Science.gov

Sample records for active bacterial cells

  1. Bacterial activation of mast cells.

    PubMed

    Chi, David S; Walker, Elaine S; Hossler, Fred E; Krishnaswamy, Guha

    2006-01-01

    Mast cells often are found in a perivascular location but especially in mucosae, where they may response to various stimuli. They typically associate with immediate hypersensitive responses and are likely to play a critical role in host defense. In this chapter, a common airway pathogen, Moraxella catarrhalis, and a commensal bacterium, Neiserria cinerea, are used to illustrate activation of human mast cells. A human mast cell line (HMC-1) derived from a patient with mast cell leukemia was activated with varying concentrations of heat-killed bacteria. Active aggregation of bacteria over mast cell surfaces was detected by scanning electron microscopy. The activation of mast cells was analyzed by nuclear factor-kappaB (NF-kappaB) activation and cytokine production in culture supernatants. Both M. catarrhalis and N. cinerea induce mast cell activation and the secretion of two key inflammatory cytokines, interleukin-6 and MCP-1. This is accompanied by NF-kappaB activation. Direct bacterial contact with mast cells appears to be essential for this activation because neither cell-free bacterial supernatants nor bacterial lipopolysaccharide induce cytokine secretion.

  2. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells

    PubMed Central

    Pu, Yingying; Zhao, Zhilun; Li, Yingxing; Zou, Jin; Ma, Qi; Zhao, Yanna; Ke, Yuehua; Zhu, Yun; Chen, Huiyi; Baker, Matthew A.B.; Ge, Hao; Sun, Yujie; Xie, Xiaoliang Sunney; Bai, Fan

    2016-01-01

    Summary Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance. PMID:27105118

  3. Cooperativity of peptidoglycan synthases active in bacterial cell elongation.

    PubMed

    Banzhaf, Manuel; van den Berg van Saparoea, Bart; Terrak, Mohammed; Fraipont, Claudine; Egan, Alexander; Philippe, Jules; Zapun, André; Breukink, Eefjan; Nguyen-Distèche, Martine; den Blaauwen, Tanneke; Vollmer, Waldemar

    2012-07-01

    Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan glycosyltrasferase-transpeptidase PBP1A interacts with the cell elongation-specific transpeptidase PBP2 in vitro and in the cell. Cells lacking PBP1A are thinner and initiate cell division later in the cell cycle. PBP1A localizes mainly to the cylindrical wall of the cell, supporting its role in cell elongation. Our in vitro peptidoglycan synthesis assays provide novel insights into the cooperativity of peptidoglycan synthases with different activities. PBP2 stimulates the glycosyltransferase activity of PBP1A, and PBP1A and PBP2 cooperate to attach newly synthesized peptidoglycan to sacculi. PBP2 has peptidoglycan transpeptidase activity in the presence of active PBP1A. Our data also provide a possible explanation for the depletion of lipid II precursors in penicillin-treated cells.

  4. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection

    PubMed Central

    Guthrie, Brandon S.; Schmidt, Rebecca L.; Jamieson, Amanda; Merkel, Patricia; Knight, Vijaya; Cole, Caroline M.; Raulet, David H.; Lenz, Laurel L.

    2016-01-01

    Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. PMID:27295349

  5. Hyperforin Exhibits Antigenotoxic Activity on Human and Bacterial Cells.

    PubMed

    Imreova, Petronela; Feruszova, Jana; Kyzek, Stanislav; Bodnarova, Kristina; Zduriencikova, Martina; Kozics, Katarina; Mucaji, Pavel; Galova, Eliska; Sevcovicova, Andrea; Miadokova, Eva; Chalupa, Ivan

    2017-01-21

    Hyperforin (HF), a substance that accumulates in the leaves and flowers of Hypericum perforatum L. (St. John's wort), consists of a phloroglucinol skeleton with lipophilic isoprene chains. HF exhibits several medicinal properties and is mainly used as an antidepressant. So far, the antigenotoxicity of HF has not been investigated at the level of primary genetic damage, gene mutations, and chromosome aberrations, simultaneously. The present work is designed to investigate the potential antigenotoxic effects of HF using three different experimental test systems. The antigenotoxic effect of HF leading to the decrease of primary/transient promutagenic genetic changes was detected by the alkaline comet assay on human lymphocytes. The HF antimutagenic effect leading to the reduction of gene mutations was assessed using the Ames test on the standard Salmonella typhimurium (TA97, TA98, and TA100) bacterial strains, and the anticlastogenic effect of HF leading to the reduction of chromosome aberrations was evaluated by the in vitro mammalian chromosome aberration test on the human tumor cell line HepG2 and the non-carcinogenic cell line VH10. Our findings provided evidence that HF showed antigenotoxic effects towards oxidative mutagen zeocin in the comet assay and diagnostic mutagen (4-nitroquinoline-1-oxide) in the Ames test. Moreover, HF exhibited an anticlastogenic effect towards benzo(a)pyrene and cisplatin in the chromosome aberration test.

  6. Bacterial activation of human natural killer cells: role of cell surface lipopolysaccharide.

    PubMed Central

    Lindemann, R A

    1988-01-01

    Culture of human peripheral blood lymphocytes with gram-negative bacteria associated with periodontal disease caused a rapid increase in the cytotoxic potential of natural killer (NK) cells. The NK cells were activated to kill NK-resistant targets, the peak cytotoxicity occurring on day 1 of culture. The addition of anti-Tac, anti-CD3, or anti-OKT-11 antibodies to block activation via the interleukin-2 (IL-2), T-cell, or E rosette receptors had a minimal effect on this inductive process. Anti-IL-2 antiserum was effective in blocking a significant amount, but not all, of the cytotoxicity in bacterium-activated cultures. Modest IL-2 production (5 to 6 National Institutes of Health units) was measured in lymphocyte cultures activated by bacteria, but proliferation was not induced during a 1-week period. When polymixin B sulfate was added to bind and block lipopolysaccharides, bacterium-induced cytotoxicity was completely abrogated for all activating bacteria. In addition, when culture supernatants from Actinobacillus actinomycetemcomitans were tested, activation still occurred. However, again, this activation was totally inhibited by polymixin B sulfate. Monocytes were also activated by bacteria to produce tumor necrosis factor (TNF). To exclude the possibility that TNF was responsible for cytotoxicity, an antiserum to TNF was added to cocultures of bacteria and lymphocytes with adherent cells removed. The antiserum had no effect on the inductive process. In addition, exogenous TNF did not kill M14 targets. These results suggest that bacterial cell surface lipopolysaccharides provide a major activation signal for NK cells to enhance cytotoxicity. PMID:2895743

  7. Genetic Screening for Bacterial Mutants in Liquid Growth Media By Fluorescence-Activated Cell Sorting

    PubMed Central

    Abuaita, Basel H.; Withey, Jeffrey H.

    2010-01-01

    Many bacterial pathogens have defined in vitro virulence inducing conditions in liquid media which lead to production of virulence factors important during an infection. Identifying mutants that no longer respond to virulence inducing conditions will increase our understanding of bacterial pathogenesis. However, traditional genetic screens require growth on solid media. Bacteria in a single colony are in every phase of the growth curve, which complicates the analysis and make screens for growth phase-specific mutants problematic. Here, we utilize fluorescence-activated cell sorting in conjunction with random transposon mutagenesis to isolate bacteria grown in liquid media that are defective in virulence activation. This method permits analysis of an entire bacterial population in real time and selection of individual bacterial mutants with the desired gene expression profile at any time point after induction. We have used this method to identify Vibrio cholerae mutants defective in virulence induction. PMID:21094189

  8. Distinguishing activity decay and cell death from bacterial decay for two types of methanogens.

    PubMed

    Hao, Xiaodi; Cai, Zhengqing; Fu, Kunming; Zhao, Dongye

    2012-03-15

    As bacterial decay consists of cell death and activity decay, and the corresponding information about AOB/NOB, OHO, PAOs and GAOs has been experimentally acquired, another functional type of bacteria in biological wastewater treatment, methanogens, remains to be investigated, to gather the same information, which is extremely important for such bacteria with low growth rates. With successfully selection and enrichment of both aceticlastic and hydrogenotrophic methanogens, and by means of measuring specific methane activity (SMA) and hydrogen consumption rate (HCR), a series of decay experiments and molecular techniques such as FISH verification and LIVE/DEAD staining revealed, identified and calculated the decay and death rates of both aceticlastic and hydrogenotrophic methanogens respectively. The results indicated that the decay rates of aceticlastic and hydrogenotrophic methanogens were 0.070 and 0.034 d(-1) respectively, and the death rates were thus calculated at 0.022 and 0.016 d(-1) respectively. For this reason, cell deaths were only responsible for 31% and 47% of the total bacterial decay of aceticlastic and hydrogenotrophic methanogens, and activity decays actually contributed significantly to the total bacterial decay, respectively at 69% and 53%.

  9. Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity.

    PubMed

    Mesleh, Michael F; Rajaratnam, Premraj; Conrad, Mary; Chandrasekaran, Vasu; Liu, Christopher M; Pandya, Bhaumik A; Hwang, You Seok; Rye, Peter T; Muldoon, Craig; Becker, Bernd; Zuegg, Johannes; Meutermans, Wim; Moy, Terence I

    2016-02-01

    Synthesis of bacterial cell wall peptidoglycan requires glycosyltransferase enzymes that transfer the disaccharide-peptide from lipid II onto the growing glycan chain. The polymerization of the glycan chain precedes cross-linking by penicillin-binding proteins and is essential for growth for key bacterial pathogens. As such, bacterial cell wall glycosyltransferases are an attractive target for antibiotic drug discovery. However, significant challenges to the development of inhibitors for these targets include the development of suitable assays and chemical matter that is suited to the nature of the binding site. We developed glycosyltransferase enzymatic activity and binding assays using the natural products moenomycin and vancomycin as model inhibitors. In addition, we designed a library of disaccharide compounds based on the minimum moenomycin fragment with peptidoglycan glycosyltransferase inhibitory activity and based on a more drug-like and synthetically versatile disaccharide building block. A subset of these disaccharide compounds bound and inhibited the glycosyltransferase enzymes, and these compounds could serve as chemical entry points for antibiotic development.

  10. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.

    PubMed

    Malanovic, Nermina; Lohner, Karl

    2016-05-01

    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  11. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    NASA Technical Reports Server (NTRS)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  12. Metabolic activity of bacterial cell enumerated by direct viable count. [Escherichia coli; Salmonella enteritidis

    SciTech Connect

    Roszak, D.B.; Colwell, R.R.

    1987-12-01

    The direct viable count (DVC) method was modified by incorporation radiolabeled substrates in microautoradiographic analyses to assess bacterial survival in controlled laboratory microcosms. The DVC method, which permits enumeration of culturable and nonculturable cells, discriminates those cells that are responsive to added nutrients but in which division is inhibited by the addition of nalidixic acid. The resulting elongated cells represent all viable cells; this includes those that are culturable on routine media and those that are not. Escherichia coli and Salmonella enteritidis were employed in the microcosm studies, and radiolabeled substrates included (methyl-/sup 3/H) thymidine or (U-/sup 14/C) glutamic acid. Samples taken at selected intervals during the survival experiments were examined by epifluorescence microscopy to enumerate cells by the DVC and acridine orange direct count methods, as well as by culture methods. Good correlation was obtained for cell-associated metabolic activity, measured by microautoradiography and substrate responsiveness (by the DVC method) at various stages of survival. Of the cells responsive to nutrients by the DVC method, ca. 90% were metabolically active by the microautoradiographic method. No significant difference was observed between DVC enumerations with or without added radiolabeled substrate.

  13. A 17-mer Membrane-Active MSI-78 Derivative with Improved Selectivity toward Bacterial Cells.

    PubMed

    Monteiro, Claudia; Pinheiro, Marina; Fernandes, Mariana; Maia, Sílvia; Seabra, Catarina L; Ferreira-da-Silva, Frederico; Reis, Salette; Gomes, Paula; Martins, M Cristina L

    2015-08-03

    Antimicrobial peptides are widely recognized as an excellent alternative to conventional antibiotics. MSI-78, a highly effective and broad spectrum AMP, is one of the most promising AMPs for clinical application. In this study, we have designed shorter derivatives of MSI-78 with the aim of improving selectivity while maintaining antimicrobial activity. Shorter 17-mer derivatives were created by truncating MSI-78 at the N- and/or C-termini, while spanning MSI-78 sequence. Despite the truncations made, we found a 17-mer peptide, MSI-78(4-20) (KFLKKAKKFGKAFVKIL), which was demonstrated to be as effective as MSI-78 against the Gram-positive Staphylococcus strains tested and the Gram-negative Pseudomonas aeruginosa. This shorter derivative is more selective toward bacterial cells as it was less toxic to erythrocytes than MSI-78, representing an improved version of the lead peptide. Biophysical studies support a mechanism of action for MSI-78(4-20) based on the disruption of the bacterial membrane permeability barrier, which in turn leads to loss of membrane integrity and ultimately to cell death. These features point to a mechanism of action similar to the one described for the lead peptide MSI-78.

  14. Endothelial cell injury and coagulation system activation during synergistic hepatotoxicity from monocrotaline and bacterial lipopolysaccharide coexposure.

    PubMed

    Yee, Steven B; Hanumegowda, Umesh M; Copple, Bryan L; Shibuya, Masabumi; Ganey, Patricia E; Roth, Robert A

    2003-07-01

    A small, noninjurious dose of bacterial lipopolysaccharide (LPS; 7.4 x 106 EU/kg) administered 4 h after a small, nontoxic dose of monocrotaline (MCT; 100 mg/kg) produces synergistic hepatotoxicity in rats within 6 to 12 h after MCT exposure. The resulting centrilobular (CL) and midzonal (MZ) liver lesions are characterized by hepatic parenchymal cell (HPC) necrosis. Pronounced hemorrhage, disruption of sinusoidal architecture, and loss of central vein intima suggest that an additional component to injury may be the liver vasculature. In the present investigation, the hypothesis that sinusoidal endothelial cell (SEC) injury and coagulation system activation occur in this model was tested. Plasma hyaluronic acid (HA) concentration, a biomarker for SEC injury, was significantly increased in cotreated animals before the onset of HPC injury and remained elevated through the time of maximal HPC injury (i.e., 18 h). SEC injury was confirmed by immunohistochemistry and electron microscopy. Pyrrolic metabolites were produced from MCT by SECs in vitro, which suggests that MCT may injure SECs directly through the formation of its toxic metabolite, monocrotaline pyrrole. Inasmuch as SEC activation and injury can promote hemostasis, activation of the coagulation system was evaluated. Coagulation system activation, as marked by a decrease in plasma fibrinogen, occurred before the onset of HPC injury. Furthermore, extensive fibrin deposition was observed immunohistochemically within CL and MZ regions after MCT/LPS cotreatment. Taken together, these results suggest that SEC injury and coagulation system activation are components of the synergistic liver injury resulting from MCT and LPS coexposure.

  15. The Prc and RseP proteases control bacterial cell-surface signalling activity.

    PubMed

    Bastiaansen, Karlijn C; Ibañez, Aurelia; Ramos, Juan L; Bitter, Wilbert; Llamas, María A

    2014-08-01

    Extracytoplasmic function (ECF) sigma factors play a key role in the regulation of vital functions in the bacterial response to the environment. In Gram-negative bacteria, activity of these sigma factors is often controlled by cell-surface signalling (CSS), a regulatory system that also involves an outer membrane receptor and a transmembrane anti-sigma factor. To get more insight into the molecular mechanism behind CSS regulation, we have focused on the unique Iut system of Pseudomonas putida. This system contains a hybrid protein containing both a cytoplasmic ECF sigma domain and a periplasmic anti-sigma domain, apparently leading to a permanent interaction between the sigma and anti-sigma factor. We show that the Iut ECF sigma factor regulates the response to aerobactin under iron deficiency conditions and is activated by a proteolytic pathway that involves the sequential action of two proteases: Prc, which removes the periplasmic anti-sigma domain, and RseP, which subsequently removes the transmembrane domain and thereby generates the ECF active transcriptional form. We furthermore demonstrate the role of these proteases in the regulation of classical CSS systems in which the sigma and anti-sigma factors are two different proteins.

  16. Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills.

    PubMed

    Zhang, Dayi; He, Yi; Wang, Yun; Wang, Hui; Wu, Lin; Aries, Eric; Huang, Wei E

    2012-01-01

    Acinetobacter baylyi ADP1 was found to tolerate seawater and have a special ability of adhering to an oil-water interface of 10-80 µm emulsified mineral and crude oil droplets. These properties make ADP1 an ideal bacterial chassis for constructing bioreporters that are able to actively search and sense oil spill in water and soils. Acinetobacter baylyi bioreporter ADPWH_alk was developed and applied to the detection of alkanes and alkenes in water, seawater and soils. Bioreporter ADPWH_alk was able to detect a broad range of alkanes and alkenes with carbon chain length from C7 to C36. So far, ADPWH_alk is the only bioreporter that is able to detect alkane with carbon chain length greater than C18. This bioreporter responded to the alkanes in about 30 min and it was independent to the cell growth phase because of two point mutations in alkM promoter recognized by alkane regulatory protein ALKR. ADPWH_alk was applied to detect mineral oil, Brent, Chestnut and Sirri crude oils in water and seawater in the range 0.1-100 mg l(-1), showing that the bioreporter oil detection was semi-quantitative. This study demonstrates that ADPWH_alk is a rapid, sensitive and semi-quantitative bioreporter that can be useful for environmental monitoring and assessment of oil spills in seawater and soils.

  17. Bacterial genotoxins promote inside-out integrin β1 activation, formation of focal adhesion complexes and cell spreading.

    PubMed

    Levi, Laura; Toyooka, Tatsushi; Patarroyo, Manuel; Frisan, Teresa

    2015-01-01

    Integrins are membrane bound receptors that regulate several cellular processes, such as cell adhesion, migration, survival and proliferation, and may contribute to tumor initiation/progression in cells exposed to genotoxic stress. The extent of integrin activation and its role in cell survival upon intoxication with bacterial genotoxins are still poorly characterized. These toxins induce DNA strand breaks in the target cells and activate the DNA damage response (DDR), coordinated by the Ataxia Telangectasia Mutated (ATM) kinase. In the present study, we demonstrate that induction of DNA damage by two bacterial genotoxins promotes activation of integrin β1, leading to enhanced assembly of focal adhesions and cell spreading on fibronectin, but not on vitronectin. This phenotype is mediated by an ATM-dependent inside-out integrin signaling, and requires the actin cytoskeleton remodeler NET1. The toxin-mediated cell spreading and anchorage-independent survival further relies on ALIX and TSG101, two components of the endosomal sorting complex required for transport (ESCRT), known to regulate integrin intracellular trafficking. These data reveal a novel aspect of the cellular response to bacterial genotoxins, and provide new tools to understand the carcinogenic potential of these effectors in the context of chronic intoxication and infection.

  18. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ.

    PubMed

    Li, Xin; Sheng, Juzheng; Huang, Guihua; Ma, Ruixin; Yin, Fengxin; Song, Di; Zhao, Can; Ma, Shutao

    2015-06-05

    In an attempt to discover potential antibacterial agents against the increasing bacterial resistance, novel cinnamaldehyde derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activity against nine significant pathogens using broth microdilution method, and their cell division inhibitory activity against four representative strains. In the in vitro antibacterial activity, the newly synthesized compounds generally displayed better efficacy against Staphylococcus aureus ATCC25923 than the others. In particular, compounds 3, 8 and 10 exerted superior or comparable activity to all the reference drugs. In the cell division inhibitory activity, all the compounds showed the same trend as their in vitro antibacterial activity, exhibiting better activity against S. aureus ATCC25923 than the other strains. Additionally, compounds 3, 6, 7 and 8 displayed potent cell division inhibitory activity with an MIC value of below 1 μg/mL, over 256-fold better than all the reference drugs.

  19. Defective disposal of immune complexes and polyclonal B cell activation persist long after exposure to bacterial lipopolysaccharide in mice

    SciTech Connect

    Granholm, N.A.; Cavallo, T. )

    1989-11-01

    Patients with systemic lupus erythematosus experience clinical exacerbation during superimposed bacterial infection. Previous studies in mice indicated that heightened immune phenomena during exposure to bacterial lipopolysaccharide (LPS) appear to be related, in part, to polyclonal B cell activation, to abnormal disposal of immune complexes (IC), and to increased localization of IC in tissues. To investigate whether such effects were reversible, we administered bacterial LPS to C57BL/6 mice for 5 weeks. Control mice received vehicle alone. We then discontinued LPS, and 6 weeks later LPS and control mice were challenged with a subsaturating dose of radiolabeled IC; the removal of IC from the circulation, their localization in the liver, spleen, and kidney were determined. In comparison to values in control mice, in mice previously exposed to LPS, serologic features of polyclonal B cell activation persisted; liver uptake of pathogenic IC (greater than Ag2Ab2) was normal, but removal of small size IC (less than or equal to Ag2Ab2) from the circulation was delayed; localization of IC in the kidneys was enhanced, and pathologic proteinuria developed. The effects of repeated exposure to bacterial LPS are partially reversible, but they last long after LPS is discontinued and may contribute to altered disposal of IC, enhanced organ localization of IC, and organ dysfunction.

  20. Nitrate reducing bacterial activity in concrete cells of nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Alquier, M.; Kassim, C.; Bertron, A.; Rafrafi, Y.; Sablayrolles, C.; Albrecht, A.; Erable, B.

    2013-07-01

    Leaching experiments of solid matrices (bitumen and cement pastes) have been first implemented to define the physicochemical conditions that microorganisms are likely to meet at the bitumen-concrete interface (see the paper of Bertron et al.). Of course, as might be suspected, the cement matrix imposes highly alkaline pH conditions (10 bacterial strains led us to select Halomonas desiderata as a model bacterium capable of catalyzing the reaction of nitrate reduction in these extreme conditions of pH. The denitrifying activity of Halomonas desiderata was quantified in batch bioreactor in the presence of solid matrices and / or leachate from bitumen and cement matrices. Denitrification was relatively fast in the presence of cement matrix (<100 hours) and 2 to 3 times slower in the presence of bituminous matrix. Overall, the presence of solid cement promoted the kinetics of denitrification. The observation of solid surfaces at the end of the experiment revealed the presence of a biofilm of Halomonas desiderata on the cement paste surface. These attached bacteria showed a denitrifying activity comparable to planktonic bacterial culture. On the other side, no colonization of bitumen could be highlighted as either by SEM or epifluorescence microscopy. Now, we are currently developing a continuous experimental bioreactor which should allow us a more rational understanding of the bitumen-cement-microbe interactions.

  1. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept.

    PubMed

    Meindl, T; Boller, T; Felix, G

    2000-09-01

    flg22, a peptide corresponding to the most conserved domain of bacterial flagellin, acts as a potent elicitor in plants. Here, we have used an iodinated derivative of flg22 ((125)I-labeled Tyr-flg22) as a molecular probe for the flagellin receptor in tomato cells. This radioligand showed rapid binding to a single class of specific, saturable, high-affinity receptor sites in intact cells and membrane preparations. Binding, although essentially nonreversible under physiological conditions, was not covalent, and chemical cross-linking was required to specifically label a single polypeptide of 115 kD. Intact flagellin and elicitor-active flagellin peptides but not biologically inactive analogs efficiently competed for binding of radioligand. Peptides lacking the C terminus of the conserved domain, previously found to act as competitive antagonists of elicitor action in tomato cells, also competed for binding of radioligand. Thus, this novel, high-affinity binding site exhibited all the characteristics expected of a functional receptor of bacterial flagellin. For a model of receptor activation, we propose a two-step mechanism according to the address-message concept, in which binding of the N terminus (address) is the first step and activation of responses with the C terminus (message) is the second step.

  2. Evaluating bacterial activity from cell-specific ribosomal RNA content measured with oligonucleotide probes

    SciTech Connect

    Kemp, P.F.; Lee, S.; LaRoche, J.

    1992-10-01

    We describe a procedure for measuring the cell-specific quantity of ribosomal RNA (rRNA) and DNA in order to evaluate the frequency distribution of activity among cells. The procedure is inherently quantitative, does not require sample incubation and potentially can be taxon-specific. Fluorescently-labelled oligonucleotide probes are hybridized to the complementary 16S rRNA sequences in preserved, intact cells. The resulting cell fluorescence is proportional to cellular rRNA content and can be measured with a microscope-mounted photometer system, by image analysis, or by flow cytometry. Similarly, DNA content is measured as fluorescence of cells stained with the DNA specific fluorochrome DAPI. These are either prepared as separate samples for purposes of enumeration and DNA measurements, or are dual-labelled cells which are also hybridized with oligonucleotide probes.

  3. Evaluating bacterial activity from cell-specific ribosomal RNA content measured with oligonucleotide probes

    SciTech Connect

    Kemp, P.F.; Lee, S.; LaRoche, J.

    1992-01-01

    We describe a procedure for measuring the cell-specific quantity of ribosomal RNA (rRNA) and DNA in order to evaluate the frequency distribution of activity among cells. The procedure is inherently quantitative, does not require sample incubation and potentially can be taxon-specific. Fluorescently-labelled oligonucleotide probes are hybridized to the complementary 16S rRNA sequences in preserved, intact cells. The resulting cell fluorescence is proportional to cellular rRNA content and can be measured with a microscope-mounted photometer system, by image analysis, or by flow cytometry. Similarly, DNA content is measured as fluorescence of cells stained with the DNA specific fluorochrome DAPI. These are either prepared as separate samples for purposes of enumeration and DNA measurements, or are dual-labelled cells which are also hybridized with oligonucleotide probes.

  4. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins

    PubMed Central

    Jia, Jingyue; Bai, Fang; Jin, Yongxin; Santostefano, Katherine E.; Ha, Un-Hwan; Wu, Donghai

    2015-01-01

    The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. Significance The present study describes a novel and powerful tool for the delivery of the genome editing enzyme transcription activator-like effector nuclease (TALEN) directly into pluripotent stem cells (PSCs), achieving desired base changes on the genomes of PSCs with high efficiency. This novel approach uses bacteria as a protein delivery

  5. Efficacy of coating activated carbon with milk proteins to prevent binding of bacterial cells from foods for PCR detection.

    PubMed

    Opet, Nathan J; Levin, Robert E

    2013-08-01

    Foods contaminated with pathogens are common sources of illness. Currently, the most common and sensitive rapid detection method involves the PCR. However, food matrices are complex and contain inhibitors that limit the sensitivity of the PCR. The use of coated activated carbon can effectively facilitate the removal of PCR inhibitors without binding targeted bacterial cells from food samples. With the use of activated carbon coated with milk proteins, a cell recovery at pH 7.0 of 95.7%±2.0% was obtained, compared to control uncoated activated carbon, which yielded a cell recovery of only 1.1%±0.8%. In addition, the milk protein coated activated carbon was able to absorb similar amounts of soluble compounds as uncoated activated carbon, with the exception of bovine hemoglobin. This suggests that the use of milk proteins to coat activated carbon may therefore serve as a suitable replacement for bentonite in the coating of activated carbon, which has previously been used for the removal of PCR inhibitors from food.

  6. Luminescent-Activated Transfected Killer Cells to Monitor Leukocyte Trafficking During Systemic Bacterial and Fungal Infection

    PubMed Central

    Lin, Lin; Ibrahim, Ashraf S.; Baquir, Beverlie; Palosaari, Andrew

    2012-01-01

    Background. Activated transfected killer (ATAK) cells are immortal phagocytes transfected with a luminescence reporter that effectively treat lethal infections in neutropenic mice. Their in vivo trafficking, lifespan, and immunogenicity are unknown. Methods. Mice were made neutropenic; infected or not with Staphylococcus aureus, Acinetobacter baumannii, Candida albicans, or Aspergillus fumigatus; and treated intraperitoneally with ATAK cells. Cell trafficking and lifespan were assessed by in vivo imaging and reverse transcription–polymerase chain reaction. Results. In uninfected neutropenic mice, ATAK cells spread from the mesentery into visceral organs on days 1–3. Splenic accumulation of ATAK cells increased at day 1 after infection with S. aureus and A. baumannii, and kidney accumulation increased in mice infected with C. albicans. Lung accumulation was seen at day 3 in mice infected by inhalation with A. fumigatus. By day 8, coincident with increasing anti-ATAK antibodies, luminescence signal was lost and there was no detectable mRNA transcription from ATAK cells. Conclusions. ATAK cells accumulated in target organs with distinct profiles, depending on the microbial etiology of infection. Finally, generation of an anti-ATAK immune response may provide an important safety mechanism that helps clear the cells from the host as the marrow recovers. PMID:22124127

  7. Activity-dependent fluorescent labeling of bacterial cells expressing the TOL pathway

    SciTech Connect

    William K. Keener; Mary E. Watwood

    2005-01-01

    3-Ethynylbenzoate functions as an activity-dependent, fluorogenic and chromogenic probe for Pseudomonas putida mt-2, which is known to degrade toluene via conversion to benzoate, followed by meta ring fission of the intermediate, catechol. This direct physiological analysis allows the fluorescent labeling of cells whose toluene-degrading enzymes have been induced by an aromatic substrate.

  8. Radiation effects on bacterial cells

    NASA Technical Reports Server (NTRS)

    Powers, E. L.

    1968-01-01

    Study reveals the physicochemical and biochemical mechanisms which alter or modify the effects of high-energy radiation on living cells. An in-depth discussion is presented emphasizing the importance of optimizing bacterial treatment with glycerol.

  9. Investigation of antimicrobial activity of photothermal therapeutic gold/copper sulfide core/shell nanoparticles to bacterial spores and cells

    PubMed Central

    2014-01-01

    Background Au/CuS core/shell nanoparticles (NPs) were designed as a new type of transducer agent for photothermal therapy (PTT), with attractive features of easy preparation, low cost and small size for targeting. This paper studied for the first time the intrinsic antimicrobial activity of Au/CuS NPs to B. anthracis spores and cells in addition to its PTT effect. Results It was found that Au/CuS NPs were highly efficient in inactivating B. anthracis cells, but not effective to the spores. Treatment with NPs at ~0.83 μM for 30 min achieved a 7 log reduction in viable cells. The antimicrobial effect was both NPs concentration and treatment time dependent. SEM imaging and the efflux of DNA test demonstrated the damage of cell membrane after NPs treatment, yet further research is necessary to fully understand the precise inactivation mechanism. Conclusions The Au/CuS NPs had strong antimicrobial activity to B. anthracis cells, which showed a great potential to be an effective antimicrobial agent to bacterial cells. PMID:24963345

  10. Abundance and single-cell activity of heterotrophic bacterial groups in the western Arctic Ocean in summer and winter.

    PubMed

    Nikrad, Mrinalini P; Cottrell, M T; Kirchman, D L

    2012-04-01

    Environmental conditions in the western Arctic Ocean range from constant light and nutrient depletion in summer to complete darkness and sea ice cover in winter. This seasonal environmental variation is likely to have an effect on the use of dissolved organic matter (DOM) by heterotrophic bacteria in surface water. However, this effect is not well studied and we know little about the activity of specific bacterial clades in the surface oceans. The use of DOM by three bacterial subgroups in both winter and summer was examined by microautoradiography combined with fluorescence in situ hybridization. We found selective use of substrates by these groups, although the abundances of Ant4D3 (Antarctic Gammaproteobacteria), Polaribacter (Bacteroidetes), and SAR11 (Alphaproteobacteria) were not different between summer and winter in the Beaufort and Chukchi Seas. The number of cells taking up glucose within all three bacterial groups decreased significantly from summer to winter, while the percentage of cells using leucine did not show a clear pattern between seasons. The uptake of the amino acid mix increased substantially from summer to winter by the Ant4D3 group, although such a large increase in uptake was not seen for the other two groups. Use of glucose by bacteria, but not use of leucine or the amino acid mix, related strongly to inorganic nutrients, chlorophyll a, and other environmental factors. Our results suggest a switch in use of dissolved organic substrates from summer to winter and that the three phylogenetic subgroups examined fill different niches in DOM use in the two seasons.

  11. A mixture of bacterial mechanical lysates is more efficient than single strain lysate and of bacterial-derived soluble products for the induction of an activating phenotype in human dendritic cells.

    PubMed

    Morandi, Barbara; Agazzi, Alessia; D'Agostino, Antonella; Antonini, Francesca; Costa, Gregorio; Sabatini, Federica; Ferlazzo, Guido; Melioli, Giovanni

    2011-07-01

    Dendritic cells (DCs), following an optimal maturation, are able to drive an efficient immune-response. For this, both co-stimulatory molecules (CD80 and CD86), activation molecules (CD83) and peptide presenting molecules (HLA) are over-expressed. The in vitro treatment of immature DC with fragments of bacterial strains, obtained by using a mechanical lysis as well as with bacterial-derived molecules (such as lipopolysaccharide and protido-glycan), induced the maturation of DCs and the secretion of a panel of cytokines and chemokines. Of note, ex vivo treated circulating DCs and plasmacytoid DCs were also activated by these bacterial bodies. However, while the particulate fraction of single bacterial strains or soluble bacterial-derived molecules induced a sub-optimal maturation (as evaluated by the expression of an activating phenotype on DCs and the amount of cytokine secretion), the addition of the mixture of the particulate fractions of the different bacterial strains was able to mediate an optimal maturation. These results were also confirmed by using the secretion of both cytokines and chemokines as markers of DC activation. All these findings suggest that the particulate fraction of bacterial lysate mixtures, because of their ability to interact with different surface structures, might be exploited not only as an immunogen, but also as an adjuvant treatment to boost an immune-response to poorly "antigenic" proteins, such as cancer antigens or allergens.

  12. Antibacterial active compounds from Hypericum ascyron L. induce bacterial cell death through apoptosis pathway.

    PubMed

    Li, Xiu-Mei; Luo, Xue-Gang; Si, Chuan-Ling; Wang, Nan; Zhou, Hao; He, Jun-Fang; Zhang, Tong-Cun

    2015-01-01

    Hypericum ascyron L. has been used as a traditional medicine for the treatment of wounds, swelling, headache, nausea and abscesses in China for thousands of years. However, modern pharmacological studies are still necessary to provide a scientific basis to substantiate their traditional use. In this study, the mechanism underlying the antimicrobial effect of the antibacterial activity compounds from H. ascyron L. was investigated. Bioguided fractionation of the extract from H. ascyron L. afforded antibacterial activity fraction 8. The results of cup plate analysis and MTT assay showed that the MIC and MBC of fraction 8 is 5 mg/mL. Furthermore, using Annexin V-FITC/PI, TUNEL labeling and DNA gel electrophoresis, we found that cell death with apoptosis features similar to those in eucaryon could be induced in bacteria strains after exposure to the antibacterial activity compounds from H. ascyron L. at moderate concentration. In addition, we further found fraction 8 could disrupt the cell membrane potential indicate that fraction 8 exerts pro-apoptotic effects through a membrane-mediated apoptosis pathway. Finally, quercetin and kaempferol 3-O-β-(2″-acetyl)-galactopyranoside, were identified from fraction 8 by means of Mass spectrometry and Nuclear magnetic resonance. To our best knowledge, this study is the first to show that Kaempferol 3-O-β-(2″-acetyl)-galactopyranoside coupled with quercetin had significant antibacterial activity via apoptosis pathway, and it is also the first report that Kaempferol 3-O-β-(2″-acetyl)-galactopyranoside was found in clusiacea. Our data might provide a rational base for the use of H. ascyron L. in clinical, and throw light on the development of novel antibacterial drugs.

  13. Gamma-irradiated bacterial preparation having anti-tumor activity

    SciTech Connect

    Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.

    1999-11-16

    This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  14. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  15. Cytoplasmic bacterial lipopolysaccharide does not induce NFkappaB activation or NFkappaB mediated activation signals in human macrophages and an LPS reporter cell line.

    PubMed

    Seitzer, Ulrike; Gerdes, Johannes

    2003-01-01

    Although many membrane components have been described to be involved in the activation of cells by bacterial lipopolysaccharide (LPS), the question remains whether LPS, once internalized by target cells, is also capable of interacting with cytoplasmic elements in such a way that activation of cells results independently of receptor engagement. This is an important aspect to consider with respect to the development of strategies aimed at attenuating adverse effects of LPS in the framework of bacterial infections. In this study, human monocyte derived macrophages as representatives of one of the primary target cells activated by LPS, were microinjected with LPS to circumvent exogenous LPS stimulation. Parameters correlating to cytoplasmic activation of the nuclear transcription factor NFkappaB (intracellular calcium mobilization), to nuclear translocation of the NFkappaB p65 subunit and to mRNA-transcription of inflammatory cytokines known to be expressed upon exogenous LPS-stimulation and to require NFkappaB activation (interleukin-1beta, interleukin-6, tumor necrosis factor alpha) were investigated. In addition, the LPS-reporter cell line 3E10, which contains a reporter gene under the control of an NFkappaB-inducible promoter was analyzed with respect to NFkappaB nuclear translocation and reporter gene expression. None of the cellular systems used and none of the parameters investigated led to the observation that intracellular LPS leads to activation of the cells in comparison to external LPS stimulation. These experiments allow the conclusion that LPS in the cytoplasmic compartment does not lead to NFkappaB translocation, cytokine mRNA transcription, and NFkappaB dependent protein expression and suggest that these activation parameters require the interaction of LPS with external membrane components.

  16. Use Of Low Light Image Microscopy To Monitor Genetically Engineered Bacterial Luciferase Gene Expression In Living Cells And Gene Activation Throughout The Development Of A Transgenic Organism

    NASA Astrophysics Data System (ADS)

    Langridge, W. H.; Escher, Alan P.; Baga, M.; O'Kane, Dennis J.; Wampler, John E.; Koncz, C.; Schell, John D.; Szalay, A. A.

    1989-12-01

    Procaryotic and eucaryotic expression vectors which contain a marker gene for selection of transformants linked to genes encoding bacterial luciferase for detection of promoter activated gene expression in vivo were used to transform the appropriate host organisms and drug resistant colonies, cells, or calli were obtained. Bacterial luciferase expression was measured by a luminescence assay for quantitative determination of promoter activation. The cellular localization of bacteria inside the host plant cell cytoplasm was achieved in a single infected plant cell based on the light emitting ability of the genetically engineered bacteria. In addition, the bacterial luciferase marker gene fusions were used to monitor cell type, tissue, and organ specific gene expression in transgenic plants in vivo. To monitor physiological changes during ontogeny of a transformed plant, low light video microscopy, aided by real time image processing techniques developed specifically to enhance extreme low light images, was successfully applied.

  17. Bacterial cell division proteins as antibiotic targets.

    PubMed

    den Blaauwen, Tanneke; Andreu, José M; Monasterio, Octavio

    2014-08-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of proteins and the availability of crystal structures has increased our knowledge on bacterial cell division considerably in this century. Consequently, bacterial cell division proteins are more and more recognized as potential new antibiotic targets. An international effort to find small molecules that inhibit the cell division initiating protein FtsZ has yielded many compounds of which some are promising as leads for preclinical use. The essential transglycosylase activity of peptidoglycan synthases has recently become accessible to inhibitor screening. Enzymatic assays for and structural information on essential integral membrane proteins such as MraY and FtsW involved in lipid II (the peptidoglycan building block precursor) biosynthesis have put these proteins on the list of potential new targets. This review summarises and discusses the results and approaches to the development of lead compounds that inhibit bacterial cell division.

  18. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    PubMed Central

    Oliveira, Tales Lyra; Candeia-Medeiros, Návylla; Cavalcante-Araújo, Polliane M.; Melo, Igor Santana; Fávaro-Pípi, Elaine; Fátima, Luciana Alves; Rocha, Antônio Augusto; Goulart, Luiz Ricardo; Machado, Ubiratan Fabres; Campos, Ruy R.; Sabino-Silva, Robinson

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-resistant Sthaphylococcus aureus, MRSA and Pseudomonas aeruginosa, P. aeruginosa) were analyzed in bronchoalveolar lavage (BAL); and alveolar SGLT1 was analyzed by immunohistochemistry. BAL glucose concentration and bacterial proliferation increased in diabetic animals: isoproterenol stimulated SGLT1 migration to luminal membrane, and reduced (50%) the BAL glucose concentration; whereas phlorizin increased the BAL glucose concentration (100%). These regulations were accompanied by parallel changes of in vitro MRSA and P. aeruginosa proliferation in BAL (r = 0.9651 and r = 0.9613, respectively, Pearson correlation). The same regulations were observed in in vivo P. aeruginosa proliferation. In summary, the results indicate a relationship among SGLT1 activity, ASL glucose concentration and pulmonary bacterial proliferation. Besides, the study highlights that, in situations of pulmonary infection risk, such as in diabetic subjects, increased SGLT1 activity may prevent bacterial proliferation whereas decreased SGLT1 activity can exacerbate it. PMID:26902517

  19. Visualization and quantification of archaeal and bacterial metabolically active cells in soil using fluorescence in situ hybridization method

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Manucharova, Natalia; Stepanov, Alexey

    2015-04-01

    The method of in situ hybridization using fluorescent labeled 16S rRNA-targeted oligonucleotide probes (FISH - fluorescence in situ hybridization) combines identification and quantification of groups of microorganisms at different phylogenetic levels, from domain to species. The FISH method enables to study the soil microbial community in situ, avoiding plating on nutrient media, and allows to identify and quantify living, metabolically active cells of Bacteria and Archaea. The full procedure consists of the following steps: desorption of the cells from the soil particles, fixation of cells, coating a fixed sample on the glass slide, hybridization with the specific probes and, finally, microscopic observation and cell counting. For the FISH analysis of Bacteria and Archaea, the paraformaldehyde-fixed samples were hybridized with Cy3-labeled Archaea-specific probe(Arc915) and 6-carboxyfluorescein (FAM)-labeled Bacteria-specific probe(EUB338). When a molecular probe is incorporated into a cell, it can hybridize solely with a complementary rRNA sequence. The hybridization can be visualized under the fluorescent microscope and counted. The application of FISH will be demonstrated by the abundance of metabolically active cells of Archaea and Bacteria depending on soil properties, depth and land use. The research was carried out at field and natural ecosystems of European part of Russia. Samples were collected within the soil profiles (3-6 horizons) of Chernozem and Kastanozem with distinct land use. Quantification of metabolically active cells in virgin and arable Chernozem revealed that the abundance of Archaea in topsoil of virgin Chernozem was doubled as compared with arable soil, but it leveled off in the deeper horizons. Plowing of Chernozem decreased an amount of archaeal and bacterial active cells simultaneously, however, Bacteria were more resistant to agrogenic impact than Archaea. In Kastanozem, a significant change in the abundance of metabolically active

  20. Human Interleukin-2 and Hen Egg White Lysozyme: Screening for Bacteriolytic Activity against Various Bacterial Cells

    PubMed Central

    Levashov, P. A.; Ovchinnikova, E. D.; Morozova, O. A.; Matolygina, D. A.; Osipova, H. E.; Cherdyntseva, T. A.; Savin, S. S.; Zakharova, G. S.; Alekseeva, A. A.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.

    2016-01-01

    The bacteriolytic activity of interleukin-2 and hen egg white lysozyme against 34 different species of microorganisms has been studied. It was found that 6 species of microorganisms are lysed in the presence of interleukin-2. All interleukin-2-sensitive microorganisms belong either to the Enterobacteriaceae, Bacillaceae, or the Lactobacillaceae family. It was also found that 12 species of microorganisms are lysed in the presence of lysozyme, and 16 species of microorganisms are lysed in the presence of sodium dodecyl sulfate (SDS). The bacteriolytic activity of interleukin-2 and lysozyme was studied at various pH values. PMID:27099789

  1. L-Asparaginase Activity in Cell Lysates and Culture Media of Halophilic Bacterial Isolates

    PubMed Central

    Barati, Mahmood; Faramarzi, Mohammad Ali; Nafissi-Varcheh, Nastaran; Khoshayand, Mohammad Reza; Houshdar Tehrani, Mohammad Hassan; Vahidi, Hossein; Adrangi, Sina

    2016-01-01

    The objective of this study was to isolate halophilic bacteria with the ability to produce intracellular or extracellular L-asparaginase. A total number of 120 halophilic bacteria were isolated from 17 different saline habitats of Iran including salt lakes, wetlands, brine springs and deserts. Among these, 68 were able to grow in the presence of 1.5 M NaCl and 52 demonstrated the ability to grow in the selection medium containing 3.5 M NaCl. None of the isolates appeared to produce appreciable amounts of extracellular L-asparaginase. Among the isolates that produced intracellular L-asparaginase, 5 moderate and 1 extreme halophiles were selected for further study based on their observed activity level. The moderately halophilic isolates were shown to belong to the genus Halomonas while the extreme halophile was identified as a member of the genus Aidingimonas. PMID:27980578

  2. L-Asparaginase Activity in Cell Lysates and Culture Media of Halophilic Bacterial Isolates.

    PubMed

    Barati, Mahmood; Faramarzi, Mohammad Ali; Nafissi-Varcheh, Nastaran; Khoshayand, Mohammad Reza; Houshdar Tehrani, Mohammad Hassan; Vahidi, Hossein; Adrangi, Sina

    2016-01-01

    The objective of this study was to isolate halophilic bacteria with the ability to produce intracellular or extracellular L-asparaginase. A total number of 120 halophilic bacteria were isolated from 17 different saline habitats of Iran including salt lakes, wetlands, brine springs and deserts. Among these, 68 were able to grow in the presence of 1.5 M NaCl and 52 demonstrated the ability to grow in the selection medium containing 3.5 M NaCl. None of the isolates appeared to produce appreciable amounts of extracellular L-asparaginase. Among the isolates that produced intracellular L-asparaginase, 5 moderate and 1 extreme halophiles were selected for further study based on their observed activity level. The moderately halophilic isolates were shown to belong to the genus Halomonas while the extreme halophile was identified as a member of the genus Aidingimonas.

  3. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis

    PubMed Central

    2017-01-01

    ABSTRACT The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. PMID:28049146

  4. The physiology of bacterial cell division.

    PubMed

    Egan, Alexander J F; Vollmer, Waldemar

    2013-01-01

    Bacterial cell division is facilitated by the divisome, a dynamic multiprotein assembly localizing at mid-cell to synthesize the stress-bearing peptidoglycan and to constrict all cell envelope layers. Divisome assembly occurs in two steps and involves multiple interactions between more than 20 essential and accessory cell division proteins. Well before constriction and while the cell is still elongating, the tubulin-like FtsZ and early cell division proteins form a ring-like structure at mid-cell. Cell division starts once certain peptidoglycan enzymes and their activators have moved to the FtsZ-ring. Gram-negative bacteria like Escherichia coli simultaneously synthesize and cleave the septum peptidoglycan during division leading to a constriction. The outer membrane constricts together with the peptidoglycan layer with the help of the transenvelope spanning Tol-Pal system.

  5. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death

    PubMed Central

    DeLaney, Alexandra; Santos-Marrero, Melanie; Grier, Jennifer T.; Sun, Yan; Zwack, Erin E.; Hu, Baofeng; Olsen, Tayla M.; Rongvaux, Anthony; López, Carolina B.; Oberst, Andrew; Beiting, Daniel P.; Brodsky, Igor E.

    2016-01-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense. PMID:27737018

  6. Copper effects on bacterial activity of estuarine silty sediments

    NASA Astrophysics Data System (ADS)

    Almeida, Adelaide; Cunha, Ângela; Fernandes, Sandra; Sobral, Paula; Alcântara, Fernanda

    2007-07-01

    Bacteria of silty estuarine sediments were spiked with copper to 200 μg Cu g -1 dry weight sediment in order to assess the impact of copper on bacterial degradation of organic matter and on bacterial biomass production. Bacterial density was determined by direct counting under epifluorescence microscopy and bacterial production by the incorporation of 3H-Leucine. Leucine turnover rate was evaluated by 14C-leucine incorporation and ectoenzymatic activities were estimated as the hydrolysis rate of model substrates for β-glucosidase and leucine-aminopeptidase. The presence of added copper in the microcosms elicited, after 21 days of incubation, generalised anoxia and a decrease in organic matter content. The non-eroded surface of the copper-spiked sediment showed, when compared to the control, a decrease in bacterial abundance and significant lower levels of bacterial production and of leucine turnover rate. Bacterial production and leucine turnover rate decreased to 1.4% and 13% of the control values, respectively. Ectoenzymatic activities were also negatively affected but by smaller factors. After erosion by the water current in laboratory flume conditions, the eroded surface of the control sediment showed a generalised decline in all bacterial activities. The erosion of the copper-spiked sediment showed, however, two types of responses with respect to bacterial activities at the exposed surface: positive responses of bacterial production and leucine turnover rate contrasting with slight negative responses of ectoenzymatic activities. The effects of experimental erosion in the suspended cells were also different in the control and in the copper-spiked sediment. Bacterial cells in the control microcosm exhibited, when compared to the non-eroded sediment cells, decreases in all activities after the 6-h suspension. The response of the average suspended copper-spiked sediment cell differed from the control by a less sharp decrease in ectoenzymatic activities and

  7. Alveolar epithelial cells are critical in protection of the respiratory tract by secretion of factors able to modulate the activity of pulmonary macrophages and directly control bacterial growth.

    PubMed

    Chuquimia, Olga D; Petursdottir, Dagbjort H; Periolo, Natalia; Fernández, Carmen

    2013-01-01

    The respiratory epithelium is a physical and functional barrier actively involved in the clearance of environmental agents. The alveolar compartment is lined with membranous pneumocytes, known as type I alveolar epithelial cells (AEC I), and granular pneumocytes, type II alveolar epithelial cells (AEC II). AEC II are responsible for epithelial reparation upon injury and ion transport and are very active immunologically, contributing to lung defense by secreting antimicrobial factors. AEC II also secrete a broad variety of factors, such as cytokines and chemokines, involved in activation and differentiation of immune cells and are able to present antigen to specific T cells. Another cell type important in lung defense is the pulmonary macrophage (PuM). Considering the architecture of the alveoli, a good communication between the external and the internal compartments is crucial to mount effective responses. Our hypothesis is that being in the interface, AEC may play an important role in transmitting signals from the external to the internal compartment and in modulating the activity of PuM. For this, we collected supernatants from AEC unstimulated or stimulated in vitro with lipopolysaccharide (LPS). These AEC-conditioned media were used in various setups to test for the effects on a number of macrophage functions: (i) migration, (ii) phagocytosis and intracellular control of bacterial growth, and (iii) phenotypic changes and morphology. Finally, we tested the direct effect of AEC-conditioned media on bacterial growth. We found that AEC-secreted factors had a dual effect, on one hand controlling bacterial growth and on the other hand increasing macrophage activity.

  8. Addition of Selenium Nanoparticles to Electrospun Silk Scaffold Improves the Mammalian Cell Activity While Reducing Bacterial Growth

    PubMed Central

    Chung, Stanley; Ercan, Batur; Roy, Amit K.; Webster, Thomas J.

    2016-01-01

    Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas. However, purified silk promotes microbial growth. Selenium nanoparticles have shown excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and mild improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics. PMID:27471473

  9. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    PubMed

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL(-1) levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL(-1) ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL(-1) .

  10. Bacterial cell division as a target for new antibiotics.

    PubMed

    Sass, Peter; Brötz-Oesterhelt, Heike

    2013-10-01

    Bacterial resistance to currently applied antibiotics complicates the treatment of infections and demands the evaluation of new strategies to counteract multidrug-resistant bacteria. In recent years, the inhibition of the bacterial divisome, mainly by targeting the central cell division mediator FtsZ, has been recognized as a promising strategy for antibiotic attack. New antibiotics were shown to either interfere with the natural dynamics and functions of FtsZ during the cell cycle or to activate a bacterial protease to degrade FtsZ and thus bring about bacterial death in a suicidal manner. Their efficacy in animal models of infection together with resistance-breaking properties prove the potential of such drugs and validate the inhibition of bacterial cell division as an attractive approach for antibiotic intervention.

  11. Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer.

    PubMed

    Liu, Jun; Luo, Yan; Ge, Hengtao; Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90-111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5-10.5, 21.8-23.0 and 17.3-18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×10(3) and 95.4×10(3) CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×10(5) and 622.2×10(5) cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals.

  12. Messenger RNA degradation in bacterial cells.

    PubMed

    Hui, Monica P; Foley, Patricia L; Belasco, Joel G

    2014-01-01

    mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.

  13. Development and use of a high-throughput bacterial DNA gyrase assay to identify mammalian topoisomerase II inhibitors with whole-cell anticancer activity.

    PubMed

    Roychoudhury, Siddhartha; Makin, Kelly M; Twinem, Tracy L; Stanton, David T; Nelson, Sandra L; Catrenich, Carl E

    2003-04-01

    A high-throughput screen (HTS) was developed and used to identify inhibitors of bacterial DNA gyrase. Among the validated hits were 53 compounds that also inhibited mammalian topoisomerase II with IC(50) values of <12.5 micro g/mL for 51 of them. Using computational methods, these compounds were subjected to cluster analysis to categorize them according to their chemical and structural properties. Nine compounds from different clusters were tested for their whole-cell inhibitory activity against 3 cancer cell lines-NCI-H460 (lung), MCF7 (breast), and SF-268 (CNS)-at a concentration of 100 micro M. Five compounds inhibited cell growth by >50% for all 3 cell lines tested. These compounds were tested further against a panel of 53 to 57 cell lines representing leukemia, melanoma, colon, CNS, ovarian, renal, prostate, breast, and non-small cell lung cancers. In this assay, PGE-7143417 was found to be the most potent compound, which inhibited the growth of all the cell lines by 50% at a concentration range of 0.31 to 2.58 micro M, with an average of 1.21 micro M. An additional 17 compounds were also tested separately against a panel of 10 cell lines representing melanoma, colon, lung, mammary, ovarian, prostate, and renal cancers. In this assay, 4 compounds-PGE-3782569, PGE-7411516, PGE-2908955, and PGE-3521917-were found to have activity with concentrations for 50% cell growth inhibition in the 0.59 to 3.33, 22.5 to 59.1, 7.1 to >100, and 24.7 to >100 micro M range.

  14. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    DOE PAGES

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; ...

    2015-01-19

    Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.

  15. Bacterial vectors for active immunotherapy reach clinical and industrial stages

    PubMed Central

    Le Gouëllec, Audrey; Chauchet, Xavier; Polack, Benoit; Buffat, Laurent; Toussaint, Bertrand

    2012-01-01

    Active immunotherapy based on live attenuated bacterial vectors has matured in terms of industrial development and develops through a combination of three phenomena. First, active immunotherapy that stimulates an antigen-specific cytotoxic T-cell immune response has become a reality after several years of work. Second, there is still a need to identify vectors that can deliver antigens to the cytosol of antigen-presenting cells in vivo. Third, the recent progress in the understanding of bacterial lifestyle and in developing genetic engineering tools has enabled the design of bioengineered bugs that are capable of delivering antigens. Here, we review the mechanisms by which clinical bacterial vectors deliver antigens into the cytosol of antigen-presenting cells and summarize the development strategy of the three identified firms in this field. PMID:22894945

  16. Activation of phagocytic cells by Staphylococcus epidermidis biofilms: effects of extracellular matrix proteins and the bacterial stress protein GroEL on netosis and MRP-14 release.

    PubMed

    Dapunt, Ulrike; Gaida, Matthias M; Meyle, Eva; Prior, Birgit; Hänsch, Gertrud M

    2016-07-01

    The recognition and phagocytosis of free-swimming (planktonic) bacteria by polymorphonuclear neutrophils have been investigated in depth. However, less is known about the neutrophil response towards bacterial biofilms. Our previous work demonstrated that neutrophils recognize activating entities within the extracellular polymeric substance (EPS) of biofilms (the bacterial heat shock protein GroEL) and that this process does not require opsonization. Aim of this study was to evaluate the release of DNA by neutrophils in response to biofilms, as well as the release of the inflammatory cytokine MRP-14. Neutrophils were stimulated with Staphylococcus epidermidis biofilms, planktonic bacteria, extracted EPS and GroEL. Release of DNA and of MRP-14 was evaluated. Furthermore, tissue samples from patients suffering from biofilm infections were collected and evaluated by histology. MRP-14 concentration in blood samples was measured. We were able to show that biofilms, the EPS and GroEL induce DNA release. MRP-14 was only released after stimulation with EPS, not GroEL. Histology of tissue samples revealed MRP-14 positive cells in association with neutrophil infiltration and MRP-14 concentration was elevated in blood samples of patients suffering from biofilm infections. Our data demonstrate that neutrophil-activating entities are present in the EPS and that GroEL induces DNA release by neutrophils.

  17. Probing bacterial cell biology using image cytometry.

    PubMed

    Cass, Julie A; Stylianidou, Stella; Kuwada, Nathan J; Traxler, Beth; Wiggins, Paul A

    2017-03-01

    Advances in automated fluorescence microscopy have made snapshot and time-lapse imaging of bacterial cells commonplace, yet fundamental challenges remain in analysis. The vast quantity of data collected in high-throughput experiments requires a fast and reliable automated method to analyze fluorescence intensity and localization, cell morphology and proliferation as well as other descriptors. Inspired by effective yet tractable methods of population-level analysis using flow cytometry, we have developed a framework and tools for facilitating analogous analyses in image cytometry. These tools can both visualize and gate (generate subpopulations) more than 70 cell descriptors, including cell size, age and fluorescence. The method is well suited to multi-well imaging, analysis of bacterial cultures with high cell density (thousands of cells per frame) and complete cell cycle imaging. We give a brief description of the analysis of four distinct applications to emphasize the broad applicability of the tool.

  18. Patterning Bacterial Communities on Epithelial Cells

    PubMed Central

    Dwidar, Mohammed; Leung, Brendan M.; Yaguchi, Toshiyuki; Takayama, Shuichi; Mitchell, Robert J.

    2013-01-01

    Micropatterning of bacteria using aqueous two phase system (ATPS) enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv) gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions. PMID:23785519

  19. Persistence of Zinc-Binding Bacterial Superantigens at the Surface of Antigen-Presenting Cells Contributes to the Extreme Potency of These Superantigens as T-Cell Activators

    DTIC Science & Technology

    2005-09-01

    Contributes to the Extreme Potency of These Superantigens as T-Cell Activators Dorothy D. Pless,† Gordon Ruthel, Emily K. Reinke, Robert G. Ulrich, and Sina...immunoglobulin G, and the cells were analyzed with a FACSort flow cytometer (Becton Dickinson , Mountain View, CA). To measure off rates, 1 or 5 g of SE or

  20. Intracellular activity of azithromycin against bacterial enteric pathogens.

    PubMed Central

    Rakita, R M; Jacques-Palaz, K; Murray, B E

    1994-01-01

    Azithromycin, a new azalide antibiotic, is active in vitro against a variety of enteric bacterial pathogens. Since it is concentrated inside human neutrophils and other cells, it might be particularly useful in the treatment of infections caused by enteropathogens that invade host tissues. The intracellular activity of azithromycin against several enteric pathogens that had been phagocytosed by neutrophils was determined. Azithromycin was effective in reducing the intracellular viabilities of almost all strains tested, including representative strains of Salmonella, Shigella, and enteroinvasive, enteropathogenic, enterotoxigenic, and enterohemorrhagic Escherichia coli. Erythromycin was also effective in this model system, although azithromycin was generally more effective than erythromycin against strains of invasive enteric pathogens. Cefotaxime reduced intracellular bacterial viability to a lesser extent than either azithromycin or erythromycin. The presence of neutrophils did not significantly affect the activity of azithromycin in this system. Azithromycin may be a useful agent for the treatment of bacterial diarrhea, and clinical trials should be considered. PMID:7810998

  1. Photo-Induced Effect on Bacterial Cells

    NASA Astrophysics Data System (ADS)

    El Batanouny, M. H.; Amin, Rehab M.; Naga, M. I.; Ibrahim, M. K.

    2010-04-01

    Bacterial resistance against antibiotics is an increasing problem in medicine. This stimulates study of other bactericidal regimens, one of which is photodynamic therapy (PDT), which involves the killing of bacterial species by low power laser light (LLL) in the presence of photosensitizing agent. It has already been shown that, various gram- negative and gram-positive bacteria can be killed by photodynamic therapy in vitro, using exogenous sensitizers. The mechanisms of laser action on bacteria are not adequately understood. Here, PDT on H. pylori, as an example of gram negative bacteria was studied. The ultra structure changes of the organism after PDT were examined under electron microscope. Neither Irradiation with laser without sensitizer nor sensitizing without laser has any lethal effect on bacterial cells. However, the successful lethal photosensitization was achieved by applying certain laser dose with the corresponding concentration of the photosensitizer. On the other hand, PDT has no significant effect on the genomic DNA of the cells.

  2. Trogocytosis-associated cell to cell spread of intracellular bacterial pathogens.

    PubMed

    Steele, Shaun; Radlinski, Lauren; Taft-Benz, Sharon; Brunton, Jason; Kawula, Thomas H

    2016-01-23

    Macrophages are myeloid-derived phagocytic cells and one of the first immune cell types to respond to microbial infections. However, a number of bacterial pathogens are resistant to the antimicrobial activities of macrophages and can grow within these cells. Macrophages have other immune surveillance roles including the acquisition of cytosolic components from multiple types of cells. We hypothesized that intracellular pathogens that can replicate within macrophages could also exploit cytosolic transfer to facilitate bacterial spread. We found that viable Francisella tularensis, as well as Salmonella enterica bacteria transferred from infected cells to uninfected macrophages along with other cytosolic material through a transient, contact dependent mechanism. Bacterial transfer occurred when the host cells exchanged plasma membrane proteins and cytosol via a trogocytosis related process leaving both donor and recipient cells intact and viable. Trogocytosis was strongly associated with infection in mice, suggesting that direct bacterial transfer occurs by this process in vivo.

  3. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  4. In vitro activity of the new water-dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells

    NASA Astrophysics Data System (ADS)

    Grumezescu, Alexandru Mihai; Cotar, Ani Ioana; Andronescu, Ecaterina; Ficai, Anton; Ghitulica, Cristina Daniela; Grumezescu, Valentina; Vasile, Bogdan Stefan; Chifiriuc, Mariana Carmen

    2013-07-01

    A new water-dispersible nanostructure based on magnetite (Fe3O4) and usnic acid (UA) was prepared in a well-shaped spherical form by a precipitation method. Nanoparticles were well individualized and homogeneous in size. The presence of Fe3O4@UA was confirmed by transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction. The UA was entrapped in the magnetic nanoparticles during preparation and the amount of entrapped UA was estimated by thermogravimetric analysis. Fabricated nanostructures were tested on planktonic cells growth (minimal inhibitory concentration assay) and biofilm development on Gram-positive Staphylococcus aureus ( S. aureus), Enterococcus faecalis ( E. faecalis) and Gram-negative Escherichia coli ( E. coli), Pseudomonas aeruginosa (P. aeruginosa) reference strains. Concerning the influence of Fe3O4@UA on the planktonic bacterial cells, the functionalized magnetic nanoparticles exhibited a significantly improved antimicrobial activity against E. faecalis and E. coli, as compared with the Fe3O4 control. The UA incorporated into the magnetic nanoparticles exhibited a very significant inhibitory effect on the biofilm formed by the S. aureus and E. faecalis, on a wide range of concentrations, while in case of the Gram-negative microbial strains, the UA-loaded nanoparticles inhibited the E. coli biofilm development, only at high concentrations, while for P. aeruginosa biofilms, no inhibitory effect was observed. The obtained results demonstrate that the new water-dispersible Fe3O4@UA nanosystem, combining the advantages of the intrinsic antimicrobial features of the UA with the higher surface to volume ratio provided by the magnetic nanocarrier dispersible in water, exhibits efficient antimicrobial activity against planktonic and adherent cells, especially on Gram-positive strains.

  5. PEGylation of the peptide Bac7(1-35) reduces renal clearance while retaining antibacterial activity and bacterial cell penetration capacity.

    PubMed

    Benincasa, Monica; Zahariev, Sotir; Pelillo, Chiara; Milan, Annalisa; Gennaro, Renato; Scocchi, Marco

    2015-05-05

    The proline-rich antibacterial peptide Bac7(1-35) protects mice against Salmonella typhimurium infection, despite its rapid clearance. To overcome this problem the peptide was linked to a polyethylene glycol (PEG) molecule either via a cleavable ester bond or via a non-hydrolysable amide bond. Both the PEGylated conjugates retained most of the in vitro activity against S. typhimurium. In addition, the ester bond was cleaved in human serum or plasma, releasing a carboxymethyl derivative of Bac7(1-35) which accounts for a higher activity of this peptide with relative to the other, non-hydrolysable form. Both PEGylated peptides maintained the capacity of the unconjugated form to kill bacteria without permeabilizing the bacterial membranes, by penetrating into cells. They exploited the same transporter as unmodified Bac7(1-35), suggesting it has the capacity to internalize quite sizeable cargo if this is linked to Bac7 fragment. PEGylation allows the peptide to have a wide distribution in mice, and a slow renal clearance, indicating that this strategy would improve the bioavailability of Bac7, and in principle of other antimicrobial peptides. This can be an equally important issue to reducing cytotoxicity for therapeutic use of these antibacterials.

  6. Single Cell Analysis of a Bacterial Sender-Receiver System

    PubMed Central

    Mückl, Andrea; Kapsner, Korbinian; Gerland, Ulrich; Simmel, Friedrich C.

    2016-01-01

    Monitoring gene expression dynamics on the single cell level provides important information on cellular heterogeneity and stochasticity, and potentially allows for more accurate quantitation of gene expression processes. We here study bacterial senders and receivers genetically engineered with components of the quorum sensing system derived from Aliivibrio fischeri on the single cell level using microfluidics-based bacterial chemostats and fluorescence video microscopy. We track large numbers of bacteria over extended periods of time, which allows us to determine bacterial lineages and filter out subpopulations within a heterogeneous population. We quantitatively determine the dynamic gene expression response of receiver bacteria to varying amounts of the quorum sensing inducer N-3-oxo-C6-homoserine lactone (AHL). From this we construct AHL response curves and characterize gene expression dynamics of whole bacterial populations by investigating the statistical distribution of gene expression activity over time. The bacteria are found to display heterogeneous induction behavior within the population. We therefore also characterize gene expression in a homogeneous bacterial subpopulation by focusing on single cell trajectories derived only from bacteria with similar induction behavior. The response at the single cell level is found to be more cooperative than that obtained for the heterogeneous total population. For the analysis of systems containing both AHL senders and receiver cells, we utilize the receiver cells as ‘bacterial sensors’ for AHL. Based on a simple gene expression model and the response curves obtained in receiver-only experiments, the effective AHL concentration established by the senders and their ‘sending power’ is determined. PMID:26808777

  7. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  8. A defined fragment of bacterial protein I (OmpF) is a polyclonal B-cell activator.

    PubMed Central

    Vordermeier, M; Stäb, K; Bessler, W G

    1986-01-01

    Protein I from the outer membrane of Escherichia coli and other members of the family Enterobacteriaceae is a potent mitogen and polyclonal B-lymphocyte activator. To determine the part of the polypeptide responsible for biological activity, we cleaved the molecule into defined polypeptide fragments of approximate molecular weights 24,000, 15,000, 9,000, 7,000, and 3,000 by using the cyanogen bromide method. The fragments were purified by gel permeation chromatography and by preparative polyacrylamide gel electrophoresis. They were investigated for mitogenicity and for the induction of immunoglobulin synthesis in lymphocyte cultures from several inbred mouse strains. The fragment of molecular weight 24,000 turned out to be a potent polyclonal B-lymphocyte activator comparable to native protein I. The low-molecular-weight fragments exhibited only marginal effects. Neither purified T lymphocytes nor thymocytes were activated. Our results show that a defined fragment of protein I is responsible for its lymphocyte-stimulating activity. Images PMID:3484458

  9. Fluorescence Activated Cell Sorting of Rickettsia prowazekii-Infected Host Cells Based on Bacterial Burden and Early Detection of Fluorescent Rickettsial Transformants

    PubMed Central

    Driskell, Lonnie O.; Tucker, Aimee M.; Woodard, Andrew; Wood, Raphael R.; Wood, David O.

    2016-01-01

    Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular bacterium that replicates only within the cytosol of a eukaryotic host cell. Despite the barriers to genetic manipulation that such a life style creates, rickettsial mutants have been generated by transposon insertion as well as by homologous recombination mechanisms. However, progress is hampered by the length of time required to identify and isolate R. prowazekii transformants. To reduce the time required and variability associated with propagation and harvesting of rickettsiae for each transformation experiment, characterized frozen stocks were used to generate electrocompetent rickettsiae. Transformation experiments employing these rickettsiae established that fluorescent rickettsial populations could be identified using a fluorescence activated cell sorter within one week following electroporation. Early detection was improved with increasing amounts of transforming DNA. In addition, we demonstrate that heterogeneous populations of rickettsiae-infected cells can be sorted into distinct sub-populations based on the number of rickettsiae per cell. Together our data suggest the combination of fluorescent reporters and cell sorting represent an important technical advance that will facilitate isolation of distinct R. prowazekii mutants and allow for closer examination of the effects of infection on host cells at various infectious burdens. PMID:27010457

  10. Elastic Deformations During Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Huang, K. C.

    2010-03-01

    The wide variety of shapes and sizes found in bacterial species is almost universally defined by the cell wall, which is a cross-linked network of the material peptidoglycan. In recent years, cell shape has been shown to play a critical role in regulating many important biological functions including attachment, dispersal, motility, polar differentiation, predation, and cellular differentiation. In previous work, we have shown that the spatial organization of the peptidoglycan network can change the mechanical equilibrium of the cell wall and result in changes in cell shape. However, experimental data on the mechanical properties of peptidoglycan is currently limited. Here, we describe a straightforward, inexpensive approach for extracting the mechanical properties of bacterial cells in gels of user-defined stiffness, using only optical microscopy to match growth kinetics to the predictions of a continuum model of cell growth. Using this simple yet general methodology, we have measured the Young's modulus for bacteria ranging across a wide variety of shapes, sizes, and cell wall thicknesses, and our method can easily be extended to other commonly studied bacteria. This method makes it possible to rapidly determine how changes in genotype and biochemistry affect the mechanical properties of the cell wall, and may be particularly relevant for studying the relationship between cell shape and structure, the genetic and molecular control of the mechanical properties of the cell wall, and the identification of antibiotics and other small molecules that affect and specifically modify the mechanical properties of the cell wall. Our work also suggests that bacteria may utilize peptidoglycan synthesis to transduce mechanosensory signals from local environment.

  11. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  12. Bacterial Activity in South Pole Snow

    PubMed Central

    Carpenter, Edward J.; Lin, Senjie; Capone, Douglas G.

    2000-01-01

    Large populations (200 to 5,000 cells ml−1 in snowmelt) of bacteria were present in surface snow and firn from the south pole sampled in January 1999 and 2000. DNA isolated from this snow yielded ribosomal DNA sequences similar to those of several psychrophilic bacteria and a bacterium which aligns closely with members of the genus Deinococcus, an ionizing-radiation- and desiccation-resistant genus. We also obtained evidence of low rates of bacterial DNA and protein synthesis which indicates that the organisms were metabolizing at ambient subzero temperatures (−12 to −17°C). PMID:11010907

  13. B cells enhance early innate immune responses during bacterial sepsis

    PubMed Central

    Kelly-Scumpia, Kindra M.; Scumpia, Philip O.; Weinstein, Jason S.; Delano, Matthew J.; Cuenca, Alex G.; Nacionales, Dina C.; Wynn, James L.; Lee, Pui Y.; Kumagai, Yutaro; Efron, Philip A.; Akira, Shizuo; Wasserfall, Clive; Atkinson, Mark A.

    2011-01-01

    Microbes activate pattern recognition receptors to initiate adaptive immunity. T cells affect early innate inflammatory responses to viral infection, but both activation and suppression have been demonstrated. We identify a novel role for B cells in the early innate immune response during bacterial sepsis. We demonstrate that Rag1−/− mice display deficient early inflammatory responses and reduced survival during sepsis. Interestingly, B cell–deficient or anti-CD20 B cell–depleted mice, but not α/β T cell–deficient mice, display decreased inflammatory cytokine and chemokine production and reduced survival after sepsis. Both treatment of B cell–deficient mice with serum from wild-type (WT) mice and repletion of Rag1−/− mice with B cells improves sepsis survival, suggesting antibody-independent and antibody-dependent roles for B cells in the outcome to sepsis. During sepsis, marginal zone and follicular B cells are activated through type I interferon (IFN-I) receptor (IFN-α/β receptor [IFNAR]), and repleting Rag1−/− mice with WT, but not IFNAR−/−, B cells improves IFN-I–dependent and –independent early cytokine responses. Repleting B cell–deficient mice with the IFN-I–dependent chemokine, CXCL10 was also sufficient to improve sepsis survival. This study identifies a novel role for IFN-I–activated B cells in protective early innate immune responses during bacterial sepsis. PMID:21746813

  14. Expression and stabilization of bacterial luciferase in mammalian cells

    NASA Astrophysics Data System (ADS)

    Patterson, Stacey S.; Dionisi, Hebe M.; Gupta, Rakesh K.; Sayler, Gary S.

    2004-06-01

    Current mammalian bioreporters using either firefly luciferase (luc) or GFP constructs require lysis and/or exogenous excitation to evoke a measurable response. Consequently, these cells cannot serve as continuous, on-line monitoring devices for in vivo imaging. Bacterial luciferase, lux, produces a photonic reaction that is cyclic, resulting in autonomous signal generation without the requirement for exogenous substrates or external activation. Therefore, lux-based bioluminescent bioreporters are the only truly autonomous light-generating sensors in existence. Unfortunately, the bacterial lux system has not yet been efficiently expressed in mammalian cells. In this research, three approaches for optimal expression of the a and b subunits of the bacterial luciferase protein were compared and reporter signal stability was evaluated from stably transfected human embryonic kidney cells. Maximum light levels were obtained from cells expressing the luciferase subunits linked with an internal ribosomal entry site (IRES). Cells harboring this construct produced bioluminescence equaling 2.6 X 106 photons/sec compared to 7.2 X 104 photons/sec obtained from cells expressing the luciferase from a dual promoter vector and 3.5 X 104 photons/sec from a Lux fusion protein. Furthermore, the bioluminescence levels remained stable for more than forty cell passages (5 months) in the absence of antibiotic selection. After this time, bioluminescence signals dropped at a rate of approximately 5% per cell passage. These data indicate that mammalian cell lines can be engineered to efficiently express the bacterial lux system, thus lending themselves to possible long-term continuous monitoring or imaging applications in vivo.

  15. Cell cycle regulation by the bacterial nucleoid.

    PubMed

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2014-12-01

    Division site selection presents a fundamental challenge to all organisms. Bacterial cells are small and the chromosome (nucleoid) often fills most of the cell volume. Thus, in order to maximise fitness and avoid damaging the genetic material, cell division must be tightly co-ordinated with chromosome replication and segregation. To achieve this, bacteria employ a number of different mechanisms to regulate division site selection. One such mechanism, termed nucleoid occlusion, allows the nucleoid to protect itself by acting as a template for nucleoid occlusion factors, which prevent Z-ring assembly over the DNA. These factors are sequence-specific DNA-binding proteins that exploit the precise organisation of the nucleoid, allowing them to act as both spatial and temporal regulators of bacterial cell division. The identification of proteins responsible for this process has provided a molecular understanding of nucleoid occlusion but it has also prompted the realisation that substantial levels of redundancy exist between the diverse systems that bacteria employ to ensure that division occurs in the right place, at the right time.

  16. Bacterial foodborne infections after hematopoietic cell transplantation.

    PubMed

    Boyle, Nicole M; Podczervinski, Sara; Jordan, Kim; Stednick, Zach; Butler-Wu, Susan; McMillen, Kerry; Pergam, Steven A

    2014-11-01

    Diarrhea, abdominal pain, and fever are common among patients undergoing hematopoietic cell transplantation (HCT), but such symptoms are also typical with foodborne infections. The burden of disease caused by foodborne infections in patients undergoing HCT is unknown. We sought to describe bacterial foodborne infection incidence after transplantation within a single-center population of HCT recipients. All HCT recipients who underwent transplantation from 2001 through 2011 at the Fred Hutchinson Cancer Research Center in Seattle, Washington were followed for 1 year after transplantation. Data were collected retrospectively using center databases, which include information from transplantation, on-site examinations, outside records, and collected laboratory data. Patients were considered to have a bacterial foodborne infection if Campylobacter jejuni/coli, Listeria monocytogenes, E. coli O157:H7, Salmonella species, Shigella species, Vibrio species, or Yersinia species were isolated in culture within 1 year after transplantation. Nonfoodborne infections with these agents and patients with pre-existing bacterial foodborne infection (within 30 days of transplantation) were excluded from analyses. A total of 12 of 4069 (.3%) patients developed a bacterial foodborne infection within 1 year after transplantation. Patients with infections had a median age at transplantation of 50.5 years (interquartile range [IQR], 35 to 57), and the majority were adults ≥18 years of age (9 of 12 [75%]), male gender (8 of 12 [67%]) and had allogeneic transplantation (8 of 12 [67%]). Infectious episodes occurred at an incidence rate of 1.0 per 100,000 patient-days (95% confidence interval, .5 to 1.7) and at a median of 50.5 days after transplantation (IQR, 26 to 58.5). The most frequent pathogen detected was C. jejuni/coli (5 of 12 [42%]) followed by Yersinia (3 of 12 [25%]), although Salmonella (2 of 12 [17%]) and Listeria (2 of 12 [17%]) showed equal frequencies; no cases of Shigella

  17. Production of Bacteriolytic Enzymes by Streptomyces globisporus Regulated by Exogenous Bacterial Cell Walls

    PubMed Central

    Brönneke, Volker; Fiedler, Franz

    1994-01-01

    Mutanolysin biosynthesis and pigment production in Streptomyces globisporus ATCC 21553 were stimulated by adding bacterial cell walls to the medium. The increased bacteriolytic activity in the supernatant correlated with an increased de novo synthesis of mutanolysin and was between 4- and 20-fold higher than in cultures grown without bacterial cell walls. The increase in mutanolysin synthesis was brought about by enhanced transcription of the mutanolysin gene. The stimulation was only observed in medium which contained dextrin or starch as the carbon source. Glucose abolished the stimulation and also inhibited the low constitutive synthesis of mutanolysin. The induction of lytic activity was observed to require minimally 0.4 mg of bacterial cell walls per ml, whereas 0.6 mg of bacterial cell walls per ml yielded maximal lytic activity. Further supplements of bacterial cell walls did not result in enhanced lytic activity. The stimulation could be achieved independently of the phase of growth of the Streptomyces strain. Cultures grown in the presence of bacterial cell walls exhibited a higher growth yield. However, the accelerated growth was not the reason for the increased amount of mutanolysin produced. The growth of cultures with peptidoglycan monomers added to the medium instead of cell walls was similarly increased, but an effect on the biosynthesis of mutanolysin was not observed. All bacterial cell walls tested were capable of eliciting the stimulation of lytic activity, including cell walls of archaea, which contained pseudomurein. Images PMID:16349213

  18. Diffusion of Bacterial Cells in Porous Media

    PubMed Central

    Licata, Nicholas A.; Mohari, Bitan; Fuqua, Clay; Setayeshgar, Sima

    2016-01-01

    The chemotaxis signal transduction network regulates the biased random walk of many bacteria in favorable directions and away from harmful ones through modulating the frequency of directional reorientations. In mutants of diverse bacteria lacking the chemotaxis response, migration in classic motility agar, which constitutes a fluid-filled porous medium, is compromised; straight-swimming cells unable to tumble become trapped within the agar matrix. Spontaneous mutations that restore spreading have been previously observed in the enteric bacterium Escherichia coli, and recent work in other bacterial species has isolated and quantified different classes of nonchemotacting mutants exhibiting the same spreading phenotype. We present a theoretical description of bacterial diffusion in a porous medium—the natural habitat for many cell types—which elucidates how diverse modifications of the motility apparatus resulting in a nonzero tumbling frequency allows for unjamming of otherwise straight-swimming cells at internal boundaries and leads to net migration. A unique result of our analysis is increasing diffusive spread with increasing tumbling frequency in the small pore limit, consistent with earlier experimental observations but not captured by previous models. Our theoretical results, combined with a simple model of bacterial diffusion and growth in agar, are compared with our experimental measurements of swim ring expansion as a function of time, demonstrating good quantitative agreement. Our results suggest that the details of the cellular tumbling process may be adapted to enable bacteria to propagate efficiently through complex environments. For engineered, self-propelled microswimmers that navigate via alternating straight runs and changes in direction, these results suggest an optimal reorientation strategy for efficient migration in a porous environment with a given microarchitecture. PMID:26745427

  19. Identification of Salmonella functions critical for bacterial cell division within eukaryotic cells.

    PubMed

    Henry, T; García-Del Portillo, F; Gorvel, J P

    2005-04-01

    Salmonella typhimurium multiplication inside eukaryotic host cells is critical for virulence. Salmonella typhimurium strain SL1344 appears as filaments upon growth in macrophages and MelJuSo cells, a human melanoma cell line, indicating a specific blockage in the bacterial cell division process. Several studies have investigated the host cell response impairing bacterial division. However, none looked at the bacterial factors involved in inhibition of Salmonella division inside eukaryotic cells. We show here that blockage in the bacterial division process is sulA-independent and takes place after FtsZ-ring assembly. Salmonella typhimurium genes in which mutations lead to filamentous growth within host cells were identified by a large scale mutagenesis approach on strain 12023, revealing bacterial functions crucial for cell division within eukaryotic cells. We finally demonstrate that SL1344 filamentation is a result of hisG mutation, requires the activity of an enzyme of the histidine biosynthetic pathway HisFH and is specific for the vacuolar environment.

  20. Studying bacterial quorum-sensing at the single cell level

    NASA Astrophysics Data System (ADS)

    Delfino Perez, Pablo; Pelakh, Leslie; Young, Jonathan; Johnson, Elaine; Hagen, Stephen

    2010-03-01

    Like many bacterial species, Vibrio fischeri can detect its own population density through a quorum sensing (QS) mechanism. The bacterium releases a signal molecule (AI, autoinducer), which accumulates at high population density and triggers a genetic switch. In V.fischeri this leads to bioluminescence. Little is known about how stochastic gene expression affects QS at the level of single cells. We are imaging the luminescence of individual V.fischeri cells in a flow chamber and directly measuring the intercell variability in AI activation of the QS circuit. Our single-cell luminescence experiments allow us to track cells over time and characterize variations in their response to AI levels. We find heterogeneous response to the external signal: at a given AI concentration some cells may be strongly luminescent while others are virtually dark. The analysis of noise in the individual cell response can eventually lead to a better understanding of how cells use QS to gather information about their environment.

  1. One Bacterial Cell, One Complete Genome

    SciTech Connect

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy; Lapidus, Alla; Wu, Dongying; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.; Bristow, James; Cheng, Jan-Fang

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  2. Inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    SciTech Connect

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids.

  3. EGFR regulates macrophage activation and function in bacterial infection.

    PubMed

    Hardbower, Dana M; Singh, Kshipra; Asim, Mohammad; Verriere, Thomas G; Olivares-Villagómez, Danyvid; Barry, Daniel P; Allaman, Margaret M; Washington, M Kay; Peek, Richard M; Piazuelo, M Blanca; Wilson, Keith T

    2016-09-01

    EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.

  4. Proteolysis in plasmid DNA stable maintenance in bacterial cells.

    PubMed

    Karlowicz, Anna; Wegrzyn, Katarzyna; Dubiel, Andrzej; Ropelewska, Malgorzata; Konieczny, Igor

    2016-07-01

    Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.

  5. Stimulation of peritoneal cell arginase by bacterial lipopolysaccharides.

    PubMed

    Ryan, J L; Yohe, W B; Morrison, D C

    1980-05-01

    The conditions under which bacterial endotoxins stimulate arginase production in mouse peritoneal macrophages have been defined. Both lipid-A and lipid-A-associated protein are potent activators. Fetal calf serum and normal mouse serum enhance macrophage arginase levels in the presence and absence of lipopolysaccharide (LPS). LPS in the amount of 10(-1) microgram/ml represents a maximal stimulus for macrophage arginase production and release. Thioglycollate-elicited peritoneal cells have increased arginase activity, compared with resident cells. This activity can be stimulated further by the addition of LPS. Arginase levels may alter the outcome of in vitro immunologic processes by depleting arginine and may also serve as a useful indicator of the state of activation of macrophages.

  6. Shedding light on biology of bacterial cells

    PubMed Central

    2016-01-01

    To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging. This

  7. The role of cytoskeletal elements in shaping bacterial cells.

    PubMed

    Cho, Hongbaek

    2015-03-01

    Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

  8. Bacterial cell curvature through mechanical control of cell growth

    PubMed Central

    Cabeen, Matthew T; Charbon, Godefroid; Vollmer, Waldemar; Born, Petra; Ausmees, Nora; Weibel, Douglas B; Jacobs-Wagner, Christine

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology. PMID:19279668

  9. Towards a bottom-up reconstitution of bacterial cell division.

    PubMed

    Martos, Ariadna; Jiménez, Mercedes; Rivas, Germán; Schwille, Petra

    2012-12-01

    The components of the bacterial division machinery assemble to form a dynamic ring at mid-cell that drives cytokinesis. The nature of most division proteins and their assembly pathway is known. Our knowledge about the biochemical activities and protein interactions of some key division elements, including those responsible for correct ring positioning, has progressed considerably during the past decade. These developments, together with new imaging and membrane reconstitution technologies, have triggered the 'bottom-up' synthetic approach aiming at reconstructing bacterial division in the test tube, which is required to support conclusions derived from cellular and molecular analysis. Here, we describe recent advances in reconstituting Escherichia coli minimal systems able to reproduce essential functions, such as the initial steps of division (proto-ring assembly) and one of the main positioning mechanisms (Min oscillating system), and discuss future perspectives and experimental challenges.

  10. Aerotactic Cell Density Variations in Bacterial Turbulence

    NASA Astrophysics Data System (ADS)

    Fernandez, Vicente; Smriga, Steven; Menolascina, Filippo; Rusconi, Roberto; Stocker, Roman

    2015-11-01

    Concentrated suspensions of motile bacteria such as Bacillus subtilis exhibit group dynamics much larger than the scale of an individual bacterium, visual similar to high Reynolds number turbulence. These suspensions represent a microscale realization of active matter. Individually, B. subtilis are also aerotactic, and will accumulate near oxygen sources. Using a microfluidic device for generating oxygen gradients, we investigate the relationship between individuals' attraction to oxygen and the collective motion resultant from hydrodynamic interactions. We focus on changes in density revealed by a fluorescently labeled sub-population of B. subtilis in the dense suspension. This approach allows us to examine changes in density during the onset of collective motion as well as fully developed bacterial turbulence.

  11. Bacterial foraging based edge detection for cell image segmentation.

    PubMed

    Pan, Yongsheng; Zhou, Tao; Xia, Yong

    2015-01-01

    Edge detection is the most popular and common choices for cell image segmentation, in which local searching strategies are commonly used. In spite of their computational efficiency, traditional edge detectors, however, may either produce discontinued edges or rely heavily on initializations. In this paper, we propose a bacterial foraging based edge detection (BFED) algorithm for cell image segmentation. We model the gradients of intensities as the nutrient concentration and propel bacteria to forage along nutrient-rich locations via mimicking the behavior of Escherichia coli, including the chemotaxis, swarming, reproduction, elimination and dispersal. As a nature-inspired evolutionary technique, this algorithm can identify the desired edges and mark them as the tracks of bacteria. We have evaluated the proposed algorithm against the Canny, SUSAN, Verma's and an active contour model (ACM) based edge detectors on both synthetic and real cell images. Our results suggest that the BFED algorithm can identify boundaries more effectively and provide more accurate cell image segmentation.

  12. An Overview of Genetic Mechanisms in the Bacterial Cell.

    ERIC Educational Resources Information Center

    Metcalfe, Judith; Baumberg, Simon

    1988-01-01

    Outlines the genetic elements found in the bacterial cell which play a role in recombining DNA sequences. Provides a core structure to which the mechanisms occurring in and between bacterial cells can be related. Discusses the practicalities of recombinant DNA techniques. (Author/CW)

  13. Epigallocatechin-3-gallate inhibits bacterial virulence and invasion of host cells.

    PubMed

    Tsou, Lun K; Yount, Jacob S; Hang, Howard C

    2017-03-10

    Increasing antibiotic resistance and beneficial effects of host microbiota has motivated the search for anti-infective agents that attenuate bacterial virulence rather than growth. For example, we discovered that specific flavonoids such as baicalein and quercetin from traditional medicinal plant extracts could attenuate Salmonella enterica serovar Typhimurium type III protein secretion and invasion of host cells. Here, we show epigallocatechin-3-gallate from green tea extracts also inhibits the activity of S. Typhimurium type III protein effectors and significantly reduces bacterial invasion into host cells. These results reveal additional dietary plant metabolites that can attenuate bacterial virulence and infection of host cells.

  14. Development and validation of a high-throughput cell-based screen to identify activators of a bacterial two-component signal transduction system.

    PubMed

    van Rensburg, Julia J; Fortney, Kate R; Chen, Lan; Krieger, Andrew J; Lima, Bruno P; Wolfe, Alan J; Katz, Barry P; Zhang, Zhong-Yin; Spinola, Stanley M

    2015-07-01

    CpxRA is a two-component signal transduction system (2CSTS) found in many drug-resistant Gram-negative bacteria. In response to periplasmic stress, CpxA autophosphorylates and donates a phosphoryl group to its cognate response regulator, CpxR. Phosphorylated CpxR (CpxR-P) upregulates genes involved in membrane repair and downregulates multiple genes that encode virulence factors, which are trafficked across the cell membrane. Mutants that constitutively activate CpxRA in Salmonella enterica serovar Typhimurium and Haemophilus ducreyi are avirulent in mice and humans, respectively. Thus, the activation of CpxRA has high potential as a novel antimicrobial/antivirulence strategy. Using a series of Escherichia coli strains containing a CpxR-P-responsive lacZ reporter and deletions in genes encoding CpxRA system components, we developed and validated a novel cell-based high-throughput screen (HTS) for CpxRA activators. A screen of 36,000 compounds yielded one hit compound that increased reporter activity in wild-type cells. This is the first report of a compound that activates, rather than inhibits, a 2CSTS. The activity profile of the compound against CpxRA pathway mutants in the presence of glucose suggested that the compound inhibits CpxA phosphatase activity. We confirmed that the compound induced the accumulation of CpxR-P in treated cells. Although the hit compound contained a nitro group, a derivative lacking this group retained activity in serum and had lower cytotoxicity than that of the initial hit. This HTS is amenable for the screening of larger libraries to find compounds that activate CpxRA by other mechanisms, and it could be adapted to find activators of other two-component systems.

  15. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  16. Bacterial activity in plant (Schoenoplectus validus) biofilms of constructed wetlands.

    PubMed

    Pollard, Peter C

    2010-12-01

    Biofilm-bacterial communities have been exploited in the treatment of wastewater in 'fixed-film' processes. Our understanding of biofilm dynamics requires a quantitative knowledge of bacterial growth-kinetics in these microenvironments. The aim of this paper was to apply the thymidine assay to quantify bacterial growth without disturbing the biofilm on the surfaces of emergent macrophytes (Schoenoplectus validus) of a constructed wetland. The isotope was rapidly and efficiently taken-up and incorporated into dividing biofilm-bacteria. Isotope diffusion into the biofilm did not limit the growth rate measurement. Isotope dilution was inhibited at >12 μM thymidine. Biofilm-bacterial biomass and growth rates were not correlated to the plant surface area (r(2) < 0.02). The measurements of in situ biofilm-bacterial growth rates both displayed, and accommodated, the inherent heterogeneity of the complex wetland ecosystem. Biofilm-bacterial respiratory activities, measured using the redox dye CTC, and growth rates were measured simultaneously. The dye did not interfere with bacterial growth. Biofilm-bacterial specific growth rates ranged from 1.4 ± 0.6 d(-1) to 3.3 ± 1.3 d(-1). In the constructed wetlands of this study biofilm-bacterial specific growth rates, compared to those of natural ecosystems, could be markedly improved through changes in wetland design that increased bacterial respiration while minimising biofilm growth.

  17. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells

    PubMed Central

    Lee, Timothy K.; Meng, Kevin; Shi, Handuo; Huang, Kerwyn Casey

    2016-01-01

    The peptidoglycan cell wall is an integral organelle critical for bacterial cell shape and stability. Proper cell wall construction requires the interaction of synthesis enzymes and the cytoskeleton, but it is unclear how the activities of individual proteins are coordinated to preserve the morphology and integrity of the cell wall during growth. To elucidate this coordination, we used single-molecule imaging to follow the behaviours of the two major peptidoglycan synthases in live, elongating Escherichia coli cells and after perturbation. We observed heterogeneous localization dynamics of penicillin-binding protein (PBP) 1A, the synthase predominantly associated with cell wall elongation, with individual PBP1A molecules distributed between mobile and immobile populations. Perturbations to PBP1A activity, either directly through antibiotics or indirectly through PBP1A's interaction with its lipoprotein activator or other synthases, shifted the fraction of mobile molecules. Our results suggest that multiple levels of regulation control the activity of enzymes to coordinate peptidoglycan synthesis. PMID:27774981

  18. Antiplasmid activity: loss of bacterial resistance to antibiotics.

    PubMed

    Molnár, J; Földeák, S; Nakamura, M J; Rausch, H; Domonkos, K; Szabó, M

    1992-01-01

    The antiplasmid activity of tricyclic compounds, e.g. phenothiazines, dibenzoazepines, dibenzocykloheptene derivatives and some stereoisomers, was shown on E. coli in vitro. Some ring-substituted phenothiazine and cannabis derivatives had only an antibacterial effect. Promethazine, a selected phenothiazine, cured antibiotic resistance and lactose fermentation of E.coli, tumour inducing ability of Agrobacterium tumefaciens and nodule formation of Rhizobium meliloti. Plasmids of different E.coli strains were eliminated with varying frequency. The antiplasmid activity of the compounds can be due to the increased membrane permeability. Inhibition of DNA gyrase and complex formation with the supercoiled form of plasmid DNA can lead to the cessation of plasmid replication in the bacterial cells. In addition, in vivo plasmid curing was demonstrated at a low frequency.

  19. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    PubMed

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  20. Ecological implications and determination of bacterial cell surface charge in a natural bacterial community in the coastal North Sea

    NASA Astrophysics Data System (ADS)

    Stoderegger, K. E.; Herndl, G. J.

    2003-04-01

    Bacterioplankton represent the largest living surface in the world's ocean and via their surface bacteria interact with the environment. Surface properties may play a crucial role in the uptake of nutrients and in regulating the grazing pressure of potential predators. Therefore, we investigated the dynamics of hydrophilic and hydrophobic properties of the cell surface of bacterioplankton during the wax and wane of a phytoplankton bloom. A hydrophobic and a polar as well as a nucleic acid stain were applied concurrently to living samples and their intensity measured on a single cell basis using a confocal laser-scanning microscope and advanced image analysis. In an earlier study using selected bacterial strains we could distinguish 2 distinctly different groups of bacteria: A rather "active" bacterial group, showing higher overall hydrophobicity, high bacterial growth rates and at the same time increasing hydrophobicity and hydrophilicity. The other group was less hydrophobic, slowly growing, and surface charge properties did not increase steadily in batch cultures but showed two distinct peaks at the beginning and the late stationary phase. In the natural community of the coastal North Sea, hydrophobic moieties remained rather constant, while the polarity of the cell surface fluctuated. Generally, phytoplankton blooms were accompanied by an increase in bacterial abundance and a corresponding increase in hydrophilicity. Basically, the natural bacterial assemblages showed similar cell surface characteristics as the less hydrophobic group of bacterial strains. In a coastal environment with changing nutrient conditions, one would expect the more hydrophobic and fast growing species adapting fast to ambient conditions. In nutrient-rich environments increased hydrophobicity could also be advantageous for the cell, either to enhance particle attachment while under nutrient-depleted conditions increased polarity might facilitate nutrient uptake.

  1. Bacterial biomass and activity in the marginal ice zone of the northern Barents Sea

    NASA Astrophysics Data System (ADS)

    Tammert, Helen; Olli, Kalle; Sturluson, Maria; Hodal, Helene

    2008-10-01

    Bacteria in the Arctic Waters are well adapted to low temperatures and play a key role in the transformation of organic matter. However, the activity of planktonic bacteria at cellular level remains poorly understood. In this study, we use fluorescent markers (4',6'-diamidino-2-phenylindole (DAPI), 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), Live/Dead BacLight viability kit) to discriminate between bacterial cells with a variety of physiological activities in the 0-200 m water column and sinking particles. During two field studies (July 2003 and 2004), we covered nine stations in the northern Barents Sea. The median bacterial abundance (DAPI staining) in the upper 50 m layer was 0.9×10 6 cells ml -1 (range 0.2-3.2×10 6 cells ml -1) in 2003 and 0.5×10 6 cells ml -1 (range 0.2-1.0×10 6 cells ml -1) in 2004. Bacteria with sufficient electron transport activity to be stained with CTC were on average 10% of the total count and ca. 20% of the total cells had intact cell membranes. In the water column, proxies of substrate availability (POC, PON, chlorophyll a, primary production) and bacterial production (thymidine and leucine uptake) correlated strongly with total bacterial count, CTC-stained cells and cells with 'leaky' membrane (stained with propidium iodine), but not with the concentration of cells with intact cell membrane. Contrary to expectations, the proportion of CTC-stained bacteria was not higher in the sinking particles (captured with sediment traps) compared to the ambient water. However, out of the bacteria with intact cell membranes, a higher proportion scored as CTC positive in the aggregates compared to the ambient water. Bacterial cells with 'leaky' cell membranes formed the largest part of total cell count in all samples, and accumulated in sites with high microbial activity (sinking aggregates, chlorophyll maxima, layers of high primary and bacterial production). We hypothesize that the source of the bacterial cells with 'leaky' cell membranes

  2. Structure of a bacterial cell surface decaheme electron conduit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  3. Mucosal SIV Vaccines Comprising Inactivated Virus Particles and Bacterial Adjuvants Induce CD8+ T-Regulatory Cells that Suppress SIV-Positive CD4+ T-Cell Activation and Prevent SIV Infection in the Macaque Model

    PubMed Central

    Andrieu, Jean-Marie; Chen, Song; Lai, Chunhui; Guo, Weizhong; Lu, Wei

    2014-01-01

    A new paradigm of mucosal vaccination against human immunodeficiency virus (HIV) infection has been investigated in the macaque model. A vaccine consisting of inactivated simian immunodeficiency virus (SIV)mac239 particles together with a living bacterial adjuvant (either the Calmette and Guerin bacillus, Lactobacillus plantarum or Lactobacillus rhamnosus) was administered to macaques via the vaginal or oral/intragastric route. In contrast to all established human and veterinary vaccines, these three vaccine regimens did not elicit SIV-specific antibodies nor cytotoxic T-lymphocytes but induced a previously unrecognized population of non-cytolytic MHCIb/E-restricted CD8+ T-regulatory cells that suppressed the activation of SIV-positive CD4+ T-lymphocytes. SIV reverse transcription was thereby blocked in inactivated CD4+ T-cells; the initial burst of virus replication was prevented and the vaccinated macaques were protected from a challenge infection. For 3–14 months after intragastric immunization, 24 macaques were challenged intrarectally with a high dose of SIVmac239 or with the heterologous strain SIV B670 (both strains grown on macaques PBMC). Twenty-three of these animals were found to be protected for up to 48 months while all 24 control macaques became infected. This protective effect against SIV challenge together with the concomitant identification of a robust ex vivo correlate of protection suggests a new approach for developing an HIV vaccine in humans. The induction of this new class of CD8+ T-regulatory cells could also possibly be used therapeutically for suppressing HIV replication in infected patients and this novel tolerogenic vaccine paradigm may have potential applications for treating a wide range of immune disorders and is likely to may have profound implications across immunology generally. PMID:25071760

  4. Thermal destruction of dried vegetative yeast cells and dried bacterial spores in a convective hot air flow: strong influence of initial water activity.

    PubMed

    Fine, Frédéric; Gervais, Patrick

    2005-01-01

    Thermal treatment of Bacillus subtilis spores and Saccharomyces cerevisiae cells dried on glass beads was performed at various initial water activities (in the range 0.10-0.90). Experiments were carried out at 150 degrees C, 200 degrees C and 250 degrees C for 5-120 s. Significant destruction of up to 10(7) vegetative cells and up to 10(5) spores g(-1) was achieved, depending upon treatment conditions. This study demonstrated that the initial water activity (a(w)) value of a sample is very important in the destruction or survival of microorganisms treated with hot air stresses. As described previously, the heat resistance of spores and vegetative cells was strongly enhanced by low initial a(w) values until an optimal a(w) value between 0.30 and 0.50, with maximal viability at 0.35 for both S. cerevisiae and B. subtilis. However, our results highlighted for the first time that very low initial a(w) values (close to 0.10) greatly improved the destruction of spores and vegetative cells. Factors and possible mechanisms involved in the death of vegetative cells and spores are discussed.

  5. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  6. Osmotic Pressure, Bacterial Cell Walls, and Penicillin: A Demonstration.

    ERIC Educational Resources Information Center

    Lennox, John E.

    1984-01-01

    An easily constructed apparatus that models the effect of penicillin on the structure of bacterial cells is described. Background information and procedures for using the apparatus during a classroom demonstration are included. (JN)

  7. Using bacterial cell growth to template catalytic asymmetry.

    PubMed

    Kaehr, Bryan; Brinker, C Jeffrey

    2010-08-07

    We report an approach to position gold nanoparticle catalysts for metal reduction asymmetrically on a biological template (E. coli) by exploiting the polarity of the bacterial cell envelope undergoing growth and division.

  8. Antimicrobial activity of various extracts of Ocimum basilicum L. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy.

    PubMed

    Kaya, Ilhan; Yigit, Nazife; Benli, Mehlika

    2008-06-18

    The antimicrobial activities of chloroform, acetone and two different concentrations of methanol extracts of Ocimum basilicum L. were studied. These extracts were tested in vitro against 10 bacteria and 4 yeasts strains by the disc diffusion method. The results indicated that the methanol extracts of O. basilucum exhibited the antimicrobial activity against tested microorganisms. While the chloroform and acetone extracts had no effect, the methanol extracts showed inhibition zones against strains of Pseudomonas aeruginosa, Shigella sp., Listeria monocytogenes, Staphylococcus aureus and two different strains of Escherichia coli. The cells of microorganisms, which were treated and untreated with plant extracts, were observed by using the scanning electron microscope. It was observed that the treated cells were damaged.

  9. Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells.

    PubMed

    Ireton, Keith

    2007-06-01

    The bacterial pathogen Listeria monocytogenes causes food-borne illnesses leading to meningitis or abortion. Listeria provokes its internalization ('entry') into mammalian cells that are normally non-phagocytic, such as intestinal epithelial cells and hepatocytes. Entry provides access to a nutrient-rich cytosol and allows translocation across anatomical barriers. Here I discuss the two major internalization pathways used by Listeria. These pathways are initiated by binding of the bacterial surface proteins InlA or InlB to their respective host receptors, E-cadherin or Met. InlA mediates traversal of the intestinal barrier, whereas InlB promotes infection of the liver. At the cellular level, both InlA- and InlB-dependent entry require host signalling that promotes cytoskeletal rearrangements and pathogen engulfment. However, many of the specific signalling proteins in the two entry routes differ. InlA-mediated uptake uses components of adherens junctions that are coupled to F-actin and myosin, whereas InlB-dependent entry involves cytosolic adaptors that bridge Met to regulators of F-actin, including phosphoinositide 3-kinase and activators of the Arp2/3 complex. Unexpectedly, entry directed by InlB also involves endocytic components. Future work on InlA and InlB will lead to a better understanding of virulence, and may also provide novel insights into the normal biological functions of E-cadherin and Met.

  10. Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia

    PubMed Central

    Rosendahl, Alva; Bergmann, Simone; Hammerschmidt, Sven; Goldmann, Oliver; Medina, Eva

    2013-01-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs) in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DCs-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DCs-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9) in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection. PMID:23802100

  11. Fluorogenic Peptide Substrate for Quantification of Bacterial Enzyme Activities

    PubMed Central

    Al-Abdullah, Ismail H.; Bagramyan, Karine; Bilbao, Shiela; Qi, Meirigeng; Kalkum, Markus

    2017-01-01

    A novel peptide substrate (A G G P L G P P G P G G) was developed for quantifying the activities of bacterial enzymes using a highly sensitive Fluorescence Resonance Energy Transfer (FRET) based assay. The peptide substrate was cleaved by collagenase class I, II, Liberase MTF C/T, collagenase NB1, and thermolysin/neutral protease, which was significantly enhanced in the presence of CaCl2. However, the activities of these enzymes were significantly decreased in the presence of ZnSO4 or ZnCl2. Collagenase I, II, Liberase MTF C/T, thermolysin/neutral protease share similar cleavage sites, L↓G and P↓G. However, collagenase NB1 cleaves the peptide substrate at G↓P and P↓L, in addition to P↓G. The enzyme activity is pH dependent, within a range of 6.8 to 7.5, but was significantly diminished at pH 8.0. Interestingly, the peptide substrate was not cleaved by endogenous pancreatic protease such as trypsin, chymotrypsin, and elastase. In conclusion, the novel peptide substrate is collagenase, thermolysin/neutral protease specific and can be applied to quantify enzyme activities from different microbes. Furthermore, the assay can be used for fine-tuning reaction mixtures of various agents to enhance the overall activity of a cocktail of multiple enzymes and achieve optimal organ/tissue digestion, while protecting the integrity of the target cells. PMID:28287171

  12. Colorimetric enumeration of bacterial contamination in water based on β-galactosidase gold nanoshell activity.

    PubMed

    Tanvir, Fouzia; Yaqub, Atif; Tanvir, Shazia; Anderson, William A

    2017-04-01

    In this study we report a method for the rapid and sensitive estimation of bacterial cell concentration in solution based on a colorimetric enzyme/gold nanoshells conjugate system. The CTAB capped gold nanoshells are electrostatically attracted by both the bacterial surface and the enzyme β-galactosidase. The preferential binding of cationic (CTAB)-functionalized gold nanoshells to the more negative bacterial surfaces leaves active β-galactosidase in solution, providing an enzyme-amplified colorimetric response of the binding event. A progressive increase in the enzyme activity is evidenced by the conversion of the yellow-orange CPRG substrate into the red chromophore chlorophenol red, which can be correlated with increasing bacterial cell numbers. Using this strategy, the quantification of bacteria at concentrations as low as 10 bacteria/mL of solution has been achieved. The present method of bacterial cell load assessment offers a distinct potential advantage over other conventional methods such as plate counting in terms of ease of operation, rapidity, high sensitivity and quantitative detection of bacterial cells.

  13. A Translocated Bacterial Protein Protects Vascular Endothelial Cells from Apoptosis

    PubMed Central

    Schmid, Michael C; Scheidegger, Florine; Dehio, Michaela; Balmelle-Devaux, Nadège; Schulein, Ralf; Guye, Patrick; Chennakesava, Cuddapah S; Biedermann, Barbara; Dehio, Christoph

    2006-01-01

    The modulation of host cell apoptosis by bacterial pathogens is of critical importance for the outcome of the infection process. The capacity of Bartonella henselae and B. quintana to cause vascular tumor formation in immunocompromised patients is linked to the inhibition of vascular endothelial cell (EC) apoptosis. Here, we show that translocation of BepA, a type IV secretion (T4S) substrate, is necessary and sufficient to inhibit EC apoptosis. Ectopic expression in ECs allowed mapping of the anti-apoptotic activity of BepA to the Bep intracellular delivery domain, which, as part of the signal for T4S, is conserved in other T4S substrates. The anti-apoptotic activity appeared to be limited to BepA orthologs of B. henselae and B. quintana and correlated with (i) protein localization to the host cell plasma membrane, (ii) elevated levels of intracellular cyclic adenosine monophosphate (cAMP), and (iii) increased expression of cAMP-responsive genes. The pharmacological elevation of cAMP levels protected ECs from apoptosis, indicating that BepA mediates anti-apoptosis by heightening cAMP levels by a plasma membrane–associated mechanism. Finally, we demonstrate that BepA mediates protection of ECs against apoptosis triggered by cytotoxic T lymphocytes, suggesting a physiological context in which the anti-apoptotic activity of BepA contributes to tumor formation in the chronically infected vascular endothelium. PMID:17121462

  14. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  15. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  16. Bacterial cell biology outside the streetlight

    PubMed Central

    2016-01-01

    Summary As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated – more or less intimately – with multicellular eukaryotes. PMID:27306428

  17. Size of Suspended Bacterial Cells and Association of Heterotrophic Activity with Size Fractions of Particles in Estuarine and Coastal Waters †

    PubMed Central

    Palumbo, Anthony V.; Ferguson, Randolph L.; Rublee, Parke A.

    1984-01-01

    The size of bacteria and the size distribution of heterotrophic activity were examined in estuarine, neritic, and coastal waters. The data indicated the small size of suspended marine bacteria and the predominance of free-living cells in numerical abundance and in the incorporation of dissolved amino acids. The average per-cell volume of suspended marine bacteria in all environments was less than 0.1 μm3. Cell volume ranged from 0.072 to 0.096 μm3 at salinities of 0 to 34.3‰ in the Newport River estuary, N.C., and from 0.078 to 0.096 μm3 in diverse areas of the Gulf of Mexico. Thus, the free-living bacteria were too small to be susceptible to predation by copepods. In the Newport River estuary, ca. 93 to 99% of the total number of cells and 75 to 97% of incorporated tritium (from 3H-labeled mixed amino acids) retained by a 0.2-μm-pore-size filter passed through a 3.0-μm-pore-size filter. Although the amino acid turnover rate per cell was higher for the bacteria in the >3.0-μm size fraction than in the <3.0-μm size fraction, the small number of bacteria associated with the >3.0-μm size particles resulted in the low relative contribution of attached bacteria to total heterotrophic activity in the estuary. For coastal and neritic samples, collected off the coast of Georgia and northeast Florida and in the plume of the Mississippi River, 56 to 98% of incorporated label passed through a 3.0-μm-pore-size filter. The greatest activity in the >3.0-μm fraction in the Georgia Bight was at nearshore stations and in the bottom samples. Our data were consistent with the hypothesis that resuspension of bottom material is an important factor in influencing the proportion of heterotrophic activity attributable to particle-associated bacteria. PMID:16346582

  18. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase.

    PubMed

    Wang, Yang; Desai, Janish; Zhang, Yonghui; Malwal, Satish R; Shin, Christopher J; Feng, Xinxin; Sun, Hong; Liu, Guizhi; Guo, Rey-Ting; Oldfield, Eric

    2016-10-19

    We synthesized a series of benzoic acids and phenylphosphonic acids and investigated their effects on the growth of Staphylococcus aureus and Bacillus subtilis. One of the most active compounds, 5-fluoro-2-(3-(octyloxy)benzamido)benzoic acid (7, ED50 ∼0.15 μg mL(-1) ) acted synergistically with seven antibiotics known to target bacterial cell-wall biosynthesis (a fractional inhibitory concentration index (FICI) of ∼0.35, on average) but had indifferent effects in combinations with six non-cell-wall biosynthesis inhibitors (average FICI∼1.45). The most active compounds were found to inhibit two enzymes involved in isoprenoid/bacterial cell-wall biosynthesis: undecaprenyl diphosphate synthase (UPPS) and undecaprenyl diphosphate phosphatase (UPPP), but not farnesyl diphosphate synthase, and there were good correlations between bacterial cell growth inhibition, UPPS inhibition, and UPPP inhibition.

  19. Bacterial cell wall assembly: still an attractive antibacterial target.

    PubMed

    Bugg, Timothy D H; Braddick, Darren; Dowson, Christopher G; Roper, David I

    2011-04-01

    The development of new antibacterial agents to combat worsening antibiotic resistance is still a priority area in anti-infectives research, but in the post-genomic era it has been more difficult than expected to identify new lead compounds from high-throughput screening, and very challenging to obtain antibacterial activity for lead compounds. Bacterial cell-wall peptidoglycan biosynthesis is a well-established target for antibacterial chemotherapy, and recent developments enable the entire biosynthetic pathway to be reconstituted for detailed biochemical study and high-throughput inhibitor screening. This review article discusses recent developments in the availability of peptidoglycan biosynthetic intermediates, the identification of lead compounds for both the earlier cytoplasmic steps and the later lipid-linked steps, and the application of new methods such as structure-based drug design, phage display and surface science.

  20. Mechanics of swimming of multi-body bacterial swarmers using non-labeled cell tracking algorithm

    NASA Astrophysics Data System (ADS)

    Phuyal, Kiran; Kim, Min Jun

    2013-01-01

    To better understand the survival strategy of bacterial swarmers and the mechanical advantages offered by the linear chain (head-tail) attachment of the multiple bacterial bodies in an individual swarmer cell at low Reynolds number, a non-labeled cell tracking algorithm was used to quantify the mechanics of multi-body flagellated bacteria, Serratia marcescens, swimming in a motility buffer that originally exhibited the swarming motility. Swarming is a type of bacterial motility that is characterized by the collective coordinated motion of differentiated swarmer cells on a two-dimensional surface such as agar. In this study, the bacterial swarmers with multiple cell bodies (2, 3, and 4) were extracted from the swarm plate, and then tracked individually after resuspending in the motility medium. Their motion was investigated and compared with individual undifferentiated swimming bacterial cells. The swarmers when released into the motility buffer swam actively without tumbles. Their speeds, orientations, and the diffusive properties were studied by tracking the individual cell trajectories over a short distance in two-dimensional field when the cells are swimming at a constant depth in a bulk aqueous environment. At short time scales, the ballistic trajectory was dominant for both multi-body swarmers and undifferentiated cells.

  1. An adaptor hierarchy regulates proteolysis during a bacterial cell cycle

    PubMed Central

    Joshi, Kamal Kishore; Bergé, Matthieu; Radhakrishnan, Sunish Kumar; Viollier, Patrick Henri; Chien, Peter

    2015-01-01

    Summary Regulated protein degradation is essential. The timed destruction of crucial proteins by the ClpXP protease drives cell-cycle progression in the bacterium Caulobacter crescentus. Although ClpXP is active alone, additional factors are inexplicably required for cell-cycle dependent proteolysis. Here, we show that these factors constitute an adaptor hierarchy where different substrates are destroyed based on the degree of adaptor assembly. The hierarchy builds upon priming of ClpXP by the adaptor CpdR, which promotes degradation of one class of substrates and also recruits the adaptor RcdA to degrade a second class of substrates. Adding the PopA adaptor promotes destruction of a third class of substrates, while inhibiting degradation of the second class. We dissect RcdA to generate bespoke adaptors, identifying critical substrate elements needed for RcdA recognition and uncovering additional cell-cycle dependent ClpXP substrates. Our work reveals how hierarchical adaptors and primed proteases orchestrate regulated proteolysis during bacterial cell-cycle progression. PMID:26451486

  2. RNA-seq based transcriptomic analysis of single bacterial cells.

    PubMed

    Wang, Jiangxin; Chen, Lei; Chen, Zixi; Zhang, Weiwen

    2015-11-01

    Gene-expression heterogeneity among individual cells determines the fate of a bacterial population. Here we report the first bacterial single-cell RNA sequencing (RNA-seq), BaSiC RNA-seq, a method integrating RNA isolation, cDNA synthesis and amplification, and RNA-seq analysis of the whole transcriptome of single cyanobacterium Synechocystis sp. PCC 6803 cells which typically contain approximately 5-7 femtogram total RNA per cell. We applied the method to 3 Synechocystis single cells at 24 h and 3 single cells at 72 h after nitrogen-starvation stress treatment, as well as their bulk-cell controls under the same conditions, to determine the heterogeneity upon environmental stress. With 82-98% and 31-48% of all putative Synechocystis genes identified in single cells of 24 and 72 h, respectively, the results demonstrated that the method could achieve good identification of the transcripts in single bacterial cells. In addition, the preliminary results from nitrogen-starved cells also showed a possible increasing gene-expression heterogeneity from 24 h to 72 h after nitrogen starvation stress. Moreover, preliminary analysis of single-cell transcriptomic datasets revealed that genes from the "Mobile elements" functional category have the most significant increase of gene-expression heterogeneity upon stress, which was further confirmed by single-cell RT-qPCR analysis of gene expression in 24 randomly selected cells.

  3. Bacterial sphingophospholipids containing non-hydroxy fatty acid activate murine macrophages via Toll-like receptor 4 and stimulate bacterial clearance.

    PubMed

    Fujiwara, Nagatoshi; Porcelli, Steven A; Naka, Takashi; Yano, Ikuya; Maeda, Shinji; Kuwata, Hirotaka; Akira, Shizuo; Uematsu, Satoshi; Takii, Takemasa; Ogura, Hisashi; Kobayashi, Kazuo

    2013-06-01

    Sphingobacterium spiritivorum has five unusual sphingophospholipids (SPLs). Our previous study determined the complete chemical structures of these SPLs. The compositions of the long-chain bases/fatty acids in the ceramide portion, isoheptadecasphingosine/isopentadecanoate or isoheptadecasphingosine/2-hydroxy isopentadecanoate, are characteristic. The immune response against bacterial lipid components is considered to play important roles in microbial infections. It is reported that several bacterial sphingolipids composed of ceramide are recognized by CD1-restricted T and NKT cells and that a non-peptide antigen is recognized by γδ T cells. In this study, we demonstrated that these bacterial SPLs activated murine bone marrow macrophages (BMMs) via Toll-like receptor (TLR) 4 but not TLR2, although they slightly activated CD1d-restricted NKT and γδT cells. Interestingly, this TLR 4-recognition pathway of bacterial SPLs involves the fatty acid composition of ceramide in addition to the sugar moiety. A non-hydroxy fatty acid composed of ceramide was necessary to activate murine BMMs. The bacterial survival was significantly higher in TLR4-KO mice than in TLR2-KO and wild-type mice. The results indicate that activation of the TLR4-dependent pathway of BMMs by SPLs induced an innate immune response and contributed to bacterial clearance.

  4. Characterization of CCN and IN activity of bacterial isolates collected in Atlanta, GA

    NASA Astrophysics Data System (ADS)

    Purdue, Sara; Waters, Samantha; Karthikeyan, Smruthi; Konstantinidis, Kostas; Nenes, Athanasios

    2016-04-01

    Characterization of CCN activity of bacteria, other than a few select types such as Pseudomonas syringae, is limited, especially when looked at in conjunction with corresponding IN activity. The link between these two points is especially important for bacteria as those that have high CCN activity are likely to form an aqueous phase required for immersion freezing. Given the high ice nucleation temperature of bacterial cells, especially in immersion mode, it is important to characterize the CCN and IN activity of many different bacterial strains. To this effect, we developed a droplet freezing assay (DFA) which consists of an aluminum cold plate, cooled by a continuous flow of an ethylene glycol-water mixture, in order to observe immersion freezing of the collected bacteria. Here, we present the initial results on the CCN and IN activities of bacterial samples we have collected in Atlanta, GA. Bacterial strains were collected and isolated from rainwater samples taken from different storms throughout the year. We then characterized the CCN activity of each strain using a DMT Continuous Flow Streamwise Thermal Gradient CCN Counter by exposing the aerosolized bacteria to supersaturations ranging from 0.05% to 0.6%. Additionally, using our new DFA, we characterized the IN activity of each bacterial strain at temperatures ranging from -20oC to 0oC. The combined CCN and IN activity gives us valuable information on how some uncharacterized bacteria contribute to warm and mixed-phase cloud formation in the atmosphere.

  5. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    PubMed

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  6. Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics.

    PubMed

    Sigler, W V; Crivii, S; Zeyer, J

    2002-11-01

    The succession of bacterial communities inhabiting the forefield of the Dammaglacier (Switzerland) was investigated in soils ranging in successional age from 0 to 100 years since deglaciation. Overall activity per bacterial cell was estimated by the amount of fluorescein diacetate (FDA) hydrolyzed per DAPI-stained cell, and an index of "opportunism" was determined from the ratio of culturable to total cells (C:T ratio). Ribosomal intergenic spacer analysis (RISA) was used to estimate the richness of dominant phylotypes and to construct rank-abundance plots of the dominant populations. We observed a biphasic trend in specific cellular activity, which exhibited minima in the 0- and 100-year-old soils while a maximum activity per cell was reached in the 70-y soil. On average, the C:T ratio showed the same trend as the specific activity, although we observed some differences between the two sampling transects. RISA revealed a decrease in dominant phylotype richness as successional age increased, and rank-abundance plots indicated that the evenness of the dominant bacterial phylotypes significantly decreased with successional age. The combination of specific cellular activity and C:T ratio results suggested the presence of an r-K continuum of bacteria while RISA showed that richness and evenness of dominant phylotypes decreased with successional age. We conclude that bacterial succession in the glacier forefield was a dynamic process with adaptation to the differing stages of succession occurring on both the individual and community levels.

  7. Light scattering application for bacterial cell monitoring during cultivation process

    NASA Astrophysics Data System (ADS)

    Kotsyumbas, Igor Ya.; Kushnir, Igor M.; Bilyy, Rostyslav O.; Yarynovska, Ivanna H.; Getman, Vasyl'B.; Bilyi, Alexander I.

    2007-07-01

    Monitoring of bacterial cell numbers is of great importance not only in microbiological industry but also for control of liquids contamination in the food and pharmaceutical industries. Here we describe a novel low-cost and highly efficient technology for bacterial cell monitoring during cultivation process. The technology incorporates previously developed monitoring device and algorithm of its action. The devise analyses light scattered by suspended bacterial cells. Current stage utilizes monochromatic coherent light and detects amplitudes and durations of scattered light impulses, it does not require any labeling of bacterial cell. The system is calibrated using highly purificated bacteria-free water as standard. Liquid medial are diluted and analyzed by the proposed technology to determine presence of bacteria. Detection is done for a range of particle size from 0.1 to 10 μm, and thus particles size distribution is determined. We analyzed a set of different bacterial suspensions and also their changes in quantity and size distribution during cultivation. Based on the obtained results we conclude that proposed technology can be very effective for bacteria monitoring during cultivation process, providing benefits of low simplicity and low cost of analysis with simultaneous high detection precision.

  8. Nanomechanical Response of Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Parg, Richard; Dutcher, John

    2014-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and our study introduces an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of Pseudomonas aeruginosa PAO1 bacterial cells upon exposure to two different but structurally related antimicrobial peptides: polymyxin B and polymyxin B nonapeptide. We observed a distinctive signature for the loss of integrity of the bacterial cell envelope following exposure to the peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different concentrations, revealed large changes to the viscoelastic parameters that are consistent with differences in the membrane permeabilizing effects of the peptides. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  9. Can dead bacterial cells be defined and are genes expressed after cell death?

    PubMed

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division.

  10. Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm.

    PubMed

    Mariscal, Alberto; Lopez-Gigosos, Rosa M; Carnero-Varo, Manuel; Fernandez-Crehuet, Joaquin

    2009-03-01

    A new, quick method, using the resazurin dye test as a bacterial respiration indicator, has been developed to assay the antibacterial activity of various substances used as disinfectants against bacterial biofilm growth on clinical devices. Resazurin was used to measure the presence of active biofilm bacteria, after adding disinfectant, in relation to a standard curve generated from inocula in suspension of the same organism used to grow the biofilm. The biofilm was quantified indirectly by measuring the fluorescent, water-soluble resorufin product produced when resazurin is reduced by reactions associated with respiration. Four products used as disinfectants and the biofilm growth of five bacterial species on carriers made of materials commonly found in clinical devices were studied. Under test conditions, chlorhexidine, NaOCl, ethanol, and Perasafe at concentrations of 0.2, 0.01, 350, and 0.16 mg/ml, respectively, all produced 5-log reductions in biofilm cell numbers on the three different carriers. The redox-driven test depends on bacterial catabolism, for which reason resazurin reduction produces an analytic signal of the bacterial activity in whole cells, and therefore could be used for determining disinfectant efficacy in an assay based on the metabolic activity of microorganisms grown as biofilm or in suspension.

  11. Probiotic Activity of a Bacterial Strain Isolated from Ancient Permafrost Against Salmonella Infection in Mice.

    PubMed

    Fursova, O; Potapov, V; Brouchkov, A; Pogorelko, G; Griva, G; Fursova, N; Ignatov, S

    2012-09-01

    Bacillus cereus strain F, collected from relict permafrost located in Siberia, was analyzed for probiotic activity in the mouse Salmonella enterica model. Viable bacterial cells were found in frozen soils taken at Mammoth Mountain in Yakutia from a depth below the level of seasonal thawing. Geological data indicated the absence of a thawing within millions of years of deposited soils, which helped to ensure the ancient origin of our sample. According to DNA analysis, bacterial cells collected from the relict permafrost appeared to be B. cereus strain F. The morphology of these bacteria was analyzed using atomic force microscopy. B. cereus strain F was assessed as a nonpathogenic bacterium by evaluation of its pathogenicity. A S. enterica model is described in mice after per oral inoculation and serves as a model for the human carrier state. Using this model, probiotic activity by the bacterial strain isolated from the ancient permafrost has been shown against Salmonella infection in mice.

  12. Immobilization of motile bacterial cells via dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Nyamjav, Dorjderem; Rozhok, Sergey; Holz, Richard C.

    2010-06-01

    A strategy to bind bacterial cells to surfaces in a directed fashion via dip-pen nanolithography (DPN) is presented. Cellular attachment to pre-designed DPN generated microarrays was found to be dependent on the shape and size of the surface feature. While this observation is likely due in part to a dense, well formed mercaptohexadecanoic acid (MHA) monolayer generated via DPN, it may also simply be due to the physical shape of the surface structure. Motile Pseudomonas aeruginosa bacterial cells were observed to bind to DPN generated mercaptohexadecanoic acid/poly-L-lysine (MHA/PLL) line patterns, 'blocks' made up of eight lines with 100 nm spacings, with ~ 80% occupancy. Cellular binding to these 'block' surface structures occurs via an electrostatic interaction between negatively charged groups on the bacterial cell surface and positively charged poly-L-lysine (PLL) assemblies. These data indicate that these DPN generated 'block' surface structures provide a promising footprint for the attachment of motile bacterial cells that may find utility in cell based biosensors or single cell studies.

  13. Myeloid-Derived Suppressor Cells in Bacterial Infections

    PubMed Central

    Ost, Michael; Singh, Anurag; Peschel, Andreas; Mehling, Roman; Rieber, Nikolaus; Hartl, Dominik

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics. PMID:27066459

  14. Selection of peptidoglycan-specific aptamers for bacterial cells identification.

    PubMed

    Ferreira, Iêda Mendes; de Souza Lacerda, Camila Maria; de Faria, Lígia Santana; Corrêa, Cristiane Rodrigues; de Andrade, Antero Silva Ribeiro

    2014-12-01

    Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with (32)P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.

  15. Collective chemotaxis and segregation of active bacterial colonies.

    PubMed

    Ben Amar, M

    2016-02-18

    Still recently, bacterial fluid suspensions have motivated a lot of works, both experimental and theoretical, with the objective to understand their collective dynamics from universal and simple rules. Since some species are active, most of these works concern the strong interactions that these bacteria exert on a forced flow leading to instabilities, chaos and turbulence. Here, we investigate the self-organization of expanding bacterial colonies under chemotaxis, proliferation and eventually active-reaction. We propose a simple model to understand and quantify the physical properties of these living organisms which either give cohesion or on the contrary dispersion to the colony. Taking into account the diffusion and capture of morphogens complicates the model since it induces a bacterial density gradient coupled to bacterial density fluctuations and dynamics. Nevertheless under some specific conditions, it is possible to investigate the pattern formation as a usual viscous fingering instability. This explains the similarity and differences of patterns according to the physical bacterial suspension properties and explain the factors which favor compactness or branching.

  16. Collective chemotaxis and segregation of active bacterial colonies

    PubMed Central

    Amar, M. Ben

    2016-01-01

    Still recently, bacterial fluid suspensions have motivated a lot of works, both experimental and theoretical, with the objective to understand their collective dynamics from universal and simple rules. Since some species are active, most of these works concern the strong interactions that these bacteria exert on a forced flow leading to instabilities, chaos and turbulence. Here, we investigate the self-organization of expanding bacterial colonies under chemotaxis, proliferation and eventually active-reaction. We propose a simple model to understand and quantify the physical properties of these living organisms which either give cohesion or on the contrary dispersion to the colony. Taking into account the diffusion and capture of morphogens complicates the model since it induces a bacterial density gradient coupled to bacterial density fluctuations and dynamics. Nevertheless under some specific conditions, it is possible to investigate the pattern formation as a usual viscous fingering instability. This explains the similarity and differences of patterns according to the physical bacterial suspension properties and explain the factors which favor compactness or branching. PMID:26888040

  17. The active bacterial community in a pristine confined aquifer

    NASA Astrophysics Data System (ADS)

    Flynn, Theodore M.; Sanford, Robert A.; Santo Domingo, Jorge W.; Ashbolt, Nicholas J.; Levine, Audrey D.; Bethke, Craig M.

    2012-09-01

    This study of the active bacteria residing in a pristine confined aquifer provides unexpected insights into the ecology of iron-reducing and sulfate-reducing bacteria in the subsurface. At 18 wells, we trapped the microbes that attached to aquifer sediment and used molecular techniques to examine the bacterial populations. We used multivariate statistics to compare the composition of bacterial communities among the wells with respect to the chemistry of the groundwater. We found groundwater at each well was considerably richer in ferrous iron than sulfide, indicating iron-reducing bacteria should, by established criteria, dominate the sulfate reducers. Our results show, however, that areas where groundwater contains more than a negligible amount of sulfate (>0.03 mM), populations related to sulfate reducers of the generaDesulfobacter and Desulfobulbus were of nearly equal abundance with putative iron reducers related to Geobacter, Geothrix, and Desulfuromonas. Whereas sulfate is a key discriminant of bacterial community structure, we observed no statistical relationship between the distribution of bacterial populations in this aquifer and the concentration of either ferrous iron or dissolved sulfide. These results call into question the validity of using the relative concentration of these two ions to predict the nature of bacterial activity in an aquifer. Sulfate reducers and iron reducers do not appear to be segregated into discrete zones in the aquifer, as would be predicted by the theory of competitive exclusion. Instead, we find the two groups coexist in the subsurface in what we suggest is a mutualistic relationship.

  18. Collective chemotaxis and segregation of active bacterial colonies

    NASA Astrophysics Data System (ADS)

    Amar, M. Ben

    2016-02-01

    Still recently, bacterial fluid suspensions have motivated a lot of works, both experimental and theoretical, with the objective to understand their collective dynamics from universal and simple rules. Since some species are active, most of these works concern the strong interactions that these bacteria exert on a forced flow leading to instabilities, chaos and turbulence. Here, we investigate the self-organization of expanding bacterial colonies under chemotaxis, proliferation and eventually active-reaction. We propose a simple model to understand and quantify the physical properties of these living organisms which either give cohesion or on the contrary dispersion to the colony. Taking into account the diffusion and capture of morphogens complicates the model since it induces a bacterial density gradient coupled to bacterial density fluctuations and dynamics. Nevertheless under some specific conditions, it is possible to investigate the pattern formation as a usual viscous fingering instability. This explains the similarity and differences of patterns according to the physical bacterial suspension properties and explain the factors which favor compactness or branching.

  19. Regulation of bacterial metabolic activity by dissolved organic carbon and viruses

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Jing, Hongmei; Sun, Mingming; Harrison, Paul J.; Liu, Hongbin

    2013-12-01

    regulation of bacterial metabolic activity by viruses and dissolved organic carbon (DOC) was examined using natural microbial communities in three treatments (active viruses, inactive viruses, and virus free) at two contrasting coastal sites (pristine vs. eutrophic) with substantial differences in environmental conditions during the wet and dry seasons. Our results showed that net growth rates and production of bacterioplankton were reduced primarily by viruses via repressing metabolically active bacteria with high nucleic acid (HNA) content which had a high capacity for incorporating carbon, while bacterial respiration was primarily regulated by DOC lability. The quality of organic matter played a more important role in regulating bacterial growth efficiency (BGE) than the supply of organic matter in eutrophic coastal waters. The lack of HMW-DOC and high carbon demand in the virus-free treatment resulted in a significant increase in cell-specific bacterial respiration, which was responsible for the lowest bacterial growth efficiency among the three treatments. The presence of viruses did not necessarily lower bacterial growth efficiency since virus-induced mortality alleviated bacterial carbon demand and enhanced carbon cycling. Virus-induced mortality was greater in relatively pristine waters than eutrophic waters, likely since the high supply of substrates alleviated the pressure of viral infection, through extracellular proteases produced by bacteria, which might result in the hydrolytic destruction or modification of viral capsids. An important implication of our results was that the input of riverine DOC and nutrients improved bacterial metabolic activity by alleviating virus-induced mortality of bacteria in estuarine and coastal waters.

  20. Anti-bacterial activity of Achatina CRP and its mechanism of action.

    PubMed

    Mukherjee, Sandip; Barman, Soma; Mandal, Narayan Chandra; Bhattacharya, Shelley

    2014-07-01

    The physiological role of C-reactive protein (CRP), the classical acute-phase protein, is not well documented, despite many reports on biological effects of CRP in vitro and in model systems in vivo. It has been suggested that CRP protects mice against lethal toxicity of bacterial infections by implementing immunological responses. In Achatina fulica CRP is a constitutive multifunctional protein in haemolymph and considered responsible for their survival in the environment for millions of years. The efficacy of Achatina CRP (ACRP) was tested against both Salmonella typhimurium and Bacillus subtilis infections in mice where endogenous CRP level is negligible even after inflammatory stimulus. Further, growth curves of the bacteria revealed that ACRP (50 microg/mL) is bacteriostatic against gram negative salmonellae and bactericidal against gram positive bacilli. ACRP induced energy crises in bacterial cells, inhibited key carbohydrate metabolic enzymes such as phosphofructokinase in glycolysis, isocitrate dehydrogenase in TCA cycle, isocitrate lyase in glyoxylate cycle and fructose-1,6-bisphosphatase in gluconeogenesis. ACRP disturbed the homeostasis of cellular redox potential as well as reduced glutathione status, which is accompanied by an enhanced rate of lipid peroxidation. Annexin V-Cy3/CFDA dual staining clearly showed ACRP induced apoptosis-like death in bacterial cell population. Moreover, immunoblot analyses also indicated apoptosis-like death in ACRP treated bacterial cells, where activation of poly (ADP-ribose) polymerase-1 (PARP) and caspase-3 was noteworthy. It is concluded that metabolic impairment by ACRP in bacterial cells is primarily due to generation of reactive oxygen species and ACRP induced anti-bacterial effect is mediated by metabolic impairment leading to apoptosis-like death in bacterial cells.

  1. Regulation of bacterial cell polarity by small GTPases.

    PubMed

    Keilberg, Daniela; Søgaard-Andersen, Lotte

    2014-04-01

    Bacteria are polarized with many proteins localizing dynamically to specific subcellular sites. Two GTPase families have important functions in the regulation of bacterial cell polarity, FlhF homologues and small GTPases of the Ras superfamily. The latter consist of only a G domain and are widespread in bacteria. The rod-shaped Myxococcus xanthus cells have two motility systems, one for gliding and one that depends on type IV pili. The function of both systems hinges on proteins that localize asymmetrically to the cell poles. During cellular reversals, these asymmetrically localized proteins are released from their respective poles and then bind to the opposite pole, resulting in an inversion of cell polarity. Here, we review genetic, cell biological, and biochemical analyses that identified two modules containing small Ras-like GTPases that regulate the dynamic polarity of motility proteins. The GTPase SofG interacts directly with the bactofilin cytoskeletal protein BacP to ensure polar localization of type IV pili proteins. In the second module, the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB, and the response regulator RomR localize asymmetrically to the poles and sort dynamically localized motility proteins to the poles. During reversals, MglA, MglB, and RomR switch poles, in that way inducing the relocation of dynamically localized motility proteins. Structural analyses have demonstrated that MglB has a Roadblock/LC7 fold, the central β2 strand in MglA undergoes an unusual screw-type movement upon GTP binding, MglA contains an intrinsic Arg finger required for GTP hydrolysis, and MglA and MglB form an unusual G protein/GAP complex with a 1:2 stoichiometry.

  2. Nanomechanical Response of Bacterial Cells to Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Parg, Richard; Dutcher, John

    2015-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and we have developed an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of bacterial cells upon exposure to antimicrobial peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different antimicrobial concentrations, revealed large changes to the viscoelastic parameters including a distinctive signature for the loss of integrity of the bacterial cell envelope. Our previous experiments have focused on Pseudomonas aeruginosaPAO1 bacterial cells in Milli-Q water, for which the cells can withstand the large osmotic pressure. In the present study we have focused on performing the measurements in buffer to obtain more biologically relevant results. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  3. Phenotypic Landscape of a Bacterial Cell

    PubMed Central

    Nichols, Robert J.; Sen, Saunak; Choo, Yoe Jin; Beltrao, Pedro; Zietek, Matylda; Chaba, Rachna; Lee, Sueyoung; Kazmierczak, Krystyna M.; Lee, Karis J.; Wong, Angela; Shales, Michael; Lovett, Susan; Winkler, Malcolm E.; Krogan, Nevan J.; Typas, Athanasios; Gross, Carol A.

    2011-01-01

    Summary The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs. PMID:21185072

  4. Phenotypic landscape of a bacterial cell.

    PubMed

    Nichols, Robert J; Sen, Saunak; Choo, Yoe Jin; Beltrao, Pedro; Zietek, Matylda; Chaba, Rachna; Lee, Sueyoung; Kazmierczak, Krystyna M; Lee, Karis J; Wong, Angela; Shales, Michael; Lovett, Susan; Winkler, Malcolm E; Krogan, Nevan J; Typas, Athanasios; Gross, Carol A

    2011-01-07

    The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.

  5. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    PubMed

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis.

  6. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    PubMed

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification.

  7. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol‐dependent cytolysins

    PubMed Central

    Malet, Julien Karim

    2016-01-01

    Abstract Bacterial pathogens can interfere during infection with host cell organelles, such as mitochondria, the endoplasmic reticulum‐Golgi system or nuclei. As important cellular functions are often compartmentalized in these organelles, their targeting allows pathogens to manipulate key host functions during infection. Here, we identify lysosomes as a new class of organelles targeted by the pathogenic bacterium Listeria monocytogenes. We demonstrate that extracellular Listeria, via secretion of the pore‐forming toxin listeriolysin O, alters lysosomal integrity in epithelial cells but not in macrophages. Listeriolysin O induces lysosomal membrane permeabilization and release of lysosomal content, such as cathepsins proteases, which remain transiently active in the host cytosol. We furthermore show that other bacterial pore‐forming toxins, such as perfringolysin O and pneumolysin, also induce lysosomes alteration. Together, our data unveil a novel activity of bacterial cholesterol‐dependent cytolysins. PMID:27739224

  8. Improved immunoadsorption procedure with anion-exchange bacterial cell columns.

    PubMed

    McKinney, R M; Thacker, L; Wong, M C; Hebert, G A

    1978-01-01

    Bacterial cell columns for immunoadsorption were prepared with Streptococcus cells and triethylaminoethyl cellulose (Cellex-T) matrix material as a model system. Good column flow properties and satisfactory retention of the cells were obtained with ratios as high as 2 ml of packed cells/3 g dry weight of cellulose. Anion-exchange fractionation of whole serum by the Cellex-T was prevented by using 0.25 M NaCl in the developing buffer. Antibodies were adsorbed directly from whole serum and recovered in high yield by desorption at pH 2.3. Pre-exposing bacterial cells to formalin and washing them with acetone was necessary to ensure that they remained on the columns. One strain of Streptococcus salivarius (SS 908) was satisfactorily retained on a column only after cells were labeled with fluorescein isothiocyanate and washed with acetone. The means by which Cellex-T retains bacterial cells appears to be a combination of electronic attraction and physical entrapment.

  9. Micro-magnet arrays for specific single bacterial cell positioning

    NASA Astrophysics Data System (ADS)

    Pivetal, Jérémy; Royet, David; Ciuta, Georgeta; Frenea-Robin, Marie; Haddour, Naoufel; Dempsey, Nora M.; Dumas-Bouchiat, Frédéric; Simonet, Pascal

    2015-04-01

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications.

  10. Cationic lipid enhances assembly of bacterial cell division protein FtsZ: a possible role of bacterial membrane in FtsZ assembly dynamics.

    PubMed

    Kuchibhatla, Anuradha; Bellare, Jayesh; Panda, Dulal

    2011-11-01

    The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.

  11. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections.

    PubMed

    Misas-Villamil, Johana C; van der Burgh, Aranka M; Grosse-Holz, Friederike; Bach-Pages, Marcel; Kovács, Judit; Kaschani, Farnusch; Schilasky, Sören; Emon, Asif Emran Khan; Ruben, Mark; Kaiser, Markus; Overkleeft, Hermen S; van der Hoorn, Renier A L

    2017-01-24

    The proteasome is a nuclear - cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveals that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 (PtoDC3000(ΔhQ)) whilst the activity profile of the β1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species. This article is protected by copyright. All rights reserved.

  12. Metatranscriptomics reveals overall active bacterial composition in caries lesions

    PubMed Central

    Simón-Soro, Aurea; Guillen-Navarro, Miriam; Mira, Alex

    2014-01-01

    Background Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design Non-cavitated enamel caries lesions (n=15) and dentin caries lesions samples (n=12) were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci detected confirms that they

  13. GTPases in bacterial cell polarity and signalling.

    PubMed

    Bulyha, Iryna; Hot, Edina; Huntley, Stuart; Søgaard-Andersen, Lotte

    2011-12-01

    In bacteria, large G domain GTPases have well-established functions in translation, protein translocation, tRNA modification and ribosome assembly. In addition, bacteria also contain small Ras-like GTPases consisting of stand-alone G domains. Recent data have revealed that small Ras-like GTPases as well as large G domain GTPases in bacteria function in the regulation of cell polarity, signal transduction and possibly also in cell division. The small Ras-like GTPase MglA together with its cognate GAP MglB regulates cell polarity in Myxococcus xanthus, and the small Ras-like GTPase CvnD9 in Streptomyces coelicolor is involved in signal transduction. Similarly, the large GTPase FlhF together with the ATPase FlhG regulates the localization and number of flagella in polarly flagellated bacteria. Moreover, large dynamin-like GTPases in bacteria may function in cell division. Thus, the function of GTPases in bacteria may be as pervasive as in eukaryotes.

  14. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    PubMed

    Daigneault, Marc; De Silva, Thushan I; Bewley, Martin A; Preston, Julie A; Marriott, Helen M; Mitchell, Andrea M; Mitchell, Timothy J; Read, Robert C; Whyte, Moira K B; Dockrell, David H

    2012-01-01

    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease.

  15. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  16. Bacterial cell surface structures in Yersinia enterocolitica.

    PubMed

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  17. Bacterial cell division and the septal ring.

    PubMed

    Weiss, David S

    2004-11-01

    Cell division in bacteria is mediated by the septal ring, a collection of about a dozen (known) proteins that localize to the division site, where they direct assembly of the division septum. The foundation of the septal ring is a polymer of the tubulin-like protein FtsZ. Recently, experiments using fluorescence recovery after photobleaching have revealed that the Z ring is extremely dynamic. FtsZ subunits exchange in and out of the ring on a time scale of seconds even while the overall morphology of the ring appears static. These findings, together with in vitro studies of purified FtsZ, suggest that the rate-limiting step in turnover of FtsZ polymers is GTP hydrolysis. Another component of the septal ring, FtsK, is involved in coordinating chromosome segregation with cell division. Recent studies have revealed that FtsK is a DNA translocase that facilitates decatenation of sister chromosomes by TopIV and resolution of chromosome dimers by the XerCD recombinase. Finally, two murein hydrolases, AmiC and EnvC, have been shown to localize to the septal ring of Escherichia coli, where they play an important role in separation of daughter cells.

  18. Determining the bacterial cell biology of Planctomycetes.

    PubMed

    Boedeker, Christian; Schüler, Margarete; Reintjes, Greta; Jeske, Olga; van Teeseling, Muriel C F; Jogler, Mareike; Rast, Patrick; Borchert, Daniela; Devos, Damien P; Kucklick, Martin; Schaffer, Miroslava; Kolter, Roberto; van Niftrik, Laura; Engelmann, Susanne; Amann, Rudolf; Rohde, Manfred; Engelhardt, Harald; Jogler, Christian

    2017-04-10

    Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we develop methods for expression of fluorescent proteins and for gene deletion in a model planctomycete, Planctopirus limnophila, to analyse its cell organization in detail. Super-resolution light microscopy of mutants, cryo-electron tomography, bioinformatic predictions and proteomic analyses support an altered Gram-negative cell plan for Planctomycetes, including a defined outer membrane, a periplasmic space that can be greatly enlarged and convoluted, and an energized cytoplasmic membrane. These conclusions are further supported by experiments performed with two other Planctomycetes, Gemmata obscuriglobus and Rhodopirellula baltica. We also provide experimental evidence that is inconsistent with endocytosis-like macromolecule uptake; instead, extracellular macromolecules can be taken up and accumulate in the periplasmic space through unclear mechanisms.

  19. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    PubMed

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-06-07

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  20. Antibiofilm activity of Dendrophthoe falcata against different bacterial pathogens.

    PubMed

    Karthikeyan, Alagarsamy; Rameshkumar, Ramakrishnan; Sivakumar, Nallusamy; Al Amri, Issa S; Karutha Pandian, Shunmugiah; Ramesh, Manikandan

    2012-12-01

    Dendrophthoe falcata is a hemiparasitic plant commonly used for ailments such as ulcers, asthma, impotence, paralysis, skin diseases, menstrual troubles, pulmonary tuberculosis, and wounds. In this context, the validations of the traditional claim that the leaf extract of D. falcata possesses antibiofilm and anti-quorum sensing activity against different bacterial pathogens were assessed. The bacterial biofilms were quantified by crystal violet staining. Among the 17 bacterial pathogens screened, the methanolic fraction of the leaf extract clearly demonstrated antibiofilm activity for Proteus mirabilis, Vibrio vulnificus, Aeromonas hydrophila, Shigella sonnei, Chromobacterium violaceum ATCC 12472, Vibrio parahaemolyticus, Vibrio harveyi, Vibrio alginolyticus, Vibrio cholerae, and Proteus vulgaris. At biofilm inhibitory concentrations, biofilm formation was reduced by up to 70-90 %. Furthermore, the potential quorum-sensing activity of the leaf extract was tested by agar well diffusion using Chromobacterium violaceum (ATCC 12472 & CV O26) reporter strains. The inhibition of violacein production may be due to direct or indirect interference on QS by active constituents or the interactive effect of different phytocompounds present in the extracts. This is the first report on antibiofilm and QS activity of D. falcata leaf extracts, signifying the scope for development of complementary medicine for biofilm-associated infections.

  1. How bacterial cells keep ribonucleases under control

    PubMed Central

    Deutscher, Murray P.

    2015-01-01

    Ribonucleases (RNases) play an essential role in essentially every aspect of RNA metabolism, but they also can be destructive enzymes that need to be regulated to avoid unwanted degradation of RNA molecules. As a consequence, cells have evolved multiple strategies to protect RNAs against RNase action. They also utilize a variety of mechanisms to regulate the RNases themselves. These include post-transcriptional regulation, post-translational modification, trans-acting inhibitors, cellular localization, as well as others that are less well studied. In this review, I will briefly discuss how RNA molecules are protected and then examine in detail our current understanding of the mechanisms known to regulate individual RNases. PMID:25878039

  2. Subdiffraction localization of a nanostructured photosensitizer in bacterial cells

    PubMed Central

    Delcanale, Pietro; Pennacchietti, Francesca; Maestrini, Giulio; Rodríguez-Amigo, Beatriz; Bianchini, Paolo; Diaspro, Alberto; Iagatti, Alessandro; Patrizi, Barbara; Foggi, Paolo; Agut, Monserrat; Nonell, Santi; Abbruzzetti, Stefania; Viappiani, Cristiano

    2015-01-01

    Antibacterial treatments based on photosensitized production of reactive oxygen species is a promising approach to address local microbial infections. Given the small size of bacterial cells, identification of the sites of binding of the photosensitizing molecules is a difficult issue to address with conventional microscopy. We show that the excited state properties of the naturally occurring photosensitizer hypericin can be exploited to perform STED microscopy on bacteria incubated with the complex between hypericin and apomyoglobin, a self-assembled nanostructure that confers very good bioavailability to the photosensitizer. Hypericin fluorescence is mostly localized at the bacterial wall, and accumulates at the polar regions of the cell and at sites of cell wall growth. While these features are shared by Gram-negative and Gram-positive bacteria, only the latter are effectively photoinactivated by light exposure. PMID:26494535

  3. Subdiffraction localization of a nanostructured photosensitizer in bacterial cells.

    PubMed

    Delcanale, Pietro; Pennacchietti, Francesca; Maestrini, Giulio; Rodríguez-Amigo, Beatriz; Bianchini, Paolo; Diaspro, Alberto; Iagatti, Alessandro; Patrizi, Barbara; Foggi, Paolo; Agut, Monserrat; Nonell, Santi; Abbruzzetti, Stefania; Viappiani, Cristiano

    2015-10-23

    Antibacterial treatments based on photosensitized production of reactive oxygen species is a promising approach to address local microbial infections. Given the small size of bacterial cells, identification of the sites of binding of the photosensitizing molecules is a difficult issue to address with conventional microscopy. We show that the excited state properties of the naturally occurring photosensitizer hypericin can be exploited to perform STED microscopy on bacteria incubated with the complex between hypericin and apomyoglobin, a self-assembled nanostructure that confers very good bioavailability to the photosensitizer. Hypericin fluorescence is mostly localized at the bacterial wall, and accumulates at the polar regions of the cell and at sites of cell wall growth. While these features are shared by Gram-negative and Gram-positive bacteria, only the latter are effectively photoinactivated by light exposure.

  4. Resistance to antibiotics targeted to the bacterial cell wall.

    PubMed

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-03-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.

  5. Liberation of serotonin from rabbit blood platelets by bacterial cell walls and related compounds.

    PubMed Central

    Harada, K; Kotani, S; Takada, H; Tsujimoto, M; Hirachi, Y; Kusumoto, S; Shiba, T; Kawata, S; Yokogawa, K; Nishimura, H; Kitaura, T; Nakajima, T

    1982-01-01

    A study was made on the activity of various bacterial cell walls and peptidoglycans to liberate serotonin from rabbit blood platelets. All of the test cell walls or peptidoglycans prepared from 27 strains of 21 bacterial species were shown to cause a marked release of serotonin, regardless of differences in types of peptidoglycan and non-peptidoglycan moieties and in some biological properties. The assay made with the water-soluble "digests" of Staphylococcus epidermidis cell wall peptidoglycans, which were prepared by use of appropriate enzymes, revealed that a polymer of peptidoglycan subunits (a disaccharide-stempeptide) was definitely active in the release of serotonin, but a structural unit monomer was inactive. Among a variety of synthetic muramylpeptides and their 6-O-acyl derivatives, only 6-O-(3-hydroxy-2-docosylhexacosanoyl)-N-acetylmuramyl-L-alanyl-D-isoglutaminyl- L-lysyl-D-alanine was found to hold a strong serotonin-liberating activity. Images PMID:7129634

  6. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  7. Bacterial and Fungal Activities of Northern Peatland Ecosystems

    NASA Astrophysics Data System (ADS)

    Winsborough, C.; Basiliko, N.

    2009-05-01

    High latitude peatlands play a unique role in global climate through the long-term net sequestration of atmospheric carbon dioxide in organic soils. Fungi and bacteria dominate microfloral communities in soils and typically are responsible for the majority of direct organic matter decomposition and mineralization, yet each of these groups of microorganisms, with physiological and metabolic differences, potentially plays unique roles in nutrient and carbon cycling in soils. The ability to characterize fungal v bacterial decomposition in peatlands is therefore exceptionally important to understand and predict peatland carbon dynamics, particularly under changing environmental conditions. Here, we demonstrate for the first time, the potential of applying the glucose induced selective inhibition technique, previously used in partitioning bacterial and fungal respiration in forest and agricultural systems, to peatland soils. Using 3 ecologically and hydrologically diverse and spatially dispersed peatlands ranging from a bog to a rich fen, we demonstrated a slight bacterial dominance in a bog and a poor fen both with acidic and primarily Sphagnum peat and a strong bacterial dominance in a near pH neutral, wetter rich fen with sedge peat. This is interesting, as it was expected that microbial respiration in the surface peat profile would be dominated by fungi owing to the acidic and better drained conditions, as is the case with upland riparian forest soils. Furthermore, the maximum non-target inhibition was only 20%, indicating that the SI approach in organic wetland soils works as well as, or better than in, many upland agricultural and forest soils. As the overall importance of fungal and bacterial activities in peatland carbon cycling is still not fully understood, further applications of this technique can develop our understanding of microbial activity in peatland soils.

  8. Bacterial cell division: experimental and theoretical approaches to the divisome.

    PubMed

    Broughton, Claire E; Roper, David I; Van Den Berg, Hugo A; Rodger, Alison

    2015-01-01

    Cell division is a key event in the bacterial life cycle. It involves constriction at the midcell, so that one cell can give rise to two daughter cells. This constriction is mediated by a ring composed offibrous multimers of the protein FtsZ. However a host of additional factors is involved in the formation and dynamics of this "Z-ring" and this complicated apparatus is collectively known as the "divisome". We review the literature, with an emphasis on mathematical modelling, and show how such theoretical efforts have helped experimentalists to make sense of the at times bewildering data, and plan further experiments.

  9. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells

    NASA Astrophysics Data System (ADS)

    Mejías Carpio, Isis E.; Santos, Catherine M.; Wei, Xin; Rodrigues, Debora F.

    2012-07-01

    It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite ``encapsulated'' the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields.It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl

  10. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.

    PubMed

    Chae, Kyu-Jung; Choi, Mi-Jin; Lee, Jin-Wook; Kim, Kyoung-Yeol; Kim, In S

    2009-07-01

    Four microbial fuel cells (MFCs) were inoculated with anaerobic sludge and fed four different substrates for over one year. The Coulombic efficiency (CE) and power output varied with different substrates, while the bacterial viability was similar. Acetate fed-MFC showed the highest CE (72.3%), followed by butyrate (43.0%), propionate (36.0%) and glucose (15.0%). Glucose resulted in the lowest CE because of its fermentable nature implying its consumption by diverse non-electricity-generating bacteria. 16S rDNA sequencing results indicated phylogenetic diversity in the communities of all anode biofilms, and there was no single dominant bacterial species. A relative abundance of beta-Proteobacteria but an absence of gamma-Proteobacteria was observed in all MFCs except for propionate-fed system in which Firmicutes dominating. The glucose-fed-MFC showed the widest community diversity, resulting in the rapid generation of current without lag time when different substrates were suddenly fed. Geobacter-like species with the most representative Geobactersulfurreducens PCA(T) were integral members of the bacterial community in all MFCs except for the propionate-fed system.

  11. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens

    PubMed Central

    Thangamani, Shankar; Mohammad, Haroon; Abushahba, Mostafa F. N.; Sobreira, Tiago J. P.; Hedrick, Victoria E.; Paul, Lake N.; Seleem, Mohamed N.

    2016-01-01

    Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin’s antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin’s ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections. PMID:26936660

  12. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen

    PubMed Central

    Brown, Andrew S.; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L.; van Driel, Ian R.

    2016-01-01

    Legionella pneumophila is the causative agent of Legionnaires’ disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity. PMID:27300652

  13. Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers.

    PubMed

    Yasuda, Masashi; Nagata, Syouya; Yamane, Satoshi; Kunikata, Chinami; Kida, Yutaka; Kuwano, Koichi; Suezawa, Chigusa; Okuda, Jun

    2017-01-01

    To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function.

  14. Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers

    PubMed Central

    Yasuda, Masashi; Nagata, Syouya; Yamane, Satoshi; Kunikata, Chinami; Kida, Yutaka; Kuwano, Koichi; Suezawa, Chigusa; Okuda, Jun

    2017-01-01

    To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function. PMID:28046014

  15. ULTRASOUND INCREASES THE RATE OF BACTERIAL CELL GROWTH

    PubMed Central

    Pitt, William G.; Ross, S. Aaron

    2006-01-01

    Ultrasound was employed to increase the growth rate of bacterial cells attached to surfaces. Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli cells adhered to and grew on a polyethylene surface in the presence of ultrasound. It was found that low frequency ultrasound (70 kHz) of low acoustic intensity (<2 W/cm2) increased the growth rate of the cells compared to growth without ultrasound. However, at high intensity levels, cells were partially removed from the surface. Ultrasound also enhanced planktonic growth of S. epidermidis and other planktonic bacteria. It is hypothesized that ultrasound increases the rate of transport of oxygen and nutrients to the cells and increases the rate of transport of waste products away from the cells, thus enhancing their growth. PMID:12790676

  16. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells.

    PubMed

    Chen, H; Ouyang, W; Jones, M; Haque, T; Lawuyi, B; Prakash, S

    2005-08-01

    Oral administration of microcapsules containing live bacterial cells has potential as an alternative therapy for several diseases. This article evaluates the suitability of the alginate-poly-L-lysine-alginate (APA) microcapsules for oral delivery of live bacterial cells, in-vitro, using a dynamic simulated human gastro-intestinal (GI) model. Results showed that the APA microcapsules were morphologically stable in the simulated stomach conditions, but did not retain their structural integrity after a 3-day exposure in simulated human GI media. The microbial populations of the tested bacterial cells and the activities of the tested enzymes in the simulated human GI suspension were not substantially altered by the presence of the APA microcapsules, suggesting that there were no significant adverse effects of oral administration of the APA microcapsules on the flora of the human gastrointestinal tract. When the APA microcapsules containing Lactobacillus plantarum 80 (LP80) were challenged in the simulated gastric medium (pH = 2.0), 80.0% of the encapsulated cells remained viable after a 5-min incubation; however, the viability decreased considerably (8.3%) after 15 min and dropped to 2.6% after 30 min and lower than 0.2% after 60 min, indicating the limitations of the currently obtainable APA membrane for oral delivery of live bacteria. Further in-vivo studies are required before conclusions can be made concerning the inadequacy of APA microcapsules for oral delivery of live bacterial cells.

  17. Benzodioxane-benzamides as new bacterial cell division inhibitors.

    PubMed

    Chiodini, Giuseppe; Pallavicini, Marco; Zanotto, Carlo; Bissa, Massimiliano; Radaelli, Antonia; Straniero, Valentina; Bolchi, Cristiano; Fumagalli, Laura; Ruggeri, Paola; De Giuli Morghen, Carlo; Valoti, Ermanno

    2015-01-07

    A SAR study was performed on 3-substituted 2,6-difluorobenzamides, known inhibitors of the essential bacterial cell division protein FtsZ, through a series of modifications first of 2,6-difluoro-3-nonyloxybenzamide and then of its 3-pyridothiazolylmethoxy analogue PC190723. The study led to the identification of chiral 2,6-difluorobenzamides bearing 1,4-benzodioxane-2-methyl residue at the 3-position as potent antistaphylococcal compounds.

  18. Sporulation, bacterial cell envelopes and the origin of life

    PubMed Central

    Tocheva, Elitza I.; Ortega, Davi R.; Jensen, Grant J.

    2016-01-01

    Electron cryotomography (ECT) enables the 3D reconstruction of intact cells in a near-native state. Images produced by ECT have led to the proposal that an ancient sporulation-like event gave rise to the second membrane in diderm bacteria. Tomograms of sporulating monoderm and diderm bacterial cells show how sporulation can lead to the generation of diderm cells. Tomograms of Gram-negative and Gram-positive cell walls and purified sacculi suggest that they are more closely related than previously thought and support the hypothesis that they share a common origin. Mapping the distribution of cell envelope architectures onto a recent phylogenetic tree of life indicates that the diderm cell plan, and therefore the sporulation-like event that gave rise to it, must be very ancient. One explanation for this model is that during the cataclysmic transitions of the early Earth, cellular evolution may have gone through a bottleneck in which only spores survived, which implies that the last bacterial common ancestor was a spore. PMID:28232669

  19. Nanoscopy of bacterial cells immobilized by holographic optical tweezers

    PubMed Central

    Diekmann, Robin; Wolfson, Deanna L.; Spahn, Christoph; Heilemann, Mike; Schüttpelz, Mark; Huser, Thomas

    2016-01-01

    Imaging non-adherent cells by super-resolution far-field fluorescence microscopy is currently not possible because of their rapid movement while in suspension. Holographic optical tweezers (HOTs) enable the ability to freely control the number and position of optical traps, thus facilitating the unrestricted manipulation of cells in a volume around the focal plane. Here we show that immobilizing non-adherent cells by optical tweezers is sufficient to achieve optical resolution well below the diffraction limit using localization microscopy. Individual cells can be oriented arbitrarily but preferably either horizontally or vertically relative to the microscope's image plane, enabling access to sample sections that are impossible to achieve with conventional sample preparation and immobilization. This opens up new opportunities to super-resolve the nanoscale organization of chromosomal DNA in individual bacterial cells. PMID:27958271

  20. On the difference between SERS spectra of cell growth media and whole bacterial cells

    PubMed Central

    Premasiri, W. Ranjith; Gebregziabher, Yoseph; Ziegler, Lawrence D.

    2013-01-01

    It has been recently suggested [N. E. Marotta and L. A. Bottomley, Appl. Spectrosc. 64, 2010, 601-06] that previously reported SERS spectra of vegetative bacterial cells are due to residual cell growth media that were not properly removed from samples of the lab cultured microorganism suspensions. SERS spectra of several commonly used cell growth media are similar to those of bacterial cells as shown here and reported elsewhere. However, a multivariate data analysis approach shows that SERS spectra of different bacterial species grown in the same growth media exhibit different characteristic vibrational spectra, SERS spectra of the same organism grown in different media display the same SERS spectrum, and SERS spectra of growth media do not cluster near the SERS spectra of washed bacteria. Furthermore, a bacterial SERS spectrum grown in a minimal medium, which uses inorganics for a nitrogen source and displays virtually no SERS features, exhibits a characteristic bacterial SERS spectrum. We use multivariate analysis to show how successive water washing and centrifugation cycles remove cell growth media and result in a robust bacterial SERS spectrum in contrast to the previous study attributing bacterial SERS signals to growth media. PMID:21513591

  1. Electroporation of functional bacterial effectors into mammalian cells.

    PubMed

    Sontag, Ryan L; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R; Adkins, Joshua N; Brown, Roslyn N

    2015-01-19

    The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high

  2. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    PubMed Central

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-01

    The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high

  3. Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles

    PubMed Central

    Jurkoshek, Katerina S.; Wang, Ying; Athman, Jaffre J.; Barton, Marian R.; Wearsch, Pamela A.

    2016-01-01

    The production of extracellular vesicles is a universal mechanism for intercellular communication that is conserved across kingdoms. Prokaryotes secrete 50–250 nm membrane vesicles (MVs) in a manner that is regulated by environmental stress and is thought to promote survival. Since many types of host-derived stress are encountered during infection, this implies an important role for MV secretion in bacterial pathogenesis. Accordingly, MVs produced by gram-positive and gram-negative pathogens contain toxins, virulence factors, and other molecules that promote survival in the host. However, recent studies have also shown that bacterial MVs are enriched for molecules that stimulate innate and adaptive immune responses. As an example, MVs may serve multiple, important roles in regulating the host response to Mycobacterium tuberculosis (Mtb), an intracellular pathogen that infects lung macrophages and resides within modified phagosomes. Previously, we demonstrated that Mtb secretes MVs during infection that may modulate infected and uninfected immune cells. Our present data demonstrates that Mtb MVs inhibit the functions of macrophages and T cells, but promote Major Histocompatibility Complex (MHC) class II antigen presentation by dendritic cells. We conclude that bacterial MVs serve dual and opposing roles in the activation of and defense against host immune responses to Mtb and other bacterial pathogens. We also propose that MV secretion is a central mechanism for interspecies communication between bacteria and host cells during infection. PMID:27891500

  4. The impact of metabolic state on Cd adsorption onto bacterial cells

    USGS Publications Warehouse

    Johnson, K.J.; Ams, D.A.; Wedel, A.N.; Szymanowski, J.E.S.; Weber, D.L.; Schneegurt, M.A.; Fein, J.B.

    2007-01-01

    This study examines the effect of bacterial metabolism on the adsorption of Cd onto Gram-positive and Gram-negative bacterial cells. Metabolically active Gram-positive cells adsorbed significantly less Cd than non-metabolizing cells. Gram-negative cells, however, showed no systematic difference in Cd adsorption between metabolizing and non-metabolizing cells. The effect of metabolism on Cd adsorption to Gram-positive cells was likely due to an influx of protons in and around the cell wall from the metabolic proton motive force, promoting competition between Cd and protons for adsorption sites on the cell wall. The relative lack of a metabolic effect on Cd adsorption onto Gram-negative compared to Gram-positive cells suggests that Cd binding in Gram-negative cells is focused in a region of the cell wall that is not reached, or is unaffected by this proton flux. Thermodynamic modeling was used to estimate that proton pumping causes the pH in the cell wall of metabolizing Gram-positive bacteria to decrease from the bulk solution value of 7.0 to approximately 5.7. ?? 2007 The Authors.

  5. Uniform dose atmospheric pressure microplasma exposure of individual bacterial cells

    NASA Astrophysics Data System (ADS)

    Rutherford, David; Mahony, Charles; Spence, Sarah; Perez-Martin, Fatima; Kelsey, Colin; Hamilton, Neil; Diver, Declan; Bennet, Euan; Potts, Hugh; Mariotti, Davide; McDowell, David; Maguire, Paul

    2015-09-01

    Plasma - bacteria interactions have been studied for some time with a view to using plasma exposure for wound healing, sterilization and decontamination. While high efficacy has been demonstrated, important fundamental mechanisms are not understood and may be critical for ultimate acceptance. The dose variation across the exposed population and the impact of non-lethal exposure on subsequent bacterial growth are important issues. We demonstrate that individual bacterial cells can remain viable after exposure to a uniform plasma dose. Each bacteria cell (E coli) is delivered to the atmospheric pressure plasma in an aerosolised droplet (d ~ 10 micron). The estimated plasma density is 1E13 - 1E14 cm-3, gas temperature <400 K, and exposure times vary between 0.04 and 0.1ms. Droplet evaporation in flight is ~2 micron and plasma - cell interactions are mediated by the surrounding liquid (Ringers solution) where plasma-induced droplet surface chemistry and charging is known to occur. We report the cell viability and recovery dynamics of individual exposed cells as well as impact on DNA and membrane components with reference to measured plasma parameters. This research was funded by EPSRC (Grants: EP/K006088/1 & EP/K006142/1).

  6. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    SciTech Connect

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  7. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems.

  8. Bursting the bubble on bacterial biofilms: a flow cell methodology

    PubMed Central

    Crusz, Shanika A.; Popat, Roman; Rybtke, Morten Theil; Cámara, Miguel; Givskov, Michael; Diggle, Stephen P.; Williams, Paul

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and reliable methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities. PMID:22877233

  9. Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.

    PubMed

    Auer, George K; Lee, Timothy K; Rajendram, Manohary; Cesar, Spencer; Miguel, Amanda; Huang, Kerwyn Casey; Weibel, Douglas B

    2016-06-22

    Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

  10. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases

    PubMed Central

    Wheeler, Richard; Turner, Robert D.; Bailey, Richard G.; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A. S.; Hayhurst, Emma J.; Horsburgh, Malcolm; Hobbs, Jamie K.

    2015-01-01

    ABSTRACT Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. PMID:26220963

  11. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  12. Bacterial cells carrying synthetic dual-function operon survived starvation.

    PubMed

    Matsumoto, Yuki; Ito, Yoichiro; Tsuru, Saburo; Ying, Bei-Wen; Yomo, Tetsuya

    2011-01-01

    A synthetic dual-function operon with a bistable structure was designed and successfully integrated into the bacterial genome. Bistability was generated by the mutual inhibitory structure comprised of the promoters P(tet) and P(lac) and the repressors LacI and TetR. Dual function essential for cell growth was introduced by replacing the genes (i.e., hisC and leuB) encoding proteins involved in the biosynthesis of histidine and leucine from their native chromosomal locations to the synthetic operon. Both colony formation and population dynamics of the cells carrying this operon showed that the cells survived starvation and the newly formed population transited between the two stable states, representing the induced hisC and leuB levels, in accordance with the nutritional status. The results strongly suggested that the synthetic design of proto-operons sensitive to external perturbations is practical and functional in native cells.

  13. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses.

    PubMed Central

    Dow, S W; Potter, T A

    1997-01-01

    Bacterial superantigens are potent T cell activators, and superantigen proteins have been injected into mice and other animals to study T cell responses in vivo. When superantigen proteins are injected, however, the T cell stimulatory effects cannot be confined to specific tissues. Therefore, to target superantigen expression to specific tissues, we used gene transfer techniques to express bacterial superantigen genes in mammalian cells in vitro and in tissues in vivo. Murine, human, and canine cells transfected with superantigen genes in vitro all produced superantigen proteins both intracellularly and extracellularly, as assessed by bioassay, immunocytochemistry, and antigen ELISA. Superantigens produced by transfected eukaryotic cells retained their biologic specificity for T cell receptor binding. Intramuscular injection of superantigen plasmid DNA in vivo induced an intense intramuscular mononuclear cell infiltrate, an effect that could not be reproduced by intramuscular injection of superantigen protein. Intradermal and intravenous injection of superantigen DNA induced cutaneous and intrapulmonary mononuclear cell inflammatory responses, respectively. Thus, superantigen genes can be expressed by mammalian cells in vivo. Superantigen gene therapy represents a novel method of targeting localized T cell inflammatory reactions, with potential application to treatment of cancer and certain infectious diseases. PMID:9169491

  14. Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures.

    PubMed

    Gerson, D F; Akit, J

    1980-11-04

    Partition coefficients in biphasic mixtures of poly(ethylene glycol) and Dextran are compared to cell surface energies obtained from contact angles of each liquid phase on cell layers. Linear relationships are observed between these two independent measurements for a variety of bacterial cells. The results demonstrate the importance of interfacial phenomena and contact angles in the phase-partition process.

  15. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    PubMed

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-19

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  16. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    PubMed Central

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  17. Tiny cells meet big questions: a closer look at bacterial cell biology.

    PubMed

    Goley, Erin D

    2013-04-01

    While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab at Johns Hopkins, I have focused on investigating the mechanisms of bacterial cytokinesis. Spending time as both a eukaryotic cell biologist and a bacterial cell biologist has convinced me that bacterial cells present the same questions as eukaryotic cells: How are chromosomes organized and accurately segregated? How is force generated for cytokinesis? How is polarity established? How are signals transduced within and between cells? These problems are conceptually similar between eukaryotes and bacteria, although their solutions can differ significantly in specifics. In this Perspective, I provide a broad view of cell biological phenomena in bacteria, the technical challenges facing those of us who peer into bacterial cells, and areas of common ground as research in eukaryotic and bacterial cell biology moves forward.

  18. In situ protein folding and activation in bacterial inclusion bodies.

    PubMed

    Gonzalez-Montalban, Nuria; Natalello, Antonino; García-Fruitós, Elena; Villaverde, Antonio; Doglia, Silvia Maria

    2008-07-01

    Recent observations indicate that bacterial inclusion bodies formed in absence of the main chaperone DnaK result largely enriched in functional, properly folded recombinant proteins. Unfortunately, the molecular basis of this intriguing fact, with obvious biotechnological interest, remains unsolved. We have explored here two non-excluding physiological mechanisms that could account for this observation, namely selective removal of inactive polypeptides from inclusion bodies or in situ functional activation of the embedded proteins. By combining structural and functional analysis, we have not observed any preferential selection of inactive and misfolded protein species by the dissagregating machinery during inclusion body disintegration. Instead, our data strongly support that folding intermediates aggregated as inclusion bodies could complete their natural folding process once deposited in protein clusters, which conduces to significant functional activation. In addition, in situ folding and protein activation in inclusion bodies is negatively regulated by the chaperone DnaK.

  19. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  20. Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection

    PubMed Central

    Moya, Andrés; Vázquez-Castellanos, Jorge F.; Artacho, Alejandro; Chen, Xinhua; Kelly, Ciaran

    2016-01-01

    ABSTRACT The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCE C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin

  1. Instructive simulation of the bacterial cell division cycle.

    PubMed

    Zaritsky, Arieh; Wang, Ping; Vischer, Norbert O E

    2011-07-01

    The coupling between chromosome replication and cell division includes temporal and spatial elements. In bacteria, these have globally been resolved during the last 40 years, but their full details and action mechanisms are still under intensive study. The physiology of growth and the cell cycle are reviewed in the light of an established dogma that has formed a framework for development of new ideas, as exemplified here, using the Cell Cycle Simulation (CCSim) program. CCSim, described here in detail for the first time, employs four parameters related to time (replication, division and inter-division) and size (cell mass at replication initiation) that together are sufficient to describe bacterial cells under various conditions and states, which can be manipulated environmentally and genetically. Testing the predictions of CCSim by analysis of time-lapse micrographs of Escherichia coli during designed manipulations of the rate of DNA replication identified aspects of both coupling elements. Enhanced frequencies of cell division were observed following an interval of reduced DNA replication rate, consistent with the prediction of a minimum possible distance between successive replisomes (an eclipse). As a corollary, the notion that cell poles are not always inert was confirmed by observed placement of division planes at perpendicular planes in monstrous and cuboidal cells containing multiple, segregating nucleoids.

  2. Following the Fate of Bacterial Cells Experiencing Sudden Chromosome Loss

    PubMed Central

    Elbaz, Maya

    2015-01-01

    ABSTRACT Chromosomal DNA is a constant source of information, essential for any given cell to respond and adapt to changing conditions. Here, we investigated the fate of exponentially growing bacterial cells experiencing a sudden and rapid loss of their entire chromosome. Utilizing Bacillus subtilis cells harboring an inducible copy of the endogenous toxin yqcG, which encodes an endonuclease, we induced the formation of a population of cells that lost their genetic information simultaneously. Surprisingly, these DNA-less cells, termed DLCs, did not lyse immediately and exhibited normal cellular morphology for a period of at least 5 h after DNA loss. This cellular integrity was manifested by their capacity to maintain an intact membrane and membrane potential and cell wall architecture similar to those of wild-type cells. Unlike growing cells that exhibit a dynamic profile of macromolecules, DLCs displayed steady protein and RNA reservoirs. Remarkably, following DLCs by time lapse microscopy revealed that they succeeded in synthesizing proteins, elongating, and dividing, apparently forming de novo Z rings at the midcell position. Taken together, the persistence of key cellular events in DLCs indicates that the information to carry out lengthy processes is harbored within the remaining molecular components. PMID:25922388

  3. A teleost complement factor Ba possesses antimicrobial activity and inhibits bacterial infection in fish.

    PubMed

    Li, Xue-Peng; Sun, Li

    2017-01-24

    Complement factor B (Bf) is a component of the complement system. Following activation of the alternative pathway of the complement system, factor B is cleaved into Ba and Bb fragments. In fish, the Bf of rainbow trout is known to act as a C3 convertase, but the function of the Ba fragment is essentially unknown. In this study, we examined the expression patterns of tongue sole Cynoglossus semilaevis Bf (named CsBf) and the biological activity of the Ba fragment of CsBf (named CsBa). CsBf possesses the conserved domains of Bf and shares 39.9%-56.4% sequence identities with other fish Bf. CsBf expression was high in liver, muscle, and heart, and low in intestine, blood, and kidney. Bacterial infection significantly induced CsBf expression in kidney, spleen, and liver in a time-dependent manner. Recombinant CsBa (rCsBa) exhibited apparent binding capacities to bacteria and tongue sole peripheral blood leukocytes, and binding of rCsBa to bacteria inhibited bacterial growth. When overexpressed in tongue sole, CsBa significantly reduced bacterial dissemination in fish tissues. Together these results indicate for the first time that a fish Ba possesses antibacterial effect as well as immune cell-binding capacity, and thus probably plays a role in host immune defense against bacterial infection.

  4. Structure of a Bacterial Cell Surface Decaheme Electron Conduit

    SciTech Connect

    Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-05-23

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along ‘nanowire’ appendages. We present a 3.2 Å crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 Å octa-heme chain transects the length of the protein and is bisected by a planar 45 Å tetra-heme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  5. Structure of a bacterial cell surface decaheme electron conduit.

    PubMed

    Clarke, Thomas A; Edwards, Marcus J; Gates, Andrew J; Hall, Andrea; White, Gaye F; Bradley, Justin; Reardon, Catherine L; Shi, Liang; Beliaev, Alexander S; Marshall, Matthew J; Wang, Zheming; Watmough, Nicholas J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J

    2011-06-07

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  6. Neutrophil secretion products regulate anti-bacterial activity in monocytes and macrophages.

    PubMed

    Soehnlein, O; Kenne, E; Rotzius, P; Eriksson, E E; Lindbom, L

    2008-01-01

    Macrophages represent a multi-functional cell type in innate immunity that contributes to bacterial clearance by recognition, phagocytosis and killing. In acute inflammation, infiltrating neutrophils release a wide array of preformed granule proteins which interfere functionally with their environment. Here, we present a novel role for neutrophil-derived granule proteins in the anti-microbial activity of macrophages. Neutrophil secretion obtained by antibody cross-linking of the integrin subunit CD18 (X-link secretion) or by treatment with N-Formyl-Met-Leu-Phe (fMLP secretion) induced a several-fold increase in bacterial phagocytosis by monocytes and macrophages. This response was associated with a rapid activation of the monocytes and macrophages as depicted by an increase in cytosolic free Ca(2+). Interestingly, fMLP secretion had a more pronounced effect on monocytes than the X-link secretion, while the opposite was observed for macrophages. In addition, polymorphonuclear cells (PMN) secretion caused a strong enhancement of intracellular reactive oxygen species (ROS) formation compared to incubation with bacteria. Thus, secretion of neutrophil granule proteins activates macrophages to increase the phagocytosis of bacteria and to enhance intracellular ROS formation, indicating pronounced intracellular bacterial killing. Both mechanisms attribute novel microbicidal properties to PMN granule proteins, suggesting their potential use in anti-microbial therapy.

  7. Diminished performance of bacterial fuel cells in microgravity

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.; Rutgers, R.

    2005-08-01

    The student-experiment 'BugNRG' was flown to the International Space Station to study the effects of microgravity on the output of Bacterial Fuel Cells (BFCs) using the Rhodoferax Ferrireducens strain. Due to the possibilities of the impact of microgravity on the bacteria, a higher output and better performance was hypothesised. Voltage and current were recorded and the container temperature was logged.Measurements of the ISS and reference experiments indicate a significantly lower performance in microgravity. The exact mechanism for this performance remains as yet unknown. The BFCs worked in orbit and this is a 'space-first'.

  8. Metabolism, cell growth and the bacterial cell cycle

    PubMed Central

    Wang, Jue D.; Levin, Petra A.

    2010-01-01

    Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the ‘wild’. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division. PMID:19806155

  9. Sample storage for soil enzyme activity and bacterial community profiles.

    PubMed

    Wallenius, K; Rita, H; Simpanen, S; Mikkonen, A; Niemi, R M

    2010-04-01

    Storage of samples is often an unavoidable step in environmental data collection, since available analytical capacity seldom permits immediate processing of large sample sets needed for representative data. In microbiological soil studies, sample pretreatments may have a strong influence on measurement results, and thus careful consideration is required in the selection of storage conditions. The aim of this study was to investigate the suitability of prolonged (up to 16 weeks) frozen or air-dried storage for divergent soil materials. The samples selected to this study were mineral soil (clay loam) from an agricultural field, humus from a pine forest and compost from a municipal sewage sludge composting field. The measured microbiological parameters included functional profiling with ten different hydrolysing enzyme activities determined by artificial fluorogenic substrates, and structural profiling with bacterial 16S rDNA community fingerprints by amplicon length heterogeneity analysis (LH-PCR). Storage of samples affected the observed fluorescence intensity of the enzyme assay's fluorophor standards dissolved in soil suspension. The impact was highly dependent on the soil matrix and storage method, making it important to use separate standardisation for each combination of matrix type, storage method and time. Freezing proved to be a better storage method than air-drying for all the matrices and enzyme activities studied. The effect of freezing on the enzyme activities was small (<20%) in clay loam and forest humus and moderate (generally 20-30%) in compost. The most dramatic decreases (>50%) in activity were observed in compost after air-drying. The bacterial LH-PCR community fingerprints were unaffected by frozen storage in all matrices. The effect of storage treatments was tested using a new statistical method based on showing similarity rather than difference of results.

  10. Bacterial spread from cell to cell: beyond actin-based motility.

    PubMed

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell.

  11. Bacterial Activity at −2 to −20°C in Arctic Wintertime Sea Ice

    PubMed Central

    Junge, Karen; Eicken, Hajo; Deming, Jody W.

    2004-01-01

    Arctic wintertime sea-ice cores, characterized by a temperature gradient of −2 to −20°C, were investigated to better understand constraints on bacterial abundance, activity, and diversity at subzero temperatures. With the fluorescent stains 4′,6′-diamidino-2-phenylindole 2HCl (DAPI) (for DNA) and 5-cyano-2,3-ditoyl tetrazolium chloride (CTC) (for O2-based respiration), the abundances of total, particle-associated (>3-μm), free-living, and actively respiring bacteria were determined for ice-core samples melted at their in situ temperatures (−2 to −20°C) and at the corresponding salinities of their brine inclusions (38 to 209 ppt). Fluorescence in situ hybridization was applied to determine the proportions of Bacteria, Cytophaga-Flavobacteria-Bacteroides (CFB), and Archaea. Microtome-prepared ice sections also were examined microscopically under in situ conditions to evaluate bacterial abundance (by DAPI staining) and particle associations within the brine-inclusion network of the ice. For both melted and intact ice sections, more than 50% of cells were found to be associated with particles or surfaces (sediment grains, detritus, and ice-crystal boundaries). CTC-active bacteria (0.5 to 4% of the total) and cells detectable by rRNA probes (18 to 86% of the total) were found in all ice samples, including the coldest (−20°C), where virtually all active cells were particle associated. The percentage of active bacteria associated with particles increased with decreasing temperature, as did the percentages of CFB (16 to 82% of Bacteria) and Archaea (0.0 to 3.4% of total cells). These results, combined with correlation analyses between bacterial variables and measures of particulate matter in the ice as well as the increase in CFB at lower temperatures, confirm the importance of particle or surface association to bacterial activity at subzero temperatures. Measuring activity down to −20°C adds to the concept that liquid inclusions in frozen environments

  12. Bacterial Activity at -2 to -20 degrees C in Arctic wintertime sea ice.

    PubMed

    Junge, Karen; Eicken, Hajo; Deming, Jody W

    2004-01-01

    Arctic wintertime sea-ice cores, characterized by a temperature gradient of -2 to -20 degrees C, were investigated to better understand constraints on bacterial abundance, activity, and diversity at subzero temperatures. With the fluorescent stains 4',6'-diamidino-2-phenylindole 2HCl (DAPI) (for DNA) and 5-cyano-2,3-ditoyl tetrazolium chloride (CTC) (for O(2)-based respiration), the abundances of total, particle-associated (>3- micro m), free-living, and actively respiring bacteria were determined for ice-core samples melted at their in situ temperatures (-2 to -20 degrees C) and at the corresponding salinities of their brine inclusions (38 to 209 ppt). Fluorescence in situ hybridization was applied to determine the proportions of Bacteria, Cytophaga-Flavobacteria-Bacteroides (CFB), and Archaea. Microtome-prepared ice sections also were examined microscopically under in situ conditions to evaluate bacterial abundance (by DAPI staining) and particle associations within the brine-inclusion network of the ice. For both melted and intact ice sections, more than 50% of cells were found to be associated with particles or surfaces (sediment grains, detritus, and ice-crystal boundaries). CTC-active bacteria (0.5 to 4% of the total) and cells detectable by rRNA probes (18 to 86% of the total) were found in all ice samples, including the coldest (-20 degrees C), where virtually all active cells were particle associated. The percentage of active bacteria associated with particles increased with decreasing temperature, as did the percentages of CFB (16 to 82% of Bacteria) and Archaea (0.0 to 3.4% of total cells). These results, combined with correlation analyses between bacterial variables and measures of particulate matter in the ice as well as the increase in CFB at lower temperatures, confirm the importance of particle or surface association to bacterial activity at subzero temperatures. Measuring activity down to -20 degrees C adds to the concept that liquid inclusions in

  13. Cell division ring, a new cell division protein and vertical inheritance of a bacterial organelle in anammox planctomycetes.

    PubMed

    van Niftrik, Laura; Geerts, Willie J C; van Donselaar, Elly G; Humbel, Bruno M; Webb, Richard I; Harhangi, Harry R; Camp, Huub J M Op den; Fuerst, John A; Verkleij, Arie J; Jetten, Mike S M; Strous, Marc

    2009-09-01

    Anammox bacteria are members of the phylum Planctomycetes that oxidize ammonium anaerobically and produce a significant part of the atmosphere's dinitrogen gas. They contain a unique bacterial organelle, the anammoxosome, which is the locus of anammox catabolism. While studying anammox cell and anammoxosome division with transmission electron microscopy including electron tomography, we observed a cell division ring in the outermost compartment of dividing anammox cells. In most Bacteria, GTP hydrolysis drives the tubulin-analogue FtsZ to assemble into a ring-like structure at the cell division site where it functions as a scaffold for the molecular machinery that performs cell division. However, the genome of the anammox bacterium 'Candidatus Kuenenia stuttgartiensis' does not encode ftsZ. Genomic analysis of open reading frames with potential GTPase activity indicated a possible novel cell division ring gene: kustd1438, which was unrelated to ftsZ. Immunogold localization specifically localized kustd1438 to the cell division ring. Genomic analyses of other members of the phyla Planctomycetes and Chlamydiae revealed no putative functional homologues of kustd1438, suggesting that it is specific to anammox bacteria. Electron tomography also revealed that the bacterial organelle was elongated along with the rest of the cell and divided equally among daughter cells during the cell division process.

  14. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division.

    PubMed

    Oliva, María A

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.

  15. High-efficiency transformation of bacterial cells by electroporation.

    PubMed Central

    Calvin, N M; Hanawalt, P C

    1988-01-01

    We have developed a method for efficiently generating transient pores in the outer membranes of Escherichia coli K-12 derivatives by using a new type of electroporation apparatus. The pores are large enough and persist long enough to facilitate the equilibration of plasmid molecules between the intracellular and extracellular spaces. The method has been used to transform bacterial cells with an efficiency greater than 10(9) transformants per microgram of plasmid. It has also been used to extract intact plasmid from transformed cells with efficiencies comparable to those of the traditional alkaline lysis or CsCl equilibrium density gradient techniques. The technique is simple and rapid, allowing a transformation or the preparation of microgram quantities of plasmid to be accomplished in minutes. PMID:3286620

  16. Imaging the action of antimicrobial peptides on living bacterial cells

    PubMed Central

    Gee, Michelle L.; Burton, Matthew; Grevis-James, Alistair; Hossain, Mohammed Akhter; McArthur, Sally; Palombo, Enzo A.; Wade, John D.; Clayton, Andrew H. A.

    2013-01-01

    Antimicrobial peptides hold promise as broad-spectrum alternatives to conventional antibiotics. The mechanism of action of this class of peptide is a topical area of research focused predominantly on their interaction with artificial membranes. Here we compare the interaction mechanism of a model antimicrobial peptide with single artificial membranes and live bacterial cells. The interaction kinetics was imaged using time-lapse fluorescence lifetime imaging of a fluorescently-tagged melittin derivative. Interaction with the synthetic membranes resulted in membrane pore formation. In contrast, the interaction with bacteria led to transient membrane disruption and corresponding leakage of the cytoplasm, but surprisingly with a much reduced level of pore formation. The discovery that pore formation is a less significant part of lipid-peptide interaction in live bacteria highlights the mechanistic complexity of these interactions in living cells compared to simple artificial systems. PMID:23532056

  17. Modeling Bacterial Population Growth from Stochastic Single-Cell Dynamics

    PubMed Central

    Molina, Ignacio; Theodoropoulos, Constantinos

    2014-01-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  18. Modeling bacterial population growth from stochastic single-cell dynamics.

    PubMed

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  19. Diverse specificity of cellulosome attachment to the bacterial cell surface

    PubMed Central

    Brás, Joana L. A.; Pinheiro, Benedita A.; Cameron, Kate; Cuskin, Fiona; Viegas, Aldino; Najmudin, Shabir; Bule, Pedro; Pires, Virginia M. R.; Romão, Maria João; Bayer, Edward A.; Spencer, Holly L.; Smith, Steven; Gilbert, Harry J.; Alves, Victor D.; Carvalho, Ana Luísa; Fontes, Carlos M. G. A.

    2016-01-01

    During the course of evolution, the cellulosome, one of Nature’s most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly. PMID:27924829

  20. Binding domains of Bacillus anthracis phage endolysins recognize cell culture age-related features on the bacterial surface.

    PubMed

    Paskaleva, Elena E; Mundra, Ruchir V; Mehta, Krunal K; Pangule, Ravindra C; Wu, Xia; Glatfelter, Willing S; Chen, Zijing; Dordick, Jonathan S; Kane, Ravi S

    2015-01-01

    Bacteriolytic enzymes often possess a C-terminal binding domain that recognizes specific motifs on the bacterial surface and a catalytic domain that cleaves covalent linkages within the cell wall peptidoglycan. PlyPH, one such lytic enzyme of bacteriophage origin, has been reported to be highly effective against Bacillus anthracis, and can kill up to 99.99% of the viable bacteria. The bactericidal activity of this enzyme, however, appears to be strongly dependent on the age of the bacterial culture. Although highly bactericidal against cells in the early exponential phase, the enzyme is substantially less effective against stationary phase cells, thus limiting its application in real-world settings. We hypothesized that the binding domain of PlyPH may differ in affinity to cells in different Bacillus growth stages and may be primarily responsible for the age-restricted activity. We therefore employed an in silico approach to identify phage lysins differing in their specificity for the bacterial cell wall. Specifically we focused our attention on Plyβ, an enzyme with improved cell wall-binding ability and age-independent bactericidal activity. Although PlyPH and Plyβ have dissimilar binding domains, their catalytic domains are highly homologous. We characterized the biocatalytic mechanism of Plyβ by identifying the specific bonds cleaved within the cell wall peptidoglycan. Our results provide an example of the diversity of phage endolysins and the opportunity for these biocatalysts to be used for broad-based protection from bacterial pathogens.

  1. Death's toolbox: examining the molecular components of bacterial programmed cell death.

    PubMed

    Rice, Kelly C; Bayles, Kenneth W

    2003-11-01

    Programmed cell death (PCD) is a genetically determined process of cellular suicide that is activated in response to cellular stress or damage, as well as in response to the developmental signals in multicellular organisms. Although historically studied in eukaryotes, it has been proposed that PCD also functions in prokaryotes, either during the developmental life cycle of certain bacteria or to remove damaged cells from a population in response to a wide variety of stresses. This review will examine several putative examples of bacterial PCD and summarize what is known about the molecular components of these systems.

  2. Activity and bacterial diversity of snow around Russian Antarctic stations.

    PubMed

    Lopatina, Anna; Krylenkov, Vjacheslav; Severinov, Konstantin

    2013-11-01

    The diversity and temporal dynamics of bacterial communities in pristine snow around two Russian Antarctic stations was investigated. Taxonomic analysis of rDNA libraries revealed that snow communities were dominated by bacteria from a small number of operational taxonomic units (OTUs) that underwent dramatic swings in abundance between the 54th (2008-2009) and 55th (2009-2010) Russian Antarctic expeditions. Moreover, analysis of the 55th expedition samples indicated that there was very little, if any, correspondence in abundance of clones belonging to the same OTU present in rDNA and rRNA libraries. The latter result suggests that most rDNA clones originate from bacteria that are not alive and/or active and may have been deposited on the snow surface from the atmosphere. In contrast, clones most abundant in rRNA libraries (mostly belonging to Variovorax, Janthinobacterium, Pseudomonas, and Sphingomonas genera) may be considered as endogenous Antarctic snow inhabitants.

  3. Phytochemicals as inhibitors of bacterial cell division protein FtsZ: coumarins are promising candidates.

    PubMed

    Duggirala, Sridevi; Nankar, Rakesh P; Rajendran, Selvakumar; Doble, Mukesh

    2014-09-01

    Naturally occurring phytochemicals with reported antibacterial activity were screened for their ability to inhibit the bacterial cell division protein Escherichia coli FtsZ. Among the representative compounds, coumarins inhibit the GTPase and polymerization activities of this protein effectively. Further screening with ten coumarin analogs we identified two promising candidates, scopoletin and daphnetin. The former is found to inhibit the GTPase activity of the protein in a noncompetitive manner. Docking of these coumarins with the modeled protein indicate that they bind to T7 loop, which is different from the GTP-binding site (active site), thereby supporting the experimental data. Lowest binding energy is obtained with scopoletin. 3D QSAR indicates the need for groups such as hydroxyl, diethyl, or dimethyl amino in the 7th carbon for enhanced activity. None of the coumarins exhibited cytotoxicity against NIH/3T3 and human embryonic kidney cell lines. The length of Bacillus subtilis increases in the presence of these compounds probably due to the lack of septum formation. Results of this study indicate the role of coumarins in halting the first step of bacterial cell division process.

  4. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  5. Nutrient regulation of bacterial production and ectoenzyme activities in the subtropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Donachie, Stuart P.; Christian, James R.; Karl, David M.

    Interactions between Bacteria and dissolved organic matter (DOM) in the open ocean are poorly understood. While it is likely that particular compounds may disproportionately regulate heterotrophic activity, very little is known about the underlying processes. Through 10 cruises between December 1996 and April 1998 we investigated how heterotrophic (non-pigmented) Bacteria cell production, per cell α- and β-glucosidase and leucine aminopeptidase (LAPase) activities, and 14C-glucose uptake in 0.8 μm filtered seawater (fsw) cultures at Station ALOHA (22°45'N, 158°W) responded to organic and inorganic nutrient additions (glucose, single amino acids, NH 4+, NO 3-). Bacterial cell production did not change significantly in fsw with glucose (1 μM) or single exogenous N sources (1 μM N) compared to that in fsw alone. Furthermore, there was no significant difference in heterotrophic bacterial cell production in fsw amended with organic or inorganic N, nor between that in fsw with organic N and glucose, or inorganic N and glucose. Cell production did increase significantly, however, in fsw with exogenous glucose (0.38 μM) plus 1 μM inorganic N (NH 4+) relative to that in fsw only, in fsw with glucose, and in fsw with 1 μM N as amino acids (His, Tyr, Leu). There was no significant difference between heterotrophic bacterial cell production in fsw with glucose, glucose plus amino acids, and that in fsw alone. Cell-specific LAPase activity increased significantly relative to that in unamended fsw when exogenous glucose plus NH 4+ or NO 3- were provided, but amino acids, glucose, NH 4+ or NO 3- alone had little or no effect. α-Glucosidase activity tended to increase with exogenous His and Tyr additions. Our results suggest that heterotrophic activity at Station ALOHA can be regulated by the abundance of particular compounds, regardless of their total concentrations. It appears that auxotrophy and de novo synthesis of cell protein from glucose may coexist among Bacteria

  6. A novel bacterial tyrosine kinase essential for cell division and differentiation

    PubMed Central

    Wu, Jianguo; Ohta, Noriko; Zhao, Ji-Liang; Newton, Austin

    1999-01-01

    Protein kinases play central roles in the regulation of eukaryotic and prokaryotic cell growth, division, and differentiation. The Caulobacter crescentus divL gene encodes a novel bacterial tyrosine kinase essential for cell viability and division. Although the DivL protein is homologous to the ubiquitous bacterial histidine protein kinases (HPKs), it differs from previously studied members of this protein kinase family in that it contains a tyrosine residue (Tyr-550) in the conserved H-box instead of a histidine residue, which is the expected site of autophosphorylation. DivL is autophosphorylated on Tyr-550 in vitro, and this tyrosine residue is essential for cell viability and regulation of the cell division cycle. Purified DivL also catalyzes phosphorylation of CtrA and activates transcription in vitro of the cell cycle-regulated fliF promoter. Suppressor mutations in ctrA bypass the conditional cell division phenotype of cold-sensitive divL mutants, providing genetic evidence that DivL function in cell cycle and developmental regulation is mediated, at least in part, by the global response regulator CtrA. DivL is the only reported HPK homologue whose function has been shown to require autophosphorylation on a tyrosine, and, thus, it represents a new class of kinases within this superfamily of protein kinases. PMID:10557274

  7. mTORC1-Activated Monocytes Increase Tregs and Inhibit the Immune Response to Bacterial Infections

    PubMed Central

    Tu, Huaijun; Guo, Wei; Wang, Shixuan; Xue, Ting; Yang, Fei; Zhang, Xiaoyan; Yang, Yazhi; Wan, Qian; Shi, Zhexin; Zhan, Xulong

    2016-01-01

    The TSC1/2 heterodimer, a key upstream regulator of the mTOR, can inhibit the activation of mTOR, which plays a critical role in immune responses after bacterial infections. Monocytes are an innate immune cell type that have been shown to be involved in bacteremia. However, how the mTOR pathway is involved in the regulation of monocytes is largely unknown. In our study, TSC1 KO mice and WT mice were infected with E. coli. When compared to WT mice, we found higher mortality, greater numbers of bacteria, decreased expression of coactivators in monocytes, increased numbers of Tregs, and decreased numbers of effector T cells in TSC1 KO mice. Monocytes obtained from TSC1 KO mice produced more ROS, IL-6, IL-10, and TGF-β and less IL-1, IFN-γ, and TNF-α. Taken together, our results suggest that the inhibited immune functioning in TSC1 KO mice is influenced by mTORC1 activation in monocytes. The reduced expression of coactivators resulted in inhibited effector T cell proliferation. mTORC1-activated monocytes are harmful during bacterial infections. Therefore, inhibiting mTORC1 signaling through rapamycin administration could rescue the harmful aspects of an overactive immune response, and this knowledge provides a new direction for clinical therapy. PMID:27746591

  8. CAP-D3 Promotes Bacterial Clearance in Human Intestinal Epithelial Cells by Repressing Expression of Amino Acid Transporters

    PubMed Central

    Kemp, Jacqueline R.; Nickerson, Kourtney P.; Deutschman, Emily; Kim, Yeojung; West, Gail; Sadler, Tammy; Stylianou, Eleni; Krokowski, Dawid; Hatzoglou, Maria; de la Motte, Carol; Rubin, Brian P.; Fiocchi, Claudio

    2015-01-01

    BACKGROUND & AIMS Defects in colonic epithelial barrier defenses are associated with ulcerative colitis (UC). The proteins that regulate bacterial clearance in the colonic epithelium have not been completely identified. The chromosome-associated protein D3 (dCAP-D3), regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing small hairpin RNAs against CAP-D3. We used immunoblot assays to measure levels of CAP-D3 in colonic epithelial cells from patients with UC and healthy individuals (controls). RNA sequencing identified genes activated by CAP-D3. We analyzed the roles of CAP-D3 target genes in bacterial clearance using gentamycin protection and immunofluorescence assays and studies with pharmacologic inhibitors. RESULTS CAP-D3 expression was reduced in colonic epithelial cells from patients with active UC. Reduced CAP-D3 expression decreased autophagy and impaired intracellular bacterial clearance by HT-29 and Caco-2 colonic epithelial cells. Lower levels of CAP-D3 increased transcription of genes encoding SLC7A5 and SLC3A2, whose products heterodimerize to form an amino acid transporter in HT-29 cells following bacterial infection; levels of SLC7A5–SLC3A2 were increased in tissues from patients with UC, compared with controls. Reduced CAP-D3 in HT-29 cells resulted in earlier recruitment of SLC7A5 to Salmonella-containing vacuoles, increased activity of mTORC1, and increased survival of bacteria. Inhibition of SLC7A5–SLC3A2 or mTORC1 activity rescued the bacterial clearance defects of CAP-D3– deficient cells. CONCLUSIONS CAP-D3 downregulates transcription of genes that encode amino acid transporters (SLC7A5 and SLC3A2) to promote bacterial autophagy by colon epithelial cells. Levels of CAP-D3 protein are reduced in patients with

  9. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    PubMed

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-04-14

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.

  10. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms

    PubMed Central

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L.; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K.; Osvath, Sarah R.; Cárcamo-Oyarce, Gerardo; Gloag, Erin S.; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G.; Cavaliere, Rosalia; Ahrens, Christian H.; Charles, Ian G.; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B.

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  11. Identification of Active Bacterial Communities in Drinking Water Using 16S rRNA-Based Sequence Analyses

    EPA Science Inventory

    DNA-based methods have considerably increased our understanding of the bacterial diversity of water distribution systems (WDS). However, as DNA may persist after cell death, the use of DNA-based methods cannot be used to describe metabolically-active microbes. In contrast, intra...

  12. A Kinase-Phosphatase Switch Transduces Environmental Information into a Bacterial Cell Cycle Circuit

    PubMed Central

    Heinrich, Kristina; Sobetzko, Patrick; Jonas, Kristina

    2016-01-01

    The bacterial cell cycle has been extensively studied under standard growth conditions. How it is modulated in response to environmental changes remains poorly understood. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus blocks cell division and grows to filamentous cells in response to stress conditions affecting the cell membrane. Our data suggest that stress switches the membrane-bound cell cycle kinase CckA to its phosphatase mode, leading to the rapid dephosphorylation, inactivation and proteolysis of the master cell cycle regulator CtrA. The clearance of CtrA results in downregulation of division and morphogenesis genes and consequently a cell division block. Upon shift to non-stress conditions, cells quickly restart cell division and return to normal cell size. Our data indicate that the temporary inhibition of cell division through the regulated inactivation of CtrA constitutes a growth advantage under stress. Taken together, our work reveals a new mechanism that allows bacteria to alter their mode of proliferation in response to environmental cues by controlling the activity of a master cell cycle transcription factor. Furthermore, our results highlight the role of a bifunctional kinase in this process that integrates the cell cycle with environmental information. PMID:27941972

  13. Microelectrode Measurements of the Activity Distribution in Nitrifying Bacterial Aggregates

    PubMed Central

    de Beer, D.; van den Heuvel, J. C.; Ottengraf, S. P. P.

    1993-01-01

    Microelectrodes for ammonium, oxygen, nitrate, and pH were used to study nitrifying aggregates grown in a fluidized-bed reactor. Local reactant fluxes and distribution of microbial activity could be determined from the microprofiles. The interfacial fluxes of the reactants closely reflected the stoichiometry of bacterial nitrification. Both ammonium consumption and nitrate production were localized in the outer shells, with a thickness of approximately 100 to 120 μm, of the aggregates. Under conditions in which ammonium and oxygen penetrated the whole aggregate, nitrification was restricted to this zone; oxygen was consumed in the central parts of the aggregates as well, probably because of oxidation of dead biomass. A sudden increase of the oxygen concentration to saturation (pure oxygen) was inhibitory to nitrification. The pH profiles showed acidification in the aggregates, but not to an inhibitory level. The distribution of activity was determined by the penetration depth of oxygen during aggregate development in the reactor. Mass transfer was significantly limited by the boundary layer surrounding the aggregates. Microelectrode measurements showed that the thickness of this layer was correlated with the diffusion coefficient of the species. Determination of the distribution of nitrifying activity required the use of ammonium or nitrate microelectrodes, whereas the use of oxygen microelectrodes alone would lead to erroneous results. Images PMID:16348875

  14. Bacterial Programmed Cell Death as a Population Phenomenon

    DTIC Science & Technology

    2013-06-11

    Moving in for the kil:Activation of an endoribonuclease toxin by quorum sensing peptide, Molecular Cell, (03 2011): . doi: 06/11/2013 11.00...shown that E. coli mazEF-mediated cell death is a population phenomenon requiring the E. coli quorum sensing factor EDF (Extracellular Death Factor... quorum - sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318: 652-655. 7) Kolodkin-Gal I, Engelberg-Kulka, H (2008

  15. Synthetic genomics and the construction of a synthetic bacterial cell.

    PubMed

    Glass, John I

    2012-01-01

    The first synthetic cellular organism was created in 2010 and based on a very small, very simple bacterium called Mycoplasma mycoides. The bacterium was called synthetic because its DNA genome was chemically synthesized rather than replicated from an existing template DNA, as occurs in all other known cellular life on Earth. The experiment was undertaken in order to develop a system that would allow creation of a minimal bacterial cell that could lead to a better understand of the first principles of cellular life. The effort resulted in new synthetic genomics techniques called genome assembly and genome transplantation. The ability of scientists to design and build bacteria opens new possibilities for creating microbes to solve human problems.

  16. Ice nucleators, bacterial cells and Pseudomonas syringae in precipitation at Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Stopelli, Emiliano; Conen, Franz; Guilbaud, Caroline; Zopfi, Jakob; Alewell, Christine; Morris, Cindy E.

    2017-03-01

    Ice nucleation is a means by which the deposition of an airborne microorganism can be accelerated under favourable meteorological conditions. Analysis of 56 snow samples collected at the high-altitude observatory Jungfraujoch (3580 m a.s.l.) revealed an order-of-magnitude-larger dynamic range of ice-nucleating particles active at -8 °C (INPs-8) compared to the total number of bacterial cells (of which on average 60 % was alive). This indicates a shorter atmospheric residence time for INPs-8. Furthermore, concentrations of INPs-8 decreased much faster, with an increasing fraction of water precipitated from the air mass prior to sampling, than the number of total bacterial cells. Nevertheless, at high wind speeds (> 50 km h-1) the ratio of INPs-8 to total bacterial cells largely remained in a range between 10-2 and 10-3, independent of prior precipitation, likely because of recent injections of particles in regions upwind. Based on our field observations, we conclude that ice nucleators travel shorter legs of distance with the atmospheric water cycle than the majority of bacterial cells. A prominent ice-nucleating bacterium, Pseudomonas syringae, has been previously supposed to benefit from this behaviour as a means to spread via the atmosphere and to colonise new host plants. Therefore, we targeted this bacterium with a selective cultivation approach. P. syringae was successfully isolated for the first time at such an altitude in 3 of 13 samples analysed. Colony-forming units of this species constituted a minor fraction (10-4) of the numbers of INPs-8 in these samples. Overall, our findings expand the geographic range of habitats where this bacterium has been found and corroborate theories on its robustness in the atmosphere and its propensity to spread to colonise new habitats.

  17. Innate-like CD4 T cells selected by thymocytes suppress adaptive immune responses against bacterial infections

    PubMed Central

    Qiao, Yu; Gray, Brian M.; Sofi, Mohammed H.; Bauler, Laura D.; Eaton, Kathryn A.; O'Riordan, Mary X. D.; Chang, Cheong-Hee

    2012-01-01

    We have reported a new innate-like CD4 T cell population that expresses cell surface makers of effector/memory cells and produce Th1 and Th2 cytokines immediately upon activation. Unlike conventional CD4 T cells that are selected by thymic epithelial cells, these CD4 T cells, named T-CD4 T cells, are selected by MHC class II expressing thymocytes. Previously, we showed that the presence of T-CD4 T cells protected mice from airway inflammation suggesting an immune regulatory role of T-CD4 T cells. To further understand the function of T-CD4 T cells, we investigated immune responses mediated by T-CD4 T cells during bacterial infection because the generation of antigen specific CD4 T cells contributes to clearance of infection and for the development of immune memory. The current study shows a suppressive effect of T-CD4 T cells on both CD8 and CD4 T cell-mediated immune responses during Listeria and Helicobacter infections. In the mouse model of Listeria monocytogenes infection, T-CD4 T cells resulted in decreasedfrequency of Listeria-specific CD8 T cells and the killing activity of them. Furthermore, mice with T-CD4 T cells developed poor immune memory, demonstrated by reduced expansion of antigen-specific T cells and high bacterial burden upon re-infection. Similarly, the presence of T-CD4 T cells suppressed the generation of antigen-specific CD4 T cells in Helicobacter pylori infected mice. Thus, our studies reveal a novel function of T-CD4 T cells in suppressing anti-bacterial immunity. PMID:23264931

  18. Incidence and Predictors of Bacterial infection in Febrile Children with Sickle Cell Disease.

    PubMed

    Morrissey, Benita J; Bycroft, Thomas P; Almossawi, Ofran; Wilkey, Olufunke B; Daniels, Justin G

    2015-01-01

    Children with sickle cell disease are at increased risk of developing bacteremia and other serious bacterial infections. Fever is a common symptom in sickle cell disease and can also occur with sickle cell crises and viral infections. We aimed to evaluate the incidence and predictors of bacteremia and bacterial infection in children with sickle cell disease presenting with fever to a district hospital and sickle cell center in London. A retrospective analysis was performed on all attendances of children (aged under 16 years) with sickle cell disease presenting with a fever of 38.5 °C or higher over a 1-year period. Confirmed bacterial infection was defined as bacteremia, bacterial meningitis, urinary tract infection (UTI), pneumonia, osteomyelitis or other bacterial infection with positive identification of organism. Children were defined as having a suspected bacterial infection if a bacterial infection was suspected clinically, but no organism was identified. Over a 1-year period there were 88 episodes analyzed in 59 children. Bacteremia occurred in 3.4% of episodes and confirmed bacterial infection in 7.0%. Suspected bacterial infection occurred in 33.0%. One death occurred from Salmonella typhirium septicemia. C-reactive protein (CRP) level and white blood cell (WBC) count were both significantly associated with bacterial infection (p = 0.004 and 0.02, respectively.) In conclusion, bacterial infections continue to be a significant problem in children with sickle cell disease. C-reactive protein was significantly associated with bacterial infections, and could be included in clinical risk criteria for febrile children with sickle cell disease.

  19. Differential Damage in Bacterial Cells by Microwave Radiation on the Basis of Cell Wall Structure

    PubMed Central

    Woo, Im-Sun; Rhee, In-Koo; Park, Heui-Dong

    2000-01-01

    Microwave radiation in Escherichia coli and Bacillus subtilis cell suspensions resulted in a dramatic reduction of the viable counts as well as increases in the amounts of DNA and protein released from the cells according to the increase of the final temperature of the cell suspensions. However, no significant reduction of cell density was observed in either cell suspension. It is believed that this is due to the fact that most of the bacterial cells inactivated by microwave radiation remained unlysed. Scanning electron microscopy of the microwave-heated cells revealed severe damage on the surface of most E. coli cells, yet there was no significant change observed in the B. subtilis cells. Microwave-injured E. coli cells were easily lysed in the presence of sodium dodecyl sulfate (SDS), yet B. subtilis cells were resistant to SDS. PMID:10788410

  20. Bacterial components are the major contributors to the macrophage stimulating activity exhibited by extracts of common edible mushrooms.

    PubMed

    Tyler, Heather L; Haron, Mona H; Pugh, Nirmal D; Zhang, Jin; Jackson, Colin R; Pasco, David S

    2016-10-12

    Recent studies have indicated that a major contributor to the innate immune enhancing properties of some medicinal plants is derived from the cell wall components of bacteria colonizing these plants. The purpose of the current study was to assess if the bacteria present within edible and medicinal mushrooms substantially contribute to the innate immune stimulating potential of these mushrooms. Whole mushrooms from thirteen types of edible fungi and individual parts from Agaricus bisporus were analyzed for in vitro macrophage activation as well as bacterial lipopolysaccharides (LPS) content, cell load, and community composition. Substantial variation between samples was observed in macrophage activation (over 500-fold), total bacterial load (over 200-fold), and LPS content (over 10 million-fold). Both LPS content (ρ = 0.832, p < 0.0001) and total bacterial load (ρ = 0.701, p < 0.0001) correlated significantly with macrophage activation in the whole mushroom extracts. Extract activity was negated by treatment with NaOH, conditions that inactivate LPS and other bacterial components. Significant correlations between macrophage activation and total bacterial load (ρ = 0.723, p = 0.0001) and LPS content (ρ = 0.951, p < 0.0001) were also observed between different tissues of Agaricus bisporus. Pseudomonas and Flavobacterium were the most prevalent genera identified in the different tissue parts and these taxa were significantly correlated with in vitro macrophage activation (ρ = 0.697, p < 0.0001 and ρ = 0.659, p = 0.0001, respectively). These results indicate that components derived from mushroom associated bacteria contribute substantially to the innate immune enhancing activity exhibited by mushrooms and may result in similar therapeutic actions as reported for ingestion of bacterial preparations such as probiotics.

  1. Enterogenous bacterial glycolipids are required for the generation of natural killer T cells mediated liver injury

    PubMed Central

    Wei, Yingfeng; Zeng, Benhua; Chen, Jianing; Cui, Guangying; Lu, Chong; Wu, Wei; Yang, Jiezuan; Wei, Hong; Xue, Rufeng; Bai, Li; Chen, Zhi; Li, Lanjuan; Iwabuchi, Kazuya; Uede, Toshimitsu; Van Kaer, Luc; Diao, Hongyan

    2016-01-01

    Glycolipids are potent activator of natural killer T (NKT) cells. The relationship between NKT cells and intestinal bacterial glycolipids in liver disorders remained unclear. We found that, in sharp contrast to specific pathogen-free (SPF) mice, germ-free (GF) mice are resistant to Concanavalin A (ConA)-induced liver injury. ConA treatment failed to trigger the activation of hepatic NKT cells in GF mice. These defects correlated with the sharply reduced levels of CD1d-presented glycolipid antigens in ConA-treated GF mice compared with SPF counterparts. Nevertheless, CD1d expression was similar between these two kinds of mice. The absence of intestinal bacteria did not affect the incidence of αGalCer-induced liver injury in GF mice. Importantly, we found the intestinal bacteria contain glycolipids which can be presented by CD1d and recognized by NKT cells. Furthermore, supplement of killed intestinal bacteria was able to restore ConA-mediated NKT cell activation and liver injury in GF mice. Our results suggest that glycolipid antigens derived from intestinal commensal bacteria are important hepatic NKT cell agonist and these antigens are required for the activation of NKT cells during ConA-induced liver injury. These finding provide a mechanistic explanation for the capacity of intestinal microflora to control liver inflammation. PMID:27821872

  2. Peripheral T Cell Apoptosis and Its Role in Generalized Bacterial Infections: A Minireview.

    PubMed

    Chernykh, Helen R.; Norkin, Maxim N.; Leplina, Olga Yu.; Khonina, Nataliya A.; Tihonova, Marina A.; Ostanin, Alexander A.

    2001-07-01

    In the present review we have attempted to analyze recent findings concerning apoptosis of mature peripheral T cells. The great attention is made to the factors underlying resistance or sensitivity of mature T lymphocytes to activation-induced cell death. The role of preactivation and altered costimulation is discussed in this regard. Besides, the possible role of cytokines in the modulation of T cell apoptosis is emphasized. Particular attention is paid to the studies of apoptosis disorders in the pathogenesis of generalized bacterial infections. In this connection some own results are summarized as well. To characterize T cell death and its role in the pathogenesis of bacterial infections an anti-CD3-mAb or Con A-induced apoptosis in patients with severe and generalized forms of surgical infections have been investigated. We have found a significant increase of activation-induced lymphocyte apoptosis and a high level of apoptosis in freshly isolated lymphocytes in patients with surgical infections. Alternatively, peripheral blood mononuclear cells from surgical patients without infectious complications did not exhibit a marked enhancement of activation-induced cell death. Activation-induced T cell death in surgical infections appeared to be Fas-dependent, involved reactive oxygen intermediates and was partly prevented by pro-inflammatory cytokines, among which IL-2 exhibited the most pronounced anti-apoptotic activity. Likewise, APACHE II score, as a marker of the infection severity, directly correlated with a rate of activation-induced T cell apoptosis. Accelerated T cell apoptosis at the early stage of infection was revealed in survivors and non-survivors, that appears to designate a common pathway for the restriction of systemic inflammation. At the late stage of infection altered T cell apoptosis could account for different outcomes, since the patients with lethal outcome showed 2-fold increase in activation-induced cell death compared to the opposite group

  3. T cell activation.

    PubMed

    Smith-Garvin, Jennifer E; Koretzky, Gary A; Jordan, Martha S

    2009-01-01

    This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor

  4. Behind the lines–actions of bacterial type III effector proteins in plant cells

    PubMed Central

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715

  5. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Baogang; Liu, Ye; Tong, Shuang; Zheng, Maosheng; Zhao, Yinxin; Tian, Caixing; Liu, Hengyuan; Feng, Chuanping

    2014-12-01

    Electricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly as electrical stimulation means for enhancement of bacterial denitrification to remove nitrate effectively from groundwater. With maximum power density of 502.5 mW m-2 and voltage outputs ranging from 500 mV to 700 mV, the nitrate removal is accelerated, with less intermediates accumulation, compared with control sets without electrical stimulation. Denitrification bacteria proliferations and activities are promoted as its number and Adenosine-5'-triphosphate (ATP) concentration increased one order of magnitude (3.5 × 107 in per milliliter biofilm solution) and about 1.5 folds, respectively. Effects of electricity from MFCs on enhancement of bacterial behaviors are demonstrated for the first time. These results indicate that MFCs can be applied in the in-situ bioremediation of nitrate polluted groundwater for efficiency improvement.

  6. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries.

    PubMed

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-14

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  7. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    NASA Astrophysics Data System (ADS)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  8. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells.

    PubMed

    Jin, Ding Jun; Mata Martin, Carmen; Sun, Zhe; Cagliero, Cedric; Zhou, Yan Ning

    2017-02-01

    We have learned a great deal about RNA polymerase (RNA Pol), transcription factors, and the transcriptional regulation mechanisms in prokaryotes for specific genes, operons, or transcriptomes. However, we have only begun to understand how the transcription machinery is three-dimensionally (3D) organized into bacterial chromosome territories to orchestrate the transcription process and to maintain harmony with the replication machinery in the cell. Much progress has been made recently in our understanding of the spatial organization of the transcription machinery in fast-growing Escherichia coli cells using state-of-the-art superresolution imaging techniques. Co-imaging of RNA polymerase (RNA Pol) with DNA and transcription elongation factors involved in ribosomal RNA (rRNA) synthesis, and ribosome biogenesis has revealed similarities between bacteria and eukaryotes in the spatial organization of the transcription machinery for growth genes, most of which are rRNA genes. Evidence supports the notion that RNA Pol molecules are concentrated, forming foci at the clustering of rRNA operons resembling the eukaryotic nucleolus. RNA Pol foci are proposed to be active transcription factories for both rRNA genes expression and ribosome biogenesis to support maximal growth in optimal growing conditions. Thus, in fast-growing bacterial cells, RNA Pol foci mimic eukaryotic Pol I activity, and transcription factories resemble nucleolus-like compartmentation. In addition, the transcription and replication machineries are mostly segregated in space to avoid the conflict between the two major cellular functions in fast-growing cells.

  9. Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages.

    PubMed

    Moreau, Pierre; Diggle, Stephen P; Friman, Ville-Petri

    2017-03-01

    The evolution of host-parasite interactions could be affected by intraspecies variation between different host and parasite genotypes. Here we studied how bacterial host cell-to-cell signaling affects the interaction with parasites using two bacteria-specific viruses (bacteriophages) and the host bacterium Pseudomonas aeruginosa that communicates by secreting and responding to quorum sensing (QS) signal molecules. We found that a QS-signaling proficient strain was able to evolve higher levels of resistance to phages during a short-term selection experiment. This was unlikely driven by demographic effects (mutation supply and encounter rates), as nonsignaling strains reached higher population densities in the absence of phages in our selective environment. Instead, the evolved nonsignaling strains suffered relatively higher growth reduction in the absence of the phage, which could have constrained the phage resistance evolution. Complementation experiments with synthetic signal molecules showed that the Pseudomonas quinolone signal (PQS) improved the growth of nonsignaling bacteria in the presence of a phage, while the activation of las and rhl quorum sensing systems had no effect. Together, these results suggest that QS-signaling can promote the evolution of phage resistance and that the loss of QS-signaling could be costly in the presence of phages. Phage-bacteria interactions could therefore indirectly shape the evolution of intraspecies social interactions and PQS-mediated virulence in P. aeruginosa.

  10. From waste to energy: First experimental bacterial fuel cells onboard the international space station

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.; Rutgers, R.

    2007-09-01

    Bacterial Fuel Cells are innovative energy systems that use bacteria to transform carbohydrates anaerobically into free electrons and waste products. The bacteria deposit the electrons on the anode and hence create a potential difference between the anode and the cathode, yielding a `bacterial battery'. This principle may be favourably influenced by enhanced bacterial productivity or bacterial growth in microgravity conditions, as is shown before in several other studies on bacteria in microgravity. Nonetheless, bacterial fuel cells have not been tested in space before. Currently foreseen applications are very promising for space flight and include waste disposal in manned space vehicles. This study describes a `space-first'test of bacterial fuel cells onboard the International Space Station using the Rhodoferax ferrireducens strain. We test if it is possible to use a bacterial fuel cell in 1g and under both simulated (RPM) and real microgravity conditions. Due to differences in magnitude of the output the data had to be normalized and cumulatively plotted. In all, it can be concluded that bacterial fuel cells show similar phases in the output under different gravitational conditions. Hence it can be concluded from a biological point of view that bacterial fuel cells do operate in space.

  11. Surface free energy activated high-throughput cell sorting.

    PubMed

    Zhang, Xinru; Zhang, Qian; Yan, Tao; Jiang, Zeyi; Zhang, Xinxin; Zuo, Yi Y

    2014-09-16

    Cell sorting is an important screening process in microbiology, biotechnology, and clinical research. Existing methods are mainly based on single-cell analysis as in flow cytometric and microfluidic cell sorters. Here we report a label-free bulk method for sorting cells by differentiating their characteristic surface free energies (SFEs). We demonstrated the feasibility of this method by sorting model binary cell mixtures of various bacterial species, including Pseudomonas putida KT2440, Enterococcus faecalis ATCC 29212, Salmonella Typhimurium ATCC 14028, and Escherichia coli DH5α. This method can effectively separate 10(10) bacterial cells within 30 min. Individual bacterial species can be sorted with up to 96% efficiency, and the cell viability ratio can be as high as 99%. In addition to its capacity of sorting evenly mixed bacterial cells, we demonstrated the feasibility of this method in selecting and enriching cells of minor populations in the mixture (presenting at only 1% in quantity) to a purity as high as 99%. This SFE-activated method may be used as a stand-alone method for quickly sorting a large quantity of bacterial cells or as a prescreening tool for microbial discrimination. Given its advantages of label-free, high-throughput, low cost, and simplicity, this SFE-activated cell sorting method has potential in various applications of sorting cells and abiotic particles.

  12. Bacterial internalization is required to trigger NIK-dependent NF-κB activation in response to the bacterial type three secretion system

    PubMed Central

    Johnson, Kevin S.; Engel, Joanne N.; Auerbuch, Victoria

    2017-01-01

    Infection of human cells with Yersinia pseudotuberculosis expressing a functional type III secretion system (T3SS) leads to activation of host NF-κB. We show that the Yersinia T3SS activates distinct NF-κB pathways dependent upon bacterial subcellular localization. We found that wildtype Yersinia able to remain extracellular triggered NF-κB activation independently of the non-canonical NF-κB kinase NIK in HEK293T cells. In contrast, Yersinia lacking the actin-targeting effectors YopEHO, which become internalized into host cells, induce a NIK-dependent response and nuclear entry of the non-canonical NF-κB subunit p52. Blocking actin polymerization and uptake of effector mutant bacteria using cytochalasin D shifted the host NF-κB response from NIK-independent to primarily NIK-dependent. We observed similar results using Pseudomonas aeruginosa, which expresses a related T3SS and the actin-targeting effector ExoT. As the NF-κB response of HEK293T cells to effectorless Yersinia has been used both as a screening tool for chemical inhibitors of the T3SS and for bacterial forward genetic screens, a better understanding of this response is important for tool optimization and interpretation. PMID:28166267

  13. Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens

    PubMed Central

    Shaffer, Carrie L.; Good, James A. D.; Kumar, Santosh; Krishnan, K. Syam; Gaddy, Jennifer A.; Loh, John T.; Chappell, Joseph; Almqvist, Fredrik

    2016-01-01

    ABSTRACT Bacteria utilize complex type IV secretion systems (T4SSs) to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85) that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA) and peptidoglycan into gastric epithelial cells. In H. pylori, KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori, we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs. PMID:27118587

  14. INFLUENCE OF THE PHYSICAL STATE OF THE BACTERIAL CELL MEMBRANE UPON THE RATE OF RESPIRATION.

    PubMed

    HENNEMAN, D H; UMBREIT, W W

    1964-06-01

    Henneman, Dorothy H. (Rutgers, The State University, New Brunswick, N.J.), and W. W. Umbreit. Influence of the physical state of the bacterial cell membrane upon the rate of respiration. J. Bacteriol. 87:1274-1280. 1964.-NaCl and KCl in concentrations of the order of 0.2 to 0.5 m inhibit the respiration of Escherichia coli B and other gram-negative organisms. Cell-free enzymes concerned in respiration and prepared from the same organisms are not inhibited by these salts, whereas these same enzymes tested in intact cells are. The physical state of the cell membrane appears to be a factor controlling its respiratory activity.

  15. Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages

    PubMed Central

    1986-01-01

    Sub-microgram quantities of bacterial lipopolysaccharide (LPS) have been found to substantially reduce the intracellular catalytic activities of three representative lysosomal enzymes (namely, acid phosphatase, hexosaminidase, and beta-glucuronidase) in human monocyte- derived macrophages. This response was not associated with a concurrent increase in enzyme catalytic activity in the culture supernatant, and hence, could not be explained by mobilization of preformed material. By conducting experiments in the presence and absence of indomethacin, a cyclooxygenase inhibitor, the reduction in lysosomal enzyme catalytic activities was shown not to be dependent on the ability of LPS to induce prostaglandin E2 production. The response was not found to be the result of a more generalized LPS-dependent reduction in the ability of the cells to synthesize protein, since the presence of LPS in macrophage cultures did not appreciably affect the amount of [35S]methionine incorporated into total cellular proteins. A kinetic analysis of the effect of LPS on the down-regulation of enzyme catalytic activities indicated that this was an early response of the cells to LPS exposure. An investigation of the effects of blockade of enzyme catabolism (using the lysosomotropic weak-base, methylamine) indicated that the reduction of catalytic enzyme activities in response to LPS was probably due to a decreased rate of production of active product, rather than an enhanced rate of enzyme catabolism. This suggestion was confirmed by experiments in which the synthesis of pro- hexosaminidase (measured by biosynthetic labeling with [35S]methionine and specific immunoprecipitation of labeled pro-hexosaminidase) was found to be reduced by 42% after a 24-h exposure to LPS (although the synthesis of complement component C3 was stimulated by a factor of 4.5). It is suggested that the ability of LPS to regulate the functional expression of protein products contributes to changes in the overall

  16. BT-benzo-29 inhibits bacterial cell proliferation by perturbing FtsZ assembly.

    PubMed

    Ray, Shashikant; Jindal, Bhavya; Kunal, Kishore; Surolia, Avadhesha; Panda, Dulal

    2015-10-01

    We have identified a potent antibacterial agent N-(4-sec-butylphenyl)-2-(thiophen-2-yl)-1H-benzo[d]imidazole-4-carboxamide (BT-benzo-29) from a library of benzimidazole derivatives that stalled bacterial division by inhibiting FtsZ assembly. A short (5 min) exposure of BT-benzo-29 disassembled the cytokinetic Z-ring in Bacillus subtilis cells without affecting the cell length and nucleoids. BT-benzo-29 also perturbed the localization of early and late division proteins such as FtsA, ZapA and SepF at the mid-cell. Further, BT-benzo-29 bound to FtsZ with a dissociation constant of 24 ± 3 μm and inhibited the assembly and GTPase activity of purified FtsZ. A docking analysis suggested that BT-benzo-29 may bind to FtsZ at the C-terminal domain near the T7 loop. BT-benzo-29 displayed significantly weaker inhibitory effects on the assembly and GTPase activity of two mutants (L272A and V275A) of FtsZ supporting the prediction of the docking analysis. Further, BT-benzo-29 did not appear to inhibit DNA duplication and nucleoid segregation and it did not perturb the membrane potential of B. subtilis cells. The results suggested that BT-benzo-29 exerts its potent antibacterial activity by inhibiting FtsZ assembly. Interestingly, BT-benzo-29 did not affect the membrane integrity of mammalian red blood cells. BT-benzo-29 bound to tubulin with a much weaker affinity than FtsZ and exerted significantly weaker effects on mammalian cells than on the bacterial cells indicating that the compound may have a strong antibacterial potential.

  17. INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity.

    PubMed

    Gaudet, Ryan G; Sintsova, Anna; Buckwalter, Carolyn M; Leung, Nelly; Cochrane, Alan; Li, Jianjun; Cox, Andrew D; Moffat, Jason; Gray-Owen, Scott D

    2015-06-12

    Host recognition of pathogen-associated molecular patterns (PAMPs) initiates an innate immune response that is critical for pathogen elimination and engagement of adaptive immunity. Here we show that mammalian cells can detect and respond to the bacterial-derived monosaccharide heptose-1,7-bisphosphate (HBP). A metabolic intermediate in lipopolysaccharide biosynthesis, HBP is highly conserved in Gram-negative bacteria, yet absent from eukaryotic cells. Detection of HBP within the host cytosol activated the nuclear facto κB pathway in vitro and induced innate and adaptive immune responses in vivo. Moreover, we used a genome-wide RNA interference screen to uncover an innate immune signaling axis, mediated by phosphorylation-dependent oligomerization of the TRAF-interacting protein with forkhead-associated domain (TIFA) that is triggered by HBP. Thus, HBP is a PAMP that activates TIFA-dependent immunity to Gram-negative bacteria.

  18. Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering

    PubMed Central

    Drescher, Knut; Dunkel, Jörn; Cisneros, Luis H.; Ganguly, Sujoy; Goldstein, Raymond E.

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell–cell and cell–surface scattering—the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell–cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dominance of short-range forces closely links collective motion in bacterial suspensions to self-organization in driven granular systems, assemblages of biofilaments, and animal flocks. For the scattering of bacteria with surfaces, long-range fluid dynamical interactions are also shown to be negligible before collisions; however, once the bacterium swims along the surface within a few microns after an aligning collision, hydrodynamic effects can contribute to the experimentally observed, long residence times. Because these results are based on purely mechanical properties, they apply to a wide range of microorganisms. PMID:21690349

  19. Characterization and use of crystalline bacterial cell surface layers

    NASA Astrophysics Data System (ADS)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  20. Synovial fluid antigen-presenting cells unmask peripheral blood T cell responses to bacterial antigens in inflammatory arthritis.

    PubMed Central

    Life, P F; Viner, N J; Bacon, P A; Gaston, J S

    1990-01-01

    We and others have previously shown that synovial fluid (SF) mononuclear cells (MC) from patients with both reactive arthritis and other inflammatory arthritides proliferate in vitro in response to bacteria clinically associated with the triggering of reactive arthritis. In all cases, such SFMC responses are greater than the corresponding peripheral blood (PB) MC responses, often markedly so, and the mechanism for this is unclear. We have investigated this phenomenon by comparing the relative abilities of irradiated non-T cells derived from PB and SF to support autologous T cell responses to ReA-associated bacteria. Seven patients whose SFMC had been shown previously to respond to bacteria were studied. We demonstrate antigen-specific responses of PB T cells to bacteria in the presence of SF non-T cells which are in marked contrast to the minimal responses of either unfractionated PBMC or PB T cells reconstituted with PB non-T cells. We also show that PB, but not SF T cells respond strongly to autologous SF non-T cells in the absence of antigen or mitogen. These findings demonstrate that SF antigen-presenting cells (APC) are potent activators of PB T cells. We conclude that the contrasting responses of SFMC and PBMC to bacterial antigens may be accounted for at least in part by an enhanced ability of SF APC to support T cell proliferative responses. PMID:2311298

  1. Mapping the bacterial cell architecture into the chromosome.

    PubMed Central

    Danchin, A; Guerdoux-Jamet, P; Moszer, I; Nitschké, P

    2000-01-01

    A genome is not a simple collection of genes. We propose here that it can be viewed as being organized as a 'celluloculus' similar to the homunculus of preformists, but pertaining to the category of programmes (or algorithms) rather than to that of architectures or structures: a significant correlation exists between the distribution of genes along the chromosome and the physical architecture of the cell. We review here data supporting this observation, stressing physical constraints operating on the cell's architecture and dynamics, and their consequences in terms of gene and genome structure. If such a correlation exists, it derives from some selection pressure: simple and general physical principles acting at the level of the cell structure are discussed. As a first case in point we see the piling up of planar modules as a stable, entropy-driven, architectural principle that could be at the root of the coupling between the architecture of the cell and the location of genes at specific places in the chromosome. We propose that the specific organization of certain genes whose products have a general tendency to form easily planar modules is a general motor for architectural organization in the bacterial cell. A second mechanism, operating at the transcription level, is described that could account for the efficient building up of complex structures. As an organizing principle we suggest that exploration by biological polymers of the vast space of possible conformation states is constrained by anchoring points. In particular, we suggest that transcription does not always allow the 5'-end of the transcript to go free and explore the many conformations available, but that, in many cases, it remains linked to the transcribing RNA polymerase complex in such a way that loops of RNA, rather than threads with a free end, explore the surrounding medium. In bacteria, extension of the loops throughout the cytoplasm would therefore be mediated by the de novo synthesis of

  2. Raman activated cell sorting.

    PubMed

    Song, Yizhi; Yin, Huabing; Huang, Wei E

    2016-08-01

    Single cell Raman spectra (SCRS) are intrinsic biochemical profiles and 'chemical images' of single cells which can be used to characterise phenotypic changes, physiological states and functions of cells. On the base of SCRS, Raman activated cell sorting (RACS) provides a label-free cell sorting approach, which can link single cells to their chemical or phenotypic profiles. Overcoming naturally weak Raman signals, establishing Raman biomarker as sorting criteria to RACS and improving specific sorting technology are three challenges of developing RACS. Advances on Raman spectroscopy such as stimulated Raman scattering (SRS) and pre-screening helped to increase RACS sorting speed. Entire SCRS can be characterised using pattern recognition methods, and specific Raman bands can be extracted as biomarkers for RACS. Recent advances on cell sorting technologies based on microfluidic device and surface-ejection enable accurate and reliable single cell sorting from complex samples. A high throughput RACS will be achievable in near future by integrating fast Raman detection system such as SRS with microfluidic RACS and Raman activated cell ejection (RACE).

  3. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells

    PubMed Central

    Govindarajan, Sutharsan; Elisha, Yair; Nevo-Dinur, Keren; Amster-Choder, Orna

    2013-01-01

    ABSTRACT The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. PMID:24129255

  4. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  5. Activity of quinolone CP-115,955 against bacterial and human type II topoisomerases is mediated by different interactions.

    PubMed

    Aldred, Katie J; Schwanz, Heidi A; Li, Gangqin; Williamson, Benjamin H; McPherson, Sylvia A; Turnbough, Charles L; Kerns, Robert J; Osheroff, Neil

    2015-02-10

    CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase IIα was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. On the basis of the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase IIα in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential.

  6. The Activity of Quinolone CP-115,955 Against Bacterial and Human Type II Topoisomerases Is Mediated by Different Interactions

    PubMed Central

    Aldred, Katie J.; Schwanz, Heidi A.; Li, Gangqin; Williamson, Benjamin H.; McPherson, Sylvia A.; Turnbough, Charles L.; Kerns, Robert J.; Osheroff, Neil

    2015-01-01

    CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase IIα was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. Based on the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase IIα in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential. PMID:25586498

  7. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis.

    PubMed

    Manuse, Sylvie; Fleurie, Aurore; Zucchini, Laure; Lesterlin, Christian; Grangeasse, Christophe

    2016-01-01

    Bacteria possess a repertoire of versatile protein kinases modulating diverse aspects of their physiology by phosphorylating proteins on various amino acids including histidine, cysteine, aspartic acid, arginine, serine, threonine and tyrosine. One class of membrane serine/threonine protein kinases possesses a catalytic domain sharing a common fold with eukaryotic protein kinases and an extracellular mosaic domain found in bacteria only, named PASTA for 'Penicillin binding proteins And Serine/Threonine kinase Associated'. Over the last decade, evidence has been accumulating that these protein kinases are involved in cell division, morphogenesis and developmental processes in Firmicutes and Actinobacteria. However, observations differ from one species to another suggesting that a general mechanism of activation of their kinase activity is unlikely and that species-specific regulation of cell division is at play. In this review, we survey the latest research on the structural aspects and the cellular functions of bacterial serine/threonine kinases with PASTA motifs to illustrate the diversity of the regulatory mechanisms controlling bacterial cell division and morphogenesis.

  8. Raman spectroscopic identification of single bacterial cells under antibiotic influence.

    PubMed

    Münchberg, Ute; Rösch, Petra; Bauer, Michael; Popp, Jürgen

    2014-05-01

    The identification of pathogenic bacteria is a frequently required task. Current identification procedures are usually either time-consuming due to necessary cultivation steps or expensive and demanding in their application. Furthermore, previous treatment of a patient with antibiotics often renders routine analysis by culturing difficult. Since Raman microspectroscopy allows for the identification of single bacterial cells, it can be used to identify such difficult to culture bacteria. Yet until now, there have been no investigations whether antibiotic treatment of the bacteria influences the Raman spectroscopic identification. This study aims to rapidly identify bacteria that have been subjected to antibiotic treatment on single cell level with Raman microspectroscopy. Two strains of Escherichia coli and two species of Pseudomonas have been treated with four antibiotics, all targeting different sites of the bacteria. With Raman spectra from untreated bacteria, a linear discriminant analysis (LDA) model is built, which successfully identifies the species of independent untreated bacteria. Upon treatment of the bacteria with subinhibitory concentrations of ampicillin, ciprofloxacin, gentamicin, and sulfamethoxazole, the LDA model achieves species identification accuracies of 85.4, 95.3, 89.9, and 97.3 %, respectively. Increasing the antibiotic concentrations has no effect on the identification performance. An ampicillin-resistant strain of E. coli and a sample of P. aeruginosa are successfully identified as well. General representation of antibiotic stress in the training data improves species identification performance, while representation of a specific antibiotic improves strain distinction capability. In conclusion, the identification of antibiotically treated bacteria is possible with Raman microspectroscopy for diverse antibiotics on single cell level.

  9. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila

    PubMed Central

    Soldano, Alessia; Alpizar, Yeranddy A; Boonen, Brett; Franco, Luis; López-Requena, Alejandro; Liu, Guangda; Mora, Natalia; Yaksi, Emre; Voets, Thomas; Vennekens, Rudi; Hassan, Bassem A; Talavera, Karel

    2016-01-01

    Detecting pathogens and mounting immune responses upon infection is crucial for animal health. However, these responses come at a high metabolic price (McKean and Lazzaro, 2011, Kominsky et al., 2010), and avoiding pathogens before infection may be advantageous. The bacterial endotoxins lipopolysaccharides (LPS) are important immune system infection cues (Abbas et al., 2014), but it remains unknown whether animals possess sensory mechanisms to detect them prior to infection. Here we show that Drosophila melanogaster display strong aversive responses to LPS and that gustatory neurons expressing Gr66a bitter receptors mediate avoidance of LPS in feeding and egg laying assays. We found the expression of the chemosensory cation channel dTRPA1 in these cells to be necessary and sufficient for LPS avoidance. Furthermore, LPS stimulates Drosophila neurons in a TRPA1-dependent manner and activates exogenous dTRPA1 channels in human cells. Our findings demonstrate that flies detect bacterial endotoxins via a gustatory pathway through TRPA1 activation as conserved molecular mechanism. DOI: http://dx.doi.org/10.7554/eLife.13133.001 PMID:27296646

  10. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila.

    PubMed

    Soldano, Alessia; Alpizar, Yeranddy A; Boonen, Brett; Franco, Luis; López-Requena, Alejandro; Liu, Guangda; Mora, Natalia; Yaksi, Emre; Voets, Thomas; Vennekens, Rudi; Hassan, Bassem A; Talavera, Karel

    2016-06-14

    Detecting pathogens and mounting immune responses upon infection is crucial for animal health. However, these responses come at a high metabolic price (McKean and Lazzaro, 2011, Kominsky et al., 2010), and avoiding pathogens before infection may be advantageous. The bacterial endotoxins lipopolysaccharides (LPS) are important immune system infection cues (Abbas et al., 2014), but it remains unknown whether animals possess sensory mechanisms to detect them prior to infection. Here we show that Drosophila melanogaster display strong aversive responses to LPS and that gustatory neurons expressing Gr66a bitter receptors mediate avoidance of LPS in feeding and egg laying assays. We found the expression of the chemosensory cation channel dTRPA1 in these cells to be necessary and sufficient for LPS avoidance. Furthermore, LPS stimulates Drosophila neurons in a TRPA1-dependent manner and activates exogenous dTRPA1 channels in human cells. Our findings demonstrate that flies detect bacterial endotoxins via a gustatory pathway through TRPA1 activation as conserved molecular mechanism.

  11. Colorimetric detection of Shewanella oneidensis based on immunomagnetic capture and bacterial intrinsic peroxidase activity

    NASA Astrophysics Data System (ADS)

    Wen, Junlin; Zhou, Shungui; Chen, Junhua

    2014-06-01

    Rapid detection and enumeration of target microorganisms is considered as a powerful tool for monitoring bioremediation process that typically involves cleaning up polluted environments with functional microbes. A novel colorimetric assay is presented based on immunomagnetic capture and bacterial intrinsic peroxidase activity for rapidly detecting Shewanella oneidensis, an important model organism for environmental bioremediation because of its remarkably diverse respiratory abilities. Analyte bacteria captured on the immunomagnetic beads provided a bacterial out-membrane peroxidase-amplified colorimetric readout of the immunorecognition event by oxidizing 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the present of hydrogen peroxide. The high-efficiency of immunomagnetic capture and signal amplification of peroxidase activity offers an excellent detection performance with a wide dynamic range between 5.0 × 103 and 5.0 × 106 CFU/mL toward target cells. Furthermore, this method was demonstrated to be feasible in detecting S. oneidensis cells spiked in environmental samples. The proposed colorimetric assay shows promising environmental applications for rapid detection of target microorganisms.

  12. pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites.

    PubMed

    Shao, Wei; Liu, Hui; Liu, Xiufeng; Sun, Haijun; Wang, Shuxia; Zhang, Rui

    2015-05-01

    Bacterial cellulose (BC) has been extensively explored as some of the most promising biomaterials for biomedical applications due to their unique properties, such as high crystallinity, high mechanical strength, ultrafine fiber network structure, good water holding capacity and biocompatibility. However, BC is lack of anti-bacterial activity which is the main issue to be solved. In the study, BC-Ag nanocomposites were prepared in situ by introducing silver nanoparticles (AgNPs) into BC acting as the templates. The BC and as-prepared BC-Ag nanocomposites were characterized by several techniques including scanning electron microscope, Fourier transform infrared spectra, ultraviolet-visible absorption spectra, X-ray diffraction and thermogravimetric analyses. These results indicate AgNPs successfully impregnated into BC. The releases of Ag(+) at different pH values were studied, which showed pH-responsive release behaviors of BC-Ag nanocomposites. The anti-bacterial performances of BC-Ag nanocomposites were evaluated with Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 9372 and Candida albicans CMCC(F) 98001, which frequently causes medical associated infections. The experimental results showed BC-Ag nanocomposites have excellent anti-bacterial activities, thus confirming its utility as potential wound dressings.

  13. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells.

    PubMed

    Li, Wei

    2006-07-01

    In vivo analysis in whole cell bacteria, especially the native tertiary structures of the bacterial cell wall, remains an unconquered frontier. The current understanding of bacterial cell wall structures has been based on destructive analysis of individual components. These in vitro results may not faithfully reflect the native structural and conformational information. Multidimensional High Resolution Magic Angle Spinning NMR (HRMAS NMR) has evolved to be a powerful technique in a variety of in vivo studies, including live bacterial cells. Existing studies of HRMAS NMR in bacteria, technical consideration of its successful application, and current limitations in studying true human pathogens are briefly reviewed in this report.

  14. Bacterial tracking of motile algae assisted by algal cell's vorticity field.

    PubMed

    Locsei, J T; Pedley, T J

    2009-07-01

    Previously published experimental work by other authors has shown that certain motile marine bacteria are able to track free-swimming algae by executing a zigzag path and steering toward the algae at each turn. Here, we propose that the apparent steering behaviour could be a hydrodynamic effect, whereby an algal cell's vorticity and strain-rate fields rotate a pursuing bacterial cell in the appropriate direction. Using simplified models for the bacterial and algal cells, we numerically compute the trajectory of a bacterial cell and demonstrate the plausibility of this hypothesis.

  15. Evaluation of the genotoxicity of gentian violet in bacterial and mammalian cell systems.

    PubMed

    Aidoo, A; Gao, N; Neft, R E; Schol, H M; Hass, B S; Minor, T Y; Heflich, R H

    1990-01-01

    Previous studies indicate that gentian violet (GV), a triphenylmethane dye used in agriculture and human medicine, is a clastogen in vitro and a carcinogen in chronically exposed mice and rats. Data on its genotoxic activity, however, have been incomplete and partly contradictory. Mutagenesis and DNA damage experiments were conducted to re-evaluate the genotoxic potential of GV in both bacterial and mammalian cell systems. GV was mutagenic in Salmonella typhimurium tester strains TA97 and TA104, but there was little mutagenic activity detected in strains TA98 and TA100. A rat liver homogenate fraction (S9) tended to increase mutagenicity. The major microsomal metabolites of GV, pentamethylpararosaniline and N,N,N',N'-tetramethylpararosaniline were less mutagenic in TA97 and TA104, while N,N,N',N"-tetramethylpararosaniline was a weak mutagen in Salmonella. GV was not mutagenic in Chinese hamster ovary (CHO) cell strain CHO-K1-BH4, and was a questionable mutagen in CHO-AS52 cells. While GV produced DNA damage as measured by sedimentation of nucleotids derived from B6C3F1 mouse lymphocytes treated in vitro, no damage was found in lymphocytes isolated from mice dosed with GV. GV was also a weak producer of gene amplification in an SV40-transformed Chinese hamster cell line. The results indicate that GV is a point mutagen in bacteria; however, since similar exposure conditions produced weak mutagenic activity in mammalian cells, GV may be carcinogenic by virtue of its clastogenic activity.

  16. A20 Curtails Primary but Augments Secondary CD8+ T Cell Responses in Intracellular Bacterial Infection

    PubMed Central

    Just, Sissy; Nishanth, Gopala; Buchbinder, Jörn H.; Wang, Xu; Naumann, Michael; Lavrik, Inna; Schlüter, Dirk

    2016-01-01

    The ubiquitin-modifying enzyme A20, an important negative feedback regulator of NF-κB, impairs the expansion of tumor-specific CD8+ T cells but augments the proliferation of autoimmune CD4+ T cells. To study the T cell-specific function of A20 in bacterial infection, we infected T cell-specific A20 knockout (CD4-Cre A20fl/fl) and control mice with Listeria monocytogenes. A20-deficient pathogen-specific CD8+ T cells expanded stronger resulting in improved pathogen control at day 7 p.i. Imaging flow cytometry revealed that A20-deficient Listeria-specific CD8+ T cells underwent increased apoptosis and necroptosis resulting in reduced numbers of memory CD8+ T cells. In contrast, the primary CD4+ T cell response was A20-independent. Upon secondary infection, the increase and function of pathogen-specific CD8+ T cells, as well as pathogen control were significantly impaired in CD4-Cre A20fl/fl mice. In vitro, apoptosis and necroptosis of Listeria-specific A20-deficient CD8+ T cells were strongly induced as demonstrated by increased caspase-3/7 activity, RIPK1/RIPK3 complex formation and more morphologically apoptotic and necroptotic CD8+ T cells. In vitro, A20 limited CD95L and TNF-induced caspase3/7 activation. In conclusion, T cell-specific A20 limited the expansion but reduced apoptosis and necroptosis of Listeria-specific CD8+ T cells, resulting in an impaired pathogen control in primary but improved clearance in secondary infection. PMID:28004776

  17. How ubiquitination and autophagy participate in the regulation of the cell response to bacterial infection

    PubMed Central

    Dupont, Nicolas; Temime-Smaali, Nassima; Lafont, Frank

    2010-01-01

    Bacterial infection relies on the micro-organism's ability to orchestrate the host's cell signalling such that the immune response is not activated. Conversely, the host cell has dedicated signalling pathways for coping with intrusions by pathogens. The autophagy of foreign micro-organisms (known as xenophagy) has emerged as one of the most powerful of these pathways, although the triggering mode remains largely unknown. In the present paper, we discuss the role that certain post-translational modifications (primarily ubiquitination) may play in the activation of xenophagy and how some bacteria have evolved mechanisms to subvert or hijack this process. In particular, we address the role played by P62/SQSTM1 (sequestosome 1). Finally, we discuss how autophagy can be subverted to eliminate bacteria-induced danger signals. PMID:21077843

  18. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.

    PubMed

    Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo

    2013-07-01

    Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks.

  19. Listeria monocytogenes PrsA2 Is Required for Virulence Factor Secretion and Bacterial Viability within the Host Cell Cytosol▿

    PubMed Central

    Alonzo, Francis; Freitag, Nancy E.

    2010-01-01

    In the course of establishing its replication niche within the cytosol of infected host cells, the facultative intracellular bacterial pathogen Listeria monocytogenes must efficiently regulate the secretion and activity of multiple virulence factors. L. monocytogenes encodes two predicted posttranslocation secretion chaperones, PrsA1 and PrsA2, and evidence suggests that PrsA2 has been specifically adapted for bacterial pathogenesis. PrsA-like chaperones have been identified in a number of Gram-positive bacteria, where they are reported to function at the bacterial membrane-cell wall interface to assist in the folding of proteins translocated across the membrane; in some cases, these proteins have been found to be essential for bacterial viability. In this study, the contributions of PrsA2 and PrsA1 to L. monocytogenes growth and protein secretion were investigated in vitro and in vivo. Neither PrsA2 nor PrsA1 was found to be essential for L. monocytogenes growth in broth culture; however, optimal bacterial viability was found to be dependent upon PrsA2 for L. monocytogenes located within the cytosol of host cells. Proteomic analyses of prsA2 mutant strains in the presence of a mutationally activated allele of the virulence regulator PrfA revealed a critical requirement for PrsA2 activity under conditions of PrfA activation, an event which normally takes place within the host cell cytosol. Despite a high degree of amino acid similarity, no detectable degree of functional overlap was observed between PrsA2 and PrsA1. Our results indicate a critical requirement for PrsA2 under conditions relevant to host cell infection. PMID:20823208

  20. Characterization of colicin M and its orthologs targeting bacterial cell wall peptidoglycan biosynthesis.

    PubMed

    Barreteau, Hélène; El Ghachi, Meriem; Barnéoud-Arnoulet, Aurélie; Sacco, Emmanuelle; Touzé, Thierry; Duché, Denis; Gérard, Fabien; Brooks, Mark; Patin, Delphine; Bouhss, Ahmed; Blanot, Didier; van Tilbeurgh, Herman; Arthur, Michel; Lloubès, Roland; Mengin-Lecreulx, Dominique

    2012-06-01

    For a long time, colicin M was known for killing susceptible Escherichia coli cells by interfering with cell wall peptidoglycan biosynthesis, but its precise mode of action was only recently elucidated: this bacterial toxin was demonstrated to be an enzyme that catalyzes the specific degradation of peptidoglycan lipid intermediate II, thereby provoking the arrest of peptidoglycan synthesis and cell lysis. The discovery of this activity renewed the interest in this colicin and opened the way for biochemical and structural analyses of this new class of enzyme (phosphoesterase). The identification of a few orthologs produced by pathogenic strains of Pseudomonas further enlarged the field of investigation. The present article aims at reviewing recently acquired knowledge on the biology of this small family of bacteriocins.

  1. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  2. Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells.

    PubMed

    Uprety, Rajendra; Luo, Ji; Liu, Jihe; Naro, Yuta; Samanta, Subhas; Deiters, Alexander

    2014-08-18

    We report the genetic incorporation of caged cysteine and caged homocysteine into proteins in bacterial and mammalian cells. The genetic code of these cells was expanded with an engineered pyrrolysine tRNA/tRNA synthetase pair that accepts both light-activatable amino acids as substrates. Incorporation was validated by reporter assays, western blots, and mass spectrometry, and differences in incorporation efficiency were explained by molecular modeling of synthetase-amino acid interactions. As a proof-of-principle application, the genetic replacement of an active-site cysteine residue with a caged cysteine residue in Renilla luciferase led to a complete loss of enzyme activity; however, upon brief exposure to UV light, a >150-fold increase in enzymatic activity was observed, thus showcasing the applicability of the caged cysteine in live human cells. A simultaneously conducted genetic replacement with homocysteine yielded an enzyme with greatly reduced activity, thereby demonstrating the precise probing of a protein active site. These discoveries provide a new tool for the optochemical control of protein function in mammalian cells and expand the set of genetically encoded unnatural amino acids.

  3. Alternative luciferase for monitoring bacterial cells under adverse conditions.

    PubMed

    Wiles, Siouxsie; Ferguson, Kathryn; Stefanidou, Martha; Young, Douglas B; Robertson, Brian D

    2005-07-01

    The availability of cloned luciferase genes from fireflies (luc) and from bacteria (luxAB) has led to the widespread use of bioluminescence as a reporter to measure cell viability and gene expression. The most commonly occurring bioluminescence system in nature is the deep-sea imidazolopyrazine bioluminescence system. Coelenterazine is an imidazolopyrazine derivative which, when oxidized by an appropriate luciferase enzyme, produces carbon dioxide, coelenteramide, and light. The luciferase from the marine copepod Gaussia princeps (Gluc) has recently been cloned. We expressed the Gluc gene in Mycobacterium smegmatis using a shuttle vector and compared its performance with that of an existing luxAB reporter. In contrast to luxAB, the Gluc luciferase retained its luminescence output in the stationary phase of growth and exhibited enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature. The work presented here demonstrated the utility of the copepod luciferase bioluminescent reporter as an alternative to bacterial luciferase, particularly for monitoring responses to environmental stress stimuli.

  4. [Genetic transformation and fate of heterological DNA in bacterial cells].

    PubMed

    Piechowska, Mirosława

    2015-01-01

    Secretion of a metabolite enabling Streptococci to undergo genetic transformation was discovered. The metabolite combined with an optimization process were applied to increase the transformation yield about 20-fold. It was observed that large amounts of DNA exert a bactericidal effect, indicating the ability of at least 70% of cells to uptake the polymer. While studying the molecular mechanism of transformation of Bacillus subtilis it was shown that the uptaken DNA forms complexes with bacterial proteins, which hinders determination of its structure. A method was found to dissociate these complexes which enabled to determine the single-stranded structure of the uptaken DNA. Donor DNA fragments incorporated into the host DNA were of about 10 Da. Non-transforming DNA can be uptaken similarly but does not undergo incorporation into the host DNA. The selectivity of Bacillus subtilis receptors was determined towards DNA of phages containing modified bases: uracil, putrescinyl-thymine and its acetylated derivative, 5'-hydroxymethylcytosine and its glycosylated derivative and also towards double-stranded RNA of f2 phage. All these modifications were tolerated by the cellular receptors, with the exception of glycosylation and the 2'-OH group in RNA.

  5. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    NASA Astrophysics Data System (ADS)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  6. Bacterial Species- and Strain-Dependent Induction of Tissue Factor in Human Vascular Endothelial Cells

    PubMed Central

    Veltrop, M. H. A. M.; Beekhuizen, H.; Thompson, J.

    1999-01-01

    A cardinal process in bacterial endocarditis (BE) is the activation of the clotting system and the formation of a fibrin clot on the inner surface of the heart, the so-called endocardial vegetation. The processes that lead to the activation of the clotting system on endothelial surfaces upon exposure to bacteria are largely unknown. In the present study, we investigated in an in vitro model whether infection of human endothelial cells (EC) with bacteria that are relevant to BE, such as Staphylococcus aureus, Streptococcus sanguis, and Staphylococcus epidermidis, leads to induction of tissue factor (TF)-dependent procoagulant activity (TFA) and whether this process is influenced by host factors, such as interleukin-1 (IL-1), that are produced in response to the bacteremia in vivo. The results show that S. aureus binds to and is internalized by EC, resulting in expression of TF mRNA and TF surface protein as well as generation of TFA within 4 to 8 h after infection. No TFA was found when EC were exposed to UV-irradiated S. aureus or bacterial cell wall fragments. S. sanguis and S. epidermidis, although also binding to EC, did not induce endothelial TFA. This indicates a species and strain dependency. EC also expressed TFA after exposure to IL-1. The enhanced TFA of EC after exposure to S. aureus was not prevented by IL-1 receptor antagonist, arguing against an auto- or paracrine contribution of endogenous IL-1. When IL-1 was applied together with bacteria, this had a synergistic effect on the induction of EC TFA. This was found in particular with S. aureus but also, although to a lesser degree, with S. sanguis and S. epidermidis. This influence of IL-1 on the species- and strain-dependent induction of EC TFA suggests that bacterial factors as well as host factors orchestrate the induction of coagulation in an early stage in the pathogenesis of endovascular disease, such as BE. PMID:10531276

  7. The Role of Bacterial Enhancer Binding Proteins as Specialized Activators of σ54-Dependent Transcription

    PubMed Central

    2012-01-01

    Summary: Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ54. We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ54 for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ54-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ54 to the bacterial cell and its unique role in regulating transcription. PMID:22933558

  8. Flow Cytometric Single-Cell Identification of Populations in Synthetic Bacterial Communities.

    PubMed

    Rubbens, Peter; Props, Ruben; Boon, Nico; Waegeman, Willem

    2017-01-01

    Bacterial cells can be characterized in terms of their cell properties using flow cytometry. Flow cytometry is able to deliver multiparametric measurements of up to 50,000 cells per second. However, there has not yet been a thorough survey concerning the identification of the population to which bacterial single cells belong based on flow cytometry data. This paper not only aims to assess the quality of flow cytometry data when measuring bacterial populations, but also suggests an alternative approach for analyzing synthetic microbial communities. We created so-called in silico communities, which allow us to explore the possibilities of bacterial flow cytometry data using supervised machine learning techniques. We can identify single cells with an accuracy >90% for more than half of the communities consisting out of two bacterial populations. In order to assess to what extent an in silico community is representative for its synthetic counterpart, we created so-called abundance gradients, a combination of synthetic (i.e., in vitro) communities containing two bacterial populations in varying abundances. By showing that we are able to retrieve an abundance gradient using a combination of in silico communities and supervised machine learning techniques, we argue that in silico communities form a viable representation for synthetic bacterial communities, opening up new opportunities for the analysis of synthetic communities and bacterial flow cytometry data in general.

  9. Flow Cytometric Single-Cell Identification of Populations in Synthetic Bacterial Communities

    PubMed Central

    Boon, Nico; Waegeman, Willem

    2017-01-01

    Bacterial cells can be characterized in terms of their cell properties using flow cytometry. Flow cytometry is able to deliver multiparametric measurements of up to 50,000 cells per second. However, there has not yet been a thorough survey concerning the identification of the population to which bacterial single cells belong based on flow cytometry data. This paper not only aims to assess the quality of flow cytometry data when measuring bacterial populations, but also suggests an alternative approach for analyzing synthetic microbial communities. We created so-called in silico communities, which allow us to explore the possibilities of bacterial flow cytometry data using supervised machine learning techniques. We can identify single cells with an accuracy >90% for more than half of the communities consisting out of two bacterial populations. In order to assess to what extent an in silico community is representative for its synthetic counterpart, we created so-called abundance gradients, a combination of synthetic (i.e., in vitro) communities containing two bacterial populations in varying abundances. By showing that we are able to retrieve an abundance gradient using a combination of in silico communities and supervised machine learning techniques, we argue that in silico communities form a viable representation for synthetic bacterial communities, opening up new opportunities for the analysis of synthetic communities and bacterial flow cytometry data in general. PMID:28122063

  10. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation

    NASA Astrophysics Data System (ADS)

    Chen, Juanni; Peng, Hui; Wang, Xiuping; Shao, Feng; Yuan, Zhaodong; Han, Heyou

    2014-01-01

    To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range of aggregated graphene oxide sheets, resulting in the local perturbation of their cell membrane and inducing the decrease of the bacterial membrane potential and the leakage of electrolytes of fungal spores. It is likely that GO interacts with the pathogens by mechanically wrapping and locally damaging the cell membrane and finally causing cell lysis, which may be one of the major toxicity actions of GO against phytopathogens. The antibacterial mode proposed in this study suggests that the GO may possess antibacterial activity against more multi-resistant bacterial and fungal phytopathogens, and provides useful information about the application of GO in resisting crop diseases.To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range

  11. Streptomyces: a screening tool for bacterial cell division inhibitors.

    PubMed

    Jani, Charul; Tocheva, Elitza I; McAuley, Scott; Craney, Arryn; Jensen, Grant J; Nodwell, Justin

    2015-02-01

    Cell division is essential for spore formation but not for viability in the filamentous streptomycetes bacteria. Failure to complete cell division instead blocks spore formation, a phenotype that can be visualized by the absence of gray (in Streptomyces coelicolor) and green (in Streptomyces venezuelae) spore-associated pigmentation. Despite the lack of essentiality, the streptomycetes divisome is similar to that of other prokaryotes. Therefore, the chemical inhibitors of sporulation in model streptomycetes may interfere with the cell division in rod-shaped bacteria as well. To test this, we investigated 196 compounds that inhibit sporulation in S. coelicolor. We show that 19 of these compounds cause filamentous growth in Bacillus subtilis, consistent with impaired cell division. One of the compounds is a DNA-damaging agent and inhibits cell division by activating the SOS response. The remaining 18 act independently of known stress responses and may therefore act on the divisome or on divisome positioning and stability. Three of the compounds (Fil-1, Fil-2, and Fil-3) confer distinct cell division defects on B. subtilis. They also block B. subtilis sporulation, which is mechanistically unrelated to the sporulation pathway of streptomycetes but is also dependent on the divisome. We discuss ways in which these differing phenotypes can be used in screens for cell division inhibitors.

  12. Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper?

    PubMed

    Reuter, Marcel; Hayward, Nicholas J; Black, Susan S; Miller, Samantha; Dryden, David T F; Booth, Ian R

    2014-02-06

    Mechanogated channels are fundamental components of bacterial cells that enable retention of physical integrity during extreme increases in cell turgor. Optical tweezers combined with microfluidics have been used to study the fate of individual Escherichia coli cells lacking such channels when subjected to a bursting stress caused by increased turgor. Fluorescence-activated cell sorting and electron microscopy complement these studies. These analyses show that lysis occurs with a high probability, but the precise path differs between individual cells. By monitoring the loss of cytoplasmic green fluorescent protein, we have determined that some cells release this protein but remain phase dark (granular) consistent with the retention of the majority of large proteins. By contrast, most cells suffer cataclysmic wall failure leading to loss of granularity but with the retention of DNA and overall cell shape (protein-depleted ghosts). The time span of these events induced by hypo-osmotic shock varies but is of the order of milliseconds. The data are interpreted in terms of the timing of mechanosensitive channel gating relative to osmotically induced water influx.

  13. Grazing activity and ruminal bacterial population associated with frothy bloat in steers grazing winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two grazing experiments were designed to elucidate the shifts in rumen bacterial populations (Exp. 1) and grazing activities (Exp. 2) in wheat forage diets between bloated and non-bloated steers. In Exp. 1, the bacterial DNA density was greatest for Ruminococcus flavefaciens, Streptococcus bovis, a...

  14. Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Birbaumer, M.; Schweitzer, F.

    2011-08-01

    We revisit a recently proposed agent-based model of active biological motion and compare its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot for metabolism and active motion. We discuss different assumptions of how the conversion from internal to kinetic energy d( v) may depend on the actual speed, to conclude that d 2 v ξ with either ξ = 2 or 1 < ξ < 2 are promising hypotheses. To test these, we compare the model's prediction with the speed distribution of bacteria which were obtained in media of different nutrient concentration and at different times. We find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0. Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the most probable value of the speed distribution, but is rather spend on metabolism and growth.

  15. The Biological Sensor for Detection of Bacterial Cells in Liquid Phase Based on Plate Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Borodina, Irina; Zaitsev, Boris; Shikhabudinov, Alexander; Guliy, Olga; Ignatov, Oleg; Teplykh, Andrey

    The interactions "bacterial cells - bacteriophages", "bacterial cells - antibodies" and "bacterial cells - mini- antibodies" directly in liquid phase were experimentally investigated with a help of acoustic sensor. The acoustic sensor under study represents two-channel delay line based on the plate of Y-X lithium niobate. One channel of delay line was electrically shorted, the second channel was electrically open. The liquid container was glued on plate surface between transducers of delay line. The dependencies of the change in phase and insertion loss on concentration of bacteriophages, antibodies, and mini- antibodies were obtained for both channels of delay line.

  16. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells.

    PubMed

    Muir, Elizabeth M; Fyfe, Ian; Gardiner, Sonya; Li, Li; Warren, Philippa; Fawcett, James W; Keynes, Roger J; Rogers, John H

    2010-01-15

    Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury.

  17. Oncostatin M production by human dendritic cells in response to bacterial products.

    PubMed

    Suda, Takafumi; Chida, Kingo; Todate, Akihito; Ide, Kyotaro; Asada, Kazuhiro; Nakamura, Yutaro; Suzuki, Kenichiro; Kuwata, Hirofumi; Nakamura, Hirotoshi

    2002-03-21

    Oncostatin M (OSM) is a pleiomorphic cytokine that belongs to the IL-6 cytokine family. It is produced by activated T cells and monocytes/macrophages and plays an important role in the process of inflammatory responses. Although dendritic cells (DCs) have been shown to secrete a variety of cytokines, it is not elucidated whether DCs are able to produce OSM. To clarify this, using human DCs derived from peripheral blood cells, we measured the protein levels of OSM in the supernatants of DC cultures by ELISA and examined the expression of OSM mRNA by RT-PCR after stimulation with lipopolysaccharide (LPS) or fixed Staphylococcus aureus (SACS). Upon stimulation with bacterial products, DCs secreted a large amount of OSM protein in a dose- and time-dependent manner. Concomitantly, the expression of OSM mRNA by DCs was markedly up-regulated. Compared the ability of DCs to produce OSM with that of monocytes, which are major producers of OSM, DCs released significantly higher amounts of OSM protein in the culture supernatants than monocytes. These findings indicate for the first time that human monocyte-derived DCs can synthesize and secrete large amounts of OSM in response to bacterial products, suggesting that OSM produced by DCs at infectious sites may play a role in modulating inflammatory responses.

  18. Two small GTPases act in concert with the bactofilin cytoskeleton to regulate dynamic bacterial cell polarity.

    PubMed

    Bulyha, Iryna; Lindow, Steffi; Lin, Lin; Bolte, Kathrin; Wuichet, Kristin; Kahnt, Jörg; van der Does, Chris; Thanbichler, Martin; Søgaard-Andersen, Lotte

    2013-04-29

    Cell polarity is essential for many bacterial activities, but the mechanisms responsible for its establishment are poorly understood. In Myxococcus xanthus, the type IV pili (T4P) motor ATPases PilB and PilT localize to opposite cell poles and switch poles during cellular reversals. We demonstrate that polar localization of PilB and PilT depends on the small GTPase SofG and BacP, a bactofilin cytoskeletal protein. Polymeric BacP localizes in both subpolar regions. SofG interacts directly with polymeric BacP and associates with one of these patches, forming a cluster that shuttles to the pole to establish localization of PilB and PilT at the same pole. Next, the small GTPase MglA sorts PilB and PilT to opposite poles to establish their correct polarity. During reversals, the Frz chemosensory system induces the inversion of PilB and PilT polarity. Thus, three hierarchically organized systems function in a cascade to regulate dynamic bacterial cell polarity.

  19. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides.

  20. Nanomechanical Response of Pseudomonas aeruginosa PAO1 Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Dutcher, John

    2013-03-01

    We have used an atomic force microscopy (AFM)-based creep deformation technique to study changes to the viscoelastic properties of individual Gram-negative Pseudomonas aeruginosa PAO1 cells as a function of time of exposure to two cationic peptides: polymyxin B (PMB), a cyclic antimicrobial peptide, and the structurally-related compound, polymyxin B nonapeptide (PMBN). The measurements provide a direct measure of the mechanical integrity of the bacterial cell envelope, and the results can be understood in terms of simple viscoelastic models of arrangements of springs and dashpots, which can be ascribed to different components within the bacterial cell. Time-resolved creep deformation experiments reveal abrupt changes to the viscoelastic properties of P. aeruginosa bacterial cells after exposure to both PMB and PMBN, with quantitatively different changes for the two cationic peptides. These measurements provide new insights into the kinetics and mechanism of action of antimicrobial peptides on bacterial cells.

  1. The Impact of Handling and Storage of Human Fecal Material on Bacterial Activity.

    PubMed

    Karatza, Eleni; Vertzoni, Maria; Muenster, Uwe; Reppas, Christos

    2016-11-01

    Fecal material prepared from human stools is frequently used for the assessment of bacterial degradation of active pharmaceutical ingredients as relevant data are useful for evaluating the potential for colonic drug delivery. The impact of handling and storage of human fecal material on bacterial activity was assessed by evaluating the degradation characteristics of metronidazole and olsalazine. Multiple freeze (-70°C)-thaw cycles should be avoided. Incubation of frozen material for about 2 h in the anaerobic workstation ensures regeneration of the highest possible bacterial activity. Material could be stored at -70°C for at least 12 months.

  2. Bacterial IMPDH gene used for the selection of mammalian cell transfectants.

    SciTech Connect

    Baccam, M.; Huberman, E.; Energy Systems

    2003-06-01

    Stable cell transfection is used for the expression of exogenous genes or cDNAs in eukaryotic cells. Selection of these transfectants requires a dominant selectable marker. A variety of such markers has been identified and is currently in use. However, many of these are not suitable for all cell types or require unique conditions. Here we describe a simple and versatile dominant selectable marker that involves bacterial IMP dehydrogenase (IMPDH), an enzyme essential for the replication of mammalian and bacterial cells. Although IMPDH is evolutionarily conserved, the bacterial enzyme is orders of magnitude more resistant to the toxic effect of the drug mycophenolic acid, which is an IMPDH inhibitor. We have demonstrated that transfection of human, monkey or Chinese hamster cell lines with an expression vector containing bacterial IMPDH and mycophenolic acid treatment resulted in the selection of colonies with a strikingly increased resistance to mycophenolic acid toxicity. Analysis of cells derived from these colonies indicated that the acquisition of this resistance was associated with bacterial IMPDH protein expression. As a proof of principle, we showed that mammalian cell transfection with a hicistronic IMPDH/GFP expression vector and mycophenolic acid treatment can he used to successfully select transfectants that express the fluorescent protein. These results indicate that bacterial IMPDH is a practical dominant selectable marker that can be used for the selection of transfectants that express exogenous genes or cDNAs in mammalian cells.

  3. Antibacterial and antifouling activities of chitosan/TiO2/Ag NPs nanocomposite films against packaged drinking water bacterial isolates.

    PubMed

    Natarajan, Saravanan; Bhuvaneshwari, M; Lakshmi, D Shanthana; Mrudula, P; Chandrasekaran, N; Mukherjee, Amitava

    2016-10-01

    TiO2 and Ag NPs are widely used as antibacterial agents against many bacterial pathogens. Chitosan (polymer) itself acts as a strong antibacterial agent. Hence, chitosan/TiO2/Ag NPs incorporated nanocomposite film was prepared against packed drinking water bacterial strains. A concentration-dependent increase in the reduction of cell viability was observed in all the isolates under UV-C and dark exposure conditions. The bacteria consortium showed greater resistance against antibacterial effects of chitosan/TiO2/Ag nanocomposite as compared to single isolates. Glycocalyx test and mass assessment conclude the effective antibacterial activity by inhibiting bacterial adhesion on the film surface. The release of LDH and generation of ROS act as the predominant antibacterial mechanism induced by TiO2/Ag NPs. Surface characterization of chitosan/TiO2/Ag nanocomposite was studied by FTIR and XRD analyses and SEM analysis after interaction with the bacteria.

  4. Nano-engineered living bacterial motors for active microfluidic mixing.

    PubMed

    Al-Fandi, M; Jaradat, M A K; Fandi, K; Beech, J P; Tegenfeldt, J O; Yih, T C

    2010-09-01

    Active micromixers with rotating elements are attractive microfluidic actuators in many applications because of their mixing ability at a short distance. However, miniaturising the impeller design poses technical challenges including the fabrication and driving means. As a possible solution inspired by macro magnetic bar-stirrers, this study proposes the use of tethered, rotating bacteria as mixing elements. A tethered cell is a genetically engineered, harmless Escherichia coli (E. coli) attached to a surface by a single, shortened flagellum. The tethered flagellum acts as a pivot around which the entire cell body smoothly rotates. Videomicroscopy, image analysis and computational fluid dynamics (CFD) are utilised to demonstrate a proof-of-concept for the micro mixing process. Flow visualisation experiments show that a approximately 3 microm long tethered E. coli rotating at approximately 240 rpm can circulate a 1 microm polystyrene bead in the adjacent area at an average speed of nearly 4 microm/s. The Peclet (Peb) number for the stirred bead is evaluated to approximately 4. CFD simulations show that the rotary motion of a tethered E. coli rotating at 240 rpm can generate fluid velocities, up to 37 microm/s bordering the cell envelop. Based on these simulations, the Strouhal number (St) is calculated to about 2. This hybrid bio-inorganic micromxer could be used as a local, disposable mixer.

  5. PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Dinjaski, Nina; Fernández-Gutiérrez, Mar; Selvam, Shivaram; Parra-Ruiz, Francisco J.; Lehman, Susan M.; Román, Julio San; García, Ernesto; García, José L.; García, Andrés J.; Prieto, María Auxiliadora

    2013-01-01

    Biomaterial-associated infections represent a significant clinical problem, and treatment of these microbial infections is becoming troublesome due to the increasing number of antibiotic-resistant strains. Here, we report a naturally functionalized bacterial polyhydroxyalkanoate (PHACOS) with antibacterial properties. We demonstrate that PHACOS selectively and efficiently inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo. This ability has been ascribed to the functionalized side chains containing thioester groups. Significantly less (3.2-fold) biofilm formation of S. aureus was detected on PHACOS compared to biofilms formed on control poly(3-hydroxyoctanoate-co-hydroxyhexanoate) and poly(ethylene terephthalate), but no differences were observed in bacterial adhesion among these polymers. PHACOS elicited minimal cytotoxic and inflammatory effects on murine macrophages and supported normal fibroblast adhesion. In vivo fluorescence imaging demonstrated minimal inflammation and excellent antibacterial activity for PHACOS compared to controls in an in vivo model of implant-associated infection. Additionally, reductions in neutrophils and macrophages in the vicinity of sterile PHACOS compared to sterile PHO implant were observed by immunohistochemistry. Moreover, a similar percentage of inflammatory cells was found in the tissue surrounding sterile PHACOS and S. aureus pre-colonized PHACOS implants, and these levels were significantly lower than S. aureus pre-colonized control polymers. These findings support a contact active surface mode of antibacterial action for PHACOS and establish this functionalized polyhydroxyalkanoate as an infection-resistant biomaterial. PMID:24094939

  6. A Method Revealing Bacterial Cell-wall Architecture by Time-dependent Isotope Labeling and Quantitative Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Patti, Gary J.; Chen, Jiawei; Gross, Michael L.

    2009-01-01

    The molecular details of the biosynthesis and resulting architecture of the bacterial cell wall remain unclear but are essential to understanding the activity of glycopeptide antibiotics, the recognition of pathogens by hosts, and the processes of bacterial growth and division. Here we report a new strategy to elucidate bacterial cell-wall architecture based on time-dependent isotope labeling of bacterial cells quantified by liquid chromatography/accurate mass measurement mass spectrometry. The results allow us to track the fate of cell-wall precursors (which contain the vancomycin-binding site) in Enterococcus faecium, a leading antibiotic-resistant pathogen. By comparing isotopic enrichments of post-insertionally modified cell-wall precursors, we find that tripeptides and species without Asx bridges are specific to mature cell wall. Additionally, we find that the sequence of cell-wall maturation varies throughout a cell cycle. We suggest that actively dividing E. faecium cells have three zones of unique peptidoglycan processing. Our results reveal new organizational characteristics of the bacterial cell wall that are important to understanding tertiary structure and designing novel drugs for antibiotic-resistant pathogens. PMID:19281243

  7. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    PubMed Central

    Dewachter, Liselot; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    The phenomenon of programmed cell death (PCD), in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli). Importantly, the PCD pathway mediated by mutant Obg (Obg*) differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  8. Antimicrobial activity of bacterial isolates from different floral sources of honey.

    PubMed

    Lee, Hyungjae; Churey, John J; Worobo, Randy W

    2008-08-15

    More than two thousand bacterial strains isolated from six US domestic honeys and two manuka honeys from New Zealand were screened for production of antimicrobial compounds. A high incidence of antimicrobial inhibition determined by deferred inhibition assays was observed with the bacterial isolates from all eight honey samples. In total, 2217 isolates out of 2398 strains (92.5% of total isolates) exhibited antimicrobial activity against at least one of the tested microorganisms. Antifungal activity by bacterial isolates originating from the eight honeys ranged from 44.4% to 98.0%. Bacterial isolates from manuka honey (MH1) exhibited antimicrobial activity against Bacillus subtilis ATCC 6633 and Bacillus cereus F4552, at 51.5% and 53.3% of the isolates, respectively. However, less than 30% of the bacterial isolates from the other manuka honey (MH2) and six domestic honey sources exhibited anti-Bacillus activity. Listeria monocytogenes F2-586 1053 showed higher overall rates of sensitivity to between 11 and 66% of the bacterial isolates. The high rate of antimicrobial activity exhibited by the bacterial strains isolated from different honey sources could provide potential sources of novel antimicrobial compounds.

  9. Bacterial Biomass, Metabolic State, and Activity in Stream Sediments: Relation to Environmental Variables and Multiple Assay Comparisons

    PubMed Central

    Bott, T. L.; Kaplan, L. A.

    1985-01-01

    Bacterial biomass, metabolic condition, and activity were measured over a 16-month period in the surface sediments of the following four field sites with differing dissolved organic matter regimes: a woodlot spring seep, a meadow spring seep, a second-order stream, and a third-order stream. Total bacterial biomass was measured by lipid phosphate and epifluorescence microscopic counts (EMC), and viable biomass was measured by 14C most probable number, EMC with 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride reduction, and ATP. Bacterial metabolic condition was determined from the percentage of respiring cells, poly-β-hydroxybutyrate concentrations, and adenylate energy charge. Activity measures included 14C-lipid synthesis, 32P-phospholipid synthesis, the rate of uptake of algal lysate dissolved organic carbon, and respiration, from which biosynthesis was calculated (dissolved organic carbon uptake corrected for respiration). Total bacterial biomass (from EMC) ranged from 0.012 to 0.354 μg of C/mg of dry sediment and was usually lowest in the third-order stream. The percentage of cells respiring was less than 25% at all sites, indicating that most bacteria were dormant or dead. Adenylate energy charge was measured only in the third-order stream and was uniformly low. Poly-β-hydroxybutyrate concentrations were greater in the woodlot spring seep than in the second- and third-order streams. Uptake of algal lysate dissolved organic carbon ranged from undetectable levels to 166 mg of C · m−2 · h−1. Little community respiration could be attributed to algal lysate metabolism. Phospholipid synthesis ranged from 0.006 to 0.354 pmol · mg of dry sediment−1 · h−1. Phospholipid synthesis rates were used to estimate bacterial turnover at the study sites. An estimated 375 bacterial generations per year were produced in the woodlot spring seep, and 67 per year were produced in the third-order stream. PMID:16346867

  10. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA

    PubMed Central

    Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.

    2017-01-01

    Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton. PMID:28332589

  11. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA

    NASA Astrophysics Data System (ADS)

    Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.

    2017-03-01

    Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton.

  12. Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL

    PubMed Central

    Doerner, Julia F.; Febvay, Sebastien; Clapham, David E.

    2013-01-01

    Bacterial mechanosensitive channels are some of the largest pores in nature. In particular, MscL, with a pore diameter > 25 Å, allows passage of large organic ions and small proteins. Functional MscL reconstitution into lipids has been proposed for applications in vesicular-based drug release. Here we show that these channels can be functionally expressed in mammalian cells to afford rapid controlled uptake of membrane impermeable molecules. We first demonstrate that MscL gating in response to increased membrane tension is preserved in mammalian cell membranes. Molecular delivery is controlled by adopting an established method of MscL charge-induced activation. We then determine pore size limitations using fluorescently labeled model cargoes. Finally, we activate MscL to introduce the cell-impermeable bi-cyclic peptide phalloidin, a specific marker for actin filaments, into cells. We propose that MscL will be a useful tool for gated and controlled delivery of bioactive molecules into cells. PMID:22871809

  13. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    SciTech Connect

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  14. Crystal structures of bacterial peptidoglycan amidase AmpD and an unprecedented activation mechanism.

    PubMed

    Carrasco-López, Cesar; Rojas-Altuve, Alzoray; Zhang, Weilie; Hesek, Dusan; Lee, Mijoon; Barbe, Sophie; André, Isabelle; Ferrer, Pilar; Silva-Martin, Noella; Castro, German R; Martínez-Ripoll, Martín; Mobashery, Shahriar; Hermoso, Juan A

    2011-09-09

    AmpD is a cytoplasmic peptidoglycan (PG) amidase involved in bacterial cell-wall recycling and in induction of β-lactamase, a key enzyme of β-lactam antibiotic resistance. AmpD belongs to the amidase_2 family that includes zinc-dependent amidases and the peptidoglycan-recognition proteins (PGRPs), highly conserved pattern-recognition molecules of the immune system. Crystal structures of Citrobacter freundii AmpD were solved in this study for the apoenzyme, for the holoenzyme at two different pH values, and for the complex with the reaction products, providing insights into the PG recognition and the catalytic process. These structures are significantly different compared with the previously reported NMR structure for the same protein. The NMR structure does not possess an accessible active site and shows the protein in what is proposed herein as an inactive "closed" conformation. The transition of the protein from this inactive conformation to the active "open" conformation, as seen in the x-ray structures, was studied by targeted molecular dynamics simulations, which revealed large conformational rearrangements (as much as 17 Å) in four specific regions representing one-third of the entire protein. It is proposed that the large conformational change that would take the inactive NMR structure to the active x-ray structure represents an unprecedented mechanism for activation of AmpD. Analysis is presented to argue that this activation mechanism might be representative of a regulatory process for other intracellular members of the bacterial amidase_2 family of enzymes.

  15. Crystal Structures of Bacterial Peptidoglycan Amidase AmpD and an Unprecedented Activation Mechanism*

    PubMed Central

    Carrasco-López, Cesar; Rojas-Altuve, Alzoray; Zhang, Weilie; Hesek, Dusan; Lee, Mijoon; Barbe, Sophie; André, Isabelle; Ferrer, Pilar; Silva-Martin, Noella; Castro, German R.; Martínez-Ripoll, Martín; Mobashery, Shahriar; Hermoso, Juan A.

    2011-01-01

    AmpD is a cytoplasmic peptidoglycan (PG) amidase involved in bacterial cell-wall recycling and in induction of β-lactamase, a key enzyme of β-lactam antibiotic resistance. AmpD belongs to the amidase_2 family that includes zinc-dependent amidases and the peptidoglycan-recognition proteins (PGRPs), highly conserved pattern-recognition molecules of the immune system. Crystal structures of Citrobacter freundii AmpD were solved in this study for the apoenzyme, for the holoenzyme at two different pH values, and for the complex with the reaction products, providing insights into the PG recognition and the catalytic process. These structures are significantly different compared with the previously reported NMR structure for the same protein. The NMR structure does not possess an accessible active site and shows the protein in what is proposed herein as an inactive “closed” conformation. The transition of the protein from this inactive conformation to the active “open” conformation, as seen in the x-ray structures, was studied by targeted molecular dynamics simulations, which revealed large conformational rearrangements (as much as 17 Å) in four specific regions representing one-third of the entire protein. It is proposed that the large conformational change that would take the inactive NMR structure to the active x-ray structure represents an unprecedented mechanism for activation of AmpD. Analysis is presented to argue that this activation mechanism might be representative of a regulatory process for other intracellular members of the bacterial amidase_2 family of enzymes. PMID:21775432

  16. Dipeptide-Based Metabolic Labeling of Bacterial Cells for Endogenous Antibody Recruitment

    PubMed Central

    2016-01-01

    The number of antibiotic-resistant bacterial infections has increased dramatically over the past decade. To combat these pathogens, novel antimicrobial strategies must be explored and developed. We previously reported a strategy based on hapten-modified cell wall analogues to induce recruitment of endogenous antibodies to bacterial cell surfaces. Cell surface remodeling using unnatural single d-amino acid cell wall analogues led to modification at the C-terminus of the peptidoglycan stem peptide. During peptidoglycan processing, installed hapten-displaying amino acids can be subsequently removed by cell wall enzymes. Herein, we disclose a two-step dipeptide peptidoglycan remodeling strategy aimed at introducing haptens at an alternative site within the stem peptide to improve retention and diminish removal by cell wall enzymes. Through this redesigned strategy, we determined size constraints of peptidoglycan remodeling and applied these constraints to attain hapten–linker conjugates that produced high levels of antibody recruitment to bacterial cell surfaces. PMID:27294199

  17. Phase Diagram of Collective Motion of Bacterial Cells in a Shallow Circular Pool

    NASA Astrophysics Data System (ADS)

    Wakita, Jun-ichi; Tsukamoto, Shota; Yamamoto, Ken; Katori, Makoto; Yamada, Yasuyuki

    2015-12-01

    The collective motion of bacterial cells in a shallow circular pool is systematically studied using the bacterial species Bacillus subtilis. The ratio of cell length to pool diameter (i.e., the reduced cell length) ranges from 0.06 to 0.43 in our experiments. Bacterial cells in a circular pool show various types of collective motion depending on the cell density in the pool and the reduced cell length. The motion is classified into six types, which we call random motion, turbulent motion, one-way rotational motion, two-way rotational motion, random oscillatory motion, and ordered oscillatory motion. Two critical values of reduced cell lengths are evaluated, at which drastic changes in collective motion are induced. A phase diagram is proposed in which the six phases are arranged.

  18. Probing interaction of gram-positive and gram-negative bacterial cells with ZnO nanorods.

    PubMed

    Jain, Aanchal; Bhargava, Richa; Poddar, Pankaj

    2013-04-01

    In the present work, the physiological effects of the ZnO nanorods on the Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Aerobacter aerogenes) bacterial cells have been studied. The analysis of bacterial growth curves for various concentrations of ZnO nanorods indicates that Gram positive and Gram negative bacterial cells show inhibition at concentrations of ~64 and ~256 μg/mL respectively. The marked difference in susceptibility towards nanorods was also validated by spread plate and disk diffusion methods. In addition, the scanning electron micrographs show a clear damage to the cells via changed morphology of the cells from rod to coccoid etc. The confocal optical microscopy images of these cells also demonstrate the reduction in live cell count in the presence of ZnO nanorods. These, results clearly indicate that the antibacterial activity of ZnO nanorods is higher towards Gram positive bacterium than Gram negative bacterium which indicates that the structure of the cell wall might play a major role in the interaction with nanostructured materials and shows high sensitivity to the particle concentration.

  19. Cell fate regulation governed by a repurposed bacterial histidine kinase

    DOE PAGES

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; ...

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interactionmore » between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.« less

  20. Cell fate regulation governed by a repurposed bacterial histidine kinase

    SciTech Connect

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; Mathews, Irimpan I.; Blair, Jimmy A.; Deacon, Ashley M.; Shapiro, Lucy; Stock, Ann M.

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.

  1. Ablation of central nervous system progenitor cells in transgenic rats using bacterial nitroreductase system.

    PubMed

    Kwak, Seung P; Malberg, Jessica E; Howland, David S; Cheng, Ke-Yi; Su, Jianying; She, Yin; Fennell, Myles; Ghavami, Afshin

    2007-05-01

    Specific ablation of central nervous system (CNS) progenitor cells in the brain of live animals is a powerful method to determine the functions of these cells and to reveal novel avenues for the treatment of several CNS-related disorders. To achieve this goal, we generated a line of transgenic rats expressing a bacterial enzyme, Escherichia coli nitroreductase gene (NTR), under control of the nestin promoter. In this system, NTR(+) cells are selectively eliminated upon application of prodrug CB1954, through activation of programmed cell death machineries. At 5 days of age, which is a time when cerebellar development is occurring, transgenic rats bearing the nestin-NTR/green fluorescent protein (GFP) gene are overtly normal and express NTR/GFP in neuronal stem cells, without any toxicity in these cells. The functional consequence of progenitor cell ablation was demonstrated by administering prodrug CB1954 into the cerebellum at this 5-day time point. Stem cell ablation in these neonates resulted in sensorimotor abnormalities, cerebellar degeneration, overall reduction in cerebellar seize, and manifestation of ataxia. In adult rats, GFP expression was not seen in the hippocampal progenitor cells and seen only at very low levels in the lateral ventricles, indicating a different NTR/GFP expression pattern between neonates and adults. In addition, application of CB1954 by intraventricular delivery reduced the number of 5-bromo-2'-deoxyuridine-labeled proliferating cells in the lateral ventricle but not hippocampus of NTR/GFP rats. These findings shows that targeted expression of NTR under a specific promoter might be of significant value in addressing the function of distinct cell population in vivo.

  2. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.

    PubMed

    Hammes, Frederik; Berney, Michael; Wang, Yingying; Vital, Marius; Köster, Oliver; Egli, Thomas

    2008-01-01

    There are significantly more microbial cells in drinking water than what can be cultured on synthetic growth media. Nonetheless, cultivation-based heterotrophic plate counts (HPCs) are used worldwide as a general microbial quality parameter in drinking water treatment and distribution. Total bacterial cell concentrations are normally not considered during drinking water treatment as a design, operative or legislative parameters. This is mainly because easy and rapid methods for quantification of total bacterial cell concentrations have, up to now, not been available. As a consequence, the existing lack of data does not allow demonstrating the practical value of this parameter. In this study, we have used fluorescence staining of microbial cells with the nucleic acid stain SYBR((R)) Green I together with quantitative flow cytometry (FCM) to analyse total cell concentrations in water samples from a drinking water pilot plant. The plant treats surface water (Lake Zürich) through sequential ozonation, granular active carbon (GAC) filtration and membrane ultrafiltration (UF). The data were compared with adenosine tri-phosphate (ATP) measurements and conventional HPCs performed on the same water samples. We demonstrated that the impact of all three major treatment steps on the microbiology in the system could accurately be described with total cell counting: (1) ozonation caused chemical destruction of the bacterial cells; (2) GAC filtration facilitated significant regrowth of the microbial community; and (3) membrane UF physically removed the bacterial cells from the water. FCM typically detected 1-2 log units more than HPC, while ATP measurements were prone to interference from extracellular ATP released during the ozonation step in the treatment train. We have shown that total cell concentration measured with FCM is a rapid, easy, sensitive and importantly, a descriptive parameter of several widely applied drinking water treatment processes.

  3. Protease inhibitor monotherapy is associated with a higher level of monocyte activation, bacterial translocation and inflammation

    PubMed Central

    Torres, Berta; Guardo, Alberto C; Leal, Lorna; Leon, Agathe; Lucero, Constanza; Alvarez-Martinez, Míriam J; Martinez, Miguel J; Vila, Jordi; Martínez-Rebollar, María; González-Cordón, Ana; Gatell, Josep M; Plana, Montserrat; García, Felipe

    2014-01-01

    Introduction Monotherapy with protease-inhibitors (MPI) may be an alternative to cART for HIV treatment. We assessed the impact of this strategy on immune activation, bacterial translocation and inflammation. Methods We performed a cross-sectional study comparing patients on successful MPI (n=40) with patients on cART (n=20). Activation, senescence, exhaustion and differentiation stage in CD4+ and CD8+ T lymphocyte subsets, markers of monocyte activation, microbial translocation, inflammation, coagulation and low-level viremia were assessed. Results CD4+ or CD8+ T lymphocyte subset parameters were not significantly different between both groups. Conversely, as compared with triple cART, MPI patients showed a higher proportion of activated monocytes (CD14+ CD16−CD163+ cells, p=0.031), soluble markers of monocyte activation (sCD14 p=0.004, sCD163 p=0.002), microbial translocation (lipopolysaccharide (LPS)-binding protein; LBP p=0.07), inflammation (IL-6 p=0.04) and low-level viremia (p=0.035). In a multivariate model, a higher level of CD14+ CD16−CD163+ cells and sCD14, and presence of very low-level viremia were independently associated with MPI. Monocyte activation was independently associated with markers of inflammation (IL-6, p=0.006), microbial translocation (LBP, p=0.01) and low-level viremia (p=0.01). Conclusions Patients on MPI showed a higher level of monocyte activation than patients on standard therapy. Microbial translocation and low-level viremia were associated with the high level of monocyte activation observed in patients on MPI. The long-term clinical consequences of these findings should be assessed. PMID:25280865

  4. Bacterial lipopolysaccharides induce in vitro degradation of cartilage matrix through chondrocyte activation.

    PubMed Central

    Jasin, H E

    1983-01-01

    The present studies demonstrate that bacterial lipopolysaccharides (LPS) induce cartilage matrix degradation in live explants in organ culture. Quintuplicate bovine nasal fibrocartilage explants cultured for 8 d with three different purified LPS preparations derived from Escherichia coli and Salmonella typhosa at concentrations ranging from 1.0 to 25.0 micrograms/ml resulted in matrix proteoglycan depletion of 33.3 +/- 5.8 to 92.5 +/- 2.0% (medium control depletion 17.7 +/- 0.7 to 32.4 +/- 1.4%). Matrix degradation depended on the presence of live chondrocytes because frozen-thawed explants incubated with LPS failed to show any proteoglycan release. Moreover, the addition of Polymyxin B (25 micrograms/ml) to live explants incubated with LPS abolished matrix release, whereas Polymyxin B had no effect on the matrix-degrading activity provided by blood mononuclear cell factors. A highly purified Lipid A preparation induced matrix degradation at a concentration of 0.01 micrograms/ml. Cartilage matrix collagen and proteoglycan depletion also occurred with porcine articular cartilage explants (collagen release: 18.3 +/- 3.5%, medium control: 2.1 +/- 0.5%; proteoglycan release: 79.0 +/- 5.9%, medium control: 28.8 +/- 4.8%). Histochemical analysis of the cultured explants confirmed the results described above. Gel chromatography of the proteoglycans released in culture indicated that LPS induced significant degradation of the high molecular weight chondroitin sulfate-containing aggregates. These findings suggest that bacterial products may induce cartilage damage by direct stimulation of chondrocytes. This pathogenic mechanism may play a role in joint damage in septic arthritis and in arthropathies resulting from the presence of bacterial products derived from the gastrointestinal tract. Images PMID:6358260

  5. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    PubMed Central

    2012-01-01

    Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD) was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ) anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG) 25 and diazo-dye Acid Red (AR) 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l) with relative decolorization values of 91.2% (3 h) and 97.1% (18 h), as well as high activity to AR18 (1 g/l) by 80.5% (3 h) and 89.0% (18 h), was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l). No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved via a subsequent 4-h

  6. Composition and Metabolic Activities of Bacterial Biofilms Colonizing Food Residues in the Human Gut

    PubMed Central

    Macfarlane, Sandra; Macfarlane, George T.

    2006-01-01

    Bacteria growing in the human large intestine live in intimate association with the host and play an important role in host digestive processes, gut physiology, and metabolism. Fecal bacteria have been investigated extensively, but few studies have been done on biofilms that form on digestive wastes in the large bowel. The aims of this investigation were to investigate the composition and metabolic activities of bacterial communities that colonize the surfaces of food residues in fecal material, with respect to their role in the fermentation of complex carbohydrates. Fresh stools were obtained from 15 healthy donors, and food residues were separated by filtration. Adherent bacteria were removed by surfactant treatment for microbiological analysis and fermentation studies. Scanning electron microscopy and fluorescent in situ hybridization in conjunction with confocal laser scanning microscopy (CLSM) were used to visualize intact biofilms. Results showed that bacterial populations strongly adhering to particulate matter were phenotypically similar in composition to unattached communities, with bacteroides and bifidobacteria predominating. Biofilms comprised a mixture of living and dead bacteria, and CLSM showed that bifidobacteria in the biofilms occurred as isolated dispersed cells and in microcolonies near the interface with the substratum. Fermentation experiments with a variety of complex carbohydrates demonstrated that biofilm populations were more efficient in digesting polysaccharides, while nonadhering communities fermented oligosaccharides most rapidly. Acetate was the principal fermentation product formed by biofilm bacteria, whereas higher levels of butyrate were produced by nonadherent populations, showing that the two communities were metabolically distinct. PMID:16957247

  7. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    NASA Astrophysics Data System (ADS)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  8. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile.

    PubMed

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-11-25

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800-2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400-1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today.

  9. Sclerotiamide: The First Non-Peptide-Based Natural Product Activator of Bacterial Caseinolytic Protease P.

    PubMed

    Lavey, Nathan P; Coker, Jesse A; Ruben, Eliza A; Duerfeldt, Adam S

    2016-04-22

    Caseinolytic protease P (ClpP) maintains essential roles in bacterial homeostasis. As such, both the inhibition and activation of this enzyme result in bactericidal activity, making ClpP a promising target for antibacterial drug development. Herein, we report the results of a fluorescence-based screen of ∼450 structurally diverse fungal and bacterial secondary metabolites. Sclerotiamide (1), a paraherquamide-related indolinone, was identified as the first non-peptide-based natural product activator of ClpP. Structure-activity relationships arising from the initial screen, preliminary biochemical evaluation of 1, and rationale for the exploitation of this chemotype to develop novel ClpP activators are presented.

  10. Bordetella adenylate cyclase toxin: entry of bacterial adenylate cyclase into mammalian cells.

    PubMed

    Confer, D L; Slungaard, A S; Graf, E; Panter, S S; Eaton, J W

    1984-01-01

    We have identified an adenylate cyclase toxin in urea extracts and culture supernatant fluids of Bordetella pertussis (2). The ability of this toxin and the lack of a strong correlation between its activity and adenylate cyclase activity found in urea extracts suggest that it is an oligomer of readily dissociable subunits. The mechanism by which Bordetella adenylate cyclase toxin interacts with target cells is unknown, but polyvalent cations are necessary. Neutrophils exposed to the toxin acquire a 39,000 Mr protein that can also be photoaffinity labeled with 32P-ATP. We anticipate that this protein will prove to be a catalytic component of Bordetella adenylate cyclase toxin. Susceptible cells exposed to Bordetella adenylate cyclase toxin are functionally aberrant. In phagocytes, decreased bactericidal capacity may be important in the pathogenesis of human whooping cough and other Bordetella infections occurring in domestic animals. The effects of the toxin on neoplastic cells may offer new insights into the factors controlling their growth and differentiation. Bordetella adenylate cyclase toxin is a unique bacterial product. Further purification and characterization of this toxin will add to our understanding of cell-protein interactions and pathogen-host relationships.

  11. Effect of a small molecule Lipid II binder on bacterial cell wall stress

    PubMed Central

    Malin, Jakob; Shetty, Amol C; Daugherty, Sean C; de Leeuw, Erik PH

    2017-01-01

    We have recently identified small molecule compounds that act as binders of Lipid II, an essential precursor of bacterial cell wall biosynthesis. Lipid II comprised a hydrophilic head group that includes a peptidoglycan subunit composed of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) coupled to a short pentapeptide moiety. This headgroup is coupled to a long bactoprenol chain via a pyrophosphate group. Here, we report on the cell wall activity relationship of dimethyl-3-methyl(phenyl)amino-ethenylcyclohexylidene-propenyl-3-ethyl-1,3-benzothiazolium iodide (compound 5107930) obtained by functional and genetic analyses. Our results indicate that compounds bind to Lipid II and cause specific upregulation of the vancomycin-resistance associated gene vraX. vraX is implicated in the cell wall stress stimulon that confers glycopeptide resistance. Our small molecule Lipid II inhibitor retained activity against strains of Staphylococcus aureus mutated in genes encoding the cell wall stress stimulon. This suggests the feasibility of developing this new scaffold as a therapeutic agent in view of increasing glycopeptide resistance. PMID:28280373

  12. Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination.

    PubMed

    Yue, Chongxia; van der Mei, Henny C; Kuijer, Roel; Busscher, Henk J; Rochford, Edward T J

    2015-11-01

    Bacterial contamination during biomaterial implantation is often unavoidable, yielding a combat between cells and bacteria. Here we aim to determine the modulatory function of bacterial components on stem-cell, fibroblast, and osteoblast adhesion to a titanium alloy, including the role of toll-like-receptors (TLRs). Presence of heat-sacrificed Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, or Pseudomonas aeruginosa induced dose and cell-type dependent responses. Stem-cells were most sensitive to bacterial presence, demonstrating decreased adhesion number yet increased adhesion effort with a relatively large focal adhesion contact area. Blocking TLRs had no effect on stem-cell adhesion in presence of S. aureus, but blocking both TLR2 and TLR4 induced an increased adhesion effort in presence of E. coli. Neither lipopolysaccharide, lipoteichoic acid, nor bacterial DNA provoked the same cell response as did whole bacteria. Herewith we suggest a new mechanism as to how biomaterials are integrated by cells despite the unavoidable presence of bacterial contamination. Stimulation of host cell integration of implant surfaces may open a new window to design new biomaterials with enhanced healing, thereby reducing the risk of biomaterial-associated infection of both "hardware-based" implants as well as of tissue-engineered constructs, known to suffer from similarly high infection risks as currently prevailing in "hardware-based" implants.

  13. Correlated Atomic Force Microscopy and Flourescence Lifetime Imaging of Live Bacterial Cells

    SciTech Connect

    Micic, Miodrag; Hu, Dehong; Suh, Yung D.; Newton, Greg J.; Romine, Margaret F.; Lu, H PETER.

    2004-04-01

    We report on the imaging of living bacterial cells by using a new correlated tapping-mode atomic force microscopy (AFM) and confocal al fluorescence lifetime imaging microscopy (FLIM). Different methods of preparing the bacterial sample were explored for optimal imaging of Gram-negative Shewanella oneidensis MR-1 cells on poly-1-lysine coated surfaces and agarose gel coated surfaces. We have found that the agarose gel containing 99% buffer can provide a local aqueous environment for single bacterial cells. Furthermore, the cell surface topography can be characterized by tapping-mode in-air AFM imaging for the single bacterial cells that are partially embedded. Using in-air rather than under-water AFM imaging of the living cells significantly enhanced the contrast and single-to-noise ration of the AFM images. Near-field AFM-tip enhanced fluorescence lifetime imaging (AFM-FLIM) holds great promise for obtaining fluorescence images beyond the optical diffraction limited spatial resolution. We have previously demonstrated near-field AFM-FLIM imaging of polymer beads beyond the diffraction limited spatial resolution. Here, as the first step of applying AFM-FLIM on imaging living bacterial cells, we demonstrate a correlated and consecutive AFM topographic imaging, fluorescence intensity imaging, and FLIM imaging to characterize cell polarity.

  14. Distributed Classifier Based on Genetically Engineered Bacterial Cell Cultures

    PubMed Central

    2015-01-01

    We describe a conceptual design of a distributed classifier formed by a population of genetically engineered microbial cells. The central idea is to create a complex classifier from a population of weak or simple classifiers. We create a master population of cells with randomized synthetic biosensor circuits that have a broad range of sensitivities toward chemical signals of interest that form the input vectors subject to classification. The randomized sensitivities are achieved by constructing a library of synthetic gene circuits with randomized control sequences (e.g., ribosome-binding sites) in the front element. The training procedure consists in reshaping of the master population in such a way that it collectively responds to the “positive” patterns of input signals by producing above-threshold output (e.g., fluorescent signal), and below-threshold output in case of the “negative” patterns. The population reshaping is achieved by presenting sequential examples and pruning the population using either graded selection/counterselection or by fluorescence-activated cell sorting (FACS). We demonstrate the feasibility of experimental implementation of such system computationally using a realistic model of the synthetic sensing gene circuits. PMID:25349924

  15. Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress

    PubMed Central

    Francius, Grégory; Polyakov, Pavel; Merlin, Jenny; Abe, Yumiko; Ghigo, Jean-Marc; Merlin, Christophe; Beloin, Christophe; Duval, Jérôme F. L.

    2011-01-01

    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate

  16. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    PubMed

    Francius, Grégory; Polyakov, Pavel; Merlin, Jenny; Abe, Yumiko; Ghigo, Jean-Marc; Merlin, Christophe; Beloin, Christophe; Duval, Jérôme F L

    2011-01-01

    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3), cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate

  17. Analysis of in vitro polyclonal B cell differentiation responses to bacterial peptidoglycan and pokeweed mitogen in rheumatoid arthritis.

    PubMed Central

    Pardo, I; Carafa, C; Dziarski, R; Levinson, A I

    1984-01-01

    To gain insight into possible determinants of in vivo polyclonal B cell activation seen in rheumatoid arthritis (RA), we enumerated immunoglobulin secreting cells appearing in cultures of peripheral blood mononuclear cells that were stimulated with pokeweed mitogen (PWM) or a newly described polyclonal B cell activator, bacterial peptidoglycan. Peptidoglycan, the major constituent of the cell wall of gram positive bacteria, has properties which warrant its consideration in the pathogenesis of RA; including the ability to induce rheumatoid factor production as well as a RA like syndrome in experimental animals. RA patients as a group had similar immunoglobulin secreting cell responses in PWM stimulated cultures compared to arthritis controls and showed moderately depressed responses compared to healthy volunteers. However, their in vitro responses to peptidoglycan were markedly depressed when compared to those of both control groups. Of note, severely reduced peptidoglycan-induced responses were seen in 26 of 55 rheumatoid patients who demonstrated intact PWM-induced responses. These impaired responses to peptidoglycan were not due to (1) aberrant kinetic response; (2) shift in the dose-response pattern; (3) decreased cell survival in culture or (4) the inability of peptidoglycan to activate RA cells. Cell fractionation studies indicated that peptidoglycan reactive B cells were present in the blood of some patients but their reactivity was abrogated by suppressor T cells. These studies provide evidence of aberrant in vitro polyclonal B cell activation in patients with RA and provide a basis for further investigation of peptidoglycan as an immunopathogenetic agent in this disease. PMID:6610510

  18. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Chatha, Mariyam Asghar; Ejaz, Wardah; Janjua, Hussnain Ahmed; Hussain, Irshad

    2014-10-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests.

  19. Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner

    PubMed Central

    Yang, Jungmin; Lee, Kang-Mu; Park, Sangjun; Cho, Yoeseph; Lee, Eunju; Park, Jong-Hwan; Shin, Ok Sarah; Son, Junghyun; Yoon, Sang Sun; Yu, Je-Wook

    2017-01-01

    Inflammasome signaling can contribute to host innate immune defense against bacterial pathogens such as Pseudomonas aeruginosa. However, bacterial evasion of host inflammasome activation is still poorly elucidated. Quorum sensing (QS) is a bacterial communication mechanism that promotes coordinated adaptation by triggering expression of a wide range of genes. QS is thought to strongly contribute to the virulence of P. aeruginosa, but the molecular impact of bacterial QS on host inflammasome defense is completely unknown. Here, we present evidence that QS-related factors of the bacterial secretant (BS) from P. aeruginosa can dampen host inflammasome signaling in mouse bone marrow-derived macrophages. We found that BS from QS-defective ΔlasR/rhlR mutant, but not from wild-type (WT) P. aeruginosa, induces robust activation of the NLRC4 inflammasome. P. aeruginosa-released flagellin mediates this inflammasome activation by ΔlasR/rhlR secretant, but QS-regulated bacterial proteases in the WT BS impair extracellular flagellin to attenuate NLRC4 inflammasome activation. P. aeruginosa-secreted proteases also degrade inflammasome components in the extracellular space to inhibit the propagation of inflammasome-mediated responses. Furthermore, QS-regulated virulence factor pyocyanin and QS autoinducer 3-oxo-C12-homoserine lactone directly suppressed NLRC4- and even NLRP3-mediated inflammasome assembly and activation. Taken together, our data indicate that QS system of P. aeruginosa facilitates bacteria to evade host inflammasome-dependent sensing machinery.

  20. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    PubMed Central

    2014-01-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests. PMID:25435831

  1. Localization of a site on bacterial superantigens that determines T cell receptor beta chain specificity

    PubMed Central

    1993-01-01

    A defining characteristic of superantigens is their ability to stimulate T cells based predominantly on the type of variable segment of the T cell receptor (TCR) beta chain (V beta). The V beta specificity of these toxins most likely results from direct contact between the toxin and the TCR, although the low affinity nature of this binding has prevented direct assessment of this interaction. To identify important functional sites on the toxin, we created chimeric enterotoxin genes between staphylococcal enterotoxins A and E (SEA and SEE) and tested the V beta specificity of the chimeric toxins. This approach allowed us to identify three amino acid residues in the extreme COOH terminus of these toxins that are largely responsible for their ability to stimulate either human V beta 5- or V beta 8-bearing T cells, or mouse V beta 3 or V beta 11. We also found that residues in the NH2 terminus were required for wild-type levels of V beta-specific T cell activation, suggesting that the NH2 and COOH ends of these superantigens may come together to form the full TCR V beta contact site. SEA and SEE also differ with respect to their class II binding characteristics. Using the same chimeric molecules, we demonstrate that the first third of the molecule controls the class II binding phenotype. These data lead us to propose that for SEA and SEE, and perhaps for all bacterial-derived superantigens, the COOH and NH2 termini together form the contact sites for the TCR and therefore largely determine the V beta specificity of the toxin, while the NH2 terminus alone binds major histocompatibility complex class II molecules. The predominant role of the COOH terminus of bacterial superantigens in determining V beta specificity resembles current models being proposed for virally encoded superantigens, suggesting that these molecules may demonstrate some structural relationship not seen at the amino acid level. PMID:7678849

  2. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application.

    PubMed

    Schüürmann, Jan; Quehl, Paul; Festel, Gunter; Jose, Joachim

    2014-10-01

    Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.

  3. Active Cells for Multifunctional Structures

    DTIC Science & Technology

    2014-09-24

    techniques to explore a variety of cell designs.  Designed a simplified active cell using Nitinol as the actuation method and relying on Joule heating...for contraction of the cell.  Developed manufacturing techniques for reliably creating Nitinol spring coils in a variety of diameters and gauges...design of the active cells to maximum the stroked length of the active cells by tuning the stiffness of a passive spring in parallel with the Nitinol

  4. MAIT cells are activated during human viral infections.

    PubMed

    van Wilgenburg, Bonnie; Scherwitzl, Iris; Hutchinson, Edward C; Leng, Tianqi; Kurioka, Ayako; Kulicke, Corinna; de Lara, Catherine; Cole, Suzanne; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Young, Duncan; Denney, Laura; Moore, Michael D; Fabris, Paolo; Giordani, Maria Teresa; Oo, Ye Htun; Laidlaw, Stephen M; Dustin, Lynn B; Ho, Ling-Pei; Thompson, Fiona M; Ramamurthy, Narayan; Mongkolsapaya, Juthathip; Willberg, Christian B; Screaton, Gavin R; Klenerman, Paul

    2016-06-23

    Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation-driving cytokine release and Granzyme B upregulation-is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology.

  5. Bacterial and mammalian cells adhesion to tantalum-decorated micro-/nano-structured titanium.

    PubMed

    Zhu, Yu; Gu, Yingxin; Qiao, Shichong; Zhou, Linyi; Shi, Junyu; Lai, Hongchang

    2017-03-01

    Microorganisms are frequently introduced to dental implants during surgery and start the race for the surface with host cells before osseointegration occurs. The aim of the study was to endow implant surfaces with biological functions that reliably select cells over microbes. Nano-structured tantalum (Ta) has exhibited excellent compatibility. Thus, nano-structured Ta films were deposited on the sand-blasted, large grit, and acid-etched (SLA) titanium by the magnetron sputtering method, thus forming hierarchical micro-/nano-structured surfaces. No obvious Ta release confirmed the robustness of the deposited layer probably arising from the stable Ta2 O5 . Moreover, Ta-modified surfaces not only improved the initial adhesion and spreading of rat bone mesenchymal stem cells (rBMSCs), but also exhibited good antibacterial activities towards Streptococcus mutans and Porphyromonas gingivalis. The satisfactory cell-surface interactions on Ta-modified surfaces depended largely on the up-regulation of adhesion-related genes and activation of focal adhesion kinase (FAK), as confirmed by real-time PCR and Western blot. Here, the coculture model was also forwarded to mimic the perioperative bacterial contamination. We found that the adherent cell number and the cell-surface coverage were hampered by bacteria presence on both surfaces. Yet, rBMSCs still attached and spread more readily on Ta-modified surfaces than on SLA titanium surfaces even in coculture with adhering oral pathogens. Our results revealed that Ta-modified micro-/nano-structured surfaces would selectively promote cell-surface rather than bacteria-surface interactions, boding well for the applications for dental implants in possibly infected environments. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 871-878, 2017.

  6. Identification of individual biofilm-forming bacterial cells using Raman tweezers.

    PubMed

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral “Raman fingerprints” obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  7. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral "Raman fingerprints" obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  8. Predominance of single bacterial cells in composting bioaerosols

    NASA Astrophysics Data System (ADS)

    Galès, Amandine; Bru-Adan, Valérie; Godon, Jean-Jacques; Delabre, Karine; Catala, Philippe; Ponthieux, Arnaud; Chevallier, Michel; Birot, Emmanuel; Steyer, Jean-Philippe; Wéry, Nathalie

    2015-04-01

    Bioaerosols emitted from composting plants have become an issue because of their potential harmful impact on public or workers' health. Accurate knowledge of the particle-size distribution in bioaerosols emitted from open-air composting facilities during operational activity is a requirement for improved modeling of air dispersal. In order to investigate the aerodynamic diameter of bacteria in composting bioaerosols this study used an Electrical Low Pressure Impactor for sampling and quantitative real-time PCR for quantification. Quantitative PCR results show that the size of bacteria peaked between 0.95 μm and 2.4 μm and that the geometric mean diameter of the bacteria was 1.3 μm. In addition, total microbial cells were counted by flow cytometry and revealed that these qPCR results corresponded to single whole bacteria. Finally, the enumeration of cultivable thermophilic microorganisms allowed us to set the upper size limit for fragments at an aerodynamic diameter of ∼0.3 μm. Particle-size distributions of microbial groups previously used to monitor composting bioaerosols were also investigated. In collected the bioaerosols, the aerodynamic diameter of the actinomycetes Saccharopolyspora rectivirgula-and-relatives and also of the fungus Aspergillus fumigatus, appeared to be consistent with a majority of individual cells. Together, this study provides the first culture-independent data on particle-size distribution of composting bioaerosols and reveals that airborne single bacteria were emitted predominantly from open-air composting facilities.

  9. Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture.

    PubMed

    Natrah, F M I; Defoirdt, Tom; Sorgeloos, Patrick; Bossier, Peter

    2011-04-01

    Bacterial disease is one of the most critical problems in commercial aquaculture. Although various methods and treatments have been developed to curb the problem, yet they still have significant drawbacks. A novel and environmental-friendly approach in solving this problem is through the disruption of bacterial communication or quorum sensing (QS). In this communication scheme, bacteria regulate their own gene expression by producing, releasing, and sensing chemical signals from the environment. There seems to be a link between QS and diseases through the regulation of certain phenotypes and the induction of virulence factors responsible for pathogen-host association. Several findings have reported that numerous aquatic organisms such as micro-algae, macro-algae, invertebrates, or even other bacteria have the potential to disrupt QS. The mechanism of action varies from degradation of signals through enzymatic or chemical inactivation to antagonistic as well as agonistic activities. This review focuses on the existing marine organisms that are able to interfere with QS with potential application for aquaculture as bacterial control.

  10. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ.

    PubMed

    Nepomuceno, Gabriella M; Chan, Katie M; Huynh, Valerie; Martin, Kevin S; Moore, Jared T; O'Brien, Terrence E; Pollo, Luiz A E; Sarabia, Francisco J; Tadeus, Clarissa; Yao, Zi; Anderson, David E; Ames, James B; Shaw, Jared T

    2015-03-12

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ's GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3.

  11. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ

    PubMed Central

    2015-01-01

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ’s GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3. PMID:25815151

  12. Determinants, reproducibility, and seasonal variation of bacterial cell wall components and viable counts in house dust.

    PubMed

    Leppänen, H K; Täubel, M; Roponen, M; Vepsäläinen, A; Rantakokko, P; Pekkanen, J; Nevalainen, A; von Mutius, E; Hyvärinen, A

    2015-06-01

    The objectives of this study were (i) to assess the determinants that affect concentrations of the bacterial cell wall components 3-hydroxy fatty acids (3-OH FAs) and muramic acid and of total viable bacteria and actinomycetes in house dust; and (ii) to examine the seasonal variation and reproducibility of these bacterial cell wall components in house dust. A number of lifestyle and environmental factors, mostly not consistent for different bacterial measures but commonly including the type of dwelling and farming (number of livestock), explained up to 37% of the variation of the bacterial concentrations in 212 homes in Eastern Finland. The reproducibility of 3-OH FAs and muramic acid measurements in house dust were studied in five urban homes and were found to be generally high (ICC 74-84%). Temporal variation observed in repeated sampling of the same home throughout a year was more pronounced for 3-OH FAs determinations (ICC 22%) than for muramic acid (ICC 55-66%). We conclude that determinants vary largely for different types of bacterial measurements in house dust; the measured parameters represent different aspects of the bacterial content indoors. More than one sample is needed to describe bacterial concentrations in house dust in the home environment due to large temporal variation.

  13. Cloning, expression and interaction of human T-cell receptors with the bacterial superantigen SSA.

    PubMed

    De Marzí, Mauricio C; Fernández, Marisa M; Sundberg, Eric J; Molinero, Luciana; Zwirner, Norberto W; Llera, Andrea S; Mariuzza, Roy A; Malchiodi, Emilio L

    2004-10-01

    Superantigens (SAgs) are a class of disease-causing and immunostimulatory proteins of bacterial or viral origin that activate a large number of T-cells through interaction with the Vbeta domain of T-cell receptors (TCRs). In this study, recombinant TCR beta chains were constructed with human variable domains Vbeta5.2, Vbeta1 and Vbeta2.1, expressed as inclusion bodies, refolded and purified. The Streptococcus pyogenes SAg SSA-1 was cloned and expressed as a soluble periplasmic protein. SSA-1 was obtained both as a monomer and a dimer that has an intermolecular disulfide bond. We analyzed the biological activity of the recombinant SAgs by proliferation assays. The results suggest that SSA dimerization occludes the TCR interaction site. Naturally occurring SSA dimerization was also observed in supernatants of S. pyogenes isolates. An SSA mutant [SSA(C26S)] was produced to eliminate the Cys responsible for dimerization. Affinity assays using a resonant biosensor showed that both the mutant and monomeric wild type SSA have affinity for human Vbeta5.2 and Vbeta1 with Kd of 9-11 microm with a fast kass and a moderately fast kdiss. In spite of the reported stimulation of Vbeta2.1 bearing T-cells by SSA, we observed no measurable interaction.

  14. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    PubMed Central

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-01-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent. PMID:27966657

  15. Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus.

    PubMed

    Matsui, Takashi; Yamane, Junji; Mogi, Nobuyuki; Yamaguchi, Hiroto; Takemoto, Hiroshi; Yao, Min; Tanaka, Isao

    2012-09-01

    FtsZ is a key molecule in bacterial cell division. In the presence of GTP, it polymerizes into tubulin-like protofilaments by head-to-tail association. Protofilaments of FtsZ seem to adopt a straight or a curved conformation in relation to the bound nucleotide. However, although several bacterial and archaeal FtsZ structures have been determined, all of the structures reported previously are considered to have a curved conformation. In this study, structures of FtsZ from Staphylococcus aureus (SaFtsZ) were determined in apo, GDP-bound and inhibitor-complex forms and it was found that SaFtsZ undergoes marked conformational changes. The accumulated evidence suggests that the GDP-bound structure has the features of the straight form. The structural change between the curved and straight forms shows intriguing similarity to the eukaryotic cytoskeletal protein tubulin. Furthermore, the structure of the apo form showed an unexpectedly large conformational change in the core region. FtsZ has also been recognized as a novel target for antibacterial drugs. The structure of the complex with the inhibitor PC190723, which has potent and selective antistaphylococcal activity, indicated that the inhibitor binds at the cleft between the two subdomains.

  16. Effects of zinc oxide nanoparticles on Kupffer cell phagosomal motility, bacterial clearance, and liver function

    PubMed Central

    Watson, Christa Y; Molina, Ramon M; Louzada, Andressa; Murdaugh, Kimberly M; Donaghey, Thomas C; Brain, Joseph D

    2015-01-01

    Background Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. Materials and methods First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. Results We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. Conclusion Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that

  17. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    NASA Astrophysics Data System (ADS)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  18. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  19. Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis.

    PubMed

    Marentis, Theodore Cosmo; Kusler, Brenda; Yaralioglu, Goksen G; Liu, Shijun; Haeggström, Edward O; Khuri-Yakub, B T

    2005-09-01

    Biologic agent screening is a three-step process: lysis of host cell membranes or walls to release their DNA, polymerase chain reaction to amplify the genetic material and screening for distinguishing genetic signatures. Macrofluidic devices commonly use sonication as a lysis method. Here, we present a piezoelectric microfluidic minisonicator and test its performance. Eukaryotic human leukemia HL-60 cells and Bacillus subtilis bacterial spores were lysed as they passed through a microfluidic channel at 50 microL/min and 5 microL/min, respectively, in the absence of any chemical denaturants, enzymes or microparticles. We used fluorescence-activated cell sorting and hematocytometry to measure 80% lysis of HL-60 cells after 3 s of sonication. Real-time polymerase chain reaction indicated 50% lysis of B. subtilis spores with 30 s of sonication. Advantages of the minisonicator over macrofluidic implementations include a small sample volume (2.5 microL), reduced energy consumption and compatibility with other microfluidic blocks. These features make this device an attractive option for "lab-on-a-chip" and portable applications.

  20. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.

    PubMed

    Yagur-Kroll, Sharon; Schreuder, Erik; Ingham, Colin J; Heideman, René; Rosen, Rachel; Belkin, Shimshon

    2015-02-15

    The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients. The ability of the bacterial reporters to detect model toxic chemicals was first demonstrated using a "naked" PAO chip placed on solid agar, and later in a chip encased in a specially designed flow-through configuration which enables continuous on-line monitoring. The applicability of the PAO chip to simultaneous online detection of diverse groups of chemicals was demonstrated by the incorporation of a 6-member sensor array into the flow-through chip. The selective response of the array was also confirmed in spiked municipal wastewater effluents. Sensing activity was retained by the bacteria after 12-weeks storage of freeze-dried biochips, demonstrating the biochip potential as a simple minimal maintenance "plug-in" cartridge. This low-cost and easy to handle PAO-based flow-cell biosensor may serve as a basis for a future platform for water quality monitoring.

  1. New method for estimating bacterial cell abundances in natural samples by use of sublimation.

    PubMed

    Glavin, Daniel P; Cleaves, H James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L

    2004-10-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  2. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  3. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment.

    PubMed

    Grimes, Catherine Leimkuhler; Ariyananda, Lushanti De Zoysa; Melnyk, James E; O'Shea, Erin K

    2012-08-22

    Mammalian Nod2 is an intracellular protein that is implicated in the innate immune response to the bacterial cell wall and is associated with the development of Crohn's disease, Blau syndrome, and gastrointestinal cancers. Nod2 is required for an immune response to muramyl dipeptide (MDP), an immunostimulatory fragment of bacterial cell wall, but it is not known whether MDP binds directly to Nod2. We report the expression and purification of human Nod2 from insect cells. Using novel MDP self-assembled monolayers (SAMs), we provide the first biochemical evidence for a direct, high-affinity interaction between Nod2 and MDP.

  4. Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds.

    PubMed

    Favi, Pelagie M; Benson, Roberto S; Neilsen, Nancy R; Hammonds, Ryan L; Bates, Cassandra C; Stephens, Christopher P; Dhar, Madhu S

    2013-05-01

    The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem cell-biomaterial constructs prior to in vivo implantation. This study evaluates bacterial cellulose (BC), a biocompatible natural polymer, as a scaffold for equine-derived bone marrow mesenchymal stem cells (EqMSCs) for application in bone and cartilage tissue engineering. An equine model was chosen due to similarities in size, load and types of joint injuries suffered by horses and humans. Lyophilized and critical point dried BC hydrogel scaffolds were characterized using scanning electron microscopy (SEM) to confirm nanostructure morphology which demonstrated that critical point drying induces fibre bundling unlike lyophilisation. EqMSCs positively expressed the undifferentiated pluripotent mesenchymal stem cell surface markers CD44 and CD90. The BC scaffolds were shown to be cytocompatible, supporting cellular adhesion and proliferation, and allowed for osteogenic and chondrogenic differentiation of EqMSCs. The cells seeded on the BC hydrogel were shown to be viable and metabolically active. These findings demonstrate that the combination of a BC hydrogel and EqMSCs are promising constructs for musculoskeletal tissue engineering applications.

  5. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity.

    PubMed

    Peetermans, Marijke; Vanassche, Thomas; Liesenborghs, Laurens; Lijnen, Roger H; Verhamme, Peter

    2016-11-01

    Both coagulation and fibrinolysis are tightly connected with the innate immune system. Infection and inflammation cause profound alterations in the otherwise well-controlled balance between coagulation and fibrinolysis. Many pathogenic bacteria directly exploit the host's hemostatic system to increase their virulence. Here, we review the capacity of bacteria to activate plasminogen. The resulting proteolytic activity allows them to breach tissue barriers and evade innate immune defense, thus promoting bacterial spreading. Yersinia pestis, streptococci of group A, C and G and Staphylococcus aureus produce a specific bacterial plasminogen activator. Moreover, surface plasminogen receptors play an established role in pneumococcal, borrelial and group B streptococcal infections. This review summarizes the mechanisms of bacterial activation of host plasminogen and the role of the fibrinolytic system in infections caused by these pathogens.

  6. Bacterial delivery of large intact genomic-DNA-containing BACs into mammalian cells.

    PubMed

    Cheung, Wing; Kotzamanis, George; Abdulrazzak, Hassan; Goussard, Sylvie; Kaname, Tadashi; Kotsinas, Athanassios; Gorgoulis, Vassilis G; Grillot-Courvalin, Catherine; Huxley, Clare

    2012-01-01

    Efficient delivery of large intact vectors into mammalian cells remains problematical. Here we evaluate delivery by bacterial invasion of two large BACs of more than 150 kb in size into various cells. First, we determined the effect of several drugs on bacterial delivery of a small plasmid into different cell lines. Most drugs tested resulted in a marginal increase of the overall efficiency of delivery in only some cell lines, except the lysosomotropic drug chloroquine, which was found to increase the efficiency of delivery by 6-fold in B16F10 cells. Bacterial invasion was found to be significantly advantageous compared with lipofection in delivering large intact BACs into mouse cells, resulting in 100% of clones containing intact DNA. Furthermore, evaluation of expression of the human hypoxanthine phosphoribosyltransferase (HPRT) gene from its genomic locus, which was present in one of the BACs, showed that single copy integrations of the HPRT-containing BAC had occurred in mouse B16F10 cells and that expression of HPRT from each human copy was 0.33 times as much as from each endogenous mouse copy. These data provide new evidence that bacterial delivery is a convenient and efficient method to transfer large intact therapeutic genes into mammalian cells.

  7. Inhibition of Bacterial Toxin Activity by the Nuclear Stain, DRAQ5™.

    PubMed

    Webb, Joshua N; Koufos, Evan; Brown, Angela C

    2016-08-01

    The repeats-in-toxin family of toxins includes proteins produced by Gram negative bacteria such as Escherichia coli (α-hemolysin), Bordetella pertussis (adenylate cyclase toxin), and Aggregatibacter actinomycetemcomitans (LtxA), which contribute to the pathogenesis of these organisms by killing host cells. In the case of LtxA produced by A. actinomycetemcomitans, white blood cells are targeted, allowing the bacteria to avoid clearance by the host immune system. In its association with target cells, LtxA binds to a receptor, lymphocyte function-associated antigen-1, as well as membrane lipids and cholesterol, before being internalized via a lysosomal-mediated pathway. The motivation for this project comes from our discovery that DRAQ5™, a membrane-permeable nuclear stain, prevents the internalization of LtxA in a Jurkat T cell line. We hypothesized that DRAQ5™, in crossing the plasma membrane, alters the properties of the membrane to inhibit LtxA internalization. To investigate how DRAQ5™ interacts with the lipid membrane to prevent LtxA internalization, we used studied DRAQ5™-mediated membrane changes in model membranes using a variety of techniques, including differential scanning calorimetry and fluorescence spectroscopy. Our results suggest that DRAQ5™ inhibits the activity of LtxA by decreasing the fluidity of the cellular lipid membrane, which decreases LtxA binding. These results present an interesting possible anti-virulence strategy; by altering bacterial toxin activity by modifying membrane fluidity, it may be possible to inhibit the pathogenicity of A. actinomycetemcomitans.

  8. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite.

  9. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection.

    PubMed

    Zhang, Jian; Yu, Lan-Ping; Li, Mo-Fei; Sun, Li

    2014-05-01

    Hepcidin is an antimicrobial peptide and a regulator of iron homeostasis. In turbot (Scophthalmus maximus), two types of hepcidins have been identified, which share approximately 50% sequence identity. In this study, we examined the antimicrobial potentials of the two hepcidins in the form of synthesized peptides, SmHep1P and SmHep2P. We found that SmHep1P and SmHep2P exhibited apparent bactericidal activities against both Gram-positive and Gram-negative bacteria in a dose-dependent manner. The bactericidal effect of SmHep1P was stronger against Gram-positive bacteria, while the bactericidal effect of SmHep2P was stronger against Gram-negative bacteria. Fluorescence and electron microscopy showed that both peptides were able to bind to the target bacterial cells and alter the surface structure of the cells. In vitro studies showed that SmHep1P and SmHep2P reduced bacterial invasion into cultured fish cells. In vivo studies showed that turbot administered with SmHep1P and SmHep2P exhibited significantly enhanced resistance against bacterial and viral infection. In both in vivo and in vitro studies, the antimicrobial activities of SmHep2P were in most cases significantly stronger than those of SmHep1P. Together these results indicate that the two hepcidins of turbot most likely possess antimicrobial properties and play a role in the innate immune defense against bacterial and viral pathogens.

  10. Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or staphylococcal enterotoxin B.

    PubMed

    Prager, Geraldine; Hadamitzky, Martin; Engler, Andrea; Doenlen, Raphael; Wirth, Timo; Pacheco-López, Gustavo; Krügel, Ute; Schedlowski, Manfred; Engler, Harald

    2013-03-01

    Activated immune cells produce soluble mediators that not only coordinate local and systemic immune responses but also act on the brain to initiate behavioral, neuroendocrine and metabolic adaptations. Earlier studies have shown that the amygdala, a group of nuclei located in the medial temporal lobe, is engaged in the central processing of afferent signals from the peripheral immune system. Here, we compared amygdaloid responses to lipopolysaccharide (LPS) and staphylococcal enterotoxin B (SEB), two prototypic bacterial products that elicit distinct immune responses. Intraperitoneal administration of LPS (0.1 mg/kg) or SEB (1 mg/kg) in adult rats induced substantial increases in amygdaloid neuronal activity as measured by intracerebral electroencephalography and c-fos gene expression. Amygdaloid neuronal activation was accompanied by an increase in anxiety-related behavior in the elevated plus-maze test. However, only treatment with LPS, but not SEB, enhanced amygdaloid IL-1β and TNF-α mRNA expression. This supports the view of the immune system as a sensory organ that recognizes invading pathogens and rapidly relays this information to the brain, independent of the nature of the immune response induced. The observation that neuronal and behavioral responses to peripheral immune challenges are not necessarily accompanied by increased brain cytokine expression suggests that cytokines are not the only factors driving sickness-related responses in the CNS.

  11. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    PubMed Central

    Brandt, Stephanie M.; Schneider, David S.

    2009-01-01

    Summary Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized the ovary in a previously undescribed manner; bacteria were found in the posterior of the ovary, adjacent to the lateral oviduct. This local infection in the ovary resulted in melanization and activation of the cellular immune response at the site of infection. PMID:17400292

  12. Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells.

    PubMed

    White, James F; Torres, Mónica S; Somu, Mohini P; Johnson, Holly; Irizarry, Ivelisse; Chen, Qiang; Zhang, Ning; Walsh, Emily; Tadych, Mariusz; Bergen, Marshall

    2014-08-01

    Visualization of bacteria in living plant cells and tissues is often problematic due to lack of stains that pass through living plant cell membranes and selectively stain bacterial cells. In this article, we report the use of 3,3'-diaminobenzidine tetrachloride (DAB) to stain hydrogen peroxide associated with bacterial invasion of eukaryotic cells. Tissues were counterstained with aniline blue/lactophenol to stain protein in bacterial cells. Using this staining method to visualize intracellular bacterial (Burkholderia gladioli) colonization of seedling roots of switch grass (Panicum virgatum), we compared bacterial free seedling roots and those inoculated with the bacterium. To further assess application of the technique in multiple species of vascular plants, we examined vascular plants for seedling root colonization by naturally occurring seed-transmitted bacteria. Colonization by bacteria was only observed to occur within epidermal (including root hairs) and cortical cells of root tissues, suggesting that bacteria may not be penetrating deeply into root tissues. DAB/peroxidase with counter stain aniline blue/lactophenol was effective in penetration of root cells to selectively stain bacteria. Furthermore, this stain combination permitted the visualization of the bacterial lysis process. Before any evidence of H2 O2 staining, intracellular bacteria were seen to stain blue for protein content with aniline blue/lactophenol. After H2 O2 staining became evident, bacteria were often swollen, without internal staining by aniline blue/lactophenol; this suggests loss of protein content. This staining method was effective for seedling root tissues; however, it was not effective at staining bacteria in shoot tissues due to poor penetration.

  13. Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study.

    PubMed

    Wannicke, Nicola; Frindte, Katharina; Gust, Giselher; Liskow, Iris; Wacker, Alexander; Meyer, Andreas; Grossart, Hans-Peter

    2015-05-01

    In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump.

  14. Active viscoelastic matter: from bacterial drag reduction to turbulent solids.

    PubMed

    Hemingway, E J; Maitra, A; Banerjee, S; Marchetti, M C; Ramaswamy, S; Fielding, S M; Cates, M E

    2015-03-06

    A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time-reversal symmetry. In practice, active fluids may have not only liquid-crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding a polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a "drag-reduction" effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid.

  15. Dynamics of phenotypic reversibility of bacterial cells with oscillating hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Nepal, Sudip; Kumar, Pradeep

    Bacterial cells encounter and respond to physiochemical fluctuations. The response depends on the extent and type of the stresses applied. The response of bacterial cells to the fluctuating stress is relatively unknown. Here, we have studied the response of wild type Escherichia coli (E. coli) under fluctuating hydrostatic pressures ranging from 1 atm to 500 atm. High pressure acts as a stress to E. coli since these bacteria are adapted to grow optimally at atmospheric pressure. Cell division of E. coli is inhibited at high pressures resulting in increase in the length of the cells. Cell-length is reversible in nature and bacterial cells revert back to normal size on a time scale that is proportional to the strength and time of continuous pressure applied upon relaxing the high pressure condition. We have studied the dynamics of cellular reversibility of E. coli under the conditions in which continuous pressure is applied and subsequently relaxed over different time scales. We have quantified the dynamics of cellular reversibility with different relaxation times. Furthermore, we propose a model to describe the reversibility of the bacterial cell with the relaxation time. Our theoretical model fits well to the experimental data. We further

  16. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-05-01

    As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10-20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  17. Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level.

    PubMed

    Cinquin, Bertrand; Maigre, Laure; Pinet, Elizabeth; Chevalier, Jacqueline; Stavenger, Robert A; Mills, Scott; Réfrégiers, Matthieu; Pagès, Jean-Marie

    2015-12-11

    Bacterial multidrug resistance is a significant health issue. A key challenge, particularly in Gram-negative antibacterial research, is to better understand membrane permeation of antibiotics in clinically relevant bacterial pathogens. Passing through the membrane barrier to reach the required concentration inside the bacterium is a pivotal step for most antibacterials. Spectrometric methodology has been developed to detect drugs inside bacteria and recent studies have focused on bacterial cell imaging. Ultimately, we seek to use this method to identify pharmacophoric groups which improve penetration, and therefore accumulation, of small-molecule antibiotics inside bacteria. We developed a method to quantify the time scale of antibiotic accumulation in living bacterial cells. Tunable ultraviolet excitation provided by DISCO beamline (synchrotron Soleil) combined with microscopy allows spectroscopic analysis of the antibiotic signal in individual bacterial cells. Robust controls and measurement of the crosstalk between fluorescence channels can provide real time quantification of drug. This technique represents a new method to assay drug translocation inside the cell and therefore incorporate rational drug design to impact antibiotic uptake.

  18. Fluorescence activated cell sorting.

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hulett, H. R.; Sweet, R. G.; Herzenberg, L. A.

    1972-01-01

    An instrument has been developed for sorting biological cells. The cells are rendered differentially fluorescent and incorporated into a small liquid stream illuminated by a laser beam. The cells pass sequentially through the beam, and fluorescent light from the cells gives rise to electrical signals. The stream is broken into a series of uniform size drops downstream of the laser. The cell signals are used to give appropriate electrostatic charges to drops containing the cells. The drops then pass between two charged plates and are deflected to appropriate containers. The system has proved capable of providing fractions containing large numbers of viable cells highly enriched in a particular functional type.

  19. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.

    PubMed

    Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-02-19

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials.

  20. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    PubMed

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era.

  1. Mechanisms of bacterial morphogenesis: Evolutionary cell biology approaches provide new insights

    PubMed Central

    Jiang, Chao; Caccamo, Paul D.; Brun, Yves V.

    2015-01-01

    How Darwin’s “endless forms most beautiful” have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating “evolutionary thinking” into bacterial cell biology in the genomic era. PMID:25664446

  2. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells.

    PubMed

    Aguayo, S; Donos, N; Spratt, D; Bozec, L

    2015-02-13

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.

  3. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells

    NASA Astrophysics Data System (ADS)

    Aguayo, S.; Donos, N.; Spratt, D.; Bozec, L.

    2015-02-01

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.

  4. Biophysical Model of Bacterial Cell Interactions with Nanopatterned Cicada Wing Surfaces

    PubMed Central

    Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A.; Webb, Hayden K.; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J.; Watson, Gregory S.; Watson, Jolanta A.; Crawford, Russell J.; Ivanova, Elena P.

    2013-01-01

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials. PMID:23442962

  5. Activation of Macrophages by Exopolysaccharide Produced by MK1 Bacterial Strain Isolated from Neungee Mushroom, Sarcodon aspratus

    PubMed Central

    Im, Sun-A; Wang, Wenxia; Lee, Chong-Kil

    2010-01-01

    Background The MK1 strain, a novel bacterial isolate from soft-rotten tissue of the Neungee mushroom, produces copious amounts of exopolysaccharide (EPS) in a dextrose minimal medium. This study examined the molecular characteristics and immunomodulatory activity of MK1 EPS. Methods The EPS in the culture supernatant was purified by cold ethanol precipitation, and characterized by SDS-PAGE/silver staining and Bio-HPLC. The immunomodulatory activities of the EPS were examined using the mouse monocytic cell line, RAW 264.7 cells. Results The molecular weights of the purified EPS were rather heterogeneous, ranging from 10.6 to 55 kDa. The EPS was composed of glucose, rhamnose, mannose, galactose, and glucosamine at an approximate molar ratio of 1.00:0.8:0.71:0.29:0.21. EPS activated the RAW cells to produce cytokines, such as TNF-α and IL-1β, and nitric oxide (NO). EPS also induced the expression of co-stimulatory molecules, such as B7-1, B7-2 and ICAM-1, and increased the phagocytic activity. The macrophage-activating activity of EPS was not due to endotoxin contamination because the treatment of EPS with polymyin B did not reduce the macrophage-activating activity. Conclusion The EPS produced from the MK1 strain exerts macrophage-activating activity. PMID:21286384

  6. Cell-to-Cell Propagation of the Bacterial Toxin CNF1 via Extracellular Vesicles: Potential Impact on the Therapeutic Use of the Toxin

    PubMed Central

    Fabbri, Alessia; Cori, Sara; Zanetti, Cristiana; Guidotti, Marco; Sargiacomo, Massimo; Loizzo, Stefano; Fiorentini, Carla

    2015-01-01

    Eukaryotic cells secrete extracellular vesicles (EVs), either constitutively or in a regulated manner, which represent an important mode of intercellular communication. EVs serve as vehicles for transfer between cells of membrane and cytosolic proteins, lipids and RNA. Furthermore, certain bacterial protein toxins, or possibly their derived messages, can be transferred cell to cell via EVs. We have herein demonstrated that eukaryotic EVs represent an additional route of cell-to-cell propagation for the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1). Our results prove that EVs from CNF1 pre-infected epithelial cells can induce cytoskeleton changes, Rac1 and NF-κB activation comparable to that triggered by CNF1. The observation that the toxin is detectable inside EVs derived from CNF1-intoxicated cells strongly supports the hypothesis that extracellular vesicles can offer to the toxin a novel route to travel from cell to cell. Since anthrax and tetanus toxins have also been reported to engage in the same process, we can hypothesize that EVs represent a common mechanism exploited by bacterial toxins to enhance their pathogenicity. PMID:26556375

  7. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis.

    PubMed

    Krinsky, Nitzan; Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40-150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins.

  8. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus

    PubMed Central

    Lambert, Carey; Cadby, Ian T.; Till, Rob; Bui, Nhat Khai; Lerner, Thomas R.; Hughes, William S.; Lee, David J.; Alderwick, Luke J.; Vollmer, Waldemar; Sockett, Elizabeth R.; Lovering, Andrew L.

    2015-01-01

    Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital — ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle. PMID:26626559

  9. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus.

    PubMed

    Lambert, Carey; Cadby, Ian T; Till, Rob; Bui, Nhat Khai; Lerner, Thomas R; Hughes, William S; Lee, David J; Alderwick, Luke J; Vollmer, Waldemar; Sockett, R Elizabeth; Sockett, Elizabeth R; Lovering, Andrew L

    2015-12-02

    Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital - ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle.

  10. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    PubMed Central

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  11. Re-Evaluation of a Bacterial Antifreeze Protein as an Adhesin with Ice-Binding Activity

    PubMed Central

    Guo, Shuaiqi; Garnham, Christopher P.; Whitney, John C.; Graham, Laurie A.; Davies, Peter L.

    2012-01-01

    A novel role for antifreeze proteins (AFPs) may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII) and region IV (RIV), divide MpAFP into five distinct regions, all of which require mM Ca2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX)-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2) server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice. PMID:23144980

  12. Differences in activity profile of bacterial cultures studied by dynamic speckle patterns

    NASA Astrophysics Data System (ADS)

    Ramírez-Miquet, E. E.; Otero, I.; Rodríguez, D.; Darias, J. G.; Combarro, A. M.; Contreras, O. R.

    2013-02-01

    We outline the main differences in the activity profile of bacterial cultures studied by dynamic laser speckle (or biospeckle) patterns. The activity is detected in two sorts of culture mediums. The optical setup and the experimental procedure are presented. The experimentally obtained images are processed by the temporal difference method and a qualitative assessment is made with the time history of speckle patterns of the sample. The main differences are studied after changing the culture medium composition. We conclude that the EC medium is suitable to detect the E. coli bacterial presence in early hours and that Mueller Hinton agar delays some additional hours to make possible the assessment of bacteria in time.

  13. Bacterial cell division: the mechanism and its precison.

    PubMed

    Harry, Elizabeth; Monahan, Leigh; Thompson, Lyndal

    2006-01-01

    The recent development of cell biology techniques for bacteria to allow visualization of fundamental processes in time and space, and their use in synchronous populations of cells, has resulted in a dramatic increase in our understanding of cell division and its regulation in these tiny cells. The first stage of cell division is the formation of a Z ring, composed of a polymerized tubulin-like protein, FtsZ, at the division site precisely at midcell. Several membrane-associated division proteins are then recruited to this ring to form a complex, the divisome, which causes invagination of the cell envelope layers to form a division septum. The Z ring marks the future division site, and the timing of assembly and positioning of this structure are important in determining where and when division will take place in the cell. Z ring assembly is controlled by many factors including negative regulatory mechanisms such as Min and nucleoid occlusion that influence Z ring positioning and FtsZ accessory proteins that bind to FtsZ directly and modulate its polymerization behavior. The replication status of the cell also influences the positioning of the Z ring, which may allow the tight coordination between DNA replication and cell division required to produce two identical newborn cells.

  14. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    SciTech Connect

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik; Jansson, Janet K.; Sjoling, Sara

    2008-05-15

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.

  15. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Gong, Jun; Zhang, Xiaoli; Yin, Guoyu; You, Li

    2013-07-01

    ammonium oxidation (anammox) as an important process of nitrogen cycle has been studied in estuarine environments. However, knowledge about the dynamics of anammox bacteria and their interactions with associated activity remains scarce in these environments. Here we report the anammox bacterial diversity, abundance, and activity in the Yangtze Estuary, using molecular and isotope-tracing techniques. The phylogenetic analysis of 16S rRNA indicated that high anammox bacterial diversity occurred in this estuary, including Scalindua, Brocadia, Kuenenia, and two novel clusters. The patterns of community composition and diversity of anammox bacteria differed across the estuary. Salinity was a key environmental factor defining the geographical distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Temperature and organic carbon also had significant influences on anammox bacterial biodiversity. The abundance of anammox bacteria ranged from 2.63 × 106 and 1.56 × 107 gene copies g-1, and its spatiotemporal variations were related significantly to salinity, temperature, and nitrite content. The anammox activity was related to temperature, nitrite, and anammox bacterial abundance, with values of 0.94-6.61 nmol N g-1 h-1. The tight link between the anammox and denitrification processes implied that denitrifying bacteria may be a primary source of nitrite for the anammox bacteria in the estuarine marshes. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6%-12.9% to the total nitrogen loss whereas the remainder was attributed to denitrification.

  16. Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge

    PubMed Central

    Prakasam, T. B. S.; Dondero, N. C.

    1970-01-01

    Two procedures, the confidence interval method and Mountford's index, were tested in analyses of the microbial populations of 11 laboratory activated sludges acclimated to aromatic compounds. The two methods gave somewhat different results but indicated that the populations were quite dissimilar. The activity of seven of the sludges correlated well with the population structure. Some considerations in analysis of microbial population structure are discussed. PMID:5418947

  17. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    PubMed Central

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449

  18. A real-time fluorescence polarization activity assay to screen for inhibitors of bacterial ribonuclease P

    PubMed Central

    Liu, Xin; Chen, Yu; Fierke, Carol A.

    2014-01-01

    Ribonuclease P (RNase P) is an essential endonuclease that catalyzes the 5′ end maturation of precursor tRNA (pre-tRNA). Bacterial RNase P is an attractive potential antibacterial target because it is essential for cell survival and has a distinct subunit composition compared to the eukaryal counterparts. To accelerate both structure-function studies and discovery of inhibitors of RNase P, we developed the first real-time RNase P activity assay using fluorescence polarization/anisotropy (FP/FA) with a 5′ end fluorescein-labeled pre-tRNAAsp substrate. This FP/FA assay also detects binding of small molecules to pre-tRNA. Neomycin B and kanamycin B bind to pre-tRNAAsp with a Kd value that is comparable to their IC50 value for inhibition of RNase P, suggesting that binding of these antibiotics to the pre-tRNA substrate contributes to the inhibitory activity. This assay was optimized for high-throughput screening (HTS) to identify specific inhibitors of RNase P from a 2880 compound library. A natural product derivative, iriginol hexaacetate, was identified as a new inhibitor of Bacillus subtilis RNase P. The FP/FA methodology and inhibitors reported here will further our understanding of RNase P molecular recognition and facilitate discovery of antibacterial compounds that target RNase P. PMID:25249623

  19. NF-κB activation is critical for bacterial lipoprotein tolerance-enhanced bactericidal activity in macrophages during microbial infection

    PubMed Central

    Liu, Jinghua; Xiang, Jing; Li, Xue; Blankson, Siobhan; Zhao, Shuqi; Cai, Junwei; Jiang, Yong; Redmond, H. Paul; Wang, Jiang Huai

    2017-01-01

    Tolerance to bacterial components represents an essential regulatory mechanism during bacterial infection. Bacterial lipoprotein (BLP)-induced tolerance confers protection against microbial sepsis by attenuating inflammatory responses and augmenting antimicrobial activity in innate phagocytes. It has been well-documented that BLP tolerance-attenuated proinflammatory cytokine production is associated with suppressed TLR2 signalling pathway; however, the underlying mechanism(s) involved in BLP tolerance-enhanced antimicrobial activity is unclear. Here we report that BLP-tolerised macrophages exhibited accelerated phagosome maturation and enhanced bactericidal activity upon bacterial infection, with upregulated expression of membrane-trafficking regulators and lysosomal enzymes. Notably, bacterial challenge resulted in a strong activation of NF-κB pathway in BLP-tolerised macrophages. Importantly, activation of NF-κB pathway is critical for BLP tolerance-enhanced antimicrobial activity, as deactivation of NF-κB in BLP-tolerised macrophages impaired phagosome maturation and intracellular killing of the ingested bacteria. Finally, activation of NF-κB pathway in BLP-tolerised macrophages was dependent on NOD1 and NOD2 signalling, as knocking-down NOD1 and NOD2 substantially inhibited bacteria-induced activation of NF-κB and overexpression of Rab10 and Acp5, two membrane-trafficking regulators and lysosomal enzymes contributed to BLP tolerance-enhanced bactericidal activity. These results indicate that activation of NF-κB pathway is essential for BLP tolerance-augmented antimicrobial activity in innate phagocytes and depends primarily on both NOD1 and NOD2. PMID:28079153

  20. Production Model Press for the Preparation of Bacterial Cell Walls

    PubMed Central

    Perrine, T. D.; Ribi, E.; Maki, W.; Miller, B.; Oertli, E.

    1962-01-01

    A modification of the apparatus previously described permits the preparation of cell walls in quantity. This consists of a heavy duty, double-acting hydraulic press with motor-driven pump, and a superstrength alloy steel pressure cell which is corrosion resistant. Liquid cooling of the jet is substituted for the previously used gas cooling to minimize aerosol formation and to facilitate subsequent treatment of the products. The device produces cell walls of excellent quality in good yield. The pressure cell has been used satisfactorily up to about 60,000 psi. Design details are given. Images FIG. 1 FIG. 2 FIG. 6 PMID:14485524

  1. Cell motility and antibiotic tolerance of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  2. On the chronology and topography of bacterial cell division.

    PubMed

    Vicente, M; Palacios, P; Dopazo, A; Garrido, T; Pla, J; Aldea, M

    1991-01-01

    Gene products that play a role in the formation of cell septum should be expected to be endowed with a set of specific properties. In principle, septal proteins should be located at the cell envelope. The expression of division genes should ensure the synthesis of septal proteins at levels commensurate with the needs of cell division at different rates of cell duplication. We have results indicating that some fts genes located within the 2.5-min cluster in the Escherichia coli chromosome conform to these predictions.

  3. Slight Pro-Inflammatory Immunomodulation Properties of Dendritic Cells by Gardnerella vaginalis: The “Invisible Man” of Bacterial Vaginosis?

    PubMed Central

    Bertran, Thomas; Brachet, Patrick; Vareille-Delarbre, Marjolaine; Falenta, Julie; Dosgilbert, Annie; Vasson, Marie-Paule; Forestier, Christiane; Tridon, Arlette; Evrard, Bertrand

    2016-01-01

    Bacterial vaginosis (BV), the most common genital infection in reproductive-aged women, is associated with increased risk of sexually transmitted infections. Its etiology remains unclear, especially the role of Gardnerella (G.) vaginalis, an anaerobic bacterium characteristic of the BV-alteration of the vaginal ecosystem. In the genital mucosa, dendritic cells (DCs) sense bacteria of the microenvironment via receptors and then orchestrate the immune response by induction of different T cell subtypes. We investigated the interactions between G. vaginalis and human monocyte-derived DCs using a wide range of bacterial concentrations (multiplicity of infection from 0.01 to 100), and the effects of this pathogen on PHA-induced lymphocyte proliferation. As observed by electron microscopy and cytometry, G. vaginalis reduced the internalization ability of DCs by forming extracellular clusters and induced neither DC maturation, nor DC secretion of cytokines, except at the highest dose with a very early DC maturation state. The same profile was observed on lymphocytes with significant increases of proliferation and cytokine secretion only at the highest bacterial concentration. Our findings indicate that G. vaginalis possesses slight immune-stimulating activities against DCs and T cells, reflecting thus a defective inflammatory response and giving rise to the atypical, non- or low-grade, inflammatory clinical disease profile. PMID:26989700

  4. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    NASA Astrophysics Data System (ADS)

    Becker, Matthew W.; Collins, Samantha A.; Metge, David W.; Harvey, Ronald W.; Shapiro, Allen M.

    2004-04-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates.

  5. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater.

    PubMed

    Becker, Matthew W; Collins, Samantha A; Metge, David W; Harvey, Ronald W; Shapiro, Allen M

    2004-04-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates.

  6. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    USGS Publications Warehouse

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  7. Formation of active bacterial luciferase between interspecific subunits in vivo.

    PubMed

    Almashanu, S; Tuby, A; Hadar, R; Einy, R; Kuhn, J

    1995-01-01

    Interspecific complementation between luxAs and luxBs from Vibrio harveyi, Vibrio fischeri, Photobacterium leiognathi and Xenorhabdus luminescens was examined in vivo. The individual genes from these species were cloned on different compatible plasmids or amplified by PCR and brought together to yield cis combinations without extraneous DNA. The beta subunits from V. harveyi and X. luminescens form active enzyme only with alpha subunits from one of these species. All other combinations yield active enzymes. The lack of activity of the V. harveyi and X. luminescens beta subunits with the alpha subunits from V. fischeri and P. leiognathi results from a lack of association. This was shown by in vivo competition in which these beta subunits were overproduced in comparison with the beta and alpha of V. fischeri. No reduction in light was found. Overall, the in vivo results parallel those found in vitro using isolated denatured subunits and renaturation by removal of the denaturant.

  8. A mechanistic stochastic framework for regulating bacterial cell division

    PubMed Central

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A.; Singh, Abhyudai

    2016-01-01

    How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise in division timing increases with size at birth. Intriguingly, our results show that the distribution of the volume added between successive cell-division events is independent of the newborn cell size. This was dramatically seen in experimental studies, where histograms of the added volume corresponding to different newborn sizes collapsed on top of each other. The model provides further insights consistent with experimental observations: the distribution of the added volume when scaled by its mean becomes invariant of the growth rate. In summary, our simple yet elegant model explains key experimental findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing for controlling size. PMID:27456660

  9. A mechanistic stochastic framework for regulating bacterial cell division.

    PubMed

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A; Singh, Abhyudai

    2016-07-26

    How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise in division timing increases with size at birth. Intriguingly, our results show that the distribution of the volume added between successive cell-division events is independent of the newborn cell size. This was dramatically seen in experimental studies, where histograms of the added volume corresponding to different newborn sizes collapsed on top of each other. The model provides further insights consistent with experimental observations: the distribution of the added volume when scaled by its mean becomes invariant of the growth rate. In summary, our simple yet elegant model explains key experimental findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing for controlling size.

  10. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.

    PubMed

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A

    2016-11-01

    Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution.

  11. A widespread family of bacterial cell wall assembly proteins

    PubMed Central

    Kawai, Yoshikazu; Marles-Wright, Jon; Cleverley, Robert M; Emmins, Robyn; Ishikawa, Shu; Kuwano, Masayoshi; Heinz, Nadja; Bui, Nhat Khai; Hoyland, Christopher N; Ogasawara, Naotake; Lewis, Richard J; Vollmer, Waldemar; Daniel, Richard A; Errington, Jeff

    2011-01-01

    Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR–Cps2A–Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall. PMID:21964069

  12. Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth.

    PubMed Central

    Lichtman, S N; Okoruwa, E E; Keku, J; Schwab, J H; Sartor, R B

    1992-01-01

    Jejunal self-filling blind loops with subsequent small bowel bacterial overgrowth (SBBO) induce hepatobiliary injury in genetically susceptible Lewis rats. Lesions consist of portal tract inflammation, bile duct proliferation, and destruction. To determine the pathogenesis of SBBO-induced hepatobiliary injury, we treated Lewis rats with SBBO by using several agents with different mechanisms of activity. Buffer treatment, ursodeoxycholic acid, prednisone, methotrexate, and cyclosporin A failed to prevent SBBO-induced injury as demonstrated by increased plasma aspartate aminotransferase (AST) and elevated histology scores. However, hepatic injury was prevented by mutanolysin, a muralytic enzyme whose only known activity is to split the beta 1-4 N-acetylmuramyl-N-acetylglucosamine linkage of peptidoglycan-polysaccharide (PG-PS), a bacterial cell wall polymer with potent inflammatory and immunoregulatory properties. Mutanolysin therapy started on the day blind loops were surgically created and continued for 8 wk significantly diminished AST (101 +/- 37 U/liter) and liver histology scores (2.2 +/- 2.7) compared to buffer-treated rats (228 +/- 146 U/liter, P < 0.05, 8.2 +/- 1.9, P < 0.001 respectively). Mutanolysin treatment started during the early phase of hepatic injury, 16-21 d after surgery, decreased AST in 7 of 11 rats from 142 +/- 80 to 103 +/- 24 U/liter contrasted to increased AST in 9 of 11 buffer-treated rats from 108 +/- 52 to 247 +/- 142 U/liter, P < 0.05. Mutanolysin did not change total bacterial numbers within the loop, eliminate Bacteroides sp., have in vitro antibiotic effects, or diminish mucosal PG-PS transport. However, mutanolysin treatment prevented elevation of plasma anti-PG antibodies and tumor necrosis factor-alpha (TNF alpha) levels which occurred in buffer treated rats with SBBO and decreased TNF alpha production in isolated Kupffer cells stimulated in vitro with PG-PS. Based on the preventive and therapeutic activity of this highly specific

  13. The Active Bacterial Community in a Pristine Confined Aquifer

    EPA Science Inventory

    This study of the active bacteria residing in a pristine confined aquifer provides unexpected insights into the ecology of iron-reducing and sulfate-reducing bacteria in the subsurface. At 18 wells in east-central Illinois, we trapped the microbes that attached to aquifer sedimen...

  14. The integrin-binding domain of invasin is sufficient to allow bacterial entry into mammalian cells.

    PubMed Central

    Rankin, S; Isberg, R R; Leong, J M

    1992-01-01

    Yersinia pseudotuberculosis is able to enter normally nonphagocytic host cells by multiple pathways, the most efficient of which is mediated by invasin, a 986-amino-acid bacterial outer membrane protein. It has previously been shown that the C-terminal 192 amino acids of invasin are sufficient to bind mammalian cells. To determine if additional regions of the invasin protein are necessary to promote entry, we developed a novel assay that tests the ability of various invasin derivatives to confer on Staphylococcus aureus the ability to enter animal cells. We determined that the 192-amino-acid cell-binding region of invasin, when used to coat the bacterial cell surface, was also sufficient to promote cellular penetration. These results suggest that the simple binding of invasin to its receptors is sufficient to mediate entry and that the bacterium plays a largely passive role in the entry process. Images PMID:1500198

  15. Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy.

    PubMed

    Biagi, Maria Chiara; Fabregas, Rene; Gramse, Georg; Van Der Hofstadt, Marc; Juárez, Antonio; Kienberger, Ferry; Fumagalli, Laura; Gomila, Gabriel

    2016-01-26

    We quantified the electric permittivity of single bacterial cells at microwave frequencies and nanoscale spatial resolution by means of near-field scanning microwave microscopy. To this end, calibrated complex admittance images have been obtained at ∼19 GHz and analyzed with a methodology that removes the nonlocal topographic cross-talk contributions and thus provides quantifiable intrinsic dielectric images of the bacterial cells. Results for single Escherichia coli cells provide a relative electric permittivity of ∼4 in dry conditions and ∼20 in humid conditions, with no significant loss contributions. Present findings, together with the ability of microwaves to penetrate the cell membrane, open an important avenue in the microwave label-free imaging of single cells with nanoscale spatial resolution.

  16. A Novel Bacterial Artificial Chromosome-Transgenic Podoplanin–Cre Mouse Targets Lymphoid Organ Stromal Cells in vivo

    PubMed Central

    Onder, Lucas; Scandella, Elke; Chai, Qian; Firner, Sonja; Mayer, Christian T.; Sparwasser, Tim; Thiel, Volker; Rülicke, Thomas; Ludewig, Burkhard

    2011-01-01

    Stromal cells provide the structural foundation of secondary lymphoid organs (SLOs), and regulate leukocyte access and cell migration within the different compartments of spleen and lymph nodes (LNs). Furthermore, several stromal cell subsets have been implied in shaping of T cell responses through direct presentation of antigen. Despite significant gain of knowledge on the biology of different SLO-resident stromal cell subsets, their molecular and functional characterization has remained incomplete. To address this need, we have generated a bacterial artificial chromosome-transgenic mouse model that utilizes the podoplanin (pdpn) promoter to express the Cre-recombinase exclusively in stromal cells of SLOs. The characterization of the Pdpn–Cre mouse revealed transgene expression in subsets of fibroblastic reticular cells and lymphatic endothelial cells in LNs. Furthermore, the transgene facilitated the identification of a novel splenic perivascular stromal cell subpopulation that forms web-like structures around central arterioles. Assessment of the in vivo antigen expression in the genetically tagged stromal cells in Pdpn–Cre mice revealed activation of both MHC I and II-restricted TCR transgenic T cells. Taken together, stromal pdpn–Cre expression is well-suited to characterize the phenotype and to dissect the function of lymphoid organ stromal cells. PMID:22566840

  17. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.

    PubMed

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.

  18. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    PubMed Central

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-01-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry. PMID:27596612

  19. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    NASA Astrophysics Data System (ADS)

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-09-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.

  20. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells.

    PubMed

    Dunaj, Sara J; Vallino, Joseph J; Hines, Mark E; Gay, Marcus; Kobyljanec, Christine; Rooney-Varga, Juliette N

    2012-02-07

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful renewable resource: soil organic carbon. We analyzed bacterial community structure, MFC performance, and soil characteristics in different microhabitats within MFCs constructed from agricultural or forest soils in order to determine how soil type and bacterial dynamics influence MFC performance. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs. Bacterial community profile data indicate that the bacterial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These results suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic bacterial communities, while the quality of available organic matter may have played a significant role in supporting high performing bacterial communities.

  1. Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection.

    PubMed

    Zhu, Wenhan; Tao, Lili; Quick, Marsha L; Joyce, Johanna A; Qu, Jie-Ming; Luo, Zhao-Qing

    2015-03-01

    The intracellular bacterial pathogen Legionella pneumophila provokes strong host responses and has proven to be a valuable model for the discovery of novel immunosurveillance pathways. Our previous work revealed that an environmental isolate of L. pneumophila induces a noncanonical form of cell death, leading to restriction of bacterial replication in primary mouse macrophages. Here we show that such restriction also occurs in infections with wild type clinical isolates. Importantly, we found that a lysine to arginine mutation at residue 88 (K88R) in the ribosome protein RpsL that not only confers bacterial resistance to streptomycin, but more importantly, severely attenuated the induction of host cell death and enabled L. pneumophila to replicate in primary mouse macrophages. Although conferring similar resistance to streptomycin, a K43N mutation in RpsL does not allow productive intracellular bacterial replication. Further analysis indicated that RpsL is capable of effectively inducing macrophage death via a pathway involved in lysosomal membrane permeabilization; the K88R mutant elicits similar responses but is less potent. Moreover, cathepsin B, a lysosomal protease that causes cell death after being released into the cytosol upon the loss of membrane integrity, is required for efficient RpsL-induced macrophage death. Furthermore, despite the critical role of cathepsin B in delaying RpsL-induced cell death, macrophages lacking cathepsin B do not support productive intracellular replication of L. pneumophila harboring wild type RpsL. This suggests the involvement of other yet unidentified components in the restriction of bacterial replication. Our results identified RpsL as a regulator in the interactions between bacteria such as L. pneumophila and primary mouse macrophages by triggering unique cellular pathways that restrict intracellular bacterial replication.

  2. General Protein Diffusion Barriers create Compartments within Bacterial Cells

    PubMed Central

    Schlimpert, Susan; Klein, Eric A.; Briegel, Ariane; Hughes, Velocity; Kahnt, Jörg; Bolte, Kathrin; Maier, Uwe G.; Brun, Yves V.; Jensen, Grant J.; Gitai, Zemer; Thanbichler, Martin

    2013-01-01

    SUMMARY In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell cycle-dependent manner. Their presence is critical for cellular fitness, as they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins. PMID:23201141

  3. Biosynthesis of a Fully Functional Cyclotide inside Living Bacterial Cells

    SciTech Connect

    Camarero, J A; Kimura, R H; Woo, Y; Cantor, J; Shekhtman, A

    2007-04-05

    The cyclotide MCoTI-II is a powerful trypsin inhibitor recently isolated from the seeds of Momordica cochinchinensis, a plant member of cucurbitaceae family. We report for the first time the in vivo biosynthesis of natively-folded MCoTI-II inside live E. coli cells. Our biomimetic approach involves the intracellular backbone cyclization of a linear cyclotide-intein fusion precursor mediated by a modified protein splicing domain. The cyclized peptide then spontaneously folds into its native conformation. The use of genetically engineered E. coli cells containing mutations in the glutathione and thioredoxin reductase genes considerably improves the production of folded MCoTI-II in vivo. Biochemical and structural characterization of the recombinant MCoTI-II confirmed its identity. Biosynthetic access to correctly-folded cyclotides allows the possibility of generating cell-based combinatorial libraries that can be screened inside living cells for their ability to modulate or inhibit cellular processes.

  4. Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence

    PubMed Central

    Hazan, Ronen; He, Jianxin; Xiao, Gaoping; Dekimpe, Valérie; Apidianakis, Yiorgos; Lesic, Biliana; Astrakas, Christos; Déziel, Eric; Lépine, François; Rahme, Laurence G.

    2010-01-01

    Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens. PMID:20300606

  5. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process.

  6. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid

    PubMed Central

    Stracy, Mathew; Lesterlin, Christian; Garza de Leon, Federico; Uphoff, Stephan; Zawadzki, Pawel; Kapanidis, Achillefs N.

    2015-01-01

    Despite the fundamental importance of transcription, a comprehensive analysis of RNA polymerase (RNAP) behavior and its role in the nucleoid organization in vivo is lacking. Here, we used superresolution microscopy to study the localization and dynamics of the transcription machinery and DNA in live bacterial cells, at both the single-molecule and the population level. We used photoactivated single-molecule tracking to discriminate between mobile RNAPs and RNAPs specifically bound to DNA, either on promoters or transcribed genes. Mobile RNAPs can explore the whole nucleoid while searching for promoters, and spend 85% of their search time in nonspecific interactions with DNA. On the other hand, the distribution of specifically bound RNAPs shows that low levels of transcription can occur throughout the nucleoid. Further, clustering analysis and 3D structured illumination microscopy (SIM) show that dense clusters of transcribing RNAPs form almost exclusively at the nucleoid periphery. Treatment with rifampicin shows that active transcription is necessary for maintaining this spatial organization. In faster growth conditions, the fraction of transcribing RNAPs increases, as well as their clustering. Under these conditions, we observed dramatic phase separation between the densest clusters of RNAPs and the densest regions of the nucleoid. These findings show that transcription can cause spatial reorganization of the nucleoid, with movement of gene loci out of the bulk of DNA as levels of transcription increase. This work provides a global view of the organization of RNA polymerase and transcription in living cells. PMID:26224838

  7. Effects of Prochloraz fungicide on soil enzymatic activities and bacterial communities.

    PubMed

    Tejada, Manuel; Gómez, Isidoro; García-Martínez, Ana María; Osta, Paloma; Parrado, Juan

    2011-09-01

    We studied in the laboratory the effect of Prochloraz fungicide on the biological properties (soil enzymatic activities and soil bacterial communities) of a Plaggic Anthrosol. Five hundred grams of soil (<2mm) was mixed with three dosages of Prochloraz (1, 2, and 4 l ha(-1)) for 83 days. A non-Prochloraz polluted soil was used as control. Following commercial recommendations, fungicide was applied four times during the incubation experiment. For all treatments, the soil ergosterol and levels of dehydrogenase, urease, β-glucosidase, and phosphatase activity were measured at nine different times (0, 1, 21, 22, 41, 42, 62, 63, and 83 days). The 16S rDNA-DGGE profiles in all treatments were determined at the beginning and end of the incubation period. At the end of the experiment, a significant decrease in ergosterol by 72.3%, 80.8%, and 83.1%, compared with control soil, was observed when 1, 2, and 4 l ha(-1), respectively, was added. Soil enzymatic activities increased when the Prochloraz applied to the soil increased, possibly because the fungicide is used by bacterial communities as a source of energy and nutrients. The 16S rDNA-DGGE profiles indicated that the fungicide did not negatively affect soil bacterial biodiversity. These results suggested that the fungicide Prochloraz has a very interesting agronomic effect, possibly due to the negative effect on soil fungal population stimulating the growth of soil bacterial activity.

  8. Penicillin Use in Meningococcal Disease Management: Active Bacterial Core Surveillance Sites, 2009

    PubMed Central

    Blain, Amy E.; Mandal, Sema; Wu, Henry; MacNeil, Jessica R.; Harrison, Lee H.; Farley, Monica M.; Lynfield, Ruth; Miller, Lisa; Nichols, Megin; Petit, Sue; Reingold, Arthur; Schaffner, William; Thomas, Ann; Zansky, Shelley M.; Anderson, Raydel; Harcourt, Brian H.; Mayer, Leonard W.; Clark, Thomas A.; Cohn, Amanda C.

    2016-01-01

    In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines. PMID:27704009

  9. Penicillin Use in Meningococcal Disease Management: Active Bacterial Core Surveillance Sites, 2009.

    PubMed

    Blain, Amy E; Mandal, Sema; Wu, Henry; MacNeil, Jessica R; Harrison, Lee H; Farley, Monica M; Lynfield, Ruth; Miller, Lisa; Nichols, Megin; Petit, Sue; Reingold, Arthur; Schaffner, William; Thomas, Ann; Zansky, Shelley M; Anderson, Raydel; Harcourt, Brian H; Mayer, Leonard W; Clark, Thomas A; Cohn, Amanda C

    2016-09-01

    In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines.

  10. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  11. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity.

    PubMed

    Stokes, Suzanne S; Huynh, Hoan; Gowravaram, Madhusudhan; Albert, Robert; Cavero-Tomas, Marta; Chen, Brendan; Harang, Jenna; Loch, James T; Lu, Min; Mullen, George B; Zhao, Shannon; Liu, Ce-Feng; Mills, Scott D

    2011-08-01

    Optimization of adenosine analog inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. Antibacterial activity against Streptococcus pneumoniae and Staphylococcus aureus was improved by modification of the 2-position substituent on the adenine ring and 3'- and 5'-substituents on the ribose. Compounds with logD values 1.5-2.5 maximized potency and maintained drug-like physical properties.

  12. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

    PubMed Central

    Song, Yu-Rim; Choi, Min-Seon; Choi, Geun-Won; Park, Il-Kwon; Oh, Chang-Sik

    2016-01-01

    Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs) of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit. PMID:27493612

  13. Signaling lymphocyte-activation molecule SLAMF1 augments mycobacteria BCG-induced inflammatory response and facilitates bacterial clearance.

    PubMed

    Song, Tengfei; Dong, Chunsheng; Xiong, Sidong

    2015-09-01

    Tuberculosis, which is caused by intracellular mycobacterium Mycobacterium tuberculosis (Mtb), remains one of the most serious global public health concerns. The mechanisms by which innate immunity regulates the inflammatory responses and affects mycobacterial infection remain unclear. In this study, signaling lymphocyte-activation molecule family 1 (SLAMF1) was significantly upregulated in Mycobacterium bovis Bacille Calmette-Guérin (BCG)-infected RAW264.7 cells. Overexpression of SLAMF1 significantly increased the production of inflammatory factors TNF-α and IL-1β, as well as chemokine MCP-1, both in vitro and in vivo upon mycobacteria BCG infection. By contrast, knockdown of SLAMF1 significantly decreased the production of TNF-α, IL-1β, and MCP-1. Western blot analysis indicated that the NF-κB signaling pathway may contribute to the elevated inflammatory response promoted by SLAMF1, as evidenced by higher levels of phosphorylated p65 and IκBα detected with SLAMF1 overexpression. Furthermore, SLAMF1 upregulation facilitated bacterial clearance in infected RAW264.7 cells and in the lungs of infected mice. In conclusion, we demonstrated that BCG infection significantly upregulated SLAMF1, which enhanced inflammatory response by activating the NF-κB signaling pathway and facilitated bacterial clearance in BCG-infected RAW264.7 cells and mice.

  14. Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns

    NASA Astrophysics Data System (ADS)

    Xia, Lu; Zheng, Xilai; Shao, Haibing; Xin, Jia; Sun, Zhaoyue; Wang, Leyun

    2016-04-01

    Microbially induced reductions in the saturated hydraulic conductivity, Ks, of natural porous media, conventionally called bioclogging, occurs frequently in natural and engineered subsurface systems. Bioclogging can affect artificial groundwater recharge, in situ bioremediation of contaminated aquifers, or permeable reactive barriers. In this study, we designed a series of percolation experiments to simulate the growth and metabolism of bacteria in sand columns. The experimental results showed that the bacterial cell amount gradually increased to a maximum of 8.91 log10 CFU/g sand at 144 h during the bioclogging process, followed by a decrease to 7.89 log10 CFU/g sand until 336 h. The same variation pattern was found for the concentration of tightly bound extracellular polymeric substances (TB-EPS), which had a peak value of 220.76 μg/g sand at 144 h. In the same experiments, the concentration of loosely bound extracellular polymeric substances (LB-EPS) increased sharply from 54.45 to 575.57 μg/g sand in 192 h, followed by a slight decline to 505.04 μg/g sand. The increase of the bacterial cell amount along with the other two concentrations could reduce the Ks of porous media, but their relative contributions varied to a large degree during different percolation stages. At the beginning of the tests (e.g., 48 h before), bacterial cells were likely responsible for the Ks reduction of porous media because no increase was found for the other two concentrations. With the accumulation of cells and EPS production from 48 to 144 h, both were important for the reduction of Ks. However, in the late period of percolation tests from 144 to 192 h, LB-EPS was probably responsible for the further reduction of Ks, as the bacterial cell amount and TB-EPS concentration decreased. Quantitative contributions of bacterial cell amount and the two types of extracellular polymers to Ks reductions were also evaluated.

  15. Creating an antibacterial with in vivo efficacy: synthesis and characterization of potent inhibitors of the bacterial cell division protein FtsZ with improved pharmaceutical properties.

    PubMed

    Haydon, David J; Bennett, James M; Brown, David; Collins, Ian; Galbraith, Greta; Lancett, Paul; Macdonald, Rebecca; Stokes, Neil R; Chauhan, Pramod K; Sutariya, Jignesh K; Nayal, Narendra; Srivastava, Anil; Beanland, Joy; Hall, Robin; Henstock, Vincent; Noula, Caterina; Rockley, Chris; Czaplewski, Lloyd

    2010-05-27

    3-Methoxybenzamide (1) is a weak inhibitor of the essential bacterial cell division protein FtsZ. Alkyl derivatives of 1 are potent antistaphylococcal compounds with suboptimal drug-like properties. Exploration of the structure-activity relationships of analogues of these inhibitors led to the identification of potent antistaphylococcal compounds with improved pharmaceutical properties.

  16. Increased electrical output when a bacterial ABTS oxidizer is used in a microbial fuel cell

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial fuel cells (MFCs) are a technology that provides electrical energy from the microbial oxidation of organic compounds. Most MFCs use oxygen as the oxidant in the cathode chamber. The present study examined the formation in culture of an unidentified bacterial oxidant and investigated the ...

  17. Community Composition of Bacterial Biofilms Formed on Simple Soil Based Bioelectrochemical Cell Anodes and Cathodes

    DTIC Science & Technology

    2012-04-01

    agreement with the fatty acid analysis, the detection of Firmicutes, Cyanobacteria and - Proteobacteria suggests a complexity to the anode bacterial...to the FW cell anodes was the putative identification of cyanobacteria . Pisciotta et al. (2010) recently demonstrated a light-dependent...bacillales rhizobiales rhodobacterales rhodospirillales burkholderiales myxococcales cyanobacteria rhizobiales rhodobacterales sphingomonadales burkholderiales

  18. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes

    PubMed Central

    Chindera, Kantaraja; Mahato, Manohar; Kumar Sharma, Ashwani; Horsley, Harry; Kloc-Muniak, Klaudia; Kamaruzzaman, Nor Fadhilah; Kumar, Satish; McFarlane, Alexander; Stach, Jem; Bentin, Thomas; Good, Liam

    2016-01-01

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance. PMID:26996206

  19. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes.

    PubMed

    Chindera, Kantaraja; Mahato, Manohar; Sharma, Ashwani Kumar; Horsley, Harry; Kloc-Muniak, Klaudia; Kamaruzzaman, Nor Fadhilah; Kumar, Satish; McFarlane, Alexander; Stach, Jem; Bentin, Thomas; Good, Liam

    2016-03-21

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance.

  20. Arthrobacter Species as a Prey Cell Reservoir for Nonobligate Bacterial Predators in Soil

    DTIC Science & Technology

    1989-01-01

    species as a prey cell reservoir for nonobligate bacterial predators in soil. Can. J. Microbiol. 35 : 559--564, tine investigation at etc entreprise sur...8217 .Stieprom tice ~s species and Bad//uhs instead of’ A. glohifrbrmis. to provide 1 .0 mng/g soil did not nivoie from the soil did not interfecre because

  1. Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases.

    PubMed

    Hutin, Mathilde; Césari, Stella; Chalvon, Véronique; Michel, Corinne; Tran, Tuan Tu; Boch, Jens; Koebnik, Ralf; Szurek, Boris; Kroj, Thomas

    2016-10-01

    Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes.

  2. Activation of a bacterial lipase by its chaperone.

    PubMed Central

    Hobson, A H; Buckley, C M; Aamand, J L; Jørgensen, S T; Diderichsen, B; McConnell, D J

    1993-01-01

    The gene lipA of Pseudomonas cepacia DSM 3959 encodes a prelipase from which a signal peptide is cleaved during secretion, producing a mature extracellular lipase. Expression of lipase in several heterologous hosts depends on the presence of another gene, limA, in cis or in trans. Lipase protein has been overproduced in Escherichia coli in the presence and absence of the lipase modulator gene limA. Therefore, limA is not required for the transcription of lipA or for the translation of the lipA mRNA. However, no lipase activity is observed in the absence of limA. limA has been overexpressed and encodes a 33-kDa protein, Lim. If lipase protein is denatured in 8 M urea and the urea is removed by dialysis, lipase activity is quantitatively recovered provided Lim protein is present during renaturation. Lip and Lim proteins form a complex precipitable either by an anti-lipase or anti-Lim antibody. The Lim protein has therefore the properties of a chaperone. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7685908

  3. Diverse uncultivated ultra-small bacterial cells in groundwater.

    PubMed

    Luef, Birgit; Frischkorn, Kyle R; Wrighton, Kelly C; Holman, Hoi-Ying N; Birarda, Giovanni; Thomas, Brian C; Singh, Andrea; Williams, Kenneth H; Siegerist, Cristina E; Tringe, Susannah G; Downing, Kenneth H; Comolli, Luis R; Banfield, Jillian F

    2015-02-27

    Bacteria from phyla lacking cultivated representatives are widespread in natural systems and some have very small genomes. Here we test the hypothesis that these cells are small and thus might be enriched by filtration for coupled genomic and ultrastructural characterization. Metagenomic analysis of groundwater that passed through a ~0.2-μm filter reveals a wide diversity of bacteria from the WWE3, OP11 and OD1 candidate phyla. Cryogenic transmission electron microscopy demonstrates that, despite morphological variation, cells consistently have small cell size (0.009±0.002 μm(3)). Ultrastructural features potentially related to cell and genome size minimization include tightly packed spirals inferred to be DNA, few densely packed ribosomes and a variety of pili-like structures that might enable inter-organism interactions that compensate for biosynthetic capacities inferred to be missing from genomic data. The results suggest that extremely small cell size is associated with these relatively common, yet little known organisms.

  4. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  5. In situ probing the interior of single bacterial cells at nanometer scale

    NASA Astrophysics Data System (ADS)

    Liu, Boyin; Hemayet Uddin, Md; Ng, Tuck Wah; Paterson, David L.; Velkov, Tony; Li, Jian; Fu, Jing

    2014-10-01

    We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB-AFM platform will help in gaining deeper insights of bacteria-drug interactions to develop potential strategies for combating multi-drug resistance.

  6. Exploiting bacterial peptide display technology to engineer biomaterials for neural stem cell culture.

    PubMed

    Little, Lauren E; Dane, Karen Y; Daugherty, Patrick S; Healy, Kevin E; Schaffer, David V

    2011-02-01

    Stem cells are often cultured on substrates that present extracellular matrix (ECM) proteins; however, the heterogeneous and poorly defined nature of ECM proteins presents challenges both for basic biological investigation of cell-matrix investigations and translational applications of stem cells. Therefore, fully synthetic, defined materials conjugated with bioactive ligands, such as adhesive peptides, are preferable for stem cell biology and engineering. However, identifying novel ligands that engage cellular receptors can be challenging, and we have thus developed a high throughput approach to identify new adhesive ligands. We selected an unbiased bacterial peptide display library for the ability to bind adult neural stem cells (NSCs), and 44 bacterial clones expressing peptides were identified and found to bind to NSCs with high avidity. Of these clones, four contained RGD motifs commonly found in integrin binding domains, and three exhibited homology to ECM proteins. Three peptide clones were chosen for further analysis, and their synthetic analogs were adsorbed on tissue culture polystyrene (TCPS) or grafted onto an interpenetrating polymer network (IPN) for cell culture. These three peptides were found to support neural stem cell self-renewal in defined medium as well as multi-lineage differentiation. Therefore, bacterial peptide display offers unique advantages to isolate bioactive peptides from large, unbiased libraries for applications in biomaterials engineering.

  7. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds.

    PubMed

    Krontiras, Panagiotis; Gatenholm, Paul; Hägg, Daniel A

    2015-01-01

    There is an increased interest in developing adipose tissue for in vitro and in vivo applications. Current two-dimensional (2D) cell-culture systems of adipocytes are limited, and new methods to culture adipocytes in three-dimensional (3D) are warranted as a more life-like model to study metabolic diseases such as obesity and diabetes. In this study, we have evaluated different porous bacterial nanocellulose scaffolds for 3D adipose tissue. In an initial pilot study, we compared adipogenic differentiation of mice mesenchymal stem cells from a cell line on 2D and 3D scaffolds of bacterial nanocellulose. The 3D scaffolds were engineered by crosslinking homogenized cellulose fibrils using alginate and freeze drying the mixture to obtain a porous structure. Quenching the scaffolds in liquid nitrogen resulted in smaller pores compared to slower freezing using isopropanol. We found that on 2D surfaces, the cells were scarcely distributed and showed limited formation of lipid droplets, whereas cells grown in macroporous 3D scaffolds contained more cells growing in clusters, containing large lipid droplets. All four types of scaffolds contained a lot of adipocytes, but scaffolds with smaller pores contained larger cell clusters than scaffolds with bigger pores, with viable adipocytes present even 4 weeks after differentiation. Scaffolds with lower alginate fractions retained their pore integrity better. We conclude that 3D culturing of adipocytes in bacterial nanocellulose macroporous scaffolds is a promising method for fabrication of adipose tissue as an in vitro model for adipose biology and metabolic disease.

  8. Reaction of germinal centers in the T-cell-independent response to the bacterial polysaccharide alpha(1-->6)dextran.

    PubMed Central

    Wang, D; Wells, S M; Stall, A M; Kabat, E A

    1994-01-01

    Primary immunization of BALB/c mice with alpha(1-->6)dextran (DEX), a native bacterial polysaccharide, induces an unexpected pattern of splenic B-cell responses. After a peak of antibody-secreting B-cell response at day 4, deposition of dextran-anti-dextran immune complexes, as revealed by staining with both dextran and antibodies to dextran, occurs and persists in splenic follicles until at least the fourth week after immunization. Antigen-specific B cells appear and proliferate in such follicles, leading by day 11 to development of DEX-specific germinal centers as characterized by the presence of distinct regions of DEX+ peanut agglutinin-positive (PNA+) cells. At this time, fluorescence-activated cell sorter analysis also reveals the appearance of a distinct population of DEX+ PNA+ splenic B cells. In contrast, DEX+ PNA- cells, characterized by intense cytoplasmic staining, are present outside of splenic follicles, peak at day 4 to day 5, and persist until at least day 28. The frequency of these cells correlates with DEX-specific antibody-secreting cells, as detected by the ELISA-spot assay. Thus, in addition to the expected plasma cellular response, the typical T-cell-independent type II antigen, DEX, surprisingly also elicits the formation of antigen-specific germinal centers. These observations raise fundamental questions about the roles of germinal centers in T-cell-independent immune responses. Images PMID:7511812

  9. Plasmonic imaging of protein interactions with single bacterial cells.

    PubMed

    Syal, Karan; Wang, Wei; Shan, Xiaonan; Wang, Shaopeng; Chen, Hong-Yuan; Tao, Nongjian

    2015-01-15

    Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population.

  10. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Dai, Minhan; Jiao, Nianzhi; Herndl, Gerhard J

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and 16S rRNA gene (V1-3 regions) and thereby characterizing the active and total bacterial community, respectively. The diversity and biogeographic patterns differed substantially between the active and total bacterial communities. Although the composition of both the total and active bacterial community was strongly correlated with environmental factors and weakly correlated with geographic distance, the active bacterial community displayed higher environmental sensitivity than the total community and particularly a greater distance effect largely caused by the active assemblage from deep waters. The 16S rRNA vs. rDNA relationships indicated that the active bacteria were low in relative abundance in the SCS. This might be due to a high competition between active bacterial taxa as indicated by our community network models. Based on these analyses, we speculate that high competition could cause some dispersal limitation of the active bacterial community resulting in a distinct distance-decay relationship. Altogether, our results indicated that the biogeographic distribution of bacteria in the SCS is the result of both environmental control and distance decay. PMID:24684298

  11. Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine.

    PubMed

    Olyveira, Gabriel Molina; Acasigua, Gerson Arisoly Xavier; Costa, Ligia Maria Manzine; Scher, Cristiane Regina; Xavier Filho, Lauro; Pranke, Patricia Helena Lucas; Basmaji, Pierre

    2013-08-01

    Adhesion and Viability study with human dental pulp stem cell using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine are presented at first time in this work. Nanotolith, are osteoinductors, i.e., they stimulate bone regeneration, enabling higher cells migration for bone tissue regeneration formation. This is mainly because nanotoliths are rich minerals present in the internal ear of bony fish. In addition, are part of a system which acts as a depth sensor and balance, acting as a sound vibrations detector and considered essential for the bone mineralization process, as in hydroxiapatites. Nanotoliths influence in bacterial cellulose was analyzed using transmission infrared spectroscopy (FTIR). Results shows that fermentation process and nanotoliths agglomeration decrease initial human dental pulp stem cell adhesion however tested bionanocomposite behavior has cell viability increase over time.

  12. Antimicrobial Activity of Monoramnholipids Produced by Bacterial Strains Isolated from the Ross Sea (Antarctica) †

    PubMed Central

    Tedesco, Pietro; Maida, Isabel; Palma Esposito, Fortunato; Tortorella, Emiliana; Subko, Karolina; Ezeofor, Chidinma Christiana; Zhang, Ying; Tabudravu, Jioji; Jaspars, Marcel; Fani, Renato; de Pascale, Donatella

    2016-01-01

    Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc). Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas) via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce crude extracts from microbial spent culture media, to perform the secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, we achieved the isolation of three rhamnolipids, two of which were new, endowed with high (MIC < 1 μg/mL) and unreported antimicrobial activity against Bcc strains. PMID:27128927

  13. Response of bacterial metabolic activity to riverine dissolved organic carbon and exogenous viruses in estuarine and coastal waters: implications for CO2 emission.

    PubMed

    Xu, Jie; Sun, Mingming; Shi, Zhen; Harrison, Paul J; Liu, Hongbin

    2014-01-01

    A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The bioavailable riverine DOC influenced bulk bacterial respiration in two contrasting ways; it enhanced the bulk BR by stimulating bacterial growth, but simultaneously reduced the cell-specific BR due to its high lability. As a result, there was little stimulation of the bulk BR by riverine DOC. This might be partly responsible for lower CO2 degassing fluxes in estuaries receiving high sewage-DOC that is highly labile. Viruses restricted microbial decomposition of riverine DOC dramatically by repressing the growth of metabolically active bacteria. Bacterial carbon demand in the presence of viruses only accounted for 7-12% of that in the absence of viruses. Consequently, a large fraction of riverine DOC was likely transported offshore to the shelf. In addition, marine bacteria and estuarine bacteria responded distinctly to exogenous viruses. Marine viruses were able to infect estuarine bacteria, but not as efficiently as estuarine viruses, while estuarine viruses infected marine bacteria as efficiently as marine viruses. We speculate that the rapid changes in the viral community due to freshwater input destroyed the existing bacteria-virus relationship, which would change the bacterial community composition and affect the bacterial