can happen for a configuration where the magnetospheric source region is located between a pair of plasma flow vortices.

  14. Ionospheric scintillations/TEC and in-situ density measurements at an auroral location in the European sector. Environmental research papers, 2 October 1986-31 July 1987

    SciTech Connect

    MacKenzie, E.; Basu, S.

    1987-08-14

    The orbiting HiLat satellite launched in 1983 offered an opportunity for studying ionospheric scintillation parameters in relation to in-situ measurements of ionization density, drift velocity, field-aligned current, and particle precipitation during the sunspot-minimum period. This report discusses results of a morphological study based on observations of scintillations and total electron content (TEC) at the auroral-oval station at Tromso, Norway, during the period Dec 1983 - Oct 1985. The geometrical enhancement of scintillations observed during alignment of the propagation with the local magnetic L-shell is shown to be the most consistent and conspicuous feature of scintillations in the nighttime auroral oval. The dynamics of the spatial and temporal extent of this region are illustrated in the invariant latitude/magnetic local time grid. Steepening of phase spectral slope in the geometrical enhancement region is indicative of the presence of L-shell aligned sheet-like irregularities at long scale lengths. The seasonal variation of TEC determined from the differential Doppler measurements of HiLat transmissions is discussed in relation to the in-situ density measurements at 830 km. The results are also used to illustrate the dependence of ionospheric structure parameters on short-term variability of solar activity during the sunspot-minimum period. This study provides an insight into the nature of magnetospheric coupling with the ionosphere at high latitudes.

  15. Conjugacy of daytime ELF-VLF emission activities in the auroral zones

    SciTech Connect

    Sato, Natsuo ); Suzuki, Hiroyuki; Maezawa, Kiyoshi ); Saemundsson, T. )

    1990-06-01

    Statistical characteristics of emission occurrence are examined, using 1 year of digital data of 750-Hz, 2-kHz, and 4-kHz intensity records. These waves were measured simultaneously at a conjugate pair of stations, namely Syowa Station in Antarctica and Husafell in Iceland. The following notable diurnal and seasonal variation and Kp dependence was found for the daytime emissions (04-14 MLT): (1) The 750-Hz emissions were mostly observed during the daytime around noon in both conjugate regions. The emission occurrence reached a maximum 1-3 hours earlier at Syowa than at Husafell during the equinox season. The seasonal variation of 750-Hz emission occurrence showed a maximum during local summer and a minimum during local winter at both stations. The ratio of the emission enhancement in summer to that at the equinox is higher at Husafell than at Syowa. The emissions mostly occurred during moderately disturbed conditions of Kp {approximately} 2-4 at both stations. (2) The 2-kHz emission occurrence reached a maximum around 13 MLT at Syowa and around 11 MLT at Husafell. Peaks of the emission occurrence during summer shifted to the afternoonside at Syowa and to the morningside at Husafell. The occurrences at Syowa reached a maximum during local summer and a minimum during winter. (3) The occurrence of 4-kHz emissions was much more frequent at Husafell than at Syowa. The emissions at Husafell occurred mostly in the morning ({approximately}08 MLT) and in local winter, and the occurrences became more frequent with increasing magnetic activity. On the bases of these statistical characteristics, the authors discuss the effects of sunlight and geomagnetic activity which cause an asymmetry of wave propagation from the magnetosphere to the ionosphere in the two hemispheres.

  16. Auroral activities observed by SNPP VIIRS day/night band during a long period geomagnetic storm event on April 29-30, 2014

    NASA Astrophysics Data System (ADS)

    Shao, Xi; Cao, Changyong; Liu, Tung-chang; Zhang, Bin; Wang, Wenhui; Fung, Shing F.

    2015-10-01

    The Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP represents a major advancement in night time imaging capabilities. The DNB senses radiance that can span 7 orders of magnitude in one panchromatic (0.5-0.9 μm) reflective solar band and provides imagery of clouds and other Earth features over illumination levels ranging from full sunlight to quarter moon. When the satellite passes through the day-night terminator, the DNB sensor is affected by stray light due to solar illumination on the instrument. With the implementation of stray light correction, stray light-corrected DNB images enable the observation of aurora occurred in the high latitude regions during geomagnetic storms. In this paper, DNB observations of auroral activities are analyzed during a long period (> 20 hours) of geomagnetic storm event occurred on Apr. 29-30, 2014. The storm event has the Bz component of interplanetary magnetic field (IMF) pointing southward for more than 20 hours. During this event, the geomagnetic storm index Dst reached -67 nT and the geomagnetic auroral electrojet (AE) index increased and reached as high as 1200 nT with large amplitude fluctuations. The event occurred during new moon period and DNB observation has minimum moon light contamination. During this event, auroras are observed by DNB for each orbital pass on the night side (~local time 1:30am) in the southern hemisphere. DNB radiance data are processed to identify regions of aurora during each orbital pass. The evolution of aurora is characterized with time series of the poleward and equatorward boundary of aurora, area, peak radiance and total light emission of the aurora in DNB observation. These characteristic parameters are correlated with solar wind and geomagnetic index parameters. It is found that the evolution of total area-integrated radiance of auroral region over the southern hemisphere correlated well with the ground geomagnetic AE index with correlation

  17. Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity

    NASA Astrophysics Data System (ADS)

    Weygand, James M.; Matthaeus, W. H.; El-Alaoui, M.; Dasso, S.; Kivelson, M. G.

    2010-12-01

    Magnetic field data from the Cluster spacecraft in the magnetospheric plasma sheet are employed to determine the correlation scale and the magnetic Taylor microscale from simultaneous multiple-point measurements for multiple intervals over a range of mean magnetic field directions for three different levels of geomagnetic activity. We have determined that in the plasma sheet the correlation scale along the mean magnetic field direction decreases from 19,500 ± 2200 to 13,100 ± 700 km as the auroral electrojet activity increases from quiet (<80 nT) to active conditions (>200 nT). The reverse occurs for the correlation scale perpendicular to the magnetic field, which increases from 8200 ± 600 km to 13,000 ± 2100 km as the auroral electrojet activity increases from quiet to active conditions. This variation of the correlation scale with geomagnetic activity may mean either a change in the scale size of the turbulence driver or may mean a change in the predominance of one over another type of turbulence driving mechanism. Unlike the correlation scale, the Taylor scale does not show any clear variation with geomagnetic activity. We find that the Taylor scale is longer parallel to the magnetic field than perpendicular to it for all levels of geomagnetic activity. The correlation and Taylor scales may be used to estimate the effective magnetic Reynolds numbers separately for each angular channel. Reynolds numbers were found to be approximately independent of the angle relative to the mean magnetic field. These results may be useful in magnetohydrodynamic modeling of the magnetosphere and can contribute to our understanding of energetic particle diffusion in the magnetosphere.

  18. Wave and Particle Interactions in the High and Low-Altitude Auroral Region During Rising Solar Activity

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.; Menietti, J. D.

    2003-01-01

    The project has resulted in four separate investigations, which are each in various stages of publication in the refereed scientific journals. The first investigation was of the generation of electrostatic electron cyclotron waves observed by the Polar spacecraft throughout the auroral regions, dayside cusp, and polar magnetosphere. We have since discovered that these waves are also present within the magnetopause and magnetosheath, which is one of the topics of a second study, entitled: 'Polar observations of plasma waves in and near the dayside magnetopause/magnetosheath.' A third study of plasma waves focussed on kilometric continuum (KC) emission. This work is reported in a paper entitled 'Near-source and Remote Observations of Kilometric Continuum Radiation From Multi-spacecraft Observations'.The final investigation of this program concerns the possible transverse heating of auroral ions by impulsive wave structures. We summarize that substantial transverse ion heating has already occurred at lower altitudes. Abstracts of the above four studies are included in the Appendix to this final report.

  19. Auroral Spatial Structures Probe Sub-Orbital Mission Preliminary Results

    NASA Astrophysics Data System (ADS)

    Pratt, J.; Swenson, C.; Martineau, R. J.; Fish, C. S.; Conde, M.; Hampton, D.; Crowley, G.

    2015-12-01

    The NASA Auroral Spatial Structures Probe, 49.002, was launched January 28, 2015 from the Poker Flat Research Range into active aurora over the northern coast of Alaska. The primary objective of this mission was to determine the contribution of small spatial and temporal scale fluctuations of the electric fields to the larger-scale energy deposition processes associated with the aurora. The Auroral Spatial Structures Probe Sub-Orbital Mission consisted of a formation of 7 spacecraft (a main payload with 6 deployable sub-payloads) designed for multiple temporally spaced co-located measurements of electric and magnetic fields in the earth's ionosphere. The mission was able to make observations at a short time scale and small spatial scale convergence that is unobservable by either satellite or ground-based observations. The payloads included magnetometers, electric field double probes, and Langmuir probes as well as a sweeping impedance probe on the main payload. We present here preliminary results from the measurements taken that hint at the underlying spatial structure of the currents and energy deposition in the aurora. The Poynting flux derived from the observations is shown and implications are discussed in terms of the contribution of small spatial scale, rapid temporal scale fluctuations in the currents that deposit energy in the auroral region. Funding provided by NASA Grants NNX11AE23G and NNX13AN20A.

  20. Revisiting geomagnetic activity at auroral latitudes: No need for regular quiet curve removal for geomagnetic activity indices based on hourly data

    NASA Astrophysics Data System (ADS)

    Martini, Daniel; Argese, Chiara; Di Loreto, Massimo; Mursula, Kalevi

    2016-07-01

    The main objective of our study is to determine if the regular quiet daily curve (QDC) subtraction is a necessary procedure in quantifying the irregular geomagnetic variations at auroral latitudes. We define the hourly ΔH index, the absolute hour-to-hour deviation in nanotesla of the hourly geomagnetic horizontal component, which assigns each sample to sample deviation as geomagnetic activity without separating the "regular" and "irregular" parts of the daily magnetic field evolution. We demonstrate that the hourly gradient of the regular Sq variation is very small with respect to the irregular part, and a bulk of the nominal daily variation is actually part of the variation driven by solar wind and interplanetary magnetic field and traditionally classified as irregular. Therefore, attempts to subtract QDC can lead to a larger error, often caused by residual deviations between the used different mathematical and methodological tools and corresponding presumptions themselves. We show that ΔH provides the best and most consistent results at most timescales with the highest effective resolution among the studied indices. We also demonstrate that the ΔH index may equally be useful as a quick-look near-real-time index of space weather and as a long-term index derived from hourly magnetometer data for space climate studies.

  1. Observations of a gradual transition between Ps 6 activity with auroral torches and surgelike pulsations during strong geomagnetic disturbances

    NASA Technical Reports Server (NTRS)

    Steen, A.; Collis, P. N.; Evans, D.; Kremser, G.; Capelle, S.; Rees, D.; Tsurutani, B. T.

    1988-01-01

    This paper describes a long-lasting large-amplitude pulsation event, which occurred on January 10, 1983 in the ionosphere and magnetosphere and was characterized by Steen and Rees (1983). Over the 4-h period (0200-0600 UT), the characteristics of the pulsations in the ionosphere changed from being Ps 6 auroral torches toward substorms and back to Ps 6. At GEO, the corresponding characteristics were a modulation of the high-energy particle intensity and plasma dropouts. Based on the ideas presented by Rostoker and Samson (1984), an interpretation of the event is offered, according to which the pulsations are caused by the Kelvin-Helmholtz instability during an interval of strong magnetospheric convection. On the basis of this explanation, a new interpretation of the substorm time sequence is proposed.

  2. Magnetospheric and auroral plasmas - A short survey of progress

    NASA Technical Reports Server (NTRS)

    Frank, L. A.

    1975-01-01

    Important milestones in our researches of auroral and magnetospheric plasmas for the past quadrennium 1971-1975 are reviewed. Many exciting findings, including those of the polar cusp, the polar wind, the explosive disruptions of the magnetotail, the interactions of hot plasmas with the plasmapause, the auroral field-aligned currents, and the striking inverted V electron precipitation events, were reported during this period. Solutions to major questions concerning the origins and acceleration of these plasmas appear possible in the near future. A comprehensive bibliography of current research is appended to this brief survey of auroral and magnetospheric plasmas.

  3. Correlation Between Low Frequency Auroral Kilometric Radiation (AKR) and Auroral Structures

    NASA Technical Reports Server (NTRS)

    Paxamickas, Katherine A.; Green, James L.; Gallagher, Dennis L.; Boardsen, Scott; Mende, Stephen; Frey, Harald; Reinisch, Bodo W.

    2005-01-01

    Auroral Kilometric Radiation (AKR) is a radio wave emission that has long been associated with auroral activity. AKR is normally observed in the frequency range from -60 - 600 kHz. Low frequency AKR (or LF-AKR) events are characterized as a rapid extension of AKR related emissions to 30 kHz or lower in frequency for typically much less than 10 minutes. LF-AKR emissions predominantly occur within a frequency range of 20 kHz - 30 kHz, but there are LF-AKR related emissions that reach to a frequency of 5 kHz. This study correlates all instances of LF-AKR events during the first four years of observations from the IMAGE spacecraft's Radio Plasma Imager (WI) instrument with auroral observations from the wideband imaging camera (WIC) onboard IMAGE. The correlation between LF-AKR occurrence and WIC auroral observations shows that in the 295 confirmed cases of LF-AKR emissions, bifurcation of the aurora is seen in 74% of the cases. The bifurcation is seen in the dusk and midnight sectors of the auroral oval, where AKR is believed to be generated. The polarization of these LF-AKR emissions has yet to be identified. Although LF-AKR may not be the only phenomena correlated with bifurcated auroral structures, bifurcation will occur in most instances when LF-AKR is observed. The LF-AKR emissions may be an indicator of specific auroral processes sometimes occurring during storm-time conditions in which field-aligned density cavities extend a distance of perhaps 5-6 RE tailward from the Earth for a period of 10 minutes or less.

  4. Hemispheric Assymeries in Auroral Precipitation

    NASA Astrophysics Data System (ADS)

    Mende, S. B.

    2014-12-01

    It is widely accepted that the space weather related electrodynamic forcing of the geospace environment acts through the high geomagnetic latitude regions. At high latitudes inter-hemispheric asymmetries are largely due to the differences in solar illumination, the direction of the solar wind and interplanetary magnetic field components and to a lesser extent, due to differences between the two hemispheric internal fields. So far most research regarding interhemispheric differences concentrated on learning about the basic magnetosphere-ionosphere coupling mechanisms. It has been well established that sunlit conditions affect the energy flux of auroral precipitation resulting from the reduction in the mean energy of the auroral electrons in the sunlit summer hemisphere. This can be explained by the partial shorting out of the particle accelerating fields by the sunlight induced conductivity. It has also been found that sunlit conditions reduce the particle fluxes and therefore the associated field aligned currents. Unless the precipitation-induced conductivities overwhelm the sunlit component of conductivity, this would imply that the magnetospheric current generator responds to the ionospheric load in a highly non-linear manner. Interhemispheric currents may also play an important role that has not been fully explored. Interhemispheric asymmetries in substorm morphology have been explored critically because conjugacy implies that substorms have a common source at equatorial latitudes. In some cases the lack of conjugacy of substorms could be explained by considering the magnitude and direction of the IMF.

  5. Investigating the auroral electrojets using Swarm

    NASA Astrophysics Data System (ADS)

    Smith, Ashley; Macmillan, Susan; Beggan, Ciaran; Whaler, Kathy

    2016-04-01

    The auroral electrojets are large horizontal currents that flow within the ionosphere in ovals around the polar regions. They are an important aspect of space weather and their position and intensity vary with solar wind conditions and geomagnetic activity. The electrojet positions are also governed by the Earth's main magnetic field. During more active periods, the auroral electrojets typically move equatorward and become more intense. This causes a range of effects on Earth and in space, including geomagnetically induced currents in power transmission networks, disturbance to radio communications and increased drag on satellites due to expansion of the atmosphere. They are also indicative of where the aurora are visible. Monitoring of the auroral electrojets in the pre-satellite era was limited to the network of ground-based magnetic observatories, from which the traditional AE activity indices are produced. These suffer in particular from the stations' poor distribution in position and so this motivates the use of satellite-based measurements. With polar low-Earth orbit satellites carrying magnetometers, all latitudes can be sampled with excellent resolution. This poster presents an investigation using Swarm's magnetometer data to detect the electrojets as the spacecraft move above them. We compare and contrast two approaches, one which uses vector data and the other which uses scalar data (Hamilton and Macmillan 2013, Vennerstrom and Moretto, 2013). Using ideas from both approaches we determine the oval positions and intensities from Swarm and earlier satellites. The variation in latitude and intensity with solar wind conditions, geomagnetic activity and secular variation of the main field is investigated. We aim to elucidate the relative importance of these factors. Hamilton, B. and Macmillan, S., 2013. Investigation of decadal scale changes in the auroral oval positions using Magsat and CHAMP data. Poster at IAGA 12th Scientific Assembly, 2013. http

  6. Early auroral observations

    NASA Astrophysics Data System (ADS)

    Silverman, S.

    1998-06-01

    Early auroral observations from Europe and Asia, and catalogs of these observations, are described and discussed. Cautions to be aware of when using these data include the dating of the observation, and the cultural context, especially for observations included in histories and annals as omens and portents. Specific attention is then paid to observations from classical Greece and Rome, the Middle East in biblical times, Asian annals, and the period from late antiquity through the medieval period.

  7. Significance, Present Status and Perspectives of the Auroral Zone Magnetic Activity Monitoring by the Russian Arctic Magnetometer Network

    NASA Astrophysics Data System (ADS)

    Troshichev, O. A.; Janzhura, A. S.; Takahashi, K.

    2010-12-01

    The Roshydromet magnetometer network in Russian Arctica includes the following stations: Amderma, Dickson, Cape Chelyuskin, Tiksi, Pevek, Lovozero, Heiss Island, Vieze Island, Izvestia Island. Vitality of the first 5 of them, providing the data for derivation AE/AL/AU indices, was supported during the previous years by the International project Rapidmag (Russian Auroral and Polar Ionospheric Disturbance Magnetometers). In last two years the Roshydromet network in Arctica was subjected to reconstruction. Renovation includes construction of new polar station buildings, deployment of the satellite communication system at stations, and arrangement of new acquisition system for magnetometers. The reconstruction should ensure on-line transmission of the current magnetic data from the Arctic network to AARI and analysis of these data in the near-real time. The present state of affairs and further perspectives are discussed. Examples are given, which show that run of the AL and AU indices, derived with allowance of data from Russian Arctic stations and without this information, can be principally different in case of the strong saw-tooth magnetic substorms.

  8. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1994-01-01

    This report describes the accomplishments of a program designed to develop the tools necessary to interpret auroral emissions measured from a space-based platform. The research was divided into two major areas. The first area was a laboratory study designed to improve our understanding of the space vehicle external environment and how it will affect the space-based measurement of auroral emissions. Facilities have been setup and measurements taken to simulate the gas phase environment around a space vehicle; the radiation environment encountered by an orbiting vehicle that passes through the Earth's radiation belts; and the thermal environment of a vehicle in Earth orbit. The second major area of study was a modeling program to develop the capability of using auroral images at various wavelengths to infer the total energy influx and characteristic energy of the incident auroral particles. An ab initio auroral calculation has been added to the extant ionospheric/thermospheric global modeling capabilities within our group. Once the addition of the code was complete, the combined model was used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Attached papers included are: 'Laboratory Facility for Simulation of Vehicle-Environment Interactions'; 'Workshop on the Induced Environment of Space Station Freedom'; 'Radiation Damage Effects in Far Ultraviolet Filters and Substrates'; 'Radiation Damage Effects in Far Ultraviolet Filters, Thin Films, and Substrates'; 'Use of FUV Auroral Emissions as Diagnostic Indicators'; and 'Determination of Ionospheric Conductivities from FUV Auroral Emissions'.

  9. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    Observations of plasmas and electric field activity within regions of auroral particle acceleration have verified the existence of electric fields with components parallel to the magnetic field over large altitude regions. Evidence is presented which indicates that small-ampliatude double layers along the auroral magnetic field lines may provide a mechanism for the maintenance of auroral ion potential. Evidence is also presented of downward-directed parallel electric fields along the magnetic field lines in the return current region. It is suggested that the downward electric fields may have significant effects on ion trajectories, and further theoretical investigation of the effects of downward parallel electric fields on ion conic formation is recommended.

  10. M-I coupling across the auroral oval at dusk and midnight: repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs)

    NASA Astrophysics Data System (ADS)

    Sandholt, P. E.; Farrugia, C. J.; Denig, W. F.

    2014-04-01

    We study substorms from two perspectives, i.e., magnetosphere-ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostrøm type I centered at midnight and Bostrøm type II maximizing at dawn and dusk) during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC) coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN) index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i) continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii) "snapshot" satellite (DMSP F13) observations of FAC/precipitation/ion drift profiles, and (iii) observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δ Bz/δt) and the inferred large spatial scales (in radial and azimuthal dimensions) of the dipolarization process in these strong substorm expansions may lead to 50-100 kV enhancements of the cross

  11. Solar cycle and diurnal dependence of auroral structures

    NASA Astrophysics Data System (ADS)

    Partamies, N.; Whiter, D.; Syrjäsuo, M.; Kauristie, K.

    2014-10-01

    In order to facilitate usage of optical data in space climate studies, we have developed an automated algorithm to quantify the complexity of auroral structures as they appear in ground-based all-sky images. The image analysis is based on a computationally determined "arciness" value, which describes how arc like the auroral structures in the image are. With this new automatic method we have analyzed the type of aurora in about 1 million images of green aurora (λ = 557.7nm) captured at five camera stations in Finnish and Swedish Lapland in 1996-2007. We found that highly arc like structures can be observed in any time sector and their portion of the auroral structures varies much less than the fraction of more complex forms. The diurnal distribution of arciness is in agreement with an earlier study with high arc occurrence rate in the evening hours and steadily decreasing toward the late morning hours. The evolution of less arc-like auroral structures is more dependent on the level of geomagnetic activity and solar cycle than the occurrence of arcs. The median arciness is higher during the years close to the solar minimum than during the rest of the solar cycle. Unlike earlier proposed, the occurrence rate of both arcs and more complex auroral structures increases toward the solar maximum and decreases toward the solar minimum. The cyclic behavior of auroral structures seen in our data is much more systematic and clear than previously reported visual studies suggest. The continuous arciness index describing the complexity of auroral structures can improve our understanding on auroral morphology beyond the few commonly accepted structure classes, such as arcs, patches, and omega bands. Arciness can further be used to study the relationship of auroral structures at different complexity levels and magnetospheric dynamics.

  12. Morphology of auroral zone radio wave scintillation

    SciTech Connect

    Rino, C.L.; Matthews, S.J.

    1980-08-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.

  13. Landau damping of auroral hiss

    NASA Technical Reports Server (NTRS)

    Morgan, D. D.; Gurnett, D. A.; Menietti, J. D.; Winningham, J. D.; Burch, J. L.

    1994-01-01

    Auroral hiss is observed to propagate over distances comparable to an Earth radius from its source in the auroral oval. The role of Landau damping is investigated for upward propagating auroral hiss. By using a ray tracing code and a simplified model of the distribution function, the effect of Landau damping is calculated for auroral hiss propagation through the environment around the auroral oval. Landau damping is found to be the likely mechanism for explaining some of the one-sided auroral hiss funnels observed by Dynamics Explorer 1. It is also found that Landau damping puts a lower limit on the wavelength of auroral hiss. Poleward of the auroral oval, Landau damping is found in a typical case to limit omega/k(sub parallel) to values of 3.4 x 10(exp 4) km/s or greater, corresponding to resonance energies of 3.2 keV or greater and wavelengths of 2 km or greater. For equatorward propagation, omega/k(sub parallel) is limited to values greater than 6.8 x 10(exp 4) km/s, corresponding to resonance energies greater than 13 keV and wavelengths greater than 3 km. Independent estimates based on measured ratios of the magnetic to electric field intensity also show that omega/k(sub parallel) corresponds to resonance energies greater than 1 keV and wavelengths greater than 1 km. These results lead to the difficulty that upgoing electron beams sufficiently energetic to directly generate auroral hiss of the inferred wavelength are not usually observed. A partial transmission mechanism utilizing density discontinuities oblique to the magnetic field is proposed for converting auroral hiss to wavelengths long enough to avoid damping of the wave over long distances. Numerous reflections of the wave in an upwardly flared density cavity could convert waves to significantly increased wavelengths and resonance velocities.

  14. Global Auroral Remote Sensing Using GGS UVI Images

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Parks, G. K.; Brittnacher, M. J.; Spann, J. F., Jr.; Cumnock, J.; Lummerzheim, D.

    1997-01-01

    The GGS POLAR satellite, with an apogee distance of 9 Earth radii, provides an excellent platform for extended viewing of the northern auroral zone. Global FUV auroral images from the Ultraviolet Imager onboard the POLAR satellite can be used as quantitative remote diagnostics of the auroral regions, yielding estimates of incident energy characteristics, compositional changes, and other higher order data products. In particular, images of long and short wavelength Earth Far Ultraviolet (FUV) Lyman-Birge-Hopfield (LBH) emissions can be modeled to obtain functions of energy flux and average energy that are basically insensitive to changes in seasonal and solar activity changes. The determination of maps of incident auroral energy characteristics is demonstrated here and compared with in situ measurements.

  15. Auroral effects on midlatitude semidiurnal tides

    SciTech Connect

    Fesen, C.G. ); Richmond, A.D.; Roble, R.G. )

    1991-03-01

    The effect of auroral activity on mid-latitude semidiurnal tides was investigated using simulations from the NCAR Thermosphere/Ionosphere General Circulation Model (TIGCM). Model runs were made for solar cycle minimum equinox conditions for four levels of geomagnetic activity parameterized by the total hemispheric power index and the cross polar cap potential drop. Simulations at 42.5{degree}N (gg) predicted that the upper thermosphere semidiurnal winds and temperatures generally increase with increasing geomagnetic activity, while the lower thermosphere fields were relatively insensitive to the level of auroral forcing in the model. The modeled semidiurnal mid-latitude tidal response was determined by the magnitude and phasing of the waves generated by in situ solar forcing and the auroral momentum and energy sources, in conjunction with those propagating up from the lower atmosphere. The predicted sensitivity of the model tides to the level of geomagnetic activity may contribute to the observed tidal variability at mid latitudes. Successful modeling of observations will require careful specification of the high-latitude energy and momentum sources.

  16. Cross-field current instability for auroral bead formation in breakup arcs

    NASA Astrophysics Data System (ADS)

    Lui, A. T. Y.

    2016-06-01

    The physical process responsible for the onset of substorm expansion is still unresolved in spite of decades of research on the topic. Detailed properties of the spatially periodic auroral beads on prebreakup auroral arcs that initiate substorm expansion onset are now available. These auroral bead properties impose severe observational constraints on the onset process. In this work, theoretical predictions of the cross-field current instability are evaluated in terms of these constraints. The growth rates and wavelengths associated with auroral beads in several previously published events are reproduced by the cross-field current instability, implying that the instability can indeed account for the characteristics of auroral beads that eventually lead to substorm onset. The present results differ from the conclusion reached by a previous analysis that the shear flow ballooning instability can account for the growth and spatial scales of auroral beads better than the cross-field current instability.

  17. Ionospheric heating, upwelling, and depletions in auroral current systems

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Semeter, J. L.

    2010-12-01

    This research investigates aspects of ionospheric dynamics relevant to magnetosphere-ionosphere coupling in auroral arc current systems. Auroral electric fields and particle precipitation deposit energy in the ionosphere, often resulting in enhanced ion or electron temperatures. This heating has a wide variety of consequences for the ionosphere. High ion temperatures alter chemical balance in the lower F-region, resulting in conversion to a molecular ion plasma, faster recombination, and plasma depletions. Pressure enhancements resulting from both ion and electron heating are capable of generating intense ion upflows. Ion upflow and depletion processes redistribute and structure the auroral plasma in ways that are likely of consequence to wave coupling of the magnetosphere and ionosphere. These implications are examined through the use of a fluid-kinetic model of the auroral ionosphere and new incoherent scatter radar data analysis techniques. Results indicate that enhanced recombination of molecular ions in auroral downward current regions may work in concert with well-known electrodynamic depletion processes, in the F-region ionosphere. Furthermore, ionospheric upflows in auroral upward and downward current regions may be quite different in terms of intensity and types of upflowing ions.

  18. Auroral interactions with ISSA

    NASA Technical Reports Server (NTRS)

    Purvis, Carolyn K.; Snyder, David B.; Jongeward, Gary A.

    1994-01-01

    Due to its high inclination orbit, International Space Station Alpha (ISSA) will occasionally experience surface charging by the high energy electrons of the auroral environment. This study looks at the frequency of these occurrences and recapitulates a charging model. ISSA should expect about 80 auoral encounters annually. If the plasma contactor is not run continuously, the vehicle may charge several hundred volts. Charge storage on standard space station coatings should not be a problem, but care must be taken that materials are not introduced inadvertently that cannot bleed off accumulated charge in a reasonable time. A conductivity requirement may be used to ensure surface materials do not charge to high voltages, or store charge for long periods of time.

  19. Characteristics of the solar wind controlled auroral emissions

    NASA Astrophysics Data System (ADS)

    Liou, K.; Newell, P. T.; Meng, C.-I.; Brittnacher, M.; Parks, G.

    1998-08-01

    We performed a high-time resolution (5 min) correlative study of the energy deposition rate in the northern auroral zone with the concurrent solar wind plasma and interplanetary magnetic field (IMF) observations for a 4 month period from March 30 to July 29, 1996. Auroral power, inferred by auroral emissions, was derived from images acquired by the ultraviolet imager (UVI) on board the Polar satellite, and the interplanetary parameters were based on Wind observations. It is found that dayside aurorae in the afternoon sector (65°-80° magnetic latitude (MLAT) and 1300-1800 magnetic local time (MLT)) are more active for large IMF cone angles and large solar wind electric fields. This result can be attributed to the manifestation of the antiparallel magnetic field merging in different locations and the partial ``penetration'' of the IMF on the dayside magnetopause. The integrated nightside (60°-75° MLAT and 2000-0100 MLT) auroral brightness is moderately correlated with the north-south component of the IMF and the solar wind speed with correlation coefficients of 0.49 and 0.35, respectively. The mean nightside auroral power is found to be approximately linearly proportional to the IMF Bz with a constant slope of 2 GW/nT. The solar wind speed, however, affects the nightside auroral power for both polarities of IMF Bz. Interestingly, the solar wind dynamic pressure shows no effect on the nightside auroral brightness. All these findings indicate that both reconnection and viscous-like interaction mechanisms play an important role in producing auroral emissions in the night sector. It is also found that the nightside auroral brightness responds to the southward turning of the IMF with a peak delay time of ~60 min. This result favors the model of loading-unloading magnetosphere. We also found that a negative IMF By condition favors the nightside auroral activity, and we attributed this effect to the partial penetration of the IMF By. Finally, the response function for

  20. Examining auroral downward current region processes using ground based data

    NASA Astrophysics Data System (ADS)

    Michell, Robert Gregory

    This thesis presents data from ground camera observations of the aurora conducted from Alaska during the winters of 2005 through 2007. In conjunction with these camera observations, conjugate radar observations of the auroral ionosphere were conducted during the winters of 2006 and 2007, using the Poker Flat Advanced Modular Incoherent Scatter Radar (AMISR). Two main aspects of auroral downward-current (DCR) and time-varying/polar cap boundary regions are investigated, namely, dark auroral signatures in the camera data, and naturally enhanced ion acoustic lines (NEIALs) in the radar data. An auroral event containing a distinct dark stripe occurred on 06 March 2005 over Kaktovik, Alaska. This event displayed many characteristics of an auroral DCR, as compared to in situ studies of DCRs using data from the FAST and Cluster satellites. It is shown that this dark stripe is the auroral signature of a downward-current region. This stripe was found to widen at a rate of 750 m/s, which is consistent with the predictions from the theory and model of DCRs (Streltsov and Marklund, 2006). The second aspect of these auroral regions investigated here is the occurrence of NEIALs in the radar data. Observations of NEIALs are presented from two separate nights, displaying different auroral context. On 08 February 2007, one short-lived NEIAL event was observed with AMISR using high-time resolution (˜19 ms). These raw data reveal that the large returns associated with the NEIALs come from the dark region immediately adjacent to an active dynamic auroral arc. It was also found that propagation in altitude of the NEIALs occurs at or near the Alfven velocity. Furthermore, it was found that the enhanced up- and down-shifted shoulders of the NEIALs most often occurred independently of one another on a 19 ms timescale. On 31 March 2006, a moderately intense auroral arc, (˜10 kR at 557.7 nm), was located in the local magnetic zenith at Poker Flat, Alaska. During this event the radar

  1. Characteristics of Extreme Auroral Charging Events

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily; Parker, Linda Neergaard

    2014-01-01

    Today’s presentation describes preliminary results from a study of extreme auroral charging in low Earth orbit. Goal of study is to document characteristics of auroral charging events of importance to spacecraft design, operations, and anomaly investigations.

  2. DMSP Auroral Charging at Solar Cycle 24 Maximum

    NASA Technical Reports Server (NTRS)

    Chandler, Michael; Parker, Linda Neergaard; Minow, Joseph I.

    2013-01-01

    It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions (Frooninckx and Sojka, 1992; Anderson and Koons, 1996; Anderson, 2012). These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka (1992). These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.

  3. DMSP Auroral Charging at Solar Cycle 24 Maximum

    NASA Technical Reports Server (NTRS)

    Chandler, M.; Parker, L. Neergaard; Minow, J. I.

    2013-01-01

    It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions. These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka. These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.

  4. Electron and Proton Auroral Dynamics

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Frey, H. U.; Gerard, J. C.; Hubert, B.; Fuselier, S.; Spann, J. F., Jr.; Gladstone, R.; Burch, J. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Data from the Wide-band Imaging Camera (WIC) sensitive to far ultraviolet auroras and from the Spectrographic Imager (SI) channel SI12, sensitive to proton precipitation induced Lyman alpha were analyzed during a high altitude orbit segment of the IMAGE spacecraft. This segment began during the expansive phase of a substorm. The aurora changed into a double oval configuration, consisting of a set of discrete pole-ward forms and a separate diffuse auroral oval equatorwards, Although IMF Bz was strongly southward considerable activity could be seen poleward of the discrete auroras in the region that was considered to be the polar cap. The SI12 Doppler shifted Lyman alpha signature of precipitating protons show that the proton aurora is on the equatorward side of the diffuse aurora. In the following several hours the IMF Bz field changed signed. Although the general character of the proton and electron aurora did not change, the dayside aurora moved equatorward when the Bz was negative and more bright aurora was seen in the central polar cap during periods of positive Bz.

  5. The Auroral Particles experiment

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An instrument for the detection of particles in the energy range of 0.1 ev to 80 Kev was designed, built, tested, calibrated, and flown onboard the spacecraft ATS-6. Data from this instrument generated the following research: intensive studies of the plasma in the vicinity of the spacecraft; global variations of plasmas; correlative studies using either other spacecraft or ground based measurements; and studies of spacecraft interactions with ambient plasmas including charging, local electric fields due to differential charging, and active control of spacecraft potential. Results from this research are presented.

  6. ISIS-2 satellite imagery and auroral morphology

    NASA Technical Reports Server (NTRS)

    Anger, C. D.; Murphree, J. S.

    1976-01-01

    Auroral morphology is emphasized over auroral dynamics in a paper describing conspicuous auroral features picked up by the ISIS-2 scanning photometer. Results of improved programs designed to transform the data into a corrected geomagnetic coordinate frame and generate latitude profiles of auroral intensities at different magnetic local times are reported. The diffuse aurora and its relation to the morphology of discrete aurorae is given special attention.

  7. Automatic georeferencing of astronaut auroral photography

    NASA Astrophysics Data System (ADS)

    Riechert, Maik; Walsh, Andrew P.; Gerst, Alexander; Taylor, Matthew G. G. T.

    2016-07-01

    Astronauts on board the International Space Station (ISS) have taken thousands of high-resolution colour photographs of the aurora, which could be made useful for research if their pointing information could be reconstructed. We describe a method to do this using the star field in the images, and how the reconstructed pointing can then be used to georeference the images to a similar level of accuracy in existing all-sky camera images. We have used this method to make georeferenced auroral images taken from the ISS available and here describe the resulting data set, processing software, and how to access them.

  8. Rocket study of auroral processes

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.

    1981-01-01

    Abstracts are presented of previously published reports analyzing data from three Echo 3 rocket flights. Particle experiments designed for the Terrier-Malmute flight, the Echo 5 flight, and the Norwegian Corbier Ferdinand 50 flight are described and their flight performance evaluated. Theoretical studies on auroral particle precipitation are reviewed according to observations made in three regions of space: (1) the region accessible to rockets and low altitude satellites (few hundred to a few thousand kilometers); (2) the region extending from 4000 to 8000 km (S3-3 satellite range); and (3) near the equatorial plane (geosynchronous satellite measurements). Questions raised about auroral arc formation are considered.

  9. ULF Waves above the Nightside Auroral Oval during Substorm Onset

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Watt, C. E. J.

    2016-02-01

    This chapter reviews historical ground-based observations of ultra-low-frequency (ULF) waves tied to substorms, and highlights new research linking these ULF waves explicitly to substorm onset itself. There are several robust methods that can be used to determine the characteristics of a nonstationary time series such as the ULF magnetic field traces observed in the auroral zone during substorms. These include the pure state filter, the Hilbert-Huang transform, and wavelet analysis. The first indication of a substorm is a sudden brightening of one of the quiet arcs lying in the midnight sector of the oval. The chapter focuses on the properties of ULF waves that are seen in two-dimensional images of auroral intensity near substorm expansion phase onset. It also discusses a wider range of magnetotail instabilities that could be responsible for the azimuthally structured auroral forms at substorm onset.

  10. Auroral oval as a beautiful but outdated paradigm

    NASA Astrophysics Data System (ADS)

    Lazutin, Leonid

    2015-03-01

    Auroral oval as an important region of the polar ionosphere presents in a considerable number of a studies of the disturbed magnetosphere. It seems that all about oval is known to all researchers. But there are evidences in a publications that misunderstanding exists and that it is a time for a review on this subject. Most of papers describing auroral position and dynamics were published years ago and became a rarity. We will tell on the history of aurora's distribution before the oval discovery, how the oval was discovered and how it changed our point of view on magnetosphere processes. We will tell also how the oval paradigm grows and haw with time it became non-productive (at our point of view) for a studies of magnetosphere structure and disturbances. Finally we will indicate the position of the aural zone and auroral magnetosphere among the main domains of the magnetosphere.

  11. Comparison of ionospheric scintillation statistics from the North Atlantic and Alaskan sectors of the auroral oval using the wideband satellite. Environmental research papers

    SciTech Connect

    Basu, S.; Basu, S.; Livingston, R.C.; Whitney, H.E.; MacKenzie, E.

    1981-09-15

    Phase and amplitude scintillation measurements made at 138 MHz at two widely separated auroral stations, Goose Bay, Labrador, and Anchorage, Alaska, are presented. The phase coherent transmissions obtained from the sun-synchronous Wideband satellite were used for this purpose. The data were obtained for part of the year 1979 during a high sunspot epoch and was terminated by the failure of the Wideband satellite in August, 1979. The primary objective of the report is the presentation of scintillation statistics in a manner required for communications system planning. The morphology at the two stations was found to be significantly different with more nighttime scintillations observed at Goose Bay, while many more daytime scintillations were observed at Anchorage during the same season. The report establishes the existence of L-shell aligned sheets in the daytime in addition to the well-established similar geometry at night. The existence of sheetlike irregularities during the daytime well-equatorward of the auroral oval is significant both from modeling and physical standpoints.

  12. Electrodynamic response of the middle atmosphere to auroral pulsations

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Barcus, J. R.

    1990-01-01

    The MAC/EPSILON observational campaign encompassed the use of two Nike Orion rocket payloads which studied the effects of auroral energetics on the middle atmosphere. While one payload was launched during the recovery phase of a moderate magnetic substorm, during fairly stable auroral conditions, the other was launched during highly active postbreakup conditions during which Pc5 pulsations were in progress. The energetic radiation of the first event was composed almost entirely of relativistic electrons below 200 keV, while that of the second was dominated by much softer electrons whose high X-ray fluxes exceeded the cosmic ray background as an ionizing source down to below 30 km.

  13. Jupiter's Various Auroral Emission Enhancements Observed by Hisaki/EXCEED

    NASA Astrophysics Data System (ADS)

    Tao, Chihiro

    2016-07-01

    Onboard a JAXA Earth-orbiting platform, the planetary telescope Hisaki monitors extreme ultraviolet emissions from Jovian aurora and Io plasma torus continuously. Hisaki succeeded to detect sporadic, large auroral power enhancements displaying both short- (<1 planetary rotation) and long-term (>a few rotations) variations and their modulations by Io's volcanic activity over several weeks. The spectral information taken by Hisaki enables us to investigate (1) the time variation of the auroral electron precipitating fluxes during these emission enhancements, (2) the occurrence statistics of polar-dominant events, and (3) the associated magnetospheric dynamics for these emission enhancement events using Knight's aurora acceleration theory. Expected collaborative observations with Juno will be discussed.

  14. Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    NASA Technical Reports Server (NTRS)

    Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.; Rowland, D. E.; Jones, S.; Heinselman, C. J.

    2011-01-01

    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.

  15. Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    NASA Technical Reports Server (NTRS)

    Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.; Rowland D. E.; Jones, S.; Heinselman, C. J.

    2012-01-01

    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine if it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.

  16. Theory of the auroral magnetosphere

    NASA Technical Reports Server (NTRS)

    Schulz, M.; Chiu, Y. T.; Cornwall, J. M.

    1981-01-01

    The aurora has come to be understood as a manifestation of energy transfer and plasma transfer from the solar wind to the magnetosphere. The auroral oval seems to be a mapping of the boundary layer that lies just inside the magnetospheric surface, which consists of the magnetopause and neutral sheet. The auroral oval is consequently a region of reversal for the meridional (r,8) component of the magnetospheric convection electric field and thus a region of strong shear in the plasma drift velocity field. The velocity shear seems to account for the formation of eddies in the auroral "curtain". Moreover, the Kinematical impedance associated with hot auroral plasma perpendicular electric field across a narrow region of latitude to occur without the formation of a large parallel electric field. The signature of the parallel electric field is such as to produce upgoing ion beams and precipitating electron beams in the PM (afternoon-evening) sector of local time, and to account for the polarity of Region-1 currents as a function of local time.

  17. Global Auroral Imaging for the Dynamics Explorer Mission

    NASA Technical Reports Server (NTRS)

    Frank, L. A.

    1998-01-01

    The two Dynamics Explorer spacecraft, DE-1 and DE-2, were launched on August 3, 1981, into polar coplanar orbits at different altitudes for the purpose of studying interactive processes within the atmosphere-ionosphere-magnetosphere system. The DE-1 spacecraft (high-altitude mission) used an elliptical orbit that was selected to allow: (1) measurements extending from the hot magnetospheric plasma through the plasmasphere to the cool ionosphere; (2) global auroral imaging, wave measurements in the heart of the magnetosphere, and crossing of auroral field lines at several earth radii; and (3) measurements for significant periods of time along a magnetic field flux tube. The orbit of Dynamics Explorer 1 offered an opportunity to obtain global images of Earth's dayglow and auroral luminosities and to acquire consecutive images of the entire auroral oval during the growth, onset, expansion, and recovery phases of substorms. The University of Iowa's Spin-scan Auroral Imaging (SAI) instrument, was on-board DE-1. SAI was activated in orbit and placed in routine operation on September 23, 1981, and has provided outstanding new contributions in the fields of auroral, magnetospheric and geocoronal physics, introduced a powerful tool for the study of global atmospheric ozone, and initiated the first search from space for marine bioluminescence on the surface of the global ocean. The SAI instrumentation consists of three imaging photometers, two for visible wavelengths and the third for vacuum-ultraviolet wavelengths equipped with primary catoptric optics with superpolished mirror surfaces. The primary focusing element is an off-axis section of a parabolic mirror that is used to provide an optical path completely free of support structures for the mirrors.

  18. Ionospheric influence on the global characteristics of electron precipitation during auroral substorms

    NASA Astrophysics Data System (ADS)

    Chua, Damien Han

    Global auroral images from the Polar Ultraviolet Imager (UVI) and in situ, low altitude particle measurements from the Fast Auroral Snapshot Explorer (FAST) spacecraft are used to investigate the effects of solar wind variations and seasonal variability in the ionosphere on electron precipitation during auroral substorms. Isolated substorms and storm-time, pressure pulse-driven intensifications are compared and we show that the global patterns of precipitating electron energy flux and average energy are markedly different for each class of auroral phenomena. Field-aligned acceleration of auroral electrons in the upward current regions is found to be an essential aspect of the global aurora during isolated substorms. In contrast, the electron precipitation during pressure pulse-driven intensifications is less structured with no indication of field-aligned acceleration. A new method of quantifying the time scales and phases of magnetospheric substorms using the hemispheric power derived from the UVI images is described. We show that substorm time scales vary most strongly with season while IMF orientation plays a secondary role. The recovery time for substorm activity is roughly a factor of two longer when the nightside auroral zone is in darkness (winter and equinox) than when it is sunlit. We find that the longer time scale of substorms occurring in darkness is sustained by discrete auroral features associated with field-aligned potential drops and inertial Alfven waves. These discrete structures exist for shorter time scales, if they are observed at all, during substorms that occur under sunlit conditions. The observed seasonal variations in global auroral structure during substorms are most consistent with the hypothesis that ionospheric boundary conditions strongly influence the effectiveness of auroral acceleration mechanisms that include parallel potentials and Alfven waves. The results presented in this thesis will enhance our understanding of substorm

  19. The auroral footprint of Enceladus on Saturn.

    PubMed

    Pryor, Wayne R; Rymer, Abigail M; Mitchell, Donald G; Hill, Thomas W; Young, David T; Saur, Joachim; Jones, Geraint H; Jacobsen, Sven; Cowley, Stan W H; Mauk, Barry H; Coates, Andrew J; Gustin, Jacques; Grodent, Denis; Gérard, Jean-Claude; Lamy, Laurent; Nichols, Jonathan D; Krimigis, Stamatios M; Esposito, Larry W; Dougherty, Michele K; Jouchoux, Alain J; Stewart, A Ian F; McClintock, William E; Holsclaw, Gregory M; Ajello, Joseph M; Colwell, Joshua E; Hendrix, Amanda R; Crary, Frank J; Clarke, John T; Zhou, Xiaoyan

    2011-04-21

    Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity. PMID:21512570

  20. The auroral footprint of Enceladus on Saturn.

    PubMed

    Pryor, Wayne R; Rymer, Abigail M; Mitchell, Donald G; Hill, Thomas W; Young, David T; Saur, Joachim; Jones, Geraint H; Jacobsen, Sven; Cowley, Stan W H; Mauk, Barry H; Coates, Andrew J; Gustin, Jacques; Grodent, Denis; Gérard, Jean-Claude; Lamy, Laurent; Nichols, Jonathan D; Krimigis, Stamatios M; Esposito, Larry W; Dougherty, Michele K; Jouchoux, Alain J; Stewart, A Ian F; McClintock, William E; Holsclaw, Gregory M; Ajello, Joseph M; Colwell, Joshua E; Hendrix, Amanda R; Crary, Frank J; Clarke, John T; Zhou, Xiaoyan

    2011-04-21

    Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity.

  1. Localized Ionospheric Particle Acceleration and Wave Acceleration of Auroral Ions: Amicist Data Set

    NASA Technical Reports Server (NTRS)

    Lynch, Kristina A.

    1999-01-01

    Research supported by this grant covered two main topics: auroral ion acceleration from ELF-band wave activity, and from VLF-spikelet (lower hybrid solitary structure) wave activity. Recent auroral sounding rocket data illustrate the relative significance of various mechanisms for initiating auroral ion outflow. Two nightside mechanisms are shown in detail. The first mechanism is ion acceleration within lower hybrid solitary wave events. The new data from this two payload mission show clearly that: (1) these individual events are spatially localized to scales approximately 100 m wide perpendicular to B, in agreement with previous investigations of these structures, and (2) that the probability of occurrence of the events is greatest at times of maximum VLF wave intensity. The second mechanism is ion acceleration by broadband, low frequency electrostatic waves, observed in a 30 km wide region at the poleward edge of the arc. The ion fluxes from the two mechanisms are compared and it is shown that while lower hybrid solitary structures do indeed accelerate ions in regions of intense VLF waves, the outflow from the electrostatic ion wave acceleration region is dominant for the aurora investigated by this sounding rocket, AMICIST. The fluxes are shown to be consistent with DE-1 and Freja outflow measurements, indicating that the AMICIST observations show the low altitude, microphysical signatures of nightside auroral outflow. In this paper, we present a review of sounding rocket observations of the ion acceleration seen nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations, we will demonstrate the following characteristics of transverse ion acceleration (TAI) in LHSS. The ion acceleration process is narrowly confined to 90 degrees pitch angle, in spatially confined regions of up to a

  2. Statistical study of NEIAL occurence in the PFISR data and correlated auroral forms

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.

    2012-12-01

    Naturally Enhanced Ion Acoustic Lines (NEIALs) have been observed wth the Poker Flat Incoherent Scatter Radar (PFISR) ever since it began operating in 2006. The first few years of PFISR operation corresponded to a long, geomagnetically quiet solar minimum. During this time there were only a limited number of NEIALs observed with PFISR with simultaneous auroral imaging. The increases in solar activity that started occurring in 2011 and 2012 have resulted in significantly more active auroral structures over the PFISR radar at Poker Flat, AK. The increase in auroral activity has resulted in a large number of NEIALs observed with PFISR. The MOOSE imagers have been operating continuously since September 2011 and have made many auroral observations simultaneous to the PFISR observations of NEIALs. The larger number of NEIAL observations available now, make it possible to distinguish the range of auroral features that are associated with different aspects of the NEIAL observations. We aim to statistically catagorize the different types of auroral features that occur with NEIALs in the PFISR data, with the goal of gaining insight into the possible generation mechanisms of NEIALs.; PFISR electron density measurements (in 10^11 m^-3) showing strong NEIAL enhancements extending to greater than 700 km altitudes. ; All-sky image from 22 January 2012, showing tall rayed auroral structures at a time of strong NEIALs in the PFISR data.

  3. Mapping thermospheric winds in the auroral zone

    NASA Astrophysics Data System (ADS)

    Conde, M.; Smith, R. W.

    A new all-sky imaging Fabry-Perot (ASIFP) spectrometer has been developed for ground-based mapping of upper atmospheric wind and temperature fields in the auroral zone. Although several other ASIFP spectrometers exist for atmospheric studies [Rees et al., 1984; Sekar et al., 1993; Biondi et al., 1995] these instruments have all operated with etalons of fixed optical gap, a method potentially subject to errors in the presence of auroral intensity gradients. In this instrument the etalon plate spacing is scanned periodically over one order of interference and each photon detected is assigned to a wavelength interval which is determined from both its arrival location on the detector and the etalon plate spacing prevailing at the detection time. Spectra accumulated this way are not distorted by spatial intensity gradients. Preliminary λ630 nm observations were made during the winter of 1994/95 from Poker Flat Research Range, Alaska. To illustrate some of the features we have observed in this study we present line-of-sight wind estimates derived for the night of December 7, 1994. The background wind matches averages presented previously by Sica et al. [1986] and is consistent with winds driven principally by momentum deposition from ionospheric plasma convection through ion-drag. Smaller scale curvature and divergence features are also discernable and are discussed.

  4. Fermi acceleration of auroral particles.

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Heikkila, W. J.

    1972-01-01

    Review of a number of nighttime acceleration mechanisms proposed in the literature for the role of producing the keV nighttime auroral-particle fluxes. Parallel electric fields are rejected for several reasons, but particularly because of the observed simultaneous precipitation of electrons and protons. Acceleration in the neutral sheet is inadequate for producing the particle energies, the observed field-aligned pitch-angle distribution at high latitudes, and the spectral hardening toward lower latitudes. Neutral point mechanisms, although often suggested in principle, have never been demonstrated satisfactorily in theory or in practice. Pitch-angle scattering from a trapped population produced by transverse adiabatic compression is also incapable of producing the field-aligned distribution. It is therefore suggested that longitudinal or Fermi acceleration, which results from the known magnetospheric convection, is the main nighttime auroral acceleration mechanism. The argument is supported by data obtained with the soft-particle spectrometer on Isis 1.

  5. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1991-01-01

    The accomplishments achieved over the past year are detailed with emphasis on the interpretation or auroral emissions and studies of potential spacecraft-induced contamination effects. Accordingly, the research was divided into two tasks. The first task is designed to add to the understanding of space vehicle induced external contamination. An experimental facility for simulation of the external environment for a spacecraft in low earth orbit was developed. The facility was used to make laboratory measurements of important phenomena required for improving the understanding of the space vehicle induced external environment and its effect on measurement of auroral emissions from space-based platforms. A workshop was sponsored to provide a forum for presentation of the latest research by nationally recognized experts on space vehicle contamination and to discuss the impact of this research on future missions involving space-based platforms. The second task is to add an ab initio auroral calculation to the extant ionospheric/thermospheric global modeling capabilities. Once the addition of the code was complete, the combined model was to be used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Such studies are essential to an understanding of the types of vacuum ultraviolet (VUV) auroral images which are expected to be available within two years with the successful deployment of the Ultraviolet Imager (UVI) on the ISTP POLAR spacecraft. In anticipation of this, the second task includes support for meetings of the science working group for the UVI to discuss operational and data analysis needs. Taken together, the proposed tasks outline a course of study designed to make significant contributions to the field of space-based auroral imaging.

  6. A classification of auroral types

    NASA Astrophysics Data System (ADS)

    Simmons, D. A. R.

    1998-10-01

    All the currently recognised auroral types have been drawn together in a single classification based on their geophysical characteristics. A brief portrait of the most typical features of each type is presented with special reference to geomagnetic latitude, geomagnetic time sector and mechanism of aurora production. These and other characteristics make it possible to compare and contrast the similarities and differences between the different types of aurora on a geophysical basis.

  7. Auroral signature of comet Shoemaker-Levy 9 in the jovian magnetosphere.

    PubMed

    Prangé, R; Engle, I M; Clarke, J T; Dunlop, M; Ballester, G E; Ip, W H; Maurice, S; Trauger, J

    1995-03-01

    The electrodynamic interaction of the dust and gas comae of comet Shoemaker-Levy 9 with the jovian magnetosphere was unique and different from the atmospheric effects. Early theoretical predictions of auroral-type processes on the comet magnetic field line and advanced modeling of the time-varying morphology of these lines allowed dedicated observations with the Hubble Space Telescope Wide Field Planetary Camera 2 and resulted in the detection of a bright auroral spot. In that respect, this observation of the surface signature of an externally triggered auroral process can be considered as a "magnetospheric active experiment" on Jupiter.

  8. Interactive Auroral Science for Hearing-Impaired Students

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R. G.; Jahn, J.; Pfeifer, M.; Ibarra, S.; Hampton, D. L.; Powell, D.

    2012-12-01

    Under a NASA E/PO grant, we have partnered with San Antonio's Sunshine Cottage School for Deaf Children to develop a science class experience where students directly interact with scientists and participate in a research-grade space science measurement campaign. The unique aspect of partnering with Sunshine Cottage lies in Sunshine's approach of auditory-verbal communication. Aided by technology (hearing aids, cochlear implants), a diverse student body with students of all levels of hearing loss (moderate through profound) is taught in an entirely auditory-verbal environment at Sunshine Cottage. Bringing these students into early contact with research work can lay the foundation for future careers in the STEM field that normally they might not consider as indicated by the first year of this collaboration where the student response was distinctly positive. Here we report on the first year of those activities, as they related to a ground based imaging approach to exploring the northern lights and from the point of view of the scientists that participated. The major components of that activity included a site visit to SwRI by the students and their teachers, a semester long lab at school utilizing current research tools and a real-time campaign night. The students used a number of diagnostics to first predict and then verify auroral activity. One of the tools used was the MOOSE observatory which is a community resource state of the art observatory comprised of 5 EMCCD imagers in Alaska, established through an NSF MRI grant. We will discuss the approach and lessons learned during the first year of the project and the directions that we will likely take in the second year. Lessons learned from teaching these students space science related topic can be flowed right back into mainstream classroom settings. One other significant and unexpected aspect of this first year was that we were able to connect two groups of students through skype (in the 4th to 5th grades) that

  9. Mesoscale ionospheric tomography at the Auroral region

    NASA Astrophysics Data System (ADS)

    Luntama, J.; Kokkatil, G. V.

    2008-12-01

    FMI (Finnish Meteorological Institute) has used observations from the dense GNSS network in Finland for high resolution regional ionospheric tomography. The observation system used in this work is the VRS (Virtual Reference Station) network in Finland operated by Geotrim Ltd. This network contains 86 GNSS ground stations providing two frequency GPS and GLONASS observations with the sampling rate of 1 Hz. The network covers the whole Finland and the sampling of the ionosphere is very good for observing mesoscale ionospheric structures at the Auroral region. The ionospheric tomography software used by FMI is the MIDAS (Multi-Instrument Data Analysis System) algorithm developed and implemented by the University of Bath (Mitchell and Spencer, 2003). MIDAS is a 3-D extension of the 2-D tomography algorithm originally presented by Fremouw et al. (1992). The research at FMI is based on ground based GNSS data collected in December 2006. The impacts of the two geomagnetic storms during the month are clearly visible in the retrieved electron density and TEC maps and they can be correlated with the magnetic field disturbances measured by the IMAGE magnetometer network. This is the first time that mesoscale structures in the ionospheric plasma can be detected from ground based GNSS observations at the Auroral region. The continuous high rate observation data from the Geotrim network allows monitoring of the temporal evolution of these structures throughout the storms. Validation of the high resolution electron density and TEC maps is a challenge as independent reference observations with a similar resolution are not available. FMI has compared the 3-D electron density maps against the 2-D electron density plots retrieved from the observations from the Ionospheric Tomography Chain operated by the Sodankylä Geophysical Observatory (SGO). Additional validation has been performed with intercomparisons with observations from the ground based magnetometer and auroral camera network

  10. Evolution of Jupiter's auroral-related stratospheric heating and chemistry

    NASA Astrophysics Data System (ADS)

    Sinclair, James; Orton, Glenn S.; Greathouse, Thomas K.; Fletcher, Leigh N.; Moses, Julianne I.; Hue, Vincent; Irwin, Patrick Gerard Joseph; Melin, Henrik; Giles, Rohini Sara

    2016-10-01

    Auroral processes on Jupiter are evident over a large range of wavelengths. Emission at X-ray, UV and near-infrared wavelengths highlights the precipitation of charged particles in Jupiter's ionosphere. Jupiter's auroral regions also exhibit enhanced mid-infrared emission of CH4 (7.8-μm), C2H2 (13-μm), C2H4 (10.5-μm) and C2H6 (12.2-μm), which indicates auroral processes modify the thermal structure and chemistry of the neutral stratosphere at pressures from 10 mbar to 10 μbar. In Sinclair et al., 2016a (submitted), 2016b (in preparation), we investigated these processes further by performing a retrieval analysis of Voyager-IRIS (Infrared Interferometer Spectrometer) observations measured in November 1979, Cassini-CIRS (Composite Infrared Spectrometer) observations measured in January 2001 and IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) spectra measured in December 2014. These datasets however captured Jupiter at significantly different epochs and thus the overall global evolution of atmospheric conditions as well as differences in spatial sampling, spectral resolution (and therefore vertical resolution in the atmosphere) have made inferences of the temporal evolution in auroral regions a challenge. However, in April 2016, we acquired IRTF-TEXES observations of Jupiter's high latitudes, using observing parameters very similar to those in December 2014. By performing a similar analysis of these observations and comparing results between December 2014 and April 2016, we can investigate the evolution of the thermal structure and chemistry in Jupiter's auroral regions over a 15 month timescale. The magnitude of temperature/composition changes and the altitudes at which they occur will provide insights into how auroral processes in the ionosphere propagate to the stratosphere. In particular, we can assess whether the evolution of stratospheric conditions in auroral regions is related to the decrease in solar activity

  11. Auroral origin of medium scale gravity waves in neutral composition and temperature

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.

    1979-01-01

    The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.

  12. Automatic Georeferencing of Astronaut Auroral Photography

    NASA Astrophysics Data System (ADS)

    Walsh, A. P.; Riechert, M.; Taylor, M. G.

    2014-12-01

    Astronauts on board the International Space Station have taken thousands of high quality photographs of the aurorae borealis and australis with a high temporal and spatial resolution. A barrier to these photographs being used in research is that the cameras do not have a fixed orientation and the images therefore do not have any pointing information associated with them. Using astrometry.net and other open source libraries we have developed a software toolkit to automatically reconstruct the pointing of the images from the visible starfield and hence project the auroral images in geographic and geomagnetic coordinates. Here we explain the technique and the resulting data products, which will soon be publically available through the project website.

  13. Temporal and spatial characteristics of auroral energy deposition

    NASA Astrophysics Data System (ADS)

    Hampton, D. L.; Conde, M.

    2015-12-01

    Auroral electron precipitation forms a complex and dynamic energy input into the high-latitude ionosphere and thermopshere. Rapid changes in plasma density due to electron impact ionization create correspondingly rapid changes in conductivity which in turn change the magnitude and altitude profile of magnetospheric current closure in the E- and F-region. Modeling these changes in the ionosphere and their effects on the local or regional upper atmosphere requires detailed input over wide regions. In support of the AMISR PINOT campaign and several rocket campaigns (CASCADES-2, MICA, ASSP) we have developed and tested a method to determine the characteristics of auroral energy input using purely ground-based optical measurements in geometries away from magnetic zenith. Using the N2+ first negative emissions at 427.8 nm reproduces the total energy flux over a wide region, but alone does not indicate the altitude profile of this energy deposition. Using temperature maps of the E-region collected by a Scanning Doppler Imager (SDI) observing the auroral green-line emission is a proxy for the characteristic energy of the precipitating electrons. While in some cases the energy determination underestimates the average energy it still is a good proxy for understanding when the electron distribution changes. We examine two seasons worth of auroral observations and determine the spatial and temporal variability of auroral energy deposition in comparison to solar wind and geophysical activity parameters. We also compare the results with well-known empirical models of electron energy deposition and show that they underestimate the peak local energy deposition rates by as much as a factor of 30.

  14. Electron precipitation in the midday auroral oval

    SciTech Connect

    Meng, C.

    1981-04-01

    Simultaneous observations of auroral displays and electron precipitations by the DMSP 33 satellite provide an excellent and unique opportunity to study precipitation characteristics of the midday auroral oval. Attention is given to two topics: (1) the nature of the 'gap' of the midday discrete auroras which is a permanent feature of the dayside auroral oval observed by both Isis 2 and DMSP satellites and (2) the relationship of this gap with the polar cusp region. Based on 2-month (June, July 1975) observations of the midday auroras over the southern hemisphere, it is found that inside the 'gap' of the discrete auroras along the dayside auroral oval, soft electron precipitations with a magnetosheathlike spectrum were invariably detected. The spatial extent of this region was about few degrees in latitude and about 2--3 hours in local time near 1130 magnetic local time meridian. No significant electron precipitation was detected poleward of the instantaneous midday auroral oval. Typical plasma sheet and discrete auroral types of electron precipitations were detected in the other parts of the midday auroral oval. Therefore it is proposed that the ionospheric projection of the polar cusp is a small region of the instantaneous dayside auroral oval near the noon meridian, coinciding with the 'gap' of the midday discrete auroras.

  15. Auroral Substorm Time Scales: Seasonal and IMF Variations

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M.; Germany, G. A.; Spann, J. F.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The time scales and phases of auroral substorm, activity are quantied in this study using the hemispheric power computed from Polar Ultraviolet Imager (UVI) images. We have applied this technique to several hundred substorm events and we are able to quantify how the characterist act, of substorms vary with season and IMF Bz orientation. We show that substorm time scales vary more strongly with season than with IMF Bz orientation. The recovery time for substorm. activity is well ordered by whether or not the nightside oral zone is sunlit. The recovery time scales for substorms occurring in the winter and equinox periods are similar and are both roughly a factor of two longer than in summer when the auroral oval is sunlit. Our results support the hypothesis that the ionosphere plays an active role in governing the dynamics of the aurora.

  16. Preliminary Results from Recent Simultaneous Chandra/HST Observations of Jupiter Auroral Zones

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Gladstone, R.; Waite, H.; Majeed, T.; Ford, P.; Grodent, D.; Bwardwaj, A.; Howell, R.; Cravens, T.; MacDowell, R.

    2003-01-01

    Jupiter was observed by the Chandra X-ray Observatory in late February, 2003, for 144 ks, using both the ACIS-S and HRC-I imaging x-ray cameras. Five orbits of HST STIS observations of the planet's northern auroral zone were obtained during the ACIS-S observations. These data are providing a wealth of information about Jupiter's auroral activity, including the first x-ray spectra from the x-ray hot spots inside the auroral ovals. We will also discuss the approximately 45 minute quasi-periodicity in the auroral x-ray emission - which correlates well with simultaneous observations of radio bursts by the Ulysses spacecraft - and a possible phase relation between the emission from the northern and southern x-ray aurora.

  17. Study of Motion of the Auroral Oval During September 30 - October 4, 2012 Geomagnetic Storm. A Project of National Secondary School Competition in Scientific Research on Antarctica "Feria Antarctica Escolar 2014", organized by Chilean Antarctic Institute (INACH).

    NASA Astrophysics Data System (ADS)

    Stepanova, M. V.; Cabezas-Escares, J. F.; Letelier-Ulloa, T. C.; Ortega-Letelier, P.

    2014-12-01

    Changes in the position of the auroral oval during the development of the September 30 - October 4, 2012 geomagnetic storm in both Northern and Southern Hemispheres were studied using the data of the Dynamics Explorer Satellite Mission (DMSP). In particular, the location of b1e, b1i, b2e, and b2i boundaries defined by Newell at al. [1996], was obtained from the electron and ion precipitating fluxes, measured by the SSJ/4 particle detectors onboard the F16, F17, and F18 satellites.According to Newell at al. [1996], these boundaries represent the zero-energy convection boundary (b1e,b1i), and the precipitating energy flux maximum (b2e,b2i). It was found that during the main phase of the strom, on average, all boundaries move towards the equator, and return to its previous location during recovery phase. Deviations from the common trend could be related to the changes in the solar wind conditions. This study was done by the Secondary school students Javiera Cabezas-Escares and Tamara Letelier Ulloa from Lyceum N°1 Javiera Carrera in frame of the National Secondary School Competition in the Scientific Research on Antarctica "Feria Antarctica Escolar" organized by Chilean Antarctic Institute. It was supervised by their Physics teacher Pablo Ortega Letelier and by Marina Stepanova, researcher from Universidad de Santiago de Chile.

  18. Simulation of auroral double layers

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Joyce, G.

    1979-01-01

    Some basic properties of plasma double layers are deduced from a particle-in-cell computer simulation and related to parallel electric-field structures above the auroral regions. The simulation results on the processes leading to double-layer formation are examined, particularly in relation to the transient stage and double-layer structure and stability. It is concluded that: (1) a large potential difference applied to a finite-length plasma will be concentrated in a shocklike localized region instead of occurring over the entire length of the system; (2) the initial stage in double-layer formation is dominated by a large-potential pulse propagating in the direction of the induced electrostatic drift; (3) the entire potential is dropped over a specific scale length once the double layer has formed; and (4) this scale length is expected to be of the order of 1 km for a double layer above a discrete auroral arc with a potential of 10 kV and the electric-field vector parallel to the magnetic-field vector.

  19. Planning and Conducting Research Activities.

    ERIC Educational Resources Information Center

    Christiansen, Richard L.

    1983-01-01

    Some directions and influences on dental research activities in the near future are discussed. Current challenges include international competition, fellowships, and equipment. Potential research activity includes preventive medicine, epidemiology, chronic illness, the elderly, bioengineering, materials research, nutrition, soft tissue research,…

  20. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements

    NASA Technical Reports Server (NTRS)

    Newell, Patrick T.; Meng, CHING-I.; Huffman, Robert E.

    1992-01-01

    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. Particle observations from the DMSP F7 satellite during dayside auroral oval crossings are compared with approximately simultaneous Polar BEAR 1356-A images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the DMSP particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1000 MLT. Instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle were found. It was determined that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here.

  1. Electron currents associated with an auroral band

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Anderson, H. R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.

  2. Weak auroral emissions and particle precipitations in the dusk auroral oval

    SciTech Connect

    Ono, T.; Hirasawa, T. ); Ching-I. Meng )

    1989-09-01

    Faint auroral displays in the low-latitude region of the duskside auroral oval were examined by using 5577 A, 6300 A, and 4861 A auroral images from three monochromatic all-sky television cameras at Syowa Station, Antarctica, and simultaneous precipitating auroral particle data obtained by the U.S. Air Force/Defense Meteorological Satellite Program (USAF/DMSP) F6 satellite. In the low-latitude region of the duskside auroral oval, we found three types of auroral displays with weak optical intensity: (1) proton auroras, (2) pulsating auroras, and (3) faint discrete auroral arcs distinct only in the 6300 A emission. In usual cases, the energy input into this region is mostly carried y proton precipitations to produce proton auroras mainly at wavelengths of 4861 A and 5577 A. Pulsating features are sometimes observed in the diffuse auroral region in the dusk sector. Comparing auroral images with the nearly simultaneous data of precipitating auroral particles, we confirmed that the pulsating auroras are associated with the intensification of precipitating electron flux from the central plasma sheet. Furthermore, electrons are the main contributors to the energy input into the duskside auroral oval in this case. We also found that discrete auroras sometimes appeared in the 6300 A images, but not in images at other wavelengths. They appear in the equatorial part of the dusk auroral oval. These 6300 A discrete auroras correspond to weak precipitation spikes of low-energy electrons simultaneously measured by DMSP satellites. The flux and average energy of these electron spikes are about 10{sup 8}/(cm{sup 2} sr s) and 100 eV, respectively. They are intense enough to excite 6300 A emissions but not 5577 A emissions, as detected from the ground observations. {copyright} American Geophysical Union 1989

  3. Optical signatures of prenoon auroral precipitation: Sources and responses to solar wind variations

    SciTech Connect

    Jacobsen, B.; Sandholt, P.E.; Burke, W.J.

    1995-05-01

    Ground-based optical observations from Svalbard of 0900 - 1100 MLT auroral structures and dynamics are presented. Strong and stable red line emissions with weak, transient auroral activity were initially observed. The IMP 8 spacecraft, located outside the dawnside bow shock, detected large changes in interplanetary magnetic field (IMF) direction including a sharp transition from negative to positive IMF B{sub z} and a subsequent decrease in the solar wind density. A poleward expansion of the auroral display was seen in response to these variations, with a several minutes time delay, consistent with the location of IMP 8 relative to the magnetopause. The initial ionospheric response to these changes involved an intense brightening and northwestward drifts of discrete auroral forms. These effects may be connected with the decrease of external pressure and associated magnetopause perturbations. During the next 2-3 hours, quasi-periodic transient, discrete auroral forms were observed to expand in the antisunward direction. The morphology of the auroral forms detected in the prolonged period of northward IMF B{sub z} are compared with in situ measurements taken during a DMSP pass to the west of Svalbard and discussed in terms of several possible generation mechanisms. These include variations in external pressure, magnetic merging poleward of the cusp, and dynamo processes in the plasma mantle and/or low-latitude boundary layer, powered by intruding magnetosheath plasma elements. The optical measurements appear most consistent with expected effects of a magnetosheath plasma penetration of the plasma mantle. 32 refs., 5 figs.

  4. Optical signatures of prenoon, auroral precipitation: Sources and responses to solar wind variations

    SciTech Connect

    Jacobsen, B.; Sanholt, P.E.; Burke, W.J.; Denig, W.F.; Maynard, N.C.

    1995-05-01

    Ground-based optical observations from Svalbard of 0900 - I 100 MLT auroral structures and dynamics are presented. Strong and stable red line emissions with weak, transient auroral activity were initially observed. The IMP 8 spacecraft, located outside the dawnside bow shock, detected large changes in interplanetary magnetic field IMF direction including a sharp transition from negative to positive IMF B, and a subsequent decrease in the solar wind density. A poleward expansion of the auroral display was seen in response to these variations, with a several minutes time delay, consistent with the location of IMP 8 relative to the magnetopause. The initial ionospheric response to these changes involved an intense brightening and northwestward drifts of discrete auroral forms. These effects may be connected with the decrease of external pressure and associated magnetopause perturbations. During the next 2-3 hours, quasi-periodic transient, discrete auroral forms were observed to expand in the antisunward direction. The morphology of the auroral forms detected in the prolonged period of northward IMF B, are compared with in situ measurements taken during a DMSP pass to the west of Svalbard and discussed in terms of several possible generation mechanisms. These include variations in external pressure, magnetic merging poleward of the cusp, and dynamo processes in the plasma mantle and/or low-latitude boundary layer, powered by intruding magnetosheath plasma element. The optical measurements appear most consistent with expected effects of a magnetosheath plasma penetration of the plasma mantle.

  5. First Satellite Imaging of Auroral Pulsations by the Fast Auroral Imager on e-POP

    NASA Astrophysics Data System (ADS)

    Lui, A.; Cogger, L.; Howarth, A. D.; Yau, A. W.

    2015-12-01

    We report the first satellite imaging of auroral pulsations by the Fast Auroral Imager (FAI) onboard the Enhanced Polar Outflow Probe (e-POP) satellite. The near-infrared camera of FAI is capable of providing up to two auroral images per second, ideal for investigation of pulsating auroras. The auroral pulsations were observed within the auroral bulge formed during a substorm interval on 2014 February 19. This first satellite view of these pulsations from FAI reveals that (1) several pulsating auroral channels (PACs) occur within the auroral bulge, (2) periods of the intensity pulsations span over one decade within the auroral bulge, and (3) there is no apparent trend of longer pulsation periods associated with higher latitudes for these PACs. Although PACs resemble in some respect stable pulsating auroras reported previously but they have several important differences in characteristics.PACs are not embedded in or emerging from omega bands or torches and are located at significant distances from the equatorward boundary of the auroral oval, unlike the characteristics of stable pulsating auroras.

  6. Auroral kilometric radiation source characteristics using ray tracing techniques

    NASA Astrophysics Data System (ADS)

    Schreiber, R.; Santolik, O.; Parrot, M.; Lefeuvre, F.; Hanasz, J.; Brittnacher, M.; Parks, G.

    2002-11-01

    3-D ray tracing to the presumed auroral kilometric radiation (AKR) source region has been performed using the input data from wave distribution function (WDF) based on the AKR waveforms recorded on board the Interball 2 satellite by the French wave experiment MEMO. Both the direction of the WDF maximum and the WDF form and angular size have been taken into account. Two instances of AKR emissions were observed on 28 January 1997 at 2037 and 2107 UT. Rays traced in R-X mode out of the s/c point toward two different active regions on the auroral oval (as seen with Polar UV imager after projection of the source region along the magnetic field lines down to the ionosphere level). Source region apparent angular sizes based on WDF are compatible with sizes estimated from signal modulation produced by electric antenna system rotation.

  7. Auroral pulsations from ionospheric winds

    NASA Technical Reports Server (NTRS)

    Nakada, M. P.

    1989-01-01

    The possibility that auroral pulsations are due to oscillatory electrical circuits in the ionosphere that are driven by the negative resistance of jet stream winds is examined. For the condenser plates, the highly conducting surfaces above the edges of the jet stream are postulated. The dielectric constant of the plasma between the plates is quite large. The current that is driven perpendicular to and by the jet stream closes along the plates and through Pedersen currents in the F region above the stream. This closed loop gives the inductance and resistance for the circuit. Periods of oscillation for this circuit appear to be in the range of Pc 1 to Pc 3. In accord with observations, this circuit appears to be able to limit the brightness of pulsations.

  8. Cassini UVIS Auroral Observations in 2016

    NASA Astrophysics Data System (ADS)

    Pryor, Wayne R.; Jouchoux, Alain; Esposito, Larry W.; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gerard, Jean-Claude; Lamy, Laurent; Badman, Sarah; Bunce, Emma; Cecconi, Baptiste; Clarke, John T.; Crary, Frank; Dougherty, Michele; Dyudina, Ulyana A.; Kurth, William; Mitchell, Don; Nichols, Jonathan; Prange, Renee; Schippers, Patricia; Zarka, Philippe; Cassini UVIS Team

    2016-10-01

    In June of 2016, the Cassini Saturn orbiter began a series of high inclination orbits that will continue until September 2017 when the mission ends as Cassini enters the Saturn atmosphere. These orbits present excellent views of Saturn's polar regions suitable for auroral imaging at the closest distances to date, with the additional prospect of simultaneous particle and fields measurements within the sources of Saturn Kilometric Radiation (SKR) associated with ultraviolet auroral emissions and/or acceleration regions likely coinciding with them. We will present new Cassini Ultraviolet Imaging Spectrograph (UVIS) auroral images, spectra and movies obtained during the summer and fall of 2016 and put them in the context of auroral data collected since Cassini orbit insertion in 2004. Included in the new data will be UVIS south polar observations obtained simultaneously with Hubble Space Telescope observations of the north polar region on June 29, 2016 and August 19, 2016.

  9. Detached auroral arcs in the trough region

    NASA Technical Reports Server (NTRS)

    Anger, C. D.; Moshupi, M. C.; Wallis, D. D.; Murphree, J. S.; Brace, L. H.; Shepherd, G. G.

    1978-01-01

    In a previous paper, Moshupi et al. (1977) have reported on the occurrence of rare auroral 'patches' equatorward of the normally well-defined boundary of diffuse aurora. Some less spectacular but more common arclike features were observed in the same 'trough' region (between the plasmapause and the auroral oval) during the period 1972-1975. These 'detached' arcs show some similarities to stable auroral red arcs in terms of their location and occurrence, but are completely different spectroscopically in that the stable auroral red arcs produce almost pure atomic oxygen red line emissions, whereas the detached arcs are deficient in red line emission - a feature implying totally different production mechanisms. The characteristics of the detached lines are described, including their unusual local time/longitude dependence.

  10. OVATION Prime Model and "Aurorasaurus" Auroral Observations

    NASA Video Gallery

    This video shows the auroral oval, as modeled using OVATION Prime (2013), along with citizen science reports collected by the Aurorasaurus project for the St. Patrick’s Day storm over March 17-19, ...

  11. Characteristics of Extreme Auroral Charging Events

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergard

    2014-01-01

    The highest level spacecraft charging observed in low Earth orbit (LEO) occurs when spacecraft are exposed to energetic auroral electrons. Since auroral charging has been identified as a mechanism responsible for on-orbit anomalies and even possible satellite failures it is important to consider extreme auroral charging events as design and test environments for spacecraft to be used in high inclination LEO orbits. This paper will report on studies of extreme auroral charging events using data from the SSJ/4 and SSJ/5 precipitating electron and ion sensors on the Defense Meteorology Satellite Program (DMSP) satellites. Early studies of DMSP charging to negative potentials =100 V focused on statistics of the electron environment responsible for charging. Later statistical studies of auroral charging have generally focused on solar cycle dependence of charging behavior and magnitude of the maximum potential and duration of the charging events. We extend these studies to focus on more detailed investigations of extreme charging event characteristics that are required to evaluate potential threats to spacecraft systems. A collection of example auroral charging events is assembled from the DMSP data set using the criteria that "extreme auroral charging" is defined as periods with spacecraft negative potentials =400 V. Specific characteristics to be treated include (but are not limited to) maximum and mean potentials, time history of spacecraft potentials through the events, total charging duration and the time potentials exceed voltage thresholds, frame charging/discharging rates, and information on geographic and geomagnetic latitudes at which the events are observed. Finally, we will comment on the implications of these studies for potential auroral charging risks to the International Space Station.

  12. Comment: An Apparent Controversy in Auroral Physics

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2007-03-01

    In his article ``A turning point in auroral physics,'' Bryant argued against what he called the `standard' theory of auroral acceleration, according to which the electrons ``gain their energy from static electric fields,'' and offered wave acceleration as an alternative. Because of the importance of the process, not only for the aurora borealis but also for other cosmic plasmas, a clarification of this apparent controversy seems to be in place.

  13. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  14. Auroral kilometric radiation/aurora correlation

    NASA Technical Reports Server (NTRS)

    Benson, R. F.; Akasofu, S. I.

    1983-01-01

    Auroral kilometric radiation (AKR) observations from the ISIS 1 topside sounder receiver were compared with visual auroral observations from the network of Alaskan all-sky camera stations. The goal was to relate AKR source region encounters to specific auroral forms on the same magnetic field line. Thirty-eight simultaneous data sets were identified and analyzed. In general, intense AKR was associated with bright auroral arcs and conditions of weak or no AKR corresponded to times when either no aurora or only a faint arc or weak diffuse aurora were observed. Five cases, when both intense AKR and bright visual aurora were present, were analyzed in detail. Complete electron density N sub e contours, from the satellite altitude down to the F region ionization peak, were obtained along N-S traversals of the AKR source region. In addition, the ISIS 1 orbital tracks were projected down the magnetic field lines to the auroral altitude and compared to auroral features on a map derived from the all sky camera images. Density cavities (regions where N sub e 100/cu cm) were encountered on each of these passes.

  15. An interplanetary shock traced by planetary auroral storms from the Sun to Saturn.

    PubMed

    Prangé, Renée; Pallier, Laurent; Hansen, Kenneth C; Howard, Russ; Vourlidas, Angelos; Courtin, Régis; Parkinson, Chris

    2004-11-01

    A relationship between solar activity and aurorae on Earth was postulated long before space probes directly detected plasma propagating outwards from the Sun. Violent solar eruption events trigger interplanetary shocks that compress Earth's magnetosphere, leading to increased energetic particle precipitation into the ionosphere and subsequent auroral storms. Monitoring shocks is now part of the 'Space Weather' forecast programme aimed at predicting solar-activity-related environmental hazards. The outer planets also experience aurorae, and here we report the discovery of a strong transient polar emission on Saturn, tentatively attributed to the passage of an interplanetary shock--and ultimately to a series of solar coronal mass ejection (CME) events. We could trace the shock-triggered events from Earth, where auroral storms were recorded, to Jupiter, where the auroral activity was strongly enhanced, and to Saturn, where it activated the unusual polar source. This establishes that shocks retain their properties and their ability to trigger planetary auroral activity throughout the Solar System. Our results also reveal differences in the planetary auroral responses on the passing shock, especially in their latitudinal and local time dependences.

  16. ESA's Cluster solved an auroral puzzle

    NASA Astrophysics Data System (ADS)

    2003-05-01

    investigation at the University of California, Berkeley, United States, now looks forward to a new way of studying the Earth’s protective shield. He says, “This result has opened up a new area of research. We can now watch dayside proton aurorae and use those observations to know where and how the cracks in the magnetic field are formed and how long the cracks remain open. That makes it a powerful tool to study the entry of the solar wind into the Earth’s magnetosphere.” The Earth’s interaction with the Sun is a current focus of scientific attention because of its importance in knowing how the Sun affects the Earth, most notably our climate. Also, while not immediately dangerous to us on Earth, it is also important for quantifying the danger to satellites, which can be damaged or destroyed by powerful solar flares. Note to Editors: Proton aurorae were globally imaged for the first time by NASA’s IMAGE spacecraft. The images revealed the presence of the ‘dayside proton auroral spots’. By a fortunate coincidence, IMAGE and Cluster both spotted the event on 18 March 2002. Combining with IMAGE’s observations, Cluster made it possible to establish the ground truth of the phenomenon. The paper on these results, Simultaneous Cluster and IMAGE Observations of Cusp Reconnection and Auroral Spot for Northward IMF by Tai Phan and 24 other authors will be published in Geophysical Research Letters, 21 May 2003, Vol. 30, No. 10. The principal investigators responsible for the instruments that made these results possible are: Henri Rème of CESR/Toulouse, France (Cluster Proton Detectors), Andre Balogh of Imperial College, London, United Kingdom (Cluster Magnetic Field Instrument) and Stephen Mende of University of California, Berkeley, United States (IMAGE/FUV). More about Cluster ESA’s Cluster is a collection of four spacecraft, launched on two Russian rockets during the summer of 2000. They are now flying in formation around the Earth, relaying the most detailed ever

  17. Auroral effects on meteoric metals in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Heinselman, Craig James

    1999-12-01

    Meteors deposit many tons of material into Earth's upper atmosphere each day. The physics and chemistry of meteoric metals in the atmosphere have long been active topics of study, but sophisticated models have emerged just recently of the gas-phase chemical reactions that affect the evolution of the state of these metals. At high latitudes, this portion of the upper atmosphere is also shared by the aurora borealis, or northern lights, which dramatically alter the properties of the background plasma. This thesis concerns coupled chemical models and one- dimensional dynamical models that were developed to investigate the effects of auroral ionization on the time evolution of meteoric iron and sodium elements and compounds in the upper atmosphere. These models are used to show that aurorae can result in rapid ionization of recently deposited iron and sodium, with time constants on the order of 15 minutes. The models are also used to investigate the influence of aurorae on the background iron and sodium layers. Because of the nominal altitude of the neutral iron layer, aurorae will not normally have a measurable impact on that constituent. For sodium, on the other hand, the impact is more significant but highly dependent on the chemical makeup of the aurorally produced ions. For either case, sporadic neutral atom layers at auroral altitudes are significantly affected. A case study of radar and lidar measurements from the Sondrestrom Facility in Greenland is used to test the sodium model. Results are presented which are consistent with the model predictions of the effects of the aurorally enhanced ionization. For this specific case, evidence is also presented to support a gas-phase chemical mechanism for the formation of a thin the formation of a thin sporadic sodium layer.

  18. Ethics in Physical Activity Research.

    ERIC Educational Resources Information Center

    Kroll, Walter; And Others

    1993-01-01

    Four conference papers on ethics in physical activity research are presented: (1) "Ethical Issues in Human Research" (W. Kroll); (2) "Ethical Issues in Animal Research" (K. Matt); (3) "Oh What a Tangled Web We Have" (M. Safrit); and (4) "Ethical Issues in Conducting and Reporting Research: A Reaction to Kroll, Matt, and Safrit" (H. Zelaznik). (SM)

  19. Effects of Interplanetary Shock Inclinations on Nightside Auroral Power Intensity

    NASA Astrophysics Data System (ADS)

    Oliveira, D. M.; Raeder, J.; Tsurutani, B. T.; Gjerloev, J. W.

    2016-02-01

    We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectiveness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and Wind spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanced versions of the traditional geomagnetic indices. The SuperMAG auroral electroject SME index, an enhanced version of the traditional AE index, is used as an auroral power (AP) indicator. AP intensity jumps triggered by shock impacts are correlated with both shock speed and impact angle. It is found that high AP intensity events typically occur when high speed IP shocks impact the Earth's magnetosphere with the shock normal almost parallel to the Sun-Earth line. This result suggests that symmetric and strong magnetospheric compression leads to favorable conditions for intense auroral power release, as shown previously by simulations and observations. Some potential mechanisms will be discussed.

  20. Temporal and spatial evolution of discrete auroral arcs as seen by Cluster

    NASA Astrophysics Data System (ADS)

    Figueiredo, S.; Marklund, G. T.; Karlsson, T.; Johansson, T.; Ebihara, Y.; Ejiri, M.; Ivchenko, N.; Lindqvist, P.-A.; Nilsson, H.; Fazakerley, A.

    2005-10-01

    Two event studies are presented in this paper where intense convergent electric fields, with mapped intensities up to 1350 mV/m, are measured in the auroral upward current region by the Cluster spacecraft, at altitudes between 3 and 5 Earth radii. Both events are from May 2003, Southern Hemisphere, with equatorward crossings by the Cluster spacecraft of the pre-midnight auroral oval.

    Event 1 occurs during the end of the recovery phase of a strong substorm. A system of auroral arcs associated with convergent electric field structures, with a maximum perpendicular potential drop of about ~10 kV, and upflowing field-aligned currents with densities of 3 µA/m2 (mapped to the ionosphere), was detected at the boundary between the Plasma Sheet Boundary Layer (PSBL) and the Plasma Sheet (PS). The auroral arc structures evolve in shape and in magnitude on a timescale of tens of minutes, merging, broadening and intensifying, until finally fading away after about 50 min. Throughout this time, both the PS region and the auroral arc structure in its poleward part remain relatively fixed in space, reflecting the rather quiet auroral conditions during the end of the substorm. The auroral upward acceleration region is shown for this event to extend beyond 3.9 Earth radii altitude.

    Event 2 occurs during a more active period associated with the expansion phase of a moderate substorm. Images from the Defense Meteorological Satellite Program (DMSP) F13 spacecraft show that the Cluster spacecraft crossed the horn region of a surge-type aurora. Conjugated with the Cluster spacecraft crossing above the surge horn, the South Pole All Sky Imager recorded the motion and the temporal evolution of an east-west aligned auroral arc, 30 to 50 km wide. Intense electric field variations are measured by the Cluster spacecraft when crossing above the auroral arc structure, collocated with the density gradient at the PS poleward boundary

  1. Statistical study of auroral fragmentation into patches

    NASA Astrophysics Data System (ADS)

    Hashimoto, Ayumi; Shiokawa, Kazuo; Otsuka, Yuichi; Oyama, Shin-ichiro; Nozawa, Satonori; Hori, Tomoaki; Lester, Mark; Johnsen, Magnar Gullikstad

    2015-08-01

    The study of auroral dynamics is important when considering disturbances of the magnetosphere. Shiokawa et al. (2010, 2014) reported observations of finger-like auroral structures that cause auroral fragmentation. Those structures are probably produced by macroscopic instabilities in the magnetosphere, mainly of the Rayleigh-Taylor type. However, the statistical characteristics of these structures have not yet been investigated. Here based on observations by an all-sky imager at Tromsø (magnetic latitude = 67.1°N), Norway, over three winter seasons, we statistically analyzed the occurrence conditions of 14 large-scale finger-like structures that developed from large-scale auroral regions including arcs and 6 small-scale finger-like structures that developed in auroral patches. The large-scale structures were seen from midnight to dawn local time and usually appeared at the beginning of the substorm recovery phase, near the low-latitude boundary of the auroral region. The small-scale structures were primarily seen at dawn and mainly occurred in the late recovery phase of substorms. The sizes of these large- and small-scale structures mapped in the magnetospheric equatorial plane are usually larger than the gyroradius of 10 keV protons, indicating that the finger-like structures could be caused by magnetohydrodynamic instabilities. However, the scale of small structures is only twice the gyroradius of 10 keV protons, suggesting that finite Larmor radius effects may contribute to the formation of small-scale structures. The eastward propagation velocities of the structures are -40 to +200 m/s and are comparable with those of plasma drift velocities measured by the colocating Super Dual Auroral Radar Network radar.

  2. Magnetosphere-Ionosphere Coupling in the Auroral Zone

    NASA Technical Reports Server (NTRS)

    Schriver, David

    2004-01-01

    The visual light display at high latitudes referred to as the aurora fascinates casual observers and researchers alike. The natural question is what causes the aurora? We know that energized electrons streaming along the Earth's ambient magnetic field and colliding with atmospheric particles produce aurora. We do not know for certain, however, how these electrons are accelerated to high energies primarily in the field-aligned direction toward the Earth, or what the drivers of this acceleration are. As such, the goal of this Guest Investigator research project was to examine the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region.

  3. Auroral resonance line radiative transfer

    SciTech Connect

    Gladstone, G.R. )

    1992-02-01

    A model is developed for simulating the two-dimensional radiative transfer of resonance line emissions in auroras. The method of solution utilizes Fourier decomposition of the horizontal dependence in the intensity field so that the two-dimensional problem becomes a set of one-dimensional problems having different horizontal wavenumbers. The individual one-dimensional problems are solved for using a Feautrier-type solution of the differential-integral form of the radiative transfer equation. In the limit as the horizontal wavenumber becomes much larger than the local line-center extinction coefficient, the scattering integral becomes considerably simplified, and the final source function is evaluated in closed form. The two-dimensional aspects of the model are tested against results for nonresonance radiative transfer studies, and the resonance line part of the model is tested against results of existing plane-parallel resonance line radiative transfer codes. Finally, the model is used to simulate the intensity field of O{sub I} 1,304{angstrom} for hard and soft auroras of various Gaussian horizontal widths. The results demonstrate the importance of considering the effects of two-dimensional radiative transfer when analyzing auroral resonance line data.

  4. Polarisation of the auroral red line in the Earth's upper atmosphere: a review (Invited)

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Lilensten, J.; Bommier, V.; Simon Wedlund, C.

    2013-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Polarimetry of auroral emission lines in the Earth's upper atmosphere has been overlooked for decades. However, the bright red auroral line (6300Å) produced by collisional impact with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated recently with observations obtained by Lilensten et al (2008), Barthélemy et al (2011) and Lilensten et al (2013) with a photopolarimeter. Analysis of the data indicates that the red auroral emission line is polarised at a level of a few percent. The results are compared to theoretical predictions of Bommier et al (2011) that were obtained for a collimated beam. The comparison suggests the existence of depolarization processes whose origin will be discussed. A new dedicated spectropolarimeter currently under development will also be presented. This instrument will cover the optical spectrum from approximately 400 to 700 nm providing simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... The importance of these polarisation measurements in the context of upper atmosphere modelling and geomagnetic activity will be discussed. Lilensten, J. et al, Polarization in aurorae: A new dimension for space environments studies, Geophys. Res. Lett., 26, 269, 2008 Barthélemy M. et al, Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments, Annales Geophysicae, Volume 29, Issue 6, 2011, 1101-1112, 2011. Bommier V. et al, The Theoretical Impact Polarization of the O I 6300 Å Red Line of Earth Auroræ, Annales Geophysicae, Volume 29, Issue 1, 2011, 71-79, 2011 Lilensten, J. et al, The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis, Journal of Space Weather and Space

  5. Advances in Activity Cliff Research.

    PubMed

    Dimova, Dilyana; Bajorath, Jürgen

    2016-05-01

    Activity cliffs, i.e. similar compounds with large potency differences, are of interest from a chemical and informatics viewpoint; as a source of structure-activity relationship information, for compound optimization, and activity prediction. Herein, recent highlights of activity cliff research are discussed including studies that have further extended our understanding of activity cliffs, yielded unprecedented insights, or paved the way for practical applications.

  6. Advances in Activity Cliff Research.

    PubMed

    Dimova, Dilyana; Bajorath, Jürgen

    2016-05-01

    Activity cliffs, i.e. similar compounds with large potency differences, are of interest from a chemical and informatics viewpoint; as a source of structure-activity relationship information, for compound optimization, and activity prediction. Herein, recent highlights of activity cliff research are discussed including studies that have further extended our understanding of activity cliffs, yielded unprecedented insights, or paved the way for practical applications. PMID:27492084

  7. Variation of Jupiter's aurora observed by Hisaki/EXCEED: 2. Estimations of auroral parameters and magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Tao, Chihiro; Kimura, Tomoki; Badman, Sarah V.; André, Nicolas; Tsuchiya, Fuminori; Murakami, Go; Yoshioka, Kazuo; Yoshikawa, Ichiro; Yamazaki, Atsushi; Fujimoto, Masaki

    2016-05-01

    Jupiter's auroral parameters are estimated from observations by a spectrometer EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) on board Japanese Aerospace Exploration Agency's Earth-orbiting planetary space telescope Hisaki. EXCEED provides continuous auroral spectra covering the wavelength range over 80-148 nm from the whole northern polar region. The auroral electron energy is estimated using a hydrocarbon color ratio adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. The quasi-continuous observations by Hisaki provide the auroral electron parameters and their relation under different auroral activity levels. Short- (within < one planetary rotation) and long-term (> one planetary rotation) enhancements of auroral power accompany increases of the electron number flux rather than the electron energy variations. The relationships between the auroral electron energy (~70-400 keV) and flux (1026-1027/s, 0.08-0.9 μA/m2) estimated from the observations over a 40 day interval are in agreement with field-aligned acceleration theory when incorporating probable magnetospheric parameters. Applying the electron acceleration theory to each observation point, we explore the magnetospheric source plasma variation during these power-enhanced events. Possible scenarios to explain the derived variations are (i) an adiabatic variation of the magnetospheric plasma under a magnetospheric compression and/or plasma injection, and (ii) a change of the dominant auroral component from the main emission (main aurora) to the emission at the open-closed boundary.

  8. Quasi-Stationary Global Auroral Ionospheric Model: E-layer

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Vera; Gordeev, Evgeny; Kotikov, Andrey; Makarova, Ludmila; Shirochkov, Aleksander

    2014-05-01

    E-layer Auroral Ionospheric Model (E-AIM) is developed to provide temporal and spatial density distribution of the main ionosphere neutral species (NO, N(4S),N(2D)), and ions (N2+, NO+,O2+,O+) in the altitude range from 90 to 150 km. NRLMSISE-00 model [Picone et al., JGR 2003] is used for neutral atmosphere content and temperature determination, that is the input for the E-AIM model. The E-AIM model based on chemical equilibrium state in E-layer that reaches in chemical reactions between ionospheric species considering solar radiation ionization source, superposed with sporadic precipitation of magnetospheric electrons. The chemical equilibrium state in each location under specific solar and geomagnetic activity conditions reaches during numerical solution of the continuity equations for the neutrals and ions using the high-performance Gear method [Gear, 1971] for ordinary differential equation (ODE) systems. Applying the Gear method for solving stiff ODE system strongly reduce the computation time and machine resources comparing to widely used methods and provide an opportunity to calculate the global spatial E-layer ion content distribution. In contrast to the mid-latitude ionosphere, structure and dynamics of the auroral zone ionosphere (φ ≡ 60-75° MLat) associated not only with shortwave solar radiation. Precipitating magnetospheric particle flux is the most important ionization source and is the main cause of E-layer disturbances. Precipitated electrons with initial energies of 1 - 30 keV influence the auroral ionosphere E-layer. E-AIM model can estimate ionization rate corresponds to auroral electron precipitation in two different ways: 1. with direct electron flux satellite data; 2. with differential energy spectrum reconstructed from OVATION-Prime empirical model [Newell, JGR 2009] average values, that allows to estimate ionosphere ion content for any time and location in the auroral zone. Comparison of E-AIM results with direct ionospheric observations

  9. Statistical study of auroral fragmentation into patches

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Shiokawa, K.; Otsuka, Y.; Oyama, S. I.; Nozawa, S.; Hori, T.; Lester, M.

    2014-12-01

    Auroral complex shapes are formed through the connection of the ionosphere and magnetosphere by the geomagnetic field lines, projecting disturbances in the magnetosphere onto the ionosphere through auroral particles. Thus, the study of auroral dynamics is important for the understanding of magnetospheric disturbances. Shiokawa et al. [JGR, 2010] reported observations of small-scale finger-like auroral structures which appeared on the west side of auroral patches, at Gillam (GLAT=65.5°N), Canada, suggesting a pressure-driven plasma instability in the magnetosphere. However, statistical characteristics of this phenomenon have not been investigated yet. Using an all-sky imager at Tromsoe (MLAT=67.1°N), Norway, from January 2009 to November 2012, we made a statistical analysis of the occurrence conditions of 19 events of auroral structures that seemed to be caused by pressure-driven instability. We found 14 large-scale finger-like structures, developed from auroral arcs, and 6 small-scale finger-like structures which appeared in auroral patches. The large-scale structures were seen from midnight to dawn MLT and small-scale structures were seen mainly at dawn. Large and small-scale structures tend to appear at the beginning and late recovery phase of substorms, respectively. Their scale sizes are larger than the gyro-radius of the ions in the magnetospheric equatorial plane, indicating that the finger-like structures are caused by MHD instabilities. However, the size of the small-scale structures is roughly two times that of the gyro-radius of the ions, suggesting that the ion finite Larmor radius effects may play a role in the shape of small-scale structures [Hiraki and Sakaguchi, 2010]. Additionally, the eastward propagation speeds of the finger-like structures are slower than the typical midnight auroral drift speed, indicating that the low-energy plasma may be the source of these structures. These results could contradict the idea that the high-energy particles

  10. High Frequency Active Auroral Research Program (HAARP) imager. Final report, 29 August 1991-29 August 1993

    SciTech Connect

    Lance, C.; Eather, R.

    1993-09-30

    A low-light-level monochromatic imaging system was designed and fabricated which was optimized to detect and record optical emissions associated with high-power rf heating of the ionosphere. The instrument is capable of detecting very low intensities, of the order of 1 Rayleigh, from typical ionospheric atomic and molecular emissions. This is achieved through co-adding of ON images during heater pulses and subtraction of OFF (background) images between pulses. Images can be displayed and analyzed in real time and stored in optical disc for later analysis. Full image processing software is provided which was customized for this application and uses menu or mouse user interaction.

  11. The Auroral Zone: A citizen science project to classify auroral imaging data

    NASA Astrophysics Data System (ADS)

    Chaddock, D.; Spanswick, E.; Gillies, D. M.; Quinney, A.; Donovan, E.; Murray, M. S.

    2015-12-01

    Currently, over 40 million images of the aurora have been recorded by University of Calgary all-sky imagers. Analysis of these images is an important and crucial step in the advancement of auroral physics. The number of images waiting to be analyzed is expected to increase dramatically with the introduction of TREx (Transition Region Explorer), a new high resolution imaging network set to be deployed in late 2016. In order to classify large amounts of images in a short period of time, we have designed a citizen science project aimed at engaging the general public in auroral science, called "The Auroral Zone". This project facilitates a symbiotic relationship between the scientific community and the general public. Using the data from this website, a large database of classified auroral images will be created and then used for future analysis by the scientific community. In exchange, the general public can learn about the aurora and contribute to auroral physics in a tangible way. The ultimate aim of this project is to create an ever expanding database of all-sky images classified by arc type (i.e. single arc, diffuse aurora, multiple arc, etc.) and filtered for adverse viewing conditions (i.e. snow, rain, light pollution, etc). We aim to introduce "The Auroral Zone" into the school systems to interest young scientists in the spectacular natural phenomenon that defines the Canadian North. "The Auroral Zone" is a collaborative project between the University of Calgary, Canadian Space Agency, AuroraMAX, and Aurorasaurus.

  12. First light from a kilometer-baseline Scintillation Auroral GPS Array

    PubMed Central

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-01-01

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318

  13. Cluster Observations of the Auroral Acceleration Region

    NASA Astrophysics Data System (ADS)

    Sadeghi, S.; Marklund, G.; Karlsson, R.; Lindqvist, P.; Li, B.; Nilsson, H.; Marghitu, O.; Fazakerley, A. N.; Lucek, E. A.

    2011-12-01

    We present results from Cluster satellite multi-point event studies from the auroral acceleration region (AAR). Electric potential structures associated with inverted-V aurora are investigated using electric field, magnetic field, ion and electron data from the Cluster spacecraft, crossing the auroral acceleration region (AAR) at different altitudes above the auroral oval. The spatial and temporal development of the acceleration structures is studied, given the magnetic conjunction opportunity and the short time-difference between the Cluster spacecraft crossings. The configuration allowed for estimating the characteristic times of development for the structures and estimating the parallel electric field and potential drop. For one of the negative potential structures, a growth time of 40 s and stability for more than one minute was observed and an average parallel electric field was estimated (~ 0.56 mV/m, between 1.13 and 1.3 RE of altitude).

  14. The Ionospheric Model Adaptation to the Auroral Latitudes With UHF EISCAT Radar and Tromso Magnetometer Data

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Vera; Gordeev, Evgeny; Kotikov, Andrey

    E-layer Auroral Ionosphere Model (E-AIM) developed in Arctic and Antarctic Research Institute can provide temporal and spatial distribution of the main ionosphere parameters: ion and electron density distribution in the altitude range from 90 to 150 km. The statistical study of E-layer electron density dependence on substorm activity was made to improve model results in high latitudes. About fifty substorms were included to the data analysis. Particular attention was paid to the dynamics of magnetic disturbances and ionospheric parameters measured by the radar. Correlation of electron density values measured by the UHF EISCAT incoherent scattering radar with geomagnetic indices was determined. Applicability of geomagnetic indices as input parameters of the local E-AIM model was estimated.

  15. Modulation of auroral electrojet currents using dual HF beams with ELF phase offset

    NASA Astrophysics Data System (ADS)

    Golkowski, M.; Cohen, M.; Moore, R. C.

    2012-12-01

    The modulation of naturally occuring ionospheric currents with high power radio waves in the high frequency (HF, 3-10 MHz) band is a well known technique for generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) waves. We use the heating facility of the High Frequency Active Auroral Research Program (HAARP) to investigate the effect of using dual HF beams with an ELF/VLF phase offset between the modulation waveforms. Experiments with offset HF beams confirm the model of independent ELF/VLF sources. Experiments with co-located HF beams exhibit interaction between the first and second harmonics of the modulated tones when square and sine wave modulation waveforms are employed. Using ELF/VLF phase offsets for co-loacted beams is also shown to be a potential diagnostic for the D-region ionospheric profile.

  16. Global auroral responses to magnetospheric compressions by shocks in the solar wind: Two case studies

    NASA Technical Reports Server (NTRS)

    Craven, J. D.; Frank, L. A.; Russell, C. T.; Smith, E. J.; Lepping, R. P.

    1985-01-01

    The global auroral responses to shocks in the solar wind at Earth were studied. The z-component of the interplanetary magnetic field, Bz, is negative ahead and behind the first shock and positive for the second case. A sudden-commencement geomagnetic storm develops in each case, with maximum D sub st 190 nT. An immediate auroral response is detected at all longitudes around the auroral oval, in which auroral luminosities increase by a factor of 2 to 3 with the first samples after each sudden commencement. The time delay in obtaining the first sample varies with local time from approx. 1 to 18 mins. No other significant variations in the aurora are associated with the immediate response. Beginning approx. 30 mins after each sudden commencement, the aurora becomes active and displays significant variations in its luminosity and spatial distribution. For Bz 0 an intense substorm develops. A sun-aligned transpolar arc forms when Bz 0, appearing first at local midnight as a polar arc and then lengthening sunward from the auroral oval across the polar cap to noon at an average speed of approx. 1 km/sec.

  17. Very low frequency waves stimulated by an electron accelerator in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Holtet, J. A.; Pran, B. K.; Egeland, A.; Grandal, B.; Jacobsen, T. A.; Maehlum, B. N.; Troim, J.

    1981-01-01

    The sounding rocket, Polar 5, carrying a 10 keV electron accelerator in a mother-daughter configuration and other diagnostic instruments, was launched into a slightly disturbed ionosphere with weak auroral activity on February 1, 1976 from Northern Norway to study VLF wave phenomena. The rocket trajectory crossed two auroral regions: one, between 86 and 111 s flight time, and a secondary region between 230 and 330 s. The daughter, carrying the accelerator, was separated axially from the mother in a forward direction at an altitude of 90 km. The VLF experiment, carried by the mother payload, recorded both electromagnetic and electrostatic waves. The receiving antenna was an electric dipole, 0.3 m tip-to-tip, oriented 90 degrees to the rocket spin axis. The onboard particle detector recorded increased electron fluxes in the two auroral regions. A double peaked structure was observed in the fluxes of 4-5 and 12-27 keV electrons within the northern auroral form. The number density of thermal plasma varied during the flight, with maximum density within the main auroral region. To the north of this aurora a slow, steady decrease in the density was observed, with no enhancement in the region of the second aurora.

  18. Precipitating Electron Population Inversion from Auroral Optical Data during the MICA Rocket Launch

    NASA Astrophysics Data System (ADS)

    Ahrns, J.; Hampton, D. L.; Stenbaek-Nielsen, H.; Michell, R. G.; Samara, M.; Powell, S.; Lynch, K. A.; Fernandes, P. A.; Lessard, M.

    2012-12-01

    The MICA (Magnetosphere-Ionosphere Coupling in the Alfvèn Resonator) sounding rocket was launched from Poker Flat, AK on Feb 19, 2012, into a series of discrete auroral arcs immediately following auroral breakup. We operated a set of ground-based optical imagers in support of the launch which captured the event, including more than an hour of auroral activity in the eventual rocket trajectory prior to launch at a variety of temporal (~1 second cadence to video frame rate) and spatial (all-sky to sub-kilometer) resolutions and in several spectral emission lines. Our imagers were located at Poker Flat, Fort Yukon, and Venetie AK (the last of which viewed the auroral conjugate of the rocket at magnetic zenith with sub-kilometer resolution) which allows a 3-dimensional reconstruction of certain auroral features from the optical data. We use this data, along with an electron transport model, to estimate the precipitating electron population and its effect on the background plasma to characterize the energy input prior to and during the rocket flight.

  19. Origin of auroral electric potential structures

    NASA Astrophysics Data System (ADS)

    Chiu, Y. T.

    Available observational data and theoretical models of the formation of auroral electric potential structures are reviewed. It is shown that the principle of arc formation in the aurora can also be applied to other geomagnetic configurations, in order to construct a comprehensive theory of discrete auroral arcs. According to the theory, the completion of the field-aligned current circuit in the aurora can lead to downward parallel electric fields in the return current from the central region of discrete arc potential. It is pointed out that evidence for downward parallel electric field signatures has been collected within the last year.

  20. Auroral Phenomena: Associated with auroras in complex ways are an extraordinary number of other physical phenomena.

    PubMed

    O'brien, B J

    1965-04-23

    The array of auroral phenomena involves all the basic types of physical phenomena: heat, light, sound, electricity and magnetism, atomic physics, and plasma physics. The uncontrollability, the unreproducibility, and the sheer enormity of the phenomena will keep experimentalists and theorists busy but unsatisfied for many years to come. The greatest challenge in this field of research is an adequate experimentally verifiable theory of the local energization of auroral particle fluxes. Once that is achieved, there is every likelihood that the multitude of correlations between auroral phenomena can be understood and appreciated. Until that time, however, such correlations are to be regarded like icebergs-the parts that can be seen are only a small fraction of the whole phenomenon, and it is the large unseen parts that can be dangerous to theorists and experimentalists alike. PMID:17842831

  1. Auroral Phenomena: Associated with auroras in complex ways are an extraordinary number of other physical phenomena.

    PubMed

    O'brien, B J

    1965-04-23

    The array of auroral phenomena involves all the basic types of physical phenomena: heat, light, sound, electricity and magnetism, atomic physics, and plasma physics. The uncontrollability, the unreproducibility, and the sheer enormity of the phenomena will keep experimentalists and theorists busy but unsatisfied for many years to come. The greatest challenge in this field of research is an adequate experimentally verifiable theory of the local energization of auroral particle fluxes. Once that is achieved, there is every likelihood that the multitude of correlations between auroral phenomena can be understood and appreciated. Until that time, however, such correlations are to be regarded like icebergs-the parts that can be seen are only a small fraction of the whole phenomenon, and it is the large unseen parts that can be dangerous to theorists and experimentalists alike.

  2. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  3. A real-time hybrid aurora alert system: Combining citizen science reports with an auroral oval model

    NASA Astrophysics Data System (ADS)

    Case, N. A.; Kingman, D.; MacDonald, E. A.

    2016-06-01

    Accurately predicting when, and from where, an aurora will be visible is particularly difficult, yet it is a service much desired by the general public. Several aurora alert services exist that attempt to provide such predictions but are, generally, based upon fairly coarse estimates of auroral activity (e.g., Kp or Dst). Additionally, these services are not able to account for a potential observer's local conditions (such as cloud cover or level of darkness). Aurorasaurus, however, combines data from the well-used, solar wind-driven, OVATION Prime auroral oval model with real-time observational data provided by a global network of citizen scientists. This system is designed to provide more accurate and localized alerts for auroral visibility than currently available. Early results are promising and show that over 100,000 auroral visibility alerts have been issued, including nearly 200 highly localized alerts, to over 2000 users located right across the globe.

  4. Italian all-sky imager tracks auroral red arcs over Europe

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-05-01

    During geomagnetic storms, stable auroral red (SAR) arcs reach down from polar latitudes, their faint glow stretching equatorward of the traditional auroral oval. Invisible to the naked eye, SAR arcs are an upper atmospheric occurrence produced by the emission of light from oxygen atoms in the thermosphere. The excitation of the ionospheric oxygen that produces SAR arcs is caused, in turn, by the conduction of heat from the magnetospheric ring current. Advances in camera optics, including more sensitive sensors and highly specific filters, have allowed researchers to track the occurrence of SAR arcs, opening a window into the dynamics of the inner magnetosphere.

  5. Stratospheric benzene and hydrocarbon aerosols in Saturn's auroral regions

    NASA Astrophysics Data System (ADS)

    Guerlet, S.; Fouchet, T.; Vinatier, S.; Simon, A. A.; Dartois, E.; Spiga, A.

    2015-10-01

    Saturn's polar upper atmosphere exhibits significant auroral activity, however, its impact on stratospheric chemistry (i.e.the production of benzene and heavier hydrocarbons) and thermal structure is poorly documented. Here we report on the first measurement of benzene column abundance in Saturn's polar stratosphere, together with the first detection of spectral sig- natures of the polar haze in the thermal infrared, based on limb measurements from the Composite Infrared Spectrometer (CIRS) on board Cassini. We then evaluate the radiative impact of the polar haze.

  6. Drifts of auroral structures and magnetospheric electric fields

    SciTech Connect

    Nakamura, Rumi; Oguti, Takasi )

    1987-10-01

    Drifts of pulsating auroral patches and discrete auroral arc fragments are analyzed on the basis of all-sky TV observations of auroras. The drifts of auroral structures in this study correspond on a gross scale with other measurements of magnetospheric convection. The result strongly suggests that not only auroral patches but also arc fragments, when detached from the main body of the discrete aurora, drift owing to the magnetospheric electric fields. The measurement of the drifts of auroral structures could possibly provide us with a convenient and accurate method to estimate the magnetospheric electric fields.

  7. Cluster multi-spacecraft observations of electron and ion holes in the Auroral Acceleration Region

    NASA Astrophysics Data System (ADS)

    Fazakerley, A. N.; Pickett, J. S.; Berthomier, M.; Mutel, R. L.; Masson, A.; Forsyth, C.; Owen, C. J.; Khotyaintsev, Y. V.; Andre, M.; Carr, C.

    2013-12-01

    In spring 2013, the Cluster spacecraft have visited the Auroral Acceleration Region (AAR) for the second and final time. The spacecraft constellation was arranged to produce very small separation magnetic field aligned conjunctions (~10s km) between C3 and C4, with C1 relatively nearby. The goal was to allow study of electron and ion holes, including their propagation between C3 and C4, and their roles in generating waves that may be observed locally and also at C1. Detailed planning work has tried to maximize the opportunities to use the Cluster payload effectively during these conjunctions, but the presence of auroral activity during the relatively few AAR passes cannot be guaranteed in advance. The dataset may also be valuable for other aspects of auroral science, as data is collected throughout the AAR crossings, not only at the conjunctions. We intend to present first results from this campaign.

  8. Cluster multi-spacecraft observations of electron and ion holes in the Auroral Acceleration Region

    NASA Astrophysics Data System (ADS)

    Fazakerley, Andrew; Pickett, Jolene; Berthomier, Matthieu; Mutel, Robert; Masson, Arnaud; Forsyth, Colin; Owen, Christopher J.; Khotyaintsev, Yuri; Andre, Mats; Carr, Chris

    2014-05-01

    In spring 2013, the Cluster spacecraft visited the Auroral Acceleration Region (AAR) for the second and final time. The spacecraft constellation was arranged to produce very small separation magnetic field aligned conjunctions (~10s km) between C3 and C4, with C1 relatively nearby. The goal was to allow study of electron and ion holes, including their propagation between C3 and C4, and their roles in generating waves that may be observed locally and also at C1. Detailed planning work has tried to maximize the opportunities to use the Cluster payload effectively during these conjunctions, but the presence of auroral activity during the relatively few AAR passes could be guaranteed in advance. The dataset may also be valuable for other aspects of auroral science, as data is collected throughout the AAR crossings, not only at the conjunctions. We intend to present first results from this campaign.

  9. Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.; Chamberlain, J. W.

    1979-01-01

    Auroral emissions generated by the Jovian moons Io and Europa, originating at the foot of the magnetic flux tubes of the satellites, may be largely limited to longitudes where the planet's ionospheric conductivity is enhanced. The enhanced conductivity is produced by trapped energetic electrons that drift into the Jovian atmosphere in regions where the planet's magnetic field is anomalously weak. The most active auroral hot-spot emissions lie in a sector of the northern hemisphere defined by decametric radio emission. Weaker auroral hot spots are found in the southern hemisphere along a magnetic conjugate trace. The brightness and the longitude of the Jovian hot spots predicted in this paper are in agreement with observations reported by Atreya et al. (1977).

  10. Auroral Radio Emission Direction of Arrival Studies of Simultaneous Medium Frequency Burst and Auroral Hiss

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.

    2010-12-01

    The auroral zone is the source of multiple kinds of radio emissions that can be observed on the ground. The study of radio emissions offers a way to remotely sense space plasma processes and, in the case of auroral emissions, to use the auroral ionosphere as a large-scale plasma physics laboratory. Medium frequency (MF) burst is an impulsive radio emission at 1.5-4.5 MHz observed on the ground. Its generation mechanism is unknown, and it is often associated with the onset of substorms. Auroral hiss is an impulsive emission observed on the ground at frequencies up to 1 MHz and is also associated with substorm onset. LaBelle et al. [1997] reported a temporal relationship between MF burst and auroral hiss. Multiple impulses of both MF burst and auroral hiss occurred simultaneously over a time period that in certain cases lasted tens of minutes. While the temporal relationship on the timescale of seconds is well established, the spatial relationship between MF burst and auroral hiss has yet to be investigated. Dartmouth College currently operates a broadband (0-5 MHz) four-element radio interferometer at Toolik Field Station in Alaska (68° 38' N, 149° 36' W, 68.5° magnetic latitude) in order to study the direction of arrival (DOA) of radio emissions. Since the antenna spacing is 50 meters, the interferometer is optimized for DOA measurements of MF bursts. However, in certain cases, it can provide the DOA for the high-frequency portion of impulsive auroral hiss. We present two case studies that represent the first simultaneous DOA measurements of impulsive auroral hiss and MF burst. On March 4, 2010, the DOA of MF burst was predominantly from 30 degrees south of east, an observation consistent with the statistical work performed by Bunch et al. [2009]. Simultaneous DOA measurements of the high-frequency portion of auroral hiss also showed the DOA as approximately 30 degrees south of east but with greater scatter in the data. The second case study, which involved an

  11. Integral probability of auroral electron flux events from SSJ/4 DMSP F9 electron measurements. Interim report

    SciTech Connect

    Hardy, D.A.; Bounar, K.H.

    1992-05-18

    A study has been completed to determine the probability of observing different levels of auroral electron precipitation both within fixed spatial elements in magnetic local time and corrected geomagnetic latitude, and within spatial elements when the magnetic local time is fixed but the latitude range can be varied. The auroral electron precipitation probability is defined for a series of thresholds in electron average energy and electron energy flux as a function of geomagnetic activity. The study provides the capability to determine the probability of observation of an auroral electron precipitation event for any specified threshold in average energy, energy flux, and level of geomagnetic activity for any location in the auroral region or for any line of sight through the auroral region. The input for the study is one year of data from the SSJ/4 electron and proton spectrometer flown on the F9 satellite of the Defense Meteorological Satellite Program (DMSP) comprising approximately 10, 141 hemispheric passes through the auroral region. The binning technique used to determine these probabilities is presented and some results are discussed. The operation of the software package to display the probability results is described. Defense Meteorological Satellite Program (DMSP), Aurora, Precipitating electrons, Geomagnetic Kp index, Integral probability.

  12. Equatorward and poleward expansion of the auroras during auroral substorms

    NASA Technical Reports Server (NTRS)

    Nakamura, Rumi; Oguti, Takasi; Yamamoto, Tatsundo; Kokubun, Susumu

    1993-01-01

    The formation of the auroral bulge is investigated on the basis of all-sky TV auroral data with high spatial and temporal resolution. Ways in which the discrete auroral structures within the poleward expanding bulge develop systematically toward the west, the east, and also equatorward from a localized breakup region are shown. Auroral structure at the western end of the bulge (a surge) develops with clockwise rotation as viewed along the magnetic field direction. At the eastern part of the bulge, thin auroral features propagate eastward from the breakup region. Around the central meridian of the bulge, auroral features expand equatorward and become north-south aligned (the N-S aurora). The N-S aurora and the eastward propagating aurora develop into diffuse and pulsating aurora after the expansion. It is suggested that these discrete auroral structures in the bulge develop along the plasma streamlines in a localized distorted two-cell equipotential distribution.

  13. Numerical and laboratory simulations of auroral acceleration

    SciTech Connect

    Gunell, H.; De Keyser, J.; Mann, I.

    2013-10-15

    The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.

  14. Particle simulation of auroral double layers

    NASA Technical Reports Server (NTRS)

    Smith, Bruce L.; Okuda, Hideo

    1987-01-01

    Work on the simulation of auroral double layers (DLs) with realistic particle-in-cell models is presented. An early model simulated weak DLs formed in a self-consistent circuit but under conditions subject to the ion-acoustic instability. Recent work has focused on strong DLs formed when currentless jets are injected into a dipole magnetic field.

  15. Stratospheric benzene and hydrocarbon aerosols detected in Saturn's auroral regions

    NASA Astrophysics Data System (ADS)

    Guerlet, S.; Fouchet, T.; Vinatier, S.; Simon, A. A.; Dartois, E.; Spiga, A.

    2015-08-01

    Context. Saturn's polar upper atmosphere exhibits significant auroral activity; however, its impact on stratospheric chemistry (i.e. the production of benzene and heavier hydrocarbons) and thermal structure remains poorly documented. Aims: We aim to bring new constraints on the benzene distribution in Saturn's stratosphere, to characterize polar aerosols (their vertical distribution, composition, thermal infrared optical properties), and to quantify the aerosols' radiative impact on the thermal structure. Methods: Infrared spectra acquired by the Composite Infrared Spectrometer (CIRS) on board Cassini in limb viewing geometry are analysed to derive benzene column abundances and aerosol opacity profiles over the 3 to 0.1 mbar pressure range. The spectral dependency of the haze opacity is assessed in the ranges 680-900 and 1360-1440 cm-1. Then, a radiative climate model is used to compute equilibrium temperature profiles, with and without haze, given the haze properties derived from CIRS measurements. Results: On Saturn's auroral region (80°S), benzene is found to be slightly enhanced compared to its equatorial and mid-latitude values. This contrasts with the Moses & Greathouse (2005, J. Geophys. Res., 110, 9007) photochemical model, which predicts a benzene abundance 50 times lower at 80°S than at the equator. This advocates for the inclusion of ion-related reactions in Saturn's chemical models. The polar stratosphere is also enriched in aerosols, with spectral signatures consistent with vibration modes assigned to aromatic and aliphatic hydrocarbons, and presenting similarities with the signatures observed in Titan's stratosphere. The aerosol mass loading at 80°S is estimated to be 1-4 × 10-5 g cm-2, an order of magnitude less than on Jupiter, which is consistent with the order of magnitude weaker auroral power at Saturn. We estimate that this polar haze warms the middle stratosphere by 6 K in summer and cools the upper stratosphere by 5 K in winter. Hence

  16. Activities report of PTT Research

    NASA Astrophysics Data System (ADS)

    In the field of postal infrastructure research, activities were performed on postcode readers, radiolabels, and techniques of operations research and artificial intelligence. In the field of telecommunication, transportation, and information, research was made on multipurpose coding schemes, speech recognition, hypertext, a multimedia information server, security of electronic data interchange, document retrieval, improvement of the quality of user interfaces, domotics living support (techniques), and standardization of telecommunication prototcols. In the field of telecommunication infrastructure and provisions research, activities were performed on universal personal telecommunications, advanced broadband network technologies, coherent techniques, measurement of audio quality, near field facilities, local beam communication, local area networks, network security, coupling of broadband and narrowband integrated services digital networks, digital mapping, and standardization of protocols.

  17. In situ observations of medium frequency auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.; Pfaff, R. F.; Parrot, M.; Yan, X.; Burchill, J. K.

    2013-12-01

    The auroral ionosphere is a region rich with plasma waves that can be studied both in space and on the ground. These waves may mediate energy exchange between particle populations and provide information about the local plasma properties and boundaries. Auroral medium frequency (MF) burst is an impulsive radio emission observed at ground-level from 1.3-4.5 MHz that is associated with local substorm onset. There have been two recent reports of impulsive, broadband, MF waves at high latitudes. Burchill and Pfaff [2005] reported observations from the FAST satellite of impulsive, broadband, MF and low frequency (LF) radio waves. Using data from the DEMETER satellite, Parrot et al. [2009] surveyed MF waves caused by lightning. This study did show a high-latitude population of MF waves. We investigate whether the waves observed by these two satellites are related to auroral MF burst. Using FAST satellite burst mode electric field data from high-latitude (> 60 degrees magnetic), low-altitude (< 1000 km) intervals of moderate to large geomagnetic activity (Kp > 3) from 1996-2002, we have found forty-four examples of impulsive MF waves, all of which are associated with impulsive LF waves. Although MF burst and the waves observed by FAST have similar spectral signatures, they have different magnetic local time dependencies, which suggests that they may be unrelated. A study of MF waves observed at high latitude by DEMETER is ongoing. In situ observations of MF burst could provide crucial information about this heretofore unexplained natural radio emission.

  18. Evolution of auroral acceleration region field-aligned current systems, plasma, and potentials observed by Cluster during substorms

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Frey, H. U.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F.

    2015-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. The acceleration processes that occur therein accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. Though this region has garnered considerable attention, the temporal evolution of field-aligned current systems, associated acceleration processes, and resultant changes in the plasma constituents that occur during key stages of substorm development remain unclear. In this study we present a survey of Cluster traversals within and just above the auroral acceleration region (≤3 Re altitude) during substorms. Particular emphasis is on the spatial morphology and developmental sequence of auroral acceleration current systems, potentials and plasma constituents, with the aim of identifying controlling factors, and assessing auroral emmission consequences. Exploiting multi-point measurements from Cluster in combination with auroral imaging, we reveal the injection powered, Alfvenic nature of both the substorm onset and expansion of auroral particle acceleration. We show evidence that indicates substorm onsets are characterized by the gross-intensification and filamentation/striation of pre-existing large-scale current systems to smaller/dispersive scale Alfven waves. Such an evolutionary sequence has been suggested in theoretical models or single spacecraft data, but has not been demonstrated or characterized in multispacecraft observations until now. It is also shown how the Alfvenic variations over time may dissipate to form large-scale inverted-V structures characteristic of the quasi-static aurora. These findings suggest that, in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. Key

  19. Auroral ultraviolet darkening on the outer planets

    SciTech Connect

    Pryor, W.R.

    1989-01-01

    The Voyager 2 Photopolarimeter Subsystem (PPS) has made photometric observations of Jupiter at 2400 A and photometric and polarimetric observations of Saturn and Uranus at 2650 A. At these wavelengths the instrument is observing each planet's stratosphere and upper troposphere. The most striking features are that both poles of Jupiter and the observed northern pole of Saturn are very dark, while Uranus has a uniformly bright appearance. All three planets show evidence for a stratospheric haze. Simple vertically homogeneous multiple scattering models are used to characterize these stratospheric hazes. Aurores occur at high latitudes on Jupiter and Saturn and at low latitudes on Uranus. The asymmetric polar darkening on Jupiter seen by PPS is roughly matched by the asymmetry in the auroral zones. Historical data suggest that the haze asymmetry is persistent. The dark north polar cap seen by PPS at Saturn is small and close to the pole, which corresponds to the small auroral zone close to the pole. A model is examined which attributes the darkening to auroral bombardment initiating methane chemistry that makes dark hydrocarbon particles. Possible chemical pathways are discussed, and mass balance calculations are presented for Jupiter, Saturn, and Uranus. The model is quantitatively plausible for Jupiter and Saturn. The lack of localized darkening on Uranus can be explained in this model by noting that weak vertical mixing and methane condensation near the 1-bar level lead to negligible methane abundances at auroral altitudes. The auroras must reach the methane for dark material to form. The thin haze that is seen on Uranus is ascribed to photochemical processes. Voyager 2 will reach Neptune this year. Ground-based observers have reported vigorous vertical mixing and large amounts of stratospheric methane there.

  20. Magneto-gravity waves caused by auroral electrojets instability

    NASA Astrophysics Data System (ADS)

    Barkhatov, Nikolay; Barkhatova, Oksana; Grigor'ev, Gennadiy

    2010-05-01

    (MOF) on the specified traces correlation research is carried out. Time shifts between index AE and MOF for considered traces at which high correlation is marked are determined. These time shifts answer times necessary for magneto-gravity waves propagation from auroral region to radio-waves reflection points. Among received values of time shifts cases (5-10 min) answering to increased velocity (2000 - 5000 m/s) of disturbance propagation in comparison with usual AGW velocities for investigated paths are marked. Comparison of dynamic spectrum of index AE variations and MOF on specified traces for cases of their increased correlation for 5-10 min shifts shows similar spectrum features. It confirms an opportunity of auroral disturbances propagation to low latitudes with velocity higher than AGW. Such cases can be connected with MGW propagation. Similarity of spectrograms of index AE disturbances with spectrograms of magnetic field horizontal component disturbances at three ground stations located close to reflection points of paths Inskip - Rostov-on-Don, Cyprus - Rostov-on-Don is founded. It also proves MGW existence and their propagation from auroral regions to low latitudes. The analysis of the dispersive equations for fast «+ mode» and slower «- mode» MGW has allowed to execute an analytical estimation of MGW frequencies and velocities for conditions of a real ionosphere. As a result MGW frequencies (1-2)•10^(-4) Hz and velocities about 6500 m/s are received which are in accord with experimentally founded values. We are grateful to Uryadov V.P., Vertogradov G.G. and Vertogradov V.G. for ionosphere oblique sounding data granting. Work is executed at partial support under grants of the RFBR 08-05-12051-OBR and 09-05-00495, and also program Ministry of Education and Science «Development of higher school scientific potential (2009-2010, project N 1623)».

  1. Synoptical Auroral Ovals: A Comparison study with TIMED/GUVI Observations

    NASA Astrophysics Data System (ADS)

    Liou, K.; Paxton, L.; Zhang, Y.

    2007-12-01

    Whether the aurora Australis is a mirror image of its northern hemispheric counterpart is a question that auroral physicists have been wanting to answer. Owing to geophysical constraints, especially the large offset between the location of the southern magnetic and southern geographic poles, there is a paucity of information about the aurora Australis. Comparisons of some instantansous global-scale northern and southern auroras acquired conjugately by Polar and IMAGE spacecraft recently have shown mixed results. In this study, we present data from a different source to provide insight into the global morphology and behavior of the auroral oval. Approximately 20,000 Earth's disk FUV images acquired from the Global Ultraviolet Imager (GUVI) on-board NASA's Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite between February 2002 and February 2006 are processed and analyzed. Synoptic auroral distributions for the northern and southern ovals are derived. Our study result reveals that the statistical oval is nearly hemispherically symmetric (within ±80%). Several known features in the morphology of the aurora Borealis are also observed in the Southern Hemisphere: For instance, the auroral midday gap and the premidnight maximum. The hemispherical symmetry of the auroras deteriorates as the partition of solar illumination in the two hemisphere polar region becomes asymmetric. It is estimated that the solar illumination effect accounts for up to ~50% of the hemispheric asymmetry. We found evidence that suggests that the aurora is suppressed under sunlit conditions in the South just as it is in the North. We also found that the auroral energy flux increases monotonically with the increase of the solar zenith angle. These results suggest that ionospheric conductivity plays an active role in regulating magnetospheric energy deposition in the auroral zone.

  2. PC Index as a Means to Monitor Processes in the Auroral Zone

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg

    2016-07-01

    The PC index was introduced [Troshichev et al., 1988] to characterize the polar cap magnetic activity generated by the geoeffective interplanetary electric field. Results of recent studies [Troshichev and Janzhura, 2012; Troshichev and Sormakov, 2015] are strongly indicative of PC index as a proxy of the solar wind energy that entered into the magnetosphere. The PC index in this charge can be successfully used to monitor processes in the auroral zone: 1. PC index well correlates with intensity of the Region 1 field-aligned currents measured by SWARM satellites on the auroral oval poleward boundary. As it is known, the R1 field-aligned currents flow into ionosphere in the morning auroral oval and flow out of ionosphere in the evening oval. The R1 FAC intensity and, correspondingly, the PC value increase in tandem before the substorm sudden onset. 2. PC-index can be taken as Input Parameter in Empirical Auroral Precipitation Model "OVATION-prime" [Newell, 2009] instead of the coupling function dØMP/dt. Use of the 1-min PC index in the modified OVATION-PC model provides the much better timing of the auroral precipitation with allowance for actual state of the magnetosphere. 3. There is a strong correspondence between the behavior of PC and development of magnetic disturbances in the auroral zone: the magnetic substorms are preceded by the PC index growth, the substorm onsets are commonly associated with a sharp increase in the PC growth rate, the substorm occurrence reaches the maximum when PC exceeds the threshold value ~ 1.5±0.5 mV/m, the linear correlation between the PC and AL values is typical of all classes of substorms, irrespective of their power. There regularities provide possibility to nowcast the substorm development.

  3. The Auroral and Ground-Magnetic Response to Different Magnetotail Drivers

    NASA Astrophysics Data System (ADS)

    Rae, J.; Mann, I. R.; Murphy, K. R.; Walsh, A. P.; Milling, D. K.; Angelopoulos, V.

    2010-12-01

    Of critical importance to resolving the substorm problem is our understanding of the response of the ionosphere to a variety of magnetotail drivers. We present a series of case studies of the ionospheric response to substorm expansion phase onset and other auroral activations using both in-situ data from Cluster and THEMIS spacecraft and data from the combined networks of magnetometers in the North American sector, including those from CARISMA (www.carisma.ca), THEMIS ground-based observatory magnetic and optical network, and data from supporting arrays. We present details of magnetic disturbance diagnostics which may distinguish between tail drivers, including using ULF waves via the Automated Wavelet Estimation of Substorm Onset and Magnetic Events (AWEWSOME) technique and the creation of local auroral and polar electrojet indices. We then use an independently-derived list of nightside auroral activations in order to probe whether the location of the dominant electrojet signature and ULF wave activity can be used to determine the difference between magnetotail drivers. These analyses serve to highlight the importance of extensive magnetometer coverage in order to correctly identify and characterise the initiation and temporal variations of ionospheric electrodynamics during nightside auroral activations. We seek ground signatures that can distinguish between current systems due to various magnetotail drivers.

  4. Ground and satellite observations of auroral fragmentation into patches

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Nishi, Katsuki

    2016-07-01

    We review characteristic auroral fragmentation which is the process by which uniform aurora is broken into several fragments to form auroral patches, based on the all-sky camera observations at Tromsoe, Norway and THEMIS chain in Canada. The auroral fragmentation occurs as finger-like structures developing predominantly in meridional direction with speeds of several tens m/s and scale sizes of several tens kilometers without any shearing motion. These features suggest that pressure-driven instability in the balance between the earthward magnetic-tension force and the tailward pressure gradient force in the magnetosphere is the main driving force of the auroral fragmentation. Thus, these observations indicate that auroral fragmentation associated with pressure-driven instability is a process that creates auroral patches. Auroral fragmentation is seen from midnight to dawn local time and usually appears at the beginning of the substorm recovery phase, near the low latitude boundary of the auroral region. One example of plasma and magnetic field observations by the THEMIS satellite in the conjugate magnetosphere shows diamagnetic anti-phase variations of magnetic and plasma pressures with time scales of several to tens minutes associated with the auroral fragmentation. This observation also supports the idea of pressure-driven instability to cause the auroral fragmentation into patches.

  5. Crowd-sourcing, Communicating, and Improving Auroral Science at the Speed of Social Media through Aurorasaurus.org

    NASA Astrophysics Data System (ADS)

    Patel, K.; MacDonald, E.; Case, N.; Hall, M.; Clayton, J.; Heavner, M.; Tapia, A.; Lalone, N.; McCloat, S.

    2015-12-01

    On March 17, 2015, a geomagnetic storm—the largest of the solar cycle to date— hit Earth and gave many sky watchers around the world a beautiful auroral display. People made thousands of aurora-related tweets and direct reports to Aurorasaurus.org, an interdisciplinary citizen science project that tracks auroras worldwide in real-time through social media and the project's apps and website. Through Aurorasaurus, researchers are converting these crowdsourced observations into valuable data points to help improve models of where aurora can be seen. In this presentation, we will highlight how the team communicates with the public during these global, sporadic events to help drive and retain participation for Aurorasaurus. We will highlight some of the co-produced scientific results and increased media interest following this event. Aurorasaurus uses mobile apps, blogging, and a volunteer scientist network to reach out to aurora enthusiasts to engage in the project. Real-time tweets are voted on by other users to verify their accuracy and are pinned on a map located on aurorasaurus.org to help show the instantaneous, global auroral visibility. Since the project launched in October 2014, hundreds of users have documented the two largest geomagnetic storms of this solar cycle. In some cases, like for the St. Patrick's Day storm, users even reported seeing aurora in areas different than aurora models suggested. Online analytics indicate these events drive users to our page and many also share images with various interest groups on social media. While citizen scientists provide observations, Aurorasaurus gives back by providing tools to help the public see and understand the aurora. When people verify auroral sightings in a specific area, the project sends out alerts to nearby users of possible auroral visibility. Aurorasaurus team members around the world also help the public understand the intricacies of space weather and aurora science through blog articles

  6. Comparing Auroral Far Ultraviolet Images and Coincident Ionosonde Observations of the Auroral E Region

    NASA Astrophysics Data System (ADS)

    Knight, H. K., Jr.; Galkin, I. A.; Reinisch, B. W.

    2014-12-01

    Comparisons are being made between auroral ionospheric E region parameters derived from two types of observations: satellite-based far ultraviolet (FUV) imagers and ground-based ionosondes. The FUV imagers are: 1) NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager (TIMED/GUVI) and 2) DMSP's Special Sensor Ultraviolet Spectrographic Imager (SSUSI). The ionosondes are five high latitude Digisondes included in the Global Ionospheric Radio Observatory (GIRO) (Reinisch and Galkin, EPS, 2011). The purpose of the comparisons is to determine whether auroral FUV remote sensing algorithms that derive E region parameters from Lyman-Birge-Hopfield (LBH) emissions are biased in the presence of proton aurora. Earlier comparisons between FUV images and in situ auroral particle flux observations (e.g., Knight et al., JGR, 2012) indicate that proton aurora is much more efficient than electron aurora in producing LBH emission, and to be consistent with these findings the FUV-ionosonde comparisons would have to show that auroral FUV-derived NmE (maximum E region electron density) is biased high in the presence of proton precipitation. The advantage of making comparisons with Digisonde observations of the E region (as opposed to incoherent scatter radar) is that Digisondes remain in operation continuously over extended periods of time (i.e. years) and record observations every few minutes, making it possible to gather large numbers of FUV image-coincident observations for statistical studies. The subject of how to interpret auroral E region traces in ionograms has not been studied much up to now, however, and we are making progress in that area. We have found that a modified version of the rules from Piggott and Rawer, U.R.S.I. Handbook of Ionogram Interpretation and Reduction(1972) gives a large number of usable ionograms and good correlation with auroral FUV observations. The figure shows an example of an auroral FUV image with the locations

  7. Statistics of auroral hiss and relationship to auroral boundaries and upward current regions

    NASA Astrophysics Data System (ADS)

    Spasojevic, M.

    2016-08-01

    An 8 year database of VLF auroral hiss observations from South Pole station (invariant latitude of -74° with magnetic local time (MLT) = UT -3.5 h) is analyzed. There are three peaks in hiss occurrence as a function of MLT in the evening sector (19-23 MLT), afternoon sector (13-17 MLT), and morning sector (7-11 MLT). The geomagnetic and interplanetary magnetic field (IMF) drivers of hiss are examined in the three MLT sectors, and the results are interpreted using an empirical model of auroral boundaries and an empirical model of field-aligned current patterns. Auroral hiss on the dayside occurs when the auroral oval is centered near the latitude of the station, and in the afternoon sector higher disturbance levels are required. The afternoon sector favors positive By when Bz is positive and negative By when Bz is strongly negative, while the morning sector favors the complementary conditions. In each case the preference for hiss occurrence follows the pattern of upward field-aligned currents, and hiss is more likely in the configuration where the peak in the upward current is closer to the latitude of the station. IMF By does not play a role on the nightside where hiss is most likely to occur during moderately weak driving conditions as higher disturbance levels are expected to move the auroral oval and upward current systems to latitudes well equatorward of South Pole.

  8. Untangling the Space-Time Ambiguity of Auroral Emissions

    NASA Astrophysics Data System (ADS)

    Gjerloev, J. W.; Humberset, B.; Michell, R. G.; Samara, M.; Mann, I. R.

    2012-12-01

    In this paper we address the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) system as observed by an all-sky imager (ASI). We utilize 557.7 nm images obtained by a ground based ASI located under the dark ionosphere (~22 MLT) at Poker Flat, Alaska. The 19 min movie was recorded at 3.31 Hz during continuous moderately intense auroral activity driven by a southward IMF Bz of about -5 nT. We analyze this movie using a simple, yet robust, 2D FFT technique that allows us to determine the scale size dependent variability. When plotting the correlation pattern as a function of scale size and time separation we find a pattern with distinct regions of high and low correlation. Larger scale sizes are found to have longer duration. We interpret this remarkable result as indicative of a M-I system that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere. Our findings support the characteristics of the field-aligned currents as determined from multi-point satellite observations (ST-5, Gjerloev et al., Annales Geophysicae, 2011). Two different electromagnetic parameters, auroral emissions and field-aligned currents, display similar characteristics supporting our conclusion that this is indicative of a fundamental behavior of the M-I system.

  9. Electron density depletions in the nightside auroral zone

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Gurnett, D. A.; Peterson, W. K.; Waite, J. H., Jr.; Burch, J. L.; Green, J. L.

    1988-01-01

    Dynamics Explorer 1 measurements are used to investigate regions of low electron density in the nightside auroral zone. Sharply defined regions of low electron density are found in auroral zone crossings from the predusk hours until the early morning hours at all radial distances up to at least 4.6 earth radii. Densities in the auroral cavity are shown to fall to values below 0.3/cu cm. Within the auroral cavity, electron-density-profile variations of a factor of 2 or more on spatial scales of tens of kilometers are found, and the electron plasma frequency to electron cyclotron frequency ratios are 0.02-0.4. The results suggest associations between the density depletions in the nightside auroral zone and auroral acceleration processes.

  10. Auroral meridian scanning photometer calibration using Jupiter

    NASA Astrophysics Data System (ADS)

    Jackel, Brian J.; Unick, Craig; Creutzberg, Fokke; Baker, Greg; Davis, Eric; Donovan, Eric F.; Connors, Martin; Wilson, Cody; Little, Jarrett; Greffen, M.; McGuffin, Neil

    2016-10-01

    Observations of astronomical sources provide information that can significantly enhance the utility of auroral data for scientific studies. This report presents results obtained by using Jupiter for field cross calibration of four multispectral auroral meridian scanning photometers during the 2011-2015 Northern Hemisphere winters. Seasonal average optical field-of-view and local orientation estimates are obtained with uncertainties of 0.01 and 0.1°, respectively. Estimates of absolute sensitivity are repeatable to roughly 5 % from one month to the next, while the relative response between different wavelength channels is stable to better than 1 %. Astronomical field calibrations and darkroom calibration differences are on the order of 10 %. Atmospheric variability is the primary source of uncertainty; this may be reduced with complementary data from co-located instruments.

  11. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1992-01-01

    The results obtained in the second year of a three year collaborative effort with MSFC are summarized. A succession of experimental studies was completed to determine the effects of the natural and induced space vehicle environment on the measurement of auroral images from space-based platforms. In addition, a global model which incorporates both auroral and dayglow emission sources is being developed to allow interpretation of measured auroral emissions. A description of work completed on these two tasks is presented.

  12. Observations of Auroral Broadband Emissions by CLUSTER

    NASA Astrophysics Data System (ADS)

    Wahlund, J.-E.; et al.

    2003-04-01

    We present the results of a study based on several events of auroral broadband ULF/ELF emissions observed by the CLUSTER multi-spacecraft at distances around 4-5 RE. These emissions, observed below the ion plasma frequency, have similar dispersion characteristics as the broadband emissions observed at lower altitudes (800-4000 km) by e.g. rockets (e.g. AMICIST) and satellites (e.g. FREJA and FAST). As successive passages of the four CLUSTER satellites through nearly the same regions show, the intensity of the emissions depend on the thermal properties of the plasma and gradients thereof. The total Poynting flux is downward and is comparable to energy fluxes observed at lower altitudes. We therefore believe that the broadband emissions observed by CLUSTER in the auroral region are consistent with dispersed linear polarised Alfvén waves (DAW) transporting energy downward to the ionosphere guided by the magnetic field lines. These waves are therefore an important aspect for the energy transport for the auroral processes leading to particle acceleration when dissipating part or all their energy along the propagation path by wave-particle coupling, causing ion heating, suprathermal electron bursts and higher frequency ion-mode waves and possibly also electric potential structures. Intermittent auroral arc features have been observed embedded in a larger region of broadband emissions. The multi-spacecraft measurements by CLUSTER here show the temporal development of sharp density gradients and intensified broadband waves together with the formation of electric potential structures and particle acceleration within the larger scale density cavity.

  13. Altitude Dependent Auroral Ion Diffusion Coefficients

    NASA Astrophysics Data System (ADS)

    Ludlow, G. R.

    2011-12-01

    Simultaneous upgoing auroral H+ and O+ ion beams generate ion acoustic waves which have both parallel and oblique wave vectors with respect to the ambient magnetic field. A parallel mode is investigated with phase velocity UO + CO in the direction of beam propagation, where UO is the oxygen beam velocity and CO is the oxygen ion sound speed. Due to the mass difference, this mode preferentially resonates with the oxygen beam through the n = 1 cyclotron resonance, causing O+ ions to diffuse in a direction that is primarily perpendicular to the background magnetic field. The Landau resonance (n = 0) is very narrow in parallel velocity and does not interact with either ion beam. In one case study the parallel acoustic mode begins to resonate with O+ ions within the auroral acceleration region and this resonant region in velocity space sweeps through the entire O+ beam as it moves into weaker magnetic field regions. The O+ quasilinear diffusion coefficients are examined during this process. Perpendicular diffusion becomes significant when the parallel resonant velocity is close to the parallel group velocity of the waves. This selects regions of velocity space where perpendicular diffusion is maximum which occurs at the leading edge of the resonant region as it sweeps through the O+ beam. In k - space these resonant velocities correspond to the regions of peak growth rate. The relevance of this work to the selective energization of heavy auroral ion beams will be discussed.

  14. Investigation of electrical currents in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.

    1978-01-01

    Two papers are presented on the investigation of electrical currents in the auroral ionosphere: (1) The Relationship Between Field-Aligned Current Carried by Suprathermal Electrons, and the Auroral Arc; and (2) Ionospheric Electrical Currents in the Late Evening Plasma Flow Reversal. In the first paper (1), data from four auroral sounding rockets, which directly measured field-aligned currents with partical detectors, are presented. In the second paper (2), data are presented for an instrumented sounding rocket that was launched from Andoya, Norway in January 1977, in the late evening auroral oval.

  15. Nightside auroral zone and polar cap ion outflow as a function of substorm size and phase

    NASA Astrophysics Data System (ADS)

    Wilson, G. R.; Ober, D. M.; Germany, G. A.; Lund, E. J.

    2004-02-01

    Because the high latitude ionosphere is an important source of plasma for the magnetosphere under active conditions, we have undertaken a study of the way ion outflow from the nightside auroral zone and polar cap respond to substorm activity. We have combined data from the Ultraviolet Imager (UVI) on Polar with ion upflow measurements from the TEAMS instrument on the FAST spacecraft to construct a picture of ion upflow from these regions as a function of substorm size and as a function of time relative to substorm onset. We use data taken during solar minimum in the northern hemisphere between December 1996 and February 1997. We find that the total nightside auroral zone ion outflow rate (averaged over substorm phase) depends on the size of the substorm, increasing by about a factor of 10 for both O+ and H+ from the smallest to the largest substorms in our study. The combined outflow rate from both the polar cap and the nightside auroral zone goes up by a factor of 7 for both ions for the same change in conditions. Regardless of storm size, the nightside auroral zone outflow rate increases by about a factor of 2 after onset, reaching its peak level after about 20 min. These results indicate that the change in the nightside auroral zone ion outflow rate that accompanies substorm onset is not as significant as the change from low to high magnetic activity. As a consequence, the prompt increase in the near earth plasma sheet energy density of O+ and H+ ions that accompanies onset [, 1996] is likely due to local energization of ions already present rather than to the sudden arrival and energization of fresh ionospheric plasma.

  16. Study of sub-auroral radio emissions observed by ICE experiment onboard DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Mogilevski, M. M.; Sawas, S.; Blecki, J.; Berthelier, J. J.; Voller, W.

    2012-04-01

    We report on the terrestrial kilometric and hectometric radio emissions recorded by the DEMETER/ICE (Instrument Champ Electrique) experiment. This instrument measures the electric field components of electromagnetic and electrostatic waves in the frequency range from DC to 3.25 MHz. Despite the limited satellite invariant latitude (data acquisition below about 65°), specific events have been observed, close to the sub-auroral region, in the frequency range from 100 kHz to about 1 MHz. This range covers the well-known auroral kilometric radiation (AKR), the terrestrial kilometric continuum, and the sub-auroral terrestrial emission at higher frequency up to 3 MHz. The high spectral capability of the experiment leads us to distinguish between the bursty and the continuum emissions. Selected events have been found to principally occur in the late evening and early morning sectors of the magnetosphere (22 MLT - 02 MLT) but others have been observed on the dayside. Our first results are compared to previous radio observations performed on board INTERBALL-1 (Kuril'chik et al, Cosmic Research, 43, 2005) and GEOTAIL (Hashimoto et al., JGR, 104, 1999) satellites. We also discuss the common and different features of the Earth and Jovian radio emissions. We emphasis on the observational parameters: the occurrence probability, the emission beam and the spectral emission types. We show that the physical interpretation of the auroral phenomena needs a good knowledge of the geometric configuration of the source and observer and the reception system (antenna beam and receivers).

  17. Spectral evidence for stirring scales and two-dimensional turbulence in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Earle, G. D.; Kelley, M. C.

    1993-01-01

    Electric field power spectra from two auroral sounding rocket flights show evidence of a distinct scale size regime for injection of energy into the auroral oval. The signature of this process is a broad plateau in the spectrum, with power law dependences at both shorter and longer scale sizes. We argue that the spectral properties at high k are dominated by processes occurring near the edges of inverted-V electron precipitation regions (auroral arcs). We see no compelling reason to conclude that a linear local plasma instability is occurring but rather, that nonlinear mixing and forward cascade yield the observed velocity field. The spectra of simultaneously observed density irregularities are quite different from those of the electric field, implying that the plasma density does not behave as a passive scalar in the auroral zone during active conditions. At low-k values we show that the rocket spectra are consistent with the power spectra of magnetospheric electric fields measured by the DE, AE-C, and Hilat stallites.

  18. Evidence of auroral plasma cavities at Uranus and Neptune from radio burst observations

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Desch, M. D.; Kaiser, M. L.; Calvert, W.

    1991-01-01

    Radio bursts originating from the stronger magnetic polar regions of both Uranus and Neptune were detected by the planetary radio astronomy experiment during the Voyager 2 encounters with the planets. It has previously been demonstrated that these bursts are beamed into a broad, hollow emission pattern from their auroral sources. It is now shown that the bursts at both planets also manifest similar detailed patterns, with the waves beamed into two separate and distinct radiation cones at intermediate wave frequencies. This double-cone emission pattern is predicted by relativistic cyclotron resonance theory, and application of this theory to the observed emission pattern yields the plasma density structure within the radio source region. Calculations indicate that at both Uranus and Neptune the plasma-to-cyclotron frequency ratio can drop well below 0.01 within the active region. Such low values indicate that the southern auroral zones at both planets contain an auroral plasma cavity that is similar to that found in earth's nightside auroral zone.

  19. A case-study of the evolution of polar-cap currents and auroral electrojets during polar geomagnetic disturbances with IMS magnetometer data

    NASA Technical Reports Server (NTRS)

    Iijima, T.; Kim, J. S.; Sugiura, M.

    1984-01-01

    The development of the polar cap current and the relationship of that development to the evolution of auroral electrojets during individual polar geomagnetic disturbances is studied using 1 min average data from US-Canada IMS network stations and standard magnetograms from sites on the polar cap and in the auroral zone. It is found that even when the auroral electrojet activity is weak, polar cap currents producing fields of magnitude approximately 100-200 nT almost always exist. A normal convection current system exists quasi-persistently in the polar cap during extended quiet or weakly disturbed periods of auroral electrojet activity. After one such period, some drastic changes occur in the polar cap currents, which are followed by phases of growth, expansion, and recovery. Polar cap currents cannot all be completely ascribed to a single source mechanism.

  20. Temporal Development of Auroral Acceleration Potentials: High-Altitude Evolutionary Sequences, Drivers and Consequences

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Wilber, M.; Chaston, C.; Bonnell, J.; Mozer, F.; McFadden, J.; Goldstein, M.; Fillingim, M.

    2007-12-01

    The region above the auroral acceleration region is an integral part of the auroral zone electrodynamic system. At these altitudes (≥ 3 Re) we find the source plasma and fields that determine acceleration processes occurring at lower altitudes, which play a key role in the transport of mass and energy into the ionosphere. Dynamic changes in these high-altitude regions can affect and/or control lower-altitude acceleration processes according to how field-aligned currents and specific plasma sources form and decay and how they are spatially distributed, and through magnetic configuration changes deeper in the magnetotail. Though much progress has been made, the time development and consequential effects of the high-altitude plasma and fields are still not fully understood. We present Cluster multi-point observations at key instances within and above the acceleration region (> 3 RE) of evolving auroral arc current systems. Results are presented from events occurring under different conditions, such as magnetospheric activity, associations with density depletions or gradients, and Alfvenic turbulence. A preliminary survey, primarily at or near the plasma sheet boundary, indicates quasi- static up-down current pair systems are at times associated with density depletions and other instances occur in association with density gradients. The data suggest that such quasi-static current systems may be evolving from structured Alfvenic current systems. We will discuss the temporal development of auroral acceleration potentials, plasma and currents, including quasi-static system formation from turbulent systems of structured Alfvenic field-aligned currents, density depletion and constituent reorganization of the source and ionospheric plasma that transpire in such systems. Of particular emphasis is how temporal changes in magnetospheric source plasma and fields affect the development of auroral acceleration potentials at lower altitudes.

  1. Production of nitrous oxide in the auroral D and E regions

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Prasad, S. S.

    1980-01-01

    A study of nitrous oxide formation mechanisms indicates that N2O concentrations greater than 10 to the 9th per cu cm could be produced in IBC III aurora or by lower-level activity lasting for many hours, and, in favorable conditions, the N2O concentration could exceed the local nitric oxide density. An upper limit on the globally averaged N2O production rate from auroral activity is estimated at 2 x 10 to the 27th per second.

  2. Midnight Sector Observations of Auroral Omega Bands

    NASA Astrophysics Data System (ADS)

    Wild, J. A.; Woodfield, E. E.; Donovan, E. F.; Fear, R. C.; Grocott, A.; Lester, M.; Fazakerley, A. N.; Lucek, E. A.; Kadokura, A.; Hosokawa, K.; Carlson, C. W.; McFadden, J. P.; Glassmeier, K.; Angelopoulos, V.; Björnsson, G.

    2010-12-01

    We present observations of auroral omega bands on 28 September 2009. Although generally associated with the substorm recovery phase and typically observed in the morning sector, the omega bands presented here occurred just after expansion phase onset and were observed in the midnight sector, immediately dawnward of the onset region. The Tjörnes “Rainbow” all-sky imager, located in north-eastern Iceland, revealed that the omega bands were ˜200 km in scale and propagated eastward from the onset region at ˜0.4 km/s while a co-located ground magnetometer recorded the simultaneous passage of Ps 6 pulsations. Although somewhat smaller and slower-moving than the majority of previously reported omega bands, the observed structures were clear examples of this phenomenon, albeit in an atypical location and much earlier in the substorm cycle than is usual. During the study interval the THEMIS A and C probes provided detailed measurements of the upstream interplanetary environment while the Cluster spacecraft were located in the tail plasma sheet conjugate to the ground-based all-sky imager. Cluster observed pulsed fluxes of electrons moving parallel to the magnetic field towards the northern hemisphere auroral ionosphere. Despite mapping uncertainties, there is some suggestion that keV electron fluxes in the tail were related to the auroral emissions in the omega bands. We suggest that omega band formation may be linked to expansion phase onset in the midnight sector and that the finite propagation speed through post-midnight and early morning local times may account for the interpretation of omega bands as a morning sector recovery phase phenomenon.

  3. Effect of Energetic Electrons on Quiet Auroral Arc Formation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroki; Ohno, Nobuaki; Sato, Tetsuya

    2010-11-01

    The theory of feedback instability between the magnetosphere and ionosphere is believed as one of the candidate to explain the formation of quiet auroral arc. Then, some magneto-hydro- dynamics simulations showed the arc formation by this macroscopic instability, while the effect of auroral energetic electrons on the arc formation was neglected or given as a macroscopic parameter in these simulations. On the other hand, because of the recent development of particle simulations, auroral energetic electrons are thought to be produced by the super ion-acoustic double layer that should be created by microscopic instability. To make close investigation of auroral arc formation, it is necessary to consider the interaction with microscopic instability. In this paper, we numerically study the effect of energetic electrons on quiet auroral arc formation by means of the Macro-Micro Interlocked simulation.

  4. Electron Precipitation Associated with Small-Scale Auroral Structures

    NASA Astrophysics Data System (ADS)

    Michell, R.; Samara, M.; Grubbs, G. A., II; Hampton, D. L.; Bonnell, J. W.; Ogasawara, K.

    2014-12-01

    We present results from the Ground-to-Rocket Electrons Electrodynamics Correlative Experiment (GREECE) sounding rocket mission, where we combined high-resolution ground-based auroral imaging with high time-resolution precipitating electron measurements. The GREECE payload successfully launched from Poker Flat, Alaska on 03 March 2014 and reached an apogee of approximately 335 km. The narrow field-of-view auroral imaging was taken from Venetie, AK, which is directly under apogee. This enabled the small-scale auroral features at the magnetic footpoint of the rocket payload to be imaged in detail. The electron precipitation was measured with the Acute Precipitating Electron Spectrometer (APES) onboard the payload. Features in the electron data are matched up with their corresponding auroral structures and boundaries, enabling measurement of the exact electron distributions responsible for the specific small-scale auroral features. These electron distributions will then be used to infer what the potential electron acceleration processes were.

  5. The magnetoionic modes and propagation properties of auroral radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, Wynne; Hashimoto, Kozo

    1990-01-01

    The nature of the magnetoionic wave modes which accompany the aurora is clarified here by a detailed analysis, using multiple techniques, of DE 1 auroral radio observations. All four of the possible magnetoionic wave modes are found to occur, apparently emitted from two different source regions on the same auroral field line. AKR originates primarily in the X mode near the electron cyclotron frequency, and is frequently also accompanied by a weaker O-mode component from the same location. The next most prominent auroral emission is the W-mode auroral hiss originating from altitudes always well below the DE 1 satellite at frequencies below the local cyclotron frequency. The previously reported Z-mode auroral radiation was also detected, but from sources also below the satellite at the poleward edge of the cavity, and not from the expected AKR source at the cyclotron frequency.

  6. Double layers on auroral field lines

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Lotko, W.; Witt, E.

    1982-01-01

    Time-stationary solutions to the Vlasov-Poisson equation for ion holes and double layers were examined along with particle simulations which pertain to recent observations of small amplitude (e phi)/t sub e approx. 1 electric field structures on auroral field lines. Both the time-stationary analysis and the simulations suggest that double layers evolve from holes in ion phase space when their amplitude reaches (e phi)/t sub e approx. 1. Multiple small amplitude double layers which are seen in long simulation systems and are seen to propagate past spacecraft may account for the acceleration of plasma sheet electrons to produce the discrete aurora.

  7. Atmospheric spreading of protons in auroral arcs

    NASA Technical Reports Server (NTRS)

    Iglesias, G. E.; Vondrak, R. R.

    1974-01-01

    A model is developed to calculate the effect of atmospheric spreading on the flux and angular distribution of protons in homogeneous auroral arcs. An expression is derived that indicates the angular distribution in the atmosphere as a function of distance from arc center, neutral scale height, arc width, and initial angular distribution. The results of the model agree favorably with those based on Monte-Carlo calculations. From these results the enhancement factors needed to compute the original proton current above the atmosphere are obtained. A technique is indicated for determining the incident angular distribution from rocket-based measurements of the arc width and angular distribution.

  8. Local Geomagnetic Indices and the Prediction of Auroral Power

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Gjerloev, J. W.

    2014-12-01

    As the number of magnetometer stations and data processing power increases, just how auroral power relates to geomagnetic observations becomes a quantitatively more tractable question. This paper compares Polar UVI auroral power observations during 1997 with a variety of geomagnetic indices. Local time (LT) versions of the SuperMAG auroral electojet (SME) are introduced and examined, along with the corresponding upper and lower envelopes (SMU and SML). Also, the East-West component, BE, is investigated. We also consider whether using any of the local indices is actually better at predicting local auroral power than a single global index. Each index is separated into 24 LT indices based on a sliding 3-h MLT window. The ability to predict - or better reconstruct - auroral power varies greatly with LT, peaking at 1900 MLT, where about 75% of the variance (r2) can be predicted at 1-min cadence. The aurora is fairly predictable from 1700 MLT - 0400 MLT, roughly the region in which substorms occur. Auroral power is poorly predicted from auroral electrojet indices from 0500 MLT - 1500 MLT, with the minima at 1000-1300 MLT. In the region of high predictability, the local variable which works best is BE, in contrast to long-standing expectations. However using global SME is better than any local variable. Auroral power is best predicted by combining global SME with a local index: BE from 1500-0200 MLT, and either SMU or SML from 0300-1400 MLT. In the region of the diffuse aurora, it is better to use a 30 min average than the cotemporaneous 1-min SME value, while from 1500-0200 MLT the cotemporaneous 1-min SME works best, suggesting a more direct physical relationship with the auroral circuit. These results suggest a significant role for discrete auroral currents closing locally with Pedersen currents.

  9. Clean Coal Program Research Activities

    SciTech Connect

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  10. Matching software practitioner needs to researcher activities

    NASA Technical Reports Server (NTRS)

    Feather, M. S.; Menzies, T.; Connelly, J. R.

    2003-01-01

    We present an approach to matching software practitioners' needs to software researchers' activities. It uses an accepted taxonomical software classfication scheme as intermediary, in terms of which practitioners express needs, and researchers express activities.

  11. Geotail Measurements Compared with the Motions of High-Latitude Auroral Boundaries during Two Substorms

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Burke, W. J.; Erickson, G. M.; Nakamura, M.; Mukai, T.; Kokubun, S.; Yamamoto, T.; Jacobsen, B.; Egeland, A.; Samson, J. C.; Weimer, D. R.; Reeves, G. D.; Luhr, H.

    1997-01-01

    Geotail plasma and field measurements at -95 R(sub E) are compared with extensive ground-based, near-Earth, and geosynchronous measurements to study relationships between auroral activity and magnetotail dynamics during the expansion phases of two substorms. The studied intervals are representative of intermittent, moderate activity. The behavior of the aurora and the observed effects at Geotail for both events are harmonized by the concept of the activation of near-Earth X lines (NEXL) after substorm onsets, with subsequent discharges of one or more plasmoids down the magnetotail. The plasmoids must be viewed as three-dimensional structures which are spatially limited in the dawn-dusk direction. Also, reconnection at the NEXL must proceed at variable rates on closed magnetic field lines for significant times before beginning to reconnect lobe flux. This implies that the plasma sheet in the near-Earth magnetotail is relatively thick in comparison with an embedded current sheet and that both the NEXL and distant X line can be active simultaneously. Until reconnection at the NEXL engages lobe flux, the distant X line maintains control of the poleward auroral boundary. If the NEXL remains active after reaching the lobe, the auroral boundary can move poleward explosively. The dynamics of high-latitude aurora in the midnight region thus provides a means for monitoring these processes and indicating when significant lobe flux reconnects at the NEXL.

  12. E and F region study of the evening sector auroral oval - A Chatanika/Dynamics Explorer 2/NOAA 6 comparison

    NASA Technical Reports Server (NTRS)

    Senior, C.; Sharber, J. R.; Winningham, J. D.; De La Beaujardiere, O.; Heelis, R. A.; Evans, D. S.; Sugiura, M.; Hoegy, W. R.

    1987-01-01

    Simultaneous data from the Chatanika radar and the DE 2 and NOAA 6 satellites are used to study the typical behavior of the winter evening-sector auroral plasma during moderate and steady magnetic activity. The equatorward edge of the auroral E layer, of the region 2 field-aligned currents, and of the region of intense convection are colocated. The auroral E layer extends several degrees south of the equatorward edge of the keV electron precipitation from the CPS. Although the main trough and ionization channel are embedded in a region of intense electric field where the plasma flows sunward at high speed, the flux tubes associated with these two features have different time histories. The midlatitude trough is located south of the region of electron precipitation, above a proton aurora. The ionization channel marks the poleward edge of the main trough and is colocated with the equatorward boundary of the electron precipitation from the central plasma sheet.

  13. Auroral weak double layers: A critical assessment

    NASA Astrophysics Data System (ADS)

    Koskinen, Hannu E. J.; Mälkki, Anssi M.

    Weak double layers (WDLs) were first observed in the mid-altitude auroral magnetosphere in 1976 by the S3-3 satellite. The observations were confirmed by Viking in 1986, when more detailed information of these small-scale plasma structures became available. WDLs are upward moving rarefactive solitary structures with negative electric potential. The potential drop over a WDL is typically 0-1 V with electric field pointing predominantly upward. The structures are usually found in relatively weak (≤2 kV) auroral acceleration regions where the field-aligned current is upward, but sometimes very small. The observations suggest that WDLs exist in regions of cool electron and ion background. Most likely the potential structures are embedded in the background ion population that may drift slowly upward. There have been several attempts for plasma physical explanation of WDLs but so far the success has not been very good. Computer simulations have been able to produce similar structures, but usually for somewhat unrealistic plasma parameters. A satisfactory understanding of the phenomenon requires consideration of the role of WDLs in the magnetosphere-ionosphere (MI) coupling, including the large-scale electric fields, both parallel and perpendicular to the magnetic field, and the Alfvén waves mediating the coupling. In this report we give a critical review of our present understanding of WDLs. We try to find out what can be safely deduced from the observations, what are just educated guesses, and where we may go wrong.

  14. DMSP Spacecraft Charging in Auroral Environments

    NASA Technical Reports Server (NTRS)

    Colson, Andrew; Minow, Joseph

    2011-01-01

    The Defense Meteorological Satellite Program (DMSP) spacecraft are a series of low-earth orbit (LEO) satellites whose mission is to observe the space environment using the precipitating energetic particle spectrometer (SSJ/4-5). DMSP satellites fly in a geosynchronous orbit at approx.840 km altitude which passes through Earth s ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. For satellites in LEO, such as DMSP, the plasma density is usually high and the main contributors to the currents to the spacecraft are the precipitating auroral electrons and ions from the magnetosphere as well as the cold plasma that constitutes the ionosphere. It is important to understand how the ionosphere and auroral electrons can accumulate surface charges on satellites because spacecraft charging has been the cause of a number of significant anomalies for on-board instrumentation on high altitude spacecraft. These range from limiting the sensitivity of measurements to instrument malfunction depending on the magnitude of the potential difference over the spacecraft surface. Interactive Data Language (IDL) software was developed to process SSJ/4-5 electron and ion data and to create a spectrogram of the particles number and energy fluxes. The purpose of this study is to identify DMSP spacecraft charging events and to present a preliminary statistical analysis. Nomenclature

  15. Numerical investigation of auroral cyclotron maser processes

    SciTech Connect

    Speirs, D. C.; Ronald, K.; McConville, S. L.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Bingham, R.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2010-05-15

    When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of auroral kilometric radiation--an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. Particle-in-cell code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared with waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68 GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.

  16. ISIS-II Scanning Auroral Photometer.

    PubMed

    Anger, C D; Fancott, T; McNally, J; Kerr, H S

    1973-08-01

    The ISIS-II dual wavelength scanning auroral photometer is designed to map the distribution of auroral emissions at 5577 A and 3914 A over the portion of the dark earth visible to the spacecraft. A combination of internal electronic scanning and the natural orbital and rotational motions of the spacecraft causes a dual wavelength photometer to be scanned systematically across the earth. The data will be reproduced directly in the form of separate pictures representing emissions at each wavelength, which will be used to study the large-scale distribution and morphology of auroras, to study the ratio of 3914-A and 5577-A emissions thought to depend upon the energies of exciting particles), and to compare with results from other instruments on board the spacecraft and on the ground. The Red Line Photometer experiment on the same spacecraft is described in an accompanying paper by Shepherd et al. [Appl. Opt. 12, 1767 (1973)]. The instrument can be thought of as the photometric equivalent of an all-sky color camera which will view the aurora from above instead of below and with a much wider vantage point unobstructed by cloud and haze. In one satellite pass, the instrument will be capable of surveying (in one hemisphere) the entire polar region in which auroras normally occur. PMID:20125605

  17. Cluster in the Auroral Acceleration Region

    NASA Technical Reports Server (NTRS)

    Pickett, Jolene S.; Fazakerley, Andrew N.; Marklund, Gorun; Dandouras, Iannis; Christopher, Ivar W.; Kistler, Lynn; Lucek, Elizabeth; Masson, Arnaud; Taylor, Matthew G.; Mutel, Robert L.; Santolik, Ondrej; Bell, Timothy F.; Fung, Shing; Pottelette, Raymond; Hanasz, Jan; Schreiber, Roman; Hull, Arthur J.

    2010-01-01

    Due to a fortuitous evolution of the Cluster orbit, the Cluster spacecraft penetrated for the first time in its mission the heart of Earth's auroral acceleration region (AAR) in December 2009 and January 2010. During this time a special AAR campaign was carried out by the various Cluster instrument teams with special support from ESA and NASA facilities. We present some of the first multi-spacecraft observations of the waves, particles and fields made during that campaign. The Cluster spacecraft configuration during these AAR passages was such that it allowed us to explore the differences in the signatures of waves, particles, and fields on the various spacecraft in ways not possible with single spacecraft. For example, one spacecraft was more poleward than the other three (C2), one was at higher altitude (C1), and one of them (0) followed another (C4) through the AAR on approximately the same track but delayed by three minutes. Their separations were generally on the order of a few thousand km or less and occasionally two of them were lying along the same magnetic field line. We will show some of the first analyses of the data obtained during the AAR campaign, where upward and downward current regions, and the waves specifically associated with those regions, as well as the auroral cavities, were observed similarly and differently on the various spacecraft, helping us to explore the spatial, as well as the temporal, aspects of processes occurring in the AAR.

  18. Auroral precipitation and descent of thermospheric NO

    NASA Astrophysics Data System (ADS)

    Kühl, Sven; Espy, Patrick; Hibbins, Robert; Paxton, Larry; Funke, Bernd

    2016-07-01

    Energetic particle precipitation in Auroras (E <20 keV) produces nitric oxide (NO) in the upper meso- and lower thermosphere region (UMLT). The subsequent descent of the NO produced in the UMLT to the lower meso- and upper stratosphere is referred to as the energetic particle precipitation indirect effect (EPP IE). The downwelling of NO produced in Auroras alters the chemistry of the mesosphere and upper stratosphere (e.g. by the NOx cycle) and possibly has important effects also on its dynamics. By observations of auroral precipitation from SSUSI(DMSP) and measurements of NO from MIPAS(ENVISAT) and SMR(ODIN) we investigate the quantitative relation of the electron fluxes and characteristic energies of auroral precipitation to the NO produced in the lower thermosphere and the subsequent downwelling of NO. Using additional ground-based (e.g. Meteor Radar, Microwave Radiometer) and satellite observations (SOFIE) we attempt to quantify the EPP IE and its impact on atmospheric chemistry and dynamics.

  19. ISIS-II Scanning Auroral Photometer.

    PubMed

    Anger, C D; Fancott, T; McNally, J; Kerr, H S

    1973-08-01

    The ISIS-II dual wavelength scanning auroral photometer is designed to map the distribution of auroral emissions at 5577 A and 3914 A over the portion of the dark earth visible to the spacecraft. A combination of internal electronic scanning and the natural orbital and rotational motions of the spacecraft causes a dual wavelength photometer to be scanned systematically across the earth. The data will be reproduced directly in the form of separate pictures representing emissions at each wavelength, which will be used to study the large-scale distribution and morphology of auroras, to study the ratio of 3914-A and 5577-A emissions thought to depend upon the energies of exciting particles), and to compare with results from other instruments on board the spacecraft and on the ground. The Red Line Photometer experiment on the same spacecraft is described in an accompanying paper by Shepherd et al. [Appl. Opt. 12, 1767 (1973)]. The instrument can be thought of as the photometric equivalent of an all-sky color camera which will view the aurora from above instead of below and with a much wider vantage point unobstructed by cloud and haze. In one satellite pass, the instrument will be capable of surveying (in one hemisphere) the entire polar region in which auroras normally occur.

  20. Unusual rainbow and white rainbow: A new auroral candidate in oriental historical sources

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hisashi; Isobe, Hiroaki; Davis Kawamura, Akito; Tamazawa, Harufumi; Miyahara, Hiroko; Kataoka, Ryuho

    2016-06-01

    Solar activity has been recorded as auroras or sunspots in various historical sources. These records are of great importance for investigating both long-term solar activities and extremely intense solar flares. According to previous studies, they were recorded as "vapor," "cloud," or "light," especially in oriental historical sources; however, this terminology has not been discussed adequately, and remains still quite vague. In this paper, we suggest the possibility of using "unusual rainbow" and "white rainbow" as candidates of historical auroras in oriental historical sources, and examine if this is probable. This discovery will help us to make more comprehensive historical auroral catalogues, and require us to add these terms to auroral candidates in oriental historical sources.

  1. On a possible connection between the longitudinally propagating near-Earth plasma sheet and auroral arc waves: A reexamination

    NASA Astrophysics Data System (ADS)

    Motoba, T.; Ohtani, S.; Donovan, E. F.; Angelopoulos, V.

    2015-01-01

    propagating low-frequency waves (or wavy structures) often occur in a localized region of the near-Earth plasma sheet and auroral arc immediately prior to auroral breakup. Although both are believed to be magnetospheric and ionospheric manifestations of a plasma sheet instability that may lead to substorm onset, the fundamental coupling processes behind their relationship are not yet understood. To address this question, we reexamined in detail a fortuitous conjunction event of prebreakup near-Earth plasma sheet and auroral arc waves, initially reported by Uritsky et al. (2009) using the Time History of Events and Macroscale Interactions during Substorms space-ground observations. The event exhibited a morphological one-to-one association between longitudinally propagating arc wave (LPAW) in the ionosphere and Pi2/Pc4 range wave activity in the plasma sheet. Our analysis revealed that (1) the LPAW was the periodic luminosity modulation of the growth phase arc by faint, diffuse, green line-dominated auroral patches propagating westward along/near the arc, rather than some type of small-scale arc structuring, such as auroral beads/rays/undulations; and (2) the plasma sheet wave, which had a diamagnetic nature, propagated duskward with accompanying coincident modulation of field-aligned fluxes of 0.1-30 keV electrons. These findings suggest that the LPAW was likely connected to the plasma sheet wave via modulated diffuse precipitation of hard plasma sheet electrons (> ~1 keV), not via filamentary field-aligned currents, as expected from the ballooning instability regime. Another potential implication is that such prebreakup low-frequency wave activity in the near-Earth plasma sheet is not necessarily guaranteed to initiate prebreakup auroral arc structuring.

  2. Relating practitioner needs to research activities

    NASA Technical Reports Server (NTRS)

    Feather, M. S.; Menzies, T.; Connelly, J. R.

    2003-01-01

    We present an approach to matching needs (practioner requirements) to solutions (researcher activities). A taxonomical classification scheme acts as intermediary between needs and activities. Expert practitioners exprss their needs in terms of this taxonomy. Researchers express their activities in the same terms. A decision support tool is used to assist in the combination and study of their expressions of needs and activities.

  3. A Survey of Electron Beams Associated With Saturnian Auroral Hiss

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Gurnett, D. A.; Hospodarsky, G. B.; Kurth, W. S.; Menietti, J. D.; Dougherty, M.; Mitchell, D. G.; Leisner, J. S.; Khurana, K. K.; Grimald, S.; Arridge, C. S.; Schippers, P.; Andre, N.; Coates, A. J.; Santolik, O.

    2009-12-01

    Over the last three years, the Cassini spacecraft underwent a series of high inclination orbits, allowing investigation and measurements of the Saturnian auroral zone. The Radio and Plasma Wave Science (RPWS) Investigation has detected low frequency funnel-shaped whistler mode emissions along the auroral field lines, much like the auroral hiss observed at Earth. The poleward and equatorward flaring of the auroral hiss funnel on the frequency-time spectrogram is the result of whistler mode waves propagating upward into a region of diminishing plasma density. These detections are important in understanding the auroral processes occurring at Saturn. Recent efforts have focused on integrating RPWS data with that from other instruments, particularly from the CAPS-ELS investigation. Electron beams are known to be the source of auroral hiss emission at Earth, and it is generally believed the same is true at Saturn. Current work has focused on correlating these beams with the observed radio emission, along with modeling the beams to calculate their growth rates. One electron beam has already been analyzed from the high-latitude pass on October 17, 2008. This beam was determined to be propagating upward from Saturn, and has been found to produce a large whistler-mode growth rate, which fits with the auroral hiss model. More electron beams will be analyzed in this fashion over the coming months. These results will be the focus of this presentation.

  4. Lockheed Palo Alto Research Laboratory contribution to the 1973 United States report to COSPAR

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Research progress in particles and fields is summarized, including studies on auroral helium ions and protons, auroral electrons, and OGO-5 data analysis on magnetosphere. Upper atmospheric physics and solar and stellar astronomy are also considered.

  5. Dark auroral oval on saturn discovered in hubble space telescope ultraviolet images.

    PubMed

    Jaffel, L B; Leers, V; Sandel, B R

    1995-08-18

    Hubble Space Telescope ultraviolet images of Saturn obtained with the Faint Object Camera near 220 nanometers reveal a dark oval encircling the north magnetic pole of the planet. The opacity has an equivalent width of approximately 11 degrees in latitude and is centered around approximately 79 degrees N. The oval shape of the dark structure and its coincidence with the aurora detected by the Voyager Ultraviolet Spectrometer suggest that the aerosol formation is related to the auroral activity.

  6. Near-IR Auroral Processes in the Polar Regions of Jupiter

    NASA Astrophysics Data System (ADS)

    Kim, S. J.

    2011-10-01

    Recently, 3 micron auroral emission lines of CH4, C2H2, and C2H6 from the south polar auroral region of Jupiter were detected [1]. In order to understand the auroral processes producing these emissions, we constructed an electron precipitation model for the auroral atmosphere including H2, He, H, and the hydrocarbon molecules. We present preliminary results for the mixing ratios of these molecules in the stratosphere, which are consistent with the observed auroral emission intensities.

  7. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements

    SciTech Connect

    Newell, P.T.; Meng, C.I. ); Huffman, R.E. )

    1992-08-01

    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. The authors compare particle observations from the DMSP F7 satellite during dayside auroral oval crossings with approximately simultaneous Polar BEAR 1,356-{angstrom} images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the Defense Meteorological Satellite Program (DMSP) particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1,000 MLT. The authors found instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle. However, the results indicate that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here.

  8. OCLC Research: 2012 Activity Report

    ERIC Educational Resources Information Center

    OCLC Online Computer Library Center, Inc., 2013

    2013-01-01

    The mission of the Online Computer Library Center (OCLC) Research is to expand knowledge that advances OCLC's public purposes of furthering access to the world's information and reducing library costs. OCLC Research is dedicated to three roles: (1)To act as a community resource for shared research and development (R&D); (2) To provide advanced…

  9. Correlated pulsations in auroral light intensity and VLF hiss

    NASA Astrophysics Data System (ADS)

    Duthie, D. D.; Rash, J. P. S.; Scourfield, M. W. J.

    1985-12-01

    Observations at Sanae, Antarctica of a pulsating aurora with a low light level TV system have been combined with simultaneous recordings of VLF hiss on a broad band receiver. Both auroral light and hiss intensities display a significant peak at 1.3 Hz in the power spectrum. The peaks in the auroral light intensity variations lead those in the VLF hiss by times between zero and 0.2 s, as revealed by cross-spectral analysis. These results are explained in terms of cyclotron resonance in the equatorial plane between the auroral electrons and echoing VLF hiss.

  10. Thermospheric tides at equinox: Simulations with coupled composition and auroral forcings. 1. Diurnal component

    SciTech Connect

    Fesen, C.G. ); Roble, R.G.; Ridley, E.C. )

    1991-03-01

    Thermospheric tidal components calculated by the National Center for Atmospheric Research thermospheric general circulation model have been revised by including the effects of self-consistent composition couplings and auroral processes. Calculations are presented for equinox conditions at solar cycle minimum and maximum. The diurnal neutral winds and perturbation temperatures predicted by the model are compared with radar observations and the MSIS-86 model at low, mid, and high latitudes. Sensitivity tests indicate that the feedback between composition and dynamics affects the diurnal tidal temperature amplitudes up to 50% and the diurnal winds by about 15%. The calculated phases are within an hour of uncoupled composition calculations. Auroral processes dominate the diurnal waves at high latitudes, where the wind amplitudes may be double or triple those calculated for solar forcing only. The high-latitude energy and momentum sources must be included in the model formulations in order to reproduce observations of the September 1984 Equinox Transition Study exospheric temperatures.

  11. Auroral observations in the Antarctic at the time of the Tunguska event, 1908 June 30.

    NASA Astrophysics Data System (ADS)

    Steel, D.; Ferguson, R.

    1993-03-01

    The original notebooks of Sir Douglas Mawson containing observations of the aurora australis by members of the British Antarctic Expedition at the time of the Tunguska explosion over Siberia on 1908 June 30 have been inspected, and it is found that, contrary to some suggestions which note that geomagnetic transients were witnessed elsewhere, and that the BAE was in winter quarters close to the south magnetic pole at the time, no exceptional auroral activity was seen which might have provided useful information on a planet-wide disturbance at the time of the event. However, an exceptional aurora was seen about seven hours prior to the explosion, and it is suggested that this may have been due to an anti-solar comet-like ion tail producing that auroral display whilst the impactor was still far from Earth.

  12. Intensity of the auroral electrojets during a recovery phase of magnetic storm

    NASA Astrophysics Data System (ADS)

    Boroyev, R. N.

    2016-06-01

    In this work, the effect of solar wind velocity on the development of magnetospheric and ionospheric disturbances is studied. It is shown that at high velocity of the solar wind during a recovery phase of magnetic storm the strong auroral activity characterized by the AE index is observed. In some cases during a recovery phase of magnetic storm the value of AE index is practically comparable with the value of AE index observed during the main phase of magnetic storm. When comparing time intervals of two magnetic storms during which the values of solar wind electric fields are approximately equal to each other, it is found that auroral electrojet intensity is stronger in that storm in which the solar wind velocity is higher.

  13. Observations of the auroral hectometric radio emission onboard the INTERBALL-1 satellite

    NASA Astrophysics Data System (ADS)

    Kuril'Chik, V. N.

    2007-06-01

    The results of five-year (1995 2000) continuous observations of the auroral radio emission (ARE) in the hectometric wavelength range on the high-apogee INTERBALL-1 satellite are presented. Short intense bursts of the auroral hectometric radio emission (AHR) were observed at frequencies of 1463 and 1501 kHz. The bursts were observed predominantly at times when the terrestrial magnetosphere was undisturbed (in the quiet Sun period), and their number decreased rapidly with increasing solar activity. The bursts demonstrated seasonal dependence in the Northern and Southern hemispheres (dominating in the autumn-winter period). Their appearance probably depends on the observation time (UT). A qualitative explanation of the AHR peculiarities is given.

  14. Semantic Support Environment for Research Activity

    ERIC Educational Resources Information Center

    Ismail, Maizatul Akmar; Yaacob, Mashkuri; Kareem, Sameem Abdul

    2008-01-01

    Scholarly activities are a collection of academic related activities such as research, teaching and consultation work which result in research outputs such as journals, theses and articles in proceedings. The output will then be disseminated to researchers all over the world by means of the WWW. The four pillars of this scholarship i.e. discovery,…

  15. Global Auroral Energy Deposition Compared with Magnetic Indices

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Fillingim, M. O.; Elsen, R.; Parks, G. K.; Germany, G. A.; Spann, J. F., Jr.

    1997-01-01

    Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. in this session. Magnetic indices, such as Kp, AE, and Dst, which are sensitive to variations in magnetospheric current systems have been constructed from ground magnetometer measurements and employed as measures of activity. The systematic study of global energy deposition raises the possibility of constructing a global magnetospheric activity index explicitly based on particle precipitation to supplement magnetic indices derived from ground magnetometer measurements. The relationship between global magnetic activity as measured by these indices and the rate of total global energy loss due to precipitation is not known at present. We study the correlation of the traditional magnetic index of Kp for the month of January 1997 with the energy deposition derived from the UVI images. We address the question of whether the energy deposition through particle precipitation generally matches the Kp and AE indices, or the more exciting, but distinct, possibility that this particle-derived index may provide an somewhat independent measure of global magnetospheric activity that could supplement traditional magnetically-based activity indices.

  16. Auroral spectrum between 1200 and 4000 angstroms.

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Rees, M. H.

    1972-01-01

    Results of spectroscopic observations of an auroral event made simultaneously by airborne and satellite-borne scanning spectrometers in the wavelength region between 1200 and 4000 A. Photon emission rates of several vibrational bands of the N2, 2nd positive, Vegard-Kaplan, and Lyman-Birge-Hopfield systems, the N I lines at 1200 and 3466 A, and O I lines at 1304, 1356, and 2972 A were recorded. Model calculations of the emission rates of the observed features are found to be in reasonable agreement with the measurements. Electron impact excites the nitrogen band systems, as well as the O I 1356-A line. A spectral feature at 2150 A is tentatively identified as the (1, 0) gamma band of N O.

  17. An anomalous component of Neptune radio emission - Implications for the auroral zone

    NASA Astrophysics Data System (ADS)

    Desch, M. D.; Farrell, W. M.; Kaiser, M. L.

    1991-02-01

    The Voyager planetary radio astronomy experiment detected a bursty, narrow-band radio emission originating in Neptune's magnetosphere. The time of occurrence of nearly all of the episodes of this bursty radio emission can be explained on the basis of a radio source located just above and to the east of the south magnetic offset tilted dipole (OTD) tip (Farrell et al., 1990). However, several episodes of bursty emission do not occur at the usual frequency and planetaray rotation phase for emissions of this type. The occurrences of these rarely seen anomalous episodes are shifted systematically in planetary longitude so as to be consistent with a source of emission to the southwest of the southern magnetic OTD pole. Owing to the proximity of these sources to the magnetic polar region, they are associated with an active auroral region. Therefore, at least from the standpoint of the radio emission, the picture that emerges is of an auroral zone with two emission hot spots approximately diametrically east and west of the south magnetic pole. The possibility of a complete radio-active auroral oval is discussed.

  18. Propagation of a westward traveling surge and the development of persistent auroral features

    SciTech Connect

    Craven, J.D.; Frank, L.A.; Akasofu, S.I.

    1989-01-01

    Imaging instrumentation on board the spacecraft Dynamics Explorer 1 (DE 1) is used to observe the large-scale motion of a surge over 7000 km along the auroral oval from near local midnight. Average speed of the surge is 2.2 km/s. Ground-based observations at Fort Yukon, Alaska, show the classical looped, multiple-arc structure of a westward traveling surge as it passes overhead. Within the 6-min temporal resolution provide with DE 1, the surge advances initially at a speed of about 8 km.s followed by a steady decline to about 1 km/s over a period of 17 min. This sequence is then repeated a second time, beginning with a significant intensification of the surge form. This intense surge activity is not accompanied by significant auroral activity near magnetic midnight. Following passage of the surge, persistent and localized bright emission regions remain along the auroral oval for several tens of minutes. Average separation distances are approximately 700 km. If these persistent features identify the sites of individual stepwise advances of the surge, the average time per advance is about 5 min.

  19. Supporting Student Research Group Activities.

    ERIC Educational Resources Information Center

    Lopatin, Dennis E.

    1993-01-01

    This discussion describes methods that foster a healthy Student Research Group (SRG) and permits it to fulfill its responsibility in the development of the student researcher. The model used in the discussion is that of the University of Michigan School of Dentistry SRG. (GLR)

  20. Intensification and fading of auroral arcs in the dusk-midnight sector of the polar cap

    SciTech Connect

    Wu, Q.; Rosenberg, T.J. ); Berkey, F.T. ); Eather, R.H. )

    1991-05-01

    Observations of the aurora from South Pole station (magnetic latitude = {minus}74.2{degree}) have been used to study the intensification and fading of polar arcs observed near the dusk meridian. Most of the cases examined have the following features in common: (1) a preexisting auroral form intensifies for about 10 min; (2) this activation is followed by a pronounced decrease of luminosity; (3) the auroral fade terminates after 30-60 min with the onset of intense aurora which sweeps rapidly overhead. The availability of all-sky camera, auroral electrojet (AE) index and interplanetary magnetic field (IMF) data for some of the cases enables the following additional characterizations of these events. The preexisting form is a Sun- or oval-aligned arc (or part of a multiple arc system) which disappears following the activation; equatorward drift of the arc (or system) accompanies the luminosity change. There is some evidence to suggest that the arc is poleward of the auroral oval. The brief intensification and/or the onset of fading occurs during the growth phase or near the start of the expansive phase of a substorm; termination of the fade is near the maximum in AE and is probably indicative of the beginning of the recovery phase of the substorm. For all three cases for which IMF data were available the onset of fading occurred 20-30 min after B{sub z} turned southward. Sun-aligned arcs are a common feature of the polar cap during northward B{sub z} but disappear during the increasingly disturbed conditions that accompany southward B{sub z}. The present results suggest that brief intensifications of southern hemisphere polar cap arcs near dusk may be linked in part to the sunward orientation of the IMF which favors enhanced electron fluxes in the southern lobe of the magnetotail.

  1. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Lester, M.; Parkinson, M. L.; Yeoman, T. K.; Dyson, P. L.; Devlin, J. C.; Frey, H. U.

    2006-12-01

    At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV) instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER) moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003). At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a way which has

  2. A multi-instrument study of auroral hiss at Saturn

    NASA Astrophysics Data System (ADS)

    Kopf, Andrew James

    2010-11-01

    Over the last fifty years, a multitude of spacecraft and rocket experiments have studied plasma wave emissions from Earth's auroral regions. One such emission is auroral hiss, a low-frequency whistler-mode wave that is produced in the auroral zone. Observations from Earth-orbiting spacecraft show that auroral hiss is generated by field-aligned electron beams, with the resulting plasma wave emission propagating along the resonance cone. This propagation results in auroral hiss appearing as a V-shaped funnel when observed on a frequency-time spectrogram. This thesis presents the first comprehensive study of auroral hiss at a planet other than Earth, using the Cassini spacecraft to study auroral hiss at Saturn. NASA's Cassini spacecraft, currently in orbit around Saturn, has allowed for the first opportunity to study this emission in detail at another planet. Since 2006, the Cassini spacecraft has twice been in a series of high inclination orbits, allowing investigation and measurements of Saturnian auroral phenomena. During this time, the Radio and Plasma Wave Science (RPWS) Investigation on Cassini detected low frequency whistler mode emissions propagating upward along the auroral field lines, much like terrestrial auroral hiss. Comparisons of RPWS data with observations from several other Cassini instruments, including the Dual-Technique Magnetometer (MAG), Magnetospheric Imaging Instrument (MIMI), and the Cassini Plasma Spectrometer (CAPS), have revealed a complete picture of this emission at Saturn. Observations from these instruments have been used to make a variety of determinations about auroral hiss at Saturn. RPWS has only observed this emission when Cassini was at high-latitudes, although these observations have shown no preference for local time. Tracking the times this emission has been observed revealed a clear periodicity in the emission. Further study later revealed not one but two rotational modulations, one in each hemisphere, rotating at rates of

  3. Mirror instability and origin of morningside auroral structure

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Fennell, J. F.; Kishi, A. M.

    1983-01-01

    Auroral optical imagery shows marked differences between auroral features of the evening and morning sectors: the separation between diffuse and discrete auroras in the evening sector is not distinct in the morning sector, which is dominated by auroral patches and multiple banded structures aligned along some direction. Plasma distribution function signatures also show marked differences: downward electron beams and inverted-V signatures prefer the evening sector, while the electron spectra on the morning sector are similar to the diffuse aurora. A theory of morningside auroras consistent with these features was constructed. The theory is based on modulation of the growth rates of electron cyclotron waves by the mirror instability, which is in turn driven by inward-convected ions that have become anisotropic. This modulation produces alternating bands of enhanced and reduced electron precipitation which approximate the observed multiple auroral bands and patches of the morning sector.

  4. Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials

    NASA Astrophysics Data System (ADS)

    Cornwall, John M.

    1993-09-01

    This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region, using the adiabatic auroral arc model. With certain simplifying assumptions, new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g., cross-tail potential) and ionospheric (e.g., recombination rate) parameters are found. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. Various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) are given which can be studied with existing data sets.

  5. Field-aligned particle currents near an auroral arc.

    NASA Technical Reports Server (NTRS)

    Choy, L. W.; Arnoldy, R. L.; Potter, W.; Kintner, P.; Cahill, L. J., Jr.

    1971-01-01

    A Nike-Tomahawk rocket equipped to measure electric and magnetic fields and charged particles from a few eV to several hundred keV energy was flown into an auroral band on April 11, 1970. The purpose of this flight was to obtain evidence of the low-energy electrons and protons that constitute a field-aligned sheet current, and also to obtain the magnetic signature of such a current and the electric field in and near the auroral-arc electric current system. Particular attention was given to a sudden increase in the field-aligned current associated with a prior sudden increase in the electric field and a sudden change in the magnetic field, all occurring near the edge of a visual auroral arc. Data obtained are discussed and analyzed; they present an important contribution to the problem of mapping of atmospheric auroral phenomena to the magnetospheric equatorial plane.

  6. Auroral-clutter predictions for Fylingdales, England. Interim report

    SciTech Connect

    Tsunoda, R.T.

    1991-07-01

    Radar clutter produced by auroral processes in the ionospheric E layer, called auroral clutter, can have severe deleterious effects on surveillance radars that operate in the subauroral regions. Auroral clutter characteristics, however, are practically impossible to characterize with a statistical description because of the large number of controlling parameters. Recently, a predictive code called Comprehensive E-Region Auroral Clutter (CERAC) model has been written that used knowledge of the underlying physics and semiempirical data as its basis. This is a description of the predictions of the CERAC model for a surveillance radar located at Fylingdales, England. The results include predictions of occurrence, radar cross section, and Doppler velocity, all as functions of radar elevation, azimuth, range, and time.

  7. Mirror instability and the origin of morningside auroral structure

    SciTech Connect

    Chiu, Y.T.; Schulz, M.; Fennell, J.F.; Kishi, A.M.

    1983-05-01

    Auroral optical imagery shows marked differences between auroral features of the evening and morning sectors: The separation between diffuse and discrete auroras in the evening sector is not distinct in the morning sector, which is dominated by auroral patches and multiple banded structures aligned along some direction. Plasma distribution function signatures also show marked differences: downward electron beams and inverted-V signatures prefer the evening sector, while the electron spectra on the morning sector are similar to the diffuse aurora. We have constructed a theory of morningside auroras consistent with these features. The theory is based on modulation of the growth rates of electron cyclotron waves by the mirror instability, which is in turn driven by inward-convected ions that have become anisotropic. This modulation produces alternating bands of enhanced and reduced electron precipitation which approximate the observed multiple auroral bands and patches of the morning sector.

  8. Auroral magnetosphere-ionosphere coupling: A brief topical review

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Cornwall, J. M.

    1979-01-01

    Auroral arcs result from the acceleration and precipitation of magnetospheric plasma in narrow regions characterized by strong electric fields both perpendicular and parallel to the earth's magnetic field. The various mechanisms that were proposed for the origin of such strong electric fields are often complementary Such mechanisms include: (1) electrostatic double layers; (2) double reverse shock; (3) anomalous resistivity; (4) magnetic mirroring of hot plasma; and (5) mapping of the magnetospheric-convection electric field through an auroral discontinuity.

  9. Networked high-speed auroral observations combined with radar measurements for multi-scale insights

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Semeter, J. L.

    2015-12-01

    Networks of ground-based instruments to study terrestrial aurora for the purpose of analyzing particle precipitation characteristics driving the aurora have been established. Additional funding is pouring into future ground-based auroral observation networks consisting of combinations of tossable, portable, and fixed installation ground-based legacy equipment. Our approach to this problem using the High Speed Tomography (HiST) system combines tightly-synchronized filtered auroral optical observations capturing temporal features of order 10 ms with supporting measurements from incoherent scatter radar (ISR). ISR provides a broader spatial context up to order 100 km laterally on one minute time scales, while our camera field of view (FOV) is chosen to be order 10 km at auroral altitudes in order to capture 100 m scale lateral auroral features. The dual-scale observations of ISR and HiST fine-scale optical observations may be coupled through a physical model using linear basis functions to estimate important ionospheric quantities such as electron number density in 3-D (time, perpendicular and parallel to the geomagnetic field).Field measurements and analysis using HiST and PFISR are presented from experiments conducted at the Poker Flat Research Range in central Alaska. Other multiscale configuration candidates include supplementing networks of all-sky cameras such as THEMIS with co-locations of HiST-like instruments to fuse wide FOV measurements with the fine-scale HiST precipitation characteristic estimates. Candidate models for this coupling include GLOW and TRANSCAR. Future extensions of this work may include incorporating line of sight total electron count estimates from ground-based networks of GPS receivers in a sensor fusion problem.

  10. Problems with mapping the auroral oval and magnetospheric substorms

    NASA Astrophysics Data System (ADS)

    Antonova, E. E.; Vorobjev, V. G.; Kirpichev, I. P.; Yagodkina, O. I.; Stepanova, M. V.

    2015-10-01

    Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.

  11. The source of Jovian auroral hiss observed by Voyager 1

    NASA Technical Reports Server (NTRS)

    Morgan, D. D.; Gurnett, D. A.; Kurth, W. S.; Bagenal, F.

    1994-01-01

    Observations of auroral hiss obtained from the Voyager 1 encounter with Jupiter have been reanalyzed. The Jovian auroral hiss was observed near the inner boundary of the warm Io torus and has a low-frequency cutoff caused by propagation near the resonance cone. A simple ray tracing procedure using an offset tilted dipole of the Jovian magnetic field is used to determine possible source locations. The results obtained are consistent with two sources located symmetrically with respect to the centrifugal equator along an L shell (L approximately = 5.59) that is coincident with the boundary between the hot and cold regions of the Io torus and is located just inward of the ribbon feature observed from Earth. The distance of the sources from the centrifugal equator is approximately 0.58 +/- 0.01 R(sub J). Based on the similarity to terrestrial auroral hiss, the Jovian is auroral hiss is believed to be generated by beams of low energy (approximately tens to thousands of eV) electrons. The low-frequency cutoff of the auroral hiss suggests that the electrons are accelerated near the inferred source region, possibly by parallel electric fields similar to those existing in the terrestrial auroral regions. A field-aligned current is inferred to exist at L shells just inward of the plasma ribbon. A possible mechanism for driving this current is discussed.

  12. Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Grodent, D.; Radioti, A.; Bonfond, B.; Gérard, J.-C.

    2014-12-01

    The present study investigates the characteristics of ultraviolet auroral features located equatorward of the main emission appearing in Hubble Space Telescope images of the northern and southern Jovian hemispheres obtained in 2000-2007. On average, one feature is observed every day, but several auroral structures are occasionally seen over a wide range of local times in the same image. Several properties of these features are analyzed, such as their location, emitted power, and lifetime. Additionally, we magnetically map the auroral features to the equatorial plane using the VIPAL model in order to compare their observed properties with those of magnetospheric injections detected by the Galileo spacecraft. The equatorward auroral features show up between the Io footpath and the main auroral emission, at all System III longitudes, in agreement with Galileo measurements. Moreover, we compare the magnetic flux associated with these features with estimates of the outgoing flux related to the radial transport of plasma in the Jovian magnetosphere, and we find that they could account for at least one third of this flux. This comparative study shows that the auroral features under study are most probably related to magnetospheric injections and thus sheds light on the processes involved in the magnetosphere-ionosphere dynamics.

  13. Effect of auroral substorms on the ionospheric range spread-F enhancements at high southern midlatitudes using real time vertical-sounding ionograms

    NASA Astrophysics Data System (ADS)

    Hajkowicz, Lech A.

    2016-03-01

    A comprehensive study has been undertaken on the effect of magnetic substorm onsets (as deduced from the auroral hourly electrojet AE-index) on the occurrence of high midlatitude (or sub-auroral latitude) ionospheric range spread-F (Sr). Unlike the previous reports real-time ionograms were used in this analysis thus eliminating ambiguities stemming from the correlating secondary evidence of spread-F with auroral substorms. The Australian southernmost ionosonde station Hobart (51.6°S geom.) proved to be uniquely suitable for the task as being sufficiently close to the southern auroral zone. Sr was assigned in km to each hourly nighttime ionogram at two sounding frequencies: Sr1 (at 2 MHz) and Sr2 (at 6 MHz) for four months in 2002: January and June (representing southern summer and winter solstices), and March and September (representing autumn and vernal equinoxes). It is evident that the southern winter solstitial period (June) is associated with high endemic midlatitude spread-F activity. All other seasons are closely linked with temporal sequences of enhanced spread-F activity following substorm onsets. For the first time it was possible not only find a simultaneous occurrence pattern of these diverse phenomena but to deduce numerical characteristics of the response of midlatitude ionosphere to the global auroral stimulus. Excellent case events, hitherto unpublished, are shown illustrating the presence of the AE peaks (in nT) being ahead of Sr peaks (in km) by a time shift ∆t (in h). Sr1 magnitude showed a significant correlation with the magnitudes of the preceding AE with a correlation coefficient (r) of 0.51 (probability of the occurrence by chance less than 0.01). Sr2 peaks were more sensitive to auroral disturbances but were not correlated with the AE magnitude variations. The time shift (∆t) was on average 4 h with a standard deviation of 3 h. The general pattern in the occurrence of magnetic substorms and spread-F is very similar. A number of

  14. Custom auroral electrojet indices calculated by using MANGO value-added services

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.; Moore, W. B.; King, T. A.

    2009-12-01

    A set of computational routines called MANGO, Magnetogram Analysis for the Network of Geophysical Observatories, is utilized to calculate customized versions of the auroral electrojet indices, AE, AL, and AU. MANGO is part of an effort to enhance data services available to users of the Heliophysics VxOs, specifically for the Virtual Magnetospheric Observatory (VMO). The MANGO value-added service package is composed of a set of IDL routines that decompose ground magnetic field observations to isolate secular, diurnal, and disturbance variations of magnetic field disturbance, station-by-station. Each MANGO subroutine has been written in modular fashion to allow "plug and play"-style flexibility and each has been designed to account for failure modes and noisy data so that the programs will run to completion producing as much derived data as possible. The capabilities of the MANGO service package will be demonstrated through their application to the study of auroral electrojet current flow during magnetic substorms. Traditionally, the AE indices are calculated by using data from about twelve ground stations located at northern auroral zone latitudes spread longitudinally around the world. Magnetogram data are corrected for secular variation prior to calculating the standard version of the indices but the data are not corrected for diurnal variations. A custom version of the AE indices will be created by using the MANGO routines including a step to subtract diurnal curves from the magnetic field data at each station. The custom AE indices provide more accurate measures of auroral electrojet activity due to isolation of the sunstorm electrojet magnetic field signiture. The improvements in the accuracy of the custom AE indices over the tradition indices are largest during the northern hemisphere summer when the range of diurnal variation reaches its maximum.

  15. Study of AKR hollow pattern characteristics at sub-auroral regions

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Sawas, Sami; Galopeau, Patrick; Berthelier, Jean-Jacques; Schwingenschuh, Konrad

    2014-05-01

    The Earth's auroral kilometric radiation (AKR) is expected to exhibit a hollow pattern similar to that reported for the comparable emissions from Jupiter (e.g. Jovian decametric emissions - DAM). The hollow pattern is a hollow cone beam with apex at the point of AKR emission, axis tangent to the magnetic field direction, and an opening angle of the order of 80°. The properties of the hollow cone can be derived from the so-called dynamic spectrum which displays the radiation versus the observation time and the frequency. We analyze the auroral kilometric radiation recorded by the electric field experiment (ICE) onboard DEMETER micro-satellite. The dynamic spectra lead us to study the occurrence of the AKR recorded in the sub-auroral regions when the micro-satellite was at altitudes of about 700 km. We address in this contribution issues concerning the characteristics (occurrence, latitude and longitude) of the AKR hollow beam and their relations to the seasonal and solar activity variations.

  16. Coordinated ground and space measurements of an auroral surge over South Pole

    SciTech Connect

    Rosenberg, T.J.; Detrick, D.L.; Mizera, P.F.; Gorney, D.J.; Berkey, F.T.; Eather, R.H.; Lanzerotti, L.J.

    1987-10-01

    Coincident ground-based and satellite observations are presented of a premidnight auroral surge over Amundsen-Scott South Pole station. The set of near-simultaneous measurements provides an excellent opportunity to gain a more quantitative understanding of the nature of premidnight substorm activity at high geomagnetic latitudes. The surge produced a rapid onset of cosmic radio noise absorption at the station. On the polar-orbiting DMSP F6 spacecraft, intense X ray emissions with E>2 keV energy were imaged 1/sup 0/ to 2/sup 0/ magnetically equatorward of South Pole approximately 1 min prior to the peak of the absorption event. The spectrum of precipitating electrons determined from the X ray measurements could be characterized by an e-folding energy of approx.11 keV and is found to be adequate to account for the cosmic noise absorption and maximum auroral luminosity recorded at South Pole. Photometer, all-sky camera, riometer, and magnetometer data are used to estimate the velocity of motion and spatial extent of the auroral precipitation and the ionospheric currents associated with the surge. The electron precipitation region is deduced to have a latitudinal scale size of <100 km and to move poleward with a speed of approx.1--2 km/s coincident with the movement of a westward electrojet.

  17. Hilbert-Huang transform and S-transform of geomagnetic pulsations at auroral expansion onset

    NASA Astrophysics Data System (ADS)

    Kataoka, R.; Miyoshi, Y.; Morioka, A.

    2009-12-01

    The waveform of geomagnetic pulsations at auroral expansion onset looks irregular and is hardly resolved by Fourier transform. Here we perform a novel analysis of the Hilbert-Huang Transform (HHT) to address this problem, focusing on the event investigated in detail by Morioka et al. [2008], in which the AKR (auroral kilometric radiation) breakup was clearly identified. From the HHT analysis of high-latitude search-coil ground magnetometer data, Pi1, Pc3, and Pi2 pulsations are extracted as the first, second, and third intrinsic mode functions, respectively. Amplification of the Pi1 and Pc3 pulsations is first detected as a clear precursor to the AKR breakup. The Pi1 and Pc3 pulsations show sudden enhancement at the AKR breakup. We suggest that the HHT is capable of automatically extracting the Pi1, Pi2, and Pc3 from the irregular high-latitude geomagnetic pulsations, providing a new type of diagnostic tools for understanding the onset mechanism of auroral substorms. A comprehensive time-frequency spectral view is obtained from the instantaneous frequency, especially when complemented with the S-transform, and the instantaneous frequency provides a new objective criterion to identify the type of geomagnetic pulsations such as Pi and Pc. It would be useful to apply the HHT to all the available both ground- and space-based magnetic datasets across all local times and latitudes for diagnosing the wave activities and underlying physics associated with the substorm onset.

  18. Average and worst-case specifications of precipitating auroral electron environment

    NASA Technical Reports Server (NTRS)

    Hardy, D. A.; Burke, W. J.; Gussenhoven, M. S.; Holeman, E.; Yeh, H. C.

    1985-01-01

    The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts.

  19. Effects of substorm electrojet on declination along concurrent geomagnetic latitudes in the northern auroral zone

    NASA Astrophysics Data System (ADS)

    Edvardsen, Inge; Johnsen, Magnar G.; Løvhaug, Unni P.

    2016-10-01

    The geomagnetic field often experiences large fluctuations, especially at high latitudes in the auroral zones. We have found, using simulations, that there are significant differences in the substorm signature, in certain coordinate systems, as a function of longitude. This is confirmed by the analysis of real, measured data from comparable locations. Large geomagnetic fluctuations pose challenges for companies involved in resource exploitation since the Earth's magnetic field is used as the reference when navigating drilling equipment. It is widely known that geomagnetic activity increases with increasing latitude and that the largest fluctuations are caused by substorms. In the auroral zones, substorms are common phenomena, occurring almost every night. In principle, the magnitude of geomagnetic disturbances from two identical substorms along concurrent geomagnetic latitudes around the globe, at different local times, will be the same. However, the signature of a substorm will change as a function of geomagnetic longitude due to varying declination, dipole declination, and horizontal magnetic field along constant geomagnetic latitudes. To investigate and quantify this, we applied a simple substorm current wedge model in combination with a dipole representation of the Earth's magnetic field to simulate magnetic substorms of different morphologies and local times. The results of these simulations were compared to statistical data from observatories and are discussed in the context of resource exploitation in the Arctic. We also attempt to determine and quantify areas in the auroral zone where there is a potential for increased space weather challenges compared to other areas.

  20. Polar/Tide Observations of Field Aligned O(+) Flows at 5000 km Altitude over the Auroral Regions in Comparison to UVI Auroral Images

    NASA Technical Reports Server (NTRS)

    Stevenson, Benjamin Adam; Craven, Paul D.; Chandler, Michael O.; Moore, Thomas E.; Giles, Barbara L.; Parks, G. K.; Pollock, Craig J.

    1999-01-01

    Measurements of thermal O(+) ion parameters from the Thermal Ion Dynamics Experiment (TIDE) on POLAR obtained near 5000 km altitude are compared with auroral images from the Ultra Violet Imager (UVI), for southern perigee passes. Ion parameters, including parallel velocity, density, and flux are combined with simultaneous auroral images to investigate relationships between their properties and the structure and brightness of the auroral forms. Results indicate field aligned upflowing O(+) ions over bright auroral regions and downward flows over dark regions. These and other relationships will be presented for several POLAR passes when both ion measurements and auroral images are observed under favorable conditions for comparison.

  1. Center for Radiation Research. 1990 technical activities

    SciTech Connect

    Kuyatt, C.E.

    1991-02-01

    The report summarizes research projects, measurement method development, calibration and testing and data evaluation activities that were carried out during Fiscal Year 1990 in the NIST Center for Radiation Research. These activities fall in the areas of radiometric physics, radiation sources and instrumentation, and ionizing radiation.

  2. Development of Ground-Based Auroral Photometry Techniques Using In-Situ Electron Precipitation Measurements from the GREECE Mission

    NASA Astrophysics Data System (ADS)

    Grubbs, G. A., II; Samara, M.; Michell, R.; Hampton, D.

    2014-12-01

    The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska on 03 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km during a luminous auroral event. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska and aimed along magnetic zenith in order to observe the brightness of different auroral emission lines (427.8, 557.7, and 844.6 nm with a 47 degree field of view) at the magnetic footpoint of the payload, near apogee. Emission line brightness data are presented at the footpoint of the rocket flight and correlated with electron characteristics taken by the Acute Precipitating Electron Spectrometer (APES) on-board instrument. Ratios of different auroral emission lines are also compared to previously published methods and models. This research aims to describe the auroral emissions produced from a known precipitating electron distribution, such that we can more accurately use ground-based imaging and photometry to infer the characteristics of the precipitating electrons. These techniques can then be applied over larger scales and longer times, when only multi-spectral imaging data are available with no corresponding in situ data.

  3. A rocket-borne investigation of auroral electrodynamics within the auroral-ionosphere

    NASA Astrophysics Data System (ADS)

    Kaeppler, Stephen Roland

    This dissertation focuses on data analyzed from the Auroral Current and Electrodynamics Structure (ACES) sounding rocket mission. ACES consisted of two payloads launched nearly simultaneously in 2009 into a dynamic multiple-arc aurora. The mission was designed to observe the three-dimensional current system of an auroral arc system. To constrain the spatial-temporal ambiguity, the payloads were flown along nearly conjugate magnetic field footpoints, at various altitudes with small temporal separation. The high altitude payload took in situ measurements of the plasma parameters above the current closure region to measure the input signature into the lower ionosphere. The low-altitude payload took similar observations within the current closure region, where perpendicular cross-field currents can flow. A detailed description of the experimental configuration is presented, including operational details of the fields and plasma instruments flown on both payloads. The methods used to process data from the electrostatic particle detectors and the fluxgate magnetometer on both payloads are presented. Data from the all-sky imager details the auroral configuration at the time of launch. In situ data are presented detailing observations of the electric fields, magnetic fields, and the electron differential energy flux, as the payloads crossed nearly conjugate magnetic field lines. Field-aligned currents were calculated from magnetometer observations on the high altitude payload. These data were combined with electron flux data to show that the high altitude payload traversed regions of upward and downward field-aligned current. The low altitude payload observed signatures in the residual magnetic field components consistent with perpendicular closure current. Ionospheric collisionality is investigated to determine if it is a significant mechanism to explain observed differences in the low energy electron flux between the high altitude and low altitude payload. As a result of

  4. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Research activities. 2.52 Section 2.52 Public... OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52 Research... research if the program director makes a determination that the recipient of the patient...

  5. 38 CFR 1.488 - Research activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disclosed for the purpose of conducting scientific research. (a) Information in individually identifiable... conducting scientific research if the Under Secretary for Health or designee makes a determination that the... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Research activities....

  6. Embedding Research Activities to Enhance Student Learning

    ERIC Educational Resources Information Center

    Webster, Cynthia M.; Kenney, Jacqueline

    2011-01-01

    Purpose: The purpose of this paper's novel, research-oriented approach is to embed research-based activities in a core second-year course of a university business degree program to support and develop student research capabilities. Design/methodology/approach: The design draws on Boud and Prosser's work to foster participation in a…

  7. [Climate chance and research activity].

    PubMed

    Manuel, Celie

    2009-10-26

    There are three main focus areas relevant to health in research related to climate change: 1) disentangling of the complex associations between climate-sensitive risk factors and health 2) guidance as to where, when and how effective health adaptation strategies may be implemented for maximum effect, and 3) health impact assessment (with a focus on health co-benefits) of climate-related policies in other sectors. Further development in each of these areas will provide important opportunities for strengthening health promotion and protection.

  8. An Integrated Extravehicular Activity Research Plan

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human

  9. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    NASA Astrophysics Data System (ADS)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 μV/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to

  10. Influence of auroral streamers on rapid evolution of SAPS flows

    NASA Astrophysics Data System (ADS)

    Gallardo-Lacourt, B.; Nishimura, T.; Lyons, L. R.; Ruohoniemi, J. M.; Donovan, E.; Angelopoulos, V.; Nishitani, N.

    2015-12-01

    An important manifestation of plasma transport in the ionosphere is Subauroral Polarization Streams or SAPS, which are strong westward flow lying just equatorward of the electron auroral oval and thus of enhanced ionospheric conductivities of the auroral oval. While SAPS are known to intensify due to substorm injections, recent studies showed that large variability of SAPS flow can occur well after substorm onset and even during non-substorm times. These SAPS enhancements have been suggested to occur in association with auroral streamers that propagate equatorward, a suggestion that would indicate that plasma sheet fast flows propagate into the inner magnetosphere and increase subauroral flows. We present auroral images from the THEMIS ground-based all-sky-imager array and 2-d line-of-sight flow observations from the SuperDARN radars that share fields of view with the imagers to investigate systematically the association between SAPS and auroral streamers. We surveyed events from December 2007 to April 2013 for which high or mid-latitude SuperDARN radars were available to measure the SAPS flows, and identified 60 events. For streamers observed near the equatorward boundary of the auroral oval, we find westward flow enhancements of ~200 m/s slightly equatorward of the streamers. A preliminary survey suggests that >90% of the streamers that reach close to the equatorward boundary lead to westward flow enhancements. We also characterize the SAPS flow channel width and timing relative to streamers reaching radar echo meridians. The strong influence of auroral streamers on rapid SAPS flow evolution suggests that transient fast earthward plasma sheet flows can lead to westward SAPS flow enhancements in the subauroral region, and that such enhancements are far more common than only during substorms because of the frequent occurrences of streamers under various geomagnetic conditions.

  11. Spectacular ionospheric flow structures associated with substorm auroral onset

    NASA Astrophysics Data System (ADS)

    Gallardo-Lacourt, B. I.; Nishimura, Y.; Lyons, L. R.; Zou, Y.; Angelopoulos, V.; Donovan, E.; Mende, S. B.; Ruohoniemi, J.; McWilliams, K. A.; Nishitani, N.

    2013-12-01

    Auroral observations have shown that brightening at substorm auroral onset consists of azimuthally propagating beads forming along a pre-existing arc. However, the ionospheric flow structure related to this wavy auroral structure has not been previously identified. We present 2-d line-of-sight flow observations and auroral images from the SuperDARN radars and the THEMIS ground-based all-sky-imager array to investigate the ionospheric flow pattern associated with the onset. We have selected events where SuperDARN was operating in the THEMIS mode, which provides measurements along the northward looking radar beam that have time resolution (6 s) comparable to the high time resolution of the imagers and gives us a unique tool to detect properties of flows associated with the substorm onset instability. We find very fast flows (~1000 m/s) that initiated simultaneously with the onset arc beads propagating across the THEMIS-mode beam meridian. The flows show oscillations at ~9 mHz, which corresponds to the periodicity of the auroral beads propagating across the radar beam. 2-d radar measurements also show a wavy pattern in the azimuthal direction with a wavelength of ~74 km, which is close to the azimuthal separation of individual beads, although this determination is limited by the 2 minute radar scan period. These strong correlations (in time and space) between auroral beading and the fast ionospheric flows suggest that these spectacular flows are an important feature of the substorm onset instability within the inner plasma sheet. Also, a clockwise flow shear was observed in association with individual auroral beads, suggesting that such flow shear is a feature of the unstable substorm onset waves.

  12. Global thunderstorm activity research survey

    NASA Technical Reports Server (NTRS)

    Coroniti, S. C.

    1982-01-01

    The published literature on the subject of the monitoring of global thunderstorm activity by instrumented satellites was reviewed. A survey of the properties of selected physical parameters of the thunderstorm is presented. The concepts used by satellites to identify and to measure terrestrial lightning pulses are described. The experimental data acquired by satellites are discussed. The scientific achievements of the satellites are evaluated against the needs of scientists and the potential requirements of user agencies. The performances of the satellites are rated according to their scientific and operational achievements.

  13. Representation of the Auroral and Polar Ionosphere in the International Reference Ionosphere (IRI)

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Reinisch, Bodo

    2013-01-01

    This issue of Advances in Space Research presents a selection of papers that document the progress in developing and improving the International Reference Ionosphere (IRI), a widely used standard for the parameters that describe the Earths ionosphere. The core set of papers was presented during the 2010 General Assembly of the Committee on Space Research in Bremen, Germany in a session that focused on the representation of the auroral and polar ionosphere in the IRI model. In addition, papers were solicited and submitted from the scientific community in a general call for appropriate papers.

  14. Activation Theory and Uses and Gratifications Research.

    ERIC Educational Resources Information Center

    Tate, E. D.

    Uses and gratifications research involves a critical appraisal of conceptual and theoretical issues in mass communication and is concerned with what audience members do with the media. Activation theory understands people as active manipulators of their environment. (Activation refers to that level of psychological and physiological excitement an…

  15. Dynamics of a discrete auroral arc

    NASA Astrophysics Data System (ADS)

    Bruening, K.; Goertz, C. K.

    1986-06-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  16. Dynamics of a discrete auroral arc

    NASA Technical Reports Server (NTRS)

    Bruening, K.; Goertz, C. K.

    1986-01-01

    Porcupine Flight 4 data were used to determine the field-aligned currents associated with a southward moving discrete auroral arc in the postmidnight sector. Three different methods were used for determining the field-aligned current which should give identical results if the arcs are quasi-stationary and no parallel electric field exists between the payload and the dynamo region of the ionosphere. As long as the rocket is above the arc, the three methods agree. The integral of precipitating electron flux, the local magnetic field perturbations, and the divergence of the horizontal Pedersen current all indicate an upward current of 5 + or - 3 microamperes/sq m. Immediately north of the arc a strong downward current of about 10-20 microamperes/sq m is detected. The magnitude, however, is not well known because the rocket's velocity relative to the arc cannot be clearly established. Further north of the southward moving arc, the two methods that can be applied (magnetic field perturbations and divergence of the horizontal Pedersen current) yield contradictory results not only about the magnitude of the current but also about the direction of the current. It is suggested that this discrepancy is due to time-dependent electric field.

  17. Observations of an Auroral Arc using the 4-Channel Camera on the VISIONS Rocket

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.; Clemmons, J. H.; Rowland, D. E.; Pfaff, R. F.; Conde, M.; Hampton, D. L.; Michell, R.

    2013-12-01

    The VISIONS rocket, designed to study oxygen ion outflow, was launched from Poker Flat Research Range at 0821 UT on February 7th 2013. It reached an altitude of over 750 km and provided useful data as far as 74 degrees north latitude well into the polar cap. One of the payload instruments was a down looking, 90 degree field of view, four channel camera (N2+1Negative(0,0), OI (630nm), OI (844.6nm) and H-Beta) to observe the auroral emissions that might be the source of the outflow observed from other instruments. The camera was nominally pointed towards Arctic Village (68N) and thus on the down leg the camera had a limb view of the northern edge of the auroral oval which was nominally located over a latitude that passed through Kaktovik Alaska (70 N). Considerable periods of presumably lower average energy (2 keV to less than 1 keV) electron precipitation occurred at that latitude during the 16-minute flight. The limb view at the end of the flight (approximately 880 s after launch) allowed a measure of the vertical distribution of the auroral emissions. The interpretation of those images was aided by the fact that an isolated intense auroral arc was located right over Kaktovik, and thus in the field of view of a ground-based imager deployed by SWRI, at the same time as the rocket camera was observing from the side the vertical distribution of the auroral emission. Modeling of the rocket camera data suggest a considerable depletion of O with respect to N2 which becomes especially noticeable in the OI (630 nm) emission where the O component of the emission appears to be nearly absent. The large O depletion is presumably caused by the deposition of low energy electrons, at the northern edge of the oval, at E and F region altitudes, and the resultant production of large vertical winds during a time at or before these observations were obtained. The particle precipitation that produced the vertical winds is a scenario that should also be favorable to ion outflow and

  18. Properties of the Auroral Zone Ionosphere Inferred Using Plasma Contactor Data From the International Space Station

    NASA Astrophysics Data System (ADS)

    Koontz, S. L.; Bering, E. A.; Evans, D. S.; Katz, I.; Gardner, B. M.; Suggs, R. M.; Minow, J. I.; Dalton, P. J.; Ferguson, D. C.; Hillard, G. B.; Counts, J. L.; Barsamian, H.; Kern, J.; Mikatarian, R.

    2001-12-01

    observations order themselves with geomagnetic activity. We will compare the peak densities with auroral energy inputs inferred from electron precipitation monitors on the NOAA-15 and NOAA-16 spacecraft.

  19. Auroral signatures of Bursty Bulk Flows from magnetosphere-ionosphere coupling models

    NASA Astrophysics Data System (ADS)

    Echim, M.; de Keyser, J. M.; Roth, M. A.

    2010-12-01

    The relationship between bursty bulk flows (BBFs) in the magnetospheric tail and the activation of auroral forms is well established from satellite and ground-based observations. Starting from a self-consistent description of BBFs based on a Vlasov equilibrium we provide a quantitative evaluation of the associated auroral effects by using a quasi-stationary magnetosphere-ionosphere (MI) coupling model. The self-consistent BBF model is based on a kinetic description of a 1-D plasma slab moving in background plasma and electromagnetic field. The model considers two exact constants of motion and one adiabatic invariant (the magnetic moment). It solves the coupled Vlasov-Maxwell system of equations in one spatial dimension (perpendicular to the BBFs plasma bulk velocity and the main magnetic field) assuming the BBF is a 1D structure elongated in the direction of the background magnetic field. The BBF model provides the self-consistent profile of Φm, the electric potential, showing the formation of convergent electric fields at the dawnward flank of the Earth-ward oriented BBFs. It has been shown that magnetospheric convergent electric fields drive field-aligned (FA) potential drops, FA currents and electron precipitation and acceleration. A stationary MI coupling model developed for discontinuity-like magnetospheric generators with convergent electric fields developed earlier is adapted to describe the coupling between the BBFs and the auroral ionosphere. The kernel of the MI coupling model is the condition of current continuity at the topside ionosphere, from which we compute the electric potential in the ionosphere for a given Φm. The MI coupling model is based on a Knight-type current-voltage relationship and a height-integrated conductivity model that depends on the energy deposited in the ionosphere by precipitating electrons. We show that the convergent electric field formed at the flanks of the BBF drive a FA potential drop and downward electron acceleration

  20. Transmission research activities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Lewicki, D. G.

    1990-01-01

    A joint research program, to advance the technology of rotorcraft transmissions, consists of analytical and experimental efforts to achieve the overall goals of reducing transmission weight and noise, while increasing life and reliability. Recent activities in the areas of transmission and related component research are highlighted. Current areas include specific technologies in support of military rotary wing aviation, gearing technology, transmission noise reduction studies, a recent interest in gearbox diagnostics, and advanced transmission system studies. Results of recent activities are presented along with near term research plans.

  1. New Observational Constraints on Theories of Auroral Arc Generation

    NASA Astrophysics Data System (ADS)

    McGuffin, N.; Donovan, E.; Spanswick, E.; Knudsen, D. J.; Rankin, R.; Baker, G.; Uritsky, V. M.; Jackel, B. J.; Barnetson, K.

    2009-12-01

    We do not know how auroral arcs are formed, whether or not there are different types of arcs (meaning different underlying physics), nor what arcs correspond to in the magnetosphere. Given the ubiquity of arcs and their obvious importance to MI coupling, including specific processes such as the substorm, resolving the questions we have about arcs is one of the key objectives in space physics. We have carried out a survey of a two-year subset of the THEMIS ASI image data set. In this survey, we have classified the ~150M images in terms of viewing conditions, presence or absence of aurora, and auroral type. One of the consequences of this survey is that we have amassed what is arguably (to date) the largest set of images of auroral arcs. This set of arcs spans all auroral latitudes and magnetic local times except for a few hours around local noon. In this paper we use this auroral survey, together with the results of a similar survey of the proton aurora (from the NORSTAR Meridian Scanning Photometer array) and magnetic pulsations (published by Baker et al. [JGR, Volume 108, doi:10.1029/2002JA009801, 2003]), to elucidate some new quantitative and qualitative results including the following: 1) auroral arcs occur on field lines that are poleward of the ion isotropy boundary; 2) the orientation of arcs in geomagnetic coordinates suggest that arcs are an ionospheric projection of a gradient of some as yet unidentified magnetospheric parameter; 3) although some arcs oscillate in ways that are compellingly suggestive of their generation via field line resonances, most auroral arcs do not oscillate; 4) the magnetic local time where auroral arc occurrence peaks corresponds to a minimum in the occurrence of Pc5 pulsations and field line resonances. We will conclude with a discussion of the implications of these results for models of auroral arc generation. MLT occurrence distributions of arcs (gray histogram) and FLRs in the Pc5 spectral band (transparent histogram with dark

  2. Antiviral Drug Research Proposal Activity

    PubMed Central

    Injaian, Lisa; Smith, Ann C.; Shipley, Jennifer German; Marbach-Ad, Gili; Fredericksen, Brenda

    2011-01-01

    The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an “expert” in one aspect of the project. The Antiviral Drug Research Proposal (ADRP) culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity. PMID:23653735

  3. Juno's Earth flyby: the Jovian infrared Auroral Mapper preliminary results

    NASA Astrophysics Data System (ADS)

    Adriani, A.; Moriconi, M. L.; Mura, A.; Tosi, F.; Sindoni, G.; Noschese, R.; Cicchetti, A.; Filacchione, G.

    2016-08-01

    The Jovian InfraRed Auroral Mapper, JIRAM, is an image-spectrometer onboard the NASA Juno spacecraft flying to Jupiter. The instrument has been designed to study the aurora and the atmosphere of the planet in the spectral range 2-5 μm. The very first scientific observation taken with the instrument was at the Moon just before Juno's Earth fly-by occurred on October 9, 2013. The purpose was to check the instrument regular operation modes and to optimize the instrumental performances. The testing activity will be completed with pointing and a radiometric/spectral calibrations shortly after Jupiter Orbit Insertion. Then the reconstruction of some Moon infrared images, together with co-located spectra used to retrieve the lunar surface temperature, is a fundamental step in the instrument operation tuning. The main scope of this article is to serve as a reference to future users of the JIRAM datasets after public release with the NASA Planetary Data System.

  4. Observations of field line resonance with global auroral images

    NASA Astrophysics Data System (ADS)

    Liou, K.; Takahashi, K.

    2013-12-01

    We report results from a detailed analysis of an auroral luminosity pulsation event in the Pc 5 range associated with auroral breakup using Polar ultraviolet imager data and magnetic field observations from the ground-based CARISMA magnetometer array and in space by the GOES 8 satellite. It is found that (1) the auroral pulsation appeared predominantly at frequencies around ~0.9 mHz and ~1.8 mHz in the midnight sector centered at the onset (~2100 magnetic local time (MLT)), (2) the longitudinal extent of the auroral pulsation is wider (~12 h in MLT) for the lower-frequency mode and is much narrower for the higher-frequency mode (~3 h in MLT), (3) both auroral and ground magnetic field data show latitudinal wave amplitude and phase shift structures consistent with the field-line resonance (FLR) theory, (4) magnetic field measurements from GOES 8, which was near the onset location, also show two spectral peaks at ~0.9 mHz in the compressional component and at ~2.1 mHz in the poloidal component. It is suggested the observed Pc 5 ULF waves are FLRs produced by the onset-associated magnetic field dipolarization.

  5. Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.

    1994-01-01

    This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region using the adiabatic auroral arc model. This model has crucial nonlinearities (connected, for example. with aurorally produced ionization) which have hampered analysis; earlier work has either been linear, which I will show is a poor approximation or, if nonlinear, either numerical or too specialized to study parametric dependencies. With certain simplifying assumptions I find new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g.. cross-tail potential) and ionospheric (e.g., recombination rate) parameters. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. This paper gives various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) which can be studied with existing data sets.

  6. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  7. Theoretical effects of geomagnetic activity on thermospheric tides

    SciTech Connect

    Fesen, C.G.; Richmond, A.D.; Roble, R.G.

    1993-09-01

    The theoretical effects of auroral activity on thermospheric tides during equinox solar cycle minimum are investigated using simulations from the National Center for Atmospheric Research thermosphere-ionosphere general circulation model. One set of model runs examined the effects of increasing levels of geomagnetic activity on the neutral horizontal winds and temperatures. A second set of model runs examined the generation of diurnal and semidiurnal waves in the neutral horizontal winds and temperatures by solar forcing, auroral forcing, and waves propagating vertically from the lower atmosphere. The model simulations were made for four levels of geomagnetic activity, parameterized principally by the total hemispheric power index and the potential drop across the polar cap. The resulting neutral horizontal wind and temperature fields were examined at geographic latitudes of 17.5{degrees}N, 42.5{degrees}N, and 67.5{degrees}N at 70{degrees}W longitude. The modeled response to the level of geomagnetic activity varies with altitude and latitude: the effects tend to maximize at high altitudes and high latitudes and penetrate lower in altitude as geomagnetic activity increases. The simulated mean temperatures increase and the mean winds become more southward and westward at all latitudes with increasing auroral activity. In the upper thermosphere, the model diurnal temperature amplitudes decrease with increasing activity, while the diurnal meridional wind amplitudes increase. The modeled semidiurnal winds are strongly affected by the level of geomagnetic activity, while the semidiurnal temperatures are not. Analysis of the second set of model simulations focusing on the generation of the tidal waves indicates that the tidal response to auroral activity is largely determined by the interference between the waves due to upward propagating tides and in situ solar forcing and those generated by the auroral momentum and energy sources. 28 refs., 19 figs.

  8. Auroral boundary movement rates during substorm onsets and their correspondence to solar wind and the AL index

    NASA Astrophysics Data System (ADS)

    Andriyas, Tushar

    2016-08-01

    A statistical analysis of the equatorward and poleward auroral boundary movement during substorm onsets, the related solar wind activity, GOES 8 and 10 magnetic field, and the westward auroral electrojet (AL) index is undertaken, during the years 2000-2002. Auroral boundary data were obtained from the British Antarctic Survey (BAS). These boundaries were derived using auroral images from the IMAGE satellite. The timing of the onsets was derived from the Frey et al. (2004) database. Data were also classified based on the peak AL around the onset and the onset latitude, in order to analyze the differences, if any, in the rates of movement. It was found that the absolute ratio of the rate of movement of the mean poleward and equatorward boundaries was slower than the rate of mean movement around the midnight sector. The stronger the onset (in terms of the peak AL around the onset) was, the faster the rate of movement for both the boundaries. This implies that the stronger the AL signature around the onset, the weaker the magnetic field was prior to the onset and the faster it increased after the onset at GOES 8 and 10 locations. The stronger the AL signature, the thicker the latitudinal width of the aurora was, prior to the onset and higher was the increase in the width after the onset, due to large poleward and average equatorward expansion. Magnetotail field line stretching and relaxation rates as measured by GOES were also found to lie in the same order of magnitude. It is therefore concluded that the rates of latitudinal descent prior to a substorm onset and ascent after the onset, of the mean auroral boundaries, corresponds to the rate at which the tail field lines stretch and relax before and after the onset, respectively.

  9. 38 CFR 1.488 - Research activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROVISIONS Disclosures Without Patient Consent § 1.488 Research activities. Subject to the provisions of 38 U.S.C. 5701, 38 CFR 1.500-1.527, the Privacy Act (5 U.S.C. 552a), 38 CFR 1.575-1.584 and the following... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Research activities....

  10. 38 CFR 1.488 - Research activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROVISIONS Disclosures Without Patient Consent § 1.488 Research activities. Subject to the provisions of 38 U.S.C. 5701, 38 CFR 1.500-1.527, the Privacy Act (5 U.S.C. 552a), 38 CFR 1.575-1.584 and the following... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Research activities....

  11. Teaching Research Methodology through Active Learning

    ERIC Educational Resources Information Center

    Lundahl, Brad W.

    2008-01-01

    To complement traditional learning activities in a masters-level research methodology course, social work students worked on a formal research project which involved: designing the study, constructing measures, selecting a sampling strategy, collecting data, reducing and analyzing data, and finally interpreting and communicating the results. The…

  12. The current-voltage relationship in auroral current sheets

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Gurnett, D. A.; Goertz, C. K.; Menietti, J. D.; Burch, J. L.

    1987-01-01

    The current-voltage relation within narrow auroral current sheets is examined through the use of high-resolution data from the high altitude Dynamics Explorer 1 satellite. The north-south perpendicular electric field and the east-west magnetic field are shown for three cases in which there are large amplitude, oppositely directed paired electric fields and narrow current sheets. These data are shown to indicate that there is a linear Ohm's law relationship between the current density and the parallel potential drop within the narrow current sheets. This linear relationship had previously been verified for large-scale auroral formations greater than 20 km wide at the ionosphere. The evidence shown here extends our knowledge down to the scale size of discrete auroral arcs.

  13. Polar cap auroral electron fluxes observed with Isis 1

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Heikkila, W. J.

    1974-01-01

    Three types of auroral particle precipitation have been observed over the polar caps, well inside the auroral oval, by means of the soft particle spectrometer on the Isis 1 satellite. The first type is a uniform, very soft (about 100 eV) electron 'polar rain' over the entire polar cap; this may well be present with very weak intensity at all times, but it is markedly enhanced during worldwide geomagnetic storms. A second type of precipitation is a structured flux of electrons with energies near 1 keV, suggestive of localized 'polar showers'; it seems likely that these are the cause of the sun-aligned auroral arcs that have been observed during moderately quiet conditions. During periods of intense magnetic disturbance this precipitation can become very intense and exhibit a characteristic pattern that we have come to call a 'polar squall'.

  14. Association of plasma sheet variations with auroral changes during substorms

    SciTech Connect

    Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Parks, G.K.

    1988-01-01

    Images of the southern auroral oval taken by the University of Iowa auroral imaging instrumentation on the Dynamics Explorer 1 satellite during an isolated substorm are correlated with plasma measurements made concurrently by the ISEE 1 satellite in the magnetotail. Qualitative magnetic field configuration changes necessary to relate the plasma sheet boundary location to the latitude of the auroras are discussed. Evidence is presented that the longitudinal advances of the auroras after expansive phase onset are mappings of a neutral line lengthening across the near-tail. We observe a rapid poleward auroral surge, occurring about 1 hour after expansive phase onset, to coincide with the peak of the AL index and argue that the total set of observations at that time is consistent with the picture of a /open quotes/poleward leap/close quotes/ of the electrojet marking the beginning of the substorm's recovery. 9 refs. 3 figs.

  15. Research on Mobile Learning Activities Applying Tablets

    ERIC Educational Resources Information Center

    Kurilovas, Eugenijus; Juskeviciene, Anita; Bireniene, Virginija

    2015-01-01

    The paper aims to present current research on mobile learning activities in Lithuania while implementing flagship EU-funded CCL project on application of tablet computers in education. In the paper, the quality of modern mobile learning activities based on learning personalisation, problem solving, collaboration, and flipped class methods is…

  16. [Research activities in Kobe-Indonesia Collaborative Research Centers].

    PubMed

    Utsumi, Takako; Hayashi, Yoshitake; Hotta, Hak

    2013-01-01

    Kobe-Indonesia Collaborative Research Center was established in Institute of Tropical Disease (ITD), Airlangga University, Surabaya, Indonesia in 2007 under the program of ''Founding Research Centers for Emerging and Reemerging Infectious Diseases'' supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and then it has been under the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) since 2010. Japanese researchers have been stationed at ITD, conducting joint researches on influenza, viral hepatitis, dengue and infectious diarrhea. Also, another Japanese researcher has been stationed at Faculty of Medicine, University of Indonesia, Jakarta, carrying out joint researches on'' Identification of anti-hepatitis C virus (HCV) substances and development of HCV and dengue vaccines'' in collaboration with University of Indonesia and Airlangga University through the Science and Technology Research Partnership for Sustainable Development (SATREPS) supported by the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA) since 2009. In this article, we briefly introduce the background history of Kobe University Research Center in Indonesia, and discuss the research themes and outcomes of J-GRID and SATREPS activities.

  17. Integrated Extravehicular Activity Human Research Plan: 2016

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott; Rajulu, Sudhakar; Norcross, Jason R.; Chappell, Steven P.

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Human Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Human Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Report is will also continue at a frequency determined by HRP management. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Human Research Plan are presented including description of ongoing and planned research activities in the areas of

  18. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations. PMID:25375713

  19. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations.

  20. Upper hybrid and Langmuir turbulence in the auroral E region

    NASA Technical Reports Server (NTRS)

    Kelley, Michael C.; Earle, Gregory D.

    1988-01-01

    Oscillations at a frequency between the local upper hybrid and plasma frequencies have been detected in the upper E region of the morning auroral oval. The emission occurs in a narrow band of frequencies when the dipole antenna is nearly perpendicular to B but broadens when the antenna has a component parallel to B. The waves have a low-altitude cutoff at about 125-130 km, and their intensity increases in regions of low plasma density. No theoretical explanation yet exists for these waves, which may be the manifestation of a plasma instability process due to the suprathermal electron flux which accompanies collisional ionization in the auroral E region.

  1. Research Activity and the Association with Mortality

    PubMed Central

    Ozdemir, Baris A.; Karthikesalingam, Alan; Sinha, Sidhartha; Poloniecki, Jan D.; Hinchliffe, Robert J.; Thompson, Matt M.; Gower, Jonathan D.; Boaz, Annette; Holt, Peter J. E.

    2015-01-01

    Introduction The aims of this study were to describe the key features of acute NHS Trusts with different levels of research activity and to investigate associations between research activity and clinical outcomes. Methods National Institute for Health Research (NIHR) Comprehensive Clinical Research Network (CCRN) funding and number of patients recruited to NIHR Clinical Research Network (CRN) portfolio studies for each NHS Trusts were used as markers of research activity. Patient-level data for adult non-elective admissions were extracted from the English Hospital Episode Statistics (2005-10). Risk-adjusted mortality associations between Trust structures, research activity and, clinical outcomes were investigated. Results Low mortality Trusts received greater levels of funding and recruited more patients adjusted for size of Trust (n = 35, 2,349 £/bed [95% CI 1,855–2,843], 5.9 patients/bed [2.7–9.0]) than Trusts with expected (n = 63, 1,110 £/bed, [864–1,357] p<0.0001, 2.6 patients/bed [1.7–3.5] p<0.0169) or, high (n = 42, 930 £/bed [683–1,177] p = 0.0001, 1.8 patients/bed [1.4–2.1] p<0.0005) mortality rates. The most research active Trusts were those with more doctors, nurses, critical care beds, operating theatres and, made greater use of radiology. Multifactorial analysis demonstrated better survival in the top funding and patient recruitment tertiles (lowest vs. highest (odds ratio & 95% CI: funding 1.050 [1.033–1.068] p<0.0001, recruitment 1.069 [1.052–1.086] p<0.0001), middle vs. highest (funding 1.040 [1.024–1.055] p<0.0001, recruitment 1.085 [1.070–1.100] p<0.0001). Conclusions Research active Trusts appear to have key differences in composition than less research active Trusts. Research active Trusts had lower risk-adjusted mortality for acute admissions, which persisted after adjustment for staffing and other structural factors. PMID:25719608

  2. Fine Scale Structure observed in the Total Electron Content above the Sub-Auroral, Auroral, and Polar Ionosphere

    NASA Astrophysics Data System (ADS)

    Coster, A. J.; Thomas, E. G.; Vierinen, J.; Rideout, W. E.

    2015-12-01

    This paper details recent improvements in TEC observations made in the sub-auroral, auroral, and polar regions. The goal is high-resolution measurements of both medium and fine-scale TEC-gradients. To achieve this, the number of GNSS receivers processed was more than doubled, due to agreements made with multiple government and commercial agencies, such as those involved with highway transportation and precision farming. Following the increase in GNSS observations, additional improvements were made in the MIT Haystack GNSS data processing algorithms, allowing for finer grid spacing of the output TEC data. Merging data sets also increased sensitivity. Scintillation data from several GNSS receivers have been overlaid on top of all-sky camera images showing evidence of aurora. These data sets have been merged with the measured background TEC to monitor the development both medium and fine-scale TEC gradients. Data from multiple geomagnetic storms and auroral events in this solar cycle will be presented.

  3. Byurakan Astrophysical Observatory: Active Researches of the Activity Phenomena

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.

    2016-09-01

    Scientific research directions elaborated at the Byurakan astrophysical observatory (BAO) since its foundation are reviewed briefly. Although the wide spectrum of research at BAO we have focused attention on the activity phenomena mainly. Indisputable proof of the existence of newborn stars, as well as the activity phenomena in the galactic nuclei are mentioned as the main scientific attainments of the BAO. These two scientific breakthroughs undoubtedly had also very essential conceptual significance which is not yet estimated at its true worth. Some conceptual changes accompanying the discovery of the accelerated expansion of the Universe are considered from the cosmic objects' activity viewpoint.

  4. Search for auroral belt E-parallel fields with high-velocity barium ion injections

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Ledley, B. G.; Miller, M. L.; Marionni, P. A.; Pongratz, M. B.

    1989-01-01

    In April 1984, four high-velocity shaped-charge Ba(+) injections were conducted from two sounding rockets at 770-975 km over northern Alaska under conditions of active auroral and magnetic disturbance. Spatial ionization (brightness) profiles of high-velocity Ba(+) clouds from photometric scans following each release were found to be consistent with the 28-sec theoretical time constant for Ba photoionization determined by Carlsten (1975). These observations therefore revealed no evidence of anomalous fast ionization predicted by the Alfven critical velocity hypothesis.

  5. Spatial Relationships of Auroral Particle Acceleration Relative to High Latitude Plasma Boundaries

    NASA Technical Reports Server (NTRS)

    Ghielmetti, Arthur G.

    1997-01-01

    This final report describes the activities under NASA contract to Lockheed Missiles and Space Company. It covers the period from 10-1-94 to 12-31-97. The objective of this investigation is to identify and characterize the spatial relationships of auroral particle acceleration features relative to the characteristic transition features in the surrounding polar ionospheric plasmas. Due to the reduced funding level approved for this contract, the original scope of the proposed work was readjusted with the focus placed on examining spatial relationships with respect to particle structures.

  6. Experimental tests of the generation mechanism of auroral medium frequency burst radio emissions

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J.; Weatherwax, A. T.; Hughes, J. M.; Lummerzheim, D.

    2009-09-01

    Medium frequency (MF) burst is an impulsive auroral radio emission at 1.3-4.5 MHz commonly detected by ground-based instruments for a few minutes at substorm onsets. It is thought to arise from mode conversion radiation. The Dartmouth College MF radio interferometer at Toolik Field Station, Alaska (68.51° invariant latitude), measured spectra, amplitudes, and directions of arrival (DOA) of 47 MF burst events during 2006-2007 and 49 events during 2007-2008. Statistical analysis of these events shows that they come predominantly from the south and east of Toolik, as expected because propagation conditions are more favorable poleward and westward of the active auroral arcs than equatorward or eastward during premidnight (westward moving) substorm onset activity. Case studies of a selected MF burst event on 20 November 2007 show that motions of the radio emissions qualitatively track the motions of auroral arcs simultaneously observed with all-sky camera. Case studies of DOA data of selected MF burst events on 31 January and 20 November 2007 show that higher-frequency components of MF burst arrive at higher elevation angles than lower-frequency components. Statistical studies confirm this trend. Ray-tracing analysis shows that this trend implies that sources of the higher-frequency components of the MF burst are at higher altitudes than those of the lower-frequency components. The analysis also shows that the MF burst comes from the bottomside F region ionosphere. These observations are consistent with a mechanism of MF burst emission whereby the emissions originate from mode conversion of Langmuir or upper hybrid waves excited over a range of altitudes in the bottomside F region.

  7. A Wide Field Auroral Imager (WFAI) for low Earth orbit missions

    NASA Astrophysics Data System (ADS)

    Bannister, N. P.; Bunce, E. J.; Cowley, S. W. H.; Fairbend, R.; Fraser, G. W.; Hamilton, F. J.; Lapington, J. S.; Lees, J. E.; Lester, M.; Milan, S. E.; Pearson, J. F.; Price, G. J.; Willingale, R.

    2007-03-01

    A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI).

  8. Chorus Wave Scattering Responsible for the Dayside Diffuse Auroral Precipitation

    NASA Astrophysics Data System (ADS)

    Ni, B.; Nishimura, T.; Bortnik, J.; Thorne, R. M.; Li, W.; Angelopoulos, V.; Ebihara, Y.; Weatherwax, A. T.

    2012-12-01

    We perform a comprehensive theoretical and numerical analysis on the conjunction measurements of dayside diffuse aurora and whistler-mode chorus waves by the South Pole all-sky imager and THEMIS spacecraft at 16 -18 UT on August 13, 2009. A high correlation is identified between the intensities of the diffuse aurora at 557.7 nm near the THEMIS ionospheric footprints and chorus emissions. Using the simultaneous wave, plasma density and particle datasets of THEMIS observations, we compute the matrices of bounce-averaged diffusion coefficients due to chorus wave scattering in the realistic magnetosphere at a series of representative time stamps, which are subsequently utilized to quantitatively compare with the rate of strong diffusion for evaluating the energy dependent loss cone filling index associated with chorus-induced pitch angle scattering. Fits of Maxwellian-type energy spectrum to the modeled electron differential fluxes inside the loss cone produce a temporal variation of the total energy flux and characteristic energy of precipitating electrons. The obtained dominant precipitation energies are within 2 - 5 keV, which agrees well with the major electron population for the dayside green-line aurora excitation. The modeled change of the total precipitation energy flux is remarkably consistent with that of the observed green-line diffuse aurora intensity. The trend of decreases and increases in the aurora luminosity is also reasonably reproduced in a time consistent manner. Through a systematic combination of quasi-linear theory, realistic non-dipolar magnetic field mapping, and the concept of strong diffusion on the basis of conjugated space and ground observations, we have demonstrated that dayside chorus scattering can dominantly account for the dayside green-line diffuse aurora activity, while variations in electron differential flux also play a role. In addition, changes in the ambient density can affect the portion of diffuse auroral electrons that

  9. Characteristic ion distributions in the dynamic auroral transition region

    NASA Astrophysics Data System (ADS)

    Zeng, W.; Horwitz, J. L.; Tu, J.-N.

    2006-04-01

    A Dynamic Fluid Kinetic (DyFK) simulation is conducted to study the H+/O+ flows and distribution functions in the high-latitude dynamic transition region, specifically from 1000 km to about 4000 km altitude. Here, the collisional-to-collisionless transition region is that region where Coulomb collisions have significant but not dominant effects on the ion distributions. In this study, a simulation flux tube, which extends from 120 km to 3 RE altitude, is assumed to experience a pulse of auroral effects for approximately 20 minutes, including both soft electron precipitation and transverse wave heating, and then according to different geophysical circumstances, either to relax following the cessation of such auroral effects or to be heated further continuously by waves with power at higher frequencies. Our principal purpose in this investigation is to elicit the characteristic ion distribution functions in the auroral transition region, where both collisions and kinetic processes play significant roles. The characteristics of the simulated O+ and H+ velocity distributions, such as kidney bean shaped H+ distributions, and O+ distributions having cold cores with upward folded conic wings, resemble those observed by satellites at similar altitudes and geographic conditions. From the simulated distribution function results under different geophysical conditions, we find that O+-O+ and O+-H+ collisions, in conjunction with the kinetic and auroral processes, are key factors in the velocity distributions up to 4000 km altitude, especially for the low speed portions, for both O+ and H+ ions.

  10. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  11. Auroral nightside downward-current regions: ClusterII observations

    NASA Astrophysics Data System (ADS)

    Lynch, K.; Fazakerley, A.; Karlsson, T.; Lahiff, A.; Marklund, G.

    2007-12-01

    The ClusterII spacecraft traverse the nightside auroral zone at 4-6 Re altitudes in February-March of each year. In 2004, their separation was such as to cross the auroral zone with separation times of a few minutes, comparable to the expected timescales of auroral downward current sheet evolution. We present observations from 12 such events from an effort to look for signatures of the temporal evolution of the auroral downward current system. We compare the electron characteristic energy (ratio of energy flux to number flux) and density of the upgoing electron beams as measured by the PEACE instrument, to electric field signatures from EFW including integrated potential, divergent field structures, and ambient density calculated from the spacecraft potential. The events are seen to be localized on or near ambient density gradients. The characteristic energy of the upgoing electrons is inversely proportional to their number density. Characteristic energies of up to a few keV are seen, and these energies typically decrease with time as subsequent spacecraft cross the same event.

  12. Fractal approach to the description of the auroral region

    SciTech Connect

    Chernyshov, A. A. Mogilevsky, M. M.; Kozelov, B. V.

    2013-07-15

    The plasma of the auroral region, where energetic particles precipitate from the magnetosphere into the ionosphere, is highly inhomogeneous and nonstationary. In this case, traditional methods of classical plasma physics turn out to be inapplicable. In order to correctly describe the dynamic regimes, transition processes, fluctuations, and self-similar scalings in this region, nonlinear dynamics methods based of the concepts of fractal geometry and percolation theory can be used. In this work, the fractal geometry and percolation theory are used to describe the spatial structure of the ionospheric conductivity. The topological properties, fractal dimensions, and connective indices characterizing the structure of the Pedersen and Hall conductivities on the nightside auroral zone are investigated theoretically. The restrictions imposed on the fractal estimates by the condition of ionospheric current percolation are analyzed. It is shown that the fluctuation scalings of the electric fields and auroral glow observed in the auroral zone fit well the restrictions imposed by the critical condition on the percolation of the Pedersen current. Thus, it is demonstrated that the fractal approach is a promising and convenient method for studying the properties of the ionosphere.

  13. Stability within Jupiter's polar auroral 'Swirl region' over moderate timescales

    NASA Astrophysics Data System (ADS)

    Stallard, Tom S.; Clarke, John T.; Melin, Henrik; Miller, Steve; Nichols, Jon D.; O'Donoghue, James; Johnson, Rosie E.; Connerney, John E. P.; Satoh, Takehiko; Perry, Michael

    2016-04-01

    Jupiter's Swirl region, poleward of the main auroral emission, has been characterised in previous observations as having highly variable auroral emission, changing dramatically across the region on a two-minute timescale, the typical integration time for UV images. This variability has made comparisons with H3+ emission difficult. Here, we show that the Swirl region in H3+ images is characterised by relatively stable emission, often with an arc of emission on the boundary between the Swirl and Dark regions. Coadding multiple UV images taken over the approximate lifetime of the H3+ molecule in the ionosphere, show similar structures to those observed in the H3+ images. Our analysis shows that UV auroral morphology within Jupiter's Swirl region is only highly variable on short timescales of ∼100 s, an intrinsic property of the particle precipitation process, but this variability drops away on timescales of 5-15 min. On moderate timescales between 10 and 100 min, the Swirl region is stable, evolving through as yet unknown underlying magnetospheric interactions. This shows that observing the UV aurora over timescales 5-15 min resolves clear auroral structures that will help us understand the magnetospheric origin of these features, and that calculating the variability over different timescales, especially >15 min, provides a new and important new tool in our understanding of Jupiter's polar aurora.

  14. Eyewitness Reports of the Great Auroral Storm of 1859

    NASA Technical Reports Server (NTRS)

    Green, James L.; Boardsen, Scott; Odenwald, Sten; Humble, John; Pazamickas, Katherine A.

    2005-01-01

    The great geomagnetic storm of 1859 is really composed of two closely spaced massive worldwide auroral events. The first event began on August 28th and the second began on September 2nd. It is the storm on September 2nd that results from the Carrington-Hodgson white light flare that occurred on the sun September l&. In addition to published scientific measurements; newspapers, ship logs and other records of that era provide an untapped wealth of first hand observations giving time and location along with reports of the auroral forms and colors. At its height, the aurora was described as a blood or deep crimson red that was so bright that one "could read a newspaper by." Several important aspects of this great geomagnetic storm are simply phenomenal. Auroral forms of all types and colors were observed to latitudes of 25deg and lower. A significant portion of the world's 125,000 miles of telegraph lines were also adversely affected. Many of - which were unusable for 8 hours or more and had a small but notable economic impact. T h s paper presents only a select few available first hand accounts of the Great Auroral Event of 1859 in an attempt to give the modern reader a sense of how this spectacular display was received by the public from many places around the globe and present some other important historical aspects of the storm.

  15. New frontiers in H-Beta auroral photometry

    NASA Astrophysics Data System (ADS)

    Unick, C.; Donovan, E.; Connors, M. G.; Spanswick, E.; Jackel, B. J.; Greffen, M. J.; Wilson, C.; Little, J.; Chaddock, D.; Schofield, I.; MacRae, A.; Chen, S.; Crowther, A.; James, S.; Read, A.; Willis, T.

    2013-12-01

    The proton aurora provides valuable information about magnetotail structure and dynamics. For example, the location of the equatorward boundary of the proton aurora is a robust indicator of magnetotail stretching. Also, proton auroral luminosities combined with in situ ion measurements provide important information about magnetic mapping between the inner CPS and the auroral ionosphere. In this paper, we present a new and innovative proton-auroral (H-Beta) meridian-scanning photometer (MSP) capable of higher spatial and temporal resolution than has been achieved in the past. This H-Beta MSP is the first of a new dual-wavelength (signal/background) MSP design with a single scanning mirror and no other moving parts. The novel filtering architecture allows for a near 100% duty cycle with a 30-second meridian scan and configurable operating modes. The new design is significantly more sensitive than the legacy CANOPUS MSPs. The increased SNR can be employed in a variety of ways, such as to achieve significantly higher time resolution. Here, we present the new instrument design, test data from a commissioning campaign in Athabasca, and some thoughts on how the enhance proton auroral capability can increase the science value of these measurements.

  16. Equatorward evolution of auroras from the poleward auroral boundary

    NASA Astrophysics Data System (ADS)

    Saka, O.; Hayashi, K.; Thomsen, M. F.

    2016-07-01

    An all-sky imager installed at the midnight sector in Dawson City (66.0° in geomagnetic latitude) recorded the equatorward evolution of auroras from the auroral poleward boundary. The auroras evolved as shear layers expanding southeastward with velocities of 1-4 km/s, referred to as N-S auroras, and occurred during the transient intensification of the convection electric fields in the nighttime magnetosphere, as inferred from an electron spectrogram at geosynchronous altitudes. A continuous increase in the inclination angle of the field lines and magnetic field perturbations associated with propagating ionospheric loop currents were observed in the auroral zone during the N-S auroras. Simultaneously, Pc4 pulsations were observed at low latitudes from night to day sectors. We conclude the following: (1) the N-S auroras are an auroral manifestation of the earthward drift of plasma sheet electrons in the equatorial plane associated with transient and localized convection electric fields; (2) the Pc4 pulsations are produced in the magnetosphere by plasma sheet ions in the plasmasphere. The localized convection fields produce a vortical motion of plasmas in the equatorial plane, which may initiate the N-S auroras and ionospheric loop currents in the auroral zone.

  17. Equatorward and poleward expansion of the auroras during auroral substorms

    SciTech Connect

    Nakamura, R. ); Oguti, Takasi ); Yamamoto, Tatsundo ); Kokubun, Susumu )

    1993-04-01

    The authors have used all-sky TV auroral data from a number of different sources to study the formation of the auroral bulge with high spatial and temporal resolution. By linking data sets which cover different parts of the sky they are able to study systematically the development of structures within the poleward expanding bulge. Structures develop to the west, east, and equatorward from a localized region of breakup. To the west a surge develops with a clockwise rotation (when viewed along the magnetic field direction). To the east thin auroral features propagate toward the east. Near the center of the bulge, auroral features develop equatorward, becoming north-south aligned. These and other observations are suggested to be the consequence of the bulge developing along the plasma steamlines as a two cell equipotential distribution. In terms of this model the authors are able to explain the expansions of the bulge in different directions, the observation of pulsating structures in the aurora, and offer explanations of other observations.

  18. An overview of Japanese CELSS research activities.

    PubMed

    Nitta, K

    1987-01-01

    Many research activities regarding Controlled Ecological Life Support System (CELSS) have been conducted and continued all over the world since the 1960's and the concept of CELSS is now changing from Science Fiction to Scientific Reality. Development of CELSS technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned mars flight programs. CELSS functions can be divided into two categories, Environment Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Based on these considerations, Japanese research activities have been conducted and will be continued under the tentative guideline of CELSS research activities as shown in documents /1/, /2/. The status of the over all activities are discussed in this paper.

  19. Strong Magnetic Field Fluctuations within Filamentary Auroral Density Cavities Interpreted as VLF Saucer Sources

    NASA Technical Reports Server (NTRS)

    Knudsen, D. L.; Kabirzadeh, R.; Burchill, J. K.; Pfaff, Robert F.; Wallis, D. D.; Bounds, S. R.; Clemmons, J. H.; Pincon, J.-L.

    2012-01-01

    The Geoelectrodynamics and Electro-Optical Detection of Electron and SuprathermalIon Currents (GEODESIC) sounding rocket encountered more than 100 filamentary densitycavities associated with enhanced plasma waves at ELF (3 kHz) and VLF (310 kHz)frequencies and at altitudes of 800990 km during an auroral substorm. These cavities weresimilar in size (20 m diameter in most cases) to so-called lower-hybrid cavities (LHCs)observed by previous sounding rockets and satellites; however, in contrast, many of theGEODESIC cavities exhibited up to tenfold enhancements in magnetic wave powerthroughout the VLF band. GEODESIC also observed enhancements of ELF and VLFelectric fields both parallel and perpendicular to the geomagnetic field B0 within cavities,though the VLF E field increases were often not as large proportionally as seen in themagnetic fields. This behavior is opposite to that predicted by previously published theoriesof LHCs based on passive scattering of externally incident auroral hiss. We argue thatthe GEODESIC cavities are active wave generation sites capable of radiating VLF wavesinto the surrounding plasma and producing VLF saucers, with energy supplied by cold,upward flowing electron beams composing the auroral return current. This interpretation issupported by the observation that the most intense waves, both inside and outside cavities,occurred in regions where energetic electron precipitation was largely inhibited orabsent altogether. We suggest that the wave-enhanced cavities encountered by GEODESICwere qualitatively different from those observed by earlier spacecraft because of thefortuitous timing of the GEODESIC launch, which placed the payload at apogee within asubstorm-related return current during its most intense phase, lasting only a few minutes.

  20. Strong magnetic field fluctuations within filamentary auroral density cavities interpreted as VLF saucer sources

    NASA Astrophysics Data System (ADS)

    Knudsen, D. J.; Kabirzadeh, R.; Burchill, J. K.; Pfaff, R. F.; Wallis, D. D.; Bounds, S. R.; Clemmons, J. H.; Pinçon, J.-L.

    2012-02-01

    The Geoelectrodynamics and Electro-Optical Detection of Electron and Suprathermal Ion Currents (GEODESIC) sounding rocket encountered more than 100 filamentary density cavities associated with enhanced plasma waves at ELF (<3 kHz) and VLF (3-10 kHz) frequencies and at altitudes of 800-990 km during an auroral substorm. These cavities were similar in size (˜20 m diameter in most cases) to so-called lower-hybrid cavities (LHCs) observed by previous sounding rockets and satellites; however, in contrast, many of the GEODESIC cavities exhibited up to tenfold enhancements in magnetic wave power throughout the VLF band. GEODESIC also observed enhancements of ELF and VLF electric fields both parallel and perpendicular to the geomagnetic field B0 within cavities, though the VLF E field increases were often not as large proportionally as seen in the magnetic fields. This behavior is opposite to that predicted by previously published theories of LHCs based on passive scattering of externally incident auroral hiss. We argue that the GEODESIC cavities are active wave generation sites capable of radiating VLF waves into the surrounding plasma and producing VLF saucers, with energy supplied by cold, upward flowing electron beams composing the auroral return current. This interpretation is supported by the observation that the most intense waves, both inside and outside cavities, occurred in regions where energetic electron precipitation was largely inhibited or absent altogether. We suggest that the wave-enhanced cavities encountered by GEODESIC were qualitatively different from those observed by earlier spacecraft because of the fortuitous timing of the GEODESIC launch, which placed the payload at apogee within a substorm-related return current during its most intense phase, lasting only a few minutes.

  1. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    SciTech Connect

    Wong, Alfred Y.

    1999-09-20

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.

  2. Research and technology activities at Ames Research Center's Biomedical Research Division

    NASA Technical Reports Server (NTRS)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  3. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Research activities. 2.52 Section 2.52 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CONFIDENTIALITY OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52...

  4. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Research activities. 2.52 Section 2.52 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CONFIDENTIALITY OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52...

  5. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Research activities. 2.52 Section 2.52 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CONFIDENTIALITY OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52...

  6. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Research activities. 2.52 Section 2.52 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CONFIDENTIALITY OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52...

  7. Self-archiving as researchers' outreach activity

    NASA Astrophysics Data System (ADS)

    Todoroki, Shin-Ichi

    Notable dissemination of two self-archived postprints is reported. Even after three years since the original publication, corresponding postprints were downloaded more than 1,500 times in the following three years. The demands would have probably arisen from the readers who do not subscribe to the journals in which my articles were published. The title of my article might have caught the eyes of researchers in different fields and YouTube viewers of my research video who followed the references I mentioned. Thus, self-archiving is one of the useful approaches for researchers' outreach activities. In order to increase voluntary registrations in their institutional repositories, positive aspects of self-archiving as discussed here should receive wide recognition among researchers and repository systems should provide registrants with quick and informative response to their articles.

  8. Auroral electrojets during deep solar minimum at the end of solar cycle 23

    NASA Astrophysics Data System (ADS)

    Pulkkinen, T. I.; Tanskanen, E. I.; Viljanen, A.; Partamies, N.; Kauristie, K.

    2011-04-01

    We investigate the auroral electrojet activity during the deep minimum at the end of solar cycle 23 (2008-2009) by comparing data from the IMAGE magnetometer chain, auroral observations in Fennoscandia and Svalbard, and solar wind and interplanetary magnetic field (IMF) observations from the OMNI database from that period with those recorded one solar cycle earlier. We examine the eastward and westward electrojets and the midnight sector separately. The electrojets during 2008-2009 were found to be weaker and at more poleward latitudes than during other times, but when similar driving solar wind and IMF conditions are compared, the behavior in the morning and evening sectors during 2008-2009 was similar to other periods. On the other hand, the midnight sector shows distinct behavior during 2008-2009: for similar driving conditions, the electrojets resided at further poleward latitudes and on average were weaker than during other periods. Furthermore, the substorm occurrence frequency seemed to saturate to a minimum level for very low levels of driving during 2009. This analysis suggests that the solar wind coupling to the ionosphere during 2008-2009 was similar to other periods but that the magnetosphere-ionosphere coupling has features that are unique to this period of very low solar activity.

  9. Coherence scales of wavefield during propagation through naturally disturbed ionosphere in the polar cap, auroral, and equatorial regions

    SciTech Connect

    Basu, S.; Basu, S.; Livingston, R.C.

    1990-05-03

    Phase and intensity scintillation measurements have been made at low latitudes in the equatorial anomaly region, and at high latitudes in the auroral oval and the polar cap regions, using phase coherent transmissions at 250 MHz from stationary and near stationary satellites. The observations pertain to periods of high solar activity when intense scintillation activity is recorded at each of the above observing sites. This data set has been utilized to study the reduction of coherence times of intensity and complex amplitude scintillation with increasing strength of scattering. Estimates of coherence scales of intensity and complex amplitude scintillation at 250 MHz are provided which indicate that coherent scales of scintillation are typically of the order of hundreds of meters at high latitudes but approach values as small as tens of meters in the equatorial anomaly region. The phase spectral index in the nightside auroral oval is observed to be much steeper (p sub psi = .4) than those typically observed in the equatorial (p sub psi = 2.4) or polar cap regions (p sub psi approx. -2.3). It shows the importance of large scale phase variations in the nightside auroral oval. Under strong scatter conditions, the coherence times of complex amplitude scintillation are shown to asymptotically approach a value which is 1.4 times the coherence time of intensity scintillation. This result is consistent with the theoretical predictions for Rayleigh statistics.

  10. Auroras Now! - Auroral nowcasting service for Hotels in Finnish Lapland and its performance during winter 2003-2004

    NASA Astrophysics Data System (ADS)

    Kauristie, K.; Mälkki, A.; Pulkkinen, A.; Nevanlinna, H.; Ketola, A.; Tulkki, V.; Raita, T.; Blanco, A.

    2004-12-01

    European Space Agency is currently supporting 17 Service Development Activities (SDA) within its Space Weather Pilot Project. Auroras Now!, one of the SDAs, has been operated during November 2003 - March 2004 as its pilot season. The service includes a public part freely accessible in Internet (http://aurora.fmi.fi) and a private part visible only to the customers of two hotels in the Finnish Lapland through the hotels' internal TV-systems. The nowcasting system is based on the magnetic recordings of two geophysical observatories, Sodankylä (SOD, MLAT ~64 N) and Nurmijärvi (NUR, MLAT ~57 N). The probability of auroral occurrence is continuously characterised with an empirically determined three-level scale. The index is updated once per hour and based on the magnetic field variations recorded at the observatories. During dark hours the near-real time auroral images acquired at SOD are displayed. The hotel service also includes cloudiness predictions for the coming night. During the pilot season the reliability of the three-level magnetic alarm system was weekly evaluated by comparing its prediction with auroral observations by the nearby all-sky camera. Successful hits and failures were scored according to predetermined rules. The highest credit points when it managed to spot auroras in a timely manner and predict their brightness correctly. Maximum penalty points were given when the alarm missed clear bright auroras lasting for more than one hour. In this presentation we analyse the results of the evaluation, present some ideas to further sharpen the procedure, and discuss more generally the correlation between local auroral and magnetic activity.

  11. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    NASA Astrophysics Data System (ADS)

    Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jörg-Micha

    2016-05-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  12. Development and performance of a suprathermal electron spectrometer to study auroral precipitations.

    PubMed

    Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G; Samara, Marilia; Stange, Jason L; Trevino, John A; Webster, James; Jahn, Jörg-Micha

    2016-05-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora. PMID:27250414

  13. In-situ observation of electron kappa distributions associated with discrete auroral arcs

    NASA Astrophysics Data System (ADS)

    Ogasawara, Keiichi; Livadiotis, George; Samara, Marilia; Michell, Robert; Grubbs, Guy

    2016-04-01

    The Medium-energy Electron SPectrometer (MESP) sensor aboard a NASA sounding rocket was launched from Poker Flat Research Range on 3 March 2014 as a part of Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission. GREECE targeted to discover convergent E-field structures at low altitude ionosphere to find their contribution to the rapid fluid-like structures of aurora, and MESP successfully measured the precipitating electrons from 2 to 200 keV within multiple discrete auroral arcs with the apogee of 350 km. MESP's unprecedented electron energy acceptance and high geometric factor made it possible to investigate precise populations of the suprathermal components measured in the inverted-V type electron energy distributions. The feature of these suprathermal electrons are explained by the kappa distribution functions with the parameters (densty, temperature, and kappa) consistent with the near-Earth tail plasma sheet, suggesting the source population of the auroral electrons. The kappa-values are different between each arc observed as a function of latitude, but are almost stable within one discrete arc. We suggest that this transition of kappa reflects the probagation history of source electrons through the plasma sheet by changing its state from non-equilibrium electron distributions to thermal ones.

  14. MPD thruster research issues, activities, strategies

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.

  15. TRIGA research reactor activities around the world

    SciTech Connect

    Chesworth, R.H.; Razvi, J.; Whittemore, W.L. )

    1991-11-01

    Recent activities at several overseas TRIGA installations are discussed in this paper, including reactor performance, research programs under way, and plans for future upgrades. The following installations are included: (1) 14,000-kW TRIGA at the Institute for Nuclear Research, Pitesti, Romania; (2) 2,000-kW TRIGA Mark II at the Institute of Nuclear Technology, Dhaka, Bangladesh; (3) 3,000-kW TRIGA conversion, Philippine Nuclear Research Institute, Quezon City, Philippines; and (4) other ongoing installations, including a 1,500-kW TRIGA Mark II at Rabat, Morocco, and a 1,000-kW conversion/upgrade at the Institute Asunto Nucleares, Bogota, Columbia.

  16. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    SciTech Connect

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.

  17. Observations of vertical winds and the origin of thermospheric gravity waves launched by auroral substorms and westward travelling surges

    NASA Technical Reports Server (NTRS)

    Rees, D.

    1986-01-01

    Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location.

  18. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    DOE PAGES

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arcmore » location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.« less

  19. A multi-scale magnetotail reconnection event at Saturn and associated flows: Cassini/UVIS auroral observations

    NASA Astrophysics Data System (ADS)

    Radioti, Aikaterini; Grodent, Denis; Jia, Xianzhe; Gérard, Jean-Claude; Bonfond, Bertrand; Pryor, Wayne; Gustin, Jacques; Mitchell, Donald; Jackman, Caitriona

    2015-04-01

    We present high-resolution Cassini/UVIS (Ultraviolet Imaging Spectrograph) observations of Saturn's aurora during May 2013 (DOY 140-141). The observations reveal an enhanced auroral activity in the midnight-dawn quadrant in an extended local time sector (~02 to 05 LT), which rotates with an average velocity of ~ 45% of rigid corotation. The auroral dawn enhancement reported here, given its observed location and brightness, is most probably due to hot tenuous plasma carried inward in fast moving flux tubes returning from a tail reconnection site to the dayside. These flux tubes could generate intense field-aligned currents that would cause aurora to brighten. However, the origin of tail reconnection (solar wind or internally driven) is uncertain. Based mainly on the flux variations, which do not demonstrate flux closure, we suggest that the most plausible scenario is that of internally driven tail reconnection which operates on closed field lines. The observations also reveal multiple intensifications within the enhanced region suggesting an x-line in the tail, which extends from 02 to 05 LT. The localised enhancements evolve in arc and spot-like small scale features, which resemble vortices mainly in the beginning of the sequence. These auroral features could be related to plasma flows enhanced from reconnection which diverge into multiple narrow channels then spread azimuthally and radially. We suggest that the evolution of tail reconnection at Saturn may be pictured by an ensemble of numerous narrow current wedges or that inward transport initiated in the reconnection region could be explained by multiple localised flow burst events. The formation of vortical-like structures could then be related to field-aligned currents, building up in vortical flows in the tail. An alternative, but less plausible, scenario could be that the small scale auroral structures are related to viscous interactions involving small-scale reconnection.

  20. Probing Io's putative global magma ocean through FUV auroral spot morphology

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz

    2013-10-01

    Whether Io possesses a magma ocean or not is a central issue for understanding the most volcanically active body in our solar system and is a long standing question as well. Khurana et al., Science 2011, recently substantiated the existence of a highly conductive magma layer inside Io's interior based on Galileo magnetometer measurements and techniques similar to those used to probe the crusts of Europa, Ganymede, and Callisto for liquid water oceans. If a global magma ocean modifies Io's local magnetic field environment, it will also significantly alter the morphology of Io's UV aurora. The most prominent aurora features are two bright spots that rock around the equator roughly in correlation with the varying orientation of the tilted Jovian magnetic field. Magnetic induction in a magma ocean would strongly attenuate the rocking of these near-surface spots. Interestingly, in previous STIS FUV observations the measured spot locations disagree considerably from the locations theoretically predicted for the global magma ocean case, but are in reasonable agreement if there is no ocean. However, the temporal and orbital coverage of Io's rocking auroral spots for the STIS dataset is presently insufficient to conclusively exclude or further investigate the molten magma layer idea. We therefore propose two visits of five consecutive STIS orbits to trend the auroral spot feature locations over a full variation cycle of the Jovian magnetic field near western elongation. This investigation will decisively constrain the molten magma layer inside Io and tests the putative evidence for a global ocean by Khurana et al. {2011}.

  1. Alaskan Auroral All-Sky Images on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  2. Ionospheric scintillations and in-situ measurements at an auroral location in the European sector

    SciTech Connect

    Basu, S.; Basu, S.; MacKenzie, E.; Weimer, D.

    1987-05-01

    The orbiting HiLat satellite offered a unique opportunity for studying the ionospheric scintillation parameters in relation to the in-situ measurements of ionization density, drift velocity, field-aligned current, and particle precipitation during the sunspot minimum period. This paper discusses the results of such a morphological study based on observations at the auroral-oval station of Tromso, Norway. The dynamics of the spatial and temporal extent of this region are illustrated in the invariant latitude/magnetic local time grid. The geometrical enhancement of scintillations observed during the alignment of the propagation path with the local magnetic L-shell is shown to be the most consistent and conspicuous feature of scintillations in the nighttime auroral oval. The steepening of phase spectral slope in this region is indicative of the presence of L-shell aligned sheet-like irregularities at long scale lengths. The seasonal variational of total electron content (TEC) determined from the differential Doppler measurements of HiLat transmissions is discussed in relation to the in-situ density measurements at 830 km. The results are also utilized to illustrate the dependence of ionospheric structure parameters on short-term variability of solar activity during the sunspot minimum period. Special effort is made to illustrate that the joint study of scintillation/TEC and in-situ parameters provides an insight into the nature of magnetospheric coupling with the high-latitude ionosphere.

  3. What Can be Learned from the Absence of Auroral X-Ray Emission from Saturn?

    SciTech Connect

    Hui, Yawei; Cravens, Thomas E. E.; Ozak, Nataly; Schultz, David Robert

    2010-01-01

    To understand the origin and magnitude of the present upper limit observations of Saturn's auroral X-ray emission, we use simple models based on the mechanism that leads to analogous emission at Jupiter, charge transfer between ion precipitation and atmospheric gas. Several putative sources and characteristics of the precipitation are considered, namely, (1) highly charged solar wind ions with additional acceleration and (2) ambient, thermal ion population originating, for example, from Saturn's satellites, and then accelerated to high energies. Estimates obtained for each of these sources show the need for acceleration, either to focus the highly charged solar wind ions into the atmosphere or to enable stripping of the initially low-charge state ambient ions to higher charges. The former yields a constraint on the existing accelerating potentials present at Saturn but can only account for about a tenth of the observed upper limit to the auroral luminosity, while the latter requires extremely low limits on the area (i.e., less than 100 km{sup 2}) over which field-aligned potentials are active and needed to produce the acceleration to generate the observational upper limit on the X-ray luminosity. We therefore narrow the range of possible ion sources, the accelerating potentials required that are consistent with the present understanding of the magnetosphere, and model upper limit of X-ray emission from ion precipitation.

  4. A simple kinetic theory of auroral arc scales

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.

    1986-01-01

    A kinetic theory of the origins of the auroral arc scale spectrum is presented in this paper. The conceptual basis of the theory is current conservation in a turbulent plasma at the magnetospheric equatorial region in which a field-aligned current is generated and the local electrostatic potential structure is forced to adjust to the presence of the field-aligned current. This simple model uses an ad hoc Ohm's law relationship between the perpendicular current and the perpendicular electric field, but with a negative conductance in the generator region so that J(perpendicular) x E(perpendicular) is less than 0. An exact solution of a simple model of the concept yields a bistatic auroral generator for which multiple-arc formation is predicted if the field-aligned current exceeds a critical value. The predicted scale spectrum is inversely proportional to the square root of the field-aligned current strength spectrum.

  5. An auroral effect on the fair weather electric field

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Croskey, C. L.

    1979-01-01

    Evidence is presented for coupling between the upper and lower atmosphere by means of the shorting out of the vertical mesospheric electric field by auroral radiation, which causes a transfer of mesospheric potential to the lower atmosphere. Measurements were made by an electric field antenna which was part of a parachute-borne payload, launched by rocket from near Fairbanks, Alaska. Data obtained from quiet time observations indicate the normal low altitude electric field pattern, with a greater field at high altitudes, while observations at disturbed times show a small field at high altitudes and a greater field at low altitudes. Means for observing this effect at lower latitudes are also suggested. While the data obtained support the proposed mechanism, it is noted that other mechanisms, such as direct modulation by large amounts of solar cosmic rays and aurorally produced charge separation, may also be important.

  6. Asymmetric auroral intensities in the Earth's Northern and Southern hemispheres

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Østgaard, N.

    2009-07-01

    It is commonly assumed that the aurora borealis (Northern Hemisphere) and aurora australis (Southern Hemisphere) are mirror images of each other because the charged particles causing the aurora follow the magnetic field lines connecting the two hemispheres. The particles are believed to be evenly distributed between the two hemispheres, from the source region in the equatorial plane of the magnetosphere. Although it has been shown that similar auroral features in the opposite hemispheres can be displaced tens of degree in longitude and that seasonal effects can cause differences in global intensity, the overall auroral patterns were still similar. Here we report observations that clearly contradict the common assumption about symmetric aurora: intense spots are seen at dawn in the Northern summer Hemisphere, and at dusk in the Southern winter Hemisphere. The asymmetry is interpreted in terms of inter-hemispheric currents related to seasons, which have been predicted but hitherto had not been seen.

  7. Auroral electrostatic solitons and supersolitons in a magnetized nonthermal plasma

    SciTech Connect

    Rufai, O. R.

    2015-05-15

    Exploiting the spacecraft measurements in the auroral region, finite amplitude nonlinear low frequency electrostatic solitons and supersolitons in a magnetized plasma consisting of cold ions fluid, Boltzmann protons, and nonthermal hot electrons are studied by applying a pseudo-potential technique. The localized solution of the nonlinear structures is obtained through the charge neutrality condition. Further numerical investigation shows the existence of supersoliton solutions at supersonic Mach numbers regime. The amplitude of ion-acoustic structures decreased with an increase in nonthermal electrons and ion density ratio. For the plasma parameters relevant to the auroral zone of the Earth's magnetosphere, the electric field amplitude of supersolitons is found to be about 9 mV/m, which is in agreement with satellite observations.

  8. Weakening of Jupiter's main auroral emission during January 2014

    NASA Astrophysics Data System (ADS)

    Badman, S. V.; Bonfond, B.; Fujimoto, M.; Gray, R. L.; Kasaba, Y.; Kasahara, S.; Kimura, T.; Melin, H.; Nichols, J. D.; Steffl, A. J.; Tao, C.; Tsuchiya, F.; Yamazaki, A.; Yoneda, M.; Yoshikawa, I.; Yoshioka, K.

    2016-02-01

    In January 2014 Jupiter's FUV main auroral oval decreased its emitted power by 70% and shifted equatorward by ˜1°. Intense, low-latitude features were also detected. The decrease in emitted power is attributed to a decrease in auroral current density rather than electron energy. This could be caused by a decrease in the source electron density, an order of magnitude increase in the source electron thermal energy, or a combination of these. Both can be explained either by expansion of the magnetosphere or by an increase in the inward transport of hot plasma through the middle magnetosphere and its interchange with cold flux tubes moving outward. In the latter case the hot plasma could have increased the electron temperature in the source region and produced the intense, low-latitude features, while the increased cold plasma transport rate produced the shift of the main oval.

  9. [Aurore, child martyr. Essay on violence done to children].

    PubMed

    Gaudreau, J

    1992-01-01

    This article draws on the sad story of Aurore Gagnon, a battered child raised in rural Québec and whose turmoil was dramatized on film. By elaborating on this symbol, the author is able to generate, at least in a systemic perspective, a number of issues and outlooks that go far beyond the generalities usually associated with this tale. For instance, there is ample evidence showing that the behaviour of Aurore's stepmother, aberrant as it may be, is largely caused by a set of environmental circumstances. Of course, today's social conditions hardly resemble those of the past. Yet, given the conjunctions of certain factors, children, who are nevertheless our most valuable asset, continue to be in danger in the presence of their very own parents.

  10. The chemical effects of auroral oxygen precipitation at Jupiter

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Eisenhower, G. M.

    1992-01-01

    A numerical model of the auroral ionosphere and thermosphere of Jupiter, which includes odd oxygen species, is presented. Density profiles of neutral species O, OH, and H2O and the ion species H2(+), H3(+), H(+), H2O(+), H3O(+), O(+), and OH(+) are calculated. The total neutral odd oxygen density is found to be about 10 exp 5/cu cm near the auroral ionosphere peak. The major ionospheric ion, H(+) reacts rapidly with both O and H2O and the presence of these species in the model calculations significantly reduces the H(+) density and thus the electron density. The chemical lifetime against reaction of H(+) with odd oxygen is about 1000 s near the peak, whereas the radiative recombination lifetime is roughly 10,000 s.

  11. Electric field and plasma density measurements in the auroral electrojet

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F.; Kelley, M. C.; Fejer, B. G.; Kudeki, E.; Carlson, C. W.; Pedersen, A.; Hausler, B.

    1984-01-01

    Extensive experimental and theoretical studies of auroral and equatorial electrojet irregularities have been conducted for the last two decades. The present investigation is concerned with electric field and plasma density fluctuation measurements made on board of the Porcupine II sounding rocket and on a free-flyer ejected from the main spacecraft. The Porcupine II sounding rocket payload was launched at 1922:00 UT from Kiruna, Sweden, on March 20, 1977. The considered results show electrostatic turbulence in the unstable auroral E region confined to a layer between 96 and 121 km. The similarities between the observations of two simultaneous payloads spaced a few kilometers apart indicate that on a large scale, the electrojet turbulence displays uniform characteristics.

  12. Stationary electrostatic solitary waves in the auroral plasma

    NASA Technical Reports Server (NTRS)

    Lotko, W.; Kennel, C. F.

    1981-01-01

    Time-stationary fluid equations are used to describe electrostatic solitons in an auroral plasma of cold ionospheric and hot plasma sheet particles. A one-dimensional fluid analysis of the four component model auroral plasma indicates that at least two different, weakly damped, small amplitude electrostatic solitons can propagate along the geomagnetic field. The slower of the two is a generalization of an ion-acoustic solitary wave in a multi-component plasma, and ion inertia is negligible for the faster mode which is supported by the two electron components and resembles a clump of shielded negative space charge convected by the drifting plasma sheet electrons. Some expected features of the large amplitude properties are indicated qualitatively, and an analogy is considered between the theory of ion-acoustic shocks and a theory of double layers.

  13. Inferences Concerning the Magnetospheric Source Region for Auroral Breakup

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1992-01-01

    It is argued that the magnetospheric source region for auroral arc breakup and substorm initiation is along boundary plasma sheet (BPS) magnetic field lines. This source region lies beyond a distinct central plasma sheet (CPS) region and sufficiently far from the Earth that energetic ion motion violates the guiding center approximation (i.e., is chaotic). The source region is not constrained to any particular range of distances from the Earth, and substorm initiation may be possible over a wide range of distances from near synchronous orbit to the distant tail. It is also argued that the layer of low-energy electrons and velocity dispersed ion beams observed at low altitudes on Aureol 3 is not a different region from the region of auroral arcs. Both comprise the BPS. The two regions occasionally appear distinct at low altitudes because of the effects of arc field-aligned potential drops on precipitating particles.

  14. Isis 1 observations at the source of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Benson, R. F.; Calvert, W.

    1979-01-01

    Observations of auroral kilometric radiation (AKR) were made by Isis 1 in the source region. The radiation is found to be generated in the extraordinary mode just above the local cut-off frequency and to emanate nearly perpendicular to the magnetic field. It occurs within local depletions of electron density, where the ratio of plasma frequency to cyclotron frequency is less than 0.2. The density depletion is restricted to altitudes above about 2000 km, and the upper AKR frequency limit corresponds to the extraordinary cut-off frequency at this altitude. AKR is observed from Isis 1 above the nighttime auroral zone over a wider extent in longitude than in latitude with an intense source region observed most often near 2200 LMT and 70 deg invariant latitude. It is directly related to inverted V electron precipitation events with an electron-to-wave energy conversion efficiency of the order of 0.1 to 1%.

  15. Preliminary observations from the Auroral and Ionospheric Remote Sensing imager

    NASA Astrophysics Data System (ADS)

    Meng, Ching I.; Huffman, Robert E.

    1987-09-01

    The scientific objectives and the instrumentation of the Polar BEAR's Auroral and Ionospheric Remote Sensing (AIRS) experiment are described together with the techniques employed for global imaging and the results of preliminary observations. The AIRS four-color imager covers selected wavelengths in the visible/near UV and vacuum UV (VUV) ranges. The AIRS experiment also has advantages of narrow 3.0-nm VUV bandpath imaging, not possible with the use of interference filters, and of three alternative modes of operation (imaging, spectrometer, or photometer), possible by controlling the scan mirror and the spectrometer gridding motor. Because of the satellite's high altitude (about 1000 km), most of the auroral oval can be imaged.

  16. Summary of Chernobyl followup research activities

    SciTech Connect

    Not Available

    1992-06-01

    In NUREG-1251, ``Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States,`` April 1989, the NRC staff concluded that no immediate changes in NRC`s regulations regarding design or operation of US commercial reactors were needed; however, it recommended that certain issues be considered further. NRC`s Chernobyl followup research program consisted of the research tasks undertaken in response to the recommendations in NUREG-1251. It included 23 tasks that addressed potential lessons to be learned from the Chernobyl accident. This report presents summaries of NRC`s Chernobyl followup research tasks. For each task, the Chernobyl-related issues are indicated, the work is described, and the staff`s findings and conclusions are presented. More detailed reports concerning the work are referenced where applicable. This report closes out NRC`s Chernobyl followup research program as such, but additional research will be conducted on some issues as needed. The report includes remarks concerning significant further activity with respect to the issues addressed.

  17. Summary of Chernobyl followup research activities

    SciTech Connect

    Not Available

    1992-06-01

    In NUREG-1251, Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States,'' April 1989, the NRC staff concluded that no immediate changes in NRC's regulations regarding design or operation of US commercial reactors were needed; however, it recommended that certain issues be considered further. NRC's Chernobyl followup research program consisted of the research tasks undertaken in response to the recommendations in NUREG-1251. It included 23 tasks that addressed potential lessons to be learned from the Chernobyl accident. This report presents summaries of NRC's Chernobyl followup research tasks. For each task, the Chernobyl-related issues are indicated, the work is described, and the staff's findings and conclusions are presented. More detailed reports concerning the work are referenced where applicable. This report closes out NRC's Chernobyl followup research program as such, but additional research will be conducted on some issues as needed. The report includes remarks concerning significant further activity with respect to the issues addressed.

  18. Ionospheric Convection in the Postnoon Auroral Oval: SuperDARN and Polar UVI Observations

    NASA Technical Reports Server (NTRS)

    Kozlovsky, A.; Koustov, A.; Lyatsky, W.; Kangas, J.; Parks, G.; Chua, D.

    2002-01-01

    Super Dual Auroral Radar Network (SuperDARN) observations, ultraviolet imaging from the Polar satellite (UVI), and particle precipitation data from DMSP satellites have been used to investigate the electrodynamics of the postnoon auroral oval in the Northern hemisphere. We show that: (1) For negative IMF By, the convection reversal (CR) was co-located with the maximum of auroral luminosity, but during positive IMF By the convection reversal was poleward of the auroral oval up to several degrees in latitude; (2) Postnoon auroral oval was associated with a large-scale upward field-aligned current (FAC) of the order of 6x10(exp -7). A m(exp -2) in magnitude (the FAC was inferred from the SuperDARN and UVI data). For negative IMF By, maximum of the auroral intensity coincides in latitude with the maximum of the upward field-aligned current. However, for positive IMF By. the maximum of the upward FAC was shifted to the poleward edge of the auroral oval; (3) In response to the IMF By turning from positive to negative, the maximum of the auroral luminosity did not change its position noticeably, but the position of the convection reversal changed considerably from 80-81 degs to about 76 degs MLAT, and the maximum of FAC moved from 77-78 degs to about 76 degs MLAT. Thus, after IMF By turns negative, both the FAC maximum and CR tend to coincide with the auroral maximum; (4) The IMF Bz positive deflection was followed by a decrease in both field-aligned current intensity and auroral luminosity. However, the decrease in the auroral luminosity lags behind the FAC decrease by about 12 min. Firstly, these observations allow us to suggest that the IMF By-related electric field can penetrate into the closed magnetosphere and produce convection and FAC changes in the region of the postnoon auroral oval. Secondly, we suggest that the interchange instability is a promising mechanism for the postnoon auroras.

  19. Saturation and energy-conversion efficiency of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Tsai, S. T.; Xu, M. J.; Shen, J. W.

    1981-01-01

    A quasi-linear theory is used to study the saturation level of the auroral kilometric radiation. The investigation is based on the assumption that the emission is due to a cyclotron maser instability as suggested by Wu and Lee and Lee et al. The thermodynamic bound on the radiation energy is also estimated separately. The energy-conversion efficiency of the radiation process is discussed. The results are consistent with observations.

  20. Io-related Jovian auroral arcs: Modeling parallel electric fields

    NASA Astrophysics Data System (ADS)

    Su, Yi-Jiun; Ergun, Robert E.; Bagenal, Fran; Delamere, Peter A.

    2003-02-01

    Recent observations of auroral arcs on Jupiter suggest that electrons are being accelerated downstream from Io's magnetic footprint, creating detectable emissions. The downstream electron acceleration is investigated using one-dimensional spatial, two-dimensional velocity static Vlasov solutions under the constraint of quasi-neutrality and an applied potential drop. The code determines self-consistent charged particle distributions and potential structure along a magnetic field flux tube in the upward (with respect to Jupiter) current region of Io's wake. The boundaries of the flux tube are the Io torus on one end and Jupiter's ionosphere on the other. The results indicate that localized electric potential drops tend to form at 1.5-2.5 RJ Jovicentric distance. A sufficiently high secondary electron density causes an auroral cavity to be produced similar to that on Earth. Interestingly, the model results suggest that the proton and the hot electron population in the Io torus control the electron current densities between the Io torus and Jupiter and thus may control the energy flux and the brightness of the aurora downstream from Io's magnetic footprint. The parallel electric fields also are expected to create an unstable horseshoe electron distribution inside the auroral cavity, which may lead to the shell electron cyclotron maser instability. Results from our model suggest that in spite of the differing boundary conditions and the large centrifugal potentials at Jupiter, the auroral cavity formation may be similar to that of the Earth and that parallel electric fields may be the source mechanism of Io-controlled decametric radio emissions.

  1. Plasma Heating and Flow in an Auroral Arc

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.

    1996-01-01

    We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.

  2. Diffuse Auroral Precipitation Caused by Wave-Particle Scattering (Invited)

    NASA Astrophysics Data System (ADS)

    Thorne, R. M.; Ni, B.; Bortnik, J.; Li, W.; Nishimura, Y.

    2013-12-01

    Diffuse auroral electron precipitation provides over 70% of ionizing energy input into the nightside upper atmosphere and is a major contribution to the global distribution of high latitude ionospheric conductivity. It is therefore important to understand the origin of the electron precipitation, since this controls the electro-dynamic coupling between the ionosphere and the magnetosphere. Intense electromagnetic whistler-mode chorus emissions and electrostatic cyclotron harmonic (ECH) waves are excited following the injection of plasma sheet electrons (100 eV - 30 keV) into the inner magnetosphere. Resonant scattering by either plasma wave can potentially cause electron precipitation into the atmosphere and subsequent diffuse auroral excitation. However, quantitative analyses of the rate of electron scattering have shown that a combination of both upper band (f > fce/2) and lower band (f < fce/2) chorus provides the dominant mechanism for nightside diffuse auroral precipitation on magnetic field lines mapping to L < 8 where the diffuse aurora is most intense, and that lower band chorus acts as the major contributor to the occurrence of the diffuse aurora on the dayside. It has also been demonstrated that pulsating aurora is cause by the modulation of lower band chorus in the wave source region deep in the magnetosphere. Since chorus emissions are now considered to be important for causing both the loss and local acceleration of high-energy (> 500 keV) radiation belt electrons, the global distribution of diffuse auroral precipitation measured either on the ground or by low altitude satellites can be used to infer the global intensity of chorus waves for subsequent radiation belt modeling.

  3. Electrostatic double layers as auroral particle accelerators - a problem

    NASA Astrophysics Data System (ADS)

    Bryant, D. A.; Courtier, G. M.

    2015-04-01

    A search of the Annales Geophysicae database shows that double layers and other quasi-static electric potential structures have been invoked hundreds of times since the year 2000 as being the agents of auroral electron acceleration. This is despite the fact that energy transfer by conservative fields has been known for some 200 years to be impossible. Attention is drawn to a long-standing interpretation of the acceleration process in terms of the dynamic fields of electrostatic waves.

  4. Particle simulation of auroral double layers. Doctoral thesis

    SciTech Connect

    Smith, B.L.

    1992-06-01

    Externally driven magnetic reconnection has been proposed as a possible mechanism for production of auroral electrons during magnetic substorms. Fluid simulations of magnetic reconnection lead to strong plasma flows towards the increasing magnetic field of the earth. These plasma flows must generate large scale potential drops to preserve global charge neutrality. We have examined currentless injection of plasma along a dipole magnetic field into a bounded region using both analytic techniques and particle simulation.

  5. Decade of balloon observations of auroral X-rays

    SciTech Connect

    Venkatesan, D.; Vij, K.K.

    1981-01-01

    The paper describes balloon observations of bremsstrahlung X-rays carried out by the University of Calgary over the past decade which deal with morphological studies of auroral electron precipitation. The program concentrated on the understanding of the correlation between parent electrons and secondary X-rays, the study of microbursts, east-west and north-south extent of electron precipitation, and precipitation during pulsating auroras.

  6. Dynamics of ionosphere disturbances along the Eastern-Asian meridian from auroral to equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Pirog, Olga; Zherebtsov, Gelii; Kurkin, Vladimir; Shi, J. K.; Wang, Xiao

    The research results of ionosphere variation in the Eastern-Asian sector observed at the decay and minimum of solar activity (SA) in the period 2004-2007 during geomagnetic disturbances are presented. Data from ionospheric stations located within the latitude-longitude sector (20-70N, 90-160E), oblique-incidence sounding on the radio paths Magadan-Irkutsk and No-rilsk -Irkutsk and results of total electron content (TEC) measurements at the network of GPS ground-based receivers are used to analyze the variations in ionospheric parameters. Data of zenith photometers are applied to investigate the disturbances of atmospheric emissions. Four groups of anomalous ionospheric disturbances observed during the low solar activity are re-vealed: falls of electron density in the evening hour connected with the formation of equatorial wall of MIT, large-scale ionospheric disturbances, wavelike disturbances with the period of two days, and sharp short-term fluctuations in the electron density more intensive at the middle latitudes during the storm main phase. It was also found that often there was no direct con-nection between ionospheric disturbances and geomagnetic activity during moderate magnetic storms in solar minimum. Observed disturbances can be induced by the joint action of a few factors: the increase in electric field of magnetospheric convection, the generation of AGWs in the auroral zone and their propagation southwestward, and the disturbed neutral winds generated by the large-scale storm-induced thermospheric circulation in addition to TADs as-sociated with winds. The reason for occurrence of the wavelike disturbance with the periods from two till seven days can be the planetary atmospheric waves. The numerical model for ionosphere-plasmasphere coupling was used to interpret the certain of observed data. It is ob-tained that use of empirical models of electron precipitation, magnetospheric convection and thermospheric parameters with the correction by the observed

  7. 3D modelling of stellar auroral radio emission

    NASA Astrophysics Data System (ADS)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  8. Direct measurements of severe spacecraft charging in auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Hardy, D. A.; Rich, F. J.; Rubin, A. G.; Tautz, M. F.; Saflekos, N. A.; Yeh, H. C.

    1985-01-01

    Questions are addressed concerning how large space structures in polar orbit will interact with auroral environments. Because spacecraft charging at ionospheric attitudes does not seriously threaten the operation of today's relatively small polar satellites the subject of environment interactions has not received the widespread attention given to it at geostationary altitude. As a matter of economics it is desirable to apply as much as possible of what was learned about spacecraft interactions at geostationary orbit to low Earth orbits. The environment at auroral latitudes in the ionosphere differs from that encountered at geostationary altitude in at least two major aspects. (1) There is a large reservoir of high-density, cold plasma which tends to mitigate charging effects by providing a large source of charged particles from which neutralizing currents maybe drawn. Significant wake effects behind large structures will introduce new problems with differential charging. (2) Between the magnetic equator and the ionosphere, auroral electrons frequently undergo field-aligned accelerations of several kilovolts. In such environments, fluxes of energetic protons are usually below the levels of instrumentation sensitivity.

  9. The night when the auroral and equatorial ionospheres converged

    NASA Astrophysics Data System (ADS)

    Martinis, C.; Baumgardner, J.; Mendillo, M.; Wroten, J.; Coster, A.; Paxton, L.

    2015-09-01

    An all-sky imaging system at the McDonald Observatory (30.67°N, 104.02°W, 40° magnetic latitude) showed dramatic ionospheric effects during a moderate geomagnetic storm on 1 June 2013. The auroral zone expanded, leading to the observation of a stable auroral red (SAR) arc. Airglow depletions associated with equatorial spread F (ESF) were also seen for the first time at such high magnetic latitude. Total electron content measurements from a Global Positioning System (GPS) receiver exhibited ionospheric irregularities typically associated with ESF. We explore why this moderate geomagnetic disturbance leads to such dramatic ionospheric perturbations at midlatitudes. A corotating interaction region-like driver and a highly contracted plasmasphere caused the SAR arc to occur at L shell ~ 2.3. For ESF at L ~ 2.1, timing of the storm intensification, alignment of the sunset terminator with the central magnetic meridian, and sudden variations in the westward auroral electrojet all combined to trigger equatorial irregularities that reached altitudes of ~ 7000 km. The SAR arc and ESF signatures at the ionospheric foot points of inner magnetosphere L shells (L ~ 2) represent a dramatic convergence of pole to equator/equator to pole coupling at midlatitudes.

  10. New techniques for auroral irregularity studies with COSCAT

    NASA Astrophysics Data System (ADS)

    Eglitis, P.; McCrea, I. W.; Robinson, T. R.; Nygrén, T.; Schlegel, K.; Turunen, T.; Jones, T. B.

    1998-10-01

    The COSCAT system enables the detection of E-region auroral backscatter with the EISCAT remote receivers at magnetic aspect angles close to 90 °. This is achieved by utilising a low-power transmitter stationed in Oulu, Finland. Many important observations of E-region irregularities have been achieved with this simple experiment. Recent studies have attempted to push the COSCAT system to its experimental limits. Firstly, the CW signal has been phase-modulated with 13-bit Barker codes with baud lengths of 40, 70 and 100 µs. Interpretation of the received power allows the spatial distribution of the auroral scatterers to be determined. The second advance is in the use of a sophisticated correlator program which allows data to be buffered within the correlator at very high time resolution. This enables the coherent backscatter power to be sampled every 12.5 ms and the full auto-correlation function to be measured every 100 ms. These measurements allow the COSCAT system to be employed for the first time in an investigation of the growth and decay of the auroral irregularities.

  11. Instrument for the monochromatic observation of all sky auroral images.

    PubMed

    Mende, S B; Eather, R H; Aamodt, E K

    1977-06-01

    To investigate the dynamics of auroras and faint upper atmospheric emissions, a new type of imaging instrument was developed. The instrument is a wide field of view, narrow-spectral-band imaging system using an intensified S.E.C. TV camera in a time exposure mode. Pictures were taken at very low light levels of a few photons per exposure per resolution element. These pictures are displayed in the form of a pseudocolor presentation in which the color represents spectral ratios of two of the observed auroral spectral emission features. The spectral ratios play an important part in the interpretation of auroral particle dynamics. A digital picture processing facility is also part of the system which enables the digital manppulation of the pictures at standard TV rates. As an example, hydrogen auroras can be displayed having been corrected for nonspectral background by subtracting a picture obtained by a suitable background filter. The instrumentation was calibrated in the laboratory and was used in several field xperiments. Elaborate exposure sequences were developed to extend the dynamic range and to cover the large range of auroral brightnesses in a fairly linear manner. PMID:20168774

  12. Inferences concerning the magnetospheric source region for auroral breakup

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1992-01-01

    Inferences concerning the magnetospheric source region for auroral arcs obtained from particle measurements on polar orbiting satellites are presented and contrasted with other ideas. An argument that the magnetospheric source region for auroral arc breakup and substorm initiation is along Boundary Plasma Sheet (BPS) magnetic field lines is given. This source region lies beyond a distinct central plasma sheet region and sufficiently far from the Earth that energetic ion motion violates the guiding center approximation (is chaotic). The source region is not constrained to any particular range of distances from the Earth, and substorm initiation may be possible over a wide range of distances from near synchronous orbit to the distant tail. It is also argued that the layer of low energy electrons and velocity dispersed ion beams observed at low altitudes on Aureol 3 is not a different region from the region of auroral arcs. Both comprise the BPS. The two regions occasionally appear distinct at low altitudes because of the effects of arc field aligned potential drops on precipitating particles.

  13. Instrument for the monochromatic observation of all sky auroral images.

    PubMed

    Mende, S B; Eather, R H; Aamodt, E K

    1977-06-01

    To investigate the dynamics of auroras and faint upper atmospheric emissions, a new type of imaging instrument was developed. The instrument is a wide field of view, narrow-spectral-band imaging system using an intensified S.E.C. TV camera in a time exposure mode. Pictures were taken at very low light levels of a few photons per exposure per resolution element. These pictures are displayed in the form of a pseudocolor presentation in which the color represents spectral ratios of two of the observed auroral spectral emission features. The spectral ratios play an important part in the interpretation of auroral particle dynamics. A digital picture processing facility is also part of the system which enables the digital manppulation of the pictures at standard TV rates. As an example, hydrogen auroras can be displayed having been corrected for nonspectral background by subtracting a picture obtained by a suitable background filter. The instrumentation was calibrated in the laboratory and was used in several field xperiments. Elaborate exposure sequences were developed to extend the dynamic range and to cover the large range of auroral brightnesses in a fairly linear manner.

  14. Features of the processes of ion heating in polar boundary of the night auroral oval

    NASA Astrophysics Data System (ADS)

    Chugunin, Dmitriy; Lutsenko, Volt; Romantsova, Tatiana; Mogilevsky, Mikhail; Moiseenko, Irina

    Investigation of the processes of ion heating in polar boundary of the night auroral oval measured by INTERBALL-2 (Auroral probe) is presented. Measurements of particles and waves were made on altitude about 20000 км. Feature of the orbits was the satellite slid along auroral oval and stay long time in the auroral zone. It were cases chosen when the polar boundary moved and passed through satellite. Particular attention is given to ions heating at this border and to ion heating position in relation to polar boundary of particle precipitation.

  15. Evaluating Teaching and Research Activities--Finding the Right Balance.

    ERIC Educational Resources Information Center

    Vidal, Javier; Mora, Jose-Gines

    2003-01-01

    Analyzes on a national, regional, and institutional level the evaluation systems used to assess teaching and research activities at Spanish universities. Also examines ways in which evaluation systems orient to promote research activities to the detriment of teaching activities. (SWM)

  16. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  17. Electromechanically active polymer transducers: research in Europe

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  18. The Evolution of North-South Aligned Auroral Forms into Auroral Torch Structures : The Generation of Omega Bands and Ps6 Pulsations via Flow Bursts.

    SciTech Connect

    Henderson, M. G.; Kepko, L.; Spence, H. E.; Connors, M.; Sigwarth, J. B.; Frank, L. A.; Singer, H. J.; Yumoto, K.

    2002-01-01

    Although auroral torch structures and omega bands have been observed and studied for decades, a satisfactory understanding of how they form has yet to be achieved. Using global auroral imager data, we show conclusively that the equatorward moving north-south (NS) aligned auroral forms that are ejected episodically from the poleward boundary can evolve directly into torch structures which contribute to a well-defined omega-band form. And that as a consequence, omega bands can be produced as a direct result of earthward-directed bursty bulk flows (BBFs).

  19. Positive Activities: Qualitative Research with Parents. Solutions Research. Research Report. DCSF-RR142

    ERIC Educational Resources Information Center

    Department for Children, Schools and Families, 2009

    2009-01-01

    This research was commissioned by COI and DCSF to understand in depth, the barriers, motivators and messages for parents to encourage participation in positive activities for young people. Within this the research was designed to understand the level of influence of parents in whether a young person participates/what a young person might…

  20. Comparison between the polar cap index, PC and the auroral electrojet indices AE, AL, and AU

    SciTech Connect

    Vennerstrom, S.; Friis-Christensen, E. ); Troshichev, O.A.; Andresen, V.G. )

    1991-01-01

    The newly introduced index PC for magnetic activity in the polar cap has been examined to establish to which extent it can serve as an indicator of auroral electrojet activity. PC is derived from a single nearpole station, as a 15-min average index. The authors have derived it for two stations, one in the northern hemisphere (Thule) and one in the southern hemisphere (Vostok). The simplicity of the PC index enables us to make a large data base for statistical investigations. They have thus used 7 years of PC values for the two stations to analyze the relationship between PC and the auroral zone indices AE, AU, and AL statistically. They find a very high correlation between PC and AE during winter and equinox, the linear correlation coefficient being {approximately} 0.8-0.9 for Thule and {approximately} 0.7-0.8 for Vostok. During summer the correlation is less because the PC index is then disturbed by polar cap currents controlled by the northward and east-west components of the interplanetary magnetic field. They therefore stress the importance of having PC available from both the northern and southern hemisphere. From event studies they find that PC is sensitive both to DP 2 type electrojet activity and to substorm intensifications of the westward electrojet in the midnight or postmidnight sector but less sensitive to substorm intensifications of the westward electrojet in the midnight or post midnight sector. They conclude that PC can serve as a fast available indicator of DP 2 and DP 1 activity in the polar regions, excluding intrusions of the westward electrojet in the premidnight sector.

  1. The Earth's Interaction With the Sun Over the Millennia From Analyses of Historical Sunspot, Auroral and Climate Records

    NASA Astrophysics Data System (ADS)

    Yau, K.

    2001-12-01

    A prolonged decrease in the Sun's irradiance during the Maunder Minimum has been proposed as a cause of the Little Ice Age ({ca} 1600-1800). Eddy [{Science} {192}, 1976, 1189] made this suggestion after noting that very few sunspots were observed from 1645 to 1715, indicative of a weakened Sun. Pre-telescopic Oriental sunspot records go back over 2200 years. Periods when no sunspots were seen have been documented by, {eg}, Clark [{Astron} {7}, 2/1979, 50]. Abundances of C 14 in tree rings and Be10 in ice cores are also good indicators of past solar activity. These isotopes are produced by cosmic rays high in the atmosphere. When the Sun is less active more of them are made and deposited at ground level. There is thus a strong {negative} correlation between their abundances and sunspot counts. Minima of solar activity in tree rings and a south polar ice core have been collated by, {eg}, Bard [{Earth Planet Sci Lett} {150} 1997, 453]; and show striking correspondence with periods when no sunspots were seen, centered at {ca} 900, 1050, 1500, 1700. Pang and Yau [{Eos} {79}, #45, 1998, F149] investigated the Medieval Minimum at 700, using in addition the frequency of auroral sighting7s, a good indicator of solar activity too [Yau, PhD thesis, 1988]; and found that the progression of minima in solar activity goes back to 700. Auroral frequency, C 14 and Be 10 concentrations are also affected by variations in the geomagnetic field. Deposition changes can also influence C 14 and Be 10 abundances. Sunspot counts are thus the only true indicator of solar activity. The Sun's bolometric variations (-0.3% for the Maunder Minimum) can contribute to climatic changes (\\0.5° C for the Little Ice Age)[{eg}, Lean, {GRL} {22}, 1995, 3195]. For times with no thermometer data, temperature can be estimated from, {eg}, Oxygen 18 isotopic abundance in ice cores, which in turn depends on the temperature of the ocean water it evaporated from. We have linked the Medieval Minimum to the cold

  2. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2002-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identity the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral SnapshoT (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data was used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and a long-system particle-in-cell simulation to model the magnetically connected region between the two satellites.

  3. Field aligned currents and the auroral spectrum below 1 keV

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.

    1973-01-01

    Measurements during auroral events were conducted with the aid of detectors flown aboard three Nike-Tomahawk rocket flights. The detectors used to measure the auroral spectrum below 1 keV consisted of electrostatic analyzers positioned in the rocket to measure particles moving up and down the magnetic field lines. The analyzers measured electrons and protons simultaneously during a given sweep.

  4. Advanced ASON prototyping research activities in China

    NASA Astrophysics Data System (ADS)

    Hu, WeiSheng; Jin, Yaohui; Guo, Wei; Su, Yikai; He, Hao; Sun, Weiqiang

    2005-02-01

    This paper provides an overview of prototyping research activities of automatically switched optical networks and transport networks (ASONs/ASTNs) in China. In recent years, China has recognized the importance and benefits of the emerging ASON/ASTN techniques. During the period of 2001 and 2002, the national 863 Program of China started the preliminary ASON research projects with the main objectives to build preliminary ASON testbeds, develop control plane protocols and test their performance in the testbeds. During the period of 2003 and 2004, the 863 program started ASTN prototyping equipment projects for more practical applications. Totally 12 ASTN equipments are being developed by three groups led by Chinese venders: ZTE with Beijing University of Posts and Telecommunications (BUPT), Wuhan Research Institute of Posts and Telecommunication (WRI) with Shanghai Jiao Tong University (SJTU), and Huawei Inc. Meanwhile, as the ASTN is maturing, some of the China"s carries are participating in the OIF"s World Interoperability Demonstration, carrying out ASTN test, or deploying ASTN backbone networks. Finally, several ASTN backbone networks being tested or deployed now will be operated by the carries in 2005. The 863 Program will carry out an ASTN field trail in Yangtse River Delta, and finally deploy the 3TNET. 3TNET stands for Tbps transmission, Tbps switching, and Tbps routing, as well as a network integrating the above techniques. A task force under the "863" program is responsible for ASTN equipment specifications and interoperation agreements, technical coordination among all the participants, schedule of the whole project during the project undergoing, and organization of internetworking of all the equipments in the laboratories and field trials.

  5. Measurement of the cross spectrum of HF electrostatic waves in an auroral plasma

    NASA Astrophysics Data System (ADS)

    Pottelette, R.; Illiano, J. M.

    1983-06-01

    A method for the metrology of space plasmas, based on the reception of electrostatic waves by a pair of small dipole antennas was tested in PORCUPINE project rocket experiments. Both dipoles received signals from the natural electrostatic microfield in the plasma; the cross spectrum of these random signals was measured. Data obtained during a weak auroral activity are presented. Natural electrostatic emissions were observed around the upper hybrid frequency and also around the three-halves harmonic of the electron gyrofrequency. A linear calculation shows that the amplitudes of these emissions are above the thermal noise level of the plasma. To explain the observations, it is necessary to take into account the presence of low-energy precipitating electrons (1 to 20 eV), which are highly anisotropic.

  6. Space Technology 5 measurements of auroral field-aligned current sheet motion

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Le, G.; Slavin, J. A.; Boardsen, S. A.; Strangeway, R. J.

    2009-01-01

    During the 90-day Space Technology 5 (ST-5) mission, a total of 2535 auroral field-aligned current (FAC) signatures were identified. Of these 1030 were suitable to be modeled as semi-infinite current sheets aligned with L-shells and moving with constant speed in the north or south directions (hereafter called FAC speed). FAC speeds were found to range from -1 to 1 km/s with larger mean magnitude during intervals of higher geomagnetic activity. At ST-5 altitudes, ~300 to 4500 km, the median relative errors in FAC thickness and current density, when stationary FAC is assumed, are 4%. When the ST-5 FAC speed determinations are extrapolated along the IGRF-10 magnetic field lines, these errors increase to 23% and 24% at 4 RE, and 65% and 124% at 8 RE, respectively.

  7. Energy parameters of precipitating auroral electrons obtained by using photometric observations

    SciTech Connect

    Ono, Takayuki; Morishima, Kei )

    1994-02-15

    The authors present a ground based photometric method for measuring both the average energy and total energy flux for active discrete auroras. They make use of a multichannel photometer, with a narrow field of view. They monitor auroral emissions from atomic states and molecular bands, and by determining intensity ratios, are able to infer information relative to energy parameters of precipitating electrons in discrete arcs. They are able to look along magnetic axes. One observation is that there is a relationship between the energy flux and average energy, which can be considered ohmic in character, consistent with a model that precipitating electrons are accelerated along field lines by potential differences which can exist along these field lines.

  8. Relations between the Birkeland currents, the auroral electrojet indices and high latitude Joule heating

    NASA Technical Reports Server (NTRS)

    Nisbet, J. S.

    1982-01-01

    Field-aligned currents were postulated by Birkeland (1908) to explain the magnetic perturbations in the auroral zone. Theoretical models have been developed to examine the effect of these currents on the ionosphere. These models, in general, involve very extensive computer programs, and it is difficult to see how their very complicated boundary conditions and assumptions affect the relationships between the Birkeland currents and magnetic activity. In the present investigation, a simplified analysis is used to study the average behavior of the large-scale ionospheric current paths and to examine the interrelationships of various parameters. The relationship of the parameters of the current deposition regions to the magnetic indices is investigated along with the polar cap potential. Attention is given to the experimental values of coefficients, and relations between the Birkeland current densities, current intensities, currents, and the AL, AU, AE indices are discussed.

  9. Use of FUV auroral emissions as diagnostic indicators

    SciTech Connect

    Germany, G.A.; Torr, D.G.; Richards, P.G. ); Torr, M.R. )

    1994-01-01

    In an earlier study the authors modeled selected FUV auroral emissions (O I (1356 [angstrom]), N[sub 2] Lyman-Birge-Hopfield (LBH) (1464 [angstrom]), and LBH (1838 [angstrom])) to examine the sensitivity of these emissions and their ratios to likely changes in the neutral atmosphere. In this paper they extent that study to examine the dependence of these same emissions and their ratios on the shape of the energy distribution of the auroral electrons. In particular, they wish to determine whether changes in energy spectra might interfere with their determination of the characteristic energy. Modeled column-integrated emissions show relatively small (<30%) dependences on the shape and width of the incident energy spectrum, provided the average energy and total energy flux of the energy distribution are held constant. Long-wavelength FUV emissions, which are relatively unaffected by O[sub 2] absorption losses, exhibit virtually no dependence on the shape of the incident energy distribution. Changes in ratios of FUV short- to long-wavelength emissions as a function of characteristic energy are much larger than those due to changes in energy distribution. As a result, the determination of characteristic energy using these emission ratios is relatively unambiguous. They also examine the relative intensities of the aurora and the dayglow for various conditions. The intensities of modeled FUV auroral emissions relative to the dayglow emissions are presented as a function of solar zenith angle and incident energy flux. Under certain conditions (energy flux [le] 1 erg cm[sup [minus]2] s[sup [minus]1] and solar zenith angle [le]50[degrees]) the dayglow will be the limiting factor in the detection of weak auroras. 19 refs., 10 figs., 1 tab.

  10. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope

    PubMed Central

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-01-01

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current. PMID:26074636

  11. Update on U.S.EPA Cookstove Research Activities

    EPA Science Inventory

    The presentation includes background information on EPA's stove research, focuses on cookstove testing for air pollutant emissions and energy efficiency, and briefly describes current research activities. Ongoing activities are highlighted, and EPA contacts are provided.

  12. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  13. Solar Array and Auroral Charging Studies of DMSP Spacecraft

    NASA Technical Reports Server (NTRS)

    Matias, Kelwin

    2013-01-01

    The SSJ electrostatic analyzers and the SSIES plasma instruments on the DMSP spacecraft in low Earth polar orbit can be used to conduct case studies of auroral and solar array charging. We will use a program written in the Interactive Data Language (IDL) to evaluate questionable charging events in the SSJ records by comparing charging signatures in SSJ and SSIES data. In addition, we will assemble a number of case studies of solar array charging showing the signatures from the SSJ data and compare to the SSIES charging signatures. In addition we will use Satellite Tool Kit (STK) to propagate orbits, obtain solar intensity, and use to verify onset of charging with sunrise.

  14. Substorm effects in auroral spectra. [electron spectrum hardening

    NASA Technical Reports Server (NTRS)

    Eather, R. H.; Mende, S. B.

    1973-01-01

    A substorm time parameter is defined and used to order a large body of photometric data obtained on aircraft expeditions at high latitudes. The statistical analysis demonstrates hardening of the electron spectrum at the time of substorm, and it is consistent with the accepted picture of poleward expansion of aurora at the time of substorm and curvature drift of substorm-injected electrons. These features are not evident from a similar analysis in terms of magnetic time. We conclude that the substorm time concept is a useful ordering parameter for auroral data.

  15. The thermospheric auroral red line Angle of Linear Polarization

    NASA Astrophysics Data System (ADS)

    Lilensten, Jean; Barthélemy, Mathieu; Besson, Gérard; Lamy, Hervé; Johnsen, Magnar G.; Moen, Jøran

    2016-07-01

    The auroral red line at 630 nm is linearly polarized. Up to now, only its Degree of Linear Polarization had been studied. In this article, we examine for the first time the Angle of Linear Polarization (AoLP) and we compare the measurements to the apparent angle of the magnetic field at the location of the red line emission. We show that the AoLP is a tracer of the magnetic field configuration. This opens new perspectives, both in the frame of space weather and in the field of planetology.

  16. The 2.2 Hz oscillations in auroral electrons

    NASA Astrophysics Data System (ADS)

    Lepine, D. R.; Hall, D. S.; Bryant, D. A.; Johnstone, A. D.; Christiansen, P. J.; Gough, M. P.

    1980-06-01

    A Petrel rocket was launched from Kiruna on 25 January 1979 to compare electron intensities measured at auroral altitudes with related parameters measured at geostationary altitude by the satellite GEOS 2. A sequence of quasi-periodic oscillations in electron intensities were investigated, which appear to originate in the equatorial region, probably in the neighborhood of GEOS 2 was investigated. A similar frequency oscillation in the intensity of 500-Hz VLF emissions was observed at about the same time by the S300 wave experiment located on the satellite.

  17. A detector for high frequency modulation in auroral particle fluxes

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.

    1974-01-01

    A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.

  18. Energy of auroral electrons and Z mode generation

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  19. The signature of auroral kilometric radiation on Isis 1 ionograms

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1981-01-01

    Auroral kilometric radiation (AKR) appears on the Isis 1 topside sounder ionograms as intense noise bands between the electron cyclotron frequency and 700 kHz. A variable gap occurs between the cyclotron frequency and the lowest AKR frequency. As Isis 1 traverses the source region, the gap narrows, and the AKR signals at higher frequencies weaken. This signature suggests that the AKR waves are generated directly in the extraordinary mode at frequencies just above the local cutoff frequency and that the radiation is initially perpendicular to the magnetic field.

  20. Spacecraft charging in the supra-auroral region

    SciTech Connect

    Rubin, A.G. )

    1989-12-01

    Electrostatic charging of spacecraft in electrostatic shock acceleration regions above the auroras is predicted to occur. Electrostatic shocks are thought to produce the electron streams which generate auroras. These electron streams can charge spacecraft to high potentials in the altitude range from 3,000 to 8,000 kilometers in the auroral region. Ion beams accelerated upward in electrostatic shocks contribute to charging as well. It is shown that the potential can be at most the maximum potential across the shock. Charging is altitude dependent within a shock.

  1. 24/7 Solar Minimum Polar Cap and Auroral Ion Temperature Observations

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig; Bilitza, Dieter

    2011-01-01

    During the International Polar Year (IPY) two Incoherent Scatter Radars (ISRs) achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the International Reference Ionosphere (IRI) a fiduciary E- and F-region ionosphere description for solar minimum conditions in both the auroral and polar cap regions. The ionospheric description being electron density, ion temperature and electron temperature profiles from as low as 90 km extending to several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.1 N latitude, 212.5 E longitude where the NSF s new Poker Flat Incoherent Scatter Radar (PFISR) is located. This location during solar minimum conditions is in the auroral region for most of the day but is at midlatitudes, equator ward of the cusp, for about 4-8 h per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78.2 N latitude, 16.0 E longitude where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap with a noon sector passage often through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be distinguished between quiet and disturbed geomagnetic conditions. During the IPY year, 1 March 2007 - 29 February 2008, about 50 solar wind Corotating Interaction Regions (CIRs) impacted geospace. Each CIR has a two to five day geomagnetic disturbance that is observed in the ESR and PFISR observations. Hence, this data set also enables the quiet-background ionospheric climatology to be established as a function of season and local time. These two separate climatologies for the ion temperature at an altitude of 300 km are presented and compared with IRI ion temperatures. The IRI ion temperatures are about 200-300 K hotter than the observed values. However, the MSIS neutral temperature at 300 km compares favorably

  2. Nursing Research--Taking an Active Interest.

    ERIC Educational Resources Information Center

    Cleverly, Dankay

    1998-01-01

    In Britain, nurses' attitudes toward research are changing. Schools of nursing must consider the following research issues: funding, contracts, support, publication, and staff recruitment and retention. (SK)

  3. Relationship of Topside Ionospheric Ion Outflows to Auroral Forms and Precipitation, Plasma Waves, and Convection Observed by Polar

    NASA Technical Reports Server (NTRS)

    Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.; Pollock, C. J.; Gurnett, D. A.; Pickett, J. S.; Persoon, A. M.; Scudder, J. D.; Maynard, N. C.; Mozer, F. S.; Brittnacher, M. J.; Nagai, T.

    1998-01-01

    The POLAR satellite often observes upflowing ionospheric ions (UFIs) in and near the aurora] oval on southern perigee (approx. 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the duskside after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawnside during the recovery phase. The UFIs showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approx. 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above -200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs, the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.

  4. 20 CFR 401.165 - Statistical and research activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Statistical and research activities. 401.165... RECORDS AND INFORMATION Disclosure of Official Records and Information § 401.165 Statistical and research activities. (a) General. Statistical and research activities often do not require information in a...

  5. 20 CFR 401.165 - Statistical and research activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Statistical and research activities. 401.165... RECORDS AND INFORMATION Disclosure of Official Records and Information § 401.165 Statistical and research activities. (a) General. Statistical and research activities often do not require information in a...

  6. 20 CFR 401.165 - Statistical and research activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Statistical and research activities. 401.165... RECORDS AND INFORMATION Disclosure of Official Records and Information § 401.165 Statistical and research activities. (a) General. Statistical and research activities often do not require information in a...

  7. 20 CFR 401.165 - Statistical and research activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Statistical and research activities. 401.165... RECORDS AND INFORMATION Disclosure of Official Records and Information § 401.165 Statistical and research activities. (a) General. Statistical and research activities often do not require information in a...

  8. 20 CFR 401.165 - Statistical and research activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Statistical and research activities. 401.165... RECORDS AND INFORMATION Disclosure of Official Records and Information § 401.165 Statistical and research activities. (a) General. Statistical and research activities often do not require information in a...

  9. Time development of high-altitude auroral acceleration region plasma, potentials, and field-aligned current systems observed by Cluster during a substorm

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Mozer, F.; Frey, H. U.

    2013-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. These auroral acceleration processes in turn accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. The complex interplay between field-aligned current system formation, the development of parallel electric fields, and resultant changes in the plasma constituents that occur during substorms within or just above the auroral acceleration zone remain unclear. We present Cluster multi-point observations within the high-altitude acceleration region (> 3 Re altitude) at key instances during the development of a substorm. Of particular emphasis is on the time-development of the plasma, potentials and currents that occur therein with the aim of ascertaining high-altitude drivers of substorm active auroral acceleration processes and auroral emission consequences. Preliminary results show that the initial onset is dominated by Alfvenic activity as evidenced by the sudden occurrence of relatively intense, short-spatial scale Alfvenic currents and attendant energy dispersed, counterstreaming electrons poleward of the growth-phase arc. The Alfvenic currents are locally planar structures with characteristic thicknesses on the order of a few tens of kilometers. In subsequent passages by the other spacecraft, the plasma sheet region became hotter and thicker via the injection of new hot, dense plasma of magnetospheric origins poleward of the pre-existing growth phase arc. In association with the heating and/or thickening of the plasma sheet, the currents appeared to broaden to larger scales as Alfven dominated activity gave way to either inverted-V dominated or mixed inverted-V and Alfvenic behavior depending on location. The transition from Alfven dominated to inverted-V dominated

  10. The spatial relationship of field-aligned currents and auroral electrojets to the distribution of nightside auroras

    NASA Technical Reports Server (NTRS)

    Kamide, Y.; Rostoker, G.

    1977-01-01

    An analysis is made of (1) nearly simultaneous sets of data obtained by a ground-based magnetometer, (2) magnetic perturbations recorded by the polar-orbiting Triad satellite at 800 km, (3) auroral imagery, and (4) studies made of precipitating electrons within the 200 eV to 20 keV range. The analysis is used to determine periods of moderate magnetospheric activity during which substorms occur. Results are presented with attention to morning sector, evening sector, premidnight substorm, and midnight sector features.

  11. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M. I.; De Los Santos, A.; Demkee, D.; Dickinson, J.; Everett, D.; Finley, T.; Gribanova, A.; Hill, R.; Johnson, J.; Kofoed, C.; Loeffler, C.; Louarn, P.; Maple, M.; Mills, W.; Pollock, C.; Reno, M.; Rodriguez, B.; Rouzaud, J.; Santos-Costa, D.; Valek, P.; Weidner, S.; Wilson, P.; Wilson, R. J.; White, D.

    2013-05-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120∘ apart around the Juno spacecraft to measure complete electron distributions from ˜0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ˜5 eV to ˜50 keV over an instantaneous field of view of 270∘×90∘ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with m/Δm˜2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.

  12. Low-altitude satellite measurements of pulsating auroral electrons

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R. G.; Redmon, R. J.

    2015-09-01

    We present observations from the Defense Meteorological Satellite Program and Reimei satellites, where common-volume high-resolution ground-based auroral imaging data are available. These satellite overpasses of ground-based all-sky imagers reveal the specific features of the electron populations responsible for different types of pulsating aurora modulations. The energies causing the pulsating aurora mostly range from 3 keV to 20 keV but can at times extend up to 30 keV. The secondary, low-energy electrons (<1 keV) are diminished from the precipitating distribution when there are strong temporal variations in auroral intensity. There are often persistent spatial structures present inside regions of pulsating aurora, and in these regions there are secondary electrons in the precipitating populations. The reduction of secondary electrons is consistent with the strongly temporally varying pulsating aurora being associated with field-aligned currents and hence parallel potential drops of up to 1 kV.

  13. Response of northern winter polar cap to auroral substorms

    NASA Astrophysics Data System (ADS)

    Liou, Kan; Sotirelis, Thomas

    2016-05-01

    The three-phase substorm sequence has been generally accepted and is often tied to the Dungey cycle. Although previous studies have mostly agreed on the increase and decrease in the polar cap area during an episode of substorm, there are disparate views on when the polar cap starts to contract relative to substorm onset. Here we address this conflict using high-resolution (~1-3 min) snapshot global auroral images from the ultraviolet imager on board the Polar spacecraft. On the basis of 28 auroral substorm events, all observed in the Northern Hemispheric winter, it is found that the polar cap inflated prior to onset in all events and it attained the largest area ~6 min prior to the substorm expansion phase onset, while the dayside polar cap area remained steady around the onset. The onset of nightside polar cap deflation is found to be attributed to intensifications of aurora on the poleward edge of the nightside oval, mostly in the midnight sector. Although this result supports the loading-unloading and reconnection substorm models, it is not clear if the initial polar cap deflation and the substorm expansion are parts of the same process.

  14. Anti-planetward auroral electron beams at Saturn.

    PubMed

    Saur, J; Mauk, B H; Mitchell, D G; Krupp, N; Khurana, K K; Livi, S; Krimigis, S M; Newell, P T; Williams, D J; Brandt, P C; Lagg, A; Roussos, E; Dougherty, M K

    2006-02-01

    Strong discrete aurorae on Earth are excited by electrons, which are accelerated along magnetic field lines towards the planet. Surprisingly, electrons accelerated in the opposite direction have been recently observed. The mechanisms and significance of this anti-earthward acceleration are highly uncertain because only earthward acceleration was traditionally considered, and observations remain limited. It is also unclear whether upward acceleration of the electrons is a necessary part of the auroral process or simply a special feature of Earth's complex space environment. Here we report anti-planetward acceleration of electron beams in Saturn's magnetosphere along field lines that statistically map into regions of aurora. The energy spectrum of these beams is qualitatively similar to the ones observed at Earth, and the energy fluxes in the observed beams are comparable with the energies required to excite Saturn's aurora. These beams, along with the observations at Earth and the barely understood electron beams in Jupiter's magnetosphere, demonstrate that anti-planetward acceleration is a universal feature of aurorae. The energy contained in the beams shows that upward acceleration is an essential part of the overall auroral process.

  15. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    1985-05-01

    In the 1970's major advances in the understanding of auroral processes were brought about by observations of plasmas and electric fields within the regions of space responsible for auroral particle acceleration. The major contribution of these observations was the verification of the existence of electric fields with components parallel to the magnetic field over large regions of altitude (1000 to 20000 kilometers). These electric fields constitute potential drops of several kilovolts, accelerating magnetospheric electrons downward to form the aurora and ionospheric ions upward, where they contribute significantly to the magnetospheric hot ion population. Perpendicular spatial scales of about 100 kilometers are most common, although finer scales have been observed embedded, and individual small amplitude double layers occur on much smaller parallel spatial scales. More recently, the same data sets have revealed the existance of about 100 V electric potential drops directed downward in return current regions. Downward electric fields are in a direction to accelerate electrons out of the ionsphere and tend to retard the propagation of ions upward. An association between upflowing electron beams and transversely heated ions at low altitude has been noted, and a casual relationship between downward electric fields and ion conics is suggested.

  16. Application of X-ray imaging techniques to auroral monitoring

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Burstein, P.

    1981-01-01

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  17. Duration and Extent of the Great Auroral Storm of 1859

    NASA Technical Reports Server (NTRS)

    Green, James L.; Boardsen, Scott

    2005-01-01

    The great geomagnetic storm of August 28 through September 3,1859 is, arguably, the greatest and most famous space weather event in the last two hundred years. For the first time observations showed that the sun and aurora were connected and that auroras generated strong ionospheric currents. A significant portion of the world's 200,000 km of telegraph lines were adversely affected, many of which were unusable for 8 hours or more which had a real economic impact. In addition to published scientific measurements, newspapers, ship logs, and other records of that era provide an untapped wealth of first hand observations giving time and location along with reports of the auroral forms and colors. At its height, the aurora was described as a blood or deep crimson red that was so bright that one "could read a newspaper by." At its peak, the Type A red aurora lasted for several hours and was observed to reach extremely low geomagnetic latitudes on August 28-29 (-25") and on September 2-3 (-18"). Auroral forms of all types and colors were observed below 50" latitude for -24 hours on August 28-29 and -42 hours on September 2-3. From a large database of ground-based observations the extent of the aurora in corrected geomagnetic coordinates is presented over the duration of the storm event.

  18. Auroral X ray emission at Jupiter: Depth effects

    SciTech Connect

    Ozak, Nataly; Schultz, David Robert; Cravens, Thomas E. E.; Kharchenko, V.; Hui, Yawei

    2010-01-01

    Auroral X-ray emissions from Jupiter with a total power of about 1 GW have been observed by the Einstein Observatory, Roentgen satellite, Chandra X-ray Observatory, and XMM-Newton. Previous theoretical studies have shown that precipitating energetic sulfur and oxygen ions can produce the observed X-rays. This study presents the results of a hybrid Monte Carlo (MC) model for sulfur and oxygen ion precipitation at high latitudes, looks at differences with the continuous slow-down model, and compares the results to synthetic spectra fitted to observations. We concentrate on the effects of altitude on the observed spectrum. The opacity of the atmosphere to the outgoing X-ray photons is found to be important for incident ion energies greater than about 1.2 MeV per nucleon for both sulfur and oxygen. Model spectra are calculated for intensities with and without any opacity effects. These synthetic spectra were compared with the results shown by Hui et al. (2010) which fit Chandra X-ray Observatory observations for the north and south Jovian auroral emissions. Quenching of long-lived excited states of the oxygen ions is found to be important. Opacity considerably diminishes the outgoing X-ray intensity calculated, particularly when the viewing geometry is not favorable.

  19. A pulsating auroral X-ray hot spot on Jupiter.

    PubMed

    Gladstone, G R; Waite, J H; Grodent, D; Lewis, W S; Crary, F J; Elsner, R F; Weisskopf, M C; Majeed, T; Jahn, J-M; Bhardwaj, A; Clarke, J T; Young, D T; Dougherty, M K; Espinosa, S A; Cravens, T E

    2002-02-28

    Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions. Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths. PMID:11875561

  20. Global auroral imaging instrumentation for the Dynamics Explorer Mission

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Craven, J. D.; Ackerson, K. L.; English, M. R.; Eather, R. H.; Carovillano, R. L.

    1981-01-01

    The instrumentation for obtaining global images of the auroral oval from the high-altitude spacecraft of the Dynamics Explorer Mission is described. It is noted that the three spin-scan auroral imaging photometers are expected to be able to effectively view the dim emissions from earth in the presence of strong stray light sources near their fields-of-view along the sunlit portion of the spacecraft orbit. A special optical design that includes an off-axis parabolic mirror as the focusing element and super-reflecting mirror surfaces is used to minimize the effects of stray light. The rotation of the spacecraft and an instrument scanning mirror provide the two-dimensional array of pixels making up an image frame. It is pointed out that the full width of the fields-of-view of the photometers corresponding to a single pixel is 0.29 deg and that the angular dimensions of a typical full frame are 30 deg x 30 deg and span 14,400 pixels.

  1. Global Auroral Energy Deposition Derived from Polar UVI Images

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M. J.; Elsen, R.; Parks, G. K.; Spann, J. F., Jr.; Germany, G. A.

    1997-01-01

    Quantitative measurement of the transfer of energy and momentum to the ionosphere from the solar wind is one of the main objectives of the ISTP program. Global measurement of auroral energy deposition derived from observations of the longer wavelength LBH band emissions made by the Ultraviolet Imager on the Polar spacecraft is one of the key elements in this satellite and ground-based instrument campaign. These "measurements" are inferred by combining information from consecutive images using different filters and have a time resolution on the average of three minutes and are made continuously over a 5 to 8 hour period during each 18 hour orbit of the Polar spacecraft. The energy deposition in the ionosphere from auroral electron precipitation augments are due to Joule heating associated with field aligned currents. Assuming conjugacy of energy deposition between the two hemispheres the total energy input to the ionosphere through electron precipitation can be determined at high time resolution. Previously, precipitating particle measurements along the tracks of low altitude satellites provided only local measurements and the global energy precipitation could be inferred through models but not directly measured. We use the UVI images for the entire month of January 1997 to estimate the global energy deposition at high time resolution. We also sort the energy deposition into sectors to find possible trends, for example, on the dayside and nightside, or the dawn and dusk sides.

  2. Studies of the auroral ionosphere with the MITHRAS

    NASA Astrophysics Data System (ADS)

    Foster, J. C.

    1986-06-01

    The extensive MITHRAS radar data set was the object of extensive analyses of the processes and characteristics of the auroral latitude ionosphere and thermosphere: (1) High-Latitude Electrodynamics: Ionospheric response to substorms at widely separated local times was investigated. (2) Ionospheric Plasma Transport: The effects of plasma convection on the formation of the midlatitude trough were studied utilizing the wide spatial field of view of the Millstone radar. (3) Convection Snapshots: Simultaneous data from spaced instruments were combined to produce snapshots of the polar and auroral convection pattern. (4) Comparisons with Models. (5) Data Bases Studies and Empirical Models: The extensive data set which resulted from the MITHRAS experimental program was incorporated into a multi-instrument, common format data base. (6) Azimuth Scan Experiments: Analysis of the complex data during MITHRAS azimuth scanning experiments resulted in the capability of mapping the convection electric field within the extended field of the radar. (7) Thermosphere and Exosphere: The diurnal variation of exospheric temperature over 30 degrees of latitude around Millstone Hill has been investigated using MITHRAS elevation scan data.

  3. A pulsating auroral X-ray hot spot on Jupiter.

    PubMed

    Gladstone, G R; Waite, J H; Grodent, D; Lewis, W S; Crary, F J; Elsner, R F; Weisskopf, M C; Majeed, T; Jahn, J-M; Bhardwaj, A; Clarke, J T; Young, D T; Dougherty, M K; Espinosa, S A; Cravens, T E

    2002-02-28

    Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions. Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.

  4. Auroral hot-ion dynamo model with finite gyroradii

    SciTech Connect

    Lennartsson, O. W.

    2006-07-15

    Discrete auroras have (1) narrow size s(less-or-similar sign)30 km in at least one dimension (e.g., north-south) and (2) often rapid variation of forms, especially where the size is extremely small, s{<=}1 km. These points mesh with spatial and temporal features observed at several Earth radii in earthward flows (bursts) of hot plasma along high-latitude geomagnetic field lines. The flows (include PSBL) usually have some filamentary structure with transverse widths of a few local gyroradii of the hot protons (kT{approx}1-30 keV), i.e., widths that encompass auroral-arc size when scaled by magnetic field-line separation. At these widths, modest density gradients ({delta}n{approx}0.01-0.1 cm{sup -3}) lead to charge separation by differential mirroring of hot protons and electrons and large perpendicular electric fields. Thermal escape of ionspheric electrons into positive charge layer builds up magnetic field-aligned potential difference that accelerates hot electrons from negative charge layer into the ionosphere within auroral arc thickness. As a corollary, the model delineates a mechanism for charge-driven plasma instabilities.

  5. AURORAL RADIO EMISSION FROM STARS: THE CASE OF CU VIRGINIS

    SciTech Connect

    Trigilio, Corrado; Leto, Paolo; Umana, Grazia; Buemi, Carla S.; Leone, Francesco

    2011-09-20

    CU Virginis is a rapidly rotating Magnetic Chemically Peculiar star with at present unique characteristics as a radio emitter. The most intriguing one is the presence of intense, 100% circularly polarized radiation ascribed to a cyclotron maser. Each time the star rotates, this highly beamed emission points two times toward the Earth, like a pulsar. We observed CU Vir in 2010 April with the Expanded Very Large Array in two bands centered at 1450 and 1850 MHz. We covered nearly the whole rotational period, confirming the presence of the two pulses at a flux density up to 20 mJy. Dynamical spectra, obtained with unprecedented spectral and temporal sensitivity, allow us to clearly see the different time delays as a function of frequency. We interpret this behavior as a propagation effect of the radiation inside the stellar magnetosphere. The emerging scenario suggests interesting similarities with the auroral radio emission from planets, in particular with the Auroral Kilometric Radiation from Earth, which originates at few terrestrial radii above the magnetic poles and was only recently discovered to be highly beamed. We conclude that the magnetospheres of CU Vir, Earth, and other planets, maybe also exoplanets, could have similar geometrical and physical characteristics in the regions where the cyclotron maser is generated. In addition, the pulses are perfect 'markers' of the rotation period. This has given us for the first time the possibility to measure with extraordinary accuracy the spin-down of a star on or near the main sequence.

  6. Quantitative patterns of large-scale field-aligned currents in the auroral ionosphere

    SciTech Connect

    Foster, J.C.; Fuller-Rowell, T.; Evans, D.S.

    1989-03-01

    Quantitative patterns of the distribution of field-aligned current (FAC) density have been derived from gradients of the average patterns of the Hall and Pedersen currents at high latitudes under the assumption that the total current is divergence-free. The horizontal currents were calculated from empirical convection electric field models, derived from Millstone Hill radar observations, and the ionospheric Hall and Pedersen conductances, based on satellite observations of the precipitating particle energy flux and spectrum and including an average (equinox) solar contribution. These independent empirical models, and the resultant patterns of the field-aligned currents, are keyed to an auroral precipitation index which quantifies the intensity and spatial extent of high-latitude particle precipitation and which is determined from a single satellite crossing of the auroral precipitation pattern. The patterns detail the spatial distribution of the currents as a function of increasing disturbance level. The magnitudes of the total single-hemisphere currents into or out of the ionosphere are closely balanced at each activity level and increase exponentially between 0.1 and 6 MA with increasing values of the precipitation index. The interplanetary magnetic field (IMF) sector dependence of the FAC patterns is investigated for disturbed conditions. A large portion of the FAC pattern is closed by local Pedersen currents (current into the ionosphere is balanced by an equal current out of the ionosphere at that local time). This locally balanced portion of the FAC system is enhanced in the prenoon (postnoon) sector for IMF B/sub v/>+1 nT (B/sub y/<-1 nT). In addition, there are net currents into the ionosphere postnoon and out of the ionosphere in the premidnight sector.

  7. The relationship between diffuse auroral and plasma sheet electron distributions near local midnight

    SciTech Connect

    Schumaker, T.L. ); Gussenhoven, M.S. ); Hardy, D.A.; Carovillano, R.L.

    1989-08-01

    A study of the relationship between diffuse auroral and plasma sheet electron distributions in the energy range from 50 eV to 20 keV in the midnight region was conducted using data from the P78-1 and SCATHA satellites. From 1 1/2 years of data, 14 events were found where the polar-orbiting P78-1 satellite and the near-geosynchronous SCATHA satellite were approximately on the same magnetic field line simultaneously, with SCATHA in the plasma sheet and P78-1 in the diffuse auroral region. For all cases the spectra from the two satellites are in good quantitative agreement. For 13 of the 14 events the pitch angle distribution measured at P78-1 was isotropic for angles mapping into the loss cone at the SCATHA orbit. For one event the P78-1 electron flux decreased with pitch angle toward the field line direction. At SCATHA the distributions outside the loss cone were most commonly butterfly or pancake, although distributions peaked toward the field line were sometimes observed at energies below 1 keV. Electron distributions, as measured where there is isotropy within the loss cone but anisotropy outside the loss cone, are inconsistent with current theories for the scattering of cone for the distribution measured at SCATHA, the electron precipitation lifetimes were calculated for the 14 events. Because the distributions are anisotropic at pitch angles away from the loss cone, the calculated lifetimes significantly exceed the lifetimes in the limit when the flu is isotropic at all pitch angles. The computed precipitation lifetimes are found to be weakly dependent on magnetic activity. The average lifetimes exceed those for the case of isotropy at all pitch angles by a factor between 2 and 3 for {ital Kp}{le}2 and approximately 1.5 for {ital Kp}{gt}2. {copyright} American Geophysical Union 1989

  8. Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.

    In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is

  9. Updated modeling of Io and non-Io Radio Auroral Emissions of Jupiter

    NASA Astrophysics Data System (ADS)

    Louis, C.; Lamy, L.; Zarka, P.; Cecconi, B.; Hess, S.

    2015-10-01

    The radio auroral emissions produced by the Jupiter's magnetosphere between a few kHz and 40MHz, the most intense of our Solar System, are known since half a century, but they still drive many questions, and their deepened study is one of the main aim of the JUNO missions (arrival in July 2016). Jovian auroral radio emissions are thought to be produced through the Cyclotron Maser Instability (CMI), from non-maxwellian weakly relativistic electrons gyrating along high-latitude magnetic fields lines (Zarka, 1998). These emissions divide in different spectral components, driven or not by the moon Io. The origin and the relationship between kilometric, hectometric and decametric non-Io emissions in particular remains poorly understood. To investigate these emissions, we simulated numerical dynamic spectra with the most recent version of the ExPRES code - Exoplanetary and Planetary Radio Emission Simulator, available at http://maser.obspm.fr - already used to successfully model Io decametric and Saturn's kilometric arcshaped emissions (Hess et al., 2008, Lamy et al., 2008) and predict exoplanetary radio emissions (Hess et al., 2011). Such simulations bring direct constraints on the locus of active magnetic field lines and on the nature of CMI-unstable electrons (Hess et al., submitted). We validated the new theoretical calculation of the beaming angle used by ExPRES, which now includes refraction at the source. We then built updated simulations of Io and non-Io emissions which were compared to the radio observations acquired by the Cassini spacecraft (Jupiter flyby in 2000) and the Nançay decameter array (routines observations of Jupiter).

  10. Upstream drivers of poleward moving auroral forms by satellite-imager coordinated observations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Nishimura, T.; Lyons, L. R.; Angelopoulos, V.; Frey, H. U.; Mende, S. B.

    2015-12-01

    Poleward moving auroral forms (PMAFs) are observed near the dayside poleward auroral oval boundary. PMAFs are thought to be an ionospheric signature of dayside reconnection and flux transfer events. PMAFs tend to occur when the IMF is southward. Although a limited number of PMAFs has been found in association with IMF southward turning, events without appreciable changes in IMF have also been reported. While those PMAFs could be triggered spontaneously, many of the past studies used solar wind measurements far away from the bow shock nose and may have used inaccurate time shift or missed small-scale structures in the solar wind. To examine how often PMAFs are triggered by upstream structures using solar wind measurements close to the bow shock nose, we use the AGO all sky imager in Antarctic and THEMIS B and C satellites in 2008, 2009 and 2011. We identified 24 conjunction events, where at least one of the THEMIS satellites is in the solar wind and the AGO imager is located within 3 MLT from the THEMIS MLT. We found that, in 14 out of 24 conjunction events, PMAFs occur soon after IMF southward turning, indicating that IMF southward turning could be the major triggering of PMAFs. Interestingly, among these 14 cases, there are 7 cases with different IMF structures between THEMIS B/C and OMNI, which obtained IMF information from WIND and ACE. And the larger correlation coefficients between PMAFs and IMFs observed by THMEIS B/C than OMNI present the advantages of THEMIS B/C. Among the 10 cases without correlating with IMF structures, PMAFs in two events are shown to have good correlation with reflected ions in the foreshock. Based on all the conjunction events we identified, IMF southward turning is the major trigger of PMAFs and reflected ions have minor effects. The rest of the cases could be spontaneous PMAFs, although foreshock activities, even if exists, may be missed due to the IMF orientation.

  11. Action Research as a Professional Development Activity

    ERIC Educational Resources Information Center

    West, Chad

    2011-01-01

    Reflective teachers are always searching for ways to improve their teaching. When this reflection becomes intentional and systematic, they are engaging in teacher research. This type of research, sometimes called "action research", can help bridge the gap between theory and practice by addressing topics that are relevant to practicing teachers.…

  12. The Calibration of a Large Number of Scientific Instruments for the Auroral Spatial Structures Probe Sub-Orbital Mission.

    NASA Astrophysics Data System (ADS)

    Swenson, A.; Miller, J.; Neilsen, T. L.; Fish, C. S.; Swenson, C.

    2014-12-01

    The Auroral Spatial Structures Probe (ASSP) is a NASA sounding rocket mission to be launched in the early January 2015 time frame from the Poker Flat Research Range. The primary scientific objective of this mission is to determine the contribution of small spatial and temporal scale fluctuations of the electric fields to the larger-scale processes during active aurora. This will be accomplished through the use of a constellation of six small payloads ejected at high velocity from a sounding rocket. The multiple baseline observations of the electric and magnetic fields will be used to observe variability of both the E-field and the Poynting flux. These observations will be placed in the context of available data, including winds, large scale E-fields, and proxy conductivity (airglow images) observations.Each sub-payload will carry a crossed pair of electric field double-probe sensors, a three-axis magnetometer, and a Langmuir probe. In total there are eight of each instrument type requireing calibration. Since the instruments need to be calibrated over temperature a full calibration of a single instrument is very time-consuming. The decision was made to automate the calibration process. Measurements were taken using a relay switch-box connecting the instruments to test sources. Calibration data were saved into a database. Using post-processing scripts on these databases a calibration for each instrument at each temperature point was made. This approach is a prototype process that might be used for calibrating a large constellation of CubeSats with similar instruments. In this poster we review the ASSP science and mission, and the results of the pre-flight calibration of the science instruments.

  13. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  14. Predicting Electron Energy Flux Using Ground-Based Multi-Spectral Auroral Imaging

    NASA Astrophysics Data System (ADS)

    Grubbs, G. A.; Samara, M.; Michell, R.; Redmon, R. J.

    2013-12-01

    High-resolution, multi-spectral auroral observations can now be routinely acquired using the Multi-spectral Observatory Of Sensitive EMCCDs (MOOSE), currently installed in Poker Flat, AK. Observations from the past 2 auroral seasons have yielded many simultaneous auroral observations in 4 different emission lines (427.8 nm, 557.7 nm, 630 nm, and 844.6 nm). From these data, the brightness of the absolute auroral emissions will be calculated. Combined with atmospheric modeling, auroral emission brightness will be used to predict the total energy flux and characteristic energy of the electrons responsible for the aurora. The theory behind this method is only developed for auroral measurements in the magnetic zenith, and therefore it is not known to what extent it can be applied off zenith. All-sky auroral image data will be examined and compared with DMSP satellite overpasses to quantify the extent to which the model can make predictions off-zenith, creating an empirical model that could then be applied to the many cases without overpasses. This will lead to large-scale 2-D maps of electron precipitation characteristics which can contribute to global ionospheric models.

  15. Quasi-periodic (~mHz) dayside auroral brightennings associated with high-speed solar wind

    NASA Astrophysics Data System (ADS)

    Liou, K.

    2013-12-01

    It has been reported that dayside auroral pulsations of a few mHz frequency can occur when variations of solar wind dynamic pressure at the same frequency appear. Magnetospheric compression/decompression is attributed to the auroral pulsations. Here we report another type of dayside auroral pulsations not associated with solar wind dynamic pressure changes by using global auroral images acquired from the Ultraviolet Imager (UVI) on board the Polar satellite. From one periodic (~2 - 8 mHz) auroral event that occurred on February 8, 2000, it is found that the auroral enhancements covered most of the day (~05 - 16 MLT) sector and did not show a latitudinal dependence. Based on in situ particle data from DMSP SSJ/4, the brightennings were associated mainly with enhanced particle precipitations from the central plasma sheet (i.e., diffuse aurora). There was no geomagnetic pulsation on the ground and in the dawn sector of the magnetosheath as indicated by the Geotail measurements. While the auroral pulsations occurred during high solar wind speed (> 600 km/s), they commenced when the interplanetary magnetic field turned northward, suggesting the Kelvin-Helmholtz instability being a source of the pulsations. We will present detail analysis results and discuss other possible mechanisms in the context of current theories.

  16. Biology Research Activities: Teacher's Edition (with Answers).

    ERIC Educational Resources Information Center

    Newman, Barbara

    This book is part of the series "Explorations in Science" which contains enrichment activities for the general science curriculum. Each book in the series contains innovative and traditional projects for both the bright and average, the self-motivated, and those who find activity motivating. Each activity is self-contained and provides everything…

  17. Fitness and Physical Activity. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2005-01-01

    What can be done to support fitness and physical activity? Schools can guide students in developing life-long habits of participating in physical activities. According to the National Association for Sports and Physical Education, the concepts of physical fitness activities and physical education are used synonymously, however, they are not the…

  18. Creating Evidence-Based Research in Adapted Physical Activity

    ERIC Educational Resources Information Center

    Reid, Greg; Bouffard, Marcel; MacDonald, Catherine

    2012-01-01

    Professional practice guided by the best research evidence is a usually referred to as evidence-based practice. The aim of the present paper is to describe five fundamental beliefs of adapted physical activity practices that should be considered in an 8-step research model to create evidence-based research in adapted physical activity. The five…

  19. Low-frequency waves and ion heating associated with double layers in the downward current region of the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Sen, Naresh

    2009-06-01

    Recent observations by satellites in the auroral ionosphere have established the presence of strong narrowly localized electric fields parallel to the ambient magnetic field. Physically these fields are formed by two layers of opposite charges in close proximity existing self-consistently in the plasma; this is known as a double layer (DL). The DL field accelerates plasma particles to form beams which excite wave modes and saturate to form electron phase-space holes (EHs). Intense perpendicular heating of ions is concurrently observed, leading to speculations regarding the heating mechanism(s). In this thesis, we address this issue via numerical simulations and analysis. We have performed electrostatic kinetic simulations using the Vlasov-Poisson system of equations for conditions prevalent in the downward current region (DCR) of the auroral ionosphere. The simulations display low-frequency waves, EHs and ion heating, consistent with observations. We determine the relative importance of two proposed mechanisms for ion heating: stochastic heating due to EHs and due to wave-particle interactions at identifiable wave modes. Stochastic heating of ions via EH-ion scattering is estimated to account for approximately 10-15% of the observed increase in ion temperature in regions of intense wave activity. Spectral analysis shows that the energy exchange between waves and ions is concentrated at frequencies and wave numbers associated with nearly perpendicular magnetized ion wave modes and not EHs. We conclude that, in the vicinity of DLs in the DCR of the auroral ionosphere where both intense waves and EHs are present, wave-particle interactions are the principal mechanism of ion heating, with stochastic heating by electron phase-space holes playing a minor role.

  20. HUBBLE SEES AURORAL EMISSION ARCS FOLLOWING THE K IMPACT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This far-ultraviolet image of Jupiter taken with NASA's Hubble Space Telescope (HST) shows narrow auroral 'arcs' that appeared at northern mid-latitudes following the impact of the K nucleus fragment of comet P/Shoemaker-Levy 9. (The dark K impact region is on the left limb, followed, from left to right, by the C, A, and E comet impact regions.) The image was taken on 19 July 1994, 45 minutes after the K nucleus slammed into the gas giant planet. The image shows arc-like auroral emissions near the western (left) limb at mid-latitudes in the north, and fainter but remarkably similar emissions near the K impact site in the south. The 'arcs' are being produced by energetic charged particles, like the other auroral emissions, except that they appear to last less than one hour and they are at a location where Jupiter normally does not have aurora. They were apparently produced by the K impact, even though they appear bright in the northern hemisphere nearly 70,000 miles away from the impact site. The overlay of magnetic field lines shows the path of the charged particles near Jupiter (from a model based on Pioneer and Voyager spacecraft data), starting at the northern 'arcs' and tracing the magnetic field back to the impact site in the southern atmosphere. (There is an overlay of a longitude/latitude grid to indicate locations on Jupiter). Aurorae, also known as the northern and southern lights, are produced by high energy charged particles, trapped in Jupiter's magnetic field, that cause atmosphereic gasses to glow. Based on comparison with ROSAT satellite X-ray images of Jupiter also taken at time of the K impact, astronomers know that the northern disturbance was brightest near the time of the K impact, and then faded. If HST images had been taken during the K impact, they would likely have shown far brighter arcs than those observed 45 min. later. The image was taken with the Wide Field Planetary Camera-2 at UV wavelengths (1300-2100 Angstroms), where the polar

  1. Summary reports of activities under visiting research program, 1993

    NASA Astrophysics Data System (ADS)

    1993-10-01

    The summary reports of activities under visiting research program in the Research Reactor Institute, Kyoto University, in fiscal year 1992 are included. In this report, 104 summaries of researches using the Kyoto University Reactor (KUR) and 9 summaries of the researches using the Kyoto University Critical Assembly (KUCA) are collected.

  2. 48 CFR 27.408 - Cosponsored research and development activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....408 Cosponsored research and development activities. (a) In contracts involving cosponsored research... objectives of the contract. Since the purpose of the cosponsored research and development, the legitimate... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Cosponsored research...

  3. S-20 photocathode research activity. Part I

    SciTech Connect

    Gex, F.; Huen, T.; Kalibjian, R.

    1983-11-22

    The goal of this activity has been to develop and implement S-20 photocathode processing techniques at Lawrence Livermore National Laboratory (LLNL) in order to study the physical properties of the photocathode films. The present work is the initial phase of a planned activity in understanding cathode fabrication techniques and the optical/electrical characterization of these films.

  4. Increasing Physical Activity through Recess. Research Brief

    ERIC Educational Resources Information Center

    Beighle, Aaron

    2012-01-01

    Regular physical activity promotes important health benefits, reduces risk for obesity and is linked with enhanced academic performance among students. The U.S. Surgeon General recommends that children engage in at least 60 minutes of moderate physical activity most days of the week, yet fewer than half of children ages 6 to 11 meet that…

  5. Simulations of auroral plasma processes - Electric fields, waves and particles

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Plasma processes driven by current sheets of finite thicknesses in an ambient magnetized plasma are studied using a 2 1/2 dimensional particle-in-cell code, and similarities are found between simulated plasma processes and those observed in the auroral plasma. Current sheets are shown to be bounded by large perpendicular electric fields occurring near their edges above the conducting boundary. Shaped potential structures form when the current sheets are narrow, and when the current sheets are wide, potential structures develop a significant parallel potential drop such that the electrons are accelerated upwards. Downward parallel electric fields of variable strength are noted in the downward current region, and double layer formation is seen in both narrow and wide current sheets. High frequency oscillations near the electron plasma frequency and its harmonic are seen, and low frequency waves are observed.

  6. Solar Array and Auroral Charging Studies of DMSP Spacecraft

    NASA Technical Reports Server (NTRS)

    Matias, Kelwin

    2013-01-01

    The SSJ electrostatic analyzers and the SSIES plasma instruments on the DMSP spacecraft in low Earth polar orbit can be used to conduct case studies of auroral and solar array charging. We will use a program written in the Interactive Data Language (IDL) to evaluate questionable charging events in the SSJ records by comparing charging signatures in SSJ and SSIES data. In addition, we will assemble a number of case studies of solar array charging showing the signatures from the SSJ data and compare them to the SSIES charging signatures. In addition, we will use Satellite Tool Kit (STK) to propagate orbits, obtain solar intensity, and use to verify onset of charging with sunrise.

  7. Numerical simulations of double layers and auroral electric fields

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Thiemann, H.

    1984-01-01

    Recent one-dimensional and two-dimensional numerical simulations of double layers (DLs) in the electric fields of the auroral plasma are reviewed, with reference to observational data. It is found that two-dimensional DLs driven by current sheets of finite thickness have different characteristics, depending on whether the layer thickness is less than or much greater than the ion gyroradius: When thickness is less than ion gyroradius, V-shaped DLs form with nearly equal parallel and perpendicular potential drops; when layer thickness is much greater than ion gyroradius the major parallel potential drop occurs outside the current sheet and the perpendicular electric fields are localized at the edges of the current sheet. It is shown that some features of the simulated fields, such as the amplitudes and scale lengths, are qualitatively similar to those observed in space.

  8. Characteristics of a stable auroral red arc event

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Chandler, M. O.; Brace, L. H.; Maynard, N. C.; Slater, D. W.; Emery, B. A.; Shawhan, S. D.

    1982-01-01

    The present investigation is concerned with an analysis of the measurements of the stable auroral red (SAR) arc of October 23, 1981, using data from orbit 1192 of Dynamics Explorer (DE) 2, during which a magnetic coincidence occurred with the DE-1 spacecraft near the red arc field line, and for which simultaneous ground-based intensity measurements from Richland, WA were available. The altitude of the DE-2 satellite was approximately 850 km during arc passage in the Northern Hemisphere and approximately 395 km during the conjugate hemisphere passage. The DE-1 satellite was at an altitude of approximately 6000 km during the magnetic coincidence with DE-2 in the Northern Hemisphere. The described observations and calculations reconfirm a previous understanding that the actual excitation of the O(1D) state responsible for the 6300 A emission of red arcs is caused by hot ionospheric thermal electrons.

  9. Auroral kilometric radiation source region observations from ISIS 1

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1981-01-01

    The ISIS 1 observations of the high-frequency portion of the auroral kilometric radiation (AKR) spectrum are considered, that is, from the minimum frequency encountered for the extraordinary mode cut-off (approximately 450 kHz) to the upper frequency cut-off (approximately 800 kHz). AKR is found to be generated in the extraordinary mode just above the local cutoff frequency and to emanate in a direction that is nearly perpendicular to the magnetic field. It occurs within local depletions of electron density, where the ratio of plasma frequency to cyclotron frequency is below 0.2. The density depletion is restricted to altitudes above approximately 2,000 km, and the upper AKR frequency limit corresponds to the extraordinary cutoff frequency at this altitude.

  10. Measuring auroral precipitation parameters without in situ microchannel plate instrumentation

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Hampton, D. L.; Zettergren, M. D.; Conde, M.; Lessard, M.; Michell, R.; Samara, M.

    2013-12-01

    Recent advances in groundbased detector technology have resulted in accurate, high-sensitivity, emission-line filtered images of aurora with sub- to a few- km resolution over a few 100 km region collected at a few second to a few Hz cadence. By combining these images with information from other groundbased instrumentation (ISR, remote photometers, and FPIs) and using well-documented empirical relationships between intensity and precipitating electron characteristics, these images hold the potential for providing an accurate, mesoscale, 2-D time history of the key parameters (characteristic energy and energy flux) of the precipitating electrons that caused the optical aurora within the imager's field of view. In situ measurements can be more accurate, but they are limited to highly localized 1-D line trajectories and are of limited use for meso-scale modeling. However, a limitation of the groundbased technique is that subvisual (low energy) precipitation is not captured. Onboard measurements of total number flux provide low resource measurements capturing specific boundary crossings and gradients as well as net precipitation including the portion not observed optically. The combination of minimal onboard instrumentation supplementing rigorous groundbased inversions can provide an optimal set of inputs for ionospheric modelling tools. Thus we are investigating the capabilities and limitations of using inversions of groundbased observations in the place of in situ precipitation monitors. While several inversion techniques are possible we will discuss two methods used in the analysis of recent rocket experiments. The first, used for the Cascades2 rocket, compares measured altitude profiles of auroral emissions to those from a 1-D electron transport code to confirm optically that two arcs transited by the rocket were produced by significantly different electron spectra. The second method, for the MICA rocket, uses the 2-D temperature maps from the Scanning Doppler

  11. Auroral Radio Emission from Late L and T Dwarfs: A New Constraint on Dynamo Theory in the Substellar Regime

    NASA Astrophysics Data System (ADS)

    Kao, Melodie M.; Hallinan, Gregg; Pineda, J. Sebastian; Escala, Ivanna; Burgasser, Adam; Bourke, Stephen; Stevenson, David

    2016-02-01

    We have observed six late L and T dwarfs with the Karl G. Jansky Very Large Array (VLA) to investigate the presence of highly circularly polarized radio emission, associated with large-scale auroral currents. Previous surveys encompassing ∼60 L6 or later targets have yielded only one detection. Our sample includes the previously detected T6.5 dwarf 2MASS 10475385+2124234, as well as five new targets selected for the presence of Hα emission and/or optical infrared photometric variability, which are possible manifestations of auroral activity. We detect 2MASS 10475385+2124234, as well as four of the five targets in our biased sample, including the strong IR-variable source SIMP J01365662+0933473 and bright Hα emitter 2MASS 12373919+6526148, reinforcing the possibility that activity at these disparate wavelengths is related. The radio emission frequency corresponds to a precise determination of the lower-bound magnetic field strength near the surface of each dwarf, and this new sample provides robust constraints on dynamo theory in the low-mass brown dwarf regime. Magnetic fields ≳ 2.5 kG are confirmed for five of six targets. Our results provide tentative evidence that the dynamo operating in this mass regime may be inconsistent with predicted values from a recently proposed model. Further observations at higher radio frequencies are essential for verifying this assertion.

  12. Evolution of Auroral Electric Fields Observed By Cluster

    NASA Astrophysics Data System (ADS)

    Marklund, G.; Cluster Auroral Team

    Cluster observations on nightside auroral field lines are used to study the existence and temporal evolution of quasi-static electric field structures on time scales of min- utes. Results are presented for two events characterized by intense and narrow-scale divergent electric fields. These were encountered at the boundary between the Cen- tral Plasma Sheet and the Plasma Sheet Boundary Layer associated with a large-scale plasma density gradient and a downward field-aligned current. The structures main- tain their bipolar shape but increase in magnitude and width between the crossings by the four spacecraft, each separated by a few minutes in a plane perpendicular to the magnetic field. The perpendicular electric potential calculated for the first event in- creased for about 200 s, following closely the increase in the characteristic energy of the upgoing electron beam. At the time of the last satellite crossing the structure had faded, the energy of the beam was much reduced, and the downward current, main- taining a constant total value throughout the Cluster crossings, was distributed over a much wider region than initially. In this way access was given to a wide collection area of return current electrons. For the other event, the electric field increase was accompanied by a deepening of a density cavity superposed on a larger scale density gradient and a downward field-aligned current that remained roughly constant during the crossings. The divergent structures are likely to represent the high-altitude exten- sion of quasi-static positive potential structures developing on a time scale of several hundred seconds which is comparable to the evacuation time for the return current electrons in the E- and lower F-region. The evolving potential structure and associated hole formation represent a growing load in the return current leg of the auroral current circuit with possible direct impact on the aurora.

  13. AKR breakup and auroral particle acceleration at substorm onset

    NASA Astrophysics Data System (ADS)

    Morioka, A.; Miyoshi, Y.; Tsuchiya, F.; Misawa, H.; Yumoto, K.; Parks, G. K.; Anderson, R. R.; Menietti, J. D.; Donovan, E. F.; Honary, F.; Spanswick, E.

    2008-09-01

    The dynamical behavior of auroral kilometric radiation (AKR) is investigated in connection with auroral particle acceleration at substorm onsets using high-time-resolution wave spectrograms provided by Polar/PWI electric field observations. AKR develops explosively at altitudes above a preexisting low-altitude AKR source at substorm onsets. This "AKR breakup" suggests an abrupt formation of a new field-aligned acceleration region above the preexisting acceleration region. The formation of the new acceleration region is completed in a very short time (amplitude increases 10,000 times in 30 seconds), suggesting that the explosive development is confined to a localized region. AKR breakups are usually preceded (1-3 minutes) by the appearance and/or gradual enhancement of the low-altitude AKR. This means that the explosive formation of the high-altitude electric field takes place in the course of the growing low-altitude acceleration. The development of the low-altitude acceleration region is thus a necessary condition for the ignition of the high-altitude bursty acceleration. The dH/dt component from a search-coil magnetometer at ground shows that a few minutes prior to substorm onsets, the quasi-DC component begins a negative excursion that is nearly synchronized with the start of the gradual enhancement of the low-altitude AKR, indicating a precursor-like behavior for the substorm. This negative variation of dH/dt suggests an exponentially increasing ionospheric current induced by the upward field-aligned current. At substorm onsets, the decrease in the quasi-DC variation of dH/dt further accelerates, indicating a sudden reinforcement of the field-aligned current.

  14. Characteristics of auroral electron precipitation derived from optical spectroscopy

    SciTech Connect

    Rees, M. H.; Lummerzheim, D.

    1989-06-01

    Electron impact excitation of auroral spectral features in the visible and ultraviolet are computed by solving the complete electron transport equation. Excitation rates are given for several bands of N/sub 2/ (A /sup 3//Sigma/, B /sup 3//Pi/, W /sup 3//Delta/, a /sup 1//Pi/, C /sup 3//Pi/) and of N/sub 2//sup +/, for bands of O/sub 2/ (a /sup 1//Delta/, b /sup 1//Sigma/) and of O/sub 2//sup +/, and for several states of O (/sup 1/D, /sup 1/S, /sup 5/S, /sup 3/S) and of O/sup +/. The theoretical results are tested by comparing the predicted emission rate ratios N/sub 2/ 2PG(0,0)/N/sub 2//sup +/ 1NG(0,1) to ratios derived from photometer measurements of I(3371 A) and I(4278 A) that were acquired over many hours of observations from a high-flying aircraft. The observations spanned a wide range of auroral types that were ordered by their electron spectral hardness. The results show that the ratio I(3371 A)/I(4278 A) is a better indicator of the characteristic energy of the electron spectrum than the so-called ''red to blue'' ratio, I(6300 A)/I(4178 A), which has been used over the years. Results of observations of the I(3371 A)/I(4278 A) ratio acquired by rocket-borne photometers, by satellite borne photometers and by a spectrometer show poor agreement with the airborne experimental results and with the model predictions. Significant differences between the model results reported here and previously published predictions of this spectroscopic ratio are also noted. A relationship between the energy flux and the characteristic energy of electron precipitation, first reported by Eather and Mended (1972), is found to hold over a wide range of fluxes. /copyright/ American Geophysical Union 1989

  15. Results from a new auroral lower ionosphere model

    NASA Astrophysics Data System (ADS)

    McKinnell, L. A.; Friedrich, M.

    This paper presents first results from the development of a new auroral latitude lower ionospheric model. The major difference between this new model and other models for the same region is that the technique of neural networks (NNs) was employed in the development. Data from the European Incoherent Scatter facility combined with rocket measurements were used to provide a database of reliable lower ionosphere data from approximately 70° geomagnetic. NN modelling requires a substantial database of reliable data with which the NN is trained to learn the relationship between the input space and the output parameter. Combinations of various input parameters known to produce a response in the lower ionosphere were investigated as potential contributors to the input space. The final input space consisted of local magnetic time, riometer absorption, a local magnetic K index, the inverse Chapman function corresponding to the solar zenith angle, the F10.7 cm solar radio flux, and the pressure surface. The pressure surface is a representation of the seasonal variation and the altitude. The output was the electron density for the given set of input parameters at a particular pressure surface. Therefore, an average electron density profile describing the behaviour of the auroral lower ionosphere can be determined for a particular instance of the input space. A process of minimisation of mean squared errors was used to optimise the NNs. It is shown that this model is capable of predicting realistic average electron density profiles for the high latitude lower ionosphere. In addition, the ability of this model to simulate the total absorption to within the resolution of a riometer will be demonstrated. It is the intention of the authors to provide this model in a suitable form for incorporation into the International Reference Ionosphere model and, therefore, these results may be of interest to the ionospheric community.

  16. Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone

    NASA Astrophysics Data System (ADS)

    Mottez, Fabrice

    2016-02-01

    There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.

  17. Unambiguous evidence of HF pump-enhanced airglow at auroral latitudes

    NASA Astrophysics Data System (ADS)

    Brändström, B. U. E.; Leyser, T. B.; Steen, Å.; Rietveld, M. T.; Gustavsson, B.; Aso, T.; Ejiri, M.

    1999-12-01

    Simultaneous observations by up to three low-light imaging stations belonging to the Auroral Large Imaging System (ALIS) have provided the first strong evidence of high-frequency (HF) pump-enhanced airglow at auroral latitudes. The airglow was enhanced by an ordinary mode 4.04 MHz electromagnetic wave with an effective radiated power (ERP) of about 210 MW that was transmitted from the EISCAT-Heating facility near Tromsø, Norway. While often observed at low or mid-latitudes, and despite numerous earlier experiments, no unambiguous observations of pump-enhanced airglow have been reported at auroral latitudes. On February 16, 1999, the first successful results were obtained, and this paper concentrates on discussing optical data from this event. Triangulated estimations of the altitude and position of the enhanced airglow are also presented. Auroral-latitude observations of HF pump-enhanced airglow are important in order to better understand the underlying excitation mechanisms.

  18. Boost-phase discrimination research activities

    NASA Technical Reports Server (NTRS)

    Cooper, David M.; Deiwert, George S.

    1989-01-01

    Theoretical research in two areas was performed. The aerothermodynamics research focused on the hard-body and rocket plume flows. Analytical real gas models to describe finite rate chemistry were developed and incorporated into the three-dimensional flow codes. New numerical algorithms capable of treating multi-species reacting gas equations and treating flows with large gradients were also developed. The computational chemistry research focused on the determination of spectral radiative intensity factors, transport properties and reaction rates. Ab initio solutions to the Schrodinger equation provided potential energy curves transition moments (radiative probabilities and strengths) and potential energy surfaces. These surfaces were then coupled with classical particle reactive trajectories to compute reaction cross-sections and rates.

  19. Modulation of auroral electrojet currents using dual modulated HF beams with ELF phase offset, a potential D-region ionospheric diagnostic

    NASA Astrophysics Data System (ADS)

    GołKowski, M.; Cohen, M. B.; Moore, R. C.

    2013-05-01

    Experiments at the ionospheric heating facility of the High Frequency Active Auroral Research Program (HAARP) are performed employing dual HF beams amplitude modulated at ELF/VLF with a phase offset between the two modulation waveforms. The amplitude of the observed ELF/VLF waves is strongly dependent on the imposed ELF/VLF phase offset, the modulation waveform, and the orientation of the HF beams. Data from two ground stations are interpreted using simulations of modulated heating power envelopes as well as a comprehensive model of ionospheric ELF/VLF generation. It is found that two colocated vertical beams HF beams excite a single ionospheric ELF/VLF source, but independent ELF/VLF sources can be induced in the ionospheric region above the heater if the HF beams are offset from zenith to intersect at their 3 dB points. Furthermore, the use of two vertical HF beams with ELF phase offset is found to be a potential diagnostic method for the ionospheric D region.

  20. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    NASA Astrophysics Data System (ADS)

    Willis, D. M.; Armstrong, G. M.; Ault, C. E.; Stephenson, F. R.

    2005-03-01

    Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic) solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma. European telescopic

  1. Features of Pc5 pulsations in the geomagnetic field, auroral luminosity, and Riometer absorption

    NASA Astrophysics Data System (ADS)

    Belakhovsky, V. B.; Pilipenko, V. A.; Samsonov, S. N.; Lorentsen, D.

    2016-01-01

    Simultaneous morning Pc5 pulsations ( f ~ 3-5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.

  2. The discovery and the first studies of the auroral oval: A review

    NASA Astrophysics Data System (ADS)

    Feldstein, Y. I.

    2016-03-01

    The auroral oval concept radically changed the view that existed for a century in geophysics on the patterns in aurora planetary spatial-temporal distributions. The auroral zone, which is located around the geomagnetic pole as a continuous ring at a constant angular distance of ~23°, was replaced by the auroral oval in 1960. The auroral oval spatial position reflects the shape of the Earth's magnetosphere, which is compressed by the solar wind on the dayside and stretches into the magnetotail on the nightside. The oval is fixed relative to the direction toward the Sun and is located around the geomagnetic pole at altitudes of the upper atmosphere at an angular distance of ~12° at noon and ~23° at midnight. After an animated discussion over several subsequent years, the existence of the auroral oval was accepted by the scientific community as a paradigm of a new science, i.e., solar-terrestrial physics. The oval location indicates the zone where electron fluxes with energies varying from ~100 eV to ~20 keV precipitate into the upper atmosphere and is related to the structure of plasma domains in the Earth's magnetosphere. The paper describes the scientific studies that resulted in the concept of the auroral oval existence. It has been shown how this concept was subsequently justified in the publications by Y.I. Feldstein and O.B. Khorosheva. The issue of the priority of the auroral oval concept introduction into geophysics has been considered. The statement that the concept of the oval is an archaic paradigm of solar-terrestrial physics has been called into question. Some scientific fields in which the term auroral oval or simply oval was and is the paradigm have been listed.

  3. Observations of angular distributions of low energy electron intensities over the auroral zones with Ariel 4

    NASA Technical Reports Server (NTRS)

    Craven, J. D.; Frank, L. A.

    1975-01-01

    The electron intensities considered are within the energy range from 244 eV to 10.8 keV. The measurements were made at an altitude of about 570 km over the local-evening sector of the auroral zone. Aspects of instrumentation are discussed along with details regarding the observations, energy-time spectrograms, the signature of the plasma sheet, and inverted V events. The initial results reported provide new information concerning auroral acceleration mechanisms.

  4. Initial results from the operation of two argon ion generators in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Erlandson, R. E.; Cahill, L. J., Jr.; Pollock, C. J.; Arnoldy, R. L.; Scales, W. A.

    1987-01-01

    Two argon ion generators have been lofted by sounding rockets in order to investigate ion beam dynamics and beam effects on the ionosphere, and auroral electrodynamics during rocket passage over auroral arcs. The ion generators were on a subpayload that was separated from the main payload early in the flight. The main payload conducted the diagnostic measurements during ion beam operations. Evidence of heating of the ionosphere around the subpayload during each ion beam emission is noted.

  5. Saturn's auroral morphology and field-aligned currents during a solar wind compression

    NASA Astrophysics Data System (ADS)

    Badman, S. V.; Provan, G.; Bunce, E. J.; Mitchell, D. G.; Melin, H.; Cowley, S. W. H.; Radioti, A.; Kurth, W. S.; Pryor, W. R.; Nichols, J. D.; Jinks, S. L.; Stallard, T. S.; Brown, R. H.; Baines, K. H.; Dougherty, M. K.

    2016-01-01

    On 21-22 April 2013, during a coordinated auroral observing campaign, instruments onboard Cassini and the Hubble Space Telescope observed Saturn's aurora while Cassini traversed Saturn's high latitude auroral field lines. Signatures of upward and downward field-aligned currents were detected in the nightside magnetosphere in the magnetic field and plasma measurements. The location of the upward current corresponded to the bright ultraviolet auroral arc seen in the auroral images, and the downward current region was located poleward of the upward current in an aurorally dark region. Within the polar cap magnetic field and plasma fluctuations were identified with periods of ∼20 and ∼60 min. The northern and southern auroral ovals were observed to rock in latitude in phase with the respective northern and southern planetary period oscillations. A solar wind compression impacted Saturn's magnetosphere at the start of 22 April 2013, identified by an intensification and extension to lower frequencies of the Saturn kilometric radiation, with the following sequence of effects: (1) intensification of the auroral field-aligned currents; (2) appearance of a localised, intense bulge in the dawnside (04-06 LT) aurora while the midnight sector aurora remained fainter and narrow; and (3) latitudinal broadening and poleward contraction of the nightside aurora, where the poleward motion in this sector is opposite to that expected from a model of the auroral oval's usual oscillation. These observations are interpreted as the response to tail reconnection events, initially involving Vasyliunas-type reconnection of closed mass-loaded magnetotail field lines, and then proceeding onto open lobe field lines, causing the contraction of the polar cap region on the night side.

  6. 2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation

    NASA Astrophysics Data System (ADS)

    Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.

    2006-12-01

    The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193

  7. The Birkland Currents, the Electrojets, Auroral Precipitation, Intense Electric Field Channels, and the Open-Closed Field Line Boundary: A Synthesis of Quiet Time Auroral Current Structure Near the Harang Discontinuity.

    NASA Astrophysics Data System (ADS)

    Archer, W. E.; Knudsen, D. J.; Burchill, J. K.; Jackel, B. J.; Donovan, E.; Spanswick, E.; Connors, M. G.

    2015-12-01

    The European Space Agency Swarm satellite mission began with all three Swarm satellites in similar, noon-to-midnight polar orbits. We present electric field, magnetic field, electron density, electron temperature, and ion temperature measurements from early in the Swarm mission (December 2013). This data set is of particular interest as the pearls-on-a-string orientation of the satellites provide multiple measurements of similar volumes of space taken minutes apart, providing confidence in measurement integrity and reducing the spatio-temporal ambiguity inherent to in-situ measurements. Furthermore, the measurement period is characterized by low geomagnetic activity which results in consistent measurement conditions orbit to orbit. The December 2013 ionospheric Swarm measurements combined with ground-based optical and magnetic measurements provide a consistent picture of ionospheric and field-aligned currents near midnight during quiet geomagnetic conditions. Relationships between large-scale field aligned currents, auroral precipitation, narrow regions of enhanced electric fields, the electrojets, and the open-closed field line boundary have all been studied pairwise previously. We present a synthesis interpretation of the set of measurements to arrive at a consistent picture of the auroral current structure near midnight. This work is supported by a grant from the Canadian Space Agency.

  8. Describing Changes in Undergraduate Students' Preconceptions of Research Activities

    NASA Astrophysics Data System (ADS)

    Cartrette, David P.; Melroe-Lehrman, Bethany M.

    2012-12-01

    Research has shown that students bring naïve scientific conceptions to learning situations which are often incongruous with accepted scientific explanations. These preconceptions are frequently determined to be misconceptions; consequentially instructors spend time to remedy these beliefs and bring students' understanding of scientific concepts to acceptable levels. It is reasonable to assume that students also maintain preconceptions about the processes of authentic scientific research and its associated activities. This study describes the most commonly held preconceptions of authentic research activities among students with little or no previous research experience. Seventeen undergraduate science majors who participated in a ten week research program discussed, at various times during the program, their preconceptions of research and how these ideas changed as a result of direct participation in authentic research activities. The preconceptions included the belief that authentic research is a solitary activity which most closely resembles the type of activity associated with laboratory courses in the undergraduate curriculum. Participants' views showed slight maturation over the research program; they came to understand that authentic research is a detail-oriented activity which is rarely successfully completed alone. These findings and their implications for the teaching and research communities are discussed in the article.

  9. 38 CFR 1.488 - Research activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....S.C. 5701, 38 CFR 1.500-1.527, the Privacy Act (5 U.S.C. 552a), 38 CFR 1.575-1.584 and the following... research protocol has been reviewed by an independent group of three or more individuals who found that...

  10. 38 CFR 1.488 - Research activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....S.C. 5701, 38 CFR 1.500-1.527, the Privacy Act (5 U.S.C. 552a), 38 CFR 1.575-1.584 and the following... research protocol has been reviewed by an independent group of three or more individuals who found that...

  11. Deducing composition and incident electron spectra from ground-based auroral optical measurements: A study of auroral red line processes

    SciTech Connect

    Meier, R.R. ); Strickland, D.J.; Hecht, J.H.; Christensen, A.B. )

    1989-10-01

    We conclude from a study of the production and loss of O({sup 1}{ital D}) in auroras that the traditional'' sources, direct electron impact excitation of atomic oxygen and dissociative recombination of molecular oxygen ions, can account for most of the O I 6300-A emission rate. In a specific application of the model to the comprehensive observation of an auroral event by Sharp et al. (1979), we show that there is no compelling need for the reaction N({sup 2}{ital D})+O{sub 2}{r arrow}NO+O({sup 1}{ital D}). We also present a study of the sensitivity of the red line emission rate to a wide variety of input conditions. {copyright} American Geophysical Union 1989

  12. On a theory of temporal fluctuations in the electrostatic potential structures associated with auroral arcs

    NASA Technical Reports Server (NTRS)

    Silevitch, M. B.

    1981-01-01

    A possible mechanism is presented for the generation of large-amplitude temporal fluctuations in the structure of the electron energization region associated with auroral arcs. The mechanism is based on the observation that the auroral arc system resembles a laboratory circuit consisting of the series connection of battery, resistance and a forward biased diode containing collisionless plasma in which large-amplitude relaxation oscillations are sometimes observed to be superimposed on the steady-state current. It is shown that in both the laboratory and auroral systems, in which a localized auroral arc dynamo, the ionosphere and the electron energization region are involved, the oscillations are controlled by the times for ions and electrons to traverse the acceleration region, which also characterize the low- and high-frequency structure of the fluctuating waveform. It is demonstrated that a plausible one-dimensional double-layer model of the auroral arc acceleration region exhibits the dynamic negative resistance necessary for the generation of oscillations by the present mechanism. Finally, consideration is given to two kinds of auroral phenomena which might be associated with the mechanism: the 10-Hz quasi-periodic flickering aurora and 10-Hz modulations in the intensity of electrostatic hydrogen cyclotron waves.

  13. Longitudinal and Hemispheric Variations of Nighttime E-Layer Electron Density in the Auroral Zone

    NASA Astrophysics Data System (ADS)

    Luan, X.; Wang, W.; Dou, X.; Burns, A. G.; Yue, X.

    2014-12-01

    The longitudinal patterns of nighttime E layer electron density in the auroral zone are analyzed in both hemispheres using COSMIC observation under quiet and solar minimum conditions. These l patterns are compared with the variations of particle precipitating energy flux from TIMED/GUVI under similar geophysical conditions, and also the solar radiation source of the auroral E layer are discussed. Our main conclusions are: (1) the nighttime maximum E-layer electron density presents pronounced longitudinal variations in the auroral zone, which depends on seasons and hemispheres. In local winter of both hemispheres and in northern equinox, maximum electron density is located in most western sectors within magnetic longitudes of 120-360°E. In local summer of both hemispheres and in southern equinox, greater the electron density occurs in a wide longitudinal sector centered at 0°E. (2) Hemispheric asymmetry occurs in auroral E layer electron density in all seasons, including equinox. In local winter, the maximum density of the northern hemisphere is much higher than that of southern hemisphere. In equinox, the longitudinal patterns of the electron density are out of phase between the two hemispheres. (3) The effects of the auroral precipitation are dominant in building the E layer electron density in the auroral zone for all seasons, except in southern summer in sector of 300-90°E MLON, where strong solar radiation takes place.

  14. Enhanced MUF propagation of HF radio waves in the auroral zone

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Jones, T. B.; Warrington, E. M.

    1997-01-01

    Four high frequency propagation paths were monitored from a transmitter located within the polar cap by four receivers located variously within the polar cap and at sub-auroral latitudes. Of these paths, one was contained entirely within the polar cap at all times, two were trans-auroral at all times, and one varied from trans-auroral during the day to polar cap during the night. Fourteen frequencies within the HF band were transmitted each hour for the duration of two 24 day experimental campaigns during the summer of 1988 and the winter of 1989. From an analysis of the received signals the confidence of signal recognition and signal strength were determined. During geomagnetically undisturbed periods the propagation behaviour resembled that of mid-latitude paths. During geomagnetically disturbed times, however, night-time propagation occurred on frequencies up to and sometimes over 10 MHz above the undisturbed night-time MUF, for periods of 2 to 6 h. These features appeared on the trans-auroral paths only and were attributed to E region (and occasionally F region) enhancement by auroral precipitation. APEs (auroral E propagation events) occurred on over 50% of nights. The occurrence of APEs also coincided with ionospheric storm periods when the HF band available for propagation was otherwise significantly narrowed due to a depletion of the F region electron density.

  15. Correspondence between the ULF wave power spatial distribution and auroral oval boundaries

    NASA Astrophysics Data System (ADS)

    Kozyreva, Olga; Pilipenko, Vyacheslav; Engebretson, Mark; Klimushkin, Dmitriy; Mager, Pavel

    2016-06-01

    The world-wide spatial distribution of the wave power in the Pc5 band during magnetic storms has been compared with auroral oval boundaries. The poleward and equatorward auroral oval boundaries are estimated using either the British Antarctic Survey database containing IMAGE satellite UV observations of the aurora or the OVATION model based on the DMSP particle data. The "epicenter" of the spectral power of broadband Pc5 fluctuations during the storm growth phase is mapped inside the auroral oval. During the storm recovery phase, the spectral power of narrowband Pc5 waves, both in the dawn and dusk sectors, is mapped inside the auroral oval or around its equatorward boundary. This observational result confirms previously reported effects: the spatial/temporal variations of the Pc5 wave power in the morning/pre-noon sector are closely related to the dynamics of the auroral electrojet and magnetospheric field-aligned currents. At the same time, narrowband Pc5 waves demonstrate typical resonant features in the amplitude-phase latitudinal structure. Thus, the location of the auroral oval or its equatorward boundary is the preferred latitude for magnetospheric field-line Alfven resonator excitation. This effect is not taken into account by modern theories of ULF Pc5 waves, but it could be significant for the development of more adequate models.

  16. Magnetotail flux accumulation leading to auroral expansion and a substorm current wedge: case study

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T. S.; Angelopoulos, V.; Weygand, J. M.; Strangeway, R. J.; Liu, J.

    2015-12-01

    Magnetotail burst busty flows, magnetic field dipolarization, and auroral poleward expansion are linked to the development of substorm current wedges (SCW). Although auroral brightening is often attributed to field-aligned currents (FACs) in the SCW produced by flow vorticity and pressure redistribution, in-situ observations addressing the mechanism that generates these currents have been scarce. Conjugate observations and modelling results utilizing magnetotail satellites, inversion technique for SCW, and auroral imagers were used to study the release, transport, and accumulation of magnetic flux by flows; dipolarization associated with substorm current wedge formation; and auroral poleward expansion during an isolated substorm on 13 February 2008. During early expansion phase, magnetic flux released by magnetic reconnection was transported by earthward flows. Some magnetic flux was accumulated in the near-Earth region, and the remainder was transported azimuthally by flow diversion. The accumulated flux created a high pressure region with vertically dipolarized and azimuthally bent magnetic field lines. The rotation of the magnetic field lines was consistent with the polarity of the SCW. In the near-Earth region, good agreement was found among the magnetic flux transported by the flows, the accumulated flux causing dipolarization inside the SCW, and the flux enclosed within the poleward-expanded auroral oval. This agreement demonstrates that magnetic flux from the flows accumulated and generated the SCW, the magnetic dipolarization, and the auroral poleward expansion. The quantity of accumulated flux appears to determine the amplitudes of these phenomena.

  17. Accaleration of Electrons of the Outer Electron Radiation Belt and Auroral Oval Dynamics

    NASA Astrophysics Data System (ADS)

    Antonova, Elizaveta; Ovchinnikov, Ilya; Riazantseva, Maria; Znatkova, Svetlana; Pulinets, Maria; Vorobjev, Viachislav; Yagodkina, Oksana; Stepanova, Marina

    2016-07-01

    We summarize the results of experimental observations demonstrating the role of auroral processes in the formation of the outer electron radiation belt and magnetic field distortion during magnetic storms. We show that the auroral oval does not mapped to the plasma sheet proper (region with magnetic field lines stretched in the tailward direction). It is mapped to the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. Mapping of the auroral oval to the region of high latitude continuation of the ordinary ring current explains the ring like shape of the auroral oval with finite thickness near noon and auroral oval dynamics during magnetic storms. The auroral oval shift to low latitudes during storms. The development of the ring current produce great distortion of the Earth's magnetic field and corresponding adiabatic variations of relativistic electron fluxes. Development of the asymmetric ring current produce the dawn-dusk asymmetry of such fluxes. We analyze main features of the observed processes including formation of sharp plasma pressure profiles during storms. The nature of observed pressure peak is analyzed. It is shown that the observed sharp pressure peak is directly connected with the creation of the seed population of relativistic electrons. The possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations is demonstrated.

  18. Research activities of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor)

    1984-01-01

    A broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography are discussed. The NASA programs, include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX), and the Geopotential Research Mission (GRM). The papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.

  19. Endocrinology: the active partner in PNI research.

    PubMed

    Malarkey, William B; Mills, Paul J

    2007-02-01

    For the past two decades, research appearing in the pages of Brain, Behavior, and Immunity (BBI), as well as other journals, has significantly deepened our understanding of the complexities of endocrine regulation of immunity in states of health and disease. This mini-review discusses contributions that endocrinology has made to the field of psycho-neuroimmunology (PNI), as well as discoveries that PNI researchers have made of the pervasive interactions between the endocrine and immune systems. We highlight the endocrine-immune interface, emphasizing similarities between the immune and endocrine systems as well as hormone/cytokine interactions. Differing endocrine-immune responses to acute and chronic psychosocial stress have been clarified during this time frame with the use of novel stress and endocrine sampling paradigms. Furthermore, investigations examining the role of cytokine involvement in acquired glucocorticoid resistance in illnesses like depression have expanded our understanding of the complexity of the endocrine-immune response to psychosocial stress. We have selected literature, with a focus on human studies, to illustrate these principals. We conclude with a discussion of the clinical relevance of endocrine-immune investigations and thoughts about the next decade of endocrine research in PNI.

  20. Methods to Measure Physical Activity Behaviors in Health Education Research

    ERIC Educational Resources Information Center

    Fitzhugh, Eugene C.

    2015-01-01

    Regular physical activity (PA) is an important concept to measure in health education research. The health education researcher might need to measure physical activity because it is the primary measure of interest, or PA might be a confounding measure that needs to be controlled for in statistical analysis. The purpose of this commentary is to…

  1. Narratives and Activity Theory as Reflective Tools in Action Research

    ERIC Educational Resources Information Center

    Stuart, Kaz

    2012-01-01

    Narratives and activity theory are useful as socially constructed data collection tools that allow a researcher access to the social, cultural and historical meanings that research participants place on events in their lives. This case study shows how these tools were used to promote reflection within a cultural-historical activity theoretically…

  2. A statistical study of the orientation, motion, and thicknesses of density and electric field structures observed by Cluster~II above the auroral accleration region

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Bonnell, J. W.; Mozer, F. S.; Andre, M.; Eriksson, A.; Vaivads, A.; Pedersen, A.; Lindqvist, P.; Laakso, H.

    2003-12-01

    We present the results of a statistical study of the properties of electric field and density structures observed by the Cluster~II spacecraft above the auroral acceleration region. Of particular emphasis is the orientation, motion, and thicknesses of time stationary structures. The multi-point electric field and density measurements from the Cluster~II constellation are used to estimate the direction and propagation speed of structures in the electric fields and plasma density (as inferred from spacecraft floating potential measurements), as well as to quantify the thicknesses of those structures. These spatial structures propagate transverse to the magnetic field at speeds of ˜10 km/s and are characterized by thicknesses that range from a few hundred kilometers to a few thousand kilometers in extent. Thus with these observations we are probing the high-altitude potential and density structures that are associated with relatively fast (1 km/s) proper motions of fairly large scale (10-100 km) features in the auroral zone. The variation in the properties of these spatial structures with other parameters that characterize the auroral zone, such as altitude, local time, invariant latitude, and geomagnetic activity will also be discussed.

  3. NASA Glenn Research Center Battery Activities Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2009-01-01

    This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon and GRC's involvement in their development. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  4. A Typology of Nursing Research Activities According to Educational Preparation.

    ERIC Educational Resources Information Center

    Fawcett, Jacqueline

    1985-01-01

    A typology of research activities (generation of basic, applied, and clinical research; dissemination of findings; and use of findings) considered appropriate to nurses with different levels of educational preparation (ADN, BSN, MSN, DNSc/EdD, and PhD) is presented to assist potential researchers and nurse educators in undertaking realistic and…

  5. 48 CFR 927.408 - Cosponsored research and development activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Cosponsored research and development activities. Because of the Department of Energy's statutory duties to disseminate data first produced under its contracts for research, development, and demonstration, the... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Cosponsored research...

  6. Human Research Program Science Management: Overview of Research and Development Activities

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  7. Steps toward validity in active living research: research design that limits accusations of physical determinism.

    PubMed

    Riggs, William

    2014-03-01

    "Active living research" has been accused of being overly "physically deterministic" and this article argues that urban planners must continue to evolve research and address biases in this area. The article first provides background on how researchers have dealt with the relationship between the built environment and health over years. This leads to a presentation of how active living research might be described as overly deterministic. The article then offers lessons for researchers planning to embark in active-living studies as to how they might increase validity and minimize criticism of physical determinism.

  8. Research on an Active Seat Belt System

    NASA Astrophysics Data System (ADS)

    Kawashima, Takeshi

    In a car crash, permanent injury can be avoided if deformation of an occupant's rib cage is maintained within the allowable value. In order to realize this condition, the occupant's seat belt tension must be instantaneously adjusted by a feedback control system. In this study, a seat belt tension control system based on the active shock control system is proposed. The semi-active control law used is derived from the sliding mode control method. One advantage of this proposed system is that it does not require a large power actuator because the seat belt tension is controlled by a brake mechanism. The effectiveness is confirmed by numerical simulation using general parameters of a human thorax and a passenger car in a collision scenario with a wall at a velocity of 100 km/h. The feasibility is then confirmed with a control experiment using a scale model of about 1/10 scale. The relative displacement of the thorax model approaches the allowable value smoothly along the control reference and settles near this value. Thus, the proposed seat belt tension control system design is established.

  9. Simultaneous auroral observations described in the historical records of China, Japan and Korea from ancient times to AD 1700

    NASA Astrophysics Data System (ADS)

    Willis, D. M.; Stephenson, F. R.

    2000-01-01

    Early auroral observations recorded in various oriental histories are examined in order to search for examples of strictly simultaneous and indisputably independent observations of the aurora borealis from spatially separated sites in East Asia. In the period up to ad 1700, only five examples have been found of two or more oriental auroral observations from separate sites on the same night. These occurred during the nights of ad 1101 January 31, ad 1138 October 6, ad 1363 July 30, ad 1582 March 8 and ad 1653 March 2. The independent historical evidence describing observations of mid-latitude auroral displays at more than one site in East Asia on the same night provides virtually incontrovertible proof that auroral displays actually occurred on these five special occasions. This conclusion is corroborated by the good level of agreement between the detailed auroral descriptions recorded in the different oriental histories, which furnish essentially compatible information on both the colour (or colours) of each auroral display and its approximate position in the sky. In addition, the occurrence of auroral displays in Europe within two days of auroral displays in East Asia, on two (possibly three) out of these five special occasions, suggests that a substantial number of the mid-latitude auroral displays recorded in the oriental histories are associated with intense geomagnetic storms.

  10. Measurements of hf auroral clutter using the verona ava linear array radar (VALAR). Report for June 1990-June 1991

    SciTech Connect

    Choi, D.S.; Weijers, B.; Myers, N.B.

    1994-03-01

    Measurements of high frequency (HF) auroral clutter using the Verona Ava Linear Array Radar (VALAR) system are presented. VALAR is an experimental HF backscatter system capable of obtaining high resolution synoptic mapping of HF auroral clutter. The receive system includes a 700 meter long linear array. providing the high azimuthal resolution required for determining the spatial distribution of HF auroral clutter. Since the completion of the system at the end of 1989, data acquisition campaigns have been carried out on a near-monthly basis. In this report, the authors provide a brief description of VALAR and present preliminary measurements of three types of phenomena: ground backscatter, slant-F, and auroral backscatter.

  11. Relationships between Interlibrary Loan and Research Activity in Canada

    ERIC Educational Resources Information Center

    Duy, Joanna; Larivière, Vincent

    2014-01-01

    Interlibrary Loan borrowing rates in academic libraries are influenced by an array of factors. This article explores the relationship between interlibrary loan borrowing activity and research activity at 42 Canadian academic institutions. A significant positive correlation was found between interlibrary loan borrowing activity and measures of…

  12. AUREOL-3 observations of new boundaries in the auroral ion precipitation

    NASA Technical Reports Server (NTRS)

    Bosqued, Jean M.; Ashour-Abdalla, Maha; El Alaoui, Mostafa; Zelenyj, Lev M.; Berthlier, Annick

    1993-01-01

    Interesting and well-separated structures in the 1-20 keV ion precipitation pattern have been revealed by an analysis of more than 50 crossings of the nightside (21-03 MLT) auroral zone by the AUREOL-3 satellite. First, velocity-dispersed ion structures (VDIS) are crossed near the poleward edge of the oval, and are the best ionospheric signature of ion beams flowing along the plasma sheet boundary layer. Proceeding equatorward, a large majority of VDIS events are bounded by a new and interesting narrow band of strongly reduced precipitation, or a gap, which delineates VDIS from the diffuse precipitation region connected to the CPS. A statistical analysis shows that the gap has an extent of about 1-2 deg, which is almost independent of magnetic activity; its location, about 70 deg ILAT, shifts significantly equatorward with higher magnetic activity levels. Intense electron arcs are observed near the equatorward edge of the gap. An important result is that the overall sequence of VDIS-gap-CPS can be explained in terms of orbital dynamics in the tail. The gap in precipitation appears as the counterpart of the 'wall' regime in the equatorial plane, in which a cross-tail current carried by energetic ions is strongly enhanced between 8 and 12 R(E). This region has important consequences for the development of substorms.

  13. Electric field measurements across the harang discontinuity. [of the auroral zone

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.

    1974-01-01

    The Harang discontinuity, the area separating the positive and negative bay regions in the midnight sector of the auroral zone, is a focal point for changes in behavior of many phenomena. Through this region the electric field rotates through the west from a basically northward field in the positive bay region to a basically southward field in the negative bay region, appearing as a reversal in a single axis measurement; 32 of these reversals have been identified in the OGO-6 data from November and December, 1969. The discontinuity is dynamic in nature, moving southward and steepening its latitudinal profile as magnetic activity is increased. As activity decreases it relaxes poleward and spreads out in latitudinal width. It occurs over several hours of magnetic local time. The boundary in the electric field data is consistent with the reversal of ground magnetic disturbances from a positive to negative bay condition. The discontinuity is present in the electric field data both during substorms and during quiet times and appears to define a pattern on which other effects can occur.

  14. Transient composite electric field disturbances near dip equator associated with auroral substorms

    SciTech Connect

    Hanumath Sastri, J.; Ramesh, K.B.; Ranganath Rao, H.N. )

    1992-07-24

    Ionosonde data of Kodaikanal and Huancayo are used to show the simultaneous occurrence of a transient disturbance in F region height of composite polarity in day and night sectors near the dip equator during the auroral substorm activity on 20 August 1979. At Kodaikanal which is on the nightside at the time of the substorm activity, h[prime]F first underwent an abrupt and rapid decrease (80km in 1 hr) followed by a much larger increase (120km in 1 hr). Perturbation in hpF2 of exactly opposite polarity was simultaneously seen at Huancayo which is on the dayside. The decrease in h[prime]F at Kodaikana (increase in hpF2 at Huancayo) occurred in association with an increase in polar cap potential drop, [phi] (estimated from IMF parameters), and the subsequent increase (decrease at Huancayo) with a decrease in polar cap potential. The F-region height disturbance is interpreted as the manifestation of a global transient composite disturbance in equatorial zonal electric field caused by the prompt penetration of substorm-related high latitude electric fields into the equatorial ionosphere. The polarity pattern of the electric field disturbance is consistent with the global convection models which predict westward (eastward) electric fields at night (by day) near the geomagnetic equator in response to an increase in polar cap potential drop, and fields of opposite signs for a decrease in polar cap potential.

  15. Zoo visitors' understanding of terms denoting research activity.

    PubMed

    Carson, Lloyd

    2014-07-01

    Zoos have increasingly sought to justify their existence by reference to a scientific role particularly in the domains of animal welfare and conservation. Given recent initiatives by the UK government to foster public engagement with science, it is timely to investigate public attitudes towards primary research activity by zoos. This study reports the views of 83 visitors to Edinburgh Zoo. Within certain items in a structured interview noun terms denoting research activity were manipulated ("research" versus "studies") as was their qualification (adjective "scientific" present or absent before the noun term). "Research" was associated with a restricted and negative perception of investigatory activity. This effect was intensified when the noun term was preceded by "scientific". It is concluded that there is a continuing need to challenge public perceptions, particularly of the phrase "scientific research"; that in the meantime zoos should perhaps exercise caution when using it in relation to their activities. PMID:25414921

  16. Automatic Georeferencing of Astronaut Auroral Photography: Providing a New Dataset for Space Physics

    NASA Astrophysics Data System (ADS)

    Riechert, Maik; Walsh, Andrew P.; Taylor, Matt

    2014-05-01

    Astronauts aboard the International Space Station (ISS) have taken tens of thousands of photographs showing the aurora in high temporal and spatial resolution. The use of these images in research though is limited as they often miss accurate pointing and scale information. In this work we develop techniques and software libraries to automatically georeference such images, and provide a time and location-searchable database and website of those images. Aurora photographs very often include a visible starfield due to the necessarily long camera exposure times. We extend on the proof-of-concept of Walsh et al. (2012) who used starfield recognition software, Astrometry.net, to reconstruct the pointing and scale information. Previously a manual pre-processing step, the starfield can now in most cases be separated from earth and spacecraft structures successfully using image recognition. Once the pointing and scale of an image are known, latitudes and longitudes can be calculated for each pixel corner for an assumed auroral emission height. As part of this work, an open-source Python library is developed which automates the georeferencing process and aids in visualization tasks. The library facilitates the resampling of the resulting data from an irregular to a regular coordinate grid in a given pixel per degree density, it supports the export of data in CDF and NetCDF formats, and it generates polygons for drawing graphs and stereographic maps. In addition, the THEMIS all-sky imager web archive has been included as a first transparently accessible imaging source which in this case is useful when drawing maps of ISS passes over North America. The database and website are in development and will use the Python library as their base. Through this work, georeferenced auroral ISS photography is made available as a continously extended and easily accessible dataset. This provides potential not only for new studies on the aurora australis, as there are few all-sky imagers in

  17. The INDEX mission: A Japanese micro-satellite for exploring small-scale auroral properties

    NASA Astrophysics Data System (ADS)

    Hirahara, M.; Sakanoi, T.; Asamura, K.; Okada, M.; Ejiri, M.; Okano, S.; Mukai, T.; Saito, H.

    The INDEX is the first Japanese micro-satellite mission for the exploration of fine auroral structures in the Earth's polar region, which is a piggyback payload launched by an H2A in 2004. The auroral phenomena are characterized by photon emissions over a wide wavelength range, associated with distinctive energy and pitch-angle distributions of electrons and ions, as reported from previous polar-orbiting satellite results. Three scientific instruments will be carried by the INDEX satellite into a sun-synchronous orbit in the meridian of 1030-2230 LT at an 800-km altitude. One is the multi-spectral auroral camera (MAC) with three channels of CCD and interference filter for obtaining monochromatic images of visible auroras. The second is the low-energy auroral particle instrument consisting of two top-hat type sensors: electron and ion energy spectrum analyzers (ESA/ISA). The other is the electric current monitor (CRM), based on the detection principle of the Langmuir probe. The most important scientific purpose of the INDEX mission is the observations performed by the high time and spatial resolutions of auroral emissions, particles, and plasma environment with fine scale of structures. The past ground-based observations of discrete auroral arcs have indicated that the visible arcs are composed of extremely thin curtains. On the other hand, no satellite observations have shown such fine auroral structures because of orbital properties and instrumental limitations. In this paper, we would like to introduce our novel scientific mission using a micro-satellite built by in-house techniques and also discuss several observational modes for more fruitful scientific results.

  18. VISIONS: Combined remote sensing and in situ observations of auroral zone ion outflow during a substorm

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Clemmons, J. H.; Hecht, J. H.; Lemon, C. L.; Collier, M. R.; Keller, J. W.; Pfaff, R. F.; Klenzing, J.; McLain, J.

    2013-12-01

    measured electric fields (DC through HF), magnetic fields, and electron temperature and density Taken together, these measurements provide important new information, previously available only through synoptic studies and long-term statistical databases, about the parameters that drive ion outflow most effectively. VISIONS flew through and near several regions of enhanced auroral activity, and also sensed regions of ion outflow both remotely (via ENA imaging) and directly (using in situ measurements). The combination of these measurements shows a strong correlation between regions of enhanced soft electron precipitation and enhanced ion outflow, and shows that the regions with enhanced ion outflow are spatially and temporally coherent, allowing VISIONS to set constraints on models of ion outflow, including spatial size, total ion outflow rates, and lifetime. In addition, VISIONS gives some information about the vertical profile of ENA emissions, from which ion energization profiles can be inferred. ENAs are mostly observed coming up from below the rocket, consistent with either low-altitude (300-400 km) transverse acceleration and/or a 'pressure cooker' mechanism.

  19. Review of the research activities of the Energy Research Unit in 1994

    NASA Astrophysics Data System (ADS)

    Halliday, J.

    1995-01-01

    The report contains short reviews of the Energy Research Unit's hardware facilities and of its recently completed and ongoing research activities. The Unit was established by the Science and Engineering Research Council (SERC) in the late 1970's to provide university researchers with access to facilities not available within their own institutions. In 1994 a new research council - the Engineering and Physical Sciences Research Council (EPSRC), was created by the Government and took over responsibility for much of SERC's engineering remit, including the support of the facilities provided by the Energy Research Unit. The report reviews the recent research activities of the Unit, and includes all projects active at the end of December 1994 as well as mention of several which have recently been completed.

  20. Nursing research on physical activity: a feminist critique.

    PubMed

    Im, E

    2001-04-01

    Studies on physical activity have rarely included women as research participants, and have been mainly conducted among Western populations. In this paper, nursing research on women's physical activity is analyzed and critiqued using a feminist perspective that respects and values women's own experiences and their diversities. An extensive literature search was conducted using computerized data retrieval systems and 47 empirical studies published in nursing literature were selected and analyzed. The critique is presented with three main themes emerged from the analysis: (a) "without considering women's own experiences"; (b) "implicit androcentric and ethnocentric assumptions"; (c) "without meaningful interactions". Based on the analysis, future directions for nursing research on physical activity are proposed.