Sample records for active bacterial populations

  1. Characterization of Metabolically Active Bacterial Populations in Subseafloor Nankai Trough Sediments above, within, and below the Sulfate–Methane Transition Zone

    PubMed Central

    Mills, Heath J.; Reese, Brandi Kiel; Shepard, Alicia K.; Riedinger, Natascha; Dowd, Scot E.; Morono, Yuki; Inagaki, Fumio

    2012-01-01

    A remarkable number of microbial cells have been enumerated within subseafloor sediments, suggesting a biological impact on geochemical processes in the subseafloor habitat. However, the metabolically active fraction of these populations is largely uncharacterized. In this study, an RNA-based molecular approach was used to determine the diversity and community structure of metabolically active bacterial populations in the upper sedimentary formation of the Nankai Trough seismogenic zone. Samples used in this study were collected from the slope apron sediment overlying the accretionary prism at Site C0004 during the Integrated Ocean Drilling Program Expedition 316. The sediments represented microbial habitats above, within, and below the sulfate–methane transition zone (SMTZ), which was observed approximately 20 m below the seafloor (mbsf). Small subunit ribosomal RNA were extracted, quantified, amplified, and sequenced using high-throughput 454 pyrosequencing, indicating the occurrence of metabolically active bacterial populations to a depth of 57 mbsf. Transcript abundance and bacterial diversity decreased with increasing depth. The two communities below the SMTZ were similar at the phylum level, however only a 24% overlap was observed at the genus level. Active bacterial community composition was not confined to geochemically predicted redox stratification despite the deepest sample being more than 50 m below the oxic/anoxic interface. Genus-level classification suggested that the metabolically active subseafloor bacterial populations had similarities to previously cultured organisms. This allowed predictions of physiological potential, expanding understanding of the subseafloor microbial ecosystem. Unique community structures suggest very diverse active populations compared to previous DNA-based diversity estimates, providing more support for enhancing community characterizations using more advanced sequencing techniques. PMID:22485111

  2. Population-based surveillance for bacterial meningitis in China, September 2006-December 2009.

    PubMed

    Li, Yixing; Yin, Zundong; Shao, Zhujun; Li, Manshi; Liang, Xiaofeng; Sandhu, Hardeep S; Hadler, Stephen C; Li, Junhong; Sun, Yinqi; Li, Jing; Zou, Wenjing; Lin, Mei; Zuo, Shuyan; Mayer, Leonard W; Novak, Ryan T; Zhu, Bingqing; Xu, Li; Luo, Huiming

    2014-01-01

    During September 2006-December 2009, we conducted active population and sentinel laboratory-based surveillance for bacterial meningitis pathogens, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae type b, in 4 China prefectures. We identified 7,876 acute meningitis and encephalitis syndrome cases, including 6,388 among prefecture residents. A total of 833 resident cases from sentinel hospitals met the World Health Organization case definition for probable bacterial meningitis; 339 of these cases were among children <5 years of age. Laboratory testing confirmed bacterial meningitis in 74 of 3,391 tested cases. The estimated annual incidence (per 100,000 population) of probable bacterial meningitis ranged from 1.84 to 2.93 for the entire population and from 6.95 to 22.30 for children <5 years old. Active surveillance with laboratory confirmation has provided a population-based estimate of the number of probable bacterial meningitis cases in China, but more complete laboratory testing is needed to better define the epidemiology of the disease in this country.

  3. Influence of zinc on bacterial populations and their proteolytic enzyme activities in freshwater environments: a cross-site comparison.

    PubMed

    Rasmussen, Lauren; Olapade, Ola A

    2016-04-01

    Temporal responses of indigenous bacterial populations and proteolytic enzyme (i.e., aminopeptidase) activities in the bacterioplankton assemblages from 3 separate freshwater environments were examined after exposure to various zinc (Zn) concentrations under controlled microcosm conditions. Zn concentrations (ranging from 0 to 10 μmol/L) were added to water samples collected from the Kalamazoo River, Rice Creek, and Huron River and examined for bacterial abundance and aminopeptidase activities at various time intervals over a 48 h incubation period in the dark. The results showed that the Zn concentrations did not significantly influence total bacterial counts directly; however, aminopeptidase activities varied significantly to increasing zinc treatments over time. Also, analysis of variance and linear regression analyses revealed significant positive relationships between bacterial numbers and their hydrolytic enzyme activities, suggesting that both probably co-vary with increasing Zn concentrations in aquatic systems. The results from this study serve as additional evidence of the ecological role of Zn as an extracellular peptidase cofactor on the dynamics of bacterial assemblages in aquatic environments.

  4. Analysis of bacterial populations in the environment using two-dimensional gel electrophoresis of genomic DNA and complementary DNA.

    PubMed

    Liu, Guo-Hua; Nakamura, Tatsuo; Amemiya, Takashi; Rajendran, Narasimmalu; Itoh, Kiminori

    2011-01-01

    Two-dimensional gel electrophoresis (2-DGE) mapping of genomic DNA and complementary DNA (cDNA) amplicons was attempted to analyze total and active bacterial populations within soil and activated sludge samples. Distinct differences in the number and species of bacterial populations and those that were metabolically active at the time of sampling were visually observed especially for the soil community. Statistical analyses and sequencing based on the 2-DGE data further revealed the relationships between total and active bacterial populations within each community. This high-resolution technique would be useful for obtaining a better understanding of bacterial population structures in the environment.

  5. Population-based Surveillance for Bacterial Meningitis in China, September 2006–December 2009

    PubMed Central

    Li, Yixing; Yin, Zundong; Shao, Zhujun; Li, Manshi; Liang, Xiaofeng; Sandhu, Hardeep S.; Hadler, Stephen C.; Li, Junhong; Sun, Yinqi; Li, Jing; Zou, Wenjing; Lin, Mei; Zuo, Shuyan; Mayer, Leonard W.; Novak, Ryan T.; Zhu, Bingqing; Xu, Li

    2014-01-01

    During September 2006–December 2009, we conducted active population and sentinel laboratory–based surveillance for bacterial meningitis pathogens, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae type b, in 4 China prefectures. We identified 7,876 acute meningitis and encephalitis syndrome cases, including 6,388 among prefecture residents. A total of 833 resident cases from sentinel hospitals met the World Health Organization case definition for probable bacterial meningitis; 339 of these cases were among children <5 years of age. Laboratory testing confirmed bacterial meningitis in 74 of 3,391 tested cases. The estimated annual incidence (per 100,000 population) of probable bacterial meningitis ranged from 1.84 to 2.93 for the entire population and from 6.95 to 22.30 for children <5 years old. Active surveillance with laboratory confirmation has provided a population-based estimate of the number of probable bacterial meningitis cases in China, but more complete laboratory testing is needed to better define the epidemiology of the disease in this country. PMID:24377388

  6. Active Marine Subsurface Bacterial Population Composition in Low Organic Carbon Environments from IODP Expedition 320

    NASA Astrophysics Data System (ADS)

    Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party

    2011-12-01

    The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum

  7. Raw Cow Milk Bacterial Population Shifts Attributable to Refrigeration

    PubMed Central

    Lafarge, Véronique; Ogier, Jean-Claude; Girard, Victoria; Maladen, Véronique; Leveau, Jean-Yves; Gruss, Alexandra; Delacroix-Buchet, Agnès

    2004-01-01

    We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (<55%) and medium- or high-GC% (>55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive bacterial reference database (∼150 species) that we established with DNA fragments of pure bacterial strains. Cloning and sequencing of fragments missing from the database were used to achieve complete species identification. Considerable evolution of bacterial populations occurred during conservation at 4°C. TTGE and DGGE are shown to be a powerful tool for identifying the main bacterial species of the raw milk samples and for monitoring changes in bacterial populations during conservation at 4°C. The emergence of psychrotrophic bacteria such as Listeria spp. or Aeromonas hydrophila is demonstrated. PMID:15345453

  8. Bacterial computing with engineered populations.

    PubMed

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    NASA Astrophysics Data System (ADS)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  10. Twenty Years of Active Bacterial Core Surveillance

    PubMed Central

    Schaffner, William; Farley, Monica M.; Lynfield, Ruth; Bennett, Nancy M.; Reingold, Arthur; Thomas, Ann; Harrison, Lee H.; Nichols, Megin; Petit, Susan; Miller, Lisa; Moore, Matthew R.; Schrag, Stephanie J.; Lessa, Fernanda C.; Skoff, Tami H.; MacNeil, Jessica R.; Briere, Elizabeth C.; Weston, Emily J.; Van Beneden, Chris

    2015-01-01

    Active Bacterial Core surveillance (ABCs) was established in 1995 as part of the Centers for Disease Control and Prevention Emerging Infections Program (EIP) network to assess the extent of invasive bacterial infections of public health importance. ABCs is distinctive among surveillance systems because of its large, population-based, geographically diverse catchment area; active laboratory-based identification of cases to ensure complete case capture; detailed collection of epidemiologic information paired with laboratory isolates; infrastructure that allows for more in-depth investigations; and sustained commitment of public health, academic, and clinical partners to maintain the system. ABCs has directly affected public health policies and practices through the development and evaluation of vaccines and other prevention strategies, the monitoring of antimicrobial drug resistance, and the response to public health emergencies and other emerging infections. PMID:26292067

  11. Plasmid Frequency Fluctuations in Bacterial Populations from Chemically Stressed Soil Communities

    PubMed Central

    Wickham, Gene S.; Atlas, Ronald M.

    1988-01-01

    The frequency of plasmids in chemically stressed bacterial populations was investigated by individually adding various concentration of kanamycin, ampicillin, and mercuric chloride to soil samples. Viable bacterial populations were enumerated, soil respiration was monitored for up to 6 weeks as an indicator of physiological stress, and bacterial isolates from stressed and control soils were screened for the presence of plasmids. Low levels of the chemical stress factors did not for the most part significantly alter population viability, soil respiration, or plasmid frequency. Exposure to high stress levels of mercury and ampicillin, however, resulted in altered numbers of viable organisms, soil respiration, and plasmid frequency. Plasmid frequency increased in response to ampicillin exposure but was not significantly changed after exposure to kanamycin. In mercuric chloride-stressed soils, there was a decrease in plasmid frequency despite an increase in overall mercury resistance of the isolates, suggesting that mercury resistance in these populations is largely, if not completely, chromosome encoded. Chemical stress did not cause an increase in plasmid-mediated multiple resistance. A genetic response (change in plasmid frequency) was not found unless a physiological (phenotypic) response (change in viable cells and respiratory activity) was also observed. The results indicate that a change in plasmid frequency is dependent on both the amount and type of chemical stress. PMID:16347730

  12. Exploring bacterial infections: theoretical and experimental studies of the bacterial population dynamics and antibiotic treatment

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian

    Bacterial infections are very common in human society. Thus extensive research has been conducted to reveal the molecular mechanisms of the pathogenesis and to evaluate the antibiotics' efficacy against bacteria. Little is known, however, about the population dynamics of bacterial populations and their interactions with the host's immune system. In this dissertation, a stochatic model is developed featuring stochastic phenotypic switching of bacterial individuals to explain the single-variant bottleneck discovered in multi strain bacterial infections. I explored early events in a bacterial infection establishment using classical experiments of Moxon and Murphy on neonatal rats. I showed that the minimal model and its simple variants do not work. I proposed modifications to the model that could explain the data quantitatively. The bacterial infections are also commonly established in physical structures, as biofilms or 3-d colonies. In contrast, most research on antibiotic treatment of bacterial infections has been conducted in well-mixed liquid cultures. I explored the efficacy of antibiotics to treat such bacterial colonies, a broadly applicable method is designed and evaluated where discrete bacterial colonies on 2-d surfaces were exposed to antibiotics. I discuss possible explanations and hypotheses for the experimental results. To verify these hypotheses, we investigated the dynamics of bacterial population as 3-d colonies. We showed that a minimal mathematical model of bacterial colony growth in 3-d was able to account for the experimentally observed presence of a diffusion-limited regime. The model further revealed highly loose packing of the cells in 3-d colonies and smaller cell sizes in colonies than plancktonic cells in corresponding liquid culture. Further experimental tests of the model predictions have revealed that the ratio of the cell size in liquid culture to that in colony cultures was consistent with the model prediction, that the dead cells

  13. Contact-dependent growth inhibition induces high levels of antibiotic-tolerant persister cells in clonal bacterial populations.

    PubMed

    Ghosh, Anirban; Baltekin, Özden; Wäneskog, Marcus; Elkhalifa, Dina; Hammarlöf, Disa L; Elf, Johan; Koskiniemi, Sanna

    2018-05-02

    Bacterial populations can use bet-hedging strategies to cope with rapidly changing environments. One example is non-growing cells in clonal bacterial populations that are able to persist antibiotic treatment. Previous studies suggest that persisters arise in bacterial populations either stochastically through variation in levels of global signalling molecules between individual cells, or in response to various stresses. Here, we show that toxins used in contact-dependent growth inhibition (CDI) create persisters upon direct contact with cells lacking sufficient levels of CdiI immunity protein, which would otherwise bind to and neutralize toxin activity. CDI-mediated persisters form through a feedforward cycle where the toxic activity of the CdiA toxin increases cellular (p)ppGpp levels, which results in Lon-mediated degradation of the immunity protein and more free toxin. Thus, CDI systems mediate a population density-dependent bet-hedging strategy, where the fraction of non-growing cells is increased only when there are many cells of the same genotype. This may be one of the mechanisms of how CDI systems increase the fitness of their hosts. © 2018 The Authors.

  14. Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge

    PubMed Central

    Prakasam, T. B. S.; Dondero, N. C.

    1970-01-01

    An activated sludge from a sewage treatment plant and a laboratory activated sludge developed on an artificial waste were compared for their ability to utilize 11 aromatic compounds. There were several significant differences between them. The laboratory sludge contained higher numbers of organisms and metabolized the aromatics to a greater extent. Laboratory activated sludges acclimated to utilization of the aromatics differed from each other in population structure and the pattern of oxygen consumption with aromatic substrates. The oxidative patterns of uncontrolled mixed populations were unreliable for investigating metabolic pathways. Extracts of the various sludges elevated the plate counts of the sludges. PMID:5418946

  15. Relationship between Oral Malodor and the Global Composition of Indigenous Bacterial Populations in Saliva ▿

    PubMed Central

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Shimazaki, Yoshihiro; Yoneda, Masahiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2010-01-01

    Oral malodor develops mostly from the metabolic activities of indigenous bacterial populations within the oral cavity, but whether healthy or oral malodor-related patterns of the global bacterial composition exist remains unclear. In this study, the bacterial compositions in the saliva of 240 subjects complaining of oral malodor were divided into groups based on terminal-restriction fragment length polymorphism (T-RFLP) profiles using hierarchical cluster analysis, and the patterns of the microbial community composition of those exhibiting higher and lower malodor were explored. Four types of bacterial community compositions were detected (clusters I, II, III, and IV). Two parameters for measuring oral malodor intensity (the concentration of volatile sulfur compounds in mouth air and the organoleptic score) were noticeably lower in cluster I than in the other clusters. Using multivariate analysis, the differences in the levels of oral malodor were significant after adjustment for potential confounding factors such as total bacterial count, mean periodontal pocket depth, and tongue coating score (P < 0.001). Among the four clusters with different proportions of indigenous members, the T-RFLP profiles of cluster I were implicated as the bacterial populations with higher proportions of Streptococcus, Granulicatella, Rothia, and Treponema species than those of the other clusters. These results clearly correlate the global composition of indigenous bacterial populations with the severity of oral malodor. PMID:20228112

  16. The impact of natural transformation on adaptation in spatially structured bacterial populations.

    PubMed

    Moradigaravand, Danesh; Engelstädter, Jan

    2014-06-20

    Recent studies have demonstrated that natural transformation and the formation of highly structured populations in bacteria are interconnected. In spite of growing evidence about this connection, little is known about the dynamics of natural transformation in spatially structured bacterial populations. In this work, we model the interdependency between the dynamics of the bacterial gene pool and those of environmental DNA in space to dissect the effect of transformation on adaptation. Our model reveals that even with only a single locus under consideration, transformation with a free DNA fragment pool results in complex adaptation dynamics that do not emerge in previous models focusing only on the gene shuffling effect of transformation at multiple loci. We demonstrate how spatial restriction on population growth and DNA diffusion in the environment affect the impact of transformation on adaptation. We found that in structured bacterial populations intermediate DNA diffusion rates predominantly cause transformation to impede adaptation by spreading deleterious alleles in the population. Overall, our model highlights distinctive evolutionary consequences of bacterial transformation in spatially restricted compared to planktonic bacterial populations.

  17. Distribution and life strategies of two bacterial populations in a eutrophic lake

    PubMed

    Weinbauer; Hofle

    1998-10-01

    Monoclonal antibodies and epifluorescence microscopy were used to determine the depth distribution of two indigenous bacterial populations in the stratified Lake Plusssee and characterize their life strategies. Populations of Comamonas acidovorans PX54 showed a depth distribution with maximum abundances in the oxic epilimnion, whereas Aeromonas hydrophila PU7718 showed a depth distribution with maximum abundances in the anoxic thermocline layer (metalimnion), i. e., in the water layer with the highest microbial activity. Resistance of PX54 to protist grazing and high metabolic versatility and growth rate of PU7718 were the most important life strategy traits for explaining the depth distribution of the two bacterial populations. Maximum abundance of PX54 was 16,000 cells per ml, and maximum abundance of PU7718 was 20,000 cells per ml. Determination of bacterial productivity in dilution cultures with different-size fractions of dissolved organic matter (DOM) from lake water indicates that low-molecular-weight (LMW) DOM is less bioreactive than total DOM (TDOM). The abundance and growth rate of PU7718 were highest in the TDOM fractions, whereas those of PX54 were highest in the LMW DOM fraction, demonstrating that PX54 can grow well on the less bioreactive DOM fraction. We estimated that 13 to 24% of the entire bacterial community and 14% of PU7718 were removed by viral lysis, whereas no significant effect of viral lysis on PX54 could be detected. Growth rates of PX54 (0.11 to 0.13 h-1) were higher than those of the entire bacterial community (0.04 to 0.08 h-1) but lower than those of PU7718 (0.26 to 0.31 h-1). In undiluted cultures, the growth rates were significantly lower, pointing to density effects such as resource limitation or antibiosis, and the effects were stronger for PU7718 and the entire bacterial community than for PX54. Life strategy characterizations based on data from literature and this study revealed that the fast-growing and metabolically

  18. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  19. Population dynamics on heterogeneous bacterial substrates

    NASA Astrophysics Data System (ADS)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  20. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile.

    PubMed

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-11-25

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800-2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400-1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today.

  1. Bacterial diversity is strongly associated with historical penguin activity in an Antarctic lake sediment profile

    PubMed Central

    Zhu, Renbin; Shi, Yu; Ma, Dawei; Wang, Can; Xu, Hua; Chu, Haiyan

    2015-01-01

    Current penguin activity in Antarctica affects the geochemistry of sediments and their microbial communities; the effects of historical penguin activity are less well understood. Here, bacterial diversity in ornithogenic sediment was investigated using high-throughput pyrosequencing. The relative abundances of dominant phyla were controlled by the amount of historical penguin guano deposition. Significant positive correlations were found between both the bacterial richness and diversity, and the relative penguin number (p < 0.01); this indicated that historical penguin activity drove the vertical distribution of the bacterial communities. The lowest relative abundances of individual phyla corresponded to lowest number of penguin population at 1,800–2,300 yr BP during a drier and colder period; the opposite was observed during a moister and warmer climate (1,400–1,800 yr BP). This study shows that changes in the climate over millennia affected penguin populations and the outcomes of these changes affect the sediment bacterial community today. PMID:26601753

  2. Abundance of three bacterial populations in selected streams

    Treesearch

    O.A. Olapade; X. Gao; L.G. LEff

    2005-01-01

    The population sizes of three bacterial species, Acinetobacter calcoaceticw, Burkholderia cepacia, and Pseudomonas putida, were examined in water and sediment from nine streams in different parts of the United States using fluorescent in situ hybridization (FISH). Population sizes were determined from three sites (upstream,...

  3. Phage selection for bacterial cheats leads to population decline

    PubMed Central

    Vasse, Marie; Torres-Barceló, Clara; Hochberg, Michael E.

    2015-01-01

    While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies. PMID:26538598

  4. Urban aerosols harbor diverse and dynamic bacterial populations

    PubMed Central

    Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.

    2007-01-01

    Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744

  5. Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs.

    PubMed

    Fisher; Graham; Graham

    1998-11-01

    Abstract Bacterial abundance, temperature, pH, and dissolved organic carbon (DOC) concentration were compared across surface sites within and between two northern Wisconsin Sphagnum peatlands over the summer seasons in 1995 and 1996. Sites of interest were the Sphagnum mat surface, the water-filled moat (lagg) at the bog margin, and the bog lake littoral zone. Significant differences in both bacterial populations and water chemistry were observed between sites. pH was highest in the lake and lowest in the mat at both bogs; the opposite was true for DOC. Large populations of bacteria were present in surface interstitial water from the mat; abundance in this site was consistently higher than in the moat or lake. Bacterial abundance also increased across sites of increasing DOC concentration and declining pH. Bacterial activities (rates of [3H]leucine incorporation) and growth in dilution cultures (with grazers removed) were also assessed in lake, moat, and mat sites. Results using these measures generally supported the trends observed in abundance, although high rates of [3H]leucine incorporation were recorded in the moat at one of the bogs. Our results indicate that bacterial populations in Sphagnum peatlands are not adversely affected by acidity, and that DOC may be more important than pH in determining bacterial abundance in these environments.

  6. Bacterial Population Genetics in a Forensic Context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velsko, S P

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population geneticsmore » by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations augmented by phylogenetic

  7. Compositional stability of a salivary bacterial population against supragingival microbiota shift following periodontal therapy.

    PubMed

    Yamanaka, Wataru; Takeshita, Toru; Shibata, Yukie; Matsuo, Kazuki; Eshima, Nobuoki; Yokoyama, Takeshi; Yamashita, Yoshihisa

    2012-01-01

    Supragingival plaque is permanently in contact with saliva. However, the extent to which the microbiota contributes to the salivary bacterial population remains unclear. We compared the compositional shift in the salivary bacterial population with that in supragingival plaque following periodontal therapy. Samples were collected from 19 patients with periodontitis before and after periodontal therapy (mean sample collection interval, 25.8 ± 2.6 months), and their bacterial composition was investigated using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis using the UniFrac distance metric revealed that the overall bacterial community composition of saliva is distinct from that of supragingival plaque, both pre- and post-therapy. Temporal variation following therapy in the salivary bacterial population was significantly smaller than in the plaque microbiota, and the post-therapy saliva sample was significantly more similar to that pre-therapy from the same individual than to those from other subjects. Following periodontal therapy, microbial richness and biodiversity were significantly decreased in the plaque microbiota, but not in the salivary bacterial population. The operational taxonomic units whose relative abundances changed significantly after therapy were not common to the two microbiotae. These results reveal the compositional stability of salivary bacterial populations against shifts in the supragingival microbiota, suggesting that the effect of the supragingival plaque microbiota on salivary bacterial population composition is limited.

  8. Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane.

    PubMed

    Duvenage, Francois J; Duvenage, Stacey; Du Plessis, Erika M; Volschenk, Quinton; Korsten, Lise

    2017-03-01

    Knowledge on the culturable bacteria and foodborne pathogen presence on pears is important for understanding the impact of postharvest practices on food safety assurance. Pear fruit bacteria were investigated from the point of harvest, following chlorine drenching and after controlled atmosphere (CA) storage to assess the impact on natural bacterial populations and potential foodborne pathogens. Salmonella spp. and Listeria monocytogenes were detected on freshly harvested fruit in season one. During season one, chemical drenching and CA storage did not have a significant effect on the bacterial load of orchard pears, except for two farms where the populations were lower 'after CA storage'. During season two, bacterial populations of orchard pears from three of the four farms increased significantly following drenching; however, the bacterial load decreased 'after CA storage'. Bacteria isolated following enumeration included Enterobacteriaceae, Microbacteriaceae, Pseudomonadaceae and Bacillaceae, with richness decreasing 'after drench' and 'after CA storage'. Salmonella spp. and L. monocytogenes were not detected after postharvest practices. Postharvest practices resulted in decreased bacterial species richness. Understanding how postharvest practices have an impact on the viable bacterial populations of pear fruit will contribute to the development of crop-specific management systems for food safety assurance. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. A network-based approach for resistance transmission in bacterial populations.

    PubMed

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-07

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.

  10. Bacterial charity work leads to population-wide resistance.

    PubMed

    Lee, Henry H; Molla, Michael N; Cantor, Charles R; Collins, James J

    2010-09-02

    Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.

  11. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling

    NASA Astrophysics Data System (ADS)

    Sharp, Martin; Parkes, John; Cragg, Barry; Fairchild, Ian J.; Lamb, Helen; Tranter, Martyn

    1999-02-01

    Bacterial populations found in subglacial meltwaters and basal ice are comparable to those in the active layer of permafrost and orders of magnitude larger than those found in ice cores from large ice sheets. Populations increase with sediment concentration, and 5% 24% of the bacteria are dividing or have just divided, suggesting that the populations are active. These findings (1) support inferences from recent studies of basal ice and meltwater chemistry that microbially mediated redox reactions may be important at glacier beds, (2) challenge the view that chemical weathering in glacial environments arises from purely inorganic reactions, and (3) raise the possibilities that redox reactions are a major source of protons consumed in subglacial weathering and that these reactions may be the dominant proton source beneath ice sheets where meltwaters are isolated from an atmospheric source of CO2. Microbial mediation may increase the rate of sulfide oxidation under subglacial conditions, a suggestion supported by the results of simple weathering experiments. If subglacial bacterial populations can oxidize and ferment organic carbon, it is important to reconsider the fate of soil organic carbon accumulated under interglacial conditions in areas subsequently overridden by Pleistocene ice sheets.

  12. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherrier, J.

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblagesmore » collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO{sub 2} could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO{sub 2} was used as the indicator of hydrocarbon degradation and {delta}{sup 13}C analysis of the resultant CO{sub 2} was used to evaluate the source of the respired CO{sub 2} (i.e. petroleum hydrocarbons or the pinfish cometabolite

  13. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  15. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.

    1999-11-16

    This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  16. Effect of Condensed Tannins on Bacterial Diversity and Metabolic Activity in the Rat Gastrointestinal Tract

    PubMed Central

    Smith, Alexandra H.; Mackie, Roderick I.

    2004-01-01

    The effect of dietary condensed tannins (proanthocyanidins) on rat fecal bacterial populations was ascertained in order to determine whether the proportion on tannin-resistant bacteria increased and if there was a change in the predominant bacterial populations. After 3 weeks of tannin diets the proportion of tannin-resistant bacteria increased significantly (P < 0.05) from 0.3% ± 5.5% to 25.3% ± 8.3% with a 0.7% tannin diet and to 47.2% ± 5.1% with a 2% tannin diet. The proportion of tannin-resistant bacteria returned to preexposure levels in the absence of dietary tannins. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations by denaturing gradient gel electrophoresis (DGGE). Posttreatment samples were generally still distinguishable from controls after 3.5 weeks. Sequence analysis of DGGE bands and characterization of tannin-resistant isolates indicated that tannins selected for Enterobacteriaceae and Bacteroides species. Dot blot quantification confirmed that these gram-negative bacterial groups predominated in the presence of dietary tannins and that there was a corresponding decrease in the gram-positive Clostridium leptum group and other groups. Metabolic fingerprint patterns revealed that functional activities of culturable fecal bacteria were affected by the presence of tannins. Condensed tannins of Acacia angustissima altered fecal bacterial populations in the rat gastrointestinal tract, resulting in a shift in the predominant bacteria towards tannin-resistant gram-negative Enterobacteriaceae and Bacteroides species. PMID:14766594

  17. Imaging the Population Dynamics of Bacterial Communities in the Zebrafish Gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Zac Stephens, W.; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2013-03-01

    The vertebrate gut is home to a diverse microbial ecosystem whose composition has a strong influence on the development and health of the host organism. While researchers are increasingly able to identify the constituent members of the microbiome, very little is known about the spatial and temporal dynamics of commensal microbial communities, including the mechanisms by which communities nucleate, grow, and interact. We address these issues using a model organism: the larval zebrafish (Danio rerio) prepared microbe-free and inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging with light sheet fluorescence microscopy enables visualization of individual bacterial cells as well as growing colonies over the entire volume of the gut over periods up to 24 hours. We analyze the structure and dynamics of imaged bacterial communities, uncovering correlations between population size, growth rates, and the timing of inoculations that suggest the existence of active changes in the host environment induced by early bacterial exposure. Our data provide the first visualizations of gut microbiota development over an extended period of time in a vertebrate.

  18. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities weremore » most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.« less

  19. Effect of Hydrogenase and Mixed Sulfate-Reducing Bacterial Populations on the Corrosion of Steel

    PubMed Central

    Bryant, Richard D.; Jansen, Wayne; Boivin, Joe; Laishley, Edward J.; Costerton, J. William

    1991-01-01

    The importance of hydrogenase activity to corrosion of steel was assessed by using mixed populations of sulfate-reducing bacteria isolated from corroded and noncorroded oil pipelines. Biofilms which developed on the steel studs contained detectable numbers of sulfate-reducing bacteria (104 increasing to 107/0.5 cm2). However, the biofilm with active hydrogenase activity (i.e., corrosion pipeline organisms), as measured by a semiquantitative commercial kit, was associated with a significantly higher corrosion rate (7.79 mm/year) relative to noncorrosive biofilm (0.48 mm/year) with 105 sulfate-reducing bacteria per 0.5 cm2 but no measurable hydrogenase activity. The importance of hydrogenase and the microbial sulfate-reducing bacterial population making up the biofilm are discussed relative to biocorrosion. Images PMID:16348560

  20. CRISPR-based herd immunity can limit phage epidemics in bacterial populations

    PubMed Central

    Geyrhofer, Lukas; Barton, Nicholas H

    2018-01-01

    Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. PMID:29521625

  1. Differential resistance of drinking water bacterial populations to monochloramine disinfection.

    PubMed

    Chiao, Tzu-Hsin; Clancy, Tara M; Pinto, Ameet; Xi, Chuanwu; Raskin, Lutgarde

    2014-04-01

    The impact of monochloramine disinfection on the complex bacterial community structure in drinking water systems was investigated using culture-dependent and culture-independent methods. Changes in viable bacterial diversity were monitored using culture-independent methods that distinguish between live and dead cells based on membrane integrity, providing a highly conservative measure of viability. Samples were collected from lab-scale and full-scale drinking water filters exposed to monochloramine for a range of contact times. Culture-independent detection of live cells was based on propidium monoazide (PMA) treatment to selectively remove DNA from membrane-compromised cells. Quantitative PCR (qPCR) and pyrosequencing of 16S rRNA genes was used to quantify the DNA of live bacteria and characterize the bacterial communities, respectively. The inactivation rate determined by the culture-independent PMA-qPCR method (1.5-log removal at 664 mg·min/L) was lower than the inactivation rate measured by the culture-based methods (4-log removal at 66 mg·min/L). Moreover, drastic changes in the live bacterial community structure were detected during monochloramine disinfection using PMA-pyrosequencing, while the community structure appeared to remain stable when pyrosequencing was performed on samples that were not subject to PMA treatment. Genera that increased in relative abundance during monochloramine treatment include Legionella, Escherichia, and Geobacter in the lab-scale system and Mycobacterium, Sphingomonas, and Coxiella in the full-scale system. These results demonstrate that bacterial populations in drinking water exhibit differential resistance to monochloramine, and that the disinfection process selects for resistant bacterial populations.

  2. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  3. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air.

    PubMed

    McGarvey, J A; Franco, R B; Palumbo, J D; Hnasko, R; Stanker, L; Mitloehner, F M

    2013-06-01

    To describe, at high resolution, the bacterial population dynamics and chemical transformations during the ensiling of alfalfa and subsequent exposure to air. Samples of alfalfa, ensiled alfalfa and silage exposed to air were collected and their bacterial population structures compared using 16S rRNA gene libraries containing approximately 1900 sequences each. Cultural and chemical analyses were also performed to complement the 16S gene sequence data. Sequence analysis revealed significant differences (P < 0·05) in the bacterial populations at each time point. The alfalfa-derived library contained mostly sequences associated with the Gammaproteobacteria (including the genera: Enterobacter, Erwinia and Pantoea); the ensiled material contained mostly sequences associated with the lactic acid bacteria (LAB) (including the genera: Lactobacillus, Pediococcus and Lactococcus). Exposure to air resulted in even greater percentages of LAB, especially among the genus Lactobacillus, and a significant drop in bacterial diversity. In-depth 16S rRNA gene sequence analysis revealed significant bacterial population structure changes during ensiling and again during exposure to air. This in-depth description of the bacterial population dynamics that occurred during ensiling and simulated feed out expands our knowledge of these processes. © 2013 The Society for Applied Microbiology No claim to US Government works.

  4. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  5. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms

    PubMed Central

    Hope Wilkinson, Katheryn; Strait, Jacqueline M.; Hozalski, Raymond M.; Sadowksy, Michael J.; Hamilton, Matthew J.

    2015-01-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671

  6. Active depinning of bacterial droplets: The collective surfing of Bacillus subtilis

    PubMed Central

    Hennes, Marc; Tailleur, Julien; Charron, Gaëlle

    2017-01-01

    How systems are endowed with migration capacity is a fascinating question with implications ranging from the design of novel active systems to the control of microbial populations. Bacteria, which can be found in a variety of environments, have developed among the richest set of locomotion mechanisms both at the microscopic and collective levels. Here, we uncover, experimentally, a mode of collective bacterial motility in humid environment through the depinning of bacterial droplets. Although capillary forces are notoriously enormous at the bacterial scale, even capable of pinning water droplets of millimetric size on inclined surfaces, we show that bacteria are able to harness a variety of mechanisms to unpin contact lines, hence inducing a collective slipping of the colony across the surface. Contrary to flagella-dependent migration modes like swarming, we show that this much faster “colony surfing” still occurs in mutant strains of Bacillus subtilis lacking flagella. The active unpinning seen in our experiments relies on a variety of microscopic mechanisms, which could each play an important role in the migration of microorganisms in humid environment. PMID:28536199

  7. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica.

    PubMed

    Grossmann, S; Dieckmann, G S

    1994-08-01

    Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed ice via attachment to algal cells or aggregates was not recorded in this study. As soon as the ice had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during ice growth. In thick pack ice, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick pack ice, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of ice development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick ice, bacterial secondary production exceeded primary production of microalgae.

  8. On a Mathematical Model with Noncompact Boundary Conditions Describing Bacterial Population

    NASA Astrophysics Data System (ADS)

    Boulanouar, Mohamed

    2013-04-01

    In this work, we are concerned with the well-posedness of a mathematical model describing a maturation-velocity structured bacterial population. Each bacterium is distinguished by its degree of maturity and its maturation velocity. The bacterial mitosis is mathematically described by noncompact boundary conditions. We show that the mathematical model is governed by a positive strongly continuous semigroup.

  9. Copper effects on bacterial activity of estuarine silty sediments

    NASA Astrophysics Data System (ADS)

    Almeida, Adelaide; Cunha, Ângela; Fernandes, Sandra; Sobral, Paula; Alcântara, Fernanda

    2007-07-01

    Bacteria of silty estuarine sediments were spiked with copper to 200 μg Cu g -1 dry weight sediment in order to assess the impact of copper on bacterial degradation of organic matter and on bacterial biomass production. Bacterial density was determined by direct counting under epifluorescence microscopy and bacterial production by the incorporation of 3H-Leucine. Leucine turnover rate was evaluated by 14C-leucine incorporation and ectoenzymatic activities were estimated as the hydrolysis rate of model substrates for β-glucosidase and leucine-aminopeptidase. The presence of added copper in the microcosms elicited, after 21 days of incubation, generalised anoxia and a decrease in organic matter content. The non-eroded surface of the copper-spiked sediment showed, when compared to the control, a decrease in bacterial abundance and significant lower levels of bacterial production and of leucine turnover rate. Bacterial production and leucine turnover rate decreased to 1.4% and 13% of the control values, respectively. Ectoenzymatic activities were also negatively affected but by smaller factors. After erosion by the water current in laboratory flume conditions, the eroded surface of the control sediment showed a generalised decline in all bacterial activities. The erosion of the copper-spiked sediment showed, however, two types of responses with respect to bacterial activities at the exposed surface: positive responses of bacterial production and leucine turnover rate contrasting with slight negative responses of ectoenzymatic activities. The effects of experimental erosion in the suspended cells were also different in the control and in the copper-spiked sediment. Bacterial cells in the control microcosm exhibited, when compared to the non-eroded sediment cells, decreases in all activities after the 6-h suspension. The response of the average suspended copper-spiked sediment cell differed from the control by a less sharp decrease in ectoenzymatic activities and

  10. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-10-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  11. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    PubMed Central

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-01-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults. PMID:27762306

  12. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz.

    PubMed

    Coelho, Francisco J R C; Louvado, António; Domingues, Patrícia M; Cleary, Daniel F R; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R; Cunha, Ângela; Gomes, Newton C M

    2016-10-20

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  13. Bacterial Populations Associated with Smokeless Tobacco Products

    PubMed Central

    Han, Jing; Sanad, Yasser M.; Deck, Joanna; Sutherland, John B.; Li, Zhong; Walters, Matthew J.; Duran, Norma; Holman, Matthew R.

    2016-01-01

    ABSTRACT There are an estimated 8 million users of smokeless tobacco products (STPs) in the United States, and yet limited data on microbial populations within these products exist. To better understand the potential microbiological risks associated with STP use, a study was conducted to provide a baseline microbiological profile of STPs. A total of 90 samples, representing 15 common STPs, were purchased in metropolitan areas in Little Rock, AR, and Washington, DC, in November 2012, March 2013, and July 2013. Bacterial populations were evaluated using culture, pyrosequencing, and denaturing gradient gel electrophoresis (DGGE). Moist-snuff products exhibited higher levels of bacteria (average of 1.05 × 106 CFU/g STP) and diversity of bacterial populations than snus (average of 8.33 × 101 CFU/g STP) and some chewing tobacco products (average of 2.54 × 105 CFU/g STP). The most common species identified by culturing were Bacillus pumilus, B. licheniformis, B. safensis, and B. subtilis, followed by members of the genera Oceanobacillus, Staphylococcus, and Tetragenococcus. Pyrosequencing analyses of the 16S rRNA genes identified the genera Tetragenococcus, Carnobacterium, Lactobacillus, Geobacillus, Bacillus, and Staphylococcus as the predominant taxa. Several species identified are of possible concern due to their potential to cause opportunistic infections and reported abilities to reduce nitrates to nitrites, which may be an important step in the formation of carcinogenic tobacco-specific N′-nitrosamines. This report provides a microbiological baseline to help fill knowledge gaps associated with microbiological risks of STPs and to inform potential regulations regarding manufacture and testing of STPs. IMPORTANCE It is estimated that there 8 million users of smokeless tobacco products (STPs) in the United States; however, there are limited data on microbial populations that exist within these products. The current study was undertaken to better understand the

  14. Bacterial meningitis in patients with HIV: A population-based prospective study.

    PubMed

    van Veen, Kiril E B; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-03-01

    We studied occurrence, disease course, and prognosis of community-acquired bacterial meningitis in HIV-infected adults in the Netherlands. We performed a nationwide, prospective cohort study. Patients over 16 years old with bacterial meningitis were included. Data on patient history, symptoms and signs on admission, laboratory findings, radiologic examination, treatment, and outcome were collected prospectively. For HIV-positive patients additional information was collected retrospectively. From March 2006 to December 2013, 1354 episodes of community-acquired meningitis were included in the cohort. Thirteen patients were HIV-infected (1.0%). The annual incidence of bacterial meningitis was 8.3-fold higher (95%CI 4.6-15.1, P < 0.001) among HIV-infected patients as compared to the general population (10.79 [95%CI 5.97-19.48] vs 1.29 [95%CI 1.22-1.37] per 100.000 patients per year). Predisposing factors (other than HIV), clinical symptoms and signs, ancillary investigations, causative organisms and outcome were comparable between HIV-infected and patients without HIV infection. HIV-infected patients in the Netherlands have a 8.3-fold higher risk for bacterial meningitis as compared to the general population despite cART therapy. Clinical presentation and outcome of patients with acute bacterial meningitis with and without HIV are similar. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  15. Photometric Application of the Gram Stain Method To Characterize Natural Bacterial Populations in Aquatic Environments

    PubMed Central

    Saida, H.; Ytow, N.; Seki, H.

    1998-01-01

    The Gram stain method was applied to the photometric characterization of aquatic bacterial populations with a charge-coupled device camera and an image analyzer. Escherichia coli and Bacillus subtilis were used as standards of typical gram-negative and gram-positive bacteria, respectively. A mounting agent to obtain clear images of Gram-stained bacteria on Nuclepore membrane filters was developed. The bacterial stainability by the Gram stain was indicated by the Gram stain index (GSI), which was applicable not only to the dichotomous classification of bacteria but also to the characterization of cell wall structure. The GSI spectra of natural bacterial populations in water with various levels of eutrophication showed a distinct profile, suggesting possible staining specificity that indicates the presence of a particular bacterial population in the aquatic environment. PMID:9464416

  16. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    PubMed Central

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2012-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956

  17. Impact of environmental factors on couplings between bacterial community composition and ectoenzymatic activities in a lacustrine ecosystem.

    PubMed

    Boucher, Delphine; Debroas, Didier

    2009-10-01

    This study examined the effects of temporal changes in bacterial community composition (BCC) and environmental factors on potential ectoenzymatic activities (alpha-glucosidase, beta-glucosidase, alkaline phosphatase and leucine aminopeptidase) in a lacustrine ecosystem (Sep reservoir, France). BCC was assessed by terminal restriction fragment length polymorphism. Physical parameters, and inorganic and organic nutrient concentrations (dissolved carbohydrates and proteins) were measured in lakes and tributaries. According to the multivariate statistics (redundancy analysis), physical and chemical factors explained the largest part of leucine aminopeptidase activity, whereas the temporal changes of other ectoenzymatic activities were partly dependent on the variations in the BCC. In particular, the occurrence of occasional bacterial populations seemed to explain a lot of the variation in rates and patterns of polymer hydrolysis. The relation observed in this study between the bacterial structure and activity is discussed within the framework of biodiversity-ecosystem functioning.

  18. Tamarixetin Exhibits Anti-inflammatory Activity and Prevents Bacterial Sepsis by Increasing IL-10 Production.

    PubMed

    Park, Hee Jo; Lee, Seung Jun; Cho, Joon; Gharbi, Amal; Han, Hee Dong; Kang, Tae Heung; Kim, Yangmee; Lee, Yeongjoon; Park, Won Sun; Jung, In Duk; Park, Yeong-Min

    2018-06-22

    Sepsis is a systemic inflammatory response to pathogenic infection that currently has no specific pharmaceutical interventions. Instead, antibiotics administration is considered the best available option, despite increasing drug resistance. Alternative strategies are therefore urgently required to prevent sepsis and strengthen the host immune system. One such option is tamarixetin (4'- O-methylquercetin), a naturally occurring flavonoid derivative of quercetin that protects against inflammation. The purpose of this study was to determine whether the anti-inflammatory effects of tamarixetin protect against the specific inflammatory conditions induced in lipopolysaccharide (LPS) or Escherichia coli K1 models of sepsis. Our study showed that tamarixetin reduced the secretion of various inflammatory cytokines by dendritic cells after activation with LPS. It also promoted the secretion of the anti-inflammatory cytokine interleukin (IL)-10 and specifically increased the population of IL-10-secreting immune cells in LPS-activated splenocytes. Tamarixetin showed general anti-inflammatory effects in mouse models of bacterial sepsis and decreased bacteria abundance and endotoxin levels. We therefore conclude that tamarixetin has superior anti-inflammatory properties than quercetin during bacterial sepsis. This effect is associated with an increased population of IL-10-secreting immune cells and suggests that tamarixetin could serve as a specific pharmaceutical option to prevent bacterial sepsis.

  19. [Effects of grape-replanting on soil bacterial and fungal populations].

    PubMed

    Li, Kun; Guo, Xiu-wu; Sun, Ying-ni; Zhang, Li-heng; Hu, Xi-xi

    2009-12-01

    Rhizosphere and non-rhizosphere soil samples were collected from the vineyards having been planted for 3 and 30 years, and PCR-DGGE technique was adopted to study the effects of grape-replanting on the population structure and diversity of soil bacteria and fungi. The bacterial and fungal diversities were higher in 30-year-planted vineyard than in 3-year-planted vineyard, and higher in rhizosphere soil than in non-rhizosphere soil. After 30 years replanting, the population structure of bacteria and fungi approached the same in rhizosphere soil and non-rhizosphere soil but differed from that in fallow soil; while in the 3-year-planted vineyard, the population structure in rhizosphere soil was different from that in non-rhizosphere soil and fallow soil. Comparing with that in 3-year-planted vineyard, the rhizosphere soil microbial population in 30-year-planted vineyard had a greater change. In bacterial population, Flavobacterium sp. (DQ339585) and Bacillus sp. (AY039821) decreased while Pedobacter sp. (AJ871084) increased; in fungal population, Omphalina farinolens (EF413029) appeared, Pestalotiopsis sp. (DQ657877, DQ657875, DQ657871), Phacidium lacerum (DQ470976), and Lecythophora decumbens (AF353597) decreased, while Pilidium acerinum voucher (AY48709) increased. Bacillus sp., Flavobacterium sp. , and Pestalotiopsis sp. had antagonism to pathogen, and their decrease reduced the resistance of grape against pathogen. The increase of Pilidium acerinum voucher might relate to the severe disease after grape-replanting.

  20. Bacterial population dynamics in recycled mushroom compost leachate.

    PubMed

    Safianowicz, Katarzyna; Bell, Tina L; Kertesz, Michael A

    2018-06-01

    Mushrooms are an important food crop throughout the world. The most important edible mushroom is the button mushroom (Agaricus bisporus), which comprises about 30% of the global mushroom market. This species is cultivated commercially on a selective compost that is produced predominantly from wheat straw/stable bedding and chicken manure, at a moisture content of around 70% (w/w) and temperatures of up to 80 °C. Large volumes of water are required to achieve this moisture content, and many producers therefore collect leachate from the composting windrows and bunkers (known in the industry as "goody water") and reuse it to wet the raw ingredients. This has the benefit of recycling and saving water and has the potential to enrich beneficial microorganisms that stimulate composting, but also the risk of enhancing pathogen populations that could reduce productivity. Here, we show by 16S rRNA gene sequencing that mushroom compost leachate contains a high diversity of unknown microbes, with most of the species found affiliated with the phyla Firmicutes and Proteobacteria. However, by far the most abundant species was the thermophile Thermus thermophilus, which made up approximately 50% of the bacterial population present. Although the leachate was routinely collected and stored in an aerated central storage tank, many of the bacterial species found in leachate were facultative anaerobes. However, there was no evidence for sulfide production, and no sulfate-reducing bacterial species were detected. Because T. thermophilus is important in the high temperature phase of composting, the use of recycled leachate as an inoculum for the raw materials is likely to be beneficial for the composting process.

  1. [Effect of penicillin and the habitat medium in the body of bacterial carriers on the intercellular bonds in populations of the meningococcus and pertussis microbe].

    PubMed

    Vysotskiĭ, V V; Smirnova-Mutusheva, M A; Efimova, O G; Bakulina, N A

    1983-04-01

    The relationship of the bacterial cells in populations and their adhesion activity is at present one of the research priorities in microbiological studies. The stimulating effect of penicillin on the development of morphologically different intercellular bonds (IB) in populations of the pertussis causative agent and first of all derivatives or evaginates of the cell wall membranes was observed. Morphologically similar systems and polytubular IB were detected in populations of meningococcal strains isolated from carriers having no signs of the disease. Correlation between the after-effect of penicillin and the presence of the causative agent in bacterial carriers was shown. Unknown systems of interlacing tubular structures not directly bound with the cells, the walls of which were single contour membranes were determined in the meningococcal populations treated with penicillin. IB were observed in the population in the form of transpopulation cords. Morphologically different IB playing the role of specialized organelles might be considered as factors of the functional unity of the bacterial population as a multicellular system.

  2. Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors

    NASA Astrophysics Data System (ADS)

    Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan

    The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.

  3. Detection of Only Viable Bacterial Spores Using a Live/Dead Indicator in Mixed Populations

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Stam, Christina N.; Smiley, Ronald

    2013-01-01

    This method uses a photoaffinity label that recognizes DNA and can be used to distinguish populations of bacterial cells from bacterial spores without the use of heat shocking during conventional culture, and live from dead bacterial spores using molecular-based methods. Biological validation of commercial sterility using traditional and alternative technologies remains challenging. Recovery of viable spores is cumbersome, as the process requires substantial incubation time, and the extended time to results limits the ability to quickly evaluate the efficacy of existing technologies. Nucleic acid amplification approaches such as PCR (polymerase chain reaction) have shown promise for improving time to detection for a wide range of applications. Recent real-time PCR methods are particularly promising, as these methods can be made at least semi-quantitative by correspondence to a standard curve. Nonetheless, PCR-based methods are rarely used for process validation, largely because the DNA from dead bacterial cells is highly stable and hence, DNA-based amplification methods fail to discriminate between live and inactivated microorganisms. Currently, no published method has been shown to effectively distinguish between live and dead bacterial spores. This technology uses a DNA binding photoaffinity label that can be used to distinguish between live and dead bacterial spores with detection limits ranging from 109 to 102 spores/mL. An environmental sample suspected of containing a mixture of live and dead vegetative cells and bacterial endospores is treated with a photoaffinity label. This step will eliminate any vegetative cells (live or dead) and dead endospores present in the sample. To further determine the bacterial spore viability, DNA is extracted from the spores and total population is quantified by real-time PCR. The current NASA standard assay takes 72 hours for results. Part of this procedure requires a heat shock step at 80 degC for 15 minutes before the

  4. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children.

    PubMed

    Grimaldi, Roberta; Cela, Drinalda; Swann, Jonathan R; Vulevic, Jelena; Gibson, Glenn R; Tzortzis, George; Costabile, Adele

    2017-02-01

    Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1 H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. © FEMS 2016.

  5. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children

    PubMed Central

    Cela, Drinalda; Swann, Jonathan R.; Vulevic, Jelena; Gibson, Glenn R.; Tzortzis, George; Costabile, Adele

    2016-01-01

    Abstract Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. PMID:27856622

  6. Role of antimicrobial peptides in controlling symbiotic bacterial populations.

    PubMed

    Mergaert, P

    2018-04-25

    Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.

  7. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  8. Anti-bacterial activity of Achatina CRP and its mechanism of action.

    PubMed

    Mukherjee, Sandip; Barman, Soma; Mandal, Narayan Chandra; Bhattacharya, Shelley

    2014-07-01

    The physiological role of C-reactive protein (CRP), the classical acute-phase protein, is not well documented, despite many reports on biological effects of CRP in vitro and in model systems in vivo. It has been suggested that CRP protects mice against lethal toxicity of bacterial infections by implementing immunological responses. In Achatina fulica CRP is a constitutive multifunctional protein in haemolymph and considered responsible for their survival in the environment for millions of years. The efficacy of Achatina CRP (ACRP) was tested against both Salmonella typhimurium and Bacillus subtilis infections in mice where endogenous CRP level is negligible even after inflammatory stimulus. Further, growth curves of the bacteria revealed that ACRP (50 microg/mL) is bacteriostatic against gram negative salmonellae and bactericidal against gram positive bacilli. ACRP induced energy crises in bacterial cells, inhibited key carbohydrate metabolic enzymes such as phosphofructokinase in glycolysis, isocitrate dehydrogenase in TCA cycle, isocitrate lyase in glyoxylate cycle and fructose-1,6-bisphosphatase in gluconeogenesis. ACRP disturbed the homeostasis of cellular redox potential as well as reduced glutathione status, which is accompanied by an enhanced rate of lipid peroxidation. Annexin V-Cy3/CFDA dual staining clearly showed ACRP induced apoptosis-like death in bacterial cell population. Moreover, immunoblot analyses also indicated apoptosis-like death in ACRP treated bacterial cells, where activation of poly (ADP-ribose) polymerase-1 (PARP) and caspase-3 was noteworthy. It is concluded that metabolic impairment by ACRP in bacterial cells is primarily due to generation of reactive oxygen species and ACRP induced anti-bacterial effect is mediated by metabolic impairment leading to apoptosis-like death in bacterial cells.

  9. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Lopez, Isabel; Ruiz-Larrea, Fernanda; Cocolin, Luca; Orr, Erica; Phister, Trevor; Marshall, Megan; VanderGheynst, Jean; Mills, David A.

    2003-01-01

    Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria. PMID:14602643

  10. Collective chemotaxis and segregation of active bacterial colonies

    NASA Astrophysics Data System (ADS)

    Amar, M. Ben

    2016-02-01

    Still recently, bacterial fluid suspensions have motivated a lot of works, both experimental and theoretical, with the objective to understand their collective dynamics from universal and simple rules. Since some species are active, most of these works concern the strong interactions that these bacteria exert on a forced flow leading to instabilities, chaos and turbulence. Here, we investigate the self-organization of expanding bacterial colonies under chemotaxis, proliferation and eventually active-reaction. We propose a simple model to understand and quantify the physical properties of these living organisms which either give cohesion or on the contrary dispersion to the colony. Taking into account the diffusion and capture of morphogens complicates the model since it induces a bacterial density gradient coupled to bacterial density fluctuations and dynamics. Nevertheless under some specific conditions, it is possible to investigate the pattern formation as a usual viscous fingering instability. This explains the similarity and differences of patterns according to the physical bacterial suspension properties and explain the factors which favor compactness or branching.

  11. Assessment of pollution impact on biological activity and structure of seabed bacterial communities in the Port of Livorno (Italy).

    PubMed

    Iannelli, Renato; Bianchi, Veronica; Macci, Cristina; Peruzzi, Eleonora; Chiellini, Carolina; Petroni, Giulio; Masciandaro, Grazia

    2012-06-01

    The main objective of this study was to assess the impact of pollution on seabed bacterial diversity, structure and activity in the Port of Livorno. Samples of seabed sediments taken from five selected sites within the port were subjected to chemical analyses, enzymatic activity detection, bacterial count and biomolecular analysis. Five different statistics were used to correlate the level of contamination with the detected biological indicators. The results showed that the port is mainly contaminated by variable levels of petroleum hydrocarbons and heavy metals, which affect the structure and activity of the bacterial population. Irrespective of pollution levels, the bacterial diversity did not diverge significantly among the assessed sites and samples, and no dominance was observed. The type of impact of hydrocarbons and heavy metals was controversial, thus enforcing the supposition that the structure of the bacterial community is mainly driven by the levels of nutrients. The combined use of chemical and biological essays resulted in an in-depth observation and analysis of the existing links between pollution macro-indicators and biological response of seabed bacterial communities. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The Population Biology of Bacterial Plasmids: A PRIORI Conditions for the Existence of Conjugationally Transmitted Factors

    PubMed Central

    Stewart, Frank M.; Levin, Bruce R.

    1977-01-01

    A mathematical model for the population dynamics of conjugationally transmitted plasmids in bacterial populations is presented and its properties analyzed. Consideration is given to nonbacteriocinogenic factors that are incapable of incorporation into the chromosome of their host cells, and to bacterial populations maintained in either continuous (chemostat) or discrete (serial transfer) culture. The conditions for the establishment and maintenance of these infectious extrachromosomal elements and equilibrium frequencies of cells carrying them are presented for different values of the biological parameters: population growth functions, conjugational transfer and segregation rate constants. With these parameters in a biologically realistic range, the theory predicts a broad set of physical conditions, resource concentrations and dilution rates, where conjugationally transmitted plasmids can become established and where cells carrying them will maintain high frequencies in bacterial populations. This can occur even when plasmid-bearing cells are much less fit (i.e., have substantially lower growth rates) than cells free of these factors. The implications of these results and the reality and limitations of the model are discussed and the values of its parameters in natural populations speculated upon. PMID:17248761

  13. Bioconvection as a Consequence of Bio-Stratification in Bacterial Populations

    NASA Astrophysics Data System (ADS)

    Shoup, Daniel; Strickland, Benjamin; Hoeger, Kentaro; Ursell, Tristan

    The collective motion of bacterial populations in solution can generate convective currents that significantly alter fluid motion and material transport. Known as bioconvection, this process is highly influenced by stimuli such as nutrients and toxins that can attract or repel bacteria via chemotaxis. Despite its prevalence in natural environments, ranging from the ocean floor to fluid in the human gut, this dynamic process and the physical and biological factors that influence it remain largely unexplored. To close this gap, we measure and analyze spontaneous bioconvection arising from the collective movement of dense populations of bacteria, such as Escherichia coli and Bacillus subtilis. By combining microscopy and image analysis, we find that modulations of the fluid volume geometry, erasure of the air-liquid interface, chemical perturbations like nutrients or antibiotics all alter the development of these dense bacterial masses and in turn the bio-convective currents and corresponding transport phenomena they generate. Our work suggests biophysical principles of material and organismal transport that apply to a broad range of systems where organisms can sense gradients and move within their environments.

  14. French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives

    PubMed Central

    Minard, G.; Tran, F. H.; Van, Van Tran; Goubert, C.; Bellet, C.; Lambert, G.; Kim, Khanh Ly Huynh; Thuy, Trang Huynh Thi; Mavingui, P.; Valiente Moro, C.

    2015-01-01

    The Asian tiger mosquito Aedes albopictus is one of the most significant pathogen vectors of the twenty-first century. Originating from Asia, it has invaded a wide range of eco-climatic regions worldwide. The insect-associated microbiota is now recognized to play a significant role in host biology. While genetic diversity bottlenecks are known to result from biological invasions, the resulting shifts in host-associated microbiota diversity has not been thoroughly investigated. To address this subject, we compared four autochthonous Ae. albopictus populations in Vietnam, the native area of Ae. albopictus, and three populations recently introduced to Metropolitan France, with the aim of documenting whether these populations display differences in host genotype and bacterial microbiota. Population-level genetic diversity (microsatellite markers and COI haplotype) and bacterial diversity (16S rDNA metabarcoding) were compared between field-caught mosquitoes. Bacterial microbiota from the whole insect bodies were largely dominated by Wolbachia pipientis. Targeted analysis of the gut microbiota revealed a greater bacterial diversity in which a fraction was common between French and Vietnamese populations. The genus Dysgonomonas was the most prevalent and abundant across all studied populations. Overall genetic diversities of both hosts and bacterial microbiota were significantly reduced in recently established populations of France compared to the autochthonous populations of Vietnam. These results open up many important avenues of investigation in order to link the process of geographical invasion to shifts in commensal and symbiotic microbiome communities, as such shifts may have dramatic impacts on the biology and/or vector competence of invading hematophagous insects. PMID:26441903

  15. Structure of a bacterial toxin-activating acyltransferase.

    PubMed

    Greene, Nicholas P; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2015-06-09

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.

  16. Soil Bacterial Diversity Is Associated with Human Population Density in Urban Greenspaces.

    PubMed

    Wang, Haitao; Cheng, Minying; Dsouza, Melissa; Weisenhorn, Pamela; Zheng, Tianling; Gilbert, Jack A

    2018-05-01

    Urban greenspaces provide extensive ecosystem services, including pollutant remediation, water management, carbon maintenance, and nutrient cycling. However, while the urban soil microbiota underpin these services, we still have limited understanding of the factors that influence their distribution. We characterized soil bacterial communities from turf-grasses associated with urban parks, streets, and residential sites across a major urban environment, including a gradient of human population density. Bacterial diversity was significantly positively correlated with the population density; and species diversity was greater in park and street soils, compared to residential soils. Population density and greenspace type also led to significant differences in the microbial community composition that was also significantly correlated with soil pH, moisture, and texture. Co-occurrence network analysis revealed that microbial guilds in urban soils were well correlated. Abundant soil microbes in high density population areas had fewer interactions, while abundant bacteria in high moisture soils had more interactions. These results indicate the significant influence of changes in urban demographics and land-use on soil microbial communities. As urbanization is rapidly growing across the planet, it is important to improve our understanding of the consequences of urban zoning on the soil microbiota.

  17. Combinations of bacterial species associated with symptomatic endodontic infections in a Chinese population.

    PubMed

    Qi, Z; Cao, H; Jiang, H; Zhao, J; Tang, Z

    2016-01-01

    To use microarrays to detect 11 selected bacteria in infected root canals, revealing bacterial combinations that are associated with clinical symptoms and signs of primary endodontic infections in a Chinese population. DNA was extracted from 90 samples collected from the root canals of teeth with primary endodontic infections in a Chinese population, and the 16S rRNA gene was amplified by polymerase chain reaction (PCR). The PCR products were hybridized to microarrays containing specific oligonucleotide probes targeting 11 species, and the arrays were screened with a confocal laser scanner. Pearson's chi-squared test and cluster analysis were performed to investigate the associations between the bacterial combinations and clinical symptoms and signs using SAS 8.02. Seventy-seven samples (86%) yielded at least one of the 11 target species. Parvimonas micra (56%), Porphyromonas endodontalis (51%), Tannerella forsythia (48%), Prevotella intermedia (44%) and Porphyromonas gingivalis (37%) were the most prevalent taxa and were often concomitant. The following positive associations were found between the bacterial combinations and clinical features: P. endodontalis and T. forsythia with abscess; P. gingivalis and P. micra with sinus tract; P. gingivalis and P. endodontalis or P. micra and P. endodontalis with abscess and sinus tract; and the combination of P. endodontalis, P. micra, T. forsythia and P. gingivalis with sinus tract (P < 0.05). Various combinations of P. micra, P. endodontalis, T. forsythia and P. gingivalis may contribute to abscesses or sinus tracts of endodontic origin with bacterial synergism in a Chinese population. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Aponiene, Kristina; Serevičius, Tomas; Luksiene, Zivile; Juršėnas, Saulius

    2017-09-01

    Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 μs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

  19. Bacterial populations associated with the dirty area of a South African poultry abattoir.

    PubMed

    Geornaras, I; de Jesus, A E; von Holy, A

    1998-06-01

    Bacterial populations associated with three sample types from the neck region of poultry carcasses in the dirty area of an abattoir were characterized. Sample types before and after scalding were skin only, feathers only, and a skin and feather combination. The neck skin of carcasses after the defeathering processing stage was also sampled. Bacterial populations associated with water from the scald tank, rubber fingers at the exit of the defeathering machine, and air in the dirty area were also characterized. Bacterial colonies (751) were randomly isolated from yeast extract-supplemented tryptone soya agar plates exhibiting 30 to 300 colonies. Micrococcus spp. were isolated in the highest proportion from pre-and postscalded carcass samples (63.5 to 86.1% of isolates), regardless of the sample type. Conversely, Enterobacteriaceae (40.3%), Acinetobacter (19.4%), and Aeromonas/Vibrio (12.5%) species predominated on neck skin samples taken from mechanically defeathered carcasses. Isolates from the rubber fingers were, however, predominantly Micrococcus spp. (94.4%). Bacterial groups isolated in the highest proportion from scald tank water samples were Micrococcus spp. (38.3%), species of Enterobacteriaceae (29.1%), and lactic acid bacteria (17.0%). Corynebacterium spp., species of Enterobacteriaceae, and Micrococcus spp. were dominant on air settle plates.

  20. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    DOE PAGES

    Bendall, Matthew L.; Stevens, Sarah L.R.; Chan, Leong-Keat; ...

    2016-01-08

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Using a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of genemore » gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. Furthermore, these patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Finally, evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.« less

  1. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.

    PubMed

    Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo

    2013-07-01

    Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations

    PubMed Central

    Schreiber, Frank; Dal Co, Alma; Kiviet, Daniel J.; Littmann, Sten

    2017-01-01

    While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed. PMID:29253903

  3. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum

    PubMed Central

    Kumar, Nitin; Lad, Ganesh; Giuntini, Elisa; Kaye, Maria E.; Udomwong, Piyachat; Shamsani, N. Jannah; Young, J. Peter W.; Bailly, Xavier

    2015-01-01

    Biological species may remain distinct because of genetic isolation or ecological adaptation, but these two aspects do not always coincide. To establish the nature of the species boundary within a local bacterial population, we characterized a sympatric population of the bacterium Rhizobium leguminosarum by genomic sequencing of 72 isolates. Although all strains have 16S rRNA typical of R. leguminosarum, they fall into five genospecies by the criterion of average nucleotide identity (ANI). Many genes, on plasmids as well as the chromosome, support this division: recombination of core genes has been largely within genospecies. Nevertheless, variation in ecological properties, including symbiotic host range and carbon-source utilization, cuts across these genospecies, so that none of these phenotypes is diagnostic of genospecies. This phenotypic variation is conferred by mobile genes. The genospecies meet the Mayr criteria for biological species in respect of their core genes, but do not correspond to coherent ecological groups, so periodic selection may not be effective in purging variation within them. The population structure is incompatible with traditional ‘polyphasic taxonomy′ that requires bacterial species to have both phylogenetic coherence and distinctive phenotypes. More generally, genomics has revealed that many bacterial species share adaptive modules by horizontal gene transfer, and we envisage a more consistent taxonomic framework that explicitly recognizes this. Significant phenotypes should be recognized as ‘biovars' within species that are defined by core gene phylogeny. PMID:25589577

  4. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids.

    PubMed

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance

  5. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?

    PubMed

    Apprill, Amy; Robbins, Jooke; Eren, A Murat; Pack, Adam A; Reveillaud, Julie; Mattila, David; Moore, Michael; Niemeyer, Misty; Moore, Kathleen M T; Mincer, Tracy J

    2014-01-01

    Microbes are now well regarded for their important role in mammalian health. The microbiology of skin--a unique interface between the host and environment--is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly serve

  6. Humpback Whale Populations Share a Core Skin Bacterial Community: Towards a Health Index for Marine Mammals?

    PubMed Central

    Apprill, Amy; Robbins, Jooke; Eren, A. Murat; Pack, Adam A.; Reveillaud, Julie; Mattila, David; Moore, Michael; Niemeyer, Misty; Moore, Kathleen M. T.; Mincer, Tracy J.

    2014-01-01

    Microbes are now well regarded for their important role in mammalian health. The microbiology of skin – a unique interface between the host and environment - is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly

  7. Bacterial meningitis in Finland, 1995-2014: a population-based observational study.

    PubMed

    Polkowska, Aleksandra; Toropainen, Maija; Ollgren, Jukka; Lyytikäinen, Outi; Nuorti, J Pekka

    2017-06-06

    Bacterial meningitis remains an important cause of morbidity and mortality worldwide. Its epidemiological characteristics, however, are changing due to new vaccines and secular trends. Conjugate vaccines against Haemophilus influenzae type b and Streptococcus pneumoniae (10-valent) were introduced in 1986 and 2010 in Finland. We assessed the disease burden and long-term trends of five common causes of bacterial meningitis in a population-based observational study. A case was defined as isolation of S. pneumoniae , Neisseria meningitidis , Streptococcus agalactiae , Listeria monocytogenes or H. influenzae from cerebrospinal fluid and reported to national, population-based laboratory surveillance system during 1995-2014. We evaluated changes in incidence rates (Poisson or negative binomial regression), case fatality proportions (χ 2 ) and age distribution of cases (Wilcoxon rank-sum). During 1995-2014, S. pneumoniae and N. meningitidis accounted for 78% of the total 1361 reported bacterial meningitis cases. H. influenzae accounted for 4% of cases (92% of isolates were non-type b). During the study period, the overall rate of bacterial meningitis per 1 00 000 person-years decreased from 1.88 cases in 1995 to 0.70 cases in 2014 (4% annual decline (95% CI 3% to 5%). This was primarily due to a 9% annual reduction in rates of N. meningitidis (95% CI 7% to 10%) and 2% decrease in S. pneumoniae (95% CI 1% to 4%). The median age of cases increased from 31 years in 1995-2004 to 43 years in 2005-2014 (p=0.0004). Overall case fatality proportion (10%) did not change from 2004 to 2009 to 2010-2014. Substantial decreases in bacterial meningitis were associated with infant conjugate vaccination against pneumococcal meningitis and secular trend in meningococcal meningitis in the absence of vaccination programme. Ongoing epidemiological surveillance is needed to identify trends, evaluate serotype distribution, assess vaccine impact and develop future vaccination strategies

  8. Prevalence and Risk Factors for Bacterial Vaginosis and Other Vulvovaginitis in a Population of Sexually Active Adolescents from Salvador, Bahia, Brazil

    PubMed Central

    Moreira Mascarenhas, Rita Elizabeth; Sacramento Cunha Machado, Márcia; Borges da Costa e Silva, Bruno Fernando; Fernandes Weyll Pimentel, Rodrigo; Teixeira Ferreira, Tatiana; Silva Leoni, Fernanda Maria; Grassi, Maria Fernanda Rios

    2012-01-01

    Bacterial vaginosis, trichomoniasis, and genital candidiasis are considered the main etiologies of vulvovaginitis. Few studies estimate the prevalence of vulvovaginitis among adolescents, especially in Brazil. This study aimed to determine the prevalence and main risk factors associated with bacterial vaginosis and genital infection by C. albicans and Trichomonas vaginalis among a group of adolescents from Salvador, Bahia, Brazil. One hundred sexually active adolescents followed at an adolescent gynecology clinic were included. Endocervical and vaginal samples were obtained during gynecological examination. Nugent criteria were applied for the diagnosis of bacterial vaginosis. For Candida albicans and Trichomonas vaginalis detection, culture in Sabouraud agar plates and Papanicolaou cytology were used, respectively. The mean age of participants was 16.6 ± 1.6 years. The prevalence of bacterial vaginosis was 20% (95% CI 12–28) and of genital infection by Candida was 22% (95% CI 14–30). Vaginal cytology detected Trichomonas vaginalis in one patient. Alcohol, tobacco, and illegal drug use (P = 0.02) and multiple lifetime partners were statistically related to bacterial vaginosis (P = 0.01). The prevalence of bacterial vaginosis and genital candidiasis was similar to other studies carried out among adolescents worldwide. PMID:23133306

  9. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.

    PubMed

    Peternel, Spela; Komel, Radovan

    2010-09-10

    In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process.To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared.During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation.During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity.High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  10. Plasmids foster diversification and adaptation of bacterial populations in soil.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. [Effects of bio-mulching on rhizosphere soil microbial population, enzyme activity and tree growth in poplar plantation].

    PubMed

    Liu, Jiu-Jun; Fang, Sheng-Zuo; Xie, Bao-Dong; Hao, Juan-Juan

    2008-06-01

    Coriaria nepalensis, Pteridium aquilinum var. latiuscukum, Imperata cylindrical var. major, and Quercus fabric were used as mulching materials to study their effects on the rhizosphere soil microbial population and enzyme activity and the tree growth in poplar plantation. The results showed that after mulching with test materials, the populations of both bacteria and fungi in rhizosphere soil were more than those of the control. Of the mulching materials, I. cylindrical and Q. fabric had the best effect, with the numbers of bacteria and fungi being 23.56 and 1.43 times higher than the control, respectively. The bacterial and fungal populations in rhizosphere soil increased with increasing mulching amount. When the mulching amount was 7.5 kg m(-2), the numbers of bacteria and fungi in rhizosphere soil were 0.5 and 5.14 times higher than the control, respectively. Under bio-mulching, the bacterial and fungal populations in rhizosphere soil had a similar annual variation trend, which was accorded with the annual fluctuation of soil temperature and got to the maximum in July and the minimum in December. The urease and phosphatase activities in rhizosphere soil also increased with increasing mulching amount. As for the effects of different mulching materials on the enzyme activities, they were in the order of C. nepalensis > P. aquilinum > I. cylindrical > Q. fabric. The annual variation of urease and phosphatase activities in rhizosphere soil was similar to that of bacterial and fungal populations, being the highest in July and the lowest in December. Bio-mulching promoted the tree height, DBH, and biomass of poplar trees significantly.

  12. Anti-bacterial activity of some Brazilian medicinal plants.

    PubMed

    de Lima, Maria Raquel Ferreira; de Souza Luna, Josiane; dos Santos, Aldenir Feitosa; de Andrade, Maria Cristina Caño; Sant'Ana, Antônio Euzébio Goulart; Genet, Jean-Pierre; Marquez, Béatrice; Neuville, Luc; Moreau, Nicole

    2006-04-21

    Extracts from various organs of 25 plants of Brazilian traditional medicine were assayed with respect to their anti-bacterial activities against Escherichia coli, a susceptible strain of Staphylococcus aureus and two resistant strains of Staphylococcus aureus harbouring the efflux pumps NorA and MsrA. Amongst the 49 extracts studied, 14 presented anti-bacterial activity against Staphylococcus aureus, including the ethanolic extracts from the rhizome of Jatropha elliptica, from the stem barks of Schinus terebinthifolius and Erythrina mulungu, from the stems and leaves of Caesalpinia pyramidalis and Serjania lethalis, and from the stem bark and leaves of Lafoensia pacari. The classes of compounds present in the active extracts were determined as a preliminary step towards their bioactivity-guided separation. No extracts were active against Escherichia coli.

  13. Bacterial populations and adaptations in the mucus layers on living corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducklow, H.W.; Mitchell, R.

    1979-07-01

    The external mucus layers of the stony coral Porites astreoides and the soft corals Palythoa sp. and Heteroxenia fuscesens are inhabited by communities of marine heterotrophic bacteria. Population levels of bacteria in coral mucus may be regulated by the self-cleaning behavior of the host. Bacterial populations in coral mucus respond to stresses applied to the host coral by growing to higher population levels in the mucus, indicating that these are populations of viable organisms closely attuned to host metabolism. Members of these microbial populations utilize the mucus compounds and may play a role in processing coral mucus for reef detritusmore » feeders. One such species, Vibrio alginolyticus, grows rapidly on Heteroxenia mucus, is attracted to dissolved mucus, and possesses a mechanism to maintain itself on the coral surface.« less

  14. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  15. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  16. Bacterial Pneumonia in Elderly Japanese Populations

    PubMed Central

    Miyashita, Naoya; Yamauchi, Yasuhiro

    2018-01-01

    Bacterial pneumonia is one of the most important infectious diseases in terms of incidence, effect on quality of life, mortality, and impact on society. Pneumonia was the third leading cause of death in Japan in 2011. In 2016, 119 650 Japanese people died of pneumonia, 96% of whom were aged 65 years and above. The symptoms of pneumonia in elderly people are often atypical. Aspiration pneumonia is seen more frequently than in young people because of swallowing dysfunction in the elderly. The mortality rate is also higher in the elderly than in young people. In Japan, the population is aging at an unprecedented rate, and pneumonia in the elderly will be increasingly important in medicine and medical economics in the future. To manage pneumonia in the elderly, it is important to accurately evaluate its severity, administer appropriate antibiotic treatment, and implement effective preventive measures. PMID:29434484

  17. Spatio-temporal transitions in the dynamics of bacterial populations

    NASA Astrophysics Data System (ADS)

    Lin, Anna; Lincoln, Bryan; Mann, Bernward; Torres, Gelsy; Kas, Josef; Swinney, Harry

    2001-03-01

    We experimentally investigate the population dynamics of a strain of E. coli bacteria living under spatially inhomogeneous growth conditions. A localized perturbation that moves with a well-defined drift velocity is imposed on the system. A reaction-diffusion model of this situation^1 predicts that an abrupt transition between spatial localization and extinction of the colony occurs for a fixed average growth rate when the drift velocity exceeds a critical value. Also, a transition between localized and delocalized populations is predicted to occur at a fixed drift velocity when the spatially averaged growth rate is varied. We create a spatially localized perturbation with UV light and vary the strength and drift velocity of the perturbation to investigate the existence of the different bacterial population distributions and the transitions between them. Numerical simulations of a 250 mm by 20 mm system guide our experiments. ^1K. A. Dahmen, D. R. Nelson, N. M. Shnerb, Jour. Math. Bio., 41 1 (2000).

  18. Effects of dietary protein levels and 2-methylbutyrate on ruminal fermentation, nutrient degradability, bacterial populations and urinary purine derivatives in Simmental steers.

    PubMed

    Wang, C; Liu, Q; Guo, G; Huo, W J; Pei, C X; Zhang, S L; Yang, W Z

    2018-06-01

    The objective of this study was to evaluate the effects of dietary crude protein (CP) levels and 2-methylbutyrate (MB) supplementation on ruminal fermentation, bacterial populations, microbial enzyme activity and urinary excretion of purine derivatives (PD) in Simmental steers. Eight ruminally cannulated Simmental steers, averaging 18 months of age and 465 ± 8.6 kg of body weight (BW), were used in a replicated 4 × 4 Latin square design by a 2 × 2 factorial arrangement. Low protein (98.5 g CP/kg dry matter [LP] or high protein (128.7 g CP/kg dry matter [HP]) diets were fed with MB supplementation (0 g [MB-] or 16.8 g steer -1  day -1 [MB+]). Steers were fed a total mixed ration with dietary corn straw to concentrate ratio of 50:50 (dry matter [DM] basis). The CP × MB interaction was observed for ruminal total VFA, molar proportions of acetate and propionate, acetate to propionate ratio, ammonia-N, effective degradability of neutral detergent fibre (NDF) and CP, microbial enzyme activity, bacterial populations and total PD excretion (p < .05). Ruminal pH decreased (p < .05), but ruminal total VFA concentration increased (p < .05) with increasing dietary CP level or MB supplementation. Acetate molar proportion increased (p = .043) with MB supplementation, but was not affected by dietary CP level. Propionate molar proportion decreased (p < .05) with increasing dietary CP level or MB supplementation. Consequently, acetate-to-propionate ratio increased (p = .001) with MB supplementation, but was not affected by dietary CP level. Ruminal ammonia-N content increased (p = .034) with increasing dietary CP level, but decreased (p = .012) with MB supplementation. The effective degradability of NDF and CP increased (p < .05) with increasing dietary CP level or MB supplementation. Microbial enzyme activity, bacterial populations and total PD excretion also increased (p < .05) with increasing dietary CP level or MB supplementation. The

  19. Identification of Population Bottlenecks and Colonization Factors during Assembly of Bacterial Communities within the Zebrafish Intestine

    PubMed Central

    Wiles, Travis J.; Martinez, Emily S.; Jemielita, Matthew; Burns, Adam R.; Parthasarathy, Raghuveer; Bohannan, Brendan J. M.

    2015-01-01

    ABSTRACT The zebrafish, Danio rerio, is a powerful model for studying bacterial colonization of the vertebrate intestine, but the genes required by commensal bacteria to colonize the zebrafish gut have not yet been interrogated on a genome-wide level. Here we apply a high-throughput transposon mutagenesis screen to Aeromonas veronii Hm21 and Vibrio sp. strain ZWU0020 during their colonization of the zebrafish intestine alone and in competition with each other, as well as in different colonization orders. We use these transposon-tagged libraries to track bacterial population sizes in different colonization regimes and to identify gene functions required during these processes. We show that intraspecific, but not interspecific, competition with a previously established bacterial population greatly reduces the ability of these two bacterial species to colonize. Further, using a simple binomial sampling model, we show that under conditions of interspecific competition, genes required for colonization cannot be identified because of the population bottleneck experienced by the second colonizer. When bacteria colonize the intestine alone or at the same time as the other species, we find shared suites of functional requirements for colonization by the two species, including a prominent role for chemotaxis and motility, regardless of the presence of another species. PMID:26507229

  20. Impact of Bioreactor Environment and Recovery Method on the Profile of Bacterial Populations from Water Distribution Systems.

    PubMed

    Luo, Xia; Jellison, Kristen L; Huynh, Kevin; Widmer, Giovanni

    2015-01-01

    Multiple rotating annular reactors were seeded with biofilms flushed from water distribution systems to assess (1) whether biofilms grown in bioreactors are representative of biofilms flushed from the water distribution system in terms of bacterial composition and diversity, and (2) whether the biofilm sampling method affects the population profile of the attached bacterial community. Biofilms were grown in bioreactors until thickness stabilized (9 to 11 weeks) and harvested from reactor coupons by sonication, stomaching, bead-beating, and manual scraping. High-throughput sequencing of 16S rRNA amplicons was used to profile bacterial populations from flushed biofilms seeded into bioreactors as well as biofilms recovered from bioreactor coupons by different methods. β diversity between flushed and reactor biofilms was compared to β diversity between (i) biofilms harvested from different reactors and (ii) biofilms harvested by different methods from the same reactor. These analyses showed that average diversity between flushed and bioreactor biofilms was double the diversity between biofilms from different reactors operated in parallel. The diversity between bioreactors was larger than the diversity associated with different biofilm recovery methods. Compared to other experimental variables, the method used to recover biofilms had a negligible impact on the outcome of water biofilm analyses based on 16S amplicon sequencing. Results from this study show that biofilms grown in reactors over 9 to 11 weeks are not representative models of the microbial populations flushed from a distribution system. Furthermore, the bacterial population profile of biofilms grown in replicate reactors from the same flushed water are likely to diverge. However, four common sampling protocols, which differ with respect to disruption of bacterial cells, provide similar information with respect to the 16S rRNA population profile of the biofilm community.

  1. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: A microautoradiographic study.

    PubMed

    Grossmann, S

    1994-07-01

    Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3-5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.

  2. Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity.

    PubMed

    Flenker, Katie S; Burghardt, Elliot L; Dutta, Nirmal; Burns, William J; Grover, Julia M; Kenkel, Elizabeth J; Weaver, Tyler M; Mills, James; Kim, Hyeon; Huang, Lingyan; Owczarzy, Richard; Musselman, Catherine A; Behlke, Mark A; Ford, Bradley; McNamara, James O

    2017-06-07

    Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  3. Bacterial Activity at −2 to −20°C in Arctic Wintertime Sea Ice

    PubMed Central

    Junge, Karen; Eicken, Hajo; Deming, Jody W.

    2004-01-01

    Arctic wintertime sea-ice cores, characterized by a temperature gradient of −2 to −20°C, were investigated to better understand constraints on bacterial abundance, activity, and diversity at subzero temperatures. With the fluorescent stains 4′,6′-diamidino-2-phenylindole 2HCl (DAPI) (for DNA) and 5-cyano-2,3-ditoyl tetrazolium chloride (CTC) (for O2-based respiration), the abundances of total, particle-associated (>3-μm), free-living, and actively respiring bacteria were determined for ice-core samples melted at their in situ temperatures (−2 to −20°C) and at the corresponding salinities of their brine inclusions (38 to 209 ppt). Fluorescence in situ hybridization was applied to determine the proportions of Bacteria, Cytophaga-Flavobacteria-Bacteroides (CFB), and Archaea. Microtome-prepared ice sections also were examined microscopically under in situ conditions to evaluate bacterial abundance (by DAPI staining) and particle associations within the brine-inclusion network of the ice. For both melted and intact ice sections, more than 50% of cells were found to be associated with particles or surfaces (sediment grains, detritus, and ice-crystal boundaries). CTC-active bacteria (0.5 to 4% of the total) and cells detectable by rRNA probes (18 to 86% of the total) were found in all ice samples, including the coldest (−20°C), where virtually all active cells were particle associated. The percentage of active bacteria associated with particles increased with decreasing temperature, as did the percentages of CFB (16 to 82% of Bacteria) and Archaea (0.0 to 3.4% of total cells). These results, combined with correlation analyses between bacterial variables and measures of particulate matter in the ice as well as the increase in CFB at lower temperatures, confirm the importance of particle or surface association to bacterial activity at subzero temperatures. Measuring activity down to −20°C adds to the concept that liquid inclusions in frozen environments

  4. The Structure of Resting Bacterial Populations in Soil and Subsoil Permafrost

    NASA Astrophysics Data System (ADS)

    Soina, Vera S.; Mulyukin, Andrei L.; Demkina, Elena V.; Vorobyova, Elena A.; El-Registan, Galina I.

    2004-09-01

    The structure of individual cells in microbial populations in situ of the Arctic and Antarctic permafrost was studied by scanning and transmission electron microscopy methods and compared with that of cyst-like resting forms generated under special conditions by the non-sporeforming bacteria Arthrobacter and Micrococcus isolated from the permafrost. Electron microscopy examination of microorganisms in situ revealed several types of bacterial cells having no signs of damage, including "dwarf" curved forms similar to nanoforms. Intact bacterial cells in situ and frozen cultures of the permafrost isolates differed from vegetative cells by thickened cell walls, the altered structure of cytoplasm, and the compact nucleoid, and were similar in these features to cyst-like resting forms of non-spore-forming "permafrost" bacterial strains of Arthrobacter and Micrococcus spp. Cyst-like cells, being resistant to adverse external factors, are regarded as being responsible for survival of the non-spore-formers under prolonged exposure to subzero temperatures and can be a target to search for living microorganisms in natural environments both on the Earth and on extraterrestrial bodies.

  5. Dynamics of Genome Rearrangement in Bacterial Populations

    PubMed Central

    Darling, Aaron E.; Miklós, István; Ragan, Mark A.

    2008-01-01

    first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes. PMID:18650965

  6. Bacterial meningitis in Finland, 1995–2014: a population-based observational study

    PubMed Central

    Polkowska, Aleksandra; Toropainen, Maija; Ollgren, Jukka; Lyytikäinen, Outi; Nuorti, J. Pekka

    2017-01-01

    Objectives Bacterial meningitis remains an important cause of morbidity and mortality worldwide. Its epidemiological characteristics, however, are changing due to new vaccines and secular trends. Conjugate vaccines against Haemophilus influenzae type b and Streptococcus pneumoniae (10-valent) were introduced in 1986 and 2010 in Finland. We assessed the disease burden and long-term trends of five common causes of bacterial meningitis in a population-based observational study. Methods A case was defined as isolation of S. pneumoniae, Neisseria meningitidis, Streptococcus agalactiae, Listeria monocytogenes or H. influenzae from cerebrospinal fluid and reported to national, population-based laboratory surveillance system during 1995–2014. We evaluated changes in incidence rates (Poisson or negative binomial regression), case fatality proportions (χ2) and age distribution of cases (Wilcoxon rank-sum). Results During 1995–2014, S. pneumoniae and N. meningitidis accounted for 78% of the total 1361 reported bacterial meningitis cases. H. influenzae accounted for 4% of cases (92% of isolates were non-type b). During the study period, the overall rate of bacterial meningitis per 1 00 000 person-years decreased from 1.88 cases in 1995 to 0.70 cases in 2014 (4% annual decline (95% CI 3% to 5%). This was primarily due to a 9% annual reduction in rates of N. meningitidis (95% CI 7% to 10%) and 2% decrease in S. pneumoniae (95% CI 1% to 4%). The median age of cases increased from 31 years in 1995–2004 to 43 years in 2005–2014 (p=0.0004). Overall case fatality proportion (10%) did not change from 2004 to 2009 to 2010–2014. Conclusions Substantial decreases in bacterial meningitis were associated with infant conjugate vaccination against pneumococcal meningitis and secular trend in meningococcal meningitis in the absence of vaccination programme. Ongoing epidemiological surveillance is needed to identify trends, evaluate serotype distribution, assess vaccine

  7. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.

    PubMed

    Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L

    2016-04-13

    Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations

    PubMed Central

    Fox, Randal E; Zhong, Xue; Krone, Stephen M; Top, Eva M

    2008-01-01

    In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are poorly understood. Through a joint experimental/theoretical approach, we tested the hypothesis that self-transmissible IncP-1 plasmids can invade a bacterial population in the absence of selection when initially very rare, but only in spatially structured habitats and when nutrients are regularly replenished. Using protocols that differed in the degree of spatial structure and nutrient levels, the invasiveness of plasmid pB10 in Escherichia coli was monitored during at least 15 days, with an initial fraction of plasmid-bearing (p+) cells as low as 10−7. To further explore the mechanisms underlying plasmid dynamics, we developed a spatially explicit mathematical model. When cells were grown on filters and transferred to fresh medium daily, the p+ fraction increased to 13%, whereas almost complete invasion occurred when the population structure was disturbed daily. The plasmid was unable to invade in liquid. When carbon source levels were lower or not replenished, plasmid invasion was hampered. Simulations of the mathematical model closely matched the experimental results and produced estimates of the effects of alternative experimental parameters. This allowed us to isolate the likely mechanisms most responsible for the observations. In conclusion, spatial structure and nutrient availability can be key determinants in the invasiveness of plasmids. PMID:18528415

  9. Bacterial finite-size effects for population expansion under flow

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc

    2016-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.

  10. Hydration dynamics promote bacterial coexistence on rough surfaces

    PubMed Central

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694

  11. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates

    PubMed Central

    Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.

    2017-01-01

    The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918

  12. Diel Variation in Population Size and Ice Nucleation Activity of Pseudomonas syringae on Snap Bean Leaflets.

    PubMed

    Hirano, S S; Upper, C D

    1989-03-01

    The extent to which diel changes in the physical environment affect changes in population size and ice nucleation activity of Pseudomonas syringae on snap bean leaflets was determined under field conditions. To estimate bacterial population size and ice nucleation activity, bean leaflets were harvested at 2-h intervals during each of three 26-h periods. A tube nucleation test was used to assay individual leaflets for ice nuclei. Population sizes of P. syringae were determined by dilution plating of leaflet homogenates. The overall diel changes in P. syringae population sizes differed during each of the 26-h periods. In one 26-h period, there was a continuous increase in the logarithm of P. syringae population size despite intense solar radiation, absence of free moisture on leaf surfaces, and low relative humidity during the day. A mean doubling time of approximately 4.9 h was estimated for the 28-fold increase in P. syringae population size that occurred from 0900 to 0900 h during the 26-h period. However, doubling times of 3.3 and 1.9 h occurred briefly during this period from 1700 to 2300 h and from 0100 to 0700 h, respectively. Thus, growth rates of P. syringae in association with leaves in the field were of the same order of magnitude as optimal rates measured in the laboratory. The frequency with which leaflets bore ice nuclei active at -2.0, -2.2, and -2.5 degrees C varied greatly within each 26-h period. These large diel changes were inversely correlated primarily with the diel changes in air temperature and reflected changes in nucleation frequency rather than changes in population size of P. syringae. Thus, the response of bacterial ice nucleation activity to the physical environment was distinct from the changes in population size of ice nucleation-active P. syringae.

  13. Adaptations in bacterial catabolic enzyme activity and community structure in membrane-coupled bioreactors fed simple synthetic wastewater.

    PubMed

    LaPara, Timothy M; Klatt, Christian G; Chen, Ruoyu

    2006-02-10

    Membrane-coupled bioreactors (MBRs) offer substantial benefits compared to conventional reactor designs for biological wastewater treatment. MBR treatment efficiency, however, has not been optimized because the effects of the MBR on process microbiology are poorly understood. In this study, the structure and function of the microbial communities growing in MBRs fed simple synthetic wastewater were investigated. In four starch-fed MBRs, the bacterial community substantially increased its alpha-glucosidase affinity (>1000-fold), while the leucine aminopeptidase and heptanoate esterase affinities increased slightly (<40-fold) or remained relatively constant. Concomitant to these physiological adaptations, shifts in the bacterial community structure in two of the starch-fed MBRs were detected by PCR-DGGE. Four of the bacterial populations detected by PCR-DGGE were isolated and exhibited specific growth rates in batch culture ranging from 0.009 to 0.22 h(-1). Our results suggest that bacterial communities growing under increasingly stringent nutrient limitation adapt their enzyme activities primarily for the nutrients provided, but that there is also a more subtle response not linked to the substrates included in the feed medium. Our research also demonstrates that MBRs can support relatively complex bacterial communities even on simple feed media.

  14. Bacterial meningitis in solid organ transplant recipients: a population-based prospective study.

    PubMed

    van Veen, K E B; Brouwer, M C; van der Ende, A; van de Beek, D

    2016-10-01

    Solid organ transplant (SOT) recipients are at risk of infections of the central nervous system. However, the incidence and clinical course of bacterial meningitis in SOT recipients are unclear. We studied occurrence, disease course, and prognosis of bacterial meningitis in SOT recipients in the Netherlands. All patients with a medical history of solid organ transplantation were selected from our nationwide prospective cohort study on community-acquired bacterial meningitis in patients >16 years old, performed from March 1, 2006 to October 31, 2014. Data on patient history, symptoms and signs on admission, treatment, and outcome were collected prospectively. For transplant recipients, additional information was collected retrospectively. We identified 6 SOT recipients, all receiving renal transplants. The annual incidence of bacterial meningitis was 7-fold higher (95% confidence interval [CI] 2.94-17.02, P < 0.001) for renal transplant recipients as compared with the general population (9.56 [95% CI 3.98-22.96] vs. 1.35 [95% CI 1.28-1.43] per 100,000 patients per year). One of the 6 patients (17%) presented with the classic presentation of bacterial meningitis (fever, neck stiffness, and change in mental status). Seizures were common, occurring in 33% of patients. Streptococcus pneumoniae and Listeria monocytogenes were identified in 2 patients each, and Escherichia coli and Pseudomonas aeruginosa were both identified once. Four of 6 patients (67%) had an unfavorable functional outcome. Bacterial meningitis is a rare but devastating complication of solid organ transplantation. SOT recipients are at high risk for developing meningitis, and recognition of this condition may be difficult, owing to atypical clinical manifestation. © 2016 The Authors. Transplant Infectious Disease Published by John Wiley & Sons Ltd.

  15. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    NASA Astrophysics Data System (ADS)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  16. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    PubMed

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.

  17. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    NASA Astrophysics Data System (ADS)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  18. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections.

    PubMed

    Leyland, Nigel S; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J; Quilty, Brid; Pillai, Suresh C

    2016-04-21

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  19. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    PubMed Central

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-01-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces. PMID:27098010

  20. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population.

    PubMed

    Janowski, Andrew; Newland, Jason

    2017-01-01

    In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with Streptococcus agalactiae . We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis.

  1. Characterization of CCN and IN activity of bacterial isolates collected in Atlanta, GA

    NASA Astrophysics Data System (ADS)

    Purdue, Sara; Waters, Samantha; Karthikeyan, Smruthi; Konstantinidis, Kostas; Nenes, Athanasios

    2016-04-01

    Characterization of CCN activity of bacteria, other than a few select types such as Pseudomonas syringae, is limited, especially when looked at in conjunction with corresponding IN activity. The link between these two points is especially important for bacteria as those that have high CCN activity are likely to form an aqueous phase required for immersion freezing. Given the high ice nucleation temperature of bacterial cells, especially in immersion mode, it is important to characterize the CCN and IN activity of many different bacterial strains. To this effect, we developed a droplet freezing assay (DFA) which consists of an aluminum cold plate, cooled by a continuous flow of an ethylene glycol-water mixture, in order to observe immersion freezing of the collected bacteria. Here, we present the initial results on the CCN and IN activities of bacterial samples we have collected in Atlanta, GA. Bacterial strains were collected and isolated from rainwater samples taken from different storms throughout the year. We then characterized the CCN activity of each strain using a DMT Continuous Flow Streamwise Thermal Gradient CCN Counter by exposing the aerosolized bacteria to supersaturations ranging from 0.05% to 0.6%. Additionally, using our new DFA, we characterized the IN activity of each bacterial strain at temperatures ranging from -20oC to 0oC. The combined CCN and IN activity gives us valuable information on how some uncharacterized bacteria contribute to warm and mixed-phase cloud formation in the atmosphere.

  2. The epidemiology of bacterial meningitis in Kosovo.

    PubMed

    Namani, Sadie A; Koci, Remzie A; Qehaja-Buçaj, Emine; Ajazaj-Berisha, Lindita; Mehmeti, Murat

    2014-07-14

    The purpose of this study was to present the epidemiologic features of bacterial meningitis in the developing country of Kosovo. Data were collected from active surveillance of bacterial meningitis cases treated at the University Clinical Center of Kosovo in the years 2000 (first post-war year) and 2010. Meningitis cases in 2000 compared with 2010 showed a 35.5% decline in incidence (from 4.8 to 3.1 cases per 100,000 population) and a decrease in the case fatality rate from 10% to 5%. In children, there was a lower mortality rate (5% versus 2%) and a lower incidence of neurological complications (13% versus 16%) as compared to adults (32% versus 10% and 16% versus 35%, respectively). Neisseria meningitidis was the most common pathogen of bacterial meningitis in both study periods. Bacterial meningitis was most prevalent in the pediatric population, and showed an increase in the median age, from three years in 2000 to seven years in 2010. A steady number of bacterial meningitis cases in adults throughout last decade (around 20 cases per year) was recorded. During the last decade, gradual changes have been observed in the epidemiology of bacterial meningitis that are unrelated to the introduction of new vaccines, but are partly due to the improvement of living conditions.

  3. Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations.

    PubMed

    Sylvan, J B; Pyenson, B C; Rouxel, O; German, C R; Edwards, K J

    2012-03-01

    We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known. © 2012 Blackwell Publishing Ltd.

  4. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  5. An EPA pilot study characterizing fungal and bacterial populations at homes after flooding events at the Martin Peña Channel community-Puerto Rico

    EPA Science Inventory

    The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: hom...

  6. In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application

    PubMed Central

    Kumar, P; Selvi, S Senthamil; Govindaraju, M

    2012-01-01

    Objective To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2% to CM. Conclusions To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds. PMID:23593571

  7. Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations

    PubMed Central

    Marinier, Eric; Zaheer, Rahat; Berry, Chrystal; Weedmark, Kelly A.; Domaratzki, Michael; Mabon, Philip; Knox, Natalie C.; Reimer, Aleisha R.; Graham, Morag R.; Chui, Linda; Patterson-Fortin, Laura; Zhang, Jian; Pagotto, Franco; Farber, Jeff; Mahony, Jim; Seyer, Karine; Bekal, Sadjia; Tremblay, Cécile; Isaac-Renton, Judy; Prystajecky, Natalie; Chen, Jessica; Slade, Peter

    2017-01-01

    Abstract The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using ‘big data’ approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune’s loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune. PMID:29048594

  8. Effect of copper on the performance and bacterial communities of activated sludge using Illumina MiSeq platforms.

    PubMed

    Sun, Fu-Lin; Fan, Lei-Lei; Xie, Guang-Jian

    2016-08-01

    The anaerobic-anoxic-aerobic (A2O) process is a highly efficient sewage treatment method, which uses complex bacterial communities. However, the effect of copper on this process and the bacterial communities involved remains unknown. In this study, a systematic investigation of the effect of persistent exposure of copper in the A2O wastewater treatment system was performed. An A2O device was designed to examine the effect of copper on the removal efficiency and microbial community compositions of activated sludge that was continuously treated with 10, 20, and 40 mg L(-1) copper, respectively. Surprisingly, a decrease in chemical oxygen demand (COD) and ammonia nitrogen (NH4N) removal efficiency was observed, and the toxicity of high copper concentration was significantly greater at 7d than at 1d. Proteobacteria, Bacteroidetes, Acidobacteria, Chlorobi, and Nitrospirae were the dominant bacterial taxa in the A2O system, and significant changes in microbial community were observed during the exposure period. Most of the dominant bacterial groups were easily susceptible to copper toxicity and diversely changed at different copper concentrations. However, not all the bacterial taxa were inhibited by copper treatment. At high copper concentration, many bacterial species were stimulated and their abundance increased. Cluster analysis and principal coordinate analysis (PCoA) based on operational taxonomic units (OTUs) revealed clear differences in the bacterial communities among the samples. These findings indicated that copper severely affected the performance and key microbial populations in the A2O system as well as disturbed the stability of the bacterial communities in the system, thus decreasing the removal efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil.

    PubMed

    Adhikari, Dinesh; Jiang, Tianyi; Kawagoe, Taiki; Kai, Takamitsu; Kubota, Kenzo; Araki, Kiwako S; Kubo, Motoki

    2017-12-04

    Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil's ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper) in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples ( R ² = 0.25), and this relationship became significantly stronger at near-neutral pH (6.0-7.3; R ² = 0.67). No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0) or alkaline (pH > 7.3) pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH ( R ² = 0.72 and 0.73, respectively), as well as for Ca at alkaline pH ( R ² = 0.64). Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  10. Lysozyme as a recognition element for monitoring of bacterial population.

    PubMed

    Zheng, Laibao; Wan, Yi; Yu, Liangmin; Zhang, Dun

    2016-01-01

    Bacterial infections remain a significant challenge in biomedicine and environment safety. Increasing worldwide demand for point-of-care techniques and increasing concern on their safe development and use, require a simple and sensitive bioanalysis for pathogen detection. However, this goal is not yet achieved. A design for fluorescein isothiocyanate-labeled lysozyme (FITC-LYZ), which provides quantitative binding information for gram-positive bacteria, Micrococcus luteus, and detects pathogen concentration, is presented. The functional lysozyme is used not only as the pathogenic detection platform, but also as a tracking reagent for microbial population in antibacterial tests. A nonlinear relationship between the system response and the logarithm of the bacterial concentration was observed in the range of 1.2×10(2)-1.2×10(5) cfu mL(-1). The system has a potential for further applications and provides a facile and simple method for detection of pathogenic bacteria. Meanwhile, the fluorescein isothiocyanate -labeled lysozyme is also employed as the tracking agent for antibacterial dynamic assay, which show a similar dynamic curve compared with UV-vis test. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Quantitative Investigation of the Role of Intra-/Intercellular Dynamics in Bacterial Quorum Sensing.

    PubMed

    Leaman, Eric J; Geuther, Brian Q; Behkam, Bahareh

    2018-04-20

    Bacteria utilize diffusible signals to regulate population density-dependent coordinated gene expression in a process called quorum sensing (QS). While the intracellular regulatory mechanisms of QS are well-understood, the effect of spatiotemporal changes in the population configuration on the sensitivity and robustness of the QS response remains largely unexplored. Using a microfluidic device, we quantitatively characterized the emergent behavior of a population of swimming E. coli bacteria engineered with the lux QS system and a GFP reporter. We show that the QS activation time follows a power law with respect to bacterial population density, but this trend is disrupted significantly by microscale variations in population configuration and genetic circuit noise. We then developed a computational model that integrates population dynamics with genetic circuit dynamics to enable accurate (less than 7% error) quantitation of the bacterial QS activation time. Through modeling and experimental analyses, we show that changes in spatial configuration of swimming bacteria can drastically alter the QS activation time, by up to 22%. The integrative model developed herein also enables examination of the performance robustness of synthetic circuits with respect to growth rate, circuit sensitivity, and the population's initial size and spatial structure. Our framework facilitates quantitative tuning of microbial systems performance through rational engineering of synthetic ribosomal binding sites. We have demonstrated this through modulation of QS activation time over an order of magnitude. Altogether, we conclude that predictive engineering of QS-based bacterial systems requires not only the precise temporal modulation of gene expression (intracellular dynamics) but also accounting for the spatiotemporal changes in population configuration (intercellular dynamics).

  12. Temporal variability of bacterial communities in cryoconite on an alpine glacier.

    PubMed

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto

    2017-04-01

    Cryoconite holes, that is, small ponds that form on glacier surface, are considered the most biologically active environments on glaciers. Bacterial communities in these environments have been extensively studied, but often through snapshot studies based on the assumption of a general stability of community structure. In this study, the temporal variation of bacterial communities in cryoconite holes on the Forni Glacier (Italian Alps) was investigated by high throughput DNA sequencing. A temporal change of bacterial communities was observed with autotrophic Cyanobacteria populations dominating communities after snowmelt, and heterotrophic Sphingobacteriales populations increasing in abundance later in the season. Bacterial communities also varied according to hole depth and area, amount of organic matter in the cryoconite and oxygen concentration. However, variation in environmental features explained a lower fraction of the variation in bacterial communities than temporal variation. Temporal change along ablation season seems therefore more important than local environmental conditions in shaping bacterial communities of cryoconite of the Forni Glacier. These findings challenge the assumption that bacterial communities of cryoconite holes are stable. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Interlinkages between bacterial populations dynamics and the operational parameters in a moving bed membrane bioreactor treating urban sewage.

    PubMed

    Reboleiro-Rivas, P; Martín-Pascual, J; Morillo, J A; Juárez-Jiménez, B; Poyatos, J M; Rodelas, B; González-López, J

    2016-01-01

    Bacteria are key players in biological wastewater treatments (WWTs), thus a firm knowledge of the bacterial population dynamics is crucial to understand environmental/operational factors affecting the efficiency and stability of the biological depuration process. Unfortunately, little is known about the microbial ecology of the advanced biological WWTs combining suspended biomass (SB) and attached biofilms (AB). This study explored in depth the bacterial community structure and population dynamics in each biomass fraction from a pilot-scale moving bed membrane bioreactor (MBMBR) treating municipal sewage, by means of temperature-gradient gel electrophoresis (TGGE) and 454-pyrosequencing. Eight experimental phases were conducted, combining different carrier filling ratios, hydraulic retention times and concentrations of mixed liquor total suspended solids. The bacterial community, dominated by Proteobacteria (20.9-53.8%) and Actinobacteria (20.6-57.6%), was very similar in both biomass fractions and able to maintain its functional stability under all the operating conditions, ensuring a successful and steady depuration process. Multivariate statistical analysis demonstrated that solids concentration, carrier filling ratio, temperature and organic matter concentration in the influent were the significant factors explaining population dynamics. Bacterial diversity increased as carrier filling ratio increased (from 20% to 35%, v/v), and solids concentration was the main factor triggering the shifts of the community structure. These findings provide new insights on the influence of operational parameters on the biology of the innovative MBMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Dai, Minhan; Jiao, Nianzhi; Herndl, Gerhard J

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and 16S rRNA gene (V1-3 regions) and thereby characterizing the active and total bacterial community, respectively. The diversity and biogeographic patterns differed substantially between the active and total bacterial communities. Although the composition of both the total and active bacterial community was strongly correlated with environmental factors and weakly correlated with geographic distance, the active bacterial community displayed higher environmental sensitivity than the total community and particularly a greater distance effect largely caused by the active assemblage from deep waters. The 16S rRNA vs. rDNA relationships indicated that the active bacteria were low in relative abundance in the SCS. This might be due to a high competition between active bacterial taxa as indicated by our community network models. Based on these analyses, we speculate that high competition could cause some dispersal limitation of the active bacterial community resulting in a distinct distance-decay relationship. Altogether, our results indicated that the biogeographic distribution of bacteria in the SCS is the result of both environmental control and distance decay. PMID:24684298

  15. Bacterial meningitis in hematopoietic stem cell transplant recipients: a population-based prospective study.

    PubMed

    van Veen, K E B; Brouwer, M C; van der Ende, A; van de Beek, D

    2016-11-01

    We performed a nationwide prospective cohort study on the epidemiology and clinical features of community-acquired bacterial meningitis. Patients with a medical history of autologous or allogeneic hematopoietic stem cell transplantation (HSCT) were identified from the cohort performed from March 2006 to October 2014. Fourteen of 1449 episodes (1.0%) of bacterial meningitis occurred in patients with a history of HSCT. The incidence of bacterial meningitis in HSCT recipients was 40.4 per 100 000 patients per year (95% confidence interval (CI) 23.9-62.2), which is 30-fold (95% CI 18-51; P<0.001) higher compared with persons without HSCT. Incidence was higher in allogeneic HSCT compared with autologous HSCT (70.0 vs 15.8 per 100 000 patients per year). Causative organisms were Streptococcus pneumoniae in 11 patients, Neisseria meningitidis in two and Streptococcus mitis in one patient. Mortality was 3 of 14 (21%) and 6 of 11 (55%) survivors had sequelae. Nine of 11 patients (82%) with pneumococcal meningitis were infected with a serotype included in the 23-valent pneumococcal polysaccharide vaccine, of whom four developed meningitis despite vaccination. In conclusion, HSCT recipients have a substantially increased risk compared with the general population of acquiring bacterial meningitis, which is mostly due to S. pneumoniae, and disease is associated with high mortality and morbidity. Vaccination is important to prevent disease although vaccine failures did occur.

  16. The Effect of Light on Bacterial Activity in a Seaweed Holobiont.

    PubMed

    Coelho-Souza, Sergio A; Jenkins, Stuart R; Casarin, Antonio; Baeta-Neves, Maria Helena; Salgado, Leonardo T; Guimaraes, Jean R D; Coutinho, Ricardo

    2017-11-01

    Holobionts are characterized by the relationship between host and their associated organisms such as the biofilm associated with macroalgae. Considering that light is essential to macroalgae survival, the aim of this study was to verify the effect of light on the heterotrophic activity in biofilms of the brown macroalgae Sargassum furcatum during its growth cycle. Measurements of heterotrophic activity were done under natural light levels at different times during a daily cycle and under an artificial extinction of natural light during the afternoon. We also measured Sargassum primary production under these light levels in the afternoon. Both measurements were done with and without photosynthesis inhibitor and antibiotics. Biofilm composition was mainly represented by bacteria but diatoms, cyanobacteria, and other organisms were also common. When a peak of diatom genera was recorded, the heterotrophic activity of the biofilm was higher. Heterotrophic activity was usually highest during the afternoon and the presence of a photosynthesis inhibitor caused an average reduction of 17% but there was no relationship with Sargassum primary production. These results indicate that autotrophic production in the biofilm was reduced by the inhibitor with consequences on bacterial activity. Heterotrophic activity was mainly bacterial and the antibiotics chloramphenicol and penicillin were more effective than streptomycin. We suggest primary producers in the biofilm are more important to increase bacterial activity than the macroalgae itself because of coherence of the peaks of heterotrophic and autotrophic activity in biofilm during the afternoon and the effects of autotrophic inhibitors on heterotrophic activity.

  17. Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure

    PubMed Central

    Pérez, María Teresa; Sommaruga, Ruben

    2007-01-01

    We studied the interactive effects of dissolved organic matter (DOM) and solar radiation on the activity and community structure of bacteria from an alpine lake. Activity was assessed both at the community level as leucine incorporation rates and at the single-cell level by microautoradiography. Fluorescent in situ hybridization and signal amplification by catalysed reporter deposition (CARD-FISH) was used to track changes in the bacterial community composition. Bacteria-free filtrates of different DOM sources (lake, algae or soil) were incubated either in the dark or exposed to solar radiation. Afterwards, the natural bacterial assemblage was inoculated and the cultures incubated in the dark for 24–48 h. Bacterial activity was enhanced in the first 24 h in the soil and algal DOM amendments kept in the dark. After 48 h, the enhancement effect was greatly reduced. The initial bacterial community was dominated by Betaproteobacteria followed by Actinobacteria. The relative abundance (expressed as a percentage of DAPI-stained cells) of Betaproteobacteria increased first in dark incubated DOM amendments, but after 48 h no significant differences were detected among treatments. In contrast, the relative abundance of Actinobacteria increased in pre-irradiated DOM treatments. Although Betaproteobacteria dominated at the end of the experiment, the relative abundance of their R-BT subgroup differed among treatments. Changes in bacterial community activity were significantly correlated with those of the relative abundance and activity of Betaproteobacteria, whereas the contribution of Actinobacteria to the bulk activity was very modest. Our results indicate a negative effect of DOM photoalteration on the bulk bacterial activity. The magnitude of this effect was time-dependent and related to rapid changes in the bacterial assemblage composition. PMID:17686018

  18. Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure.

    PubMed

    Pérez, María Teresa; Sommaruga, Ruben

    2007-09-01

    We studied the interactive effects of dissolved organic matter (DOM) and solar radiation on the activity and community structure of bacteria from an alpine lake. Activity was assessed both at the community level as leucine incorporation rates and at the single-cell level by microautoradiography. Fluorescent in situ hybridization and signal amplification by catalysed reporter deposition (CARD-FISH) was used to track changes in the bacterial community composition. Bacteria-free filtrates of different DOM sources (lake, algae or soil) were incubated either in the dark or exposed to solar radiation. Afterwards, the natural bacterial assemblage was inoculated and the cultures incubated in the dark for 24-48 h. Bacterial activity was enhanced in the first 24 h in the soil and algal DOM amendments kept in the dark. After 48 h, the enhancement effect was greatly reduced. The initial bacterial community was dominated by Betaproteobacteria followed by Actinobacteria. The relative abundance (expressed as a percentage of DAPI-stained cells) of Betaproteobacteria increased first in dark incubated DOM amendments, but after 48 h no significant differences were detected among treatments. In contrast, the relative abundance of Actinobacteria increased in pre-irradiated DOM treatments. Although Betaproteobacteria dominated at the end of the experiment, the relative abundance of their R-BT subgroup differed among treatments. Changes in bacterial community activity were significantly correlated with those of the relative abundance and activity of Betaproteobacteria, whereas the contribution of Actinobacteria to the bulk activity was very modest. Our results indicate a negative effect of DOM photoalteration on the bulk bacterial activity. The magnitude of this effect was time-dependent and related to rapid changes in the bacterial assemblage composition.

  19. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community.

    PubMed

    Ren, Wenjie; Ren, Gaidi; Teng, Ying; Li, Zhengao; Li, Lina

    2015-10-30

    The increased application of graphene raises concerns about its environmental impact, but little information is available on the effect of graphene on the soil microbial community. This study evaluated the impact of graphene on the structure, abundance and function of the soil bacterial community based on quantitative real-time polymerase chain reaction (qPCR), pyrosequencing and soil enzyme activities. The results show that the enzyme activities of dehydrogenase and fluorescein diacetate (FDA) esterase and the biomass of the bacterial populations were transiently promoted by the presence of graphene after 4 days of exposure, but these parameters recovered completely after 21 days. Pyrosequencing analysis suggested a significant shift in some bacterial populations after 4 days, and the shift became weaker or disappeared as the exposure time increased to 60 days. During the entire exposure process, the majority of bacterial phylotypes remained unaffected. Some bacterial populations involved in nitrogen biogeochemical cycles and the degradation of organic compounds can be affected by the presence of graphene. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory.

    PubMed

    Medina, R F; Nachappa, P; Tamborindeguy, C

    2011-04-01

    Host-associated differentiation (HAD) is the presence of genetically divergent, host-associated populations. It has been suggested that microbial symbionts of insect herbivores may play a role in HAD by allowing their insect hosts to use different plant species. The objective of this study was to document if host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory corresponded with differences in the composition of their associated bacteria. To test this hypothesis, we characterized the symbionts present in P. notabilis associated with these two tree species through metagenomic analyses using 454 sequencing. Differences in bacterial diversity were found between P. notabilis populations associated with pecan and water hickory. The bacteria, Pantoea agglomerans and Serratia marcescens, were absent in the P. notabilis water hickory population, whereas both species accounted for more than 69.72% of bacterial abundance in the pecan population. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  1. Bacterial virulence effectors and their activities.

    PubMed

    Hann, Dagmar R; Gimenez-Ibanez, Selena; Rathjen, John P

    2010-08-01

    The major virulence strategy for plant pathogenic bacteria is deployment of effector molecules within the host cytoplasm. Each bacterial strain possesses a set of 20-30 effectors which have overlapping activities, are functionally interchangeable, and diverge in composition between strains. Effectors target host molecules to suppress immunity. Two main strategies are apparent. Effectors that target host proteins seem to attack conserved structural domains but otherwise lack specificity. On the other hand, those that influence host gene transcription directly do so with extreme specificity. In both cases, examples are known where the host has exploited effector-target affinities to establish immune recognition of effectors. The molecular activity of each effector links virulence and immune outcomes. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Coupling Bacterial Activity Measurements with Cell Sorting by Flow Cytometry.

    PubMed

    Servais; Courties; Lebaron; Troussellier

    1999-08-01

    > Abstract A new procedure to investigate the relationship between bacterial cell size and activity at the cellular level has been developed; it is based on the coupling of radioactive labeling of bacterial cells and cell sorting by flow cytometry after SYTO 13 staining. Before sorting, bacterial cells were incubated in the presence of tritiated leucine using a procedure similar to that used for measuring bacterial production by leucine incorporation and then stained with SYTO 13. Subpopulations of bacterial cells were sorted according to their average right-angle light scatter (RALS) and fluorescence. Average RALS was shown to be significantly related to the average biovolume. Experiments were performed on samples collected at different times in a Mediterranean seawater mesocosm enriched with nitrogen and phosphorus. At four sampling times, bacteria were sorted in two subpopulations (cells smaller and larger than 0.25 µm(3)). The results indicate that, at each sampling time, the growth rate of larger cells was higher than that of smaller cells. In order to confirm this tendency, cell sorting was performed on six subpopulations differing in average biovolume during the mesocosm follow-up. A clear increase of the bacterial growth rates was observed with increasing cell size for the conditions met in this enriched mesocosm.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p180.html

  3. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri.

    PubMed

    Nyholm, S V; McFall-Ngai, M J

    1998-10-01

    The symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri has a pronounced diel rhythm, one component of which is the venting of the contents of the light organ into the surrounding seawater each day at dawn. In this study, we explored the use of this behavior to sample the microenvironment of the light-organ crypts. Intact crypt contents, which emerge from the lateral pores of the organ as a thick paste-like exudate, were collected from anesthetized host animals that had been exposed to a light cue. Microscopy revealed that the expelled material is composed of a conspicuous population of host cells in association with the bacterial symbionts, all of which are embedded in a dense acellular matrix that strongly resembles the bacteria-based biofilms described in other systems. Assays of the viability of expelled crypt cells revealed no dead bacterial symbionts and a mixture of live and dead host cells. Analyses of the ultrastructure, biochemistry, and phagocytic activity of a subset of the host cell population suggested that some of these cells are macrophage-like molluscan hemocytes.

  4. Identification of 16S Ribosomal DNA-Defined Bacterial Populations at a Shallow Submarine Hydrothermal Vent near Milos Island (Greece)

    PubMed Central

    Sievert, Stefan M.; Kuever, Jan; Muyzer, Gerard

    2000-01-01

    In a recent publication (S. M. Sievert, T. Brinkhoff, G. Muyzer, W. Ziebis, and J. Kuever, Appl. Environ. Microbiol. 65:3834–3842, 1999) we described spatiotemporal changes in the bacterial community structure at a shallow-water hydrothermal vent in the Aegean Sea near the isle of Milos (Greece). Here we describe identification and phylogenetic analysis of the predominant bacterial populations at the vent site and their distribution at the vent site as determined by sequencing of DNA molecules (bands) excised from denaturing gradient gels. A total of 36 bands could be sequenced, and there were representatives of eight major lineages of the domain Bacteria. Cytophaga-Flavobacterium and Acidobacterium were the most frequently retrieved bacterial groups. Less than 33% of the sequences exhibited 90% or more identity with cultivated organisms. The predominance of putative heterotrophic populations in the sequences retrieved is explained by the input of allochthonous organic matter at the vent site. PMID:10877814

  5. Identifying currents in the gene pool for bacterial populations using an integrative approach.

    PubMed

    Tang, Jing; Hanage, William P; Fraser, Christophe; Corander, Jukka

    2009-08-01

    The evolution of bacterial populations has recently become considerably better understood due to large-scale sequencing of population samples. It has become clear that DNA sequences from a multitude of genes, as well as a broad sample coverage of a target population, are needed to obtain a relatively unbiased view of its genetic structure and the patterns of ancestry connected to the strains. However, the traditional statistical methods for evolutionary inference, such as phylogenetic analysis, are associated with several difficulties under such an extensive sampling scenario, in particular when a considerable amount of recombination is anticipated to have taken place. To meet the needs of large-scale analyses of population structure for bacteria, we introduce here several statistical tools for the detection and representation of recombination between populations. Also, we introduce a model-based description of the shape of a population in sequence space, in terms of its molecular variability and affinity towards other populations. Extensive real data from the genus Neisseria are utilized to demonstrate the potential of an approach where these population genetic tools are combined with an phylogenetic analysis. The statistical tools introduced here are freely available in BAPS 5.2 software, which can be downloaded from http://web.abo.fi/fak/mnf/mate/jc/software/baps.html.

  6. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie

    2014-06-18

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealedmore » substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously observed in natural populations.« less

  7. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie

    2014-05-12

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealedmore » substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ecotype model? of diversification, but not previously observed in natural populations.« less

  8. Bacterial anti-apoptotic activities.

    PubMed

    Häcker, Georg; Fischer, Silke F

    2002-05-21

    Cell death by apoptosis is a common response to environmental stimuli and a frequent event in a multicellular organism. Not surprisingly, apoptosis is also found in microbial infections where it may contribute to progression and outcome. Perhaps less predictably, a number of bacteria have also been found to alleviate or even to inhibit apoptosis. Today we are at a point where our in some parts detailed knowledge of the molecular pathway to apoptosis allows us to probe situations in biology for the occurrence of apoptosis and to inquire into mechanisms of apoptosis induction and inhibition. In this brief article we will focus on anti-apoptotic activities exhibited by various bacteria. We will attempt to present the current knowledge on how the contact between mammalian and bacterial cell decrees resistance to apoptosis, what the respective contributions of the two partners are and how this interaction relates to the molecular path to apoptosis.

  9. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    NASA Astrophysics Data System (ADS)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.

  10. CONJUGAL GENE TRANSFER IN THE RHIZOSPHERE OF WATER GRASS (ECHINOCHLORA CRUSGALLI): INFLUENCE OF ROOT EXUDATE AND BACTERIAL ACTIVITY

    EPA Science Inventory

    The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...

  11. Coexisting bacterial populations responsible for multiphasic mineralization kinetics in soil. [Janthinobacterium sp. Rhodococcus sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, S.K.; Gier, M.J.

    1990-09-01

    Experiments were conducted to study populations of indigenous microorganisms capable of mineralizing 2,4-dinitrophenol (DNP) in two soils. Previous kinetic analyses indicated the presence of two coexisting populations of DNP-mineralizing microorganisms in a forest soil (soil 1). Studies in which eucaryotic and procaryotic inhibitors were added to this soil indicated that both populations were bacterial. Most-probable-number counts with media containing different concentrations of DNP indicated that more bacteria could mineralize low concentrations of DNP than could metabolize high concentrations of it. Enrichments with varying concentrations of DNP and various combinations of inhibitors consistently resulted in the isolation of the same twomore » species of bacteria from soil 1. This soil contained a large number and variety of fungi, but no fungi capable of mineralizing DNP were isolated. The two bacterial isolates were identified as a Janthinobacterium sp. and a Rhodococcus sp. The Janthinobacterium sp. had a low {mu}{sub max} and a low K{sub m} for DNP mineralization, whereas the Rhodococcus sp. had much higher values for both parameters. These differences between the two species of bacteria were similar to differences seen when soil was incubated with different concentrations of DNP. Values for {mu}{sub max} from soil incubations were similar to {mu}{sub max} values obtained in pure culture studies. In contrast, K{sub s} and K{sub m} values showed greater variation between soil and pure culture studies.« less

  12. A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.

    PubMed

    Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R

    2011-10-01

    It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.

  13. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry.

    PubMed

    Foladori, P; Bruni, L; Tamburini, S; Ziglio, G

    2010-07-01

    A rapid multi-step procedure, potentially amenable to automation, was proposed for quantifying viable and active bacterial cells, estimating their biovolume using flow cytometry (FCM) and to calculate their biomass within the main stages of a wastewater treatment plant: raw wastewater, settled wastewater, activated sludge and effluent. Fluorescent staining of bacteria using SYBR-Green I + Propidium Iodide (to discriminate cell integrity or permeabilisation) and BCECF-AM (to identify enzymatic activity) was applied to count bacterial cells by FCM. A recently developed specific procedure was applied to convert Forward Angle Light Scatter measured by FCM into the corresponding bacterial biovolume. This conversion permits the calculation of the viable and active bacterial biomass in wastewater, activated sludge and effluent, expressed as Volatile Suspended Solids (VSS) or particulate Chemical Oxygen Demand (COD). Viable bacterial biomass represented only a small part of particulate COD in raw wastewater (4.8 +/- 2.4%), settled wastewater (10.7 +/- 3.1%), activated sludge (11.1 +/- 2.1%) and effluent (3.2 +/- 2.2%). Active bacterial biomass counted for a percentage of 30-47% of the viable bacterial biomass within the stages of the wastewater treatment plant. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulicmore » conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112-120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ 13C values (-67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ 13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO 3 -, or SO 4 2-. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  15. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE PAGES

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.; ...

    2016-05-04

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulicmore » conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112-120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ 13C values (-67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ 13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO 3 -, or SO 4 2-. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  16. Increased β-glucuronidase activity in bronchoalveolar lavage fluid of children with bacterial lung infection: A case-control study.

    PubMed

    Panagiotopoulou, Evgenia C; Fouzas, Sotirios; Douros, Konstantinos; Triantaphyllidou, Irene-Eva; Malavaki, Christina; Priftis, Kostas N; Karamanos, Nikos K; Anthracopoulos, Michael B

    2015-11-01

    β-Glucuronidase is a lysosomal enzyme released into the extracellular fluid during inflammation. Increased β-glucuronidase activity in the cerebrospinal and peritoneal fluid has been shown to be a useful marker of bacterial inflammation. We explored the role of β-glucuronidase in the detection of bacterial infection in bronchoalveolar lavage fluid (BALF) of paediatric patients. In this case-control study, % polymorphonuclear cell count (PMN%), β-glucuronidase activity, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and elastase were measured in culture-positive (≥10(4) cfu/mL, C+) and -negative (C-) BALF samples obtained from children. A total of 92 BALF samples were analysed. The median β-glucuronidase activity (measured in nanomoles of 4-methylumbelliferone (4-MU)/mL BALF/h) was 246.4 in C+ (interquartile range: 71.2-751) and 21.9 in C- (4.0-40.8) (P < 0.001). The levels of TNF-α and IL-8 were increased in C+ as compared with C- (5.4 (1.7-12.6) vs 0.7 (0.2-6.2) pg/mL, P < 0.001 and 288 (76-4300) vs 287 (89-1566) pg/mL, P = 0.042, respectively). Elastase level and PMN% did not differ significantly (50 (21-149) vs 26 (15-59) ng/mL, P = 0.051 and 20 (9-40) vs 18 (9-34) %, P = 0.674, respectively). The area under the curve of β-glucuronidase activity (0.856, 95% confidence interval (CI): 0.767-0.920) was higher than that of TNF-α (0.718; 95% CI: 0.614-0.806; P = 0.040), IL-8 (0.623; 95% CI: 0.516-0.722; P = 0.001), elastase (0.645; 95% CI: 0.514-0.761; P = 0.008) and PMN% (0.526; 95 % CI: 0.418-0.632; P < 0.001). This study demonstrates a significant increase of β-glucuronidase activity in BALF of children with culture-positive bacterial inflammation. In our population β-glucuronidase activity showed superior predictive ability for bacterial lung infection than other markers of inflammation. © 2015 Asian Pacific Society of Respirology.

  17. Association between Toll-like receptor 9 gene polymorphisms and risk of bacterial meningitis in a Chinese population.

    PubMed

    Wang, X H; Shi, H P; Li, F J

    2016-07-25

    We determined whether two common single nucleotide polymorphisms (SNPs) in the Toll-like receptor 9 gene (TLR9) (TLR9+2848 rs352140 and TLR9-1237 rs5743836) influenced susceptibility to bacterial meningitis in a Chinese population. The study comprised 126 patients with bacterial meningitis and 252 control subjects, all of whom were recruited from the Tuberculosis Hospital of Shanxi Province. Genotyping of TLR9+2848 rs352140 and TLR9-1237 rs5743836 was performed by polymerase chain reaction coupled with restriction fragment length polymorphism. Using logistic regression analysis, we found that individuals with the AA genotype were associated with an increased risk of bacterial meningitis compared with those with the GG genotype (OR = 0.43, 95%CI = 0.19-0.95; P = 0.03). In a recessive model, the AA genotype was correlated with an elevated risk of bacterial meningitis compared with the GG+GA genotype (OR = 0.49, 95%CI = 0.22-0.99; P = 0.04). However, no significant differences were observed in the association between the TLR9-1237 rs5743836 polymorphism and the risk of bacterial meningitis in the codominant, dominant, or recessive models. In conclusion, the results of our study suggest an association between the TLR9+2848 polymorphism and a reduced risk of bacterial meningitis in the codominant and recessive models.

  18. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations.

    PubMed

    Chavanis, P-H; Sire, C

    2004-08-01

    We determine an exact asymptotic expression of the blow-up time t(coll) for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point in d=3. We show that t(coll) = t(*) (eta- eta(c) )(-1/2) with t(*) =0.917 677 02..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta(c) is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the exact asymptotic expression of the relaxation time close to but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point.

  19. How Bacterial Population Soliton Waves Can Defeat a Funnel Ring

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Morris, Ryan; Phan, Average; Black, Matthew; Lin, Ke-Chih; Bos, Julia

    We have constructed using microfabrication a circular corral for bacteria made of rings of concentric funnels which channel motile bacteria outwards via non-hydrodynamic interactions with the funnel walls. Although initially bacteria do move rapidly outwards with the funnels, they are able with increasing cell density on the perimeter to defeat the physical constraints of the funnel by launching collective, soliton like waves of bacteria inwards against the funnel ring. We present the basic data and some non-linear modeling which can explain the basic way that bacterial population solitons propagate across a funnel landscape. There are three surprising aspects to the experiments: (1) The bifurcation of the population into motile bacteria which are pumped by the funnels and bacteria which are non-motile (i.e., not pumped); (2) The launching of a collective wave which rapidly circles the device and radiates inwards against the pumping action of the funnel; (3) the subsequent loss of motility by all the bacteria after this burst of very high motility. Engineering and Physical Sciences Research Council [EP/J007404/1], National Cancer Institute (Grant No U54CA143803), and NSF PoLS program NSF PHY1521553.

  20. Bioorganic Fertilizer Enhances Soil Suppressive Capacity against Bacterial Wilt of Tomato

    PubMed Central

    Liu, Shuangri; Chai, Rushan; Huang, Weiqing; Liu, Xingxing; Tang, Caixian; Zhang, Yongsong

    2015-01-01

    Tomato bacterial wilt caused by Ralstonia solanacearum is one of the most destructive soil-borne diseases. Many strategies have been taken to improve soil suppressiveness against this destructive disease, but limited success has been achieved. In this study, a novel bioorganic fertilizer revealed a higher suppressive ability against bacterial wilt compared with several soil management methods in the field over four growing seasons from March 2011 to July 2013. The application of the bioorganic fertilizer significantly (P<0.05) reduced disease incidence of tomato and increased fruit yields in four independent trials. The association among the level of disease incidence, soil physicochemical and biological properties was investigated. The soil treated with the bioorganic fertilizer increased soil pH value, electric conductivity, organic carbon, NH4 +-N, NO3 --N and available K content, microbial activities and microbial biomass carbon content, which were positively related with soil suppressiveness. Bacterial and actinomycete populations assessed using classical plate counts were highest, whereas R. solanacearum and fungal populations were lowest in soil applied with the bioorganic fertilizer. Microbial community diversity and richness were assessed using denaturing gel gradient electrophoresis profile analysis. The soil treated with the bioorganic fertilizer exhibited higher bacterial community diversity but lower fungal community diversity. Redundancy analysis showed that bacterial community diversity and richness negatively related with bacterial wilt suppressiveness, while fungal community richness positively correlated with R. solanacearum population. We concluded that the alteration of soil physicochemical and biological properties in soil treated with the bioorganic fertilizer induced the soil suppressiveness against tomato bacterial wilt. PMID:25830639

  1. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  2. Bacterial Population Changes in a Membrane Bioreactor for Graywater Treatment Monitored by Denaturing Gradient Gel Electrophoretic Analysis of 16S rRNA Gene Fragments

    PubMed Central

    Stamper, David M.; Walch, Marianne; Jacobs, Rachel N.

    2003-01-01

    The bacterial population of a graywater treatment system was monitored over the course of 100 days, along with several wastewater biochemical parameters. The graywater treatment system employed an 1,800-liter membrane bioreactor (MBR) to process the waste, with essentially 100% recycling of the biomass. Graywater feed consisting of 10% galley water and 90% laundry water, selected to approximate the graywater composition on board U.S. Navy ships, was collected offsite. Five-day biological oxygen demand (BOD5), oils and greases (O/G), nitrogen, and phosphorus were monitored in the feed and were found to vary greatly day to day. Changes in the bacterial population were monitored by PCR amplification of region 332 to 518 (Escherichia coli numbering) of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analysis of the resultant PCR products. DGGE analysis indicated a diverse and unstable bacterial population throughout the 100-day period, with spikes in feed strength causing significant changes in community structure. Long-term similarity between the communities was 0 to 25%, depending on the method of analysis. In spite of the unstable bacterial population, the MBR system was able to meet effluent quality parameters approximately 90% of the time. PMID:12571004

  3. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments.

    PubMed

    Stamper, David M; Walch, Marianne; Jacobs, Rachel N

    2003-02-01

    The bacterial population of a graywater treatment system was monitored over the course of 100 days, along with several wastewater biochemical parameters. The graywater treatment system employed an 1,800-liter membrane bioreactor (MBR) to process the waste, with essentially 100% recycling of the biomass. Graywater feed consisting of 10% galley water and 90% laundry water, selected to approximate the graywater composition on board U.S. Navy ships, was collected offsite. Five-day biological oxygen demand (BOD(5)), oils and greases (O/G), nitrogen, and phosphorus were monitored in the feed and were found to vary greatly day to day. Changes in the bacterial population were monitored by PCR amplification of region 332 to 518 (Escherichia coli numbering) of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analysis of the resultant PCR products. DGGE analysis indicated a diverse and unstable bacterial population throughout the 100-day period, with spikes in feed strength causing significant changes in community structure. Long-term similarity between the communities was 0 to 25%, depending on the method of analysis. In spite of the unstable bacterial population, the MBR system was able to meet effluent quality parameters approximately 90% of the time.

  4. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    PubMed Central

    Brandt, Stephanie M.; Schneider, David S.

    2009-01-01

    Summary Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized the ovary in a previously undescribed manner; bacteria were found in the posterior of the ovary, adjacent to the lateral oviduct. This local infection in the ovary resulted in melanization and activation of the cellular immune response at the site of infection. PMID:17400292

  5. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  6. Simulated rRNA/DNA Ratios Show Potential To Misclassify Active Populations as Dormant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven, Blaire; Hesse, Cedar; Soghigian, John

    The use of rRNA/DNA ratios derived from surveys of rRNA sequences in RNA and DNA extracts is an appealing but poorly validated approach to infer the activity status of environmental microbes. To improve the interpretation of rRNA/DNA ratios, we performed simulations to investigate the effects of community structure, rRNA amplification, and sampling depth on the accuracy of rRNA/DNA ratios in classifying bacterial populations as “active” or “dormant.” Community structure was an insignificant factor. In contrast, the extent of rRNA amplification that occurs as cells transition from dormant to growing had a significant effect (P < 0.0001) on classification accuracy, withmore » misclassification errors ranging from 16 to 28%, depending on the rRNA amplification model. The error rate increased to 47% when communities included a mixture of rRNA amplification models, but most of the inflated error was false negatives (i.e., active populations misclassified as dormant). Sampling depth also affected error rates (P < 0.001). Inadequate sampling depth produced various artifacts that are characteristic of rRNA/DNA ratios generated from real communities. These data show important constraints on the use of rRNA/DNA ratios to infer activity status. Whereas classification of populations as active based on rRNA/DNA ratios appears generally valid, classification of populations as dormant is potentially far less accurate.« less

  7. Simulated rRNA/DNA Ratios Show Potential To Misclassify Active Populations as Dormant

    DOE PAGES

    Steven, Blaire; Hesse, Cedar; Soghigian, John; ...

    2017-03-31

    The use of rRNA/DNA ratios derived from surveys of rRNA sequences in RNA and DNA extracts is an appealing but poorly validated approach to infer the activity status of environmental microbes. To improve the interpretation of rRNA/DNA ratios, we performed simulations to investigate the effects of community structure, rRNA amplification, and sampling depth on the accuracy of rRNA/DNA ratios in classifying bacterial populations as “active” or “dormant.” Community structure was an insignificant factor. In contrast, the extent of rRNA amplification that occurs as cells transition from dormant to growing had a significant effect (P < 0.0001) on classification accuracy, withmore » misclassification errors ranging from 16 to 28%, depending on the rRNA amplification model. The error rate increased to 47% when communities included a mixture of rRNA amplification models, but most of the inflated error was false negatives (i.e., active populations misclassified as dormant). Sampling depth also affected error rates (P < 0.001). Inadequate sampling depth produced various artifacts that are characteristic of rRNA/DNA ratios generated from real communities. These data show important constraints on the use of rRNA/DNA ratios to infer activity status. Whereas classification of populations as active based on rRNA/DNA ratios appears generally valid, classification of populations as dormant is potentially far less accurate.« less

  8. Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass

    USGS Publications Warehouse

    Zehr, Jon P.; Harvey, Ronald W.; Oremland, Ronald S.; Cloern, James E.; George, Leah H.; Lane, Judith L.

    1987-01-01

    Bacterial activities and abundance were measured seasonally in the water column of meromictic Big Soda Lake which is divided into three chemically distinct zones: aerobic mixolimnion, anaerobic mixolimnion, and anaerobic monimolimnion. Bacterial abundance ranged between 5 and 52 x 106 cells ml−1, with highest biomass at the interfaces between these zones: 2–4 mg C liter−1 in the photosynthetic bacterial layer (oxycline) and 0.8–2.0 mg C liter−1 in the chemocline. Bacterial cell size and morphology also varied with depth: small coccoid cells were dominant in the aerobic mixolimnion, whereas the monimolimnion had a more diverse population that included cocci, rods, and large filaments. Heterotrophic activity was measured by [methyl-3H]thymidine incorporation and [14C]glutamate uptake. Highest uptake rates were at or just below the photosynthetic bacterial layer and were attributable to small (<1 µm) heterotrophs rather than the larger photosynthetic bacteria. These high rates of heterotrophic uptake were apparently linked with fermentation; rates of other mineralization processes (e.g. sulfate reduction, methanogenesis, denitrification) in the anoxic mixolimnion were insignificant. Heterotrophic activity in the highly reduced monimolimnion was generally much lower than elsewhere in the water column. Therefore, although the monimolimnion contained most of the bacterial abundance and biomass (∼60%), most of the cells there were inactive.

  9. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

    PubMed Central

    Santos, Sílvio B.; Carvalho, Carla; Azeredo, Joana; Ferreira, Eugénio C.

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist. PMID:25051248

  10. Temporal Relationships Exist Between Cecum, Ileum, and Litter Bacterial Microbiomes in a Commercial Turkey Flock, and Subtherapeutic Penicillin Treatment Impacts Ileum Bacterial Community Establishment

    PubMed Central

    Danzeisen, Jessica L.; Clayton, Jonathan B.; Huang, Hu; Knights, Dan; McComb, Brian; Hayer, Shivdeep S.; Johnson, Timothy J.

    2015-01-01

    Gut health is paramount for commercial poultry production, and improved methods to assess gut health are critically needed to better understand how the avian gastrointestinal tract matures over time. One important aspect of gut health is the totality of bacterial populations inhabiting different sites of the avian gastrointestinal tract, and associations of these populations with the poultry farm environment, since these bacteria are thought to drive metabolism and prime the developing host immune system. In this study, a single flock of commercial turkeys was followed over the course of 12 weeks to examine bacterial microbiome inhabiting the ceca, ileum, and corresponding poultry litter. Furthermore, the effects of low-dose, growth-promoting penicillin treatment (50 g/ton) in feed on the ileum bacterial microbiome were also examined during the early brood period. The cecum and ileum bacterial communities of turkeys were distinct, yet shifted in parallel to one another over time during bird maturation. Corresponding poultry litter was also distinct yet more closely represented the ileal bacterial populations than cecal bacterial populations, and also changed parallel to ileum bacterial populations over time. Penicillin applied at low dose in feed significantly enhanced early weight gain in commercial poults, and this correlated with predictable shifts in the ileum bacterial populations in control versus treatment groups. Overall, this study identified the dynamics of the turkey gastrointestinal microbiome during development, correlations between bacterial populations in the gastrointestinal tract and the litter environment, and the impact of low-dose penicillin on modulation of bacterial communities in the ileum. Such modulations provide a target for alternatives to low-dose antibiotics. PMID:26664983

  11. EFFECT OF SITE ON BACTERIAL POPULATIONS IN THE SAPWOOD OF COARSE WOODY DEBRIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Emma, G.,; Waldrop, Thomas, A.; McElreath, Susan, D.

    1998-01-01

    Porter, Emma G., T.A. Waldrop, Susan D. McElreath, and Frank H. Tainter. 1998. Effect of site on bacterial populations in the sapwood of coarse woody debris. Pp. 480-484. In: Proc. 9th Bienn. South. Silv. Res. Conf. T.A. Waldrop (ed). USDA Forest Service, Southern Research Station. Gen. Tech. Rep. SRS-20. Abstract: Coarse woody debris (CWD) is an important structural component of southeastern forest ecosystems, yet little is known about its dynamics in these systems. This project identified bacterial populations associated with CWD and their dynamics across landscape ecosystem classification (LEC) units. Bolts of red oak and loblolly pine were placed onmore » plots at each of three hydric, mesic, and xeric sites at the Savannah River Station. After the controls were processed, samples were taken at four intervals over a 16-week period. Samples were ground within an anaerobe chamber using nonselective media. Aerobic and facultative anaerobic bacteria were identified using the Biolog system and the anaerobes were identified using the API 20A system. Major genera isolated were: Bacillus, Buttiauxella, Cedecea, Enterobacter, Erwinia, Escherichia, Klebsiella, Pantoea, Pseudomonas, Serratia, and Xanthomonas. The mean total isolates were determined by LEC units and sample intervals. Differences occurred between the sample intervals with total isolates of 6.67, 13.33, 10.17, and 9.50 at 3, 6, 10, and 16 weeks, respectively. No significant differences in the numbers of bacteria isolated were found between LEC units.« less

  12. Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant

    PubMed Central

    Layton, Alice C.; Dionisi, Hebe; Kuo, H.-W.; Robinson, Kevin G.; Garrett, Victoria M.; Meyers, Arthur; Sayler, Gary S.

    2005-01-01

    Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant. PMID:15691975

  13. Variation in bacterial endosymbionts associated with the date palm hopper, Ommatissus lybicus populations.

    PubMed

    Karimi, S; Izadi, H; Askari Seyahooei, M; Bagheri, A; Khodaygan, P

    2018-04-01

    The date palm hopper, Ommatissus lybicus, is a key pest of the date palm, which is expected to be comprised of many allopatric populations. The current study was carried out to determine bacterial endosymbiont diversity in the different populations of this pest. Ten date palm hopper populations were collected from the main date palm growing regions in Iran and an additional four samples from Pakistan, Oman, Egypt and Tunisia for detection of primary and secondary endosymbionts using polymerase chain reaction (PCR) assay with their specific primers. The PCR products were directly sequenced and edited using SeqMan software. The consensus sequences were subjected to a BLAST similarity search. The results revealed the presence of 'Candidatus Sulcia muelleri' (primary endosymbiont) and Wolbachia, Arsenophonus and Enterobacter (secondary endosymbionts) in all populations. This assay failed to detect 'Candidatus Nasuia deltocephalinicola' and Serratia in these populations. 'Ca. S. muelleri' exhibited a 100% infection frequency in populations and Wolbachia, Arsenophonus and Enterobacter demonstrated 100, 93.04 and 97.39% infection frequencies, respectively. The infection rate of Arsenophonus and Enterobacter ranged from 75 to 100% and 62.5 to 100%, respectively, in different populations of the insect. The results demonstrated multiple infections by 'Ca. Sulcia muelleri', Wolbachia, Arsenophonus and Enterobacter in the populations and may suggest significant roles for these endosymbionts on date palm hopper population fitness. This study provides an insight to endosymbiont variation in the date palm hopper populations; however, further investigation is needed to examine how these endosymbionts may affect host fitness.

  14. Simultaneous Fluorescent Gram Staining and Activity Assessment of Activated Sludge Bacteria

    PubMed Central

    Forster, Scott; Snape, Jason R.; Lappin-Scott, Hilary M.; Porter, Jonathan

    2002-01-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems. PMID:12324319

  15. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    PubMed

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  16. Effects of Bacterial Microflora of the Lower Digestive Tract of Free-Range Waterfowl on Influenza Virus Activation

    PubMed Central

    King, Marcus D.; Guentzel, M. Neal; Arulanandam, Bernard P.; Bodour, Adria A.; Brahmakshatriya, Vinayak; Lupiani, Blanca; Chambers, James P.

    2011-01-01

    Proteolytic cleavage activation of influenza virus hemagglutinin (HA0) is required for cell entry via receptor-mediated endocytosis. Despite numerous studies describing bacterial protease-mediated influenza A viral activation in mammals, very little is known about the role of intestinal bacterial flora of birds in hemagglutinin cleavage/activation. Therefore, the cloaca of wild waterfowl was examined for (i) representative bacterial types and (ii) their ability to cleave in a “trypsin-like” manner the precursor viral hemagglutinin molecule (HA0). Using radiolabeled HA0, bacterial secretion-mediated trypsin-like conversion of HA0 to HA1 and HA2 peptide products was observed to various degrees in 42 of 44 bacterial isolates suggestive of influenza virus activation in the cloaca of wild waterfowl. However, treatment of uncleaved virus with all bacterial isolates gave rise to substantially reduced emergent virus progeny compared with what was expected. Examination of two isolates exhibiting pronounced trypsin-like conversion of HA0 to HA1 and HA2 peptide products and low infectivity revealed lipase activity to be present. Because influenza virus possesses a complex lipid envelope, the presence of lipid hydrolase activity could in part account for the observed less-than-expected level of viable progeny. A thorough characterization of respective isolate protease HA0 hydrolysis products as well as other resident activities (i.e., lipase) is ongoing such that the role of these respective contributors in virus activation/inactivation can be firmly established. PMID:21531837

  17. Evolution of bacterial virulence.

    PubMed

    Diard, Médéric; Hardt, Wolf-Dietrich

    2017-09-01

    Bacterial virulence is highly dynamic and context-dependent. For this reason, it is challenging to predict how molecular changes affect the growth of a pathogen in a host and its spread in host population. Two schools of thought have taken quite different directions to decipher the underlying principles of bacterial virulence. While molecular infection biology is focusing on the basic mechanisms of the pathogen-host interaction, evolution biology takes virulence as one of several parameters affecting pathogen spread in a host population. We review both approaches and discuss how they can complement each other in order to obtain a comprehensive understanding of bacterial virulence, its emergence, maintenance and evolution. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens

    PubMed Central

    2014-01-01

    Background Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). Methods In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. Results The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. Conclusions In this study we showed that prebiotics naturally

  19. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens.

    PubMed

    Tako, Elad; Glahn, Raymond P; Knez, Marija; Stangoulis, James Cr

    2014-06-13

    Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. In this study we showed that prebiotics naturally found in wheat grains/bread products

  20. Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci

    PubMed Central

    Cheng, Dan-Dan; Liu, Mei-Jun; Sun, Xing-Bin; Zhao, Min; Chow, Wah S.; Sun, Guang-Yu; Zhang, Zi-Shan; Hu, Yan-Bo

    2016-01-01

    Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant’s tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection. PMID:27148334

  1. Exploring the links between groundwater quality and bacterial communities near oil and gas extraction activities.

    PubMed

    Santos, Inês C; Martin, Misty S; Reyes, Michelle L; Carlton, Doug D; Stigler-Granados, Paula; Valerio, Melissa A; Whitworth, Kristina W; Hildenbrand, Zacariah L; Schug, Kevin A

    2018-03-15

    Bacterial communities in groundwater are very important as they maintain a balanced biogeochemical environment. When subjected to stressful environments, for example, due to anthropogenic contamination, bacterial communities and their dynamics change. Studying the responses of the groundwater microbiome in the face of environmental changes can add to our growing knowledge of microbial ecology, which can be utilized for the development of novel bioremediation strategies. High-throughput and simpler techniques that allow the real-time study of different microbiomes and their dynamics are necessary, especially when examining larger data sets. Matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) is a workhorse for the high-throughput identification of bacteria. In this work, groundwater samples were collected from a rural area in southern Texas, where agricultural activities and unconventional oil and gas development are the most prevalent anthropogenic activities. Bacterial communities were assessed using MALDI-TOF MS, with bacterial diversity and abundance being analyzed with the contexts of numerous organic and inorganic groundwater constituents. Mainly denitrifying and heterotrophic bacteria from the Phylum Proteobacteria were isolated. These microorganisms are able to either transform nitrate into gaseous forms of nitrogen or degrade organic compounds such as hydrocarbons. Overall, the bacterial communities varied significantly with respect to the compositional differences that were observed from the collected groundwater samples. Collectively, these data provide a baseline measurement of bacterial diversity in groundwater located near anthropogenic surface and subsurface activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    PubMed Central

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449

  3. Bacterial Population in Intestines of the Black Tiger Shrimp (Penaeus monodon) under Different Growth Stages

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities. PMID:23577162

  4. Structure and Origin of Xanthomonas arboricola pv. pruni Populations Causing Bacterial Spot of Stone Fruit Trees in Western Europe.

    PubMed

    Boudon, Sylvain; Manceau, Charles; Nottéghem, Jean-Loup

    2005-09-01

    ABSTRACT Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot on stone fruit, was found in 1995 in several orchards in southeastern France. We studied population genetics of this emerging pathogen in comparison with populations from the United States, where the disease was first described, and from Italy, where the disease has occurred since 1920. Four housekeeping genes (atpD, dnaK, efp, and glnA) and the intergenic transcribed spacer region were sequenced from a total of 3.9 kb of sequences, and fluorescent amplified fragment length polymorphism (FAFLP) analysis was performed. A collection of 64 X. arboricola pv. pruni strains, including 23 strains from France, was analyzed. The X. arboricola pv. pruni population had a low diversity because no sequence polymorphisms were observed. Population diversity revealed by FAFLP was lower for the West European population than for the American population. The same bacterial genotype was detected from five countries on three continents, a geographic distribution that can be explained by human-aided migration of bacteria. Our data support the hypothesis that the pathogen originated in the United States and subsequently has been disseminated to other stone-fruit-growing regions of the world. In France, emergence of this disease was due to a recent introduction of the most prevalent genotype of the bacterium found worldwide.

  5. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    PubMed Central

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S.; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a ‘last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections. PMID:26892159

  6. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms.

    PubMed

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-02-19

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections.

  7. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations.

    PubMed

    Logsdon, Michelle M; Aldridge, Bree B

    2018-01-01

    Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.

  8. Treatment With High-Hydrostatic Pressure, Activated Film Packaging With Thymol Plus Enterocin AS-48, and Its Combination Modify the Bacterial Communities of Refrigerated Sea Bream (Sparus aurata) Fillets

    PubMed Central

    Ortega Blázquez, Irene; Grande Burgos, María J.; Pérez-Pulido, Rubén; Gálvez, Antonio; Lucas, Rosario

    2018-01-01

    The aim of this study was to determine the impact of activated plastic films with thymol and enterocin AS-48 and high-hydrostatic pressure (HP) treatment on the bacterial load and bacterial diversity of vacuum-packaged sea bream fillets under refrigerated storage for 10 days. The activated film and the HP treatment reduced aerobic mesophiles viable counts by 1.46 and 2.36 log cycles, respectively, while the combined treatment achieved a reduction of 4.13 log cycles. HP and combined treatments resulted in longer delays in bacterial growth. Proteobacteria were the dominant phyla in sea bream fillets. The relative abundance of Firmicutes increased by the end of storage both in controls and in samples treated by HP singly or in combination with the activated films. The predominant operational taxonomic units (OTUs) found at time 0 in control samples (Listeria, Acinetobacter, Pseudomonas, Enterobacteriaceae, Chryseobacterium) rapidly changed during storage (with an increase of Vibrio, Photobacterium, and Shewanella together with Cloacibacterium and Lactobacillales by the end of storage). The activated film and the HP treatment induced drastic changes in bacterial diversity right after treatments (with Comamonadaceae, Methylobacterium, Acidovorax, and Sphingomonas as main OTUs) and also induced further modifications during storage. Bacterial diversity in activated film samples was quite homogeneous during storage (with Vibrio, Photobacterium, and Shewanella as main OTUs) and approached control samples. HP treatments (singly or in combination with activated films) determined a high relative abundance of Acinetobacter (followed by Pseudomonas and Shewanella) during early storage as well as a higher relative abundance of lactic acid bacteria by the end of storage. The results indicate that the complex dynamics of bacterial populations in the refrigerated sea bream fillets are markedly influenced by treatment and antimicrobials applied. PMID:29541064

  9. Treatment With High-Hydrostatic Pressure, Activated Film Packaging With Thymol Plus Enterocin AS-48, and Its Combination Modify the Bacterial Communities of Refrigerated Sea Bream (Sparus aurata) Fillets.

    PubMed

    Ortega Blázquez, Irene; Grande Burgos, María J; Pérez-Pulido, Rubén; Gálvez, Antonio; Lucas, Rosario

    2018-01-01

    The aim of this study was to determine the impact of activated plastic films with thymol and enterocin AS-48 and high-hydrostatic pressure (HP) treatment on the bacterial load and bacterial diversity of vacuum-packaged sea bream fillets under refrigerated storage for 10 days. The activated film and the HP treatment reduced aerobic mesophiles viable counts by 1.46 and 2.36 log cycles, respectively, while the combined treatment achieved a reduction of 4.13 log cycles. HP and combined treatments resulted in longer delays in bacterial growth. Proteobacteria were the dominant phyla in sea bream fillets. The relative abundance of Firmicutes increased by the end of storage both in controls and in samples treated by HP singly or in combination with the activated films. The predominant operational taxonomic units (OTUs) found at time 0 in control samples ( Listeria, Acinetobacter, Pseudomonas, Enterobacteriaceae, Chryseobacterium ) rapidly changed during storage (with an increase of Vibrio, Photobacterium , and Shewanella together with Cloacibacterium and Lactobacillales by the end of storage). The activated film and the HP treatment induced drastic changes in bacterial diversity right after treatments (with Comamonadaceae, Methylobacterium, Acidovorax , and Sphingomonas as main OTUs) and also induced further modifications during storage. Bacterial diversity in activated film samples was quite homogeneous during storage (with Vibrio, Photobacterium , and Shewanella as main OTUs) and approached control samples. HP treatments (singly or in combination with activated films) determined a high relative abundance of Acinetobacter (followed by Pseudomonas and Shewanella ) during early storage as well as a higher relative abundance of lactic acid bacteria by the end of storage. The results indicate that the complex dynamics of bacterial populations in the refrigerated sea bream fillets are markedly influenced by treatment and antimicrobials applied.

  10. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  11. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms.

    PubMed

    Techtmann, Stephen M; Zhuang, Mobing; Campo, Pablo; Holder, Edith; Elk, Michael; Hazen, Terry C; Conmy, Robyn; Santo Domingo, Jorge W

    2017-05-15

    To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio , Idiomarina , Marinobacter , Alcanivorax , and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium , Alcanivorax , and Oleispira Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus , known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira , Marinobacter , and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C. IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses

  12. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms

    PubMed Central

    Zhuang, Mobing; Campo, Pablo; Holder, Edith; Elk, Michael; Conmy, Robyn

    2017-01-01

    ABSTRACT To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio, Idiomarina, Marinobacter, Alcanivorax, and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium, Alcanivorax, and Oleispira. Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira, Marinobacter, and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C. IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses

  13. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    PubMed

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Bacterial meningitis in diabetes patients: a population-based prospective study

    PubMed Central

    van Veen, Kiril E. B.; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2016-01-01

    Diabetes mellitus is associated with increased infection rates. We studied clinical features and outcome of community-acquired bacterial meningitis in diabetes patients. Patients were selected from a nationwide, prospective cohort on community-acquired bacterial meningitis performed from March 2006 to October 2014. Data on patient history, symptoms and signs on admission, treatment, and outcome were prospectively collected. A total of 183 of 1447 episodes (13%) occurred in diabetes patients. The incidence of bacterial meningitis in diabetes patients was 3.15 per 100,000 patients per year and the risk of acquiring bacterial meningitis was 2.2-fold higher for diabetes patients. S. pneumoniae was the causative organism in 139 of 183 episodes (76%) and L. monocytogenes in 11 of 183 episodes (6%). Outcome was unfavourable in 82 of 183 episodes (45%) and in 43 of 183 episodes (23%) the patient died. Diabetes was associated with death with an odds ratio of 1.63 (95% CI 1.12–2.37, P = 0.011), which remained after adjusting for known predictors of death in a multivariable analysis (OR 1.98 [95% CI 1.13–3.48], P = 0.017). In conclusion, diabetes is associated with a 2-fold higher risk of acquiring bacterial meningitis. Diabetes is a strong independent risk factor for death in community-acquired adult bacterial meningitis. PMID:27845429

  15. Bacterial meningitis in diabetes patients: a population-based prospective study.

    PubMed

    van Veen, Kiril E B; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-11-15

    Diabetes mellitus is associated with increased infection rates. We studied clinical features and outcome of community-acquired bacterial meningitis in diabetes patients. Patients were selected from a nationwide, prospective cohort on community-acquired bacterial meningitis performed from March 2006 to October 2014. Data on patient history, symptoms and signs on admission, treatment, and outcome were prospectively collected. A total of 183 of 1447 episodes (13%) occurred in diabetes patients. The incidence of bacterial meningitis in diabetes patients was 3.15 per 100,000 patients per year and the risk of acquiring bacterial meningitis was 2.2-fold higher for diabetes patients. S. pneumoniae was the causative organism in 139 of 183 episodes (76%) and L. monocytogenes in 11 of 183 episodes (6%). Outcome was unfavourable in 82 of 183 episodes (45%) and in 43 of 183 episodes (23%) the patient died. Diabetes was associated with death with an odds ratio of 1.63 (95% CI 1.12-2.37, P = 0.011), which remained after adjusting for known predictors of death in a multivariable analysis (OR 1.98 [95% CI 1.13-3.48], P = 0.017). In conclusion, diabetes is associated with a 2-fold higher risk of acquiring bacterial meningitis. Diabetes is a strong independent risk factor for death in community-acquired adult bacterial meningitis.

  16. Weighted ssGBLUP improves genomic selection accuracy for bacterial cold water disease resistance in a rainbow trout population

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare methods for genomic evaluation in a Rainbow Trout (Oncorhynchus mykiss) population for survival when challenged by Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD). The used methods were: 1)regular ssGBLUP that assume...

  17. [Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber].

    PubMed

    Li, Min; Wu, Feng-zhi

    2014-12-01

    Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber (Cucumis sativus) were analyzed by conventional chemical method, PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR methods. Pot experiment was carried out in the greenhouse for three consecutive years with cucumber as the main crop, and scallion (Allium fistulosum), wheat (Triticum aestivum) and oilseed rape (Brassica campestri) as catch crops. Results showed that, with the increase of crop planting times, soil urease, neutral phosphatase and invertase activities in the wheat treatment were significantly) higher than in the scallion and oilseed rape treatments, and these enzyme activities in the oilseed rape treatment were significantly higher than in the scallion treatment. PCR-DGGR analysis showed that cucumber rhizosphere bacterial community structures were different among treatments. Scallion and wheat treatments maintained relatively higher diversity indices of bacterial community structure. qPCR results showed that the abundance of soil bacterial community in the wheat treatment was significantly higher than in the scallion and oilseed rape treatments. In conclusion, different catch treatments affected soil enzyme activities and bacteria community and changed the soil environment. Wheat used as summer catch crop could maintain relatively higher soil enzyme activities, bacterial community diversity and abundance.

  18. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    PubMed

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  19. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    PubMed

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  20. Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification☆

    PubMed Central

    Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.

    2014-01-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

  1. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature.

    PubMed

    Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Tornés, Jesús; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V; Cappello, Simone; Gertler, Christoph; Genovese, María; Denaro, Renata; Martínez-Martínez, Mónica; Fodelianakis, Stilianos; Amer, Ranya A; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N; Golyshina, Olga V; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I; Golyshin, Peter N; Yakimov, Michail M; Daffonchio, Daniele; Ferrer, Manuel

    2015-06-29

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.

  2. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature

    PubMed Central

    Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Tornés, Jesús; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V.; Cappello, Simone; Gertler, Christoph; Genovese, María; Denaro, Renata; Martínez-Martínez, Mónica; Fodelianakis, Stilianos; Amer, Ranya A.; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N.; Golyshina, Olga V.; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R.; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I.; Golyshin, Peter N.; Yakimov, Michail M.; Daffonchio, Daniele; Ferrer, Manuel

    2015-01-01

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills. PMID:26119183

  3. The antimicrobial activity of honey against common equine wound bacterial isolates.

    PubMed

    Carnwath, R; Graham, E M; Reynolds, K; Pollock, P J

    2014-01-01

    Delayed healing associated with distal limb wounds is a particular problem in equine clinical practice. Recent studies in human beings and other species have demonstrated the beneficial wound healing properties of honey, and medical grade honey dressings are available commercially in equine practice. Equine clinicians are reported to source other non-medical grade honeys for the same purpose. This study aimed to assess the antimicrobial activity of a number of honey types against common equine wound bacterial pathogens. Twenty-nine honey products were sourced, including gamma-irradiated and non-irradiated commercial medical grade honeys, supermarket honeys, and honeys from local beekeepers. To exclude contaminated honeys from the project, all honeys were cultured aerobically for evidence of bacterial contamination. Aerobic bacteria or fungi were recovered from 18 products. The antimicrobial activity of the remaining 11 products was assessed against 10 wound bacteria, recovered from the wounds of horses, including methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa. Eight products were effective against all 10 bacterial isolates at concentrations varying from <2% to 16% (v/v). Overall, the Scottish Heather Honey was the best performing product, and inhibited the growth of all 10 bacterial isolates at concentrations ranging from <2% to 6% (v/v). Although Manuka has been the most studied honey to date, other sources may have valuable antimicrobial properties. Since some honeys were found to be contaminated with aerobic bacteria or fungi, non-sterile honeys may not be suitable for wound treatment. Further assessment of gamma-irradiated honeys from the best performing honeys would be useful. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Detrimental effects of commercial zinc oxide and silver nanomaterials on bacterial populations and performance of wastewater systems

    NASA Astrophysics Data System (ADS)

    Mboyi, Anza-vhudziki; Kamika, Ilunga; Momba, MaggyN. B.

    2017-08-01

    The widespread use of commercial nanomaterials (NMs) in consumer products has raised environmental concerns as they can enter and affect the efficiency of the wastewater treatment plants. In this study the effect of various concentrations of zinc oxide NMs (nZnO) and silver NMs (nAg) on the selected wastewater bacterial species (Bacillus licheniformis, Brevibacillus laterosporus and Pseudomonas putida) was ascertained at different pH levels (pH 2, 7 and 10). Lethal concentrations (LC) of NMs and parameters such as chemical oxygen demand (COD) and dissolved oxygen (DO) were taken into consideration to assess the performance of a wastewater batch reactor. Bacterial isolates were susceptible to varying concentrations of both nZnO and nAg at pH 2, 7 and 10. It was found that a change in pH did not significantly affect the toxicity of test NMs towards target bacterial isolates. All bacterial species were significantly inhibited (p < 0.05) in the presence of 0.65 g/L of nZnO and nAg. In contrast, there was no significant difference (p > 0.05) in COD removal in the presence of increasing concentrations of NMs, which resulted in increasing releases of COD. Noticeably, there was no significant difference (p > 0.05) in the decrease in DO uptake in the presence of increasing NM concentrations for all bacterial isolates. The toxic effects of the target NMs on bacterial populations in wastewater may negatively impact the performance of biological treatment processes and may thus affect the efficiency of wastewater treatment plants in producing effluent of high quality.

  5. Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities

    PubMed Central

    Verastegui, Y.; Cheng, J.; Engel, K.; Kolczynski, D.; Mortimer, S.; Lavigne, J.; Montalibet, J.; Romantsov, T.; Hall, M.; McConkey, B. J.; Rose, D. R.; Tomashek, J. J.; Scott, B. R.

    2014-01-01

    ABSTRACT Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. PMID:25028422

  6. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    PubMed Central

    Benskin, Clare McW H; Rhodes, Glenn; Pickup, Roger W; Mainwaring, Mark C; Wilson, Kenneth; Hartley, Ian R

    2015-01-01

    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts. PMID:25750710

  7. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  8. Role of the σ 54 Activator Interacting Domain in Bacterial Transcription Initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, Alexander R.; Wemmer, David E.

    Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ 54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA + ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ 54 are primarily made through anmore » N-terminal σ 54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ 54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ 54 alone. In this paper, we identified a minimal construct of the Aquifex aeolicus σ 54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1–σ 54 AID complex using NMR spectroscopy. We show that the σ 54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Finally, understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ 54 bacterial transcription initiation.« less

  9. Phage Life Cycles Behind Bacterial Biodiversity.

    PubMed

    Olszak, Tomasz; Latka, Agnieszka; Roszniowski, Bartosz; Valvano, Miguel A; Drulis-Kawa, Zuzanna

    2017-11-24

    Bacteriophages (phages or bacterial viruses) are the most abundant biological entities in our planet; their influence reaches far beyond the microorganisms they parasitize. Phages are present in every environment and shape up every bacterial population in both active and passive ways. They participate in the circulation of organic matter and drive the evolution of microorganisms by horizontal gene transfer at unprecedented scales. The mass flow of genetic information in the microbial world influences the biosphere and poses challenges for science and medicine. The genetic flow, however, depends on the fate of the viral DNA injected into the bacterial cell. The archetypal notion of phages only engaging in predatorprey relationships is slowly fading. Because of their varied development cycles, environmental conditions, and the diversity of microorganisms they parasitize, phages form a dense and highly complex web of dependencies, which has important consequences for life on Earth. The sophisticated phage-bacteria interplay includes both aggressive action (bacterial lysis) and "diplomatic negotiations" (prophage domestication). Here, we review the most important mechanisms of interactions between phages and bacteria and their evolutionary consequences influencing their biodiversity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Spatial Distribution of Bacterial Communities and Phenanthrene Degradation in the Rhizosphere of Lolium perenne L.

    PubMed Central

    Corgié, S. C.; Beguiristain, T.; Leyval, C.

    2004-01-01

    Rhizodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is based on the effect of root-produced compounds, known as exudates. These exudates constitute an important and constant carbon source that selects microbial populations in the plant rhizosphere, modifying global as well as specific microbial activities. We conducted an experiment in two-compartment devices to show the selection of bacterial communities by root exudates and phenanthrene as a function of distance to roots. Using direct DNA extraction, PCR amplification, and thermal gradient gel electrophoresis screening, bacterial population profiles were analyzed in parallel to bacterial counts and quantification of phenanthrene biodegradation in three layers (0 to 3, 3 to 6, and 6 to 9 mm from root mat) of unplanted-polluted (phenanthrene), planted-polluted, and planted-unpolluted treatments. Bacterial community differed as a function of the distance to roots, in both the presence and the absence of phenanthrene. In the planted and polluted treatment, biodegradation rates showed a strong gradient with higher values near the roots. In the nonplanted treatment, bacterial communities were comparable in the three layers and phenanthrene biodegradation was high. Surprisingly, no biodegradation was detected in the section of planted polluted treatment farthest from the roots, where the bacterial community structure was similar to those of the nonplanted treatment. We conclude that root exudates and phenanthrene induce modifications of bacterial communities in polluted environments and spatially modify the activity of degrading bacteria. PMID:15184156

  11. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    PubMed Central

    Cabugao, Kristine G.; Timm, Collin M.; Carrell, Alyssa A.; Childs, Joanne; Lu, Tse-Yuan S.; Pelletier, Dale A.; Weston, David J.; Norby, Richard J.

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability (p-value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  12. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest.

    PubMed

    Cabugao, Kristine G; Timm, Collin M; Carrell, Alyssa A; Childs, Joanne; Lu, Tse-Yuan S; Pelletier, Dale A; Weston, David J; Norby, Richard J

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability ( p -value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  13. Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil.

    PubMed

    Zrafi-Nouira, Ines; Guermazi, Sonda; Chouari, Rakia; Safi, Nimer M D; Pelletier, Eric; Bakhrouf, Amina; Saidane-Mosbahi, Dalila; Sghir, Abdelghani

    2009-07-01

    The indigenous microbiota of polluted coastal seawater in Tunisia was enriched by increasing the concentration of zarzatine crude oil. The resulting adapted microbiota was incubated with zarzatine crude oil as the only carbon and energy source. Crude oil biodegradation capacity and bacterial population dynamics of the microbiota were evaluated every week for 28 days (day 7, day 14, day 21, and day 28). Results show that the percentage of petroleum degradation was 23.9, 32.1, 65.3, and 77.8%, respectively. At day 28, non-aromatic and aromatic hydrocarbon degradation rates reached 92.6 and 68.7%, respectively. Bacterial composition of the adapted microflora was analysed by 16S rRNA gene cloning and sequencing, using total genomic DNA extracted from the adapted microflora at days 0, 7, 14, 21, and 28. Five clone libraries were constructed and a total of 430 sequences were generated and grouped into OTUs using the ARB software package. Phylogenetic analysis of the adapted microbiota shows the presence of four phylogenetic groups: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Diversity indices show a clear decrease in bacterial diversity of the adapted microflora according to the incubation time. The Proteobacteria are the most predominant (>80%) at day 7, day 14 and day 21 but not at day 28 for which the microbiota was reduced to only one OTU affiliated with the genus Kocuria of the Actinobacteria. This study shows that the degradation of zarzatine crude oil components depends on the activity of a specialized and dynamic seawater consortium composed of different phylogenetic taxa depending on the substrate complexity.

  14. Instability in bacterial populations and the curvature tensor

    NASA Astrophysics Data System (ADS)

    Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia

    2016-09-01

    In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.

  15. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    PubMed

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Characterization of Halophilic Bacterial Communities in Turda Salt Mine (Romania)

    NASA Astrophysics Data System (ADS)

    Carpa, Rahela; Keul, Anca; Muntean, Vasile; Dobrotă, Cristina

    2014-09-01

    Halophilic organisms are having adaptations to extreme salinity, the majority of them being Archaean, which have the ability to grow at extremely high salt concentrations, (from 3 % to 35 %). Level of salinity causes natural fluctuations in the halophilic populations that inhabit this particular habitat, raising problems in maintaining homeostasis of the osmotic pressure. Samples such as salt and water taken from Turda Salt Mine were analyzed in order to identify the eco-physiological bacterial groups. Considering the number of bacteria of each eco-physiological group, the bacterial indicators of salt quality (BISQ) were calculated and studied for each sample. The phosphatase, catalase and dehydrogenases enzymatic activities were quantitatively determined and the enzymatic indicators of salt quality (EISQ) were calculated. Bacterial isolates were analyzed using 16S rRNA gene sequence analysis. Universal bacterial primers, targeting the consensus region of the bacterial 16S rRNA gene were used. Analysis of a large fragment, of 1499 bp was performed to improve discrimination at the species level.

  17. Biological consequences and advantages of asymmetric bacterial growth.

    PubMed

    Kysela, David T; Brown, Pamela J B; Huang, Kerwyn Casey; Brun, Yves V

    2013-01-01

    Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.

  18. REVERSIBLE ACTIVATION FOR GERMINATION AND SUBSEQUENT CHANGES IN BACTERIAL SPORES1

    PubMed Central

    Lee, W. H.; Ordal, Z. John

    1963-01-01

    Lee, W. H. (University of Illinois, Urbana) and Z. John Ordal. Reversible activation for germination and subsequent changes in bacterial spores. J. Bacteriol. 85:207–217. 1963.—It was possible to isolate refractile spores of Bacillus megaterium, from a calcium dipicolinate germination solution, that were activated and would germinate spontaneously in distilled water. Some of the characteristics of the initial phases of bacterial spore germination were determined by studying these unstable activated spores. Activated spores of B. megaterium were resistant to stains and possessed a heat resistance intermediate between that of dormant and of germinated spores. The spontaneous germination of activated spores was inhibited by copper, iron, silver, or mercury salts, saturated o-phenanthroline, or solutions having a low pH value, but not by many common inhibitors. These inhibitions could be partially or completely reversed by the addition of sodium dipicolinate. The activated spores could be deactivated and made similar to dormant spores by treatment with acid. Analyses of the exudates from the variously treated spore suspensions revealed that whatever inhibited the germination of activated spores also inhibited the release of spore material. The composition of the germination exudates was different than that of extracts of dormant spores. Although heavy suspensions of activated spores gradually became swollen and dark when suspended in solutions of o-phenanthroline or at pH 4, the materials released resembled those found in extracts of dormant spores rather than those of normal germination exudates. Images PMID:16561987

  19. Detection of bacterial-reactive natural IgM antibodies in desert bighorn sheep populations

    PubMed Central

    Palmer, Amy L.; Zielke, Ryszard A.; Sikora, Aleksandra E.; Beechler, Brianna R.; Jolles, Anna E.; Epps, Clinton W.

    2017-01-01

    Ecoimmunology is a burgeoning field of ecology which studies immune responses in wildlife by utilizing general immune assays such as the detection of natural antibody. Unlike adaptive antibodies, natural antibodies are important in innate immune responses and often recognized conserved epitopes present in pathogens. Here, we describe a procedure for measuring natural antibodies reactive to bacterial antigens that may be applicable to a variety of organisms. IgM from desert bighorn sheep plasma samples was tested for reactivity to outer membrane proteins from Vibrio coralliilyticus, a marine bacterium to which sheep would have not been exposed. Immunoblotting demonstrated bighorn sheep IgM could bind to a variety of bacterial cell envelope proteins while ELISA analysis allowed for rapid determination of natural antibody levels in hundreds of individual animals. Natural antibody levels were correlated with the ability of plasma to kill laboratory strains of E. coli bacteria. Finally, we demonstrate that natural antibody levels varied in two distinct populations of desert bighorn sheep. These data demonstrate a novel and specific measure of natural antibody function and show that this varies in ecologically relevant ways. PMID:28662203

  20. Bacterial components are the major contributors to the macrophage stimulating activity exhibited by extracts of common edible mushrooms.

    PubMed

    Tyler, Heather L; Haron, Mona H; Pugh, Nirmal D; Zhang, Jin; Jackson, Colin R; Pasco, David S

    2016-10-12

    Recent studies have indicated that a major contributor to the innate immune enhancing properties of some medicinal plants is derived from the cell wall components of bacteria colonizing these plants. The purpose of the current study was to assess if the bacteria present within edible and medicinal mushrooms substantially contribute to the innate immune stimulating potential of these mushrooms. Whole mushrooms from thirteen types of edible fungi and individual parts from Agaricus bisporus were analyzed for in vitro macrophage activation as well as bacterial lipopolysaccharides (LPS) content, cell load, and community composition. Substantial variation between samples was observed in macrophage activation (over 500-fold), total bacterial load (over 200-fold), and LPS content (over 10 million-fold). Both LPS content (ρ = 0.832, p < 0.0001) and total bacterial load (ρ = 0.701, p < 0.0001) correlated significantly with macrophage activation in the whole mushroom extracts. Extract activity was negated by treatment with NaOH, conditions that inactivate LPS and other bacterial components. Significant correlations between macrophage activation and total bacterial load (ρ = 0.723, p = 0.0001) and LPS content (ρ = 0.951, p < 0.0001) were also observed between different tissues of Agaricus bisporus. Pseudomonas and Flavobacterium were the most prevalent genera identified in the different tissue parts and these taxa were significantly correlated with in vitro macrophage activation (ρ = 0.697, p < 0.0001 and ρ = 0.659, p = 0.0001, respectively). These results indicate that components derived from mushroom associated bacteria contribute substantially to the innate immune enhancing activity exhibited by mushrooms and may result in similar therapeutic actions as reported for ingestion of bacterial preparations such as probiotics.

  1. Soil-Borne Bacterial Structure and Diversity Does Not Reflect Community Activity in Pampa Biome

    PubMed Central

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world’s biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated. PMID:24146873

  2. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.

    PubMed

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.

  3. Bacterial and archaeal symbionts in the South China Sea sponge Phakellia fusca: community structure, relative abundance, and ammonia-oxidizing populations.

    PubMed

    Han, Minqi; Liu, Fang; Zhang, Fengli; Li, Zhiyong; Lin, Houwen

    2012-12-01

    Many biologically active natural products have been isolated from Phakellia fusca, an indigenous sponge in the South China Sea; however, the microbial symbionts of Phakellia fusca remain unknown. The present investigations on sponge microbial community are mainly based on qualitative analysis, while quantitative analysis, e.g., relative abundance, is rarely carried out, and little is known about the roles of microbial symbionts. In this study, the community structure and relative abundance of bacteria, actinobacteria, and archaea associated with Phakellia fusca were revealed by 16S rRNA gene library-based sequencing and quantitative real time PCR (qRT-PCR). The ammonia-oxidizing populations were investigated based on amoA gene and anammox-specific 16S rRNA gene libraries. As a result, it was found that bacterial symbionts of sponge Phakellia fusca consist of Proteobacteria including Gamma-, Alpha-, and Delta-proteobacteria, Cyanobacteria with Gamma-proteobacteria as the predominant components. In particular, the diversity of actinobacterial symbionts in Phakellia fusca is high, which is composed of Corynebacterineae, Acidimicrobidae, Frankineae, Micrococcineae, and Streptosporangineae. All the observed archaea in sponge Phakellia fusca belong to Crenarchaeota, and the detected ammonia-oxidizing populations are ammonia-oxidizing archaea, suggesting the nitrification function of sponge archaeal symbionts. According to qRT-PCR analysis, bacterial symbionts dominated the microbial community, while archaea represented the second predominant symbionts, followed by actinobacteria. The revealed diverse prokaryotic symbionts of Phakellia fusca are valuable for the understanding and in-depth utilization of Phakellia fusca microbial symbionts. This study extends our knowledge of the community, especially the relative abundance of microbial symbionts in sponges.

  4. Influence of milk processing temperature on growth performance, nitrogen retention, and hindgut's inflammatory status and bacterial populations in a calf model.

    PubMed

    Bach, Alex; Aris, Anna; Vidal, Maria; Fàbregas, Francesc; Terré, Marta

    2017-08-01

    This research communication describes a study aimed at evaluating the effects of heat treatment of milk on growth performance, N retention, and hindgut's inflammatory status and bacterial populations using young dairy calves as a model. Twenty-one Holstein calves were randomly allocated to one of three treatments: raw milk (RM), pasteurised milk (PAST), or UHT milk (UHT). Calves were submitted to a N balance study, and a biopsy from the distal colon and a faecal sample were obtained from 5 animals per treatment to determine expression of several genes and potential changes in the hindgut's bacterial population. Milk furosine content was 33-fold greater in UHT than in RM and PAST milks. Calves receiving RM grew more than those fed UHT, and urinary N excretion was greatest in calves fed UHT. Quantification of Lactobacillus was lower in calves consuming PAST or UHT, and Gram negative bacteria were greater in UHT than in PAST calves. The expression of IL-8 in the hindgut's mucosa was lowest and that of IL-10 tended to be lowest in RM calves, and expression of claudin-4 tended to be greatest in UHT calves. In conclusion, the nutritional value of UHT-treated milk may be hampered because it compromises growth and increases N excretion in young calves and may have deleterious effects on the gut's bacterial population and inflammation status.

  5. Diversity of Hindgut Bacterial Population in Subterranean Termite, Reticulitermes flavipes

    Treesearch

    Olanrewaju Raji; Dragica Jeremic-Nikolic; Juliet D. Tang

    2017-01-01

    The termite hindgut contains a bacterial community that symbiotically aids in digestion of cellulosic materials. For this paper, a species survey of bacterial hindgut symbionts in termites collected from Saucier, Mississippi was examined. Two methods were tested for optimal genetic material isolation. Genomic DNA was isolated from the hindgut luminal contents of five...

  6. Bioprospecting saline gradient of a Wildlife Sanctuary for bacterial diversity and antimicrobial activities.

    PubMed

    DeLuca, Mara; King, Riley; Morsy, Mustafa

    2017-08-11

    Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.

  7. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration

    PubMed Central

    Banerjee, Anirban; Kim, Brandon J.; Carmona, Ellese M.; Cutting, Andrew S.; Gurney, Michael A.; Carlos, Chris; Feuer, Ralph; Prasadarao, Nemani V.; Doran, Kelly S.

    2011-01-01

    Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the α2β1 integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS–BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS. PMID:21897373

  8. MULTISCALE MODELS OF TAXIS-DRIVEN PATTERNING IN BACTERIAL POPULATIONS

    PubMed Central

    XUE, CHUAN; OTHMER, HANS G.

    2009-01-01

    Spatially-distributed populations of various types of bacteria often display intricate spatial patterns that are thought to result from the cellular response to gradients of nutrients or other attractants. In the past decade a great deal has been learned about signal transduction, metabolism and movement in E. coli and other bacteria, but translating the individual-level behavior into population-level dynamics is still a challenging problem. However, this is a necessary step because it is computationally impractical to use a strictly cell-based model to understand patterning in growing populations, since the total number of cells may reach 1012 - 1014 in some experiments. In the past phenomenological equations such as the Patlak-Keller-Segel equations have been used in modeling the cell movement that is involved in the formation of such patterns, but the question remains as to how the microscopic behavior can be correctly described by a macroscopic equation. Significant progress has been made for bacterial species that employ a “run-and-tumble” strategy of movement, in that macroscopic equations based on simplified schemes for signal transduction and turning behavior have been derived [14, 15]. Here we extend previous work in a number of directions: (i) we allow for time-dependent signals, which extends the applicability of the equations to natural environments, (ii) we use a more general turning rate function that better describes the biological behavior, and (iii) we incorporate the effect of hydrodynamic forces that arise when cells swim in close proximity to a surface. We also develop a new approach to solving the moment equations derived from the transport equation that does not involve closure assumptions. Numerical examples show that the solution of the lowest-order macroscopic equation agrees well with the solution obtained from a Monte Carlo simulation of cell movement under a variety of temporal protocols for the signal. We also apply the method to

  9. The Effects of a Probiotic Yeast on the Bacterial Diversity and Population Structure in the Rumen of Cattle

    PubMed Central

    Pinloche, Eric; McEwan, Neil; Marden, Jean-Philippe; Bayourthe, Corinne; Auclair, Eric; Newbold, C. Jamie

    2013-01-01

    It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d) of corn silage (61% of DM), concentrates (30% of DM), dehydrated alfalfa (9% of DM) and a minerals and vitamins mix (1% of DM). The effect of yeast (BIOSAF SC 47, Lesaffre Feed Additives, France; 0.5 or 5 g/d) was compared to a control (no additive) in a 3×3 Latin square design. The variation in the rumen bacterial community between treatments was assessed using Serial Analysis of V1 Ribosomal Sequence Tag (SARST-V1) and 454 pyrosequencing based on analysis of the 16S rRNA gene. Compared to the control diet supplementation of probiotic yeast maintained a healthy fermentation in the rumen of lactating cattle (higher VFA concentration [high yeast dose only], higher rumen pH, and lower Eh and lactate). These improvements were accompanied with a shift in the main fibrolytic group (Fibrobacter and Ruminococcus) and lactate utilising bacteria (Megasphaera and Selenomonas). In addition we have shown that the analysis of short V1 region of 16s rRNA gene (50–60 bp) could give as much phylogenetic information as a longer read (454 pyrosequencing of 250 bp). This study also highlights the difficulty of drawing conclusions on composition and diversity of complex microbiota because of the variation caused by the use of different methods (sequencing technology and/or analysis). PMID:23844101

  10. Bacterial Community Composition and Extracellular Enzyme Activity in Temperate Streambed Sediment during Drying and Rewetting

    PubMed Central

    Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen

    2013-01-01

    Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after

  11. INFLUENCE OF ROOT EXUDATES AND BACTERIAL METABOLIC ACTIVITY ON APPARENT CONJUGAL GENE TRANSFER FREQUENCIES IN THE RHIZOSPHERE OF WATER GRASS (ECHINOCLORA CRUSGALLI)

    EPA Science Inventory

    The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...

  12. Identification of Bacterial Populations in Drinking Water Using 16S rRNA-Based Sequence Analyses

    EPA Science Inventory

    Intracellular RNA is rapidly degraded in stressed cells and is more unstable outside of the cell than DNA. As a result, RNA-based methods have been suggested to study the active microbial fraction in environmental matrices. The aim of this study was to identify bacterial populati...

  13. HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection.

    PubMed

    Li, Chunxiao; Wang, Yu; Li, Yan; Yu, Qing; Jin, Xi; Wang, Xiao; Jia, Anna; Hu, Ying; Han, Linian; Wang, Jian; Yang, Hui; Yan, Dapeng; Bi, Yujing; Liu, Guangwei

    2018-02-26

    Macrophages are important innate immune defense system cells in the fight against bacterial and fungal pathogenic infections. They exhibit significant plasticity, particularly with their ability to undergo functional differentiation. Additionally, HIF1α is critically involved in the functional differentiation of macrophages during inflammation. However, the role of macrophage HIF1α in protecting against different pathogenic infections remains unclear. In this study, we investigated and compared the roles of HIF1α in different macrophage functional effects of bacterial and fungal infections in vitro and in vivo. We found that bacterial and fungal infections produced similar effects on macrophage functional differentiation. HIF1α deficiency inhibited pro-inflammatory macrophage functional activities when cells were stimulated with LPS or curdlan in vitro or when mice were infected with L. monocytogenes or C. albicans in vivo, thus decreasing pro-inflammatory TNFα and IL-6 secretion associated with pathogenic microorganism survival. Alteration of glycolytic pathway activation was required for the functional differentiation of pro-inflammatory macrophages in protecting against bacterial and fungal infections. Thus, the HIF1α-dependent glycolytic pathway is essential for pro-inflammatory macrophage functional differentiation in protecting against bacterial and fungal infections.

  14. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities.

    PubMed

    Martínez, M E; Ranilla, M J; Tejido, M L; Saro, C; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of dietary characteristics on microbial populations and bacterial diversity. The purpose of the study was to assess how closely fermenters can mimic the differences between diets found in vivo. The 4 experimental diets contained forage to concentrate (F:C) ratios of 70:30 (high forage; HF) or 30:70 (high concentrate; HC) with either alfalfa hay (A) or grass hay (G) as the forage. Total bacterial numbers were greater in the rumen of sheep fed HF diets compared with those fed HC diets, whereas the opposite was found in fermenters. The numbers of cellulolytic bacteria were not affected by F:C ratio in any fermentation system, but cellulolytic numbers were 2.7 and 1.8 times greater in sheep than in fermenters for HF and HC diets, respectively. Neither total bacterial nor cellulolytic numbers were affected by the type of forage in sheep or fermenters. Decreasing F:C ratio increased total protozoa and Entodiniae numbers in sheep by about 29 and 25%, respectively, but it had no effect in fermenters. Isotrichidae and Ophryoscolecinae numbers in sheep were not affected by changing F:C ratio, but both disappeared completely from fermenters fed HC diets. Total protozoa and Entodiniae numbers were greater in sheep fed A diets than in those fed G diets, whereas the opposite was found in fermenters. Results indicate that under the conditions of the present study, protozoa population in Rusitec fermenters was not representative of that in the rumen of sheep fed the same diets. In addition, protozoa numbers in fermenters were 121 and 226 times lower than those in the sheep rumen for HF and HC diets, respectively. The automated ribosomal intergenic spacer analysis of the 16S ribosomal DNA was used to analyze the diversity of liquid- and solid-associated bacteria in both systems. A total of 170 peaks were detected in the automated ribosomal intergenic spacer analysis

  15. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    PubMed

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  16. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  17. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  18. Enhancement of Population Size of a Biological Control Agent and Efficacy in Control of Bacterial Speck of Tomato through Salicylate and Ammonium Sulfate Amendments

    PubMed Central

    Ji, Pingsheng; Wilson, Mark

    2003-01-01

    Sodium salicylate and ammonium sulfate were applied to leaf surfaces along with suspensions of the biological control agents Pseudomonas syringae Cit7(pNAH7), which catabolizes salicylate, and Cit7, which does not catabolize salicylate, to determine whether enhanced biological control of bacterial speck of tomato could be achieved. Foliar amendment with salicylate alone significantly enhanced the population size and the efficacy of Cit7(pNAH7), but not of Cit7, on tomato leaves. Application of ammonium sulfate alone did not result in enhanced population size or biological control efficacy of either Cit7(pNAH7) or Cit7; however, when foliar amendments with both sodium salicylate and ammonium sulfate were applied, a trend toward further increases in population size and biological control efficacy of Cit7(pNAH7) was observed. This study demonstrates the potential of using a selective carbon source to improve the efficacy of a bacterial biological control agent in the control of a bacterial plant disease and supports previous conclusions that the growth of P. syringae in the phyllosphere is primarily carbon limited and secondarily nitrogen limited. PMID:12571060

  19. Host Biomarkers for Distinguishing Bacterial from Non-Bacterial Causes of Acute Febrile Illness: A Comprehensive Review

    PubMed Central

    Kapasi, Anokhi J.; Dittrich, Sabine; González, Iveth J.; Rodwell, Timothy C.

    2016-01-01

    Background In resource limited settings acute febrile illnesses are often treated empirically due to a lack of reliable, rapid point-of-care diagnostics. This contributes to the indiscriminate use of antimicrobial drugs and poor treatment outcomes. The aim of this comprehensive review was to summarize the diagnostic performance of host biomarkers capable of differentiating bacterial from non-bacterial infections to guide the use of antibiotics. Methods Online databases of published literature were searched from January 2010 through April 2015. English language studies that evaluated the performance of one or more host biomarker in differentiating bacterial from non-bacterial infection in patients were included. Key information extracted included author information, study methods, population, pathogens, clinical information, and biomarker performance data. Study quality was assessed using a combination of validated criteria from the QUADAS and Lijmer checklists. Biomarkers were categorized as hematologic factors, inflammatory molecules, cytokines, cell surface or metabolic markers, other host biomarkers, host transcripts, clinical biometrics, and combinations of markers. Findings Of the 193 citations identified, 59 studies that evaluated over 112 host biomarkers were selected. Most studies involved patient populations from high-income countries, while 19% involved populations from low- and middle-income countries. The most frequently evaluated host biomarkers were C-reactive protein (61%), white blood cell count (44%) and procalcitonin (34%). Study quality scores ranged from 23.1% to 92.3%. There were 9 high performance host biomarkers or combinations, with sensitivity and specificity of ≥85% or either sensitivity or specificity was reported to be 100%. Five host biomarkers were considered weak markers as they lacked statistically significant performance in discriminating between bacterial and non-bacterial infections. Discussion This manuscript provides a summary

  20. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors.

    PubMed

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2012-03-01

    A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.

  1. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    PubMed Central

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  2. Bacterial Profile of Dentine Caries and the Impact of pH on Bacterial Population Diversity

    PubMed Central

    Kianoush, Nima; Adler, Christina J.; Nguyen, Ky-Anh T.; Browne, Gina V.; Simonian, Mary; Hunter, Neil

    2014-01-01

    Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies. PMID:24675997

  3. Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants.

    PubMed

    Haidar, Badrul; Ferdous, Mahbuba; Fatema, Babry; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul; Khan, Haseena

    2018-03-01

    Endophytes are bacterial or fungal organisms associated with plants in an obligate or facultative manner. In order to maintain a stable symbiosis, many of the endophytes produce compounds that promote plant growth and help them adapt better to the environment. This study was conducted to explore the potential of jute bacterial endophytes for their growth promotion ability in direct and indirect ways. A total of 27 different bacterial species were identified from different varieties of a jute plant (Corchorus olitorius) and different parts of the plant (leaf, root, seed, and seedling) based on 16S rRNA gene sequence. Two of the isolates showed ACC deaminase activity with Staphylococcus pasteuri strain MBL_B3 and Ralstonia solanacearum strain MBL_B6 producing 18.1 and 8.08 μM mg -1  h -1 α-ketobutyrate respectively while eighteen had the ACC deaminase gene (acdS). Fourteen were positive for siderophore activity while Kocuria sp. strain MBL_B19 (133.36 μg/ml) and Bacillus sp. strain MBL_B17 (124.72 μg/ml) showed high IAA production ability. Seven bacterial strains were able to fix nitrogen with only one testing positive for nifH gene. Five isolates exhibited phosphorus utilization ability with Bacillus sp. strain MBL_B17 producing 218.47 μg P/ml. Three bacteria were able to inhibit the growth of a phytopathogen, Macrophomina phaseolina and among them Bacillus subtilis strain MBL_B4 was found to be the most effective, having 82% and 53% of relative inhibition ratio (RIR) and percent growth inhibition (PGI) values respectively. Nine bacteria were tested for their in vivo growth promotion ability and most of these isolates increased seed germination potential and vigour index significantly. Bacillus subtilis strain MBL_B13 showed 26.8% more vigour index than the control in which no bacterial inoculum was used. All inoculants were found to increase the dry weight of jute seedlings in comparison to the control plants and the most increase in fresh weight

  4. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis.

    PubMed

    Kumar, Ajay; Giri, Shailendra; Kumar, Ashok

    2016-12-01

    The retina is considered to be the most metabolically active tissue in the body. However, the link between energy metabolism and retinal inflammation, as incited by microbial infection such as endophthalmitis, remains unexplored. In this study, using a mouse model of Staphylococcus aureus (SA) endophthalmitis, we demonstrate that the activity (phosphorylation) of 5' adenosine monophosphate-activated protein kinase alpha (AMPKα), a cellular energy sensor and its endogenous substrate; acetyl-CoA carboxylase is down-regulated in the SA-infected retina. Intravitreal administration of an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), restored AMPKα and acetyl-CoA carboxylase phosphorylation. AICAR treatment reduced both the bacterial burden and intraocular inflammation in SA-infected eyes by inhibiting NF-kB and MAP kinases (p38 and JNK) signalling. The anti-inflammatory effects of AICAR were diminished in eyes pretreated with AMPK inhibitor, Compound C. The bioenergetics (Seahorse) analysis of SA-infected microglia and bone marrow-derived macrophages revealed an increase in glycolysis, which was reinstated by AICAR treatment. AICAR also reduced the expression of SA-induced glycolytic genes, including hexokinase 2 and glucose transporter 1 in microglia, bone marrow-derived macrophages and the mouse retina. Interestingly, AICAR treatment enhanced the bacterial phagocytic and intracellular killing activities of cultured microglia, macrophages and neutrophils. Furthermore, AMPKα1 global knockout mice exhibited increased susceptibility towards SA endophthalmitis, as evidenced by increased inflammatory mediators and bacterial burden and reduced retinal function. Together, these findings provide the first evidence that AMPK activation promotes retinal innate defence in endophthalmitis by modulating energy metabolism and that it can be targeted therapeutically to treat ocular infections. © 2016 John Wiley & Sons Ltd.

  5. Impacts of cerium oxide nanoparticles on bacterial community in activated sludge.

    PubMed

    Kamika, I; Tekere, M

    2017-12-01

    Rapidly developing industry raises concerns about the environmental impacts of nanoparticles, but the effects of inorganic nanoparticles on bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium oxide nanoparticles (nCeO) on the microbiome of activated sludge system. The results showed that 18,330 over 28,201 reads generated from control samples were assigned to Proteobacteria while 5527 reads (19.6%), 3260 reads (11.567%), and 719 reads (2.55%) were assigned to unclassified_Bacteria, Firmicutes and Actinobacteria, respectively. When stressed with nCeO 2 NPs, a decrease on reads was noted with 53, 48, 27.7 and 24% assigned to Proteobacteria. Gammaproteobacteria (80.57%) was found to be the most predominant Proteobacteria. The impact of nCeO 2 NPs was also observed on pollutants removal as only 1.83 and 35.15% of phosphate and nitrate could be removed in the bioreactor stressed with 40 mg-nCeO 2 -NPs/L. This was confirmed by a drastic reduction of activities for enzymes catalysing denitrification (NaR and NiR) and degradation of polyphosphate (ADK and PPK). ADK appeared to be the most affected enzyme with activity decrease reaching over 90% when stressed with 10 mg-nCeO 2 /L. Furthermore, bacterial diversity was not significantly different whereas their species richness showed significant difference between control and treated samples. A large number of reads from control samples could not be classified down to the lower taxonomic level "genera" suggesting hitherto vast untapped microbial diversity. The denitrification related genera including Trichococcus and Acinetobacter were found to alternatively dominating treated samples highlighting those nCeO 2 NPs could enhance the growth of some bacterial species while inhibiting those of others. Nevertheless, the study indicates that nCeO 2 NPs in wastewater at very high concentrations may have some adverse effects on activated sludge process as they inhibit the

  6. Molecular characterization of total and metabolically active bacterial communities of "white colonizations" in the Altamira Cave, Spain.

    PubMed

    Portillo, M Carmen; Saiz-Jimenez, Cesareo; Gonzalez, Juan M

    2009-01-01

    Caves with paleolithic paintings are influenced by bacterial development. Altamira Cave (Spain) contains some of the most famous paintings from the Paleolithic era. An assessment of the composition of bacterial communities that have colonized this cave represents a first step in understanding and potentially controlling their proliferation. In this study, areas showing colonization with uncolored microorganisms, referred to as "white colonizations", were analyzed. Microorganisms present in these colonizations were studied using DNA analysis, and those showing significant metabolic activity were detected in RNA-based RNA analysis. Bacterial community fingerprints were obtained both from DNA and RNA analyses, indicating differences between the microorganisms present and metabolically active in these white colonizations. Metabolically active microorganisms represented only a fraction of the total bacterial community present in the colonizations. 16S rRNA gene libraries were used to identify the major representative members of the studied communities. Proteobacteria constituted the most frequently found division both among metabolically active microorganisms (from RNA-based analysis) and those present in the community (from DNA analysis). Results suggest the existence of a huge variety of taxa in white colonizations of the Altamira Cave which represent a potential risk for the conservation of the cave and its paintings.

  7. The impact of zinc oxide nanoparticles on the bacterial microbiome of activated sludge systems

    NASA Astrophysics Data System (ADS)

    Meli, K.; Kamika, I.; Keshri, J.; Momba, M. N. B.

    2016-12-01

    The expected growth in nanomaterial applications could result in increased amounts of nanoparticles entering municipal sewer systems, eventually ending up in wastewater treatment plants and therefore negatively affecting microbial populations and biological nutrient removal. The aim of this study was to ascertain the impact of zinc oxide nanoparticles (nZnO) on the bacterial microbiome of an activated sludge system. A metagenomic approach combined with the latest generation Illumina MiSeq platform and RDP pipeline tools were used to identify and classify the bacterial microbiome of the sludge. Results revealed a drastic decrease in the number of operational taxonomic units (OTUs) from 27 737 recovered in the nZnO-free sample to 23 743, 17 733, and 13 324 OTUs in wastewater samples exposed to various concentrations of nZnO (5, 10 and 100 mg/L nZnO, respectively). These represented 12 phyla, 21 classes, 30 orders, 54 families and 51 genera, completely identified at each taxonomic level in the control samples; 7-15-25-28-20 for wastewater samples exposed to 5 mg/L nZnO; 9-15-24-31-23 for those exposed to 10 mg/L and 7-11-19-26-17 for those exposed 100 mg/L nZnO. A large number of sequences could not be assigned to specific taxa, suggesting a possibility of novel species to be discovered.

  8. Distribution of bacterial biomass and activity in the marginal ice zone of the central Barents Sea during summer

    NASA Astrophysics Data System (ADS)

    Howard-Jones, M. H.; Ballard, V. D.; Allen, A. E.; Frischer, M. E.; Verity, P. G.

    2002-12-01

    The purpose of this study was to determine bacterioplankton abundance and activity in the Barents Sea using the novel modified vital stain and probe (mVSP) method. The mVSP is a protocol that combines DAPI and propidium iodide staining with 16S rRNA eubacterial-specific oligonucleotide probes to determine the physiological status of individual microbial cells. Bacterial abundance and metabolic activity were measured in near-surface waters and with depth at stations in the central Barents Sea during a cruise in June/July 1999. Viral abundance was also determined for 19 transect stations and at depth (2-200 m) for five intensive 24-h stations. In general, bacterial and viral abundances varied across the transect, but showed peaks of abundance (6×10 9 cells l -1, 9×10 9 viruses l -1) in Polar Front water masses. Viruses were abundant in seawater and exceeded bacterial abundance. Metabolic activity was determined for individual cells using 16S rRNA eubacterial-specific oligonucleotide probes, and for the total community with 3H-leucine incorporation. Activity measured by oligonucleotide probes increased from south to north. The fraction of cells that were active was lowest in the southern Barents Sea (20%) and highest in the Polar Front (53%). The proportion of cells at the 24-h stations that were determined to be active decreased with depth, but not with distance from ice cover. Leucine incorporation rates varied significantly and did not always correlate with probe measurements. The proportion of total cells that had compromised membranes and were therefore considered dead remained relatively constant (<10%) across the transect. The percent of dead cells in the near surface waters and at depth were statistically similar. The percent dead cells made up only a small fraction of the total population at the 24-h stations. The largest and most variable fraction of cells were those classified as low activity (25-80%), which supports the hypothesis that a significant

  9. Effect of dietary probiotic, prebiotic and synbiotic supplementation on performance, immune responses, intestinal morphology and bacterial populations in broilers.

    PubMed

    Salehimanesh, A; Mohammadi, M; Roostaei-Ali Mehr, M

    2016-08-01

    This study was conducted to investigate the effects of probiotic (Primalac), prebiotic (TechnoMos) and synbiotic (Primalac + TechnoMos) supplementation on performance, immune responses, intestinal morphology and bacterial populations of ileum in broilers. A total of 240 one-day-old broiler chicks were randomly divided into four treatment groups which included 60 birds. Control group did not receive any treatment. The chicks in the second, third and fourth groups were fed probiotic (0.9 g/kg), prebiotic (0.9 g/kg) and probiotic (0.9 g/kg) plus probiotic (0.9 g/kg; synbiotic), respectively, at entire period. Daily feed intake, daily weight gain and feed conversion ratio were evaluated. The birds were immunized by sheep red blood cell (SRBC) on days 12 and 29 of age and serum antibody titres were measured on days 28, 35 and 42. Newcastle vaccines administered on days 9, 18 and 27 to chicks and blood samples were collected on day 42. Intestinal morphometric assessment and enumeration of intestinal bacterial populations were performed on day 42. The results indicated that consumption of probiotic, prebiotic and synbiotic had no significant effect on daily feed intake, daily body weight gain, feed conversion ratio, carcass traits, intestinal morphology and bacterial populations of ileum (p > 0.05). Consumption of prebiotic increased total and IgM anti-SRBC titres on days 28 and 42 and antibody titre against Newcastle virus disease on day 42 (p < 0.05). Synbiotic increased only total anti-SRBC on day 28 (p < 0.05). It is concluded that consumption of prebiotic increased humoral immunity in broilers. Therefore, supplementation of diet with prebiotic for improvement of humoral immune responses is superior to synbiotic supplementation. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  10. SIMPLAS: A Simulation of Bacterial Plasmid Maintenance.

    ERIC Educational Resources Information Center

    Dunn, A.; And Others

    1988-01-01

    This article describes a computer simulation of bacterial physiology during growth in a chemostat. The program was designed to help students to appreciate and understand the related effects of parameters which influence plasmid persistence in bacterial populations. (CW)

  11. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community.

    PubMed

    Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis

    2017-10-01

    Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.

  12. Population Education. Awareness Activities.

    ERIC Educational Resources Information Center

    Brouse, Deborah E.

    1990-01-01

    Described are awareness activities that deal with human population growth, resources, and the environment. Activities include simulations, mathematical exercises, and discussions of the topic. Specific examples of what individuals can do to help are listed. (KR)

  13. Propionibacterium acnes Bacteriophages Display Limited Genetic Diversity and Broad Killing Activity against Bacterial Skin Isolates

    PubMed Central

    Marinelli, Laura J.; Fitz-Gibbon, Sorel; Hayes, Clarmyra; Bowman, Charles; Inkeles, Megan; Loncaric, Anya; Russell, Daniel A.; Jacobs-Sera, Deborah; Cokus, Shawn; Pellegrini, Matteo; Kim, Jenny; Miller, Jeff F.; Hatfull, Graham F.; Modlin, Robert L.

    2012-01-01

    ABSTRACT Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. PMID:23015740

  14. An EPA pilot study characterizing fungal and bacterial ...

    EPA Pesticide Factsheets

    The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: homes with flooding events and non-flooded homes. Dust and air samples from indoors and outdoors will be collected at all homes participating in the study. The characterization of fungal and bacterial populations from the dust and air samples will be done using culture-independent molecular technologies and conventional volumetric microbiological methods. This study will attempt to address the following environmental questions: (1) how do flooding events impact the types of fungal and bacterial populations inside affected homes? (2) are there any differences in the absolute abundances of fungi and bacteria in flooded relative to non-flooded homes? and (3) if there are noticeable effects of flooding on the fungal and bacterial composition and/or abundance, can the effects of flooding be correlated with other environmental variables such as % relative humidity, air exchange rate and temperature inside the homes? The proposed study has selected the Martin Peña Channel (MPC) urban community located within the San Juan National Estuary in the northeastern region of the island as a case study to advance the research into indoor air quality improvement at MPC residences with flooding events. T

  15. Similar effects of QTL Haplotypes for Bacterial Cold Water Disease resistance across two generations in a commercial rainbow trout breeding population

    USDA-ARS?s Scientific Manuscript database

    Previously we have demonstrated that genomic selection (GS) for bacterial cold water disease (BCWD) resistance can double the accuracy of traditional pedigree-based selection in a commercial rainbow trout breeding population. The objective of this study was to evaluate the effectiveness of marker ...

  16. Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity.

    PubMed

    Batta, Neha; Subudhi, Sanjukta; Lal, Banwari; Devi, Arundhuti

    2013-11-01

    Lead is one of the four heavy metals that has a profound damaging effects on human health. In the recent past there has been an increasing global concern for development of sustainable bioremediation technologies for detoxification of lead contaminant. Present investigation highlights for lead biosorption by a newly isolated novel bacterial species; Achromobacter sp. TL-3 strain, isolated from activated sludge samples contaminated with heavy metals (collected from oil refinery, Assam, North-East India). For isolation of lead tolerant bacteria, sludge samples were enriched into Luria Broth medium supplemented separately with a range of lead nitrate; 250, 500, 750, 1000, 1250 and 1500 ppm respectively. The bacterial consortium that could tolerate 1500 ppm of lead nitrate was selected further for purification of lead tolerant bacterial isolates. Purified lead tolerant bacterial isolates were then eventually inoculated into production medium supplemented with ethanol and glycerol as carbon and energy source to investigate for bioflocculant production. Bioflocculant production was estimated by monitoring the potential of lead tolerant bacterial isolate to flocculate Kaolin clay in presence of 1% CaCl2. Compared to other isolates, TL-3 isolate demonstrated for maximum bioflocculant activity of 95% and thus was identified based on 16S rRNA gene sequence analysis. TL3 isolate revealed maximum homology (98%) with Achromobacter sp. and thus designated as Achromobacter sp. TL-3. Bioflocculant activity of TL-3 isolate was correlated with the change in pH and growth. Achromobacter sp. TL-3 has significant potential for lead biosorption and can be effectively employed for detoxification of lead contaminated waste effluents/waste waters.

  17. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DOE PAGES

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; ...

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less

  18. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    PubMed Central

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  19. Influence of azo dye concentration on activated sludge bacterial community in the presence of functionalized polyurethane foam.

    PubMed

    Lu, Hong; Wang, Jing; Lu, Shuilong; Wang, Ying; Liu, Guangfei; Zhou, Jiti; Quan, Zhexue

    2015-03-01

    Immobilized quinones exhibit good catalytic performance in the biodecolorization of azo dyes. However, in practical activated sludge systems, little is known about the effect of azo dye concentration on microbial communities in the presence of immobilized quinones. 454 Pyrosequencing was used to investigate structural changes and to determine the key microorganisms involved in Reactive Red X-3B decolorization in the presence of anthraquinone-2-sulfonate immobilized on polyurethane foam (AQS-PUF). Our results show that the AQS-PUF-supplemented system exhibited better stability and decolorization performance during a 30-day run than polyurethane-foam-only (PUF-supplemented) and control systems. Analysis of pyrosequencing data showed that the AQS-PUF-supplemented system had the highest bacterial diversity, followed by the control and PUF-supplemented systems during decolorization. Reactive Red X-3B and AQS-PUF significantly influenced bacterial communities at the class level: Erysipelotrichia and the most dominant Deltaproteobacteria showed significant positive correlations with Reactive Red X-3B, while unclassified Firmicutes were found to be significantly correlated with AQS-PUF. At the genus level, Desulfomicrobium, which represents 8-44 % of the total population, displayed a significant positive correlation with Reactive Red X-3B. Some bacteria, including Desulfovibrio, Shewanella, and Clostridium with relative abundances of less than 6 %, were positively correlated with AQS-PUF. These findings provide a novel insight into the changes that occur in the bacterial community during immobilized AQS-mediated decolorization. Less abundant quinone-reducing bacteria play important roles in accelerating the effect of AQS-PUF on biodecolorization.

  20. Effect of partially replacing a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows.

    PubMed

    Castillo-Lopez, E; Moats, J; Aluthge, N D; Ramirez Ramirez, H A; Christensen, D A; Mutsvangwa, T; Penner, G B; Fernando, S C

    2018-01-01

    The effects of partial replacement of a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows were evaluated. Treatments fed were CONT, a normal diet that included barley silage, alfalfa hay and a barley-based concentrate that contained no flaxseed or faba beans; FLAX, inclusion of a nonextruded flaxseed-based product containing 55·0% flaxseed, 37·8% field peas and 6·9% alfalfa; EXT, similar to FLAX, but the product was extruded and EXTT, similar to FLAX, but product was extruded and field peas were replaced by high-tannin faba beans. The rumen bacterial population was evaluated by utilizing 16S rRNA gene sequencing. Most abundant phyla, families and genera were unaffected. However, some taxa were affected; for example, unsaturated fatty acid content was negatively correlated with Clostridiaceae, and tannin content was negatively correlated with BS11 and Paraprevotellaceae. Predominant rumen bacterial taxa were not affected, but the abundance of some taxa found in lower proportions shifted, possibly due to sensitivity to unsaturated fatty acids or tannins. Flaxseed-based products were effective for partially replacing barley-based concentrate in rations of lactating dairy cows. No negative effects of these products were observed on the abundance of predominant rumen bacterial taxa, with only minor shifts in less abundant bacteria. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  1. Bacterial abundance and activity in deep-sea sediments from the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Eardly, D. F.; Carton, M. W.; Gallagher, J. M.; Patching, J. W.

    Results are presented from four cruises to the Porcupine Abyssal Plain (PAP site) that took place during the BENGAL project from September 1996 to March 1998, and two cruises to the PAP and an oligotrophic site (EUMELI) that took place during the DEEPSEAS project between September 1993 and March 1994. Bacterial abundances in sediment and sediment contact water were measured by epifluorescence microscopy. Bacterial activity was determined by 3H-thymidine incorporation as a measure of DNA synthesis, and by 3H-leucine incorporation as a measure of protein synthesis. Activities were measured under atmospheric and in situ pressures and temperatures. Bacterial activity was usually higher in samples incubated at in situ pressure than those incubated at atmospheric pressure indicating that a barophilic community was dominant. Inter-cruise comparisons of abundance and activity during the BENGAL project showed no firm evidence of there being a seasonal response in the benthic microbial community to any episodic phytodetritus event. This was probably because of inter-annual variations in the quality and quantity of phytodetritus deposition at the PAP site, the rapid remineralization of fresh organic material by the microbial communities and the timing of cruises to the study area. 3H-thymidine and 3H-leucine incorporation in sediments was higher during the BENGAL period than the DEEPSEAS programme. A methodological change in the 3H-thymidine incorporation technique for sediments may explain the differences in DNA synthesis observed between the two projects, whereas the lower levels of protein synthesis observed during the DEEPSEAS programme probably reflected both inter-annual variations in activity at the PAP site and the lower productivity that prevailed at surface at the EUMELI oligotrophic site. Rates of 3H-thymidine incorporation in sediment contact water were similar during both projects.

  2. Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion.

    PubMed

    Jia, Yangyang; Ng, Siu-Kin; Lu, Hongyuan; Cai, Mingwei; Lee, Patrick K H

    2018-01-01

    Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum -related and Ruminococcus -related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum -related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the

  3. Getting to PTI of bacterial RNAs: Triggering plant innate immunity by extracellular RNAs from bacteria.

    PubMed

    Park, Yong-Soon; Lee, Boyoung; Ryu, Choong-Min

    2016-07-02

    Defense against diverse biotic and abiotic stresses requires the plant to distinguish between self and non-self signaling molecules. Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are pivotal for triggering innate immunity in plants. Unlike in animals and humans, the precise roles of nucleic acids in plant innate immunity are unclear. We therefore investigated the effects of infiltration of total Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) RNAs into Arabidopsis plants. The pathogen population was 10-fold lower in bacterial RNAs pre-treated Arabidopsis plants than in the control. Bacterial RNAs purity was confirmed by physical (sonication) and chemical (RNase A and proteinase K digestion) methods. The perception of bacterial RNAs, especially rRNAs, positively regulated mitogen-activated protein kinase (MAPK) and induced a reactive oxygen species burst, callose deposition, salicylic acid (SA) and jasmonic acid (JA) signaling, and defense-related genes. Therefore, bacterial RNAs function as a new MAMP that activates plant innate immunity, providing a new paradigm for plant-microbe interactions.

  4. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens.

    PubMed

    Zink, Steven D; Van Slyke, Greta A; Palumbo, Michael J; Kramer, Laura D; Ciota, Alexander T

    2015-10-27

    Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance inWNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia.

  5. Adsorption and oxidation of SO₂in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper.

    PubMed

    Zhou, Baohua; Yu, Lei; Song, Hanning; Li, Yaqi; Zhang, Peng; Guo, Bin; Duan, Erhong

    2015-02-01

    The SO₂removal ability (including adsorption and oxidation ability) of activated carbon produced from oxytetracycline bacterial residue and impregnated with copper was investigated. The activated carbon produced from oxytetracycline bacterial residue and modified with copper was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the catalysts, SO₂concentration, weight hourly space velocity, and temperature on the SO₂adsorption and oxidation activity were evaluated. Activated carbon produced from oxytetracycline bacterial residue and used as catalyst supports for copper oxide catalysts provided high catalytic activity for the adsorbing and oxidizing of SO₂from flue gases.

  6. Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration.

    PubMed

    Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2016-01-01

    An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. PREVALENCE OF BACTERIAL VAGINOSIS AMONG SEXUALLY ACTIVE WOMEN ATTENDING THE CDC CENTRAL CLINIC TIKO, SOUTH WEST REGION, CAMEROON.

    PubMed

    Achondou, Akomoneh Elvis; Fumoloh, Foche Francis; Aseneck, Aseneck Christian; Awah, Abong Ralph; Utokoro, Ajonina Marcelus

    2016-01-01

    Bacterial vaginosis (BV) is a polymicrobial, superficial vaginal infection involving a reduction in the amount of hydrogen peroxide-producing Lactobacillus and overgrowth of anaerobic bacteria. Common symptoms include increased fishy smelling vaginal discharge which is usually white or gray in color. Burning with urination may occur and itching is uncommon. Risk factors include douching, new or multiple sex partners, antibiotics, and use of intrauterine device among others. This cross-sectional study assessed the prevalence of bacterial vaginosis among sexually active women aged 15-45 years. Vaginal swabs were obtained with the use of sterile swab sticks which were later smeared on clean glass slides and then Gram stained. The stained smears were observed for bacterial morphotypes with the X100 oil immersion objective and the Nugent scoring system was used to determine BV. Data were analyzed using the Statistical Package for Social Scientists (SPSS) version 17.0 and were considered significant at p < 0.05. A total of 100 women participated in the study with the overall prevalence of BV rated 38%. The prevalence of BV with respect to associated factors was also investigated and it was observed that BV was more prevalent in the age groups 20-25 (48.1%) and 25-29 (44.4%), those who had attained only primary education (60.5%), married women, (68.4%), pregnant women (71.0%), and women who practiced vaginal douching, (97.4%). However, no statistical significant difference was observed in the prevalence between these parameters (P > 0.05). Conclusively, the prevalence of bacterial vaginosis in our study population is 38% and highest among women aged between 25 and 34 years, pregnant women, married women, less educated women and women who practiced poor vaginal hygiene.

  8. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland.

    PubMed

    Qu, Juanjuan; Ren, Guangming; Chen, Bao; Fan, Jinghua; E, Yong

    2011-11-01

    In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.

  9. Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth.

    PubMed

    Jeong, Hyung Uk; Mun, Hye Yeon; Oh, Hyung Keun; Kim, Seung Bum; Yang, Kwang Yeol; Kim, Iksoo; Lee, Hyang Burm

    2010-08-01

    To identify novel bioinsecticidal agents, a bacterial strain, Serratia sp. EML-SE1, was isolated from a dead larva of the lepidopteran diamondback moth (Plutella xylostella) collected from a cabbage field in Korea. In this study, the insecticidal activity of liquid cultures in Luria-Bertani broth (LBB) and nutrient broth (NB) of a bacterial strain, Serratia sp. EML-SE1 against thirty 3rd and 4th instar larvae of the diamondback moth was investigated on a Chinese cabbage leaf housed in a round plastic cage (Ø 10 x 6 cm). 72 h after spraying the cabbage leaf with LBB and NB cultures containing the bacterial strain, the mortalities of the larvae were determined to be 91.7% and 88.3%, respectively. In addition, the insecticidal activity on potted cabbage containing 14 leaves in a growth cage (165 x 83 x 124 cm) was found to be similar to that of the plastic cage experiment. The results of this study provided valuable information on the insecticidal activity of the liquid culture of a Serratia species against the diamondback moth.

  10. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  11. Bacterial detection: from microscope to smartphone.

    PubMed

    Gopinath, Subash C B; Tang, Thean-Hock; Chen, Yeng; Citartan, Marimuthu; Lakshmipriya, Thangavel

    2014-10-15

    The ubiquitous nature of bacteria enables them to survive in a wide variety of environments. Hence, the rise of various pathogenic species that are harmful to human health raises the need for the development of accurate sensing systems. Sensing systems are necessary for diagnosis and epidemiological control of pathogenic organism, especially in the food-borne pathogen and sanitary water treatment facility' bacterial populations. Bacterial sensing for the purpose of diagnosis can function in three ways: bacterial morphological visualization, specific detection of bacterial component and whole cell detection. This paper provides an overview of the currently available bacterial detection systems that ranges from microscopic observation to state-of-the-art smartphone-based detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Bacterial gene transfer by natural genetic transformation in the environment.

    PubMed Central

    Lorenz, M G; Wackernagel, W

    1994-01-01

    Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation. PMID:7968924

  13. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    NASA Astrophysics Data System (ADS)

    Veerapandian, Murugan; Zhang, Linghe; Krishnamoorthy, Karthikeyan; Yun, Kyusik

    2013-10-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml-1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml-1 for Bacillus subtilis and 0.5 μg ml-1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside.

  14. Effects of bacterial pollution caused by a strong typhoon event and the restoration of a recreational beach: Transitions of fecal bacterial counts and bacterial flora in beach sand.

    PubMed

    Suzuki, Yoshihiro; Teranishi, Kotaro; Matsuwaki, Tomonori; Nukazawa, Kei; Ogura, Yoshitoshi

    2018-05-28

    To determine the effects of bacteria pollution associated with a strong typhoon event and to assess the restoration of the normal bacterial flora, we used conventional filtration methods and nextgeneration sequencing of 16S rRNA genes to analyze the transition of fecal and total bacterial counts in water and core sand samples collected from a recreational beach. Immediately after the typhoon event, Escherichia coli counts increased to 82 CFU/100 g in the surface beach sand. E. coli was detected through the surface to sand 85-cm deep at the land side point (10-m land side from the high-water line). However, E. coli disappeared within a month from the land side point. The composition of the bacterial flora in the beach sand at the land point was directly influenced by the typhoon event. Pseudomonas was the most prevalent genus throughout the sand layers (0-102-cm deep) during the typhoon event. After 3 months, the population of Pseudomonas significantly decreased, and the predominant genus in the surface layer was Kaistobacter, although Pseudomonas was the major genus in the 17- to 85-cm layer. When the beach conditions stabilized, the number of pollutant Pseudomonas among the 10 most abundant genera decreased to lower than the limit of detection. The bacterial population of the sand was subsequently restored to the most populous pre-event orders at the land point. A land-side beach, where users directly contact the sand, was significantly affected by bacterial pollution caused by a strong typhoon event. We show here that the normal bacterial flora of the surface sand was restored within 1 month. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant.

    PubMed

    Hou, Luanfeng; Zhou, Qin; Wu, Qingping; Gu, Qihui; Sun, Ming; Zhang, Jumei

    2018-06-01

    To gain insight into the bacterial dynamics present in drinking water treatment (DWT) systems, the microbial community and activity in a full-scale DWT plant (DWTP) in Guangzhou, South China, were investigated using Illumina Hiseq sequencing analyses combined with cultivation-based techniques during the wet and dry seasons. Illumina sequencing analysis of 16S rRNA genes revealed a large shift in the proportion of Actinobacteria, Proteobacteria and Firmicutes during the treatment process, with the proportion of Actinobacteria decreased sharply, whereas that of Proteobacteria and Firmicutes increased and predominated in treated water. Both microbial activity and bacterial diversity during the treatment process showed obvious spatial variation, with higher levels observed during the dry season and lower levels during the wet season. Clustering analysis and principal component analysis indicated dramatic shifts in the bacterial community after chlorination, suggesting that chlorination was highly effective at influencing the bacterial community. The bacterial community structure of finished water primarily comprised Pseudomonas, Citrobacter, and Acinetobacter, and interestingly showed high similarity to biofilms on granular activated carbon. Additionally, the abundance of bacterial communities was relatively stable in finished water and did not change with the season. A large number of unique operational taxonomic units were shared during treatment steps, indicating the presence of a diverse core microbiome throughout the treatment process. Opportunistic pathogens, including Pseudomonas, Acinetobacter, Citrobacter, Mycobacterium, Salmonella, Staphylococcus, Legionella, Streptococcus and Enterococcus, were detected in water including finished water, suggesting a potential threat to drinking-water safety. We also detected bacteria isolated from each treatment step using the pure-culture method. In particular, two isolates, identified as Mycobacterium sp. and Blastococcus

  16. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems?

    PubMed

    Lebaron, P; Servais, P; Agogué, H; Courties, C; Joux, F

    2001-04-01

    The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems.

  17. Does the High Nucleic Acid Content of Individual Bacterial Cells Allow Us To Discriminate between Active Cells and Inactive Cells in Aquatic Systems?

    PubMed Central

    Lebaron, Philippe; Servais, Pierre; Agogué, Helene; Courties, Claude; Joux, Fabien

    2001-01-01

    The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems. PMID:11282632

  18. Screening the thermophilic and hyperthermophilic bacterial population of three Iranian hot-springs to detect the thermostable α-amylase producing strain

    PubMed Central

    Fooladi, J; Sajjadian, A

    2010-01-01

    Background Screening is a routine procedure for isolation of microorganisms which are able to produce special metabolites. Purified thermostable α-amylase from bacterial sources is widely used in different industries. In this study we analyzed samples collected from three different hot springs in Iran to detect any strains capable of producing thermostable α-amylase. Materials and Methods Hot water samples from Larijan (67°C, pH 6.5), Mahallat (46°C, pH 7), and Meshkinshahr (82°C, pH 6), were cultivated in screening starch agar plates and incubated at 65°C for 24 hours. Thereafter, the plates were stained with Gram's iodine solution. Results and Discussion The bacterial colonies from the Meshkinshahr hot-spring produced the largest haloforming zone. Based on the phenotypic tests, the strain was identified as Bacillus sp. The culture condition was optimized for biosynthesis of α-amylase. The enzyme was produced at maximum level when it was incubated at 70°C in the presence of soluble starch (1%) at pH 6. The addition of calcium (10 mM) and peptone (1%) to the mineral medium, shortened the lag period and improved the growth and α-amylase synthesis. The addition of glucose (1%) to the culture greatly diminished the syntheses of α -amylase. Importantly, the enzyme extract retained 100% activity when incubated for 45 minutes at 100°C. Conclusion The Meshkinshahr hot-spring is rich in the Bacillus spp thermostable α-amylase producing strain of the thermophilic bacterial population. Iranian hot-springs like Meshkinshahr, have large microbial storages and can be used as sources of different biological products like enzymes. The enzyme which was produced with Bacillus sp. could hydrolyse polymers like starch and was used at laboratory scale successfully. PMID:22347550

  19. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction

    PubMed Central

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J. Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd_Allah, Elsayed Fathi

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion. PMID:29023528

  1. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    PubMed

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  2. Effects of gamma-irradiation before and after cooking on bacterial population and sensory quality of Dakgalbi

    NASA Astrophysics Data System (ADS)

    Yoon, Young Min; Park, Jong-Heum; Lee, Ji-Hye; Park, Jae-Nam; Park, Jin-Kyu; Sung, Nak-Yun; Song, Beom-Seok; Kim, Jae-Hun; Yoon, Yohan; Gao, Meixu; Yook, Hong-Sun; Lee, Ju-Woon

    2012-08-01

    The purpose of this study was to compare the effect of gamma irradiation on the total bacterial population and the sensory quality of Dakgalbi irradiated before and after cooking. Fresh chicken meat was cut into small pieces and used to prepare Dakgalbi. For the preparation of Dakgalbi cooked with gamma-irradiated chicken meat and sauce (IBC), raw chicken meat and Dakgalbi sauce were irradiated and then stir-fried. For the preparation of Dakgalbi irradiated after cooking with raw chicken meat and sauce (IAC), raw chicken meat and Dakgalbi sauce were first cooked and subsequently irradiated. Under the accelerated storage condition of 35 °C for 7 days, bacteria in IBC were below the detection limit (1 log CFU/g) on day 1 but were detected on day 2 and gradually increased hereafter. In IAC, on the other hand, bacteria were not detected at all. Evaluation of sensory quality also decreased on both samples. However, IAC showed a better trend. Our results indicate that IAC protocol was a more effective method for reducing bacterial growth in Dakgalbi.

  3. Bacterial communities in the fruit bodies of ground basidiomycetes

    NASA Astrophysics Data System (ADS)

    Zagryadskaya, Yu. A.; Lysak, L. V.; Chernov, I. Yu.

    2015-06-01

    Fruit bodies of basidiomycetes at different stages of decomposition serve as specific habitats in forest biocenoses for bacteria and differ significantly with respect to the total bacterial population and abundance of particular bacterial genera. A significant increase in the total bacterial population estimated by the direct microscopic method with acridine orange staining and in the population of saprotrophic bacteria (inoculation of glucose peptone yeast agar) in fruit bodies of basidiomycetes Armillaria mellea and Coprinus comatus was recorded at the final stage of their decomposition in comparison with the initial stage. Gramnegative bacteria predominated in the tissues of fruit bodies at all the stages of decomposition and were represented at the final stage by the Aeromonas, Vibrio, and Pseudomonas genera (for fruit bodies of A. mellea) the Pseudomonas genus (for fruit bodies of C. comatus). The potential influence of bacterial communities in the fruit bodies of soil basidiomycetes on the formation of bacterial communities in the upper soil horizons in forest biocenoses is discussed. The loci connected with the development and decomposition of fruit bodies of basidiomycetes on the soil surface are promising for targeted search of Gram-negative bacteria, the important objects of biotechnology.

  4. Population activity structure of excitatory and inhibitory neurons

    PubMed Central

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  5. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses.

    PubMed

    Opelt, Katja; Chobot, Vladimir; Hadacek, Franz; Schönmann, Susan; Eberl, Leo; Berg, Gabriele

    2007-11-01

    High acidity, low temperature and extremely low concentration of nutrients form Sphagnum bogs into extreme habitats for organisms. Little is known about the bacteria associated with living Sphagnum plantlets, especially about their function for the host. Therefore, we analysed the endo- and ectophytic bacterial populations associated with two widely distributed Sphagnum species, Sphagnum magellanicum and Sphagnum fallax, by a multiphasic approach. The screening of 1222 isolates for antagonistic activity resulted in 326 active isolates. The bacterial communities harboured a high proportion of antifungal (26%) but a low proportion of antibacterial isolates (0.4%). Members of the genus Burkholderia (38%) were found to be the most dominant group of antagonistic bacteria. The finding that a large proportion (89%) of the antagonistic bacteria produced antifungal compounds may provide an explanation for the well-known antimicrobial activity of certain Sphagnum species. The secondary metabolites of the Sphagnum species themselves were analysed by HPLC-PDA. The different spectra of detected compounds may not only explain the antifungal activity but also the species specificity of the microbial communities. The latter was analysed using cultivation-independent single-stranded conformation polymorphism (SSCP) analysis. Using Burkholderia-specific primers we found a high diversity of Burkholderia isolates in the endophytic and ectophytic habitats of Sphagnum. Furthermore, a high diversity of nitrogen-fixing bacteria was detected by using nifH-specific primers, especially inside Sphagnum mosses. In conclusion, this study provides evidence that both Sphagnum species were colonized by characteristic bacterial populations, which appear to be important for pathogen defence and nitrogen fixation.

  6. Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings

    PubMed Central

    Nelson, Karis N.; Neilson, Julia W.; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings. PMID:25495940

  7. Abundance and Activity of 16S rRNA, AmoA and NifH Bacterial Genes During Assisted Phytostabilization of Mine Tailings.

    PubMed

    Nelson, Karis N; Neilson, Julia W; Root, Robert A; Chorover, Jon; Maier, Raina M

    2015-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings.

  8. Culturable endophytic bacterial communities associated with field-grown soybean.

    PubMed

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  9. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  10. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    NASA Astrophysics Data System (ADS)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  11. Inhibition of cathelicidin activity by bacterial exopolysaccharides.

    PubMed

    Foschiatti, Michela; Cescutti, Paola; Tossi, Alessandro; Rizzo, Roberto

    2009-06-01

    The interaction of bacterial exopolysaccharides, produced by opportunistic lung pathogens, with antimicrobial peptides of the innate primate immune system was investigated. The exopolysaccharides were produced by Pseudomonas aeruginosa, Inquilinus limosus and clinical isolates of the Burkholderia cepacia complex, bacteria that are all involved in lung infections of cystic fibrosis patients. The effects of the biological activities of three orthologous cathelicidins from Homo sapiens sapiens, Pongo pygmaeus (orangutan) and Presbitys obscurus (dusky leaf monkey) were examined. Inhibition of the antimicrobial activity of peptides was assessed using minimum inhibitory concentration assays on a reference Escherichia coli strain in the presence and absence of exopolysaccharides, whereas complex formation between peptides and exopolysaccharides was investigated by means of circular dichroism, fluorescence spectroscopy and atomic force microscopy. Biological assays revealed that the higher the negative charge of exopolysaccharides the stronger was their inhibiting effect. Spectroscopic studies indicated the formation of molecular complexes of varying stability between peptides and exopolysaccharides, explaining the inhibition. Atomic force microscopy provided a direct visualization of the molecular complexes. A model is proposed where peptides with an alpha-helical conformation interact with exopolysaccharides through electrostatic and other non-covalent interactions.

  12. Anticancer Activity of Bacterial Proteins and Peptides.

    PubMed

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  13. Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation.

    PubMed

    Rodriguez-Rodrigues, Nahuel; Castillo, Luis A; Landoni, Verónica I; Martire-Greco, Daiana; Milillo, M Ayelén; Barrionuevo, Paula; Fernández, Gabriela C

    2017-01-01

    Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria

  14. Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation

    PubMed Central

    Rodriguez-Rodrigues, Nahuel; Castillo, Luis A.; Landoni, Verónica I.; Martire-Greco, Daiana; Milillo, M. Ayelén; Barrionuevo, Paula; Fernández, Gabriela C.

    2017-01-01

    Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria

  15. Chemical sensing in mammalian host-bacterial commensal associations

    USDA-ARS?s Scientific Manuscript database

    The mammalian gastrointestinal (GI) tract is colonized by a complex consortium of bacterial species. Bacteria engage in chemical signaling to coordinate population-wide behavior. However, it is unclear if chemical sensing plays a role in establishing mammalian host–bacterial commensal relationships....

  16. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.

    PubMed

    Lin, Xin; Li, Xiaojun; Sun, Tieheng; Li, Peijun; Zhou, Qixing; Sun, Lina; Hu, Xiaojun

    2009-10-01

    In the process of bioremediation in the soil contaminated by different oil concentrations, the changes in the microbial numbers (bacteria and fungi) and the enzyme (catalase (CAT), polyphenol oxidase (PPO) and lipase) activities were evaluated over a 2-year period. The results showed that the microbial numbers after 2-year bioremediation were one to ten times higher than those in the initial. The changes in the bacterial and the fungal populations were different during the bioremediation, and the highest microbial numbers for bacteria and fungi were 5.51 x 10(9) CFU g(-1) dry soil in treatment 3 (10,000 mg kg(-1)) in the initial and 5.54 x 10(5) CFU g(-1) dry soil in treatment 5 (50,000 mg kg(-1)) after the 2-year bioremediation period, respectively. The CAT and PPO activities in the contaminated soil decreased with increasing oil concentration, while the lipase activity increased. The activities of CAT and PPO improved after the bioremediation, but lipase activity was on the contrary. The CAT activity was more sensible to the oil than others, and could be alternative to monitor the bioremediation process.

  17. Successional Development of Sulfate-Reducing Bacterial Populations and Their Activities in a Wastewater Biofilm Growing under Microaerophilic Conditions

    PubMed Central

    Ito, Tsukasa; Okabe, Satoshi; Satoh, Hisashi; Watanabe, Yoshimasa

    2002-01-01

    A combination of fluorescence in situ hybridization, microprofiles, denaturing gradient gel electrophoresis of PCR-amplified 16S ribosomal DNA fragments, and 16S rRNA gene cloning analysis was applied to investigate successional development of sulfate-reducing bacteria (SRB) community structure and in situ sulfide production activity within a biofilm growing under microaerophilic conditions (dissolved oxygen concentration in the bulk liquid was in the range of 0 to 100 μM) and in the presence of nitrate. Microelectrode measurements showed that oxygen penetrated 200 μm from the surface during all stages of biofilm development. The first sulfide production of 0.32 μmol of H2S m−2 s−1 was detected below ca. 500 μm in the 3rd week and then gradually increased to 0.70 μmol H2S m−2 s−1 in the 8th week. The most active sulfide production zone moved upward to the oxic-anoxic interface and intensified with time. This result coincided with an increase in SRB populations in the surface layer of the biofilm. The numbers of the probe SRB385- and 660-hybridized SRB populations significantly increased to 7.9 × 109 cells cm−3 and 3.6 × 109 cells cm−3, respectively, in the surface 400 μm during an 8-week cultivation, while those populations were relatively unchanged in the deeper part of the biofilm, probably due to substrate transport limitation. Based on 16S rRNA gene cloning analysis data, clone sequences that related to Desulfomicrobium hypogeium (99% sequence similarity) and Desulfobulbus elongatus (95% sequence similarity) were most frequently found. Different molecular analyses confirmed that Desulfobulbus, Desulfovibrio, and Desulfomicrobium were found to be the numerically important members of SRB in this wastewater biofilm. PMID:11872492

  18. Synchronized cycles of bacterial lysis for in vivo delivery

    PubMed Central

    Prindle, Arthur; Skalak, Matt; Selimkhanov, Jangir; Allen, Kaitlin; Julio, Ellixis; Atolia, Eta; Tsimring, Lev S.; Bhatia, Sangeeta N.; Hasty, Jeff

    2016-01-01

    The pervasive view of bacteria as strictly pathogenic has given way to an appreciation of the widespread prevalence of beneficial microbes within the human body1–3. Given this milieu, it is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies4–6. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ7–10. Here, we engineer a clinically relevant bacterium to lyse synchronously at a threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We use microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug delivery platform via co-culture with human cancer cells in vitro. As a proof of principle, we track the bacterial population dynamics in ectopic syngeneic colorectal tumors in mice. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies11, we orally administer the lysis strain, alone or in combination with a clinical chemotherapeutic, to a syngeneic transplantation model of hepatic colorectal metastases. We find that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumor activity along with a marked survival benefit over either therapy alone. Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites. PMID:27437587

  19. Bacterial vaginosis-associated microflora isolated from the female genital tract activates HIV-1 expression.

    PubMed

    Al-Harthi, L; Roebuck, K A; Olinger, G G; Landay, A; Sha, B E; Hashemi, F B; Spear, G T

    1999-07-01

    Alteration of cervicovaginal microbial flora can lead to vaginosis, which is associated with an increased risk of HIV-1 transmission. We recently characterized a soluble HIV-inducing factor (HIF) from the cervicovaginal lavage (CVL) samples of women. The goals of this study were to determine the effect of cervicovaginal microflora on HIV-1 expression and to elucidate the relationship between HIF activity and microflora. Physiologically relevant microorganisms, Mycoplasma, diphtheroid-like bacteria, Gardnerella vaginalis, Streptococcus agalactiae, and Streptococcus constellatus, cultured from the CVL of a representative woman with a clinical condition of bacterial vaginosis and possessing HIF activity, induced HIV-1 expression. The magnitude of virus induction varied widely with the greatest stimulation induced by diphtheroid-like bacteria and Mycoplasma. The transcriptional induction by Mycoplasma was mediated by activation of the KB enhancer, an activation mechanism shared with HIF. Also as with HIF, Mycoplasma induced AP-1 dependent transcription. Polymerase chain reaction (PCR)-based speciation showed that the isolate was M. hominis. Our data indicate that bacterial vaginosis-associated microflora can enhance HIV-1 transcription and replication and identify M. hominis as a potential source for HIF activity. The virus-enhancing activities associated with the microflora and HIF may increase genital tract viral load, potentially contributing to HIV transmission.

  20. Anti-bacterial, free radical scavenging activity and cytotoxicity of acetone extracts of Grewia flava.

    PubMed

    Lamola, Stella Makgabo; Dzoyem, Jean Paul; Botha, Francien; van Wyk, Candice

    2017-09-01

    Bacterial infections of the gastrointestinal tract (GIT) cause vomiting, diarrhoea and even systemic disease. There is a need for the development of natural products into alternative and safer medicines. This study evaluated the anti-microbial activity of extracts prepared from berries, leaves, bark and roots of the edible plant Grewia flava . The anti-bacterial activity was evaluated by the broth microdilution method. Anti-oxidant activity of the most active extracts was performed by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The cytotoxicity of the extracts was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The acetone extracts of the leaves and roots showed the best activity with MIC values as low as 0.03 mg/mL against Staphylococcus aureus and Salmonella typhimurium and 0.07 mg/mL against Bacillus cereus, Escherichia coli and Staphylococcus aureus . Quantitative analysis of the scavenging ability showed that acetone extracts exhibited good free radical scavenging activity in a dose-dependent manner. The berries extract had the highest LC 50 (lowest toxicity) of 551.68 68 µg/mL. Acetone extract of leaves and roots of Grewia flava contain anti-microbial and anti-oxidant compounds and could therefore be used as a natural product with little toxicity to host cells.

  1. Effect of exogenous inoculants on enhancing oil recovery and indigenous bacterial community dynamics in long-term field pilot of low permeability reservoir.

    PubMed

    Li, Jing; Xue, Shuwen; He, Chunqiu; Qi, Huixia; Chen, Fulin; Ma, Yanling

    2018-03-20

    Pseudomonas aeruginosa DN1 strain and Bacillus subtilis QHQ110 strain were chosen as rhamnolipid and lipopeptide producer respectively, to evaluate the efficiency of exogenous inoculants on enhancing oil recovery (EOR) and to explore the relationship between injected bacteria and indigenous bacterial community dynamics in long-term filed pilot of Hujianshan low permeability water-flooded reservoir for 26 months. Core-flooding tests showed that the oil displacement efficiency increased by 18.46% with addition of exogenous consortia. Bacterial community dynamics using quantitative PCR and high-throughput sequencing revealed that the exogenous inoculants survived and could live together with indigenous bacterial populations. They gradually became the dominant community after the initial activation, while their comparative advantage weakened continually after 3 months of the first injection. The bacterial populations did not exert an observable change in the process of the second injection of exogenous inoculants. On account of facilitating oil emulsification and accelerating bacterial growth with oil as the carbon source by the injection of exogenous consortia, γ-proteobacteria was finally the prominent bacterial community at class level varying from 25.55 to 32.67%, and the dominant bacterial populations were increased by 2-3 orders of magnitude during the whole processes. The content of organic acids and rhamnolipids in reservoir were promoted with the change of bacterial community diversity, respectively. Cumulative oil increments reached 26,190 barrels for 13 months after the first injection, and 55,947 barrels of oil had been accumulated in all of A20 wells block through two rounds of bacterial consortia injection. The performance of EOR has a cumulative improvement by the injection of exogenous inoculants without observable inhibitory effect on the indigenous bacterial populations, demonstrating the application potential in low permeability water

  2. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    PubMed

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria. Copyright © 2016 The Authors. Published by Elsevier B.V. All

  3. Bacterial diversity in three distinct sub-habitats within the pitchers of the northern pitcher plant, Sarracenia purpurea.

    PubMed

    Krieger, Joseph R; Kourtev, Peter S

    2012-03-01

    Pitcher plants have been widely used in ecological studies of food webs; however, their bacterial communities are poorly characterized. Pitchers of Sarracenia purpurea contain several distinct sub-habitats, namely the bottom sediment, the liquid, and the internal pitcher wall. We hypothesized that those three sub-habitats within pitcher plants are inhabited by distinct bacterial populations. We used denaturing gradient gel electrophoresis and 16S rRNA gene sequencing to characterize bacterial populations in pitchers from three bogs. DGGE and sequencing revealed that in any given pitcher, the three sub-habitats contain significantly different bacterial populations. However, there was significant variability between bacterial populations inhabiting the same type of habitat in different pitchers, even at the same site. Therefore, no consistent set of bacterial populations was enriched in any of the three sub-habitats. All sub-habitats appeared to be dominated by alpha- and betaproteobacteria in differing proportions. In addition, sequences from the Bacteroidetes and Firmicutes were obtained from all three sub-habitats. We conclude that container aquatic habitats such as the pitchers of S. purpurea possess a very high bacterial diversity, with many unique bacterial populations enriched in individual pitchers. Within an individual pitcher, populations of certain bacterial families may be enriched in one of the three studied sub-habitats. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Effects of plant tannins supplementation on animal response and in vivo ruminal bacterial populations associated with bloat in heifers grazing wheat forage

    USDA-ARS?s Scientific Manuscript database

    Research was conducted to determine the effects of sources of tannins on in vitro ruminal gas and foam production, in vivo ruminal bacterial populations, bloat dynamics and ADG of heifers grazing wheat forage. Two experiments were conducted to 1) enumerate the effect of tannins supplementation on bi...

  5. Self-Organization in High-Density Bacterial Colonies: Efficient Crowd Control

    PubMed Central

    Campbell, Kyle; Melke, Pontus; Williams, Joshua W; Jedynak, Bruno; Stevens, Ann M; Groisman, Alex; Levchenko, Andre

    2007-01-01

    Colonies of bacterial cells can display complex collective dynamics, frequently culminating in the formation of biofilms and other ordered super-structures. Recent studies suggest that to cope with local environmental challenges, bacterial cells can actively seek out small chambers or cavities and assemble there, engaging in quorum sensing behavior. By using a novel microfluidic device, we showed that within chambers of distinct shapes and sizes allowing continuous cell escape, bacterial colonies can gradually self-organize. The directions of orientation of cells, their growth, and collective motion are mutually correlated and dictated by the chamber walls and locations of chamber exits. The ultimate highly organized steady state is conducive to a more-organized escape of cells from the chambers and increased access of nutrients into and evacuation of waste out of the colonies. Using a computational model, we suggest that the lengths of the cells might be optimized to maximize self-organization while minimizing the potential for stampede-like exit blockage. The self-organization described here may be crucial for the early stage of the organization of high-density bacterial colonies populating small, physically confined growth niches. It suggests that this phenomenon can play a critical role in bacterial biofilm initiation and development of other complex multicellular bacterial super-structures, including those implicated in infectious diseases. PMID:18044986

  6. In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014

    PubMed Central

    Pfaller, M. A.; Sader, H. S.; Rhomberg, P. R.

    2017-01-01

    ABSTRACT The in vitro activities of delafloxacin and comparator antimicrobial agents against 6,485 bacterial isolates collected from medical centers in Europe and the United States in 2014 were tested. Delafloxacin was the most potent agent tested against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus, Streptococcus pneumoniae, viridans group streptococci, and beta-hemolytic streptococci and had activity similar to that of ciprofloxacin and levofloxacin against certain members of the Enterobacteriaceae. Overall, the broadest coverage of the tested pathogens (Gram-positive cocci and Gram-negative bacilli) was observed with meropenem and tigecycline in both Europe and the United States. Delafloxacin was shown to be active against organisms that may be encountered in acute bacterial skin and skin structure infections, respiratory infections, and urinary tract infections. PMID:28167542

  7. In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014.

    PubMed

    Pfaller, M A; Sader, H S; Rhomberg, P R; Flamm, R K

    2017-04-01

    The in vitro activities of delafloxacin and comparator antimicrobial agents against 6,485 bacterial isolates collected from medical centers in Europe and the United States in 2014 were tested. Delafloxacin was the most potent agent tested against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus , Streptococcus pneumoniae , viridans group streptococci, and beta-hemolytic streptococci and had activity similar to that of ciprofloxacin and levofloxacin against certain members of the Enterobacteriaceae Overall, the broadest coverage of the tested pathogens (Gram-positive cocci and Gram-negative bacilli) was observed with meropenem and tigecycline in both Europe and the United States. Delafloxacin was shown to be active against organisms that may be encountered in acute bacterial skin and skin structure infections, respiratory infections, and urinary tract infections. Copyright © 2017 Pfaller et al.

  8. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    NASA Astrophysics Data System (ADS)

    Maki, Teruya; Furumoto, Shogo; Asahi, Yuya; Lee, Kevin C.; Watanabe, Koichi; Aoki, Kazuma; Murakami, Masataka; Tajiri, Takuya; Hasegawa, Hiroshi; Mashio, Asami; Iwasaka, Yasunobu

    2018-06-01

    The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which possibly induce ice

  9. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    PubMed

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  10. Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial and Viral Populations

    PubMed Central

    Chopyk, Jessica; Allard, Sarah; Nasko, Daniel J.; Bui, Anthony; Mongodin, Emmanuel F.; Sapkota, Amy R.

    2018-01-01

    Agricultural ponds have a great potential as a means of capture and storage of water for irrigation. However, pond topography (small size, shallow depth) leaves them susceptible to environmental, agricultural, and anthropogenic exposures that may influence microbial dynamics. Therefore, the aim of this project was to characterize the bacterial and viral communities of pond water in the Mid-Atlantic United States with a focus on the late season (October–December), where decreasing temperature and nutrient levels can affect the composition of microbial communities. Ten liters of freshwater from an agricultural pond were sampled monthly, and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, and the bacterial communities were characterized using 16S rRNA gene sequencing. The remaining filtrate was chemically concentrated for viruses, DNA-extracted, and shotgun sequenced. Bacterial community profiling showed significant fluctuations over the sampling period, corresponding to changes in the condition of the pond freshwater (e.g., pH, nutrient load). In addition, there were significant differences in the alpha-diversity and core bacterial operational taxonomic units (OTUs) between water fractions filtered through different pore sizes. The viral fraction was dominated by tailed bacteriophage of the order Caudovirales, largely those of the Siphoviridae family. Moreover, while present, genes involved in virulence/antimicrobial resistance were not enriched within the viral fraction during the study period. Instead, the viral functional profile was dominated by phage associated proteins, as well as those related to nucleotide production. Overall, these data suggest that agricultural pond water harbors a diverse core of bacterial and bacteriophage species whose abundance and composition are influenced by environmental variables characteristic of pond topology and the late season. PMID:29740420

  11. Drastic changes in aquatic bacterial populations from the Cuatro Cienegas Basin (Mexico) in response to long-term environmental stress.

    PubMed

    Pajares, Silvia; Eguiarte, Luis E; Bonilla-Rosso, German; Souza, Valeria

    2013-12-01

    Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified.

  12. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Sherr, Barry F.; Sherr, Evelyn B.

    2003-04-01

    Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997-September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ˜3.3 nM O 2 h -1 and a carbon demand of ˜4.5 gC m -2. Increase in 0-50 m integrated stocks of DO during summer implied a net community production of ˜20 gC m -2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O 2 h -1) compared to summer (35.3±24.8 nM O 2 h -1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ˜10-fold, and the cell-specific rate of leucine incorporation ˜5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l -1 h -1 during winter and 5.1±3.1 ngC l -1 h -1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m -3 d -1 in winter and 7.8±5.5 mgC m -3 d -1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m -3 d -1 in winter and 1.3±0.7 mgC m -3 d -1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.

  13. Consequences of organ choice in describing bacterial pathogen assemblages in a rodent population.

    PubMed

    Villette, P; Afonso, E; Couval, G; Levret, A; Galan, M; Tatard, C; Cosson, J F; Giraudoux, P

    2017-10-01

    High-throughput sequencing technologies now allow for rapid cost-effective surveys of multiple pathogens in many host species including rodents, but it is currently unclear if the organ chosen for screening influences the number and identity of bacteria detected. We used 16S rRNA amplicon sequencing to identify bacterial pathogens in the heart, liver, lungs, kidneys and spleen of 13 water voles (Arvicola terrestris) collected in Franche-Comté, France. We asked if bacterial pathogen assemblages within organs are similar and if all five organs are necessary to detect all of the bacteria present in an individual animal. We identified 24 bacteria representing 17 genera; average bacterial richness for each organ ranged from 1·5 ± 0·4 (mean ± standard error) to 2·5 ± 0·4 bacteria/organ and did not differ significantly between organs. The average bacterial richness when organ assemblages were pooled within animals was 4·7 ± 0·6 bacteria/animal; Operational Taxonomic Unit accumulation analysis indicates that all five organs are required to obtain this. Organ type influences bacterial assemblage composition in a systematic way (PERMANOVA, 999 permutations, pseudo-F 4,51 = 1·37, P = 0·001). Our results demonstrate that the number of organs sampled influences the ability to detect bacterial pathogens, which can inform sampling decisions in public health and wildlife ecology.

  14. DETECTION OF BACTERIAL CYTOTOXIC ACTIVITIES FROM WATER-DAMAGED CEILING TILE MATERIAL FOLLOWING INCUBATION ON BLOOD AGAR

    EPA Science Inventory

    Samples of ceiling tiles with high levels of bacteria exhibited cytotoxic activities on a HEP-2 tissue culture assay. Ceiling tiles containing low levels of bacterial colonization did not show cytotoxic activities on the HEP-2 tissue culture assay. Using a spread plate procedure ...

  15. [Spontaneous bacterial peritonitis: impact of microbiological changes].

    PubMed

    Almeida, Paulo Roberto Lerias de; Camargo, Nutianne Schneider; Arenz, Maximilhano; Tovo, Cristiane Valle; Galperim, Bruno; Behar, Paulo

    2007-01-01

    Spontaneous bacterial peritonitis is a serious complication in cirrhotic patients, and the changes in the microbiological characteristics reported in the last years are impacting the choice of antibiotic used in the treatment. To evaluate the change in the epidemiology and antibiotic resistance of the bacteria causing spontaneous bacterial peritonitis in a 7 years period. All the cases of cirrhotic patients with spontaneous bacterial peritonitis with positive cultural examination were retrospectively studied. Two periods were evaluated: 1997-1998 and 2002-2003. The most frequent infecting organisms and the sensitivity in vitro to antibiotics were registered. In the first period (1997-1998) there were 33 cases, 3 (9%) with polymicrobial infection. The most common were: E.coli in 13 (36,11%), Staphylococcus coagulase-negative in 6 (16,66%), K. pneumoniae in 5 (13,88%), S. aureus in 4 (11,11%) and S. faecalis in 3 (8,33%). In 2003-2004, there were 43 cases, 2 (5%) with polymicrobial infection. The most frequent were: Staphylococus coagulase-negative in 16 (35,55%), S. aureus in 8 (17,77%), E. coli in 7 (15,55%) and K. pneumoniae in 3 (6,66%). No one was using antibiotic prophilaxys. The prevalence of S. aureus methicillin-resitant to quinolone and trimethoprim-sulfamethoxazole changed from 25% to 50%, and vancomicin was the only one with absolute activity during all the period. In the same way, the prevalence of E. coli resistant to third generation cephalosporin and to quinolone changed from 0% to 16%. There was a modification of the bacterial population causing spontaneous bacterial peritonitis, with high frequency of gram-positive organisms, as well as an increase in the resistance to the traditionally recommended antibiotics. This study suggests a probable imminent inclusion of a drug against gram-positive organisms in the empiric treatment of spontaneous bacterial peritonitis.

  16. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid.

    PubMed

    Bathe, Stephan; Schwarzenbeck, Norbert; Hausner, Martina

    2009-06-01

    A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.

  17. Anti-bacterial activity of intermittent preventive treatment of malaria in pregnancy: comparative in vitro study of sulphadoxine-pyrimethamine, mefloquine, and azithromycin

    PubMed Central

    2010-01-01

    Background Intermittent preventive treatment of malaria with sulphadoxine-pyrimethamine (SP) is recommended for the prevention of malaria in pregnancy in sub-Saharan Africa. Increasing drug resistance necessitates the urgent evaluation of alternative drugs. Currently, the most promising candidates in clinical development are mefloquine and azithromycin. Besides the anti-malarial activity, SP is also a potent antibiotic and incurs significant anti-microbial activity when given as IPTp - though systematic clinical evaluation of this action is still lacking. Methods In this study, the intrinsic anti-bacterial activity of mefloquine and azithromycin was assessed in comparison to sulphadoxine-pyrimethamine against bacterial pathogens with clinical importance in pregnancy in a standard microdilution assay. Results SP was highly active against Staphylococcus aureus and Streptococcus pneumoniae. All tested Gram-positive bacteria, except Enterococcus faecalis, were sensitive to azithromycin. Additionally, azithromycin was active against Neisseria gonorrhoeae. Mefloquine showed good activity against pneumococci but lower in vitro action against all other tested pathogens. Conclusion These data indicate important differences in the spectrum of anti-bacterial activity for the evaluated anti-malarial drugs. Given the large scale use of IPTp in Africa, the need for prospective clinical trials evaluating the impact of antibiotic activity of anti-malarials on maternal and foetal health and on the risk of promoting specific drug resistance of bacterial pathogens is discussed. PMID:21029476

  18. Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'haeseleer, Patrik; Gladden, John M.; Allgaier, Martin

    2013-07-19

    Thermophilic bacteria are a potential source of enzymes for the deconstruction of lignocellulosic biomass. However, the complement of proteins used to deconstruct biomass and the specific roles of different microbial groups in thermophilic biomass deconstruction are not well-explored. Here we report on the metagenomic and proteogenomic analyses of a compost-derived bacterial consortium adapted to switchgrass at elevated temperature with high levels of glycoside hydrolase activities. Near-complete genomes were reconstructed for the most abundant populations, which included composite genomes for populations closely related to sequenced strains of Thermus thermophilus and Rhodothermus marinus, and for novel populations that are related to thermophilicmore » Paenibacilli and an uncultivated subdivision of the littlestudied Gemmatimonadetes phylum. Partial genomes were also reconstructed for a number of lower abundance thermophilic Chloroflexi populations. Identification of genes for lignocellulose processing and metabolic reconstructions suggested Rhodothermus, Paenibacillus and Gemmatimonadetes as key groups for deconstructing biomass, and Thermus as a group that may primarily metabolize low molecular weight compounds. Mass spectrometry-based proteomic analysis of the consortium was used to identify .3000 proteins in fractionated samples from the cultures, and confirmed the importance of Paenibacillus and Gemmatimonadetes to biomass deconstruction. These studies also indicate that there are unexplored proteins with important roles in bacterial lignocellulose deconstruction.« less

  19. Use of population-referenced total activity counts percentiles to assess and classify physical activity of population groups.

    PubMed

    Wolff-Hughes, Dana L; Troiano, Richard P; Boyer, William R; Fitzhugh, Eugene C; McClain, James J

    2016-06-01

    Population-referenced total activity counts per day (TAC/d) percentiles provide public health practitioners a standardized measure of physical activity (PA) volume obtained from an accelerometer that can be compared across populations. The purpose of this study was to describe the application of TAC/d population-referenced percentiles to characterize the PA levels of population groups relative to US estimates. A total of 679 adults participating in the 2011 NYC Physical Activity Transit survey wore an ActiGraph accelerometer on their hip for seven consecutive days. Accelerometer-derived TAC/d was classified into age- and gender-specific quartiles of US population-referenced TAC/d to compare differences in the distributions by borough (N=5). Males in Brooklyn, Manhattan, and Staten Island had significantly greater TAC/d than US males. Females in Brooklyn and Queens had significantly greater levels of TAC/d compared to US females. The proportion of males in each population-referenced TAC/d quartile varied significantly by borough (χ(2)(12)=2.63, p=0.002), with disproportionately more men in Manhattan and the Bronx found to be in the highest and lowest US population-referenced TAC/d quartiles, respectively. For females, there was no significant difference in US population-reference TAC/d quartile by borough (χ(2)(12)=1.09, p=0.36). These results demonstrate the utility of population-referenced TAC/d percentiles in public health monitoring and surveillance. These findings also provide insights into the PA levels of NYC residents relative to the broader US population, which can be used to guide health promotion efforts. Published by Elsevier Inc.

  20. Use of population-referenced total activity counts percentiles to assess and classify physical activity of population groups

    PubMed Central

    Wolff-Hughes, Dana L.; Troiano, Richard P.; Boyer, William R.; Fitzhugh, Eugene C.; McClain, James J.

    2016-01-01

    Objectives Population-referenced total activity counts per day (TAC/d) percentiles provide public health practitioners a standardized measure of physical activity (PA) volume obtained from an accelerometer that can be compared across populations. The purpose of this study was to describe the application of TAC/d population-referenced percentiles to characterize the PA levels of population groups relative to US estimates. Methods A total of 679 adults participating in the 2011 NYC Physical Activity Transit survey wore an ActiGraph accelerometer on their hip for seven consecutive days. Accelerometer-derived TAC/d was classified into age- and gender-specific quartiles of US population-referenced TAC/d to compare differences in the distributions by borough (N=5). Results Males in Brooklyn, Manhattan, and Staten Island had significantly greater TAC/d than US males. Females in Brooklyn and Queens had significantly greater levels of TAC/d compared to US females. The proportion of males in each population-referenced TAC/d quartile varied significantly by borough (χ2(12)=2.63, p=0.002), with disproportionately more men in Manhattan and the Bronx found to be in the highest and lowest US population-referenced TAC/d quartiles, respectively. For females, there was no significant difference in US population-reference TAC/d quartile by borough (χ2(12)=1.09, p=0.36). Conclusions These results demonstrate the utility of population-referenced TAC/d percentiles in public health monitoring and surveillance. These findings also provide insights into the PA levels of NYC residents relative to the broader US population, which can be used to guide health promotion efforts. PMID:26876630

  1. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging

    PubMed Central

    Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi

    2014-01-01

    Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467

  2. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-09-01

    Host-associated bacterial communities on the skin act as the first line of defence against invading pathogens. Yet, for most natural systems, we lack a clear understanding of how temperature variability affects structure and composition of skin bacterial communities and, in turn, promotes or limits the colonization of opportunistic pathogens. Here, we examine how natural temperature fluctuations might be related to changes in skin bacterial diversity over time in three amphibian populations infected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Our focal host species (Eleutherodactylus coqui) is a direct-developing frog that has suffered declines at some populations in the last 20 years, while others have not experienced any changes. We quantified skin bacterial alpha- and beta-diversity at four sampling time points, a period encompassing two seasons and ample variation in natural infections and environmental conditions. Despite the different patterns of infection across populations, we detected an overall increase in bacterial diversity through time, characterized by the replacement of bacterial operational taxonomic units (OTUs). Increased frog body temperatures possibly allowed the colonization of bacteria as well as the recruitment of a subset of indicator OTUs, which could have promoted the observed changes in diversity patterns. Our results suggest that natural environmental fluctuations might be involved in creating opportunities for bacterial replacement, potentially attenuating pathogen transmission and thus contributing to host persistence in E. coqui populations. © 2017 John Wiley & Sons Ltd.

  3. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens.

    PubMed

    Bhattacharya, Debanjana; Bhattacharya, Semantee; Patra, Madhu Manti; Chakravorty, Somnath; Sarkar, Soumyadev; Chakraborty, Writachit; Koley, Hemanta; Gachhui, Ratan

    2016-12-01

    The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration. Kombucha fermented for 14 days showed maximum activity against the bacterial strains. Its ethyl acetate extract was found to be the most effective upon sequential solvent extraction of the 14-day Kombucha. This potent ethyl acetate extract was then subjected to thin layer chromatography for further purification of antibacterial ingredients which led to the isolation of an active polyphenolic fraction. Catechin and isorhamnetin were detected as the major antibacterial compounds present in this polyphenolic fraction of Kombucha by High Performance Liquid Chromatography. Catechin, one of the primary antibacterial polyphenols in tea was also found to be present in Kombucha. But isorhamnetin is not reported to be present in tea, which may thereby suggest the role of fermentation process of black tea for its production in Kombucha. To the best of our knowledge, this is the first report on the presence of isorhamnetin in Kombucha. The overall study suggests that Kombucha can be used as a potent antibacterial agent against entero-pathogenic bacterial infections, which mainly is attributed to its polyphenolic content.

  4. Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase.

    PubMed

    Cheng, Huijun; Asakura, Yuya; Kanda, Kosuke; Fukui, Ryo; Kawano, Yoshihisa; Okugawa, Yuki; Tashiro, Yukihiro; Sakai, Kenji

    2018-04-12

    Autothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation. Cell lysis activities toward gram-negative bacteria, but not gram-positive bacteria, were detected in the ATAD samples in the middle and final phases. During shaking incubation in initial-phase samples at 30 °C, major operational taxonomic units (OTUs) related to Acinetobacter indicus and Arcobacter cibarius dramatically increased along with decreases in several major OTUs. In middle-phase samples at 45 °C, we observed a major alteration of OTUs related to Caldicellulosiruptor bescii and Aciditerrimonas ferrireducens, together with distinct decreases in several other OTUs. Final-phase samples maintained a stable bacterial community with major OTUs showing limited similarities to Heliorestis baculata, Caldicellulosiruptorbescii, and Ornatilinea apprima. In conclusion, the changes in the bacterial community observed during ATAD could be partially attributed to the cell lysis activity toward gram-negative bacteria in the middle and final phases. The microcosm assay suggested that certain physical factors, such as a high oxygen supply and shearing forces, also might contribute to bacterial community changes in the initial and middle phases, and to the stable bacterial community in the final phase of ATAD. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Factors contributing to bacterial bulb rots of onion

    USDA-ARS?s Scientific Manuscript database

    The incidence of bacterial rots of onion bulbs is increasing and has become a serious problem for growers. This increase is likely due to a combination of factors, such as high bacterial populations in soils and irrigation water, heavy rains flooding production fields, higher temperatures, etc. It m...

  6. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms.

    PubMed

    Scherwinski, Katja; Grosch, Rita; Berg, Gabriele

    2008-04-01

    The aim of this study was to assess the biocontrol efficacy against Rhizoctonia solani of three bacterial antagonists introduced into naturally Rhizoctonia-infested lettuce fields and to analyse their impact on the indigenous plant-associated bacteria and fungi. Lettuce seedlings were inoculated with bacterial suspensions of two endophytic strains, Serratia plymuthica 3Re4-18 and Pseudomonas trivialis 3Re2-7, and with the rhizobacterium Pseudomonas fluorescens L13-6-12 7 days before and 5 days after planting in the field. Similar statistically significant biocontrol effects were observed for all applied bacterial antagonists compared with the uninoculated control. Single-strand conformation polymorphism analysis of 16S rRNA gene or ITS1 fragments revealed a highly diverse rhizosphere and a less diverse endophytic microbial community for lettuce. Representatives of several bacterial (Alpha-, Beta- and Gammaproteobacteria, Firmicutes, Bacteriodetes), fungal (Ascomycetes, Basidiomycetes) and protist (Oomycetes) groups were present inside or on lettuce plants. Surprisingly, given that lettuce is a vegetable that is eaten raw, species of genera such as Flavobacterium, Burkholderia, Staphylococcus, Cladosporium and Aspergillus, which contain potentially human pathogenic strains, were identified. Analysis of the indigenous bacterial and endophytic fungal populations revealed only negligible, short-term effects resulting from the bacterial treatments, and that they were more influenced by field site, plant growth stage and microenvironment.

  7. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    PubMed

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. © 2016 Wiley Periodicals, Inc.

  8. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction.

    PubMed

    Leveau, Johan H J; Preston, Gail M

    2008-01-01

    This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.

  9. Steady at the wheel: conservative sex and the benefits of bacterial transformation

    PubMed Central

    Ambur, Ole Herman; Engelstädter, Jan; Johnsen, Pål J.

    2016-01-01

    Many bacteria are highly sexual, but the reasons for their promiscuity remain obscure. Did bacterial sex evolve to maximize diversity and facilitate adaptation in a changing world, or does it instead help to retain the bacterial functions that work right now? In other words, is bacterial sex innovative or conservative? Our aim in this review is to integrate experimental, bioinformatic and theoretical studies to critically evaluate these alternatives, with a main focus on natural genetic transformation, the bacterial equivalent of eukaryotic sexual reproduction. First, we provide a general overview of several hypotheses that have been put forward to explain the evolution of transformation. Next, we synthesize a large body of evidence highlighting the numerous passive and active barriers to transformation that have evolved to protect bacteria from foreign DNA, thereby increasing the likelihood that transformation takes place among clonemates. Our critical review of the existing literature provides support for the view that bacterial transformation is maintained as a means of genomic conservation that provides direct benefits to both individual bacterial cells and to transformable bacterial populations. We examine the generality of this view across bacteria and contrast this explanation with the different evolutionary roles proposed to maintain sex in eukaryotes.  This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619692

  10. Steady at the wheel: conservative sex and the benefits of bacterial transformation.

    PubMed

    Ambur, Ole Herman; Engelstädter, Jan; Johnsen, Pål J; Miller, Eric L; Rozen, Daniel E

    2016-10-19

    Many bacteria are highly sexual, but the reasons for their promiscuity remain obscure. Did bacterial sex evolve to maximize diversity and facilitate adaptation in a changing world, or does it instead help to retain the bacterial functions that work right now? In other words, is bacterial sex innovative or conservative? Our aim in this review is to integrate experimental, bioinformatic and theoretical studies to critically evaluate these alternatives, with a main focus on natural genetic transformation, the bacterial equivalent of eukaryotic sexual reproduction. First, we provide a general overview of several hypotheses that have been put forward to explain the evolution of transformation. Next, we synthesize a large body of evidence highlighting the numerous passive and active barriers to transformation that have evolved to protect bacteria from foreign DNA, thereby increasing the likelihood that transformation takes place among clonemates. Our critical review of the existing literature provides support for the view that bacterial transformation is maintained as a means of genomic conservation that provides direct benefits to both individual bacterial cells and to transformable bacterial populations. We examine the generality of this view across bacteria and contrast this explanation with the different evolutionary roles proposed to maintain sex in eukaryotes. This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  11. Interactions Between QTL SAP6 and SU91 on Resistance to Common Bacterial Blight in Red Kidney Bean and Pinto Bean Populations

    USDA-ARS?s Scientific Manuscript database

    Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. We examined the interaction between two independent QTL, SAP6 and SU91, which condition resistance to CBB.The QTL were studied in a pinto bean F2 population a cross between Othello (sap6 sap6 //...

  12. Aerobic biological treatment of low-strength synthetic wastewater in membrane-coupled bioreactors: the structure and function of bacterial enrichment cultures as the net growth rate approaches zero.

    PubMed

    Chen, Ruoyu; LaPara, Timothy M

    2006-01-01

    The goal of the current research was to determine if the stringent nutrient limitation imposed by membrane-coupled bioreactors (MBRs) could be used to force mixed bacterial communities to exhibit a zero net growth rate over an extended time period. Mechanistically, this zero net growth rate could be achieved when the amount of energy available for growth is balanced by the maintenance requirements of the bacterial community. Bench-scale MBRs were fed synthetic feed medium containing gelatin as the major organic substrate. Biomass concentrations initially increased rapidly, but subsequently declined until an asymptote was reached. Leucine aminopeptidase activities concomitantly increased by at least 10-fold, suggesting that bacterial catabolic activity remained high even while growth rates became negligible. In contrast, alpha-glucosidase and heptanoate esterase activities decreased, indicating that the bacterial community specifically adapted to the carbon source in the feed medium. Bacterial community analysis by denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments (PCR-DGGE) suggested that the bacterial community structure completely changed from the beginning to the end of each MBR. Excision and nucleotide sequence analysis of prominent PCR-DGGE bands suggested that many of the dominant populations were similar to novel bacterial strains that were previously uncultivated or recently cultivated during studies specifically targeting these novel populations. This research demonstrates that MBRs have substantial practical applications for biological wastewater treatment; in addition, MBRs are a useful tool to study the ecology of slow-growing bacteria.

  13. Bacterial symbionts and natural products.

    PubMed

    Crawford, Jason M; Clardy, Jon

    2011-07-21

    The study of bacterial symbionts of eukaryotic hosts has become a powerful discovery engine for chemistry. This highlight looks at four case studies that exemplify the range of chemistry and biology involved in these symbioses: a bacterial symbiont of a fungus and a marine invertebrate that produce compounds with significant anticancer activity, and bacterial symbionts of insects and nematodes that produce compounds that regulate multilateral symbioses.

  14. Visualizing the response of a gut bacterial population to antibiotic perturbations

    NASA Astrophysics Data System (ADS)

    Schlomann, Brandon; Wiles, Travis; Guillemin, Karen; Parthasarathy, Raghuveer

    Each of our intestines is home to a vast ecosystem composed of trillions of bacteria in a dynamic environment. Bacterial communities face fluctuations in nutrient influx, invasions by new microbes, physical disturbances from peristalsis, and, perhaps, the arrival of antibiotic drugs. Metagenomic profiling has shown that antibiotic treatments can cause major changes in the composition of species present in the gut, at timescales shorter than a day. How this happens is unknown, as these dynamics have never been observed directly. I'll present recent work that addresses this by using well-defined microbial communities in a model organism, the zebrafish. Light Sheet Fluorescence Microscopy is used to image a commensal species of Vibrioresponding to antibiotic perturbations in the guts of live, larval fish. We find that sub-lethal concentrations of different classes of antibiotics induce similar physical responses in Vibrio, namely filamentation and reduction of motility. The arrested bacteria then aggregate and can be ejected via peristalsis, resulting in large population collapses. These observations suggest that antibiotics can cause large disruptions to gut ecosystems even in low concentrations, and that physical processes may be important drivers of response dynamics.

  15. Serum procalcitonin has negative predictive value for bacterial infection in active systemic lupus erythematosus.

    PubMed

    Bador, K M; Intan, S; Hussin, S; Gafor, A H A

    2012-10-01

    Previous studies in systemic lupus erythematosus (SLE) patients have produced conflicting results regarding the diagnostic utility of procalcitonin (PCT). The aim of this study was to determine predictive values of PCT and C-reactive protein (CRP) for bacterial infection in SLE patients. This was a cross-sectional study of clinic and hospitalized SLE patients with and without bacterial infection recruited over 18 months. Bacterial infection was defined as positive culture results. SLE disease activity was measured using SLEDAI. PCT and CRP were measured by automated immunoassays. Sixty-eight patients (57 females) were studied. Ten patients (15%) had infection. The areas under the receiver operating characteristic curves for PCT and CRP were not significantly different [0.797 (CI 0.614-0.979) versus 0.755 (CI 0.600-0.910)]. In lupus flare patients, PCT but not CRP was higher with infection (p = 0.019 versus 0.195). A PCT of <0.17 ng/ml ruled out infection with 94% negative predictive value (NPV). In remission patients, CRP but not PCT was elevated with infection (p = 0.036 versus 0.103). CRP < 0.57 mg/dl had 96% NPV. PCT may be a better marker to rule out bacterial infection in lupus flare but not in remission or general screening.

  16. Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome

    PubMed Central

    Keely, Simon; Kelly, Caleb J.; Weissmueller, Thomas; Burgess, Adrianne; Wagner, Brandie D.; Robertson, Charles E.; Harris, J. Kirk; Colgan, Sean P.

    2012-01-01

    Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl- secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p < 0.001) and decreased S. typhimurium internalization and translocation by as much as 71 ± 6% (p < 0.01). Such decreases in bacterial translocation were abolished by inhibition of electrogenic Cl- secretion and water transport using the Na-K-Cl- antagonist bumetanide (p < 0.01). Extensions of these findings to microbiome analysis in vivo revealed that lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl- secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism. PMID:22614705

  17. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  18. The Heterotrophic Bacterial Response During the Meso-scale Southern Ocean Iron Experiment (SOFeX)

    NASA Astrophysics Data System (ADS)

    Oliver, J. L.; Barber, R. T.; Ducklow, H. W.

    2002-12-01

    Previous meso-scale iron enrichments have demonstrated the stimulatory effect of iron on primary productivity and the accelerated flow of carbon into the surface ocean foodweb. In stratified waters, heterotrophic activity can work against carbon export by remineralizing POC and/or DOC back to CO2, effectively slowing the biological pump. To assess the response of heterotrophic activity to iron enrichment, we measured heterotrophic bacterial production and abundance during the Southern Ocean Iron Experiment (SOFeX). Heterotrophic bacterial processes primarily affect the latter of the two carbon export mechanisms, removal of DOC to the deep ocean. Heterotrophic bacterial production (BP), measured via tritiated thymidine (3H-TdR) and leucine (3H-Leu) incorporation, increased ~40% over the 18-d observation period in iron fertilized waters south of the Polar Front (South Patch). Also, South Patch BP was 61% higher than in the surrounding unfertilized waters. Abundance, measured by flow cytometry (FCM) and acridine orange direct counts (AODC), also increased in the South Patch from 3 to 5 x 108 cells liter-1, a 70% increase. Bacterial biomass increased from ~3.6 to 6.3 μg C liter-1, a clear indication that production rates exceeded removal rates (bactivory, viral lysis) over the course of 18 days. Biomass within the fertilized patch was 11% higher than in surrounding unfertilized waters reflecting a similar trend. This pattern is in contrast to SOIREE where no accumulation of biomass was observed. High DNA-containing (HDNA) cells detected by FCM also increased over time in iron fertilized waters from 20% to 46% relative to the total population suggesting an active subpopulation of cells that were growing faster than the removal rates. In iron fertilized waters north of the Polar Front (North Patch), BP and abundance were ~90% and 80% higher, respectively, than in unfertilized waters. Our results suggest an active bacterial population that responded to iron fertilization

  19. A size-structured model of bacterial growth and reproduction.

    PubMed

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  20. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  1. The intrinsic resistome of bacterial pathogens.

    PubMed

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  2. Broad activity of diphenyleneiodonium analogues against Mycobacterium tuberculosis, malaria parasites and bacterial pathogens.

    PubMed

    Nguyen, Nghi; Wilson, Danny W; Nagalingam, Gayathri; Triccas, James A; Schneider, Elena K; Li, Jian; Velkov, Tony; Baell, Jonathan

    2018-03-25

    In this study, a structure-activity relationship (SAR) compound series based on the NDH-2 inhibitor diphenyleneiodonium (DPI) was synthesised. Compounds were evaluated primarily for in vitro efficacy against Gram-positive and Gram-negative bacteria, commonly responsible for nosocomial and community acquired infections. In addition, we also assessed the activity of these compounds against Mycobacterium tuberculosis (Tuberculosis) and Plasmodium spp. (Malaria). This led to the discovery of highly potent compounds active against bacterial pathogens and malaria parasites in the low nanomolar range, several of which were significantly less toxic to mammalian cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Epidemiology of bacterial meningitis in the USA from 1997 to 2010: a population-based observational study.

    PubMed

    Castelblanco, Rodrigo Lopez; Lee, MinJae; Hasbun, Rodrigo

    2014-09-01

    Bacterial meningitis continues to be a substantial cause of morbidity and mortality, but the epidemiological trends after adjunctive dexamethasone recommendations are unknown in the USA. We aimed to describe the changing patterns among the most common bacterial causes in the USA after conjugate vaccination and to assess the association between adjunctive dexamethasone and mortality. For this population-based observational study, we searched information available from hospital discharges about incidence and inpatient mortality for the most important causes of community and nosocomial bacterial meningitis based on International Classification of Diseases coding across all hospitals in the USA between 1997 and 2010 with the HealthCare Cost Utilization Project (HCUP) network database. We calculated incidences according to US Census Bureau data and used a negative binomial regression model to evaluate the significance of changes over time. We assessed mortality from pneumococcus for three periods 1997-2001 (baseline), 2002-04 (transition years), and 2005-08 (after corticosteroid recommendations were available). Streptococcus pneumoniae incidence fell from 0·8 per 100 000 people in 1997, to 0·3 per 100 000 people by the end of 2010 (RR 0·3737, 95% CI 0·1825-0·7656). Mortality from pneumococcal meningitis decreased between 2005 (0·049 per 100 000 people) and 2008 (0·024 per 100 000 people) compared with between 2002 (0·073 per 100 000 people) and 2004 (0·063 per 100 000 people; RR 0·5720, 95% CI 0·4303-0·7582). The incidence of Neisseria meningitidis infection decreased from 0·721 per 100 000 people in 1997, to 0·123 per 100 000 people in 2010 (RR 0·1386, 95% CI 0·048-0·4284), which has placed this pathogen close to common bacterial causes of nosocomial meningitis such as staphylococcus and Gram-negative bacteria and to Haemophilus influenzae. S pneumoniae continues to be the leading identifiable cause of bacterial meningitis in the USA

  4. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.

    PubMed

    Min, B R; Pinchak, W E; Anderson, R C; Hume, M E

    2006-10-01

    on d 50 for bloated than for nonbloated steers when grazing wheat forage. The molecular analysis of the 16S rDNA showed that 2 different ruminal microbiota populations developed between bloated and nonbloated animals grazing wheat forage. Bloat in cattle grazing wheat pastures may be caused by increased production of biofilm, resulting from a diet-influenced switch in the rumen bacterial population.

  5. Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community

    NASA Astrophysics Data System (ADS)

    Patching, J. W.; Eardly, D.

    1997-09-01

    Bacterial biomass and activity were investigated in deep waters at two sites in the eastern Atlantic, of similar depth (4560-4800 m), but varying in their nutritional status. The Northern (N) site was eutrophic and subject to a strong seasonal input of surface derived organic matter (phytodetritus) to the sediment. The Southern (S) site was oligotrophic. Deep water at this site does not appear to receive any strong seasonal input. Bacterial numbers in the deep water column at the N site showed no significant seasonal variation but were greater than those at the S site. Deep water bacteria were typically small and free-living. From biovolume determinations, it was estimated that mean concentrations of bacterial organic carbon at depths greater than 500 m were 0.12 (0.03-0.29) μg C 1 -1 and 0.02 (0.01-0.04) μg C 1 -1 at the N and S sites, respectively. Rates of thymidine and leucine incorporation were used as indicators of bacterial activity. Bacterial communities in water in contact with the sediment (SCW; sediment contact water) at both sites (but especially at the S site) were strongly barophilic at in situ temperatures (2.5-4.1°C). The barophilic response of thymidine incorporation was enhanced when SCW samples from the N site were incubated at 11.5°C. It is proposed that this result indicated an elevating effect of pressure on cardinal temperatures and that the SCW community was obligately psychrophilic when unpressurised. Comparison of cell-specific incorporation rates determined under in situ conditions showed bacteria in the SCW to have levels of activity comparable with bacteria from a depth of 150 m. Thymidine incorporation rates were highest in SCW samples taken at the N site in May 1988 and September 1989. Thymidine incorporation by SCW samples taken immediately before (10 April 1994) the main spring-bloom-associated deposition of phytodetritus was significantly lower and comparable with that determined for the oligotrophic S site. The attributes

  6. An Improved Ivermectin-activated Chloride Channel Receptor for Inhibiting Electrical Activity in Defined Neuronal Populations*

    PubMed Central

    Lynagh, Timothy; Lynch, Joseph W.

    2010-01-01

    The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity. Several neuronal silencing methods have been developed, with the bacterial light-activated halorhodopsin and the invertebrate allatostatin-activated G protein-coupled receptor proving the most successful to date. However, both techniques may be difficult to implement clinically due to their requirement for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain following systemic administration. However, the limitations of this method include poor functional expression, possibly due to the requirement to coexpress two different subunits in individual neurons, and the nonhuman origin of GluClR. Here, we describe the development of a modified human α1 glycine receptor as an improved ivermectin-gated silencing receptor. The crucial development was the identification of a mutation, A288G, which increased ivermectin sensitivity almost 100-fold, rendering it similar to that of GluClR. Glycine sensitivity was eliminated via the F207A mutation. Its large unitary conductance, homomeric expression, and human origin may render the F207A/A288G α1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue appears essential for exquisite ivermectin sensitivity. PMID:20308070

  7. Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons.

    PubMed

    Donnelly, A P; Herbert, R A

    1998-12-01

    Rooted phanerogam communities in the shallow intertidal and subtidal coastal zone represent productive and healthy ecosystems. Inorganic nutrients are assimilated into seagrass biomass. Much of the organic matter resulting from moribund seagrass is rapidly mineralized, principally by bacteria. The microbial community of the rhizosphere is also highly active due to the supply of organic matter released during photosynthesis. This active sediment community plays an important role through carbon, nitrogen and phosphorous cycling in maintaining the stability and productivity of seagrass meadows. Over the last two decades, however, seagrass meadows in European coastal areas have declined due to increasing pollution. As eutrophication advances a trasition occurs from rooted phanerogram dominated communities to planktonic algal blooms and/or cyanobacterial blooms. Such changes represent the decline of a stable, high biodiversity habitat to an unstable one dominated by a few species. These changes of community structure can occur rapidly once the internal nutrient and organic matter control cycles are exceeded. A field investigation was undertaken to establish the spatial distribution of bacterial populations of Zostera noltii colonized and uncolonized sediment in the Bassin d'Arcachon, France. Bacteria were enumerated using both plate count and MPN techniques for different functional groups as well as determining the total bacterial populations present. Nitrogen fixation, ammonification, sulphate reduction rates, as well as alkaline phosphatase activity were also determined. Colonization of the Z. noltii roots and rhizomes was studied by light and scanning electron microscopy. Results confirmed that higher bacterial populations were present in the rhizosphere of Z. noltii compared to uncolonized sediments. Furthermore, electron microscopy identified the rhizome as the main site of colonization for a diverse range of morphological groups of bacteria. Sulphate reducing

  8. A Stable Bacterial Peroxidase with Novel Halogenating Activity and an Autocatalytically Linked Heme Prosthetic Group*

    PubMed Central

    Auer, Markus; Gruber, Clemens; Bellei, Marzia; Pirker, Katharina F.; Zamocky, Marcel; Kroiss, Daniela; Teufer, Stefan A.; Hofbauer, Stefan; Soudi, Monika; Battistuzzi, Gianantonio; Furtmüller, Paul G.; Obinger, Christian

    2013-01-01

    Reconstructing the phylogenetic relationships of the main evolutionary lines of the mammalian peroxidases lactoperoxidase and myeloperoxidase revealed the presence of novel bacterial heme peroxidase subfamilies. Here, for the first time, an ancestral bacterial heme peroxidase is shown to possess a very high bromide oxidation activity (besides conventional peroxidase activity). The recombinant protein allowed monitoring of the autocatalytic peroxide-driven formation of covalent heme to protein bonds. Thereby, the high spin ferric rhombic heme spectrum became similar to lactoperoxidase, the standard reduction potential of the Fe(III)/Fe(II) couple shifted to more positive values (−145 ± 10 mV at pH 7), and the conformational and thermal stability of the protein increased significantly. We discuss structure-function relationships of this new peroxidase in relation to its mammalian counterparts and ask for its putative physiological role. PMID:23918925

  9. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  10. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization.

    PubMed

    Enwall, Karin; Philippot, Laurent; Hallin, Sara

    2005-12-01

    The objective of this study was to explore the long-term effects of different organic and inorganic fertilizers on activity and composition of the denitrifying and total bacterial communities in arable soil. Soil from the following six treatments was analyzed in an experimental field site established in 1956: cattle manure, sewage sludge, Ca(NO3)2, (NH4)2SO4, and unfertilized and unfertilized bare fallow. All plots but the fallow were planted with corn. The activity was measured in terms of potential denitrification rate and basal soil respiration. The nosZ and narG genes were used as functional markers of the denitrifying community, and the composition was analyzed using denaturing gradient gel electrophoresis of nosZ and restriction fragment length polymorphism of narG, together with cloning and sequencing. A fingerprint of the total bacterial community was assessed by ribosomal intergenic spacer region analysis (RISA). The potential denitrification rates were higher in plots treated with organic fertilizer than in those with only mineral fertilizer. The basal soil respiration rates were positively correlated to soil carbon content, and the highest rates were found in the plots with the addition of sewage sludge. Fingerprints of the nosZ and narG genes, as well as the RISA, showed significant differences in the corresponding communities in the plots treated with (NH4)2SO4 and sewage sludge, which exhibited the lowest pH. In contrast, similar patterns were observed among the other four treatments, unfertilized plots with and without crops and the plots treated with Ca(NO3)2 or with manure. This study shows that the addition of different fertilizers affects both the activity and the composition of the denitrifying communities in arable soil on a long-term basis. However, the treatments in which the denitrifying and bacterial community composition differed the most did not correspond to treatments with the most different activities, showing that potential activity

  11. Bacterial meningitis in alcoholic patients: A population-based prospective study.

    PubMed

    van Veen, Kiril E B; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2017-04-01

    To study clinical features and outcome of community-acquired bacterial meningitis in alcoholic patients. Patients with a history of alcoholism were selected from our nationwide, prospective cohort on community-acquired bacterial meningitis performed from March 2006 to October 2014. Data on patient history, symptoms and signs on admission, treatment, and outcome were prospectively collected. Of 1359 included episodes, 88 episodes (6%) occurred in 88 alcoholic patients. Seizures as presenting symptom were present in 18% alcoholic patients, and 23% presented with co-existing pneumonia. Causative organisms were Streptococcus pneumoniae in 76%, Listeria monocytogenes in 8%, and Neisseria meningitidis in 6% of patients. A high rate of systemic complications occurred with respiratory failure in 40% and endocarditis in 9% of patients. Outcome was unfavorable in 58% of alcoholic patients, and 25% died. Alcoholism was associated with unfavorable outcome in a multivariate analysis (OR 1.96; 95% CI 1.12-3.46; P = 0.019), but not with death (OR 0.76; 95% CI 0.35-1.68; P = 0.762). Alcoholic bacterial meningitis patients often have an unfavorable outcome, which appears to result from a high rate of systemic complications, mainly respiratory failure. Seizures are common in alcoholic patients and warrant caution of development of an alcohol withdrawal syndrome. Copyright © 2017. Published by Elsevier Ltd.

  12. Characterization of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica

    PubMed Central

    Madison, Joseph D.; Berg, Elizabeth A.; Abarca, Juan G.; Whitfield, Steven M.; Gorbatenko, Oxana; Pinto, Adrian; Kerby, Jacob L.

    2017-01-01

    Global amphibian declines and extinction events are occurring at an unprecedented rate. While several factors are responsible for declines and extinction, the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been cited as a major constituent in these events. While the effects of this chytrid fungus have been shown to cause broad scale population declines and extinctions, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous bacterial microbiome. Here, we present the first study characterizing anti-Bd bacterial isolates from amphibian populations in Costa Rica, including the characterization of two strains of Serratia marcescens presenting strong anti-Bd activity. Transcriptome sequencing was utilized for delineation of shifts in gene expression of the two previously uncharacterized strains of S. marcescens grown in three different treatments comprising Bd, heat-killed Bd, and a no Bd control. These results revealed up- and down-regulation of key genes associated with different metabolic and regulatory pathways. This information will be valuable in continued efforts to develop a bacterial-based approach for amphibian protection as well as providing direction for continued mechanistic inquiries of the bacterial anti-Bd response. PMID:28293222

  13. Enhanced particle fluxes and heterotrophic bacterial activities in Gulf of Mexico bottom waters following storm-induced sediment resuspension

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Dike, C.; Asper, V.; Montoya, J.; Battles, J.; D`souza, N.; Passow, U.; Diercks, A.; Esch, M.; Joye, S.; Dewald, C.; Arnosti, C.

    2016-07-01

    Bottom nepheloid layers (BNLs) in the deep sea transport and remobilize considerable amounts of particulate matter, enhancing microbial cycling of organic matter in cold, deep water environments. We measured bacterial abundance, bacterial protein production, and activities of hydrolytic enzymes within and above a BNL that formed in the deep Mississippi Canyon, northern Gulf of Mexico, shortly after Hurricane Isaac had passed over the study area in late August 2012. The BNL was detected via beam attenuation in CTD casts over an area of at least 3.5 km2, extending up to 200 m above the seafloor at a water depth of 1500 m. A large fraction of the suspended matter in the BNL consisted of resuspended sediments, as indicated by high levels of lithogenic material collected in near-bottom sediment traps shortly before the start of our sampling campaign. Observations of suspended particle abundance and sizes throughout the water column, using a combined camera-CTD system (marine snow camera, MSC), revealed the presence of macroaggregates (>1 mm in diameter) within the BNL, indicating resuspension of canyon sediments. A distinct bacterial response to enhanced particle concentrations within the BNL was evident from the observation that the highest enzymatic activities (peptidase, β-glucosidase) and protein production (3H-leucine incorporation) were found within the most particle rich sections of the BNL. To investigate the effects of enhanced particle concentrations on bacterial activities in deep BNLs more directly, we conducted laboratory experiments with roller bottles filled with bottom water and amended with experimentally resuspended sediments from the study area. Macroaggregates formed within 1 day from resuspended sediments; by day 4 of the incubation bacterial cell numbers in treatments with resuspended sediments were more than twice as high as in those lacking sediment suspensions. Cell-specific enzymatic activities were also generally higher in the sediment

  14. Investigation of bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR) to decrease the generation of excess sludge.

    PubMed

    Kim, Young Mo; Chon, Dong-Hyun; Kim, Hee-Sik; Park, Chul

    2012-09-01

    The goal of this study was to investigate the bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR), a process permitting significant decrease in sludge production during wastewater treatment. The study operated five activated sludge systems with different sludge treatment schemes serving as various controls for the activated sludge with ASSR. Bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE), sequencing and construction of phylogenetic relationships of the identified bacteria. The DGGE data showed that activated sludge incorporating ASSR contained higher diversity of bacteria, resulting from long solids retention time and recirculation of sludge under aerobic and anaerobic conditions. The similarity of DGGE profiles between ASSR and separate anaerobic digester (control) was high indicating that ASSR is primarily related to conventional anaerobic digesters. Nevertheless, there was also unique bacteria community appearing in ASSR. Interestingly, sludge in the main system and in ASSR showed considerably different bacterial composition indicating that ASSR allowed enriching its own bacterial community different than that from the aeration basin, although two reactors were connected via sludge recirculation. In activated sludge with ASSR, sequences represented by predominant DGGE bands were affiliated with Proteobacteria. The remaining groups were composed of Spirochaetes, Clostridiales, Chloroflexi, and Actinobacteria. Their putative role in the activated sludge with ASSR is also discussed in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Protozoan, Bacterial, and Volatile Fatty Acid Changes Associated with Feeding Tylosin

    PubMed Central

    Satapathy, N.; Purser, D. B.

    1967-01-01

    Tylosin was fed to two of six wethers for 79 days, to a second two for only 28 days, and not at all to a third pair (controls). The addition of tylosin to the daily feed resulted in a rapid twofold increase in protozoal concentration and a change in the composition or characteristics, or both, of the bacterial population. The results indicate that the bacterial population was modified to the extent of about 80%. Total acid concentrations were initially depressed but appeared to be greater than those in control animals at the termination of the experiment. Deletion of tylosin from the ration resulted in a rapid decrease in protozoal concentrations, whereas changes in the bacterial population did not occur for a further 30 days. PMID:16349756

  16. In vitro activity of AT-4140 against clinical bacterial isolates.

    PubMed

    Kojima, T; Inoue, M; Mitsuhashi, S

    1989-11-01

    The activity of AT-4140, a new fluoroquinolone, was evaluated against a wide range of clinical bacterial isolates and compared with those of existing analogs. AT-4140 had a broad spectrum and a potent activity against gram-positive and -negative bacteria, including Legionella spp. and Bacteroides fragilis. The activity of AT-4140 against gram-positive and -negative cocci, including Acinetobacter calcoaceticus, was higher than those of ciprofloxacin, ofloxacin, and norfloxacin. Its activity against gram-negative rods was generally comparable to that of ciprofloxacin. Some isolates of methicillin-resistant Staphylococcus aureus (MIC of methicillin, greater than or equal to 12.5 micrograms/ml) were resistant to existing quinolones, but many of them were still susceptible to AT-4140 at concentrations below 0.39 micrograms/ml. The MICs of AT-4140, ciprofloxacin, ofloxacin, and norfloxacin for 90% of clinical isolates of methicillin-resistant S. aureus were 0.2, 12.5, 6.25, and 100 micrograms/ml, respectively. AT-4140 was bactericidal for each of 20 clinical isolates of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas aeruginosa at concentrations near the MICs. AT-4140 inhibited the supercoiling activity of DNA gyrase from E. coli.

  17. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt.

    PubMed

    Vu, Thuy Thu; Kim, Hun; Tran, Vu Khac; Vu, Hoang Dinh; Hoang, Tien Xuan; Han, Jae Woo; Choi, Yong Ho; Jang, Kyoung Soo; Choi, Gyung Ja; Kim, Jin-Cheol

    2017-01-01

    In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26-52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26-250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato.

  18. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt

    PubMed Central

    Vu, Thuy Thu; Kim, Hun; Tran, Vu Khac; Vu, Hoang Dinh; Hoang, Tien Xuan; Han, Jae Woo; Choi, Yong Ho; Jang, Kyoung Soo; Choi, Gyung Ja

    2017-01-01

    In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26–52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26–250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato. PMID:28742863

  19. Population PK Modeling and Target Attainment Simulations to Support Dosing of Ceftaroline Fosamil in Pediatric Patients With Acute Bacterial Skin and Skin Structure Infections and Community-Acquired Bacterial Pneumonia.

    PubMed

    Riccobene, Todd A; Khariton, Tatiana; Knebel, William; Das, Shampa; Li, James; Jandourek, Alena; Carrothers, Timothy J; Bradley, John S

    2017-03-01

    Ceftaroline, the active form of the prodrug ceftaroline fosamil, is approved for use in adults with community-acquired bacterial pneumonia (CABP) or acute bacterial skin and skin structure infections (ABSSSI) in the United States and for similar indications in Europe. Pharmacokinetic (PK) data from 5 pediatric (birth to <18 years) studies of ceftaroline fosamil were combined with PK data from adults to update a population PK model for ceftaroline and ceftaroline fosamil. This model, based on a data set including 305 children, was used to conduct simulations to estimate ceftaroline exposures and percentage of time that free drug concentrations were above the minimum inhibitory concentration (%fT>MIC) for pediatric dose regimens. With dose regimens of 8 mg/kg every 8 hours (q8h) in children aged 2 months to <2 years and 12 mg/kg (up to a maximum of 400 mg) q8h in children aged 2 years to <18 years or 600 mg q12h in children aged 12 to <18 years, >90% of children were predicted to achieve a target of 36% fT>MIC at an MIC of 2 mg/L, and >97% were predicted to achieve 44% fT>MIC at an MIC of 1 mg/L. Thus, high PK/pharmacodynamic target attainment would be maintained in children for targets associated with 1-log kill of Staphylococcus aureus and Streptococcus pneumoniae. The predicted ceftaroline exposures for these dose regimens were similar to those in adults given 600 mg q12h ceftaroline fosamil. This work contributed to the approval of dose regimens for children aged 2 months to <18 years by the FDA and EMA, which are presented. © 2016, The American College of Clinical Pharmacology.

  20. YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity

    PubMed Central

    2016-01-01

    SUMMARY Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted “effector” proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. PMID:27784797

  1. YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity.

    PubMed

    Ma, Ka-Wai; Ma, Wenbo

    2016-12-01

    Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Seasonal effects of heat shock on bacterial populations, including artificial Vibrio parahaemolyticus exposure, in the Pacific oyster, Crassostrea gigas.

    PubMed

    Aagesen, Alisha M; Häse, Claudia C

    2014-04-01

    During the warmer summer months, oysters are conditioned to spawn, resulting in massive physiological efforts for gamete production. Moreover, the higher temperatures during the summer typically result in increased bacteria populations in oysters. We hypothesized that these animals are under multiple stresses that lead to possible immune system impairments during the summer months that can possibly lead to death. Here we show that in the summer and the fall animals exposed to a short heat stress respond similarly, resulting in a general trend of more bacteria being found in heat shocked animals than their non-heat shocked counterparts. We also show that naturally occurring bacterial populations are effected by a heat shock. In addition, oysters artificially contaminated with Vibrio parahaemolyticus were also affected by a heat shock. Heat shocked animals contained higher concentrations of V. parahaemolyticus in their tissues and hemolymph than control animals and this was consistent for animals examined during summer and fall. Finally, oyster hemocyte interactions with V. parahaemolyticus differed based on the time of the year. Overall, these findings demonstrate that seasonal changes and/or a short heat shock is sufficient to impact bacterial retention, particularly V. parahaemolyticus, in oysters and this line of research might lead to important considerations for animal harvesting procedures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Activity and Phylogenetic Diversity of Bacterial Cells with High and Low Nucleic Acid Content and Electron Transport System Activity in an Upwelling Ecosystem

    PubMed Central

    Longnecker, K.; Sherr, B. F.; Sherr, E. B.

    2005-01-01

    We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea. PMID:16332746

  4. Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem.

    PubMed

    Longnecker, K; Sherr, B F; Sherr, E B

    2005-12-01

    We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.

  5. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra.

    PubMed

    Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung

    2016-11-01

    The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.

  6. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome.

    PubMed

    Bolten, Marcel; Delley, Cyrille L; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad; Weber-Ban, Eilika

    2016-12-06

    Mycobacterium tuberculosis harbors proteasomes that recruit substrates for degradation through an ubiquitin-like modification pathway. Recently, a non-ATPase activator termed Bpa (bacterial proteasome activator) was shown to support an alternate proteasomal degradation pathway. Here, we present the cryo-electron microscopy (cryo-EM) structure of Bpa in complex with the 20S core particle (CP). For docking into the cryo-EM density, we solved the X-ray structure of Bpa, showing that it forms tight four-helix bundles arranged into a 12-membered ring with a 40 Å wide central pore and the C-terminal helix of each protomer protruding from the ring. The Bpa model was fitted into the cryo-EM map of the Bpa-CP complex, revealing its architecture and striking symmetry mismatch. The Bpa-CP interface was resolved to 3.5 Å, showing the interactions between the C-terminal GQYL motif of Bpa and the proteasome α-rings. This docking mode is related to the one observed for eukaryotic activators with features specific to the bacterial complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil.

    PubMed

    Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas

    2013-10-01

    The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites

  8. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    USDA-ARS?s Scientific Manuscript database

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  9. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  10. Response of Bacterial Metabolic Activity to Riverine Dissolved Organic Carbon and Exogenous Viruses in Estuarine and Coastal Waters: Implications for CO2 Emission

    PubMed Central

    Xu, Jie; Sun, Mingming; Shi, Zhen; Harrison, Paul J.; Liu, Hongbin

    2014-01-01

    A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The bioavailable riverine DOC influenced bulk bacterial respiration in two contrasting ways; it enhanced the bulk BR by stimulating bacterial growth, but simultaneously reduced the cell-specific BR due to its high lability. As a result, there was little stimulation of the bulk BR by riverine DOC. This might be partly responsible for lower CO2 degassing fluxes in estuaries receiving high sewage-DOC that is highly labile. Viruses restricted microbial decomposition of riverine DOC dramatically by repressing the growth of metabolically active bacteria. Bacterial carbon demand in the presence of viruses only accounted for 7–12% of that in the absence of viruses. Consequently, a large fraction of riverine DOC was likely transported offshore to the shelf. In addition, marine bacteria and estuarine bacteria responded distinctly to exogenous viruses. Marine viruses were able to infect estuarine bacteria, but not as efficiently as estuarine viruses, while estuarine viruses infected marine bacteria as efficiently as marine viruses. We speculate that the rapid changes in the viral community due to freshwater input destroyed the existing bacteria-virus relationship, which would change the bacterial community composition and affect the bacterial metabolic activity and carbon cycling in this estuary. PMID:25036641

  11. Response of bacterial metabolic activity to riverine dissolved organic carbon and exogenous viruses in estuarine and coastal waters: implications for CO2 emission.

    PubMed

    Xu, Jie; Sun, Mingming; Shi, Zhen; Harrison, Paul J; Liu, Hongbin

    2014-01-01

    A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The bioavailable riverine DOC influenced bulk bacterial respiration in two contrasting ways; it enhanced the bulk BR by stimulating bacterial growth, but simultaneously reduced the cell-specific BR due to its high lability. As a result, there was little stimulation of the bulk BR by riverine DOC. This might be partly responsible for lower CO2 degassing fluxes in estuaries receiving high sewage-DOC that is highly labile. Viruses restricted microbial decomposition of riverine DOC dramatically by repressing the growth of metabolically active bacteria. Bacterial carbon demand in the presence of viruses only accounted for 7-12% of that in the absence of viruses. Consequently, a large fraction of riverine DOC was likely transported offshore to the shelf. In addition, marine bacteria and estuarine bacteria responded distinctly to exogenous viruses. Marine viruses were able to infect estuarine bacteria, but not as efficiently as estuarine viruses, while estuarine viruses infected marine bacteria as efficiently as marine viruses. We speculate that the rapid changes in the viral community due to freshwater input destroyed the existing bacteria-virus relationship, which would change the bacterial community composition and affect the bacterial metabolic activity and carbon cycling in this estuary.

  12. Bacteriophages and Bacterial Plant Diseases

    PubMed Central

    Buttimer, Colin; McAuliffe, Olivia; Ross, R. P.; Hill, Colin; O’Mahony, Jim; Coffey, Aidan

    2017-01-01

    Losses in crop yields due to disease need to be reduced in order to meet increasing global food demands associated with growth in the human population. There is a well-recognized need to develop new environmentally friendly control strategies to combat bacterial crop disease. Current control measures involving the use of traditional chemicals or antibiotics are losing their efficacy due to the natural development of bacterial resistance to these agents. In addition, there is an increasing awareness that their use is environmentally unfriendly. Bacteriophages, the viruses of bacteria, have received increased research interest in recent years as a realistic environmentally friendly means of controlling bacterial diseases. Their use presents a viable control measure for a number of destructive bacterial crop diseases, with some phage-based products already becoming available on the market. Phage biocontrol possesses advantages over chemical controls in that tailor-made phage cocktails can be adapted to target specific disease-causing bacteria. Unlike chemical control measures, phage mixtures can be easily adapted for bacterial resistance which may develop over time. In this review, we will examine the progress and challenges for phage-based disease biocontrol in food crops. PMID:28163700

  13. The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora.

    PubMed

    Ancona, Veronica; Lee, Jae Hoon; Chatnaparat, Tiyakhon; Oh, Jinrok; Hong, Jong-In; Zhao, Youfu

    2015-04-01

    The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp(0)) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp(0) and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp(0) and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation

  14. The Bacterial Alarmone (p)ppGpp Activates the Type III Secretion System in Erwinia amylovora

    PubMed Central

    Ancona, Veronica; Lee, Jae Hoon; Chatnaparat, Tiyakhon; Oh, Jinrok; Hong, Jong-In

    2015-01-01

    ABSTRACT The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp0) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp0 and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp0 and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for

  15. Synchronization and survival of connected bacterial populations

    NASA Astrophysics Data System (ADS)

    Gokhale, Shreyas; Conwill, Arolyn; Ranjan, Tanvi; Gore, Jeff

    Migration plays a vital role in controlling population dynamics of species occupying distinct habitat patches. While local populations are vulnerable to extinction due to demographic or environmental stochasticity, migration from neighboring habitat patches can rescue these populations through colonization of uninhabited regions. However, a large migratory flux can synchronize the population dynamics in connected patches, thereby enhancing the risk of global extinction during periods of depression in population size. Here, we investigate this trade-off between local rescue and global extinction experimentally using laboratory populations of E. coli bacteria. Our model system consists of co-cultures of ampicillin resistant and chloramphenicol resistant strains that form a cross-protection mutualism and exhibit period-3 oscillations in the relative population density in the presence of both antibiotics. We quantify the onset of synchronization of oscillations in a pair of co-cultures connected by migration and demonstrate that period-3 oscillations can be disturbed for moderate rates of migration. These features are consistent with simulations of a mechanistic model of antibiotic deactivation in our system. The simulations further predict that the probability of survival of connected populations in high concentrations of antibiotics is maximized at intermediate migration rates. We verify this prediction experimentally and show that survival is enhanced through a combination of disturbance of period-3 oscillations and stochastic re-colonization events.

  16. Bacterial interactions in dental biofilm development.

    PubMed

    Hojo, K; Nagaoka, S; Ohshima, T; Maeda, N

    2009-11-01

    Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.

  17. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass.

    PubMed

    Gladden, John M; Allgaier, Martin; Miller, Christopher S; Hazen, Terry C; VanderGheynst, Jean S; Hugenholtz, Philip; Simmons, Blake A; Singer, Steven W

    2011-08-15

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  18. [Bacterial recombinant L-asparaginases: properties, structure and anti-proliferative activity].

    PubMed

    Sokolov, N N; Eldarov, M A; Pokrovskaya, M V; Aleksandrova, S S; Abakumova, O Yu; Podobed, O V; Melik-Nubarov, N S; Kudryashova, E V; Grishin, D V; Archakov, A I

    2015-01-01

    For more than 40 years L-asparaginases are used in combined therapy of acute lymphoblastic leukemia in children and the range of tumors sensitive to these enzymes constantly extends. This review summarizes results of studies aimed at creation of new systems for heterological expression of bacterial L-asparaginases as Erwinia carotovora (EwA), Helicobacter pylori (HpA), Yersinia pseudotuberculosis (YpA) and Rhodospirillum rubrum (RrA); special attention is paid to isolation of purified enzymes and their crystallization, modification by chitosan/polyethylene, physicochemical, kinetic and structural properties characterization, and the study of the cytotoxic or anti-proliferative activity of new recombinant L-asparaginases on cell cultures in vitro. The resultant recombinant L-asparaginases (EwA, YpA, HpA и RrA) exhibit reasonable cytotoxic action on the human leukemia cells comparable to the pharmacologically available L-asparaginase EcA and represent practical interest in respect to creation, on their basis, new effective antineoplastic remedies. Further prospects of researches on bacterial L-asparaginases are associated with development of analogs of Rhodospirillum rubrum L-asparaginase (RrA) by means of directed changes of the protein structure using genetic engineering, development of chito-PEGylation for receiving L-asparaginase preparations with improved pharmacokinetic characteristics.

  19. Antimicrobial activities of Streptomyces pulcher, S. canescens and S. citreofluorescens against fungal and bacterial pathogens of tomato in vitro.

    PubMed

    el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M

    1996-01-01

    Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.

  20. Agricultural management legacy affects microbial energetics, resource utilization and active bacterial community membership during 13C-glucose consumption

    NASA Astrophysics Data System (ADS)

    Helgason, B. L.; Levy-Booth, D.; Arcand, M. M.

    2017-12-01

    Over the long-term, differences in soil management can result in fundamental changes in biogeochemical cycling. The Alternative Cropping Systems (ACS) Study at Scott, SK, Canada (est. 1994) compares organic (ORG) vs. conventionally (CON) managed crop rotations in a loamy Typic Borall. Nitrogen (N) and phosphorus (P) deficiency in the ORG systems have limited crop growth and thus plant carbon (C) inputs for over two decades, ultimately resulting in a C deficiency which has further altered biogeochemical cycling. We conducted a short-term microcosm experiment using 13C-glucose stable isotope probing (SIP) of DNA to test whether ORG soils have greater microbial C use efficiency due to long term resource limitation. Glucose-utilizing populations were dominated by Proteobacteria and Actinobacteria, with differing species-level identities and physiological capacities between CON and ORG systems. Of the 13C-utilizing taxa, relative abundance of Proteobacteria was greater in CON while Actinobacteria (and notably Firmicutes) were more dominant in ORG soils. Using isothermal calorimetry, we measured a thermodynamic efficiency (ηeff) of 0.68, which was not significantly different between soils indicating that the metabolic cost of glucose utilization was similar in CON and ORG soils. In spite of this, differential abundance analysis of 13C-labelled OTUs revealed that ORG soils had distinct active bacterial populations that were positively correlated with ηeff, ηsoil (glucose energy retained in soil) and primed soil organic matter (pSOM). In contrast, differentially abundant OTUs in the CON soils were negatively correlated with measures of thermodynamic efficiency but positively correlated with glucose-derived heat and CO2 production as well as NO3- and PO4- availability. ORG bacterial communities may co-metabolize other resources (N and P) from SOM to meet their metabolic requirements during glucose utilization, while the active bacteria in the CON soils could access these

  1. Bacterial Production and Enzymatic Activities in Deep-Sea Sediments of the Pacific Ocean: Biogeochemical Implications of Different Temperature Constraints

    NASA Astrophysics Data System (ADS)

    Danovaro, R.; Corinaldesi, C.; dell'Anno, A.

    2002-12-01

    The deep-sea bed, acting as the ultimate sink for organic material derived from the upper oceans primary production, is now assumed to play a key role in biogeochemical cycling of organic matter on global scale. Early diagenesis of organic matter in marine sediments is dependent upon biological processes (largely mediated by bacterial activity) and by molecular diffusion. Organic matter reaching the sea floor by sedimentation is subjected to complex biogeochemical transformations that make organic matter largely unsuitable for direct utilization by benthic heterotrophs. Extracellular enzymatic activities in the sediment is generally recognized as the key step in the degradation and utilization of organic polymers by bacteria and a key role in biopolymeric carbon mobilization is played by aminopeptidase, alkaline phosphatase and glucosidase activities. In the present study we investigated bacterial density, bacterial C production and exo-enzymatic activities (aminopeptidase, glucosidase and phosphatase activity) in deep-sea sediments of the Pacific Ocean in relation with the biochemical composition of sediment organic matter (proteins, carbohydrates and lipids), in order to gather information on organic matter cycling and diagenesis. Benthic viral abundance was also measured to investigate the potential role of viruses on microbial loop functioning. Sediment samples were collected at eight stations (depth ranging from 2070-3100 m) along two transects located at the opposite side (north and south) of ocean seismic ridge Juan Fernandez (along latitudes 33° 20' - 33° 40'), constituted by the submerged vulcanoes, which connects the Chilean coasts to Rapa Nui Island. Since the northern and southern sides of this ridge apparently displayed small but significant differences in deep-sea temperature (related to the general ocean circulation), this sampling strategy allowed also investigating the role of different temperature constraints on bacterial activity and

  2. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    PubMed

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    PubMed Central

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  4. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens.

    PubMed

    Andersen, Jody L; He, Gui-Xin; Kakarla, Prathusha; K C, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F

    2015-01-28

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  5. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    PubMed Central

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  6. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    PubMed

    Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B

    2016-10-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  7. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    PubMed Central

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  8. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams.

    PubMed

    Adams, Heather E; Crump, Byron C; Kling, George W

    2010-05-01

    The impact of temperature on bacterial activity and community composition was investigated in arctic lakes and streams in northern Alaska. Aquatic bacterial communities incubated at different temperatures had different rates of production, as measured by (14)C-leucine uptake, indicating that populations within the communities had different temperature optima. Samples from Toolik Lake inlet and outlet were collected at water temperatures of 14.2 degrees C and 15.9 degrees C, respectively, and subsamples incubated at temperatures ranging from 6 degrees C to 20 degrees C. After 5 days, productivity rates varied from 0.5 to approximately 13.7 microg C l(-1) day(-1) and two distinct activity optima appeared at 12 degrees C and 20 degrees C. At these optima, activity was 2- to 11-fold higher than at other incubation temperatures. The presence of two temperature optima indicates psychrophilic and psychrotolerant bacteria dominate under different conditions. Community fingerprinting via denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes showed strong shifts in the composition of communities driven more by temperature than by differences in dissolved organic matter source; e.g. four and seven unique operational taxonomic units (OTUs) were found only at 2 degrees C and 25 degrees C, respectively, and not found at other incubation temperatures after 5 days. The impact of temperature on bacteria is complex, influencing both bacterial productivity and community composition. Path analysis of measurements of 24 streams and lakes sampled across a catchment 12 times in 4 years indicates variable timing and strength of correlation between temperature and bacterial production, possibly due to bacterial community differences between sites. As indicated by both field and laboratory experiments, shifts in dominant community members can occur on ecologically relevant time scales (days), and have important implications for understanding the relationship of bacterial

  9. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate.

    PubMed

    Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian

    2017-01-01

    Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Distinct responses of bacterial communities to agricultural and urban impacts in temperate southern African estuaries

    NASA Astrophysics Data System (ADS)

    Matcher, G. F.; Froneman, P. W.; Meiklejohn, I.; Dorrington, R. A.

    2018-01-01

    Worldwide, estuaries are regarded as amongst the most ecologically threatened ecosystems and are increasingly being impacted by urban development, agricultural activities and reduced freshwater inflow. In this study, we examined the influence of different human activities on the diversity and structure of bacterial communities in the water column and sediment in three distinct, temperate permanently open estuarine systems within the same geographic region of southern Africa. The Kariega system is freshwater-deprived and is considered to be relatively pristine; the Kowie estuary is marine-dominated and impacted by urban development, while the Sundays system is fresh-water dominated and impacted by agricultural activity in its catchment. The bacterial communities in all three systems comprise predominantly heterotrophic species belonging to the Bacteroidetes and Proteobacteria phyla with little overlap between bacterioplankton and benthic bacterial communities at the species level. There was overlap between the operational taxonomic units (OTUs) of the Kowie and Kariega, both marine-influenced estuaries. However, lower species richness in the Kowie, likely reflects the impact of human settlements along the estuary. The dominant OTUs in the Sundays River system were distinct from those of the Kariega and Kowie estuaries with an overall decrease in species richness and evenness. This study provides an important snapshot into the microbial population structures of permanently open temperate estuarine systems and the influence of anthropogenic impacts on bacterial diversity and community structure.

  11. Bacterial population dynamics during uranium reduction andre-oxidation: Application of a novel high density oligonucleotidemicroarray approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodie, Eoin L.; DeSantis, Todd Z.; Joyner, Dominique C.

    2006-01-30

    Reduction of soluble uranium U(VI) to less-soluble uraniumU(IV) is a promising approach to minimize migration from contaminatedaquifers. It is generally assumed that, under constant reducingconditions, U(IV) is stable and immobile; however, in a previous study,we documented reoxidation of U(IV) under continuous reducing conditions(Wan et al., Environ. Sci. Technol. 2005, 39:6162 6169). To determine ifchanges in microbial community composition were a factor in U(IV)reoxidation, we employed a high-density phylogenetic DNA microarray (16Smicroarray) containing 500,000 probes to monitor changes in bacterialpopulations during this remediation process. Comparison of the 16Smicroarray with clone libraries demonstrated successful detection andclassification of most clone groups. Analysis ofmore » the most dynamic groupsof 16S rRNA gene amplicons detected by the 16S microarray identified fiveclusters of bacterial subfamilies responding in a similar manner. Thisapproach demonstrated that amplicons of known metal-reducing bacteriasuch as Geothrix fermentans (confirmed by quantitative PCR) and thosewithin the Geobacteraceae were abundant during U(VI) reduction and didnot decline during the U(IV) reoxidation phase. Significantly, it appearsthat the observed reoxidation of uranium under reducing conditionsoccurred despite elevated microbial activity and the consistent presenceof metal-reducing bacteria. High-density phylogenetic microarraysconstitute a powerful tool, enabling the detection and monitoring of asubstantial portion of the microbial population in a routine, accurate,and reproducible manner.« less

  12. Bacterial Meningitis in Patients using Immunosuppressive Medication: a Population-based Prospective Nationwide Study.

    PubMed

    van Veen, Kiril E B; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2017-06-01

    We studied occurrence, presentation, disease course, effect of adjunctive dexamethasone, and prognosis of bacterial meningitis in patients using immunosuppressive medication. Patients were selected from our nationwide, prospective cohort on community-acquired bacterial meningitis performed from March 1, 2006 through October 31, 2014. Eighty-seven of 1447 episodes (6 %) of bacterial meningitis occurred in patients using immunosuppressive medication, and consisted of corticosteroids in 82 %. Patients with bacterial meningitis using immunosuppressive medication were less likely to present with headache (P = 0.02) or neck stiffness (P = 0.005), as compared those not on immunosuppressive medication. In 46 % of episodes CSF leukocyte count was below 1000/mm 3 . CSF cultures revealed S. pneumoniae in 41 % and L. monocytogenes in 40 % of episodes. Outcome was unfavorable in 39 of 87 episodes (45 %) and death occurred in 22 of 87 episodes (25 %). Adjunctive dexamethasone was administered in 52 of 87 (60 %) episodes, and mortality tended to be lower in those on adjunctive dexamethasone therapy as compared to those without dexamethasone therapy (10 of 52 [19 %] vs 12 of 35 [34 %], P = 0.14). We conclude that bacterial meningitis in patients using immunosuppressive medication is likely to present with atypical clinical and laboratory features, and is often caused by atypical bacteria, mainly L. monocytogenes. Adjunctive dexamethasone is widely prescribed in these patients and was not associated with harm in this study.

  13. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila

    DOE PAGES

    Urbanus, Malene L.; Quaile, Andrew T.; Stogios, Peter J.; ...

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, tomore » query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila–translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Here, metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.« less

  14. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila.

    PubMed

    Urbanus, Malene L; Quaile, Andrew T; Stogios, Peter J; Morar, Mariya; Rao, Chitong; Di Leo, Rosa; Evdokimova, Elena; Lam, Mandy; Oatway, Christina; Cuff, Marianne E; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw P; Taipale, Mikko; Savchenko, Alexei; Ensminger, Alexander W

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Antibiotic use and bacterial complications following upper respiratory tract infections: a population-based study

    PubMed Central

    Cars, Thomas; Eriksson, Irene; Granath, Anna; Wettermark, Björn; Hellman, Jenny; Norman, Christer; Ternhag, Anders

    2017-01-01

    Objectives To investigate if use of antibiotics was associated with bacterial complications following upper respiratory tract infections (URTIs). Design Ecological time-trend analysis and a prospective cohort study. Setting Primary, outpatient specialist and inpatient care in Stockholm County, Sweden. All analyses were based on administrative healthcare data on consultations, diagnoses and dispensed antibiotics from January 2006 to January 2016. Main outcome measures Ecological time-trend analysis: 10-year trend analyses of the incidence of URTIs, bacterial infections/complications and respiratory antibiotic use. Prospective cohort study: Incidence of bacterial complications following URTIs in antibiotic-exposed and non-exposed patients. Results The utilisation of respiratory tract antibiotics decreased by 22% from 2006 to 2015, but no increased trend for mastoiditis (p=0.0933), peritonsillar abscess (p=0.0544), invasive group A streptococcal disease (p=0.3991), orbital abscess (p=0.9637), extradural and subdural abscesses (p=0.4790) and pansinusitis (p=0.3971) was observed. For meningitis and acute ethmoidal sinusitis, a decrease in the numbers of infections from 2006 to 2015 was observed (p=0.0038 and p=0.0003, respectively), and for retropharyngeal and parapharyngeal abscesses, an increase was observed (p=0.0214). Bacterial complications following URTIs were uncommon in both antibiotic-exposed (less than 1.5 per 10 000 episodes) and non-exposed patients (less than 1.3 per 10 000 episodes) with the exception of peritonsillar abscess after tonsillitis (risk per 10 000 tonsillitis episodes: 32.4 and 41.1 in patients with no antibiotic treatment and patients treated with antibiotics, respectively). Conclusions Bacterial complications following URTIs are rare, and antibiotics may lack protective effect in preventing bacterial complications. Analyses of routinely collected administrative healthcare data can provide valuable information on the number of URTIs

  16. The stereochemical effect of SMAP-29 and SMAP-18 on bacterial selectivity, membrane interaction and anti-inflammatory activity.

    PubMed

    Jacob, Binu; Rajasekaran, Ganesan; Kim, Eun Young; Park, Il-Seon; Bang, Jeong-Kyu; Shin, Song Yub

    2016-05-01

    Sheep myeloid antimicrobial peptide-29 (SMAP-29) is a cathelicidin-related antimicrobial peptide derived from sheep myeloid cells. In order to investigate the effects of L-to-D-amino acid substitution in SMAP-29 on bacterial selectivity, membrane interaction and anti-inflammatory activity, we synthesized its two D-enantiomeric peptides (SMAP-29-E1 and SMAP-29-E2 containing D-Ile and D-allo-Ile, respectively) and two diastereomeric peptides (SMAP-29-D1 and SMAP-29-D2). Additionally, in order to address the effect of L-to-D-amino acid substitution in the N-terminal helical peptide of SMAP-29 (named SMAP-18) on antimicrobial activity, we synthesized its two D-enantiomeric peptides (SMAP-18-E1 and SMAP-18-E2), which are composed of D-amino acids entirely. L-to-D-amino acid substitution in membrane-targeting AMP, SMAP-29 did not affect its antimicrobial activity. However, D-allo-Ile containing-SMAP-29-E2 and SMAP-29-D2 exhibited less hemolytic activity compared to D-Ile containing-SMAP-29-E1 and SMAP-29-D1, respectively. L-to-D-amino acid substitution in intracellular targeting-AMPs, SMAP-18 and buforin-2 improved antimicrobial activity by 2- to eightfold. The improved antimicrobial activity of the D-isomers of SMAP-18 and buforin-2 seems to be due to the stability against proteases inside bacterial cells. Membrane depolarization and dye leakage suggested that the membrane-disruptive mode of SMAP-29-D1 and SMAP-29-D2 is different from that of SMAP-29, SMAP-29-E1, and SMAP-29-E2. L-to-D-amino acid substitution in SMAP-29 improved anti-inflammatory activity in LPS-stimulated RAW 264.7 cells. In summary, we propose here that D-allo-Ile substitution is a more powerful strategy for increasing bacterial selectivity than D-Ile substitution in the design of D-enantiomeric and diastereomeric AMPs. SMAP-29-D1, and SMAP-29-D2 with improved bacterial selectivity and anti-inflammatory activity can serve as promising candidates for the development of anti-inflammatory and

  17. Sterilization of granulomas is common in both active and latent tuberculosis despite extensive within-host variability in bacterial killing

    PubMed Central

    Lin, Philana Ling; Ford, Christopher B.; Coleman, M. Teresa; Myers, Amy J.; Gawande, Richa; Ioerger, Thomas; Sacchettini, James; Fortune, Sarah M.; Flynn, JoAnne L.

    2013-01-01

    Over 30% of the world’s population is infected with Mycobacterium tuberculosis (Mtb), yet only ~5–10% will develop clinical disease1. Despite considerable effort, we understand little about what distinguishes individuals who progress to active tuberculosis (TB) from those who remain latent for decades. The variable course of disease is recapitulated in cynomolgus macaques infected with Mtb2. Active disease in macaques is defined by clinical, microbiologic and immunologic signs and occurs in ~45% of animals, while the remaining are clinically asymptomatic2,3. Here, we use barcoded Mtb isolates and quantitative measures of culturable and cumulative bacterial burden to show that most lesions are likely founded by a single bacterium and reach similar maximum burdens. Despite common origins, the fate of individual lesions varies substantially within the same host. Strikingly, in active disease, the host sterilizes some lesions even while others progress. Our data suggest that lesional heterogeneity arises, in part, through differential killing of bacteria after the onset of adaptive immunity. Thus, individual lesions follow diverse and overlapping trajectories, suggesting critical responses occur at a lesional level to ultimately determine the clinical outcome of infection. Defining the local factors that dictate outcome will be important in developing effective interventions to prevent active TB. PMID:24336248

  18. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.

    PubMed

    Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

    2013-12-01

    In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Culture History and Population Heterogeneity as Determinants of Bacterial Adaptation: the Adaptomics of a Single Environmental Transition

    PubMed Central

    Ryall, Ben; Eydallin, Gustavo

    2012-01-01

    Summary: Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior. PMID:22933562

  20. Role of quorum sensing in bacterial infections

    PubMed Central

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  1. Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment.

    PubMed

    Eronen-Rasimus, Eeva; Kaartokallio, Hermanni; Lyra, Christina; Autio, Riitta; Kuosa, Harri; Dieckmann, Gerhard S; Thomas, David N

    2014-02-01

    The structure of sea-ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal-derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T-RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea-ice bacterial communities developed in ice formed in both unenriched and DOM-enriched seawater (0-6 days). γ-Proteobacteria dominated in the DOM-enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α- and γ-Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Bacterial community assembly in activated sludge: mapping beta diversity across environmental variables.

    PubMed

    Isazadeh, Siavash; Jauffur, Shameem; Frigon, Dominic

    2016-12-01

    Effect of ecological variables on community assembly of heterotrophic bacteria at eight full-scale and two pilot-scale activated sludge wastewater treatment plants (AS-WWTPs) were explored by pyrosequencing of 16S rRNA gene amplicons. In total, 39 samples covering a range of abiotic factors spread over space and time were analyzed. A core bacterial community of 24 families detected in at least six of the eight AS-WWTPs was defined. In addition to the core families, plant-specific families (observed at <50% AS-WWTPs) were found to be also important in the community structure. Observed beta diversity was partitioned with respect to ecological variables. Specifically, the following variables were considered: influent wastewater characteristics, season (winter vs. summer), process operations (conventional, oxidation ditch, and sequence batch reactor), reactor sizes (pilot-scale vs. full-scale reactors), chemical stresses defined by ozonation of return activated sludge, interannual variation, and geographical locations. Among the assessed variables, influent wastewater characteristics and geographical locations contributed more in explaining the differences between AS-WWTP bacterial communities with a maximum of approximately 26% of the observed variations. Partitioning of beta diversity is necessary to interpret the inherent variability in microbial community assembly and identify the driving forces at play in engineered microbial ecosystem. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates

    PubMed Central

    Saurav, Kumar; Bar-Shalom, Rinat; Haber, Markus; Burgsdorf, Ilia; Oliviero, Giorgia; Costantino, Valeria; Morgenstern, David; Steindler, Laura

    2016-01-01

    Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the

  4. BACTERIAL INHIBITORS IN LAKE WATER

    EPA Science Inventory

    The populations of six bacterial genera fell rapidly after their addition to sterile lake water but not after their addition to buffer. The decline in numbers of two species that were studied further, Klebsiella pneumoniae and Micrococcus flavus, occurred even when the buffer was...

  5. Association of markers of bacterial translocation with immune activation in decompensated cirrhosis.

    PubMed

    Mortensen, Christian; Jensen, Jørgen Skov; Hobolth, Lise; Dam-Larsen, Sanne; Madsen, Bjørn S; Andersen, Ove; Møller, Søren; Bendtsen, Flemming

    2014-12-01

    Bacterial translocation (BT) may cause infections, in particular, spontaneous bacterial peritonitis (SBP). In the absence of overt infection, BT may further stimulate the immune system and contribute to haemodynamic alterations and complications. Bacterial DNA (bDNA) is claimed to be a promising surrogate marker for BT, although its clinical relevance has been questioned. In 38 cirrhotic patients with and without SBP, bDNA in blood and ascites were assessed by 16S rDNA quantitative PCR. Levels of lipopolysaccharide-binding protein in plasma and highly sensitive C-reactive protein, tumour necrosis factor-α, soluble urokinase plasminogen activating receptor, interleukin-6, interleukin 8, interferon-γ inducible protein-10 and vascular endothelial growth factor in plasma and ascites were measured by multiplex cytokine and ELISA assays. In patients without signs of SBP or positive cultures, we found a high frequency of bDNA but low concordance of bDNA between blood and ascites. Markers of inflammation were not significantly different between blood bDNA-positive (22%), ascites bDNA-positive (52%), and bDNA-negative patients. The 16S rDNA PCR failed to show bDNA in two out of six samples with SBP. Sequencing of positive samples did not determine the source of bDNA. bDNA as assessed by this PCR method was largely unrelated to markers of inflammation and does not seem to be of clinical value in the diagnosis of SBP. According to our results, bDNA is not a reliable marker of BT.

  6. Questions about the behaviour of bacterial pathogens in vivo.

    PubMed Central

    Smith, H

    2000-01-01

    Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle

  7. Impact of water quality on the bacterial populations and off-flavours in recirculating aquaculture systems.

    PubMed

    Auffret, Marc; Yergeau, Étienne; Pilote, Alexandre; Proulx, Émilie; Proulx, Daniel; Greer, Charles W; Vandenberg, Grant; Villemur, Richard

    2013-05-01

    A variety of factors affecting water quality in recirculating aquaculture systems (RAS) are associated with the occurrence of off-flavours. In this study, we report the impact of water quality on the bacterial diversity and the occurrence of the geosmin-synthesis gene (geoA) in two RAS units operated for 252 days. Unit 2 displayed a higher level of turbidity and phosphate, which affected the fresh water quality compared with unit 1. In the biofilter, nitrification is one of the major processes by which high water quality is maintained. The bacterial population observed in the unit 1 biofilter was more stable throughout the experiment, with a higher level of nitrifying bacteria compared with the unit 2 biofilter. Geosmin appeared in fish flesh after 84 days in unit 2, whereas it appeared in unit 1 after 168 days, but at a much lower level. The geoA gene was detected in both units, 28 days prior to the detection of geosmin in fish flesh. In addition, we detected sequences associated with Sorangium and Nannocystis (Myxococcales): members of these genera are known to produce geosmin. These sequences were observed at an earlier time in unit 2 and at a higher level than in unit 1. This study confirms the advantages of new molecular methods to understand the occurrence of geosmin production in RAS. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates.

    PubMed

    Marinelli, Laura J; Fitz-Gibbon, Sorel; Hayes, Clarmyra; Bowman, Charles; Inkeles, Megan; Loncaric, Anya; Russell, Daniel A; Jacobs-Sera, Deborah; Cokus, Shawn; Pellegrini, Matteo; Kim, Jenny; Miller, Jeff F; Hatfull, Graham F; Modlin, Robert L

    2012-01-01

    Investigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne. Propionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population

  9. Effect of DNA extraction and sample preservation method on rumen bacterial population.

    PubMed

    Fliegerova, Katerina; Tapio, Ilma; Bonin, Aurelie; Mrazek, Jakub; Callegari, Maria Luisa; Bani, Paolo; Bayat, Alireza; Vilkki, Johanna; Kopečný, Jan; Shingfield, Kevin J; Boyer, Frederic; Coissac, Eric; Taberlet, Pierre; Wallace, R John

    2014-10-01

    The comparison of the bacterial profile of intracellular (iDNA) and extracellular DNA (eDNA) isolated from cow rumen content stored under different conditions was conducted. The influence of rumen fluid treatment (cheesecloth squeezed, centrifuged, filtered), storage temperature (RT, -80 °C) and cryoprotectants (PBS-glycerol, ethanol) on quality and quantity parameters of extracted DNA was evaluated by bacterial DGGE analysis, real-time PCR quantification and metabarcoding approach using high-throughput sequencing. Samples clustered according to the type of extracted DNA due to considerable differences between iDNA and eDNA bacterial profiles, while storage temperature and cryoprotectants additives had little effect on sample clustering. The numbers of Firmicutes and Bacteroidetes were lower (P < 0.01) in eDNA samples. The qPCR indicated significantly higher amount of Firmicutes in iDNA sample frozen with glycerol (P < 0.01). Deep sequencing analysis of iDNA samples revealed the prevalence of Bacteroidetes and similarity of samples frozen with and without cryoprotectants, which differed from sample stored with ethanol at room temperature. Centrifugation and consequent filtration of rumen fluid subjected to the eDNA isolation procedure considerably changed the ratio of molecular operational taxonomic units (MOTUs) of Bacteroidetes and Firmicutes. Intracellular DNA extraction using bead-beating method from cheesecloth sieved rumen content mixed with PBS-glycerol and stored at -80 °C was found as the optimal method to study ruminal bacterial profile. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation.

    PubMed

    Cepl, Jaroslav; Blahůšková, Anna; Cvrčková, Fatima; Markoš, Anton

    2014-05-01

    Volatiles produced by bacterial cultures are known to induce regulatory and metabolic alterations in nearby con-specific or heterospecific bacteria, resulting in phenotypic changes including acquisition of antibiotic resistance. We observed unhindered growth of ampicillin-sensitive Serratia rubidaea and S. marcescens on ampicillin-containing media, when exposed to volatiles produced by dense bacterial growth. However, this phenomenon appeared to result from pH increase in the medium caused by bacterial volatiles rather than alterations in the properties of the bacterial cultures, as alkalization of ampicillin-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bacterial cultures under the same conditions prior to antibiotic exposure did not increase ampicillin resistance. Ampicillin was readily inactivated at pH 8.5, suggesting that observed bacterial growth results from metabolic alteration of the medium, rather than an active change in the target bacterial population (i.e. induction of resistance or tolerance). However, even such seemingly simple mechanism may provide a biologically meaningful basis for protection against antibiotics in microbial communities growing on semi-solid media. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections.

    PubMed

    Wang, Huan; Li, Penghui; Yu, Dongqin; Zhang, Yan; Wang, Zhenzhen; Liu, Chaoqun; Qiu, Hao; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2018-05-17

    Carbon nanotubes (CNTs) and their derivatives have emerged as a series of efficient biocatalysts to mimic the function of natural enzymes in recent years. However, the unsatisfiable enzymatic efficiency usually limits their practical usage ranging from materials science to biotechnology. Here, for the first time, we present the synthesis of several oxygenated-group-enriched carbon nanotubes (o-CNTs) via a facile but green approach, as well as their usage as high-performance peroxidase mimics for biocatalytic reaction. Exhaustive characterizations of the enzymatic activity of o-CNTs have been provided by exploring the accurate effect of various oxygenated groups on their surface including carbonyl, carboxyl, and hydroxyl groups. Because of the "competitive inhibition" effect among all of these oxygenated groups, the catalytic efficiency of o-CNTs is significantly enhanced by weakening the presence of noncatalytic sites. Furthermore, the admirable enzymatic activity of these o-CNTs has been successfully applied in the treatment of bacterial infections, and the results of both in vitro and in vivo nanozyme-mediated bacterial clearance clearly demonstrate the feasibility of o-CNTs as robust peroxidase mimics to effectively decrease the bacterial viability under physiological conditions. We believe that the present study will not only facilitate the construction of novel efficient nanozymes by rationally adjusting the degree of the "competitive inhibition" effect, but also broaden the biological usage of o-CNT-based nanomaterials via their satisfactory enzymatic activity.

  12. Activity of fosfomycin against nosocomial multiresistant bacterial pathogens from Croatia: a multicentric study

    PubMed Central

    Bielen, Luka; Likić, Robert; Erdeljić, Viktorija; Mareković, Ivana; Firis, Nataša; Grgić-Medić, Marijana; Godan, Ana; Tomić, Ivan; Hunjak, Blaženka; Markotić, Alemka; Bejuk, Danijela; Tičić, Vladimira; Balzar, Silvana; Bedenić, Branka

    2018-01-01

    Aim To determine in vitro susceptibility of multiresistant bacterial isolates to fosfomycin. Methods In this prospective in vitro study (local non-random sample, level of evidence 3), 288 consecutively collected multiresistant bacterial isolates from seven medical centers in Croatia were tested from February 2014 until October 2016 for susceptibility to fosfomycin and other antibiotics according to Clinical and Laboratory Standards Institute methodology. Susceptibility to fosfomycin was determined by agar dilution method, while disc diffusion were performed for in vitro testing of other antibiotics. Polymerase chain reaction and sequencing was performed for the majority of extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) and carbapenem-resistant isolates. Results The majority of 288 multiresistant bacterial isolates (82.6%) were susceptible to fosfomycin. The 236 multiresistant Gram-negative isolates showed excellent susceptibility to fosfomycin. Susceptibility rates were as follows: Escherichia coli ESBL 97%, K. pneumoniae ESBL 80%, Enterobacter species 85.7%, Citrobacter freundii 100%, Proteus mirabilis 93%, and Pseudomonas aeruginosa 60%. Of the 52 multiresistant Gram-positive isolates, methicillin-resistant Staphylococcus aureus showed excellent susceptibility to fosfomycin (94.4%) and vancomycin-resistant enterococcus showed low susceptibility to fosfomycin (31%). Polymerase chain reaction analysis of 36/50 ESBL-producing K. pneumoniae isolates showed that majority of isolates had CTX-M-15 beta lactamase (27/36) preceded by ISEcp insertion sequence. All carbapenem-resistant Enterobacter and Citrobacter isolates had blaVIM-1 metallo-beta-lactamase gene. Conclusion With the best in vitro activity among the tested antibiotics, fosfomycin could be an effective treatment option for infections caused by multiresistant Gram-negative and Gram-positive bacterial strains in the hospital setting. PMID:29740989

  13. Solithromycin for the treatment of community-acquired bacterial pneumonia.

    PubMed

    Viasus, Diego; Ramos, Oscar; Ramos, Leidy; Simonetti, Antonella F; Carratalà, Jordi

    2017-01-01

    Community-acquired pneumonia is a major public health problem worldwide. In recent years, there has been an increase in the frequency of resistance to the antimicrobials such as β-lactams or macrolides which have habitually been used against the causative pathogens. Solithromycin, a next-generation macrolide, is the first fluoroketolide with activity against most of the frequently isolated bacteria in community-acquired pneumonia, including typical and atypical bacteria as well as macrolide-resistant Streptococcus pneumoniae. Areas covered: A detailed assessment of the literature relating to the antimicrobial activity, pharmacokinetic/pharmacodynamic properties, efficacy, tolerability and safety of solithromycin for the treatment of community-acquired bacterial pneumonia Expert commentary: Recent randomized controlled phase II/III trials have demonstrated the equivalent efficacy of oral and intravenous solithromycin compared with fluoroquinolones in patients with lower mild-to-moderate respiratory infections, and have shown that systemic adverse events are comparable between solithromycin and alternative treatments. However, studies of larger populations which are able to identify infrequent adverse events are now needed to confirm these findings. On balance, current data supports solithromycin as a promising therapy for empirical treatment in adults with community-acquired bacterial pneumonia.

  14. The Role of Bacterial Enhancer Binding Proteins as Specialized Activators of σ54-Dependent Transcription

    PubMed Central

    2012-01-01

    Summary: Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ54. We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ54 for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ54-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ54 to the bacterial cell and its unique role in regulating transcription. PMID:22933558

  15. Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology

    PubMed Central

    2017-01-01

    ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that

  16. Bacterial Pore-Forming Toxins Promote the Activation of Caspases in Parallel to Necroptosis to Enhance Alarmin Release and Inflammation During Pneumonia.

    PubMed

    Gonzalez-Juarbe, Norberto; Bradley, Kelley M; Riegler, Ashleigh N; Reyes, Luis F; Brissac, Terry; Park, Sang-Sang; Restrepo, Marcos I; Orihuela, Carlos J

    2018-04-11

    Pore-forming toxins are the most common virulence factor in pathogenic bacteria. They lead to membrane permeabilization and cell death. Herein, we show that respiratory epithelial cells (REC) undergoing bacterial pore-forming toxin (PFT)-induced necroptosis simultaneously experienced caspase activation independently of RIPK3. MLKL deficient REC treated with a pan-caspase inhibitor were protected in an additive manner against PFT-induced death. Subsequently, cleaved versions of caspases-2, -4 and -10 were detected within REC undergoing necroptosis by immunoblots and monoclonal antibody staining. Caspase activation was observed in lung samples from mice and non-human primates experiencing Gram-negative and Gram-positive bacterial pneumonia, respectively. During apoptosis, caspase activation normally leads to cell shrinkage, nuclear condensation, and immunoquiescent death. In contrast, caspase activity during PFT-induced necroptosis increased the release of alarmins to the extracellular milieu. Caspase-mediated alarmin release was found sufficient to activate resting macrophages, leading to Interleukin-6 production. In a mouse model of Gram-negative pneumonia, deletion of caspases -2 and -11, the mouse orthologue of caspase-4, reduced pulmonary inflammation, immune cell infiltration and lung damage. Thus, our study describes a previously unrecognized role for caspase activation in parallel to necroptosis, and indicates that their activity plays a critical pro-inflammatory role during bacterial pneumonia.

  17. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  18. Synthesis, pharmacological activities and molecular docking studies of pyrazolyltriazoles as anti-bacterial and anti-inflammatory agents.

    PubMed

    Dayakar, Cherupally; Kumar, Buddana Sudheer; Sneha, Galande; Sagarika, Gudem; Meghana, Koneru; Ramakrishna, Sistla; Prakasham, Reddy Shetty; China Raju, Bhimapaka

    2017-10-15

    A series of novel pyrazolyl alcohols (5a-h), pyrazolyl azides (6a-h), and pyrazolyltriazoles (8a-h, 10a-p and 12a-l) were prepared and evaluated for their bioactivity (anti-bacterial and anti-inflammatory) profile. The compound 5c displayed the potent anti-bacterial activity against Micrococcus luteus (MIC 3.9 and MBC 7.81µg/mL). In vitro anti-inflammatory activity data denoted that compound 8b is effective among the tested compounds against IL-6 (IC 50 6.23μM). Docking analysis of compounds 5f, 8a-b, 8e-f and 8h displayed high binding energies for the compounds 8a-b and 8h towards TNF-α dimer (2AZ5 protein) and IL-6 (1ALU protein). In vivo anti-inflammatory activity of compounds 8b and 8h with respect to LPS induced mice model indicated that compound 8h showed significant reduction in TNF-α. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of ultrasonic pretreatment on quantity and composition of bacterial DNA recovered from granular activated carbon used for drinking water treatment.

    PubMed

    Kim, Tae Gwan; Kim, Sun-Hye; Cho, Kyung-Suk

    2014-01-01

    Effects of ultrasonic pretreatment on bacterial DNA recovery from granular activated carbon (GAC) were investigated. GAC (Calgon F400), biologically activated, was sampled from an actual drinking water plant. Different ultrasonic energy densities (0-400 J·cm(-3)) were applied with agitation (250 rpm for 30 min), and recovered bacterial DNA was quantified using quantitative PCR. Energy density was linearly correlated with the concentration of carbon fines produced from GAC during ultrasonication. Ultrasonication alone had no effect on DNA recovery at ≤60 J·cm(-3), but a strongly adverse effect at >67 J·cm(-3) due to the produced carbon fines. Agitation along with ultrasonication strongly enhanced the bacterial DNA recovery when ≤40 J·cm(-3) was applied, although it did not affect the production of carbon fines. Ribosomal tag pyrosequencing was used to compare recovered bacterial communities (0, 20 and 30 J·cm(-3) with or without agitation). Ultrasonication allowed for obtaining a more diverse and richer bacterial community from GAC, compared with the control. Agitation did not show a positive effect on community organization (richness and diversity). Consistently, canonical correspondence analysis indicated that the energy density was associated with the relative abundances of particular bacterial members (P < 0.05), while agitation did not. Correspondence analysis revealed that the recovered bacterial communities were grouped according to the applied energy densities. In conclusion, ultrasonication and agitation influence the recovered DNA in quality and quantity, respectively, and carbon fines as a by-product by ultrasonication interfere with the DNA recovery.

  20. The presence and role of bacterial quorum sensing in activated sludge

    PubMed Central

    Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike

    2012-01-01

    Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685

  1. Biocontrol of Bacterial Fruit Blotch by Bacillus subtilis 9407 via Surfactin-Mediated Antibacterial Activity and Colonization.

    PubMed

    Fan, Haiyan; Zhang, Zhanwei; Li, Yan; Zhang, Xun; Duan, Yongming; Wang, Qi

    2017-01-01

    In this study, Bacillus subtilis 9407 showed a strong antibacterial activity against Acidovorax citrulli in vitro and 61.7% biocontrol efficacy on melon seedlings 4 days post inoculation under greenhouse conditions. To understand the biocontrol mechanism of B. subtilis 9407, identify the primary antibacterial compound and determine its role in controlling bacterial fruit blotch (BFB), a srfAB deletion mutant (Δ srfAB ) was constructed. The Δ srfAB which was deficient in production of surfactin, not only showed almost no ability to inhibit growth of A. citrulli but also decreased biofilm formation and reduced swarming motility. Colonization assay demonstrated that B. subtilis 9407 could conlonize on melon roots and leaves in a large population, while Δ srfAB showed a four- to ten-fold reduction in colonization of melon roots and leaves. Furthermore, a biocontrol assay showed that Δ srfAB lost the biocontrol efficacy. In summary, our results indicated that surfactin, which consists of C13- to C16-surfactin A was the primary antibacterial compound of B. subtilis 9407, and it played a major role in biofilm formation, swarming motility, colonization and suppressing BFB. We propose that the biocontrol activity of B. subtilis 9407 is the results of the coordinated action of surfactin-mediated antibacterial activity and colonization. This study reveals for the first time that the use of a B. subtilis strain as a potential biological control agent could efficiently control BFB by producing surfactin.

  2. Biocontrol of Bacterial Fruit Blotch by Bacillus subtilis 9407 via Surfactin-Mediated Antibacterial Activity and Colonization

    PubMed Central

    Fan, Haiyan; Zhang, Zhanwei; Li, Yan; Zhang, Xun; Duan, Yongming; Wang, Qi

    2017-01-01

    In this study, Bacillus subtilis 9407 showed a strong antibacterial activity against Acidovorax citrulli in vitro and 61.7% biocontrol efficacy on melon seedlings 4 days post inoculation under greenhouse conditions. To understand the biocontrol mechanism of B. subtilis 9407, identify the primary antibacterial compound and determine its role in controlling bacterial fruit blotch (BFB), a srfAB deletion mutant (ΔsrfAB) was constructed. The ΔsrfAB which was deficient in production of surfactin, not only showed almost no ability to inhibit growth of A. citrulli but also decreased biofilm formation and reduced swarming motility. Colonization assay demonstrated that B. subtilis 9407 could conlonize on melon roots and leaves in a large population, while ΔsrfAB showed a four- to ten-fold reduction in colonization of melon roots and leaves. Furthermore, a biocontrol assay showed that ΔsrfAB lost the biocontrol efficacy. In summary, our results indicated that surfactin, which consists of C13- to C16-surfactin A was the primary antibacterial compound of B. subtilis 9407, and it played a major role in biofilm formation, swarming motility, colonization and suppressing BFB. We propose that the biocontrol activity of B. subtilis 9407 is the results of the coordinated action of surfactin-mediated antibacterial activity and colonization. This study reveals for the first time that the use of a B. subtilis strain as a potential biological control agent could efficiently control BFB by producing surfactin. PMID:29075242

  3. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    PubMed

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  4. Identification of Active Bacterial Communities in Drinking Water Using 16S rRNA-Based Sequence Analyses

    EPA Science Inventory

    DNA-based methods have considerably increased our understanding of the bacterial diversity of water distribution systems (WDS). However, as DNA may persist after cell death, the use of DNA-based methods cannot be used to describe metabolically-active microbes. In contrast, intra...

  5. Methods for the Measurement of a Bacterial Enzyme Activity in Cell Lysates and Extracts

    PubMed Central

    Mendz, George; Hazell, Stuart

    1998-01-01

    The kinetic characteristics and regulation of aspartate carbamoyltransferase activity were studied in lysates and cell extracts of Helicobacter pylori by three diffirent methods. Nuclear magnetic resonance spectroscopy, radioactive tracer analysis, and spectrophotometry were employed in conjunction to identify the properties of the enzyme activity and to validate the results obtained with each assay. NMR spectroscopy was the most direct method to provide proof of ACTase activity; radioactive tracer analysis was the most sensitive technique and a microtitre-based colorimetric assay was the most cost-and time-efficient for large scale analyses. Freeze-thawing was adopted as the preferred method for cell lysis in studying enzyme activity in situ. This study showed the benefits of employing several different complementary methods to investigate bacterial enzyme activity. PMID:12734591

  6. Stratification Modelling of Key Bacterial Taxa Driven by Metabolic Dynamics in Meromictic Lakes.

    PubMed

    Zhu, Kaicheng; Lauro, Federico M; Su, Haibin

    2018-06-22

    In meromictic lakes, the water column is stratified into distinguishable steady layers with different physico-chemical properties. The bottom portion, known as monimolimnion, has been studied for the functional stratification of microbial populations. Recent experiments have reported the profiles of bacterial and nutrient spatial distributions, but quantitative understanding is invoked to unravel the underlying mechanism of maintaining the discrete spatial organization. Here a reaction-diffusion model is developed to highlight the spatial pattern coupled with the light-driven metabolism of bacteria, which is resilient to a wide range of dynamical correlation between bacterial and nutrient species at the molecular level. Particularly, exact analytical solutions of the system are presented together with numerical results, in a good agreement with measurements in Ace lake and Rogoznica lake. Furthermore, one quantitative prediction is reported here on the dynamics of the seasonal stratification patterns in Ace lake. The active role played by the bacterial metabolism at microscale clearly shapes the biogeochemistry landscape of lake-wide ecology at macroscale.

  7. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    PubMed

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  8. Bacterial lipopeptide triggers massive albuminuria in murine lupus nephritis by activating Toll-like receptor 2 at the glomerular filtration barrier

    PubMed Central

    Pawar, Rahul D; Castrezana-Lopez, Liliana; Allam, Ramanjaneyulu; Kulkarni, Onkar P; Segerer, Stephan; Radomska, Ewa; Meyer, Tobias N; Schwesinger, Catherine-Meyer; Akis, Nese; Gröne, Hermann-Josef; Anders, Hans-Joachim

    2009-01-01

    What are the molecular mechanisms of bacterial infections triggering or modulating lupus nephritis? In nephritic MRLlpr/lpr mice, transient exposure to bacterial cell wall components such as lipopeptide or lipopolysaccharide (LPS) increased splenomegaly, the production of DNA autoantibodies, and serum interleukin (IL)-6, IL-12 and tumour necrosis factor (TNF) levels, and aggravated lupus nephritis. Remarkably, bacterial lipopeptide induced massive albuminuria in nephritic but not in non-nephritic mice. This was associated with down-regulation of renal nephrin mRNA and redistribution from its normal localization at foot processes to the perinuclear podocyte area in nephritic MRLlpr/lpr mice. Bacterial lipopeptide activates Toll-like receptor 2 (TLR2), which we found to be expressed on cultured podocytes and glomerular endothelial cells. TNF and interferon (IFN)-γ induced TLR2 mRNA and receptor expression in both cell types. Albumin permeability was significantly increased in cultured podocytes and glomerular endothelial cells upon stimulation by bacterial lipopeptide. LPS also induced moderate albuminuria. In summary, bacterial lipopeptide and LPS can aggravate glomerulonephritis but only lipopeptide potently induces severe albuminuria in MRLlpr/lpr mice. PMID:19175801

  9. Pyrosequencing Reveals Soil Enzyme Activities and Bacterial Communities Impacted by Graphene and Its Oxides.

    PubMed

    Rong, Yan; Wang, Yi; Guan, Yina; Ma, Jiangtao; Cai, Zhiqiang; Yang, Guanghua; Zhao, Xiyue

    2017-10-25

    Graphene (GN) and graphene oxides (GOs) are novel carbon nanomaterial; they have been attracting much attention because of their excellent properties and are widely applied in many areas, including energy, electronics, biomedicine, environmental science, etc. With industrial production and consumption of GN/GO, they will inevitably enter the soil and water environments. GN/GO may directly cause certain harm to microorganisms and lead to ecological and environmental risks. GOs are GN derivatives with abundant oxygen-containing functional groups in their graphitic backbone. The structure and chemistry of GN show obvious differences compared to those of GO, which lead to the different environmental behaviors. In this study, four different types of soil (S1-S4) were employed to investigate the effect of GN and GO on soil enzymatic activity, microbial population, and bacterial community through pyrosequencing of 16S rRNA gene amplicons. The results showed that soil enzyme activity (invertase, protease, catalase, and urease) and microbial population (bacteria, actinomycetes, and fungi) changed after GN/GO release into soils. Soil microbial community species are more rich, and the diversity also increases after GO/GN application. The phylum of Proteobacteria increased at 90 days after treatment (DAT) after GN/GO application. The phylum of Chloroflexi occurred after GN application at 90 DAT in S1 soil and reached 4.6%. Proteobacteria was the most abundant phylum in S2, S3, and S4 soils; it ranged from 43.6 to 71.4% in S2 soil, from 45.6 to 73.7% in S3 soil, and from 38.1 to 56.7% in S4 soil. The most abundant genera were Bacillus (37.5-47.0%) and Lactococcus (28.0-39.0%) in S1 soil, Lysobacter and Flavobacterium in S2 soil, Pedobacter in S3 soil, and Massilia in S4 soil. The effect of GN and GO on the soil microbial community is time-dependent, and there are no significant differences between the samples at 10 and 90 DAT.

  10. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities.

    PubMed

    Lindh, Markus V; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates.

  11. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities

    PubMed Central

    Lindh, Markus V.; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates. PMID

  12. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  13. Non-homogeneous flow profiles in sheared bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  14. [Bacterial vaginosis].

    PubMed

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  15. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    USGS Publications Warehouse

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  16. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese.

    PubMed

    Ozturkoglu-Budak, Sebnem; Wiebenga, Ad; Bron, Peter A; de Vries, Ronald P

    2016-11-21

    We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable

  17. Biomimicry of quorum sensing using bacterial lifecycle model.

    PubMed

    Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li

    2013-01-01

    Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms

  18. Biomimicry of quorum sensing using bacterial lifecycle model

    PubMed Central

    2013-01-01

    Background Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. Results In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Conclusions Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm

  19. Supercooling ability in two populations of the land snail Helix pomatia (Gastropoda: Helicidae) and ice-nucleating activity of gut bacteria.

    PubMed

    Nicolai, Annegret; Vernon, Philippe; Lee, Marcia; Ansart, Armelle; Charrier, Maryvonne

    2005-02-01

    The land snail Helix pomatia (Gastropoda: Helicidae) is widely distributed in Northern and Central Europe where it may experience subzero temperatures during winter months. Its supercooling ability was studied in two populations of H. pomatia. One population originated from Southern Sweden (Gotaland) and the other from Central France (Auvergne). In the experimental design, they were acclimated, over 2 weeks, to artificial winter conditions (hibernation, T=5 degrees C). The Swedish snails showed a rather limited supercooling ability (temperature of crystallization, T(c)=-6.4+/-0.8 degrees C), significantly greater, however, than the supercooling capacity of the population from France (T(c)=-4.6+/-1.4 degrees C). In artificial spring conditions (3 months of hibernation followed by a progressive acclimation, over 2 weeks, to activity at T=20 degrees C), both populations exhibited a similar high T(c) (-2.0+/-1.0 degrees C). The lower T(c) of hibernating Swedish snails could be due to a greater loss of body water, accompanied by a higher concentration of solutes in the hemolymph. In both populations, the variation in hemolymph osmolality measured between hibernating (250-270 mOsm kg(-1)) and active (165-215 mOsm kg(-1)) snails may be explained by the variation in body water mass and did not suggest the production of colligative cryoprotectants. Moreover, the three bacterial strains, Buttiauxella sp., Kluyvera sp., and Tatumella sp. (Enterobacteriaceae) which were isolated from fed snails, but absent in starved snails, did not show any ice-nucleating activity at temperatures higher than -9 degrees C. Only the strain Kluyvera sp. initiated nucleation at -9 degrees C. This strain, therefore, is a weak, also termed a Type III or Class C ice-nucleating active bacterium, but with no influence on the supercooling ability of individual snails. In summary, fluctuations in body water mass of hibernating snail populations, triggering changes in osmolyte concentration, rather than

  20. Design, synthesis and biological evaluation of novel aryldiketo acids with enhanced antibacterial activity against multidrug resistant bacterial strains.

    PubMed

    Cvijetić, Ilija N; Verbić, Tatjana Ž; Ernesto de Resende, Pedro; Stapleton, Paul; Gibbons, Simon; Juranić, Ivan O; Drakulić, Branko J; Zloh, Mire

    2018-01-01

    Antimicrobial resistance (AMR) is a major health problem worldwide, because of ability of bacteria, fungi and viruses to evade known therapeutic agents used in treatment of infections. Aryldiketo acids (ADK) have shown antimicrobial activity against several resistant strains including Gram-positive Staphylococcus aureus bacteria. Our previous studies revealed that ADK analogues having bulky alkyl group in ortho position on a phenyl ring have up to ten times better activity than norfloxacin against the same strains. Rational modifications of analogues by introduction of hydrophobic substituents on the aromatic ring has led to more than tenfold increase in antibacterial activity against multidrug resistant Gram positive strains. To elucidate a potential mechanism of action for this potentially novel class of antimicrobials, several bacterial enzymes were identified as putative targets according to literature data and pharmacophoric similarity searches for potent ADK analogues. Among the seven bacterial targets chosen, the strongest favorable binding interactions were observed between most active analogue and S. aureus dehydrosqualene synthase and DNA gyrase. Furthermore, the docking results in combination with literature data suggest that these novel molecules could also target several other bacterial enzymes, including prenyl-transferases and methionine aminopeptidase. These results and our statistically significant 3D QSAR model could be used to guide the further design of more potent derivatives as well as in virtual screening for novel antibacterial agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment: a computational modeling approach

    PubMed Central

    Zapién-Campos, Román; Olmedo-Álvarez, Gabriela; Santillán, Moisés

    2015-01-01

    Most of the studies in Ecology have been devoted to analyzing the effects the environment has on individuals, populations, and communities, thus neglecting the effects of biotic interactions on the system dynamics. In the present work we study the structure of bacterial communities in the oligotrophic shallow water system of Churince, Cuatro Cienegas, Mexico. Since the physicochemical conditions of this water system are homogeneous and quite stable in time, it is an excellent candidate to study how biotic factors influence the structure of bacterial communities. In a previous study, the binary antagonistic interactions of 78 bacterial strains, isolated from Churince, were experimentally determined. We employ these data to develop a computer algorithm to simulate growth experiments in a cellular grid representing the pond. Remarkably, in our model, the dynamics of all the simulated bacterial populations is determined solely by antagonistic interactions. Our results indicate that all bacterial strains (even those that are antagonized by many other bacteria) survive in the long term, and that the underlying mechanism is the formation of bacterial community patches. Patches corresponding to less antagonistic and highly susceptible strains are consistently isolated from the highly-antagonistic bacterial colonies by patches of neutral strains. These results concur with the observed features of the bacterial community structure previously reported. Finally, we study how our findings depend on factors like initial population size, differential population growth rates, homogeneous population death rates, and enhanced bacterial diffusion. PMID:26052318

  2. Growth of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Warren, Mya; Hwa, Terence

    2013-03-01

    On hard agar gel, there is insufficient surface hydration for bacteria to swim or swarm. Instead, growth occurs in colonies of close-packed cells, which expand purely due to repulsive interactions: individual bacteria push each other out of the way through the force of their growth. In this way, bacterial colonies represent a new type of ``active'' granular matter. In this study, we investigate the physical, biochemical, and genetic elements that determine the static and dynamic aspects of this mode of bacterial growth for E. coli. We characterize the process of colony expansion empirically, and use discrete and continuum models to examine the extent to which our observations can be explained by the growth characteristics of non-communicating cells, coupled together by physical forces, nutrients, and waste products. Our results challenge the commonly accepted modes of bacterial colony growth and provide insight into sources of growth limitation in crowded bacterial communities.

  3. Pesticide Side Effects in an Agricultural Soil Ecosystem as Measured by amoA Expression Quantification and Bacterial Diversity Changes

    PubMed Central

    Feld, Louise; Hjelmsø, Mathis Hjort; Nielsen, Morten Schostag; Jacobsen, Anne Dorthe; Rønn, Regin; Ekelund, Flemming; Krogh, Paul Henning; Strobel, Bjarne Westergaard; Jacobsen, Carsten Suhr

    2015-01-01

    Background and Methods Assessing the effects of pesticide hazards on microbiological processes in the soil is currently based on analyses that provide limited insight into the ongoing processes. This study proposes a more comprehensive approach. The side effects of pesticides may appear as changes in the expression of specific microbial genes or as changes in diversity. To assess the impact of pesticides on gene expression, we focused on the amoA gene, which is involved in ammonia oxidation. We prepared soil microcosms and exposed them to dazomet, mancozeb or no pesticide. We hypothesized that the amount of amoA transcript decreases upon pesticide application, and to test this hypothesis, we used reverse-transcription qPCR. We also hypothesized that bacterial diversity is affected by pesticides. This hypothesis was investigated via 454 sequencing and diversity analysis of the 16S ribosomal RNA and RNA genes, representing the active and total soil bacterial communities, respectively. Results and Conclusion Treatment with dazomet reduced both the bacterial and archaeal amoA transcript numbers by more than two log units and produced long-term effects for more than 28 days. Mancozeb also inhibited the numbers of amoA transcripts, but only transiently. The bacterial and archaeal amoA transcripts were both sensitive bioindicators of pesticide side effects. Additionally, the numbers of bacterial amoA transcripts correlated with nitrate production in N-amended microcosms. Dazomet reduced the total bacterial numbers by one log unit, but the population size was restored after twelve days. The diversity of the active soil bacteria also seemed to be re-established after twelve days. However, the total bacterial diversity as reflected in the 16S ribosomal RNA gene sequences was largely dominated by Firmicutes and Proteobacteria at day twelve, likely reflecting a halt in the growth of early opportunists and the re-establishment of a more diverse population. We observed no

  4. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death.

    PubMed

    Philip, Naomi H; DeLaney, Alexandra; Peterson, Lance W; Santos-Marrero, Melanie; Grier, Jennifer T; Sun, Yan; Wynosky-Dolfi, Meghan A; Zwack, Erin E; Hu, Baofeng; Olsen, Tayla M; Rongvaux, Anthony; Pope, Scott D; López, Carolina B; Oberst, Andrew; Beiting, Daniel P; Henao-Mejia, Jorge; Brodsky, Igor E

    2016-10-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.

  5. Legionella pneumophila effector WipA, a bacterial PPP protein phosphatase with PTP activity.

    PubMed

    Jia, Qian; Lin, Yun; Gou, Xuejing; He, Lei; Shen, Dong; Chen, Dongni; Xie, Wei; Lu, Yongjun

    2018-04-26

    The gram-negative bacterium Legionella pneumophila invades human's lung and causes Legionnaires' disease. To benefit its survival and replication in cellular milieu, L. pneumophila secrets at least 330 effector proteins into host cells. We found that the effector WipA has the protein tyrosine phosphatase (PTP) activity but does not depend on the classical CX5R motif for activity, suggesting that WipA is an unconventional PTP. Meanwhile, the presence of three other highly conserved motifs typically seen in protein serine/threonine phosphatases and the poor inhibition of WipA activity by okadaic acid led us to propose that WipA is a bacterial protein phosphatase. In addition, the determination of the 2.55-Å crystal structure of WipA revealed that WipA resembles cold-active protein tyrosine phosphatase (CAPTPase), and therefore very likely shares the same catalytic mechanism.

  6. Bacterial meningitis in adults in Iceland, 1995-2010.

    PubMed

    Thornórðardóttir, Asgerður; Erlendsdóttir, Helga; Sigurðardóttir, Bryndís; Harðardóttir, Hjördís; Reynisson, Ingi Karl; Gottfreðsson, Magnús; Guðmundsson, Sigurður

    2014-05-01

    Bacterial meningitis is a serious disease with a mortality rate of 15-20% in adults. We conducted a population-based study of bacterial meningitis in adults (≥ 16 y) in Iceland, 1995-2010. Cases were identified based on positive bacterial cultures from cerebrospinal fluid (CSF) and/or the ICD codes for bacterial meningitis. Medical charts were reviewed and outcomes were assessed using the national population registry. The study period was divided into 2 equal parts, 1995-2002 and 2003-2010, before and after implementation of routine childhood vaccination against serogroup C meningococci, respectively. In total, 111 episodes occurred in 110 individuals. The most common causative organisms were Neisseria meningitidis (41%) and Streptococcus pneumoniae (30%). Only 30% of the patients presented with the classical symptom triad of fever, neck stiffness, and an altered mental status. The overall incidence was 3.2/100,000 inhabitants/y, and dropped significantly between the first and second halves of the study (p = 0.03). This drop was due to a reduced incidence of N. meningitidis meningitis: 34 and 12 cases in the first and second periods, respectively (p = 0.006). The incidence of meningitis caused by S. pneumoniae remained unchanged. The case fatality rates were 18% and 13% in the first and second halves of the study, respectively (difference not significant). The incidence of bacterial meningitis has decreased since the implementation of meningococcal C vaccination in 2002. However, the case fatality rate has remained unchanged.

  7. Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senko, John M.; Wanjugi, Pauline; Lucas, Melanie

    2008-06-12

    We characterized the microbiologically mediated oxidative precipitation of Fe(II) from coalminederived acidic mine drainage (AMD) along flow-paths at two sites in northern Pennsylvania. At the Gum Boot site, dissolved Fe(II) was efficiently removed from AMD whereas minimal Fe(II) removal occurred at the Fridays-2 site. Neither site received human intervention to treat the AMD. Culturable Fe(II) oxidizing bacteria were most abundant at sampling locations along the AMD flow path corresponding to greatest Fe(II) removal and where overlying water contained abundant dissolved O2. Rates of Fe(II) oxidation determined in laboratory-based sediment incubations were also greatest at these sampling locations. Ribosomal RNA intergenicmore » spacer analysis and sequencing of partial 16S rRNA genes recovered from sediment bacterial communities revealed similarities among populations at points receiving regular inputs of Fe(II)-rich AMD and provided evidence for the presence of bacterial lineages capable of Fe(II) oxidation. A notable difference between bacterial communities at the two sites was the abundance of Chloroflexi-affiliated 16S rRNA gene sequences in clone libraries derived from the Gum Boot sediments. Our results suggest that inexpensive and reliable AMD treatment strategies can be implemented by mimicking the conditions present at the Gum Boot field site.« less

  8. Antibiotic-induced population fluctuations and stochastic clearance of bacteria

    PubMed Central

    Le, Dai; Şimşek, Emrah; Chaudhry, Waqas

    2018-01-01

    Effective antibiotic use that minimizes treatment failures remains a challenge. A better understanding of how bacterial populations respond to antibiotics is necessary. Previous studies of large bacterial populations established the deterministic framework of pharmacodynamics. Here, characterizing the dynamics of population extinction, we demonstrated the stochastic nature of eradicating bacteria with antibiotics. Antibiotics known to kill bacteria (bactericidal) induced population fluctuations. Thus, at high antibiotic concentrations, the dynamics of bacterial clearance were heterogeneous. At low concentrations, clearance still occurred with a non-zero probability. These striking outcomes of population fluctuations were well captured by our probabilistic model. Our model further suggested a strategy to facilitate eradication by increasing extinction probability. We experimentally tested this prediction for antibiotic-susceptible and clinically-isolated resistant bacteria. This new knowledge exposes fundamental limits in our ability to predict bacterial eradication. Additionally, it demonstrates the potential of using antibiotic concentrations that were previously deemed inefficacious to eradicate bacteria. PMID:29508699

  9. Response of single bacterial cells to stress gives rise to complex history dependence at the population level

    PubMed Central

    Mathis, Roland; Ackermann, Martin

    2016-01-01

    Most bacteria live in ever-changing environments where periods of stress are common. One fundamental question is whether individual bacterial cells have an increased tolerance to stress if they recently have been exposed to lower levels of the same stressor. To address this question, we worked with the bacterium Caulobacter crescentus and asked whether exposure to a moderate concentration of sodium chloride would affect survival during later exposure to a higher concentration. We found that the effects measured at the population level depended in a surprising and complex way on the time interval between the two exposure events: The effect of the first exposure on survival of the second exposure was positive for some time intervals but negative for others. We hypothesized that the complex pattern of history dependence at the population level was a consequence of the responses of individual cells to sodium chloride that we observed: (i) exposure to moderate concentrations of sodium chloride caused delays in cell division and led to cell-cycle synchronization, and (ii) whether a bacterium would survive subsequent exposure to higher concentrations was dependent on the cell-cycle state. Using computational modeling, we demonstrated that indeed the combination of these two effects could explain the complex patterns of history dependence observed at the population level. Our insight into how the behavior of single cells scales up to processes at the population level provides a perspective on how organisms operate in dynamic environments with fluctuating stress exposure. PMID:26960998

  10. Bacterial infections in alcoholic and nonalcoholic liver cirrhosis.

    PubMed

    Sargenti, Konstantina; Prytz, Hanne; Nilsson, Emma; Bertilsson, Sara; Kalaitzakis, Evangelos

    2015-09-01

    Longitudinal, population-based data on the occurrence, localization, and severity of bacterial infections over time in patients with alcoholic compared with nonalcoholic cirrhosis are limited. All patients with incident cirrhosis diagnosed in 2001-2010 (area of 600,000 inhabitants) were retrospectively identified. All bacterial infections resulting in or occurring during an inpatient hospital episode during this period were registered. The etiology of cirrhosis (alcoholic vs. nonalcoholic), infection localization, and outcome as well as bacterial resistance patterns were analyzed. Patients were followed until death, transplant, or the end of 2011. In all, 633 cirrhotics (363 alcoholic, 270 nonalcoholic) experienced a total of 398 infections (2276 patient-years). Among patients diagnosed with cirrhosis each year from 2001 to 2010, increasing trends were noted in the occurrence of infection (from 13 to 27%, P<0.001) and infection-related in-hospital mortality (from 2 to 7%, P=0.05), the latter mainly in the alcoholic group. Although alcoholic etiology was related to the occurrence of more frequent infection (Kaplan-Meier, P<0.001), this relationship was not significant after adjustment for confounders in Cox regression analysis (P=0.056). Resistance to piperacilin-tazobactam and carbapenems was more common in infections occurring in alcoholic versus nonalcoholic cirrhosis (13 vs. 5%, P=0.057 and 12 vs. 2%, P=0.009). Alcoholic etiology predicted pneumonia and infections caused by Gram-positive bacteria in multivariate analysis (P<0.05 for both). In a population-based cirrhotic cohort, bacterial infections increased over time, which, in the case of alcoholic cirrhosis, was associated with pneumonia and bacterial resistance to antibiotics. However, alcoholic etiology was not related indepedently to the occurrence of bacterial infections.

  11. [Analysis of the bacterial community developing in the course of Sphagnum moss decomposition].

    PubMed

    Kulichevskaia, I S; Belova, S E; Kevbrin, V V; Dedysh, S N; Zavarzin, G A

    2007-01-01

    Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 x 10(7) cells ml(-1). About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Phanctomycetes. The population sizes of Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.

  12. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    NASA Astrophysics Data System (ADS)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  13. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries.

    PubMed

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-14

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  14. Neisseria meningitidis and Streptococcus pneumoniae as leading causes of pediatric bacterial meningitis in nine Mexican hospitals following 3 years of active surveillance

    PubMed Central

    Chacon-Cruz, Enrique; Martinez-Longoria, Cesar Adrian; Llausas-Magana, Eduardo; Luevanos-Velazquez, Antonio; Vazquez-Narvaez, Jorge Alejandro; Beltran, Sandra; Limon-Rojas, Ana Elena; Urtiz-Jeronimo, Fernando; Castaneda-Narvaez, Jose Luis; Otero-Mendoza, Francisco; Aguilar-Del Real, Fernando; Rodriguez-Chagoyan, Jesus; Rivas-Landeros, Rosa Maria; Volker-Soberanes, Maria Luisa; Hinojosa-Robles, Rosa Maria; Arzate-Barbosa, Patricia; Aviles-Benitez, Laura Karina; Elenes-Zamora, Fernando Ivan; Becka, Chandra M.; Ruttimann, Ricardo

    2016-01-01

    Objectives: Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals. Methods: From January 2010 to February 2013, we conducted a three years of active surveillance for meningitis in nine hospitals throughout Mexico. Active surveillance started at the emergency department for every suspected case, and microbiological studies confirmed/ruled out all potentially bacterial pathogens. We diagnosed based on routine cultures from blood and cerebrospinal fluid (not polymerase chain reaction or other molecular diagnostic tests), and both pneumococcal serotyping and meningococcal serogrouping by using standard methods. Results: Neisseria meningitidis was the leading cause, although 75% of cases occurred in the northwest of the country in Tijuana on the US border. Serogroup C was predominant. Streptococcus pneumoniae followed Neisseria meningitides, but was uniformly distributed throughout the country. Serotype 19A was the most incident but before universal implementation of the 13-valent pneumococcal conjugate vaccine. Other bacteria were much less common, including Enterobacteriaceae and Streptococcus agalactiae (these two affecting mostly young infants). Conclusions: Meningococcal meningitis is endemic in Tijuana, Mexico, and vaccination should be seriously considered in that region. Continuous universal vaccination with the 13-valent pneumococcal conjugate vaccine should be nationally performed, and polymerase chain reaction should be included for bacterial detection in all cultures – negative but presumably bacterial meningitis cases. PMID:27551428

  15. Neisseria meningitidis and Streptococcus pneumoniae as leading causes of pediatric bacterial meningitis in nine Mexican hospitals following 3 years of active surveillance.

    PubMed

    Chacon-Cruz, Enrique; Martinez-Longoria, Cesar Adrian; Llausas-Magana, Eduardo; Luevanos-Velazquez, Antonio; Vazquez-Narvaez, Jorge Alejandro; Beltran, Sandra; Limon-Rojas, Ana Elena; Urtiz-Jeronimo, Fernando; Castaneda-Narvaez, Jose Luis; Otero-Mendoza, Francisco; Aguilar-Del Real, Fernando; Rodriguez-Chagoyan, Jesus; Rivas-Landeros, Rosa Maria; Volker-Soberanes, Maria Luisa; Hinojosa-Robles, Rosa Maria; Arzate-Barbosa, Patricia; Aviles-Benitez, Laura Karina; Elenes-Zamora, Fernando Ivan; Becka, Chandra M; Ruttimann, Ricardo

    2016-01-01

    Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals. From January 2010 to February 2013, we conducted a three years of active surveillance for meningitis in nine hospitals throughout Mexico. Active surveillance started at the emergency department for every suspected case, and microbiological studies confirmed/ruled out all potentially bacterial pathogens. We diagnosed based on routine cultures from blood and cerebrospinal fluid (not polymerase chain reaction or other molecular diagnostic tests), and both pneumococcal serotyping and meningococcal serogrouping by using standard methods. Neisseria meningitidis was the leading cause, although 75% of cases occurred in the northwest of the country in Tijuana on the US border. Serogroup C was predominant. Streptococcus pneumoniae followed Neisseria meningitides, but was uniformly distributed throughout the country. Serotype 19A was the most incident but before universal implementation of the 13-valent pneumococcal conjugate vaccine. Other bacteria were much less common, including Enterobacteriaceae and Streptococcus agalactiae (these two affecting mostly young infants). Meningococcal meningitis is endemic in Tijuana, Mexico, and vaccination should be seriously considered in that region. Continuous universal vaccination with the 13-valent pneumococcal conjugate vaccine should be nationally performed, and polymerase chain reaction should be included for bacterial detection in all cultures - negative but presumably bacterial meningitis cases.

  16. Bacterial communities in the phylloplane of Prunus species.

    PubMed

    Jo, Yeonhwa; Cho, Jin Kyong; Choi, Hoseong; Chu, Hyosub; Lian, Sen; Cho, Won Kyong

    2015-04-01

    Bacterial populations in the phylloplane of four different Prunus species were investigated by 16 S rRNA pyrosequencing. Bioinformatic analysis identified an average of 510 operational taxonomic units belonging to 159 genera in 76 families. The two genera, Sphingomonas and Methylobacterium, were dominant in the phylloplane of four Prunus species. Twenty three genera were commonly identified in the four Prunus species, indicating a high level of bacterial diversity dependent on the plant species. Our study based on 16 S rRNA sequencing reveals the complexity of bacterial diversity in the phylloplane of Prunus species in detail. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Population Activities Fund Agency (PAFA): the journey so far.

    PubMed

    1993-01-01

    Mechanisms are needed funding Nigerian Federal efforts to implement the National Policy on Population for Development, which was approved by the Armed Forces Ruling Council in February, 1988. Subprojects of the Population Activities Fund Agency (PAFA) which were approves are: the integration of family planning (FP) into maternal and child health (MCH) the promotion of Fp through health education, tertiary centers for reproductive health, public enlightenment on population, population/family life education in primary schools, monitoring of National Population Project impact, and integration of population into planning and budgeting. The last obstacle to implementation of PAFA's activities is the signing into law the decree establishing PAFA as a parastatal. The passage is required for continued operations. The national Population for Development policy is unique in providing for quantitative targets, which has attracted the needed financial support of agencies such as the World Bank. As part of the National Population Policy, the National Population Program (NPP) is developing an effective strategy for securing funding and evaluation of subprojects that are designed and implemented b Collaborating Agencies (CAs), both private and public. NPP aims 1) to provide funds for qualified CAs through the Population Activities Fund (PAF) and Agency (PAFA); 2) to monitor PAFA, which manages PAf with the Department of Population Activities, and 3) to stimulate analysis of sociocultural constraints to fertility reduction and international comparisons, and to design innovative interventions through the Population Research Fund (PRF). PAFA funds implementing agencies at all government and nongovernment levels with approaches to population information and services. The goal of PAFA is to realize NPP objectives. The motto is "Towards an improved quality of life for every Nigerian." The mandate is to provide funding for the PAF and NPP, to monitor CAs, to provide assistance to CAs

  18. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  19. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    PubMed

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  20. Incidence, etiology, and outcome of bacterial meningitis in infants aged <90 days in the United kingdom and Republic of Ireland: prospective, enhanced, national population-based surveillance.

    PubMed

    Okike, Ifeanyichukwu O; Johnson, Alan P; Henderson, Katherine L; Blackburn, Ruth M; Muller-Pebody, Berit; Ladhani, Shamez N; Anthony, Mark; Ninis, Nelly; Heath, Paul T

    2014-11-15

    Bacterial meningitis remains a major cause of morbidity and mortality in young infants. Understanding the epidemiology and burden of disease is important. Prospective, enhanced, national population-based active surveillance was undertaken to determine the incidence, etiology, and outcome of bacterial meningitis in infants aged <90 days in the United Kingdom and Ireland. During July 2010-July 2011, 364 cases were identified (annual incidence, 0.38/1000 live births; 95% confidence interval [CI], .35-.42). In England and Wales, the incidence of confirmed neonatal bacterial meningitis was 0.21 (n = 167; 95% CI, .18-.25). A total of 302 bacteria were isolated in 298 (82%) of the cases. The pathogens responsible varied by route of admission, gestation at birth, and age at infection. Group B Streptococcus (GBS) (150/302 [50%]; incidence, 0.16/1000 live births; 95% CI, .13-.18) and Escherichia coli (41/302 [14%]; incidence, 0.04/1000; 95% CI, .03-.06) were responsible for approximately two-thirds of identified bacteria. Pneumococcal (28/302 [9%]) and meningococcal (23/302 [8%]) meningitis were rare in the first month, whereas Listeria meningitis was seen only in the first month of life (11/302 [4%]). In hospitalized preterm infants, the etiology of both early- and late-onset meningitis was more varied. Overall case fatality was 8% (25/329) and was higher for pneumococcal meningitis (5/26 [19%]) than GBS meningitis (7/135 [5%]; P = .04) and for preterm (15/90 [17%]) compared with term (10/235 [4%]; P = .0002) infants. The incidence of bacterial meningitis in young infants remains unchanged since the 1980s and is associated with significant case fatality. Prevention strategies and guidelines to improve the early management of cases should be prioritized. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

    PubMed Central

    Song, Yu-Rim; Choi, Min-Seon; Choi, Geun-Won; Park, Il-Kwon; Oh, Chang-Sik

    2016-01-01

    Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs) of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit. PMID:27493612

  2. Release of bacterial alkaline phosphatase in the rumen of cattle fed a feedlot bloat-provoking diet or a hay diet.

    PubMed

    Cheng, K J; Hironaka, R; Costerton, J W

    1976-05-01

    Alkaline phosphatase (APase) was present in the bovine rumen in both cell-free and cell-associated states and levels of the enzyme varied with dietary regime. Reaction product deposition showed that the enzyme was associated with the mixed bacterial population. No enzyme was observed to be associated with protozoa. Trace activity of APase was also detected in the saliva. The presence of large amounts of APase in cell-free rumen fluid of cattle fed fine concentrate feed is believed to be due, in part, to the breakage of bacterial cells that occurs in the rumen.

  3. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    PubMed

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  4. Bacterial predator–prey dynamics in microscale patchy landscapes

    PubMed Central

    Rotem, Or; Jurkevitch, Edouard; Dekker, Cees

    2016-01-01

    Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions. PMID:26865299

  5. Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections.

    PubMed

    Cardile, Anthony P; Woodbury, Ronald L; Sanchez, Carlos J; Becerra, Sandra C; Garcia, Rebecca A; Mende, Katrin; Wenke, Joseph C; Akers, Kevin S

    2017-01-01

    Biofilm formation is a major virulence factor for numerous pathogenic bacteria and is cited as a central event in the pathogenesis of chronic human infections, which is in large part due to excessive extracellular matrix secretion and metabolic changes that occur within the biofilm rendering them highly tolerant to antimicrobial treatments. Polyamines, including norspermidine, play central roles in bacterial biofilm development, but have also recently been shown to inhibit biofilm formation in select strains of various pathogenic bacteria. The aim of this study was to evaluate in vitro the biofilm dispersive and inhibitory activities of norspermidine against multidrug-resistant clinical isolates of Acinetobacter baumannii(n = 4), Klebsiella pneumoniae (n = 3), Pseudomonas aeruginosa (n = 5) and Staphylococcus aureus (n = 4) associated with chronic extremity wound infections using the semi-quantitative 96-well plate method and confocal laser microscopy. In addition to the antibiofilm activity, biocompatibility of norspermidine was also evaluated by measuring toxicity in vitro to human cell lines and whole porcine tissue explants using MTT viability assay and histological analysis. Norspermidine (5-20 mM) had variable dispersive and inhibitory activity on biofilms which was dependent on both the strain and species. Of the clinical bacterial species evaluated herein, A. baumannii isolates were the most sensitive to the effect of norspermidine, which was in part due to the inhibitory effects of norspermidine on bacterial motility and expression of genes involved in the production of homoserine lactones and quorum sensing molecules both essential for biofilm formation. Importantly, exposure of cell lines and whole tissues to norspermidine for prolonged periods of time (≥24 h) was observed to reduce viability and alter tissue histology in a time and concentration dependent manner, with 20 mM exposure having the greatest negative effects on both tissues and individual

  6. Connecting the dots between bacterial biofilms and ice cream.

    PubMed

    Stanley-Wall, Nicola R; MacPhee, Cait E

    2015-12-18

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  7. Connecting the dots between bacterial biofilms and ice cream

    NASA Astrophysics Data System (ADS)

    Stanley-Wall, Nicola R.; MacPhee, Cait E.

    2015-12-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  8. A world without bacterial meningitis: how genomic epidemiology can inform vaccination strategy.

    PubMed

    Rodrigues, Charlene M C; Maiden, Martin C J

    2018-01-01

    Bacterial meningitis remains an important cause of global morbidity and mortality. Although effective vaccinations exist and are being increasingly used worldwide, bacterial diversity threatens their impact and the ultimate goal of eliminating the disease. Through genomic epidemiology, we can appreciate bacterial population structure and its consequences for transmission dynamics, virulence, antimicrobial resistance, and development of new vaccines. Here, we review what we have learned through genomic epidemiological studies, following the rapid implementation of whole genome sequencing that can help to optimise preventative strategies for bacterial meningitis.

  9. Nest Material Shapes Eggs Bacterial Environment.

    PubMed

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically

  10. Nest Material Shapes Eggs Bacterial Environment

    PubMed Central

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically

  11. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum) and Its Bacterial Symbionts.

    PubMed

    Luna-Ramirez, Karen; Skaljac, Marisa; Grotmann, Jens; Kirfel, Phillipp; Vilcinskas, Andreas

    2017-08-24

    Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids ( Acyrthosiphon pisum ) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  12. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum) and Its Bacterial Symbionts

    PubMed Central

    Luna-Ramirez, Karen; Skaljac, Marisa; Grotmann, Jens; Kirfel, Phillipp; Vilcinskas, Andreas

    2017-01-01

    Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops. PMID:28837113

  13. Resonant activation of population extinctions

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Doering, Charles R.; Flierl, Glenn R.

    2017-10-01

    Understanding the mechanisms governing population extinctions is of key importance to many problems in ecology and evolution. Stochastic factors are known to play a central role in extinction, but the interactions between a population's demographic stochasticity and environmental noise remain poorly understood. Here we model environmental forcing as a stochastic fluctuation between two states, one with a higher death rate than the other. We find that, in general, there exists a rate of fluctuations that minimizes the mean time to extinction, a phenomenon previously dubbed "resonant activation." We develop a heuristic description of the phenomenon, together with a criterion for the existence of resonant activation. Specifically, the minimum extinction time arises as a result of the system approaching a scenario wherein the severity of rare events is balanced by the time interval between them. We discuss our findings within the context of more general forms of environmental noise and suggest potential applications to evolutionary models.

  14. Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Galpha11-dependent, PLC-beta-mediated pathway.

    PubMed

    Bueno, Clara; Lemke, Caitlin D; Criado, Gabriel; Baroja, Miren L; Ferguson, Stephen S G; Rahman, A K M Nur-Ur; Tsoukas, Constantine D; McCormick, John K; Madrenas, Joaquin

    2006-07-01

    The paradigm to explain antigen-dependent T cell receptor (TCR) signaling is based on the activation of the CD4 or CD8 coreceptor-associated kinase Lck. It is widely assumed that this paradigm is also applicable to signaling by bacterial superantigens. However, these bacterial toxins can activate human T cells lacking Lck, suggesting the existence of an additional pathway of TCR signaling. Here we showed that this alternative pathway operates in the absence of Lck-dependent tyrosine-phosphorylation events and was initiated by the TCR-dependent activation of raft-enriched heterotrimeric Galpha11 proteins. This event, in turn, activated a phospholipase C-beta and protein kinase C-mediated cascade that turned on the mitogen-activated protein kinases ERK-1 and ERK-2, triggered Ca(2+) influx, and translocated the transcription factors NF-AT and NF-kappaB to the nucleus, ultimately inducing the production of interleukin-2 in Lck-deficient T cells. The triggering of this alternative pathway by superantigens suggests that these toxins use a G protein-coupled receptor as a coreceptor on T cells.

  15. Bacterially mediated mineralization of vaterite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos; Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Gonzalez-Muñoz, Maria Teresa; Rodriguez-Gallego, Manuel

    2007-03-01

    Myxococcus xanthus, a common soil bacterium, plays an active role in the formation of spheroidal vaterite. Bacterial production of CO 2 and NH 3 and the transformation of the NH 3 to NH4+ and OH -, thus increasing solution pH and carbonate alkalinity, set the physicochemical conditions (high supersaturation) leading to vaterite precipitation in the microenvironment around cells, and directly onto the surface of bacterial cells. In the latter case, fossilization of bacteria occurs. Vaterite crystals formed by aggregation of oriented nanocrystals with c-axis normal to the bacterial cell-wall, or to the core of the spherulite when bacteria were not encapsulated. While preferred orientation of vaterite c-axis appears to be determined by electrostatic affinity (ionotropic effect) between vaterite crystal (0001) planes and the negatively charged functional groups of organic molecules on the bacterium cell-wall or on extracellular polymeric substances (EPS), analysis of the changes in the culture medium chemistry as well as high resolution transmission electron microscopy (HRTEM) observations point to polymorph selection by physicochemical (kinetic) factors (high supersaturation) and stabilization by organics, both connected with bacterial activity. The latter is in agreement with inorganic precipitation of vaterite induced by NH 3 and CO 2 addition in the protein-rich sterile culture medium. Our results as well as recent studies on vaterite precipitation in the presence of different types of bacteria suggest that bacterially mediated vaterite precipitation is not strain-specific, and could be more common than previously thought.

  16. Bacterial endophytes enhance competition by invasive plants.

    PubMed

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  17. Gut bacterial diversity of the tribes of India and comparison with the worldwide data

    PubMed Central

    Dehingia, Madhusmita; Thangjam devi, Kanchal; Talukdar, Narayan C.; Talukdar, Rupjyoti; Reddy, Nageshwar; Mande, Sharmila S.; Deka, Manab; Khan, Mojibur R.

    2015-01-01

    The gut bacteria exert phenotypic traits to the host but the factors which determine the gut bacterial profile (GBP) is poorly understood. This study aimed to understand the effect of ethnicity and geography on GBP of Mongoloid and Proto-Australoid tribes of India. Fecal bacterial diversity was studied in fifteen tribal populations representing four geographic regions (Assam, Telangana, Manipur and Sikkim) by DGGE followed by NGS analysis on Illumina MiSeq platform. Geography and diet had significant effect on GBP of the Indian tribes which was dominated by Prevotella. The effects were more prominent with lower taxonomic levels, indicating probable functional redundancy of the core GBP. A comparison with the worldwide data revealed that GBP of the Indian population was similar to the Mongolian population (Mongolia). The bacterial genera Faecalibacterium, Eubacterium, Clostridium, Blautia, Ruminococcus and Roseburia were found to be core genera in the representative populations of the world. PMID:26689136

  18. Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations.

    PubMed

    Tiago, Igor; Chung, Ana Paula; Veríssimo, António

    2004-12-01

    Heterotrophic populations were isolated and characterized from an alkaline groundwater environment generated by active serpentinization, which results in a Ca(OH)2-enriched, extremely diluted groundwater with pH 11.4. One hundred eighty-five strains were isolated in different media at different pH values during two sampling periods. To assess the degree of diversity present in the environment and to select representative strains for further characterization of the populations, we screened the isolates by using random amplified polymorphic DNA-PCR profiles and grouped them based on similarities determined by fatty acid methyl ester analysis. Phenotypic characterization, determinations of G+C content, phylogenetic analyses by direct sequencing of 16S rRNA genes, and determinations of pH tolerance were performed with the selected isolates. Although 38 different populations were identified and characterized, the vast majority of the isolates were gram positive with high G+C contents and were affiliated with three distinct groups, namely, strains closely related to the species Dietzia natrolimnae (32% of the isolates), to Frigoribacterium/Clavibacter lineages (29% of the isolates), and to the type strain of Microbacterium kitamiense (20% of the isolates). Other isolates were phylogenetically related to strains of the genera Agrococcus, Leifsonia, Kytococcus, Janibacter, Kocuria, Rothia, Nesterenkonia, Citrococcus, Micrococcus, Actinomyces, Rhodococcus, Bacillus, and Staphylococcus. Only five isolates were gram negative: one was related to the Sphingobacteria lineage and the other four were related to the alpha-Proteobacteria lineage. Despite the pH of the environment, the vast majority of the populations were alkali tolerant, and only two strains were able to grow at pH 11.

  19. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  20. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.

    PubMed

    Tomalty, Heather E; Walker, Virginia K

    2014-09-26

    Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9°C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  1. Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations

    PubMed Central

    Garrido-Sanz, Daniel; Manzano, Javier; Martín, Marta; Redondo-Nieto, Miguel; Rivilla, Rafael

    2018-01-01

    Polychlorinated biphenyls (PCBs) are widespread persistent pollutants that cause several adverse health effects. Aerobic bioremediation of PCBs involves the activity of either one bacterial species or a microbial consortium. Using multiple species will enhance the range of PCB congeners co-metabolized since different PCB-degrading microorganisms exhibit different substrate specificity. We have isolated a bacterial consortium by successive enrichment culture using biphenyl (analog of PCBs) as the sole carbon and energy source. This consortium is able to grow on biphenyl, benzoate, and protocatechuate. Whole-community DNA extracted from the consortium was used to analyze biodiversity by Illumina sequencing of a 16S rRNA gene amplicon library and to determine the metagenome by whole-genome shotgun Illumina sequencing. Biodiversity analysis shows that the consortium consists of 24 operational taxonomic units (≥97% identity). The consortium is dominated by strains belonging to the genus Pseudomonas, but also contains betaproteobacteria and Rhodococcus strains. whole-genome shotgun (WGS) analysis resulted in contigs containing 78.3 Mbp of sequenced DNA, representing around 65% of the expected DNA in the consortium. Bioinformatic analysis of this metagenome has identified the genes encoding the enzymes implicated in three pathways for the conversion of biphenyl to benzoate and five pathways from benzoate to tricarboxylic acid (TCA) cycle intermediates, allowing us to model the whole biodegradation network. By genus assignment of coding sequences, we have also been able to determine that the three biphenyl to benzoate pathways are carried out by Rhodococcus strains. In turn, strains belonging to Pseudomonas and Bordetella are the main responsible of three of the benzoate to TCA pathways while the benzoate conversion into TCA cycle intermediates via benzoyl-CoA and the catechol meta-cleavage pathways are carried out by beta proteobacteria belonging to genera such as

  2. Simultaneous spatiotemporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure

    NASA Astrophysics Data System (ADS)

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Sun, Victor; Aviles-Reyes, Alejandro; Kajfasz, Jessica K.; Lemos, Jose A.; Koo, Hyun

    2016-09-01

    Biofilms are comprised of bacterial-clusters (microcolonies) enmeshed in an extracellular matrix. Streptococcus mutans can produce exopolysaccharides (EPS)-matrix and assemble microcolonies with acidic microenvironments that can cause tooth-decay despite the surrounding neutral-pH found in oral cavity. How the matrix influences the pH and bacterial activity locally remains unclear. Here, we simultaneously analyzed in situ pH and gene expression within intact biofilms and measured the impact of damage to the surrounding EPS-matrix. The spatiotemporal changes of these properties were characterized at a single-microcolony level following incubation in neutral-pH buffer. The middle and bottom-regions as well as inner-section within the microcolony 3D structure were resistant to neutralization (vs. upper and peripheral-region), forming an acidic core. Concomitantly, we used a green fluorescent protein (GFP) reporter to monitor expression of the pH-responsive atpB (PatpB::gfp) by S. mutans within microcolonies. The atpB expression was induced in the acidic core, but sharply decreased at peripheral/upper microcolony regions, congruent with local pH microenvironment. Enzymatic digestion of the surrounding matrix resulted in nearly complete neutralization of microcolony interior and down-regulation of atpB. Altogether, our data reveal that biofilm matrix facilitates formation of an acidic core within microcolonies which in turn activates S. mutans acid-stress response, mediating both the local environment and bacterial activity in situ.

  3. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors

    PubMed Central

    Janek, Daniela; Zipperer, Alexander; Kulik, Andreas; Krismer, Bernhard; Peschel, Andreas

    2016-01-01

    The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota. PMID:27490492

  4. A distinct bacterial dysbiosis associated skin inflammation in ovine footrot

    NASA Astrophysics Data System (ADS)

    Maboni, Grazieli; Blanchard, Adam; Frosth, Sara; Stewart, Ceri; Emes, Richard; Tötemeyer, Sabine

    2017-03-01

    Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression.

  5. Characterization of bacterial coliform occurrences in different zones of a drinking water distribution system.

    PubMed

    Blanch, A R; Galofré, B; Lucena, F; Terradillos, A; Vilanova, X; Ribas, F

    2007-03-01

    To compare the bacterial coliforms detected from occurrences in three zones of a water distribution system supplied by two separate water sources. Conventional and standardized protocols for identifying enterobacterial populations were applied. Additional tests to confirm isolates were included. Analyses of diversity and population similarity were performed using the Phene Plate System, a miniaturized biochemical phenotyping method. Isolates were identified by the API 20E system in tandem with biochemical phenotyping. A total of 16 576 samples were taken from the water distribution system, with 1416 isolates analysed. A low number of coliform occurrences were observed (2%). Escherichia coli was not detected in either water origin or in Zone 2 samples; however, in Zones 1 and 3 a low number of cases of E. coli were recorded. The percentages of E. coli depended on the identification criteria. Eight biochemical profiles for coliform populations were defined according to the results of the confirmative tests. There was a high diversity among these populations in the three zones studied, although no significant variations in their composition (associated with occurrences in the different zones) were observed. Klebsiella oxytoca was the most commonly detected species irrespective of zone, although seven other enterobacterial genera were also found. Analysis of the enzymatic activity of beta-glucuronidase or application of the criteria established in the norm ISO 9308-1, in tandem with thermotolerance was needed to evaluate the occurrence of E. coli in the distribution systems. Detected occurrences of bacterial coliforms could be associated with re-growth patterns for specific sampling points in the distribution system. Seasonal differences, independent of the studied zones, were observed. Biochemical phenotyping of bacterial coliforms was shown to be a useful method on the characterization of occurrences in water distribution systems.

  6. Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system

    PubMed Central

    Atilano, Magda Luciana; Pereira, Pedro Matos; Vaz, Filipa; Catalão, Maria João; Reed, Patricia; Grilo, Inês Ramos; Sobral, Rita Gonçalves; Ligoxygakis, Petros; Pinho, Mariana Gomes; Filipe, Sérgio Raposo

    2014-01-01

    Bacteria have to avoid recognition by the host immune system in order to establish a successful infection. Peptidoglycan, the principal constituent of virtually all bacterial surfaces, is a specific molecular signature recognized by dedicated host receptors, present in animals and plants, which trigger an immune response. Here we report that autolysins from Gram-positive pathogenic bacteria, enzymes capable of hydrolyzing peptidoglycan, have a major role in concealing this inflammatory molecule from Drosophila peptidoglycan recognition proteins (PGRPs). We show that autolysins trim the outermost peptidoglycan fragments and that in their absence bacterial virulence is impaired, as PGRPs can directly recognize leftover peptidoglycan extending beyond the external layers of bacterial proteins and polysaccharides. The activity of autolysins is not restricted to the producer cells but can also alter the surface of neighboring bacteria, facilitating the survival of the entire population in the infected host. DOI: http://dx.doi.org/10.7554/eLife.02277.001 PMID:24692449

  7. In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation.

    PubMed

    Maes, Michael; Ringel, Karl; Kubera, Marta; Anderson, George; Morris, Gerwyn; Galecki, Piotr; Geffard, Michel

    2013-09-05

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is accompanied by activation of immuno-inflammatory pathways, increased bacterial translocation and autoimmune responses to serotonin (5-HT). Inflammation is known to damage 5-HT neurons while bacterial translocation may drive autoimmune responses. This study has been carried out to examine the autoimmune responses to 5-HT in ME/CFS in relation to inflammation and bacterial translocation. We examined 5-HT antibodies in 117 patients with ME/CFS (diagnosed according to the centers for disease control and prevention criteria, CDC) as compared with 43 patients suffering from chronic fatigue (CF) but not fulfilling the CDC criteria and 35 normal controls. Plasma interleukin-1 (IL-1), tumor necrosis factor (TNF)α, neopterin and the IgA responses to Gram-negative bacteria were measured. Severity of physio-somatic symptoms was measured using the fibromyalgia and chronic fatigue syndrome rating scale (FF scale). The incidence of positive autoimmune activity against 5-HT was significantly higher (p<0.001) in ME/CFS (61.5%) than in patients with CF (13.9%) and controls (5.7%). ME/CFS patients with 5-HT autoimmune activity displayed higher TNFα, IL-1 and neopterin and increased IgA responses against LPS of commensal bacteria than those without 5-HT autoimmune activity. Anti-5-HT antibody positivity was significantly associated with increased scores on hyperalgesia, fatigue, neurocognitive and autonomic symptoms, sadness and a flu-like malaise. The results show that, in ME/CFS, increased 5-HT autoimmune activity is associated with activation of immuno-inflammatory pathways and increased bacterial translocation, factors which are known to play a role in the onset of autoimmune reactions. 5-HT autoimmune activity could play a role in the pathophysiology of ME/CFS and the onset of physio-somatic symptoms. These results provide mechanistic support for the notion that ME/CFS is a neuro-immune disorder. Copyright © 2013

  8. Variation in microbial activity in histosols and its relationship to soil moisture.

    PubMed

    Tate, R L; Terry, R E

    1980-08-01

    Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.

  9. Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination.

    PubMed

    Bowling, Frank L; Stickings, Daryl S; Edwards-Jones, Valerie; Armstrong, David G; Boulton, Andrew Jm

    2009-05-08

    The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound. Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37 degrees C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room. There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p < 0.001) increase in microbial counts post hydrodebridement. Levels ranging from 950 colony forming units per meter cubed (CFUs/m3) to 16780 CFUs/m3 were observed with active sampling of the air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p < 0.05). Microbial load of the air samples was still significantly raised 1 hour post-therapy. The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.

  10. Dynamic metabolic exchange governs a marine algal-bacterial interaction

    PubMed Central

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-01-01

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786

  11. Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima.

    PubMed

    Herfort, Lydie; Crump, Byron C; Fortunato, Caroline S; McCue, Lee Ann; Campbell, Victoria; Simon, Holly M; Baptista, António M; Zuber, Peter

    2017-12-01

    Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production ( 3 H-leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1-24 PSU), but summer non-ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free-living (0.2-3 μm) assemblages of non-ETM waters were similar to each other, indicating that particle-attached (>3 μm) non-ETM bacteria do not develop a distinct community. Brackish water type (ETM or non-ETM) is thus a major factor affecting particle-attached bacterial communities. Heterotrophic production was higher in particle-attached than free-living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM-impacted waters). However, free-living communities showed higher productivity prior to or after an ETM event (i.e., non-ETM-impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the

  12. The type VI secretion system impacts bacterial invasion and population dynamics in a model intestinal microbiota

    NASA Astrophysics Data System (ADS)

    Logan, Savannah L.; Shields, Drew S.; Hammer, Brian K.; Xavier, Joao B.; Parthasarathy, Raghuveer

    Animal gastrointestinal tracts are home to a diverse community of microbes. The mechanisms by which microbial species interact and compete in this dense, physically dynamic space are poorly understood, limiting our understanding of how natural communities are assembled and how different communities could be engineered. Here, we focus on a physical mechanism for competition: the type VI secretion system (T6SS). The T6SS is a syringe-like organelle used by certain bacteria to translocate effector proteins across the cell membranes of target bacterial cells, killing them. Here, we use T6SS+ and T6SS- strains of V. cholerae, the pathogen that causes cholera in humans, and light sheet fluorescence microscopy for in vivo imaging to show that the T6SS provides an advantage to strains colonizing the larval zebrafish gut. Furthermore, we show that T6SS+ bacteria can invade and alter an existing population of a different species in the zebrafish gut, reducing its abundance and changing the form of its population dynamics. This work both demonstrates a mechanism for altering the gut microbiota with an invasive species and explores the processes controlling the stability and dynamics of the gut ecosystem. Research Corporation, Gordon and Betty Moore Foundation, and the Simons Foundation.

  13. Inhibition of Bacterial Rna Polymerase by Streptolydigin: Stabilization of A Straight-Bridge-Helix Active-Center Conformation

    PubMed Central

    Tuske, Steven; Sarafianos, Stefan G.; Wang, Xinyue; Hudson, Brian; Sineva, Elena; Mukhopadhyay, Jayanta; Birktoft, Jens J.; Leroy, Olivier; Ismail, Sajida; Clark, Arthur D.; Dharia, Chhaya; Napoli, Andrew; Laptenko, Oleg; Lee, Jookyung; Borukhov, Sergei; Ebright, Richard H.; Arnold, Eddy

    2009-01-01

    We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic-acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to, but not overlapping, the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist, and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents. PMID:16122422

  14. The innate immune rheostat: influence on lung inflammatory disease and secondary bacterial pneumonia.

    PubMed

    Hussell, Tracy; Cavanagh, Mary M

    2009-08-01

    The activity of innate immunity is not simply dictated by the presence of an antigen but also by the balance between negative regulatory and immune potentiator pathways. Even in the absence of antigen, innate immunity can 'inflame' if negative regulators are absent. This resting state is adaptable and dictated by environmental influences, host genetics and past infection history. A return to homoeostasis post inflammation may therefore not leave the tissue in an identical state to that prior to the inflammatory event. This adaptability makes us all unique and also explains the variable outcome experienced by a diverse population to the same inflammatory stimulus. Using murine models we have identified that influenza virus causes a long-term modification of the lung microenvironment by a de-sensitization to bacterial products and an increase in the myeloid negative regulator CD200R (CD200 receptor). These two events prevent subsequent inflammatory damage while the lung is healing, but also they may predispose to bacterial colonization of the lower respiratory tract should regulatory mechanisms overshoot. In the extreme, this leads to bacterial pneumonia, sepsis and death. A deeper understanding of the consequences arising from innate immune cell alteration during influenza infection and the subsequent development of bacterial complications has important implications for future drug development.

  15. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Nogueira, Vanessa L R; Paes, Fernanda A; Melo, Vânia M M

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  16. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  17. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.

    PubMed

    Raghupathi, Krishna R; Koodali, Ranjit T; Manna, Adhar C

    2011-04-05

    The antibacterial properties of zinc oxide nanoparticles were investigated using both gram-positive and gram-negative microorganisms. These studies demonstrate that ZnO nanoparticles have a wide range of antibacterial activities toward various microorganisms that are commonly found in environmental settings. The antibacterial activity of the ZnO nanoparticles was inversely proportional to the size of the nanoparticles in S. aureus. Surprisingly, the antibacterial activity did not require specific UV activation using artificial lamps, rather activation was achieved under ambient lighting conditions. Northern analyses of various reactive oxygen species (ROS) specific genes and confocal microscopy suggest that the antibacterial activity of ZnO nanoparticles might involve both the production of reactive oxygen species and the accumulation of nanoparticles in the cytoplasm or on the outer membranes. Overall, the experimental results suggest that ZnO nanoparticles could be developed as antibacterial agents against a wide range of microorganisms to control and prevent the spreading and persistence of bacterial infections.

  18. PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Dinjaski, Nina; Fernández-Gutiérrez, Mar; Selvam, Shivaram; Parra-Ruiz, Francisco J.; Lehman, Susan M.; Román, Julio San; García, Ernesto; García, José L.; García, Andrés J.; Prieto, María Auxiliadora

    2013-01-01

    Biomaterial-associated infections represent a significant clinical problem, and treatment of these microbial infections is becoming troublesome due to the increasing number of antibiotic-resistant strains. Here, we report a naturally functionalized bacterial polyhydroxyalkanoate (PHACOS) with antibacterial properties. We demonstrate that PHACOS selectively and efficiently inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo. This ability has been ascribed to the functionalized side chains containing thioester groups. Significantly less (3.2-fold) biofilm formation of S. aureus was detected on PHACOS compared to biofilms formed on control poly(3-hydroxyoctanoate-co-hydroxyhexanoate) and poly(ethylene terephthalate), but no differences were observed in bacterial adhesion among these polymers. PHACOS elicited minimal cytotoxic and inflammatory effects on murine macrophages and supported normal fibroblast adhesion. In vivo fluorescence imaging demonstrated minimal inflammation and excellent antibacterial activity for PHACOS compared to controls in an in vivo model of implant-associated infection. Additionally, reductions in neutrophils and macrophages in the vicinity of sterile PHACOS compared to sterile PHO implant were observed by immunohistochemistry. Moreover, a similar percentage of inflammatory cells was found in the tissue surrounding sterile PHACOS and S. aureus pre-colonized PHACOS implants, and these levels were significantly lower than S. aureus pre-colonized control polymers. These findings support a contact active surface mode of antibacterial action for PHACOS and establish this functionalized polyhydroxyalkanoate as an infection-resistant biomaterial. PMID:24094939

  19. Exploring the plant-associated bacterial communities in Medicago sativa L

    PubMed Central

    2012-01-01

    Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti). However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti) level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40%) between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may constitute an important

  20. A cross-sectional comparative study of gut bacterial community of Indian and Finnish children.

    PubMed

    Kumbhare, Shreyas V; Kumar, Himanshu; Chowdhury, Somak P; Dhotre, Dhiraj P; Endo, Akihito; Mättö, Jaana; Ouwehand, Arthur C; Rautava, Samuli; Joshi, Ruchi; Patil, Nitinkumar P; Patil, Ravindra H; Isolauri, Erika; Bavdekar, Ashish R; Salminen, Seppo; Shouche, Yogesh S

    2017-09-05

    The human gut microbiome plays a crucial role in the compositional development of gut microbiota. Though well documented in western pediatrics population, little is known about how various host conditions affect populations in different geographic locations such as the Indian subcontinent. Given the impact of distinct environmental conditions, our study assess the gut bacterial diversity of a small cohort of Indian and Finnish children and investigated the influence of FUT2 secretor status and birth mode on the gut microbiome of these populations. Using multiple profiling techniques, we show that the gut bacterial community structure in 13-14-year-old Indian (n = 47) and Finnish (n = 52) children differs significantly. Specifically, Finnish children possessed higher Blautia and Bifidobacterium, while genera Prevotella and Megasphaera were predominant in Indian children. Our study also demonstrates a strong influence of FUT2 and birth mode variants on specific gut bacterial taxa, influence of which was noticed to differ between the two populations under study.