Science.gov

Sample records for active binding sites

  1. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  2. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  3. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  4. Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors.

    PubMed

    Rayes, Diego; De Rosa, María José; Sine, Steven M; Bouzat, Cecilia

    2009-05-06

    Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant subunits. Although receptors with a range of different subunit compositions are produced, patch-clamp recordings reveal that the amplitude of each single-channel opening event reports the number and, for certain subunit combinations, the locations of subunits with intact binding sites. We find that receptors with three binding sites at nonconsecutive subunit interfaces exhibit maximal mean channel open time, receptors with binding sites at three consecutive or two nonconsecutive interfaces exhibit intermediate open time, and receptors with binding sites at two consecutive or one interface exhibit brief open time. Macroscopic recordings after rapid application of agonist reveal that channel activation slows and the extent of desensitization decreases as the number of binding sites per receptor decreases. The overall results provide a framework for defining mechanisms of activation and drug modulation for homo-pentameric Cys-loop receptors.

  5. Heparanase Activates Antithrombin through the Binding to Its Heparin Binding Site

    PubMed Central

    Águila, Sonia; Teruel-Montoya, Raúl; Vicente, Vicente; Corral, Javier; Martínez-Martínez, Irene

    2016-01-01

    Heparanase is an endoglycosidase that participates in morphogenesis, tissue repair, heparan sulphates turnover and immune response processes. It is over-expressed in tumor cells favoring the metastasis as it penetrates the endothelial layer that lines blood vessels and facilitates the metastasis by degradation of heparan sulphate proteoglycans of the extracellular matrix. Heparanase may also affect the hemostatic system in a non-enzymatic manner, up-regulating the expression of tissue factor, which is the initiator of blood coagulation, and dissociating tissue factor pathway inhibitor on the cell surface membrane of endothelial and tumor cells, thus resulting in a procoagulant state. Trying to check the effect of heparanase on heparin, a highly sulphated glycosaminoglycan, when it activates antithrombin, our results demonstrated that heparanase, but not proheparanase, interacted directly with antithrombin in a non-covalent manner. This interaction resulted in the activation of antithrombin, which is the most important endogenous anticoagulant. This activation mainly accelerated FXa inhibition, supporting an allosteric activation effect. Heparanase bound to the heparin binding site of antithrombin as the activation of Pro41Leu, Arg47Cys, Lys114Ala and Lys125Alaantithrombin mutants was impaired when it was compared to wild type antithrombin. Intrinsic fluorescence analysis showed that heparanase induced an activating conformational change in antithrombin similar to that induced by heparin and with a KD of 18.81 pM. In conclusion, under physiological pH and low levels of tissue factor, heparanase may exert a non-enzymatic function interacting and activating the inhibitory function of antithrombin. PMID:27322195

  6. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  7. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  8. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity

    PubMed Central

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H.

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  9. Molecular dynamics simulations of Zika virus NS3 helicase: Insights into RNA binding site activity.

    PubMed

    Mottin, Melina; Braga, Rodolpho C; da Silva, Roosevelt A; Silva, Joao H Martins da; Perryman, Alexander L; Ekins, Sean; Andrade, Carolina Horta

    2017-03-21

    America is still suffering with the outbreak of Zika virus (ZIKV) infection. Congenital ZIKV syndrome has already caused a public health emergency of international concern. However, there are still no vaccines to prevent or drugs to treat the infection caused by ZIKV. The ZIKV NS3 helicase (NS3h) protein is a promising target for drug discovery due to its essential role in viral genome replication. NS3h unwinds the viral RNA to enable the replication of the viral genome by the NS5 protein. NS3h contains two important binding sites: the NTPase binding site and the RNA binding site. Here, we used molecular dynamics (MD) simulations to study the molecular behavior of ZIKV NS3h in the presence and absence of ssRNA and the potential implications for NS3h activity and inhibition. Although there is conformational variability and poor electron densities of the RNA binding loop in various apo flaviviruses NS3h crystallographic structures, the MD trajectories of NS3h-ssRNA demonstrated that the RNA binding loop becomes more stable when NS3h is occupied by RNA. Our results suggest that the presence of RNA generates important interactions with the RNA binding loop, and these interactions stabilize the loop sufficiently that it remains in a closed conformation. This closed conformation likely keeps the ssRNA bound to the protein for a sufficient duration to enable the unwinding/replication activities of NS3h to occur. In addition, conformational changes of this RNA binding loop can change the nature and location of the optimal ligand binding site, according to ligand binding site prediction results. These are important findings to help guide the design and discovery of new inhibitors of NS3h as promising compounds to treat the ZIKV infection.

  10. How Force Might Activate Talin's Vinculin Binding Sites: SMD Reveals a Structural Mechanism

    PubMed Central

    Hytönen, Vesa P; Vogel, Viola

    2008-01-01

    Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486–889 constituting helices H1–H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculin. The first events in fracturing the H1–H12 rods of talin1 and talin2 in subbundles are similar. The proposed force-activated α-helix swapping mechanism by which vinculin binding sites in talin rods are exposed works distinctly different from that of other force-activated bonds, including catch bonds. PMID:18282082

  11. The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase.

    PubMed

    Tseng, C C; Miyamoto, M; Ramalingam, K; Hemavathy, K C; Levine, M J; Ramasubbu, N

    1999-02-01

    Human salivary alpha-amylase participates in the initial digestion of starch and may be involved in the colonization of viridans streptococci in the mouth. To elucidate the role of histidine residues located near the starch-binding site on the streptococcal-binding activity, the wild type and three histidine mutants, H52A, H299A and H305A were constructed and expressed in a baculovirus system. While His52 is located near the non-reducing end of the starch-binding pocket (subsite S3/S4), the residues His299 and His305 are located near the subsites S1/S1'. For the wild type, the cDNA encoding the leader and secreted sequences of human salivary amylase was amplified by polymerase chain reaction from a human submandibular salivary-gland cDNA library, and subcloned into the baculovirus shuttle vector pVL1392 downstream of the polyhedrin promoter. Oligonucleotide-based, site-directed mutagenesis was used to generate the mutants expressed in the baculovirus system. Replacing His52 or His299 or His305 to Ala residue did not alter the bacterial-binding activity significantly, but these mutants did show differences in their catalytic activities. The mutant H52A showed negligible reduction in enzymatic activity compared to that of wild type for the hydrolysis of starch and oligosaccharides. In contrast, the H299A and H305A mutants showed a 12 to 13-fold reduction (90-92%) in starch-hydrolysing activity. In addition, the k(cat) for the hydrolysis of oligosaccharides by H299A decreased by as much as 11-fold for maltoheptaoside. This reduction was even higher (40-fold) for the hydrolysis of p-nitrophenyl maltoside, with a significant change in K(M). The mutant H305A, however, exhibited a reduction in k(cat) only, with no changes in the K(M) for the hydrolysis of oligosaccharides. The reduction in the k(cat) for the H305A mutant was almost 93% for maltoheptaoside hydrolysis. The pH activity profile for the H305A mutant was also significantly different from that of the wild type

  12. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites.

    PubMed

    Gu, Yuanzheng; Barry, Joshua; Gu, Chen

    2013-05-15

    Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.

  13. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    SciTech Connect

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  14. Hedgehog Pathway Antagonist 5E1 Binds Hedgehog at the Pseudo-active Site

    PubMed Central

    Maun, Henry R.; Wen, Xiaohui; Lingel, Andreas; de Sauvage, Frederic J.; Lazarus, Robert A.; Scales, Suzie J.; Hymowitz, Sarah G.

    2010-01-01

    Proper hedgehog (Hh) signaling is crucial for embryogenesis and tissue regeneration. Dysregulation of this pathway is associated with several types of cancer. The monoclonal antibody 5E1 is a Hh pathway inhibitor that has been extensively used to elucidate vertebrate Hh biology due to its ability to block binding of the three mammalian Hh homologs to the receptor, Patched1 (Ptc1). Here, we engineered a murine:human chimeric 5E1 (ch5E1) with similar Hh-binding properties to the original murine antibody. Using biochemical, biophysical, and x-ray crystallographic studies, we show that, like the regulatory receptors Cdon and Hedgehog-interacting protein (Hhip), ch5E1 binding to Sonic hedgehog (Shh) is enhanced by calcium ions. In the presence of calcium and zinc ions, the ch5E1 binding affinity increases 10–20-fold to tighter than 1 nm primarily because of a decrease in the dissociation rate. The co-crystal structure of Shh bound to the Fab fragment of ch5E1 reveals that 5E1 binds at the pseudo-active site groove of Shh with an epitope that largely overlaps with the binding site of its natural receptor antagonist Hhip. Unlike Hhip, the side chains of 5E1 do not directly coordinate the Zn2+ cation in the pseudo-active site, despite the modest zinc-dependent increase in 5E1 affinity for Shh. Furthermore, to our knowledge, the ch5E1 Fab-Shh complex represents the first structure of an inhibitor antibody bound to a metalloprotease fold. PMID:20504762

  15. FAD binding, cobinamide binding and active site communication in the corrin reductase (CobR)

    PubMed Central

    Lawrence, Andrew D.; Taylor, Samantha L.; Scott, Alan; Rowe, Michelle L.; Johnson, Christopher M.; Rigby, Stephen E. J.; Geeves, Michael A.; Pickersgill, Richard W.; Howard, Mark J.; Warren, Martin J.

    2014-01-01

    Adenosylcobalamin, the coenzyme form of vitamin B12, is one Nature's most complex coenzyme whose de novo biogenesis proceeds along either an anaerobic or aerobic metabolic pathway. The aerobic synthesis involves reduction of the centrally chelated cobalt metal ion of the corrin ring from Co(II) to Co(I) before adenosylation can take place. A corrin reductase (CobR) enzyme has been identified as the likely agent to catalyse this reduction of the metal ion. Herein, we reveal how Brucella melitensis CobR binds its coenzyme FAD (flavin dinucleotide) and we also show that the enzyme can bind a corrin substrate consistent with its role in reduction of the cobalt of the corrin ring. Stopped-flow kinetics and EPR reveal a mechanistic asymmetry in CobR dimer that provides a potential link between the two electron reduction by NADH to the single electron reduction of Co(II) to Co(I). PMID:24909839

  16. Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

    SciTech Connect

    Yang, Jingsong; Campobasso, Nino; Biju, Mangatt P.; Fisher, Kelly; Pan, Xiao-Qing; Cottom, Josh; Galbraith, Sarah; Ho, Thau; Zhang, Hong; Hong, Xuan; Ward, Paris; Hofmann, Glenn; Siegfried, Brett; Zappacosta, Francesca; Washio, Yoshiaki; Cao, Ping; Qu, Junya; Bertrand, Sophie; Wang, Da-Yuan; Head, Martha S.; Li, Hu; Moores, Sheri; Lai, Zhihong; Johanson, Kyung; Burton, George; Erickson-Miller, Connie; Simpson, Graham; Tummino, Peter; Copeland, Robert A.; Oliff, Allen

    2014-10-02

    c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the {alpha}I helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the {alpha}I helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.

  17. Cytochalasin B binding proteins in human erythrocyte membranes. Modulation of glucose sensitivity by site interaction and partial solubilization of binding activities.

    PubMed

    Pinkofsky, H B; Rampal, A L; Cowden, M A; Jung, C Y

    1978-07-25

    We have previously described three different cytochalasin B binding sites in human erythrocyte membranes, a D-glucose-sensitive site (Site I), a cytochalasin E-sensitive site (Site II), and a site (Site III) insensitive to both D-glucose and cytochalasin E. Ligand bindings to each of these sites were considered to be independent (Jung, C., and Rampal, A. (1977) J. Biol. Chem. 252, 5456-5463). However, we have obtained subsequently the following evidence which indicated that an interaction occurs between Sites II and III, and this modulates sensitivity of Site III to the sugar. The displacement of cytochalasin E greatly exceeds the sum of their independent displacements. This ghosts extracted with EDTA or 2,3-dimethylmaleic anhydride at low ionic strength lack Site II activity but retain Site I and III activities, and both of these activities are displaceable by D-glucose alone. This indicated that the removal of Site II from the membrane confers glucose sensitivity to Site III. These observations are consistent with a model that Sites II and III in the membrane exist in a close association through which unliganded Site II maintains the glucose insensitivity of Site III, and once site II is liganded or removed by extraction this association is disrupted and Site III becomes glucose-sensitive. The ghosts extracted with Triton X-100 retain a cytochalasin B binding activity similar to that of site II (Kd = 1.8 X 10(-7) M, cytochalasin E-sensitive, glucose-insensitive), whereas a binding activity similar to that of Site I (Kd = 4 X 10(-7) M, cytochalasin E-insensitive, glucose-sensitive) is recovered in the Triton extract. A cytochalasin B binding activity similar to that of Site II is solubilized by EDTA at low ionic strength.

  18. Human 15-LOX-1 active site mutations alter inhibitor binding and decrease potency.

    PubMed

    Armstrong, Michelle; van Hoorebeke, Christopher; Horn, Thomas; Deschamps, Joshua; Freedman, J Cody; Kalyanaraman, Chakrapani; Jacobson, Matthew P; Holman, Theodore

    2016-11-01

    Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors.

  19. Multiple DNA binding activities of the novel site-specific recombinase, Piv, from Moraxella lacunata.

    PubMed

    Tobiason, D M; Lenich, A G; Glasgow, A C

    1999-04-02

    The recombinase, Piv, is essential for site-specific DNA inversion of the type IV pilin DNA segment in Moraxella lacunata and Moraxella bovis. Piv shows significant homology with the transposases of the IS110/IS492 family of insertion elements, but, surprisingly, Piv contains none of the conserved amino acid motifs of the lambda Int or Hin/Res families of site-specific recombinases. Therefore, Piv may mediate site-specific recombination by a novel mechanism. To begin to determine how Piv may assemble a synaptic nucleoprotein structure for DNA cleavage and strand exchange, we have characterized the interaction of Piv with the DNA inversion region of M. lacunata. Gel shift and nuclease/chemical protection assays, competition and dissociation rate analyses, and cooperativity studies indicate that Piv binds two distinct recognition sequences. One recognition sequence, found at multiple sites within and outside of the invertible segment, is bound by Piv protomers with high affinity. The second recognition sequence is located at the recombination cross-over sites at the ends of the invertible element; Piv interacts with this sequence as an oligomer with apparent low affinity. A model is proposed for the role of the different Piv binding sites of the M. lacunata inversion region in the formation of an active synaptosome.

  20. Computational approaches to find the active binding sites of biological targets against busulfan.

    PubMed

    Karthick, T; Tandon, Poonam

    2016-06-01

    Determination of electrophilic and nucleophilic sites of a molecule is the primary task to find the active sites of the lead molecule. In the present study, the active sites of busulfan have been predicted by molecular electrostatic potential surface and Fukui function analysis with the help of dispersion corrected density functional theory. Similarly, the identification of active binding sites of the proteins against lead compound plays a vital role in the field of drug discovery. Rigid and flexible molecular docking approaches are used for this purpose. For rigid docking, Hex 8.0.0 software employing fast Fourier transform (FFT) algorithm has been used. The partial flexible blind docking simulations have been performed with AutoDock 4.2 software; where a Lamarckian genetic algorithm is employed. The results showed that the most electrophilic atoms of busulfan bind with the targets. It is clear from the docking studies that busulfan has inhibition capability toward the targets 12CA and 1BZM. Graphical Abstract Docking of ligand and protein.

  1. Non-specific binding sites help to explain mixed inhibition in mushroom tyrosinase activities.

    PubMed

    Hassani, Sorour; Haghbeen, Kamahldin; Fazli, Mostafa

    2016-10-21

    Inhibition and activation studies of tyrosinase could prove beneficial to agricultural, food, cosmetic, and pharmaceutical industries. Although non-competitive and mixed-inhibition are frequent modes observed in kinetics studies on mushroom tyrosinase (MT) activities, the phenomena are left unexplained. In this study, dual effects of phthalic acid (PA) and cinnamic acid (CA) on MT during mono-phenolase activity were demonstrated. PA activated and inhibited MT at concentrations lower and higher than 150 μM, respectively. In contrast, CA inhibited and activated MT at concentrations lower and higher than 5 μM. The mode of inhibition for both effectors was mixed-type. Complex kinetics of MT in the presence of a modulator could partly be ascribed to its mixed-cooperativity. However, to explain mixed-inhibition mode, it is necessary to demonstrate how the ternary complex of substrate/enzyme/effector is formed. Therefore, we looked for possible non-specific binding sites using MT tropolone-bound PDB (2Y9X) in the computational studies. When tropolone was in MTPa (active site), PA and CA occupied different pockets (named MTPb and MTPc, respectively). The close Moldock scores of PA binding posed in MTPb and MTPa suggested that MTPb could be a secondary binding site for PA. Similar results were obtained for CA. Ensuing results from 10 ns molecular dynamics simulations for 2Y9X-effector complexes indicated that the structures were gradually stabilized during simulation. Tunnel analysis by using CAVER Analyst and CHEXVIS resulted in identifying two distinct channels that assumingly participate in exchanging the effectors when the direct channel to MTPa is not accessible.

  2. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    SciTech Connect

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} for fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.

  3. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis.

    PubMed

    Liu, Shijia; Shao, Shangjin; Li, Linlin; Cheng, Zhi; Tian, Li; Gao, Peiji; Wang, Lushan

    2015-12-11

    Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases.

  4. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites.

    PubMed

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-02-08

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.

  5. Structural characterization of single nucleotide variants at ligand binding sites and enzyme active sites of human proteins

    PubMed Central

    Yamada, Kazunori D.; Nishi, Hafumi; Nakata, Junichi; Kinoshita, Kengo

    2016-01-01

    Functional sites on proteins play an important role in various molecular interactions and reactions between proteins and other molecules. Thus, mutations in functional sites can severely affect the overall phenotype. Progress of genome sequencing projects has yielded a wealth of information on single nucleotide variants (SNVs), especially those with less than 1% minor allele frequency (rare variants). To understand the functional influence of genetic variants at a protein level, we investigated the relationship between SNVs and protein functional sites in terms of minor allele frequency and the structural position of variants. As a result, we observed that SNVs were less abundant at ligand binding sites, which is consistent with a previous study on SNVs and protein interaction sites. Additionally, we found that non-rare variants tended to be located slightly apart from enzyme active sites. Examination of non-rare variants revealed that most of the mutations resulted in moderate changes of the physico-chemical properties of amino acids, suggesting the existence of functional constraints. In conclusion, this study shows that the mapping of genetic variants on protein structures could be a powerful approach to evaluate the functional impact of rare genetic variations. PMID:27924270

  6. Formycin triphosphate as a probe for the ATP binding site involved in the activation of guanylate cyclase.

    PubMed

    Chang, C H; Yu, Z N; Song, D L

    1992-10-01

    Formycin A triphosphate (FTP), a fluorescent analog of ATP, slightly increased basal guanylate cyclase activity, but significantly potentiated guanylate cyclase activity stimulated by atrial natriuretic factor (ANF) in rat lung membranes. FTP potentiated ANF-stimulated guanylate cyclase activity with an EC50 at about 90 microM and inhibited ATP-stimulated guanylate cyclase activity with an IC50 at about 100 microM. These results indicate that FTP binds more tightly than ATP for the same binding site. Therefore, FTP would be an excellent tool for studying the ATP binding site.

  7. Mechanical forces regulate elastase activity and binding site availability in lung elastin.

    PubMed

    Jesudason, Rajiv; Sato, Susumu; Parameswaran, Harikrishnan; Araujo, Ascanio D; Majumdar, Arnab; Allen, Philip G; Bartolák-Suki, Erzsébet; Suki, Béla

    2010-11-03

    Many fundamental cellular and extracellular processes in the body are mediated by enzymes. At the single molecule level, enzyme activity is influenced by mechanical forces. However, the effects of mechanical forces on the kinetics of enzymatic reactions in complex tissues with intact extracellular matrix (ECM) have not been identified. Here we report that physiologically relevant macroscopic mechanical forces modify enzyme activity at the molecular level in the ECM of the lung parenchyma. Porcine pancreatic elastase (PPE), which binds to and digests elastin, was fluorescently conjugated (f-PPE) and fluorescent recovery after photobleach was used to evaluate the binding kinetics of f-PPE in the alveolar walls of normal mouse lungs. Fluorescent recovery after photobleach indicated that the dissociation rate constant (k(off)) for f-PPE was significantly larger in stretched than in relaxed alveolar walls with a linear relation between k(off) and macroscopic strain. Using a network model of the parenchyma, a linear relation was also found between k(off) and microscopic strain on elastin fibers. Further, the binding pattern of f-PPE suggested that binding sites on elastin unfold with strain. The increased overall reaction rate also resulted in stronger structural breakdown at the level of alveolar walls, as well as accelerated decay of stiffness and decreased failure stress of the ECM at the macroscopic scale. These results suggest an important role for the coupling between mechanical forces and enzyme activity in ECM breakdown and remodeling in development, and during diseases such as pulmonary emphysema or vascular aneurysm. Our findings may also have broader implications because in vivo, enzyme activity in nearly all cellular and extracellular processes takes place in the presence of mechanical forces.

  8. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase – a template for drug design

    PubMed Central

    Saravanamuthu, Ahilan; Vickers, Tim J.; Bond, Charles S.; Peterson, Mark R.; Hunter, William N.; Fairlamb, Alan H.

    2012-01-01

    SUMMARY Trypanothione reductase is a key enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes. Since this system is absent in humans, being replaced with glutathione and glutathione reductase, it offers a target for selective inhibition. The rational design of potent inhibitors requires accurate structures of enzyme-inhibitor complexes, but this is lacking for trypanothione reductase. We therefore used quinacrine mustard, an alkylating derivative of the competitive inhibitor quinacrine, to probe the active site of this dimeric flavoprotein. Quinacrine mustard irreversibly inactivates Trypanosoma cruzi trypanothione reductase, but not human glutathione reductase, in a time-dependent manner with a stoichiometry of two inhibitors bound per monomer. The rate of inactivation is dependent upon the oxidation state of trypanothione reductase, with the NADPH-reduced form being inactivated significantly faster than the oxidised form. Inactivation is slowed by clomipramine and a melarsen oxide-trypanothione adduct (both are competitive inhibitors) but accelerated by quinacrine. The structure of the trypanothione reductase-quinacrine mustard adduct was determined to 2.7 Å, revealing two molecules of inhibitor bound in the trypanothione-binding site. The acridine moieties interact with each other through π-stacking effects, and one acridine interacts in a similar fashion with a tryptophan residue. These interactions provide a molecular explanation for the differing effects of clomipramine and quinacrine on inactivation by quinacrine mustard. Synergism with quinacrine occurs as a result of these planar acridines being able to stack together in the active site cleft, thereby gaining an increased number of binding interactions, whereas antagonism occurs with non-planar molecules, such as clomipramine, where stacking is not possible. PMID:15102853

  9. Identification of a putative binding site critical for general anesthetic activation of TRPA1.

    PubMed

    Ton, Hoai T; Phan, Thieu X; Abramyan, Ara M; Shi, Lei; Ahern, Gerard P

    2017-04-04

    General anesthetics suppress CNS activity by modulating the function of membrane ion channels, in particular, by enhancing activity of GABAA receptors. In contrast, several volatile (isoflurane, desflurane) and i.v. (propofol) general anesthetics excite peripheral sensory nerves to cause pain and irritation upon administration. These noxious anesthetics activate transient receptor potential ankyrin repeat 1 (TRPA1), a major nociceptive ion channel, but the underlying mechanisms and site of action are unknown. Here we exploit the observation that pungent anesthetics activate mammalian but not Drosophila TRPA1. Analysis of chimeric Drosophila and mouse TRPA1 channels reveal a critical role for the fifth transmembrane domain (S5) in sensing anesthetics. Interestingly, we show that anesthetics share with the antagonist A-967079 a potential binding pocket lined by residues in the S5, S6, and the first pore helix; isoflurane competitively disrupts A-967079 antagonism, and introducing these mammalian TRPA1 residues into dTRPA1 recapitulates anesthetic agonism. Furthermore, molecular modeling predicts that isoflurane and propofol bind to this pocket by forming H-bond and halogen-bond interactions with Ser-876, Met-915, and Met-956. Mutagenizing Met-915 or Met-956 selectively abolishes activation by isoflurane and propofol without affecting actions of A-967079 or the agonist, menthol. Thus, our combined experimental and computational results reveal the potential binding mode of noxious general anesthetics at TRPA1. These data may provide a structural basis for designing drugs to counter the noxious and vasorelaxant properties of general anesthetics and may prove useful in understanding effects of anesthetics on related ion channels.

  10. Effects of active site cleft residues on oligosaccharide binding, hydrolysis, and glycosynthase activities of rice BGlu1 and its mutants.

    PubMed

    Pengthaisong, Salila; Ketudat Cairns, James R

    2014-12-01

    Rice BGlu1 (Os3BGlu7) is a glycoside hydrolase family 1 β-glucosidase that hydrolyzes cellooligosaccharides with increasing efficiency as the degree of polymerization (DP) increases from 2 to 6, indicating six subsites for glucosyl residue binding. Five subsites have been identified in X-ray crystal structures of cellooligosaccharide complexes with its E176Q acid-base and E386G nucleophile mutants. X-ray crystal structures indicate that cellotetraose binds in a similar mode in BGlu1 E176Q and E386G, but in a different mode in the BGlu1 E386G/Y341A variant, in which glucosyl residue 4 (Glc4) interacts with Q187 instead of the eliminated phenolic group of Y341. Here, we found that the Q187A mutation has little effect on BGlu1 cellooligosaccharide hydrolysis activity or oligosaccharide binding in BGlu1 E176Q, and only slight effects on BGlu1 E386G glycosynthase activity. X-ray crystal structures showed that cellotetraose binds in a different position in BGlu1 E176Q/Y341A, in which it interacts directly with R178 and W337, and the Q187A mutation had little effect on cellotetraose binding. Mutations of R178 and W337 to A had significant and nonadditive effects on oligosaccharide hydrolysis by BGlu1, pNPGlc cleavage and cellooligosaccharide inhibition of BGlu1 E176Q and BGlu1 E386G glycosynthase activity. Hydrolysis activity was partially rescued by Y341 for longer substrates, suggesting stacking of Glc4 on Y341 stabilizes binding of cellooligosaccharides in the optimal position for hydrolysis. This analysis indicates that complex interactions between active site cleft residues modulate substrate binding and hydrolysis.

  11. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism.

    PubMed

    Klingel, U; Miller, C M; North, A K; Stockley, P G; Baumberg, S

    1995-08-21

    In Bacillus subtilis, the AhrC protein represses genes encoding enzymes of arginine biosynthesis and activates those mediating its catabolism. To determine how this repressor also functions as an activator, we attempted to clone catabolic genes by searching for insertions of the Tn917-lacZ transposon that express AhrC-dependent, arginine-inducible beta-galactosidase activity. One such isolate was obtained. The region upstream of lacZ was subcloned in Escherichia coli in such a way that it could be replaced in the B. subtilis chromosome after appropriate manipulation. Analysis of exonuclease III-derived deletions located an AhrC-dependent, arginine-inducible promoter to within a ca. 1.9 kb fragment. The sequence revealed: the 3' end of an ORF homologous to gdh genes encoding glutamate dehydrogenase, with highest homology to the homologue from Clostridium difficile; the 5' end of an ORF homologous to a Saccharomyces cerevisiae gene encoding delta 1-pyrroline 5-carboxylate dehydrogenase (P5CDH), an enzyme of arginine catabolism; and just upstream of the latter, a sequence with homology to known AhrC binding sites in the upstream part of the biosynthetic argCJBD-cpa-F cluster. The same region has also been sequenced by others as part of the B. subtilis genome sequencing project, revealing that the P5CDH gene is the first in a cluster termed rocABC. Restriction fragments containing the putative AhrC-binding sequence, but not those lacking it, showed retarded electrophoretic mobility in the presence of purified AhrC. A 277 bp AhrC-binding fragment also showed anomalous mobility in the absence of AhrC, consistent with its being intrinsically bent. DNAse I footprinting localized AhrC binding to bp -16/-22 to +1 (the transcription startpoint). Such a location for an activator binding site, i.e. overlapping the transcription start, is unusual.

  12. Wiz binds active promoters and CTCF-binding sites and is required for normal behaviour in the mouse

    PubMed Central

    Isbel, Luke; Prokopuk, Lexie; Wu, Haoyu; Daxinger, Lucia; Oey, Harald; Spurling, Alex; Lawther, Adam J; Hale, Matthew W; Whitelaw, Emma

    2016-01-01

    We previously identified Wiz in a mouse screen for epigenetic modifiers. Due to its known association with G9a/GLP, Wiz is generally considered a transcriptional repressor. Here, we provide evidence that it may also function as a transcriptional activator. Wiz levels are high in the brain, but its function and direct targets are unknown. ChIP-seq was performed in adult cerebellum and Wiz peaks were found at promoters and transcription factor CTCF binding sites. RNA-seq in Wiz mutant mice identified genes differentially regulated in adult cerebellum and embryonic brain. In embryonic brain most decreased in expression and included clustered protocadherin genes. These also decreased in adult cerebellum and showed strong Wiz ChIP-seq enrichment. Because a precise pattern of protocadherin gene expression is required for neuronal development, behavioural tests were carried out on mutant mice, revealing an anxiety-like phenotype. This is the first evidence of a role for Wiz in neural function. DOI: http://dx.doi.org/10.7554/eLife.15082.001 PMID:27410475

  13. Similarities in the HIV-1 and ASV Integrease Active Site Upon Metal Binding

    SciTech Connect

    Lins, Roberto D.; Straatsma, TP; Briggs, J. M.

    2000-04-05

    The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. We report here a fully hydrated 2 ns molecular dynamics simulation performed using parallel NWChem3.2.1 with the AMBER95 force field. The HIV-1 integrase catalytic domain previously determined by crystallography (1B9D) and modeling including two Mg2+ ions placed into the active site based on an alignment against an ASV integrase structure containing two divalent metals (1VSH), was used as the starting structure. The simulation reveals a high degree of flexibility in the region of residues 140-149 even in the presence of a second divalent metal ion and a dramatic conformational change of the side chain of E152 when the second metal ion is present. This study shows similarities in the behavior of the catalytic residues in the HIV-1 and ASV integrases upon metal binding. The present simulation also provides support to the hypothesis that the second metal ion is likely to be carried into the HIV-1 integrase active site by the substrate, a strand of DNA.

  14. Binding site of amiloride to urokinase plasminogen activator depends on species.

    PubMed

    Jankun, J; Skrzypczak-Jankun, E

    2001-10-01

    A novel drug candidate is checked on its potency on animal models before it can advance to human phase of the research. Usually negative results on animal phase disqualify it. Targeting specific enzymes by small chemicals raises the question about the appropriateness of this approach. As an example, the urokinase (uPA) is recognized as an important enzyme responsible for cancer metastasis and angiogenesis. It is therefore important to ask the question if a small chemical will inhibit uPA of different species with the same or different potency. Using DNA sequence and known structure of uPA we have modeled 3D structures of uPAs for several different species. By theoretical calculations we have determined most probable structure of amiloride/uPAs complexes. Catalytic triad (B57, B102, B195) and specificity pocket (B187-B197, B212-B229) are highly conserved in all cases, and are the regions responsible for proteolytic activity and recognition of the substrate. Significant differences were observed in a different region (loop B93-B101), that we identified as binding site of amiloride to the tissue plasminogen activator (tPA). Although tPA shares the same function of activating plasminogen and it is structurally similar to uPA. Amiloride is a specific inhibitor of uPA but does not inhibit tPA. Our study shows that predicted position of amiloride depends on species and in some cases was located, as expected, in the specificity pocket, but in the other cases close to the loop B93-B101. This location could weaken affinity of binding or prevent inhibition of uPA. Therefore, drug screening and elimination process based solely on animal study, without careful structural analysis, could lead to the elimination of potential drugs for humans.

  15. Dual mechanism of activation of plant plasma membrane Ca2+-ATPase by acidic phospholipids: evidence for a phospholipid binding site which overlaps the calmodulin-binding site.

    PubMed

    Meneghelli, Silvia; Fusca, Tiziana; Luoni, Laura; De Michelis, Maria Ida

    2008-09-01

    The effect of phospholipids on the activity of isoform ACA8 of Arabidopsis thaliana plasma membrane (PM) Ca2+-ATPase was evaluated in membranes isolated from Saccharomyces cerevisiae strain K616 expressing wild type or mutated ACA8 cDNA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4-monophosphate > phosphatidylserine > phosphatidylcholine approximately = phosphatidylethanolamine approximately = 0. Acidic phospholipids increased V(max-Ca2+) and lowered the value of K(0.5-Ca2+) below the value measured in the presence of calmodulin (CaM). In the presence of CaM acidic phospholipids activated ACA8 by further decreasing its K(0.5-Ca2+) value. Phosphatidylinositol 4-monophosphate and, with lower efficiency, phosphatidylserine bound peptides reproducing ACA8 N-terminus (aa 1-116). Single point mutation of three residues (A56, R59 and Y62) within the sequence A56-T63 lowered the apparent affinity of ACA8 for phosphatidylinositol 4-monophosphate by two to three fold, indicating that this region contains a binding site for acidic phospholipids. However, the N-deleted mutant Delta74-ACA8 was also activated by acidic phospholipids, indicating that acidic phospholipids activate ACA8 through a complex mechanism, involving interaction with different sites. The striking similarity between the response to acidic phospholipids of ACA8 and animal plasma membrane Ca2+-ATPase provides new evidence that type 2B Ca2+-ATPases share common regulatory properties independently of structural differences such as the localization of the terminal regulatory region at the N- or C-terminal end of the protein.

  16. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site. [R

    SciTech Connect

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  17. Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation

    PubMed Central

    Lee, Tai-Sung; Giambaşu, George M.; Sosa, Carlos P.; Martick, Monika; Scott, William G.; York, Darrin M.

    2009-01-01

    The relationship between formation of active in-line attack conformations and monovalent (Na+) and divalent (Mg2+) metal ion binding in the hammerhead ribozyme has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence or absence of a Mg2+ in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the hammerhead ribozyme folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of hammerhead ribozyme catalysis and support the supposition that Mg2+, in addition to stabilizing active conformations, plays a specific chemical role in catalysis. PMID:19265710

  18. Altered binding of thioflavin t to the peripheral anionic site of acetylcholinesterase after phosphorylation of the active site by chlorpyrifos oxon or dichlorvos

    SciTech Connect

    Sultatos, L.G. Kaushik, R.

    2008-08-01

    The peripheral anionic site of acetylcholinesterase, when occupied by a ligand, is known to modulate reaction rates at the active site of this important enzyme. The current report utilized the peripheral anionic site specific fluorogenic probe thioflavin t to determine if the organophosphates chlorpyrifos oxon and dichlorvos bind to the peripheral anionic site of human recombinant acetylcholinesterase, since certain organophosphates display concentration-dependent kinetics when inhibiting this enzyme. Incubation of 3 nM acetylcholinesterase active sites with 50 nM or 2000 nM inhibitor altered both the B{sub max} and K{sub d} for thioflavin t binding to the peripheral anionic site. However, these changes resulted from phosphorylation of Ser203 since increasing either inhibitor from 50 nM to 2000 nM did not alter further thioflavin t binding kinetics. Moreover, the organophosphate-induced decrease in B{sub max} did not represent an actual reduction in binding sites, but instead likely resulted from conformational interactions between the acylation and peripheral anionic sites that led to a decrease in the rigidity of bound thioflavin t. A drop in fluorescence quantum yield, leading to an apparent decrease in B{sub max}, would accompany the decreased rigidity of bound thioflavin t molecules. The organophosphate-induced alterations in K{sub d} represented changes in binding affinity of thioflavin t, with diethylphosphorylation of Ser203 increasing K{sub d}, and dimethylphosphorylation of Ser203 decreasing K{sub d}. These results indicate that chlorpyrifos oxon and dichlorvos do not bind directly to the peripheral anionic site of acetylcholinesterase, but can affect binding to that site through phosphorylation of Ser203.

  19. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli

    SciTech Connect

    Nicholas, R.A.; Suzuki, H.; Hirota, Y.; Strominger, J.L.

    1985-07-02

    This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed that the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.

  20. Synthesis of Zn-MOF incorporating titanium-hydrides as active sites binding H2 molecules

    NASA Astrophysics Data System (ADS)

    Kim, Jongsik; Ok Kim, Dong; Wook Kim, Dong; Sagong, Kil

    2015-10-01

    This paper describes the synthetic effort for a Zn-MOF imparting Ti-H as a preferential binding site potentially capturing H2 molecules via Kubas-type interaction. The formation mechanism of Ti-H innate to the final material was potentially demonstrated to follow a radical dissociation rather than a β-hydrogen elimination and a C-H reductive elimination.

  1. Requirement for an A-tract structure at the binding site of phage phi 29 transcriptional activator.

    PubMed

    Nuez, B; Rojo, F; Salas, M

    1994-03-25

    The Bacillus subtilis phage phi 29 transcriptional activator, protein p4, binds to the 5'-AACT-TTTT-15 base-pair spacer-AAAATGTT-3' inverted repeat. In this communication, we study the influence in protein p4 binding of the DNA helical structure within the protein p4 recognition sequences, 5'-AAAATAG-3'. Protein p4 could efficiently bind to a modified target in which the A-tracts had been changed into T-tracts (a different sequence with a similar structure). Binding was lost when the structure of the binding site was modified by an interrupting C residue. The results suggest that the DNA helical structure of the A-tracts is critical for p4 binding. Two models are described that would explain how protein p4 recognized its target sequences on the DNA.

  2. Transcriptionally active immediate-early protein of pseudorabies virus binds to specific sites on class II gene promoters.

    PubMed Central

    Cromlish, W A; Abmayr, S M; Workman, J L; Horikoshi, M; Roeder, R G

    1989-01-01

    In the presence of partially purified pseudorabies virus immediate-early protein, multiple sites of DNase I protection were observed on the adenovirus major late and human hsp 70 promoters. Southwestern (DNA-protein blot) analysis demonstrated that the immediate-early protein bound directly to the sequences contained in these sites. These sequences share only limited homology, differ in their affinities for the immediate-early protein, and are located at different positions on these two promoters. In addition, the site-specific binding of a temperature-sensitive immediate-early protein was eliminated by the same heat treatment which eliminates its transcriptional activating function, whereas the binding of the wild-type protein was unaffected by heat treatment. Thus, site-specific binding requires a functionally active immediate-early protein. Furthermore, immediate-early-protein-dependent in vitro transcription from the major late promoter was preferentially inhibited by oligonucleotides which are homologous to the high-affinity binding sites on the major late or hsp 70 promoters. These observations suggest that transcriptional stimulation by the immediate-early protein involves binding to cis-acting elements. Images PMID:2539489

  3. The Anxiolytic Etifoxine Binds to TSPO Ro5-4864 Binding Site with Long Residence Time Showing a High Neurosteroidogenic Activity.

    PubMed

    Costa, Barbara; Cavallini, Chiara; Da Pozzo, Eleonora; Taliani, Sabrina; Da Settimo, Federico; Martini, Claudia

    2017-04-04

    The low binding affinity of the approved anxiolytic drug etifoxine (Stresam) at the steroidogenic 18 kDa translocator protein (TSPO) has questioned the specific contribution of this protein in mediating the etifoxine neurosteroidogenic efficacy. Residence time (RT) at the binding site of the classical TSPO ligand PK11195 is emerging as a relevant neurosteroidogenic efficacy measure rather than the binding affinity. Here etifoxine was evaluated for (i) the in vitro neurosteroidogenic activity in comparison to poorly neurosteroidogenic reference TSPO ligands (PK11195 and Ro5-4864) and (ii) the affinity and RT at [(3)H]PK11195 and [(3)H]Ro5-4864 binding sites in rat kidney membranes. Etifoxine shows (i) high neurosteroidogenic efficacy and (ii) low affinity/short RT at the [(3)H]PK11195 site and low affinity/long RT at the [(3)H]Ro5-4864 site, at which etifoxine competitively bound. These findings suggest that the long RT of etifoxine at the Ro5-4864 binding site could account for its high neurosteroidogenic efficacy.

  4. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    SciTech Connect

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  5. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  6. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  7. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  8. In vitro methylation of nuclear respiratory factor-2 binding sites suppresses the promoter activity of the human TOMM70 gene.

    PubMed

    Blesa, José R; Hegde, Anita A; Hernández-Yago, José

    2008-12-31

    TOMM70 is a subunit of the outer mitochondrial membrane translocase that plays a major role as a receptor of hydrophobic preproteins targeted to mitochondria. We have previously reported that two binding sites for transcription factor NRF-2 in the promoter region of the human TOMM70 gene are essential in activating transcription (Blesa et al., Mitochondrion 2004; 3:251-59. Blesa et al., Biochem Cell Biol 2006; 84:813-22). This region contains thirteen CpG methylation sites, three of which occur in the sequence 5'-CCGG-3' that is specifically recognized by HpaII methylase which modifies the internal cytosine residue. Interestingly, each NRF-2 site contains one CCGG sequence, allowing specific methylation of the NRF-2 sites and, therefore, providing an ideal model to study how methylation of these sites affects promoter activity. In this paper we report that site-specific methylation of the NRF-2 binding sites in the TOMM70 promoter down-regulated expression of a luciferase reporter in HeLa S3 cells. Electrophoretic mobility shift assays confirmed abrogation of NRF-2 binding at the methylated sites. These results suggest that methylation of the TOMM70 promoter in mammalian cells may silence TOMM70 expression. However, studies of methylation degree on DNAs from different sources found no methylation in the promoter regions of TOMM70 and other TOMM/TIMM family genes. Thus, although in vitro methylation inactivates the expression of TOMM70, our results suggest that this is not the mechanism modulating its expression in vivo. Since a number of nuclear genes encoding mitochondrial translocases have NRF-2 binding sequences containing CpG methylation sites, a possible role of methylation as a regulatory mechanism of mitochondrial biogenesis can be ruled out.

  9. Identification of B. anthracis N(5)-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening.

    PubMed

    Lei, Hao; Jones, Christopher; Zhu, Tian; Patel, Kavankumar; Wolf, Nina M; Fung, Leslie W-M; Lee, Hyun; Johnson, Michael E

    2016-02-15

    The de novo purine biosynthesis pathway is an attractive target for antibacterial drug design, and PurE from this pathway has been identified to be crucial for Bacillus anthracis survival in serum. In this study we adopted a fragment-based hit discovery approach, using three screening methods-saturation transfer difference nucleus magnetic resonance (STD-NMR), water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR, and surface plasmon resonance (SPR), against B. anthracis PurE (BaPurE) to identify active site binding fragments by initially testing 352 compounds in a Zenobia fragment library. Competition STD NMR with the BaPurE product effectively eliminated non-active site binding hits from the primary hits, selecting active site binders only. Binding affinities (dissociation constant, KD) of these compounds varied between 234 and 301μM. Based on test results from the Zenobia compounds, we subsequently developed and applied a streamlined fragment screening strategy to screen a much larger library consisting of 3000 computationally pre-selected fragments. Thirteen final fragment hits were confirmed to exhibit binding affinities varying from 14μM to 700μM, which were categorized into five different basic scaffolds. All thirteen fragment hits have ligand efficiencies higher than 0.30. We demonstrated that at least two fragments from two different scaffolds exhibit inhibitory activity against the BaPurE enzyme.

  10. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    SciTech Connect

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.

  11. Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site.

    PubMed

    Prado, R A; Barbosa, J A; Ohmiya, Y; Viviani, V R

    2011-07-01

    The structural origin and evolution of bioluminescent activity of beetle luciferases from AMP/CoA ligases remains a mystery. Previously we cloned the luciferase-like enzyme from Zophobas morio mealworm, a reasonable protoluciferase model that could shine light on this mystery. Kinetic characterization and studies with D- and L-luciferin and their adenylates showed that stereoselectivity constitutes a critical feature for the origin of luciferase activity in AMP/CoA ligases. Comparison of the primary structures and modeling studies of this protoluciferase and the three main families of beetle luciferases showed that the carboxylic acid substrate binding site of this enzyme is smaller and more hydrophobic than the luciferin binding site of beetle luciferases, showing several substitutions of otherwise conserved residues. Thus, here we performed a site-directed mutagenesis survey of the carboxylic binding site motifs of the protoluciferase by replacing their residues by the respective conserved ones found in beetle luciferases in order to identify the structural determinants of luciferase/oxygenase activity. Although most of the substitutions had negative impact on the luminescence activity of the protoluciferase, only the substitution I327T improved the luminescence activity, resulting in a broad and 15 nm blue-shifted luminescence spectrum. Such substitution indicates the importance of the loop motif 322YGMSEI327 (341YGLTETT347 in Photinus pyralis luciferase) for luciferase activity, and indicates a possible route for the evolution of bioluminescence function of beetle luciferases.

  12. Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability.

    PubMed

    Ong, Chin-Tong; Cheng, Hui-Teng; Chang, Li-Wei; Ohtsuka, Toshiyuki; Kageyama, Ryoichiro; Stormo, Gary D; Kopan, Raphael

    2006-02-24

    All four mammalian Notch proteins interact with a single DNA-binding protein (RBP-jkappa), yet they are not equivalent in activating target genes. Parallel assays of three Notch-responsive promoters in several cell lines revealed that relative activation strength is dependent on protein module and promoter context more than the cellular context. Each Notch protein reads binding site orientation and distribution on the promoter differently; Notch1 performs extremely well on paired sites, and Notch3 prefers single sites in conjunction with a proximal zinc finger transcription factor. Although head-head sites can elicit a Notch response on their own, use of CBS (CSL binding site) in tail-tail orientation is context-dependent. Bias for specific DNA elements is achieved by interplay between the N-terminal RAM (RBP-jkappa-associated molecule/ankyrin region), which interprets CBS proximity and orientation, and the C-terminal transactivation domain that interacts specifically with the transcription machinery or nearby factors. To confirm the prediction that modular design underscores the evolution of functional divergence between Notch proteins, we generated a synthetic Notch protein (Notch1 ankyrin with Notch3 transactivation domain) that displayed superior signaling strength on the hes5 promoter. Consistent with the prediction that "preferred" targets (Hes1) should respond faster and at lower Notch concentration than other targets, we showed that Hes5-GFP was extinguished fast and recovered slowly, whereas Hes1-GFP was inhibited late and recovered quickly after a pulse of DAPT in metanephroi cultures.

  13. Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition.

    PubMed Central

    Zydowsky, L. D.; Etzkorn, F. A.; Chang, H. Y.; Ferguson, S. B.; Stolz, L. A.; Ho, S. I.; Walsh, C. T.

    1992-01-01

    Based on recent X-ray structural information, six site-directed mutants of human cyclophilin A (hCyPA) involving residues in the putative active site--H54, R55, F60, Q111, F113, and H126--have been constructed, overexpressed, and purified from Escherichia coli to homogeneity. The proteins W121A (Liu, J., Chen, C.-M., & Walsh, C.T., 1991a, Biochemistry 30, 2306-2310), H54Q, R55A, F60A, Q111A, F113A, and H126Q were assayed for cis-trans peptidyl-prolyl isomerase (PPIase) activity, their ability to bind the immunosuppressive drug cyclosporin A (CsA), and protein phosphatase 2B (calcineurin) inhibition in the presence of CsA. Results indicate that H54Q, Q111A, F113A, and W121A retain 3-15% of the catalytic efficiency (kcat/Km) of wild-type recombinant hCyPA. The remaining three mutants (R55A, F60A, and H126Q) each retain less than 1% of the wild-type catalytic efficiency, indicating participation by these residues in PPIase catalysis. Each of the mutants bound to a CsA affinity matrix. The mutants R55A, F60A, F113A, and H126Q inhibited calcineurin in the presence of CsA, whereas W121A did not. Although CsA is a competitive inhibitor of PPIase activity, it can complex with enzymatically inactive cyclophilins and inhibit the phosphatase activity of calcineurin. PMID:1338979

  14. The quorum sensing transcriptional regulator TraR has separate binding sites for DNA and the anti-activator

    SciTech Connect

    Zheng, Zhida; Fuqua, Clay; Chen, Lingling

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Quorum sensing transcription factor TraR is inhibited by forming TraR-TraM complex. Black-Right-Pointing-Pointer K213 is a key DNA binding residue, but not involved in interaction with TraM. Black-Right-Pointing-Pointer Mutations of TraM-interacting TraR residues did not affect DNA-binding of TraR. Black-Right-Pointing-Pointer Mutations of TraR residues reduced the TraR-TraM interaction more than those of TraM. Black-Right-Pointing-Pointer TraM inhibition on DNA-binding of TraR is driven by thermodynamics. -- Abstract: Quorum sensing represents a mechanism by which bacteria control their genetic behaviors via diffusible signals that reflect their population density. TraR, a quorum sensing transcriptional activator in the Rhizobiaceae family, is regulated negatively by the anti-activator TraM via formation of a TraR-TraM heterocomplex. Prior structural analysis suggests that TraM and DNA bind to TraR in distinct sites. Here we combined isothermal titration calorimetry (ITC) and electrophoretic mobility shift assays (EMSA) to investigate roles of TraR residues from Rhizobium sp. NGR234 in binding of both TraM and DNA. We found that K213A mutation of TraR{sub NGR} abolished DNA binding, however, did not alter TraM binding. Mutations of TraM-interfacing TraR{sub NGR} residues decreased the TraR-TraM interaction, but did not affect the DNA-binding activity of TraR{sub NGR}. Thus, our biochemical studies support the independent binding sites on TraR for TraM and DNA. We also found that point mutations in TraR{sub NGR} appeared to decrease the TraR-TraM interaction more effectively than those in TraM{sub NGR}, consistent with structural observations that individual TraR{sub NGR} residues contact with more TraM{sub NGR} residues than each TraM{sub NGR} residues with TraR{sub NGR} residues. Finally, we showed that TraM inhibition on DNA-binding of TraR was driven thermodynamically. We discussed subtle mechanistic differences in Tra

  15. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    PubMed Central

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  16. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis

    PubMed Central

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-01-01

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the −2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the −1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes. PMID:27009476

  17. The non-coding B2 RNA binds to the DNA cleft and active site region of RNA polymerase II

    PubMed Central

    Ponicsan, Steven L.; Houel, Stephane; Old, William M.; Ahn, Natalie G.; Goodrich, James A.; Kugel, Jennifer F.

    2013-01-01

    The B2 family of short interspersed elements is transcribed into non-coding RNA by RNA polymerase III. The ~180 nt B2 RNA has been shown to potently repress mRNA transcription by binding tightly to RNA polymerase II (Pol II) and assembling with it into complexes on promoter DNA, where it keeps the polymerase from properly engaging the promoter DNA. Mammalian Pol II is a ~500 kD complex that contains 12 different protein subunits, providing many possible surfaces for interaction with B2 RNA. We found that the carboxy-terminal domain of the largest Pol II subunit was not required for B2 RNA to bind Pol II and repress transcription in vitro. To identify the surface on Pol II to which the minimal functional region of B2 RNA binds, we coupled multi-step affinity purification, reversible formaldehyde crosslinking, peptide sequencing by mass spectrometry, and analysis of peptide enrichment. The Pol II peptides most highly recovered after crosslinking to B2 RNA mapped to the DNA binding cleft and active site region of Pol II. These studies determine the location of a defined nucleic acid binding site on a large, native, multi-subunit complex and provide insight into the mechanism of transcriptional repression by B2 RNA. PMID:23416138

  18. Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin.

    PubMed

    Okamoto, Yasunori; Onoda, Akira; Sugimoto, Hiroshi; Takano, Yu; Hirota, Shun; Kurtz, Donald M; Shiro, Yoshitsugu; Hayashi, Takashi

    2013-11-18

    A nonheme diiron active site in a 13 kDa hemerythrin-like domain of the bacterial chemotaxis protein DcrH-Hr contains an oxo bridge, two bridging carboxylate groups from Glu and Asp residues, and five terminally ligated His residues. We created a unique diiron coordination sphere containing five His and three Glu/Asp residues by replacing an Ile residue with Glu in DcrH-Hr. Direct coordination of the carboxylate group of E119 to Fe2 of the diiron site in the I119E variant was confirmed by X-ray crystallography. The substituted Glu is adjacent to an exogenous ligand-accessible tunnel. UV-vis absorption spectra indicate that the additional coordination of E119 inhibits the binding of the exogenous ligands azide and phenol to the diiron site. The extent of azide binding to the diiron site increases at pH ≤ 6, which is ascribed to protonation of the carboxylate ligand of E119. The diferrous state (deoxy form) of the engineered diiron site with the extra Glu residue is found to react more slowly than wild type with O2 to yield the diferric state (met form). The additional coordination of E119 to the diiron site also slows the rate of reduction from the met form. All these processes were found to be pH-dependent, which can be attributed to protonation state and coordination status of the E119 carboxylate. These results demonstrate that modifications of the endogenous coordination sphere can produce significant changes in the ligand binding and redox properties in a prototypical nonheme diiron-carboxylate protein active site.

  19. Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site.

    PubMed

    Nieto-Posadas, Andrés; Picazo-Juárez, Giovanni; Llorente, Itzel; Jara-Oseguera, Andrés; Morales-Lázaro, Sara; Escalante-Alcalde, Diana; Islas, León D; Rosenbaum, Tamara

    2011-11-20

    Since 1992, there has been growing evidence that the bioactive phospholipid lysophosphatidic acid (LPA), whose amounts are increased upon tissue injury, activates primary nociceptors resulting in neuropathic pain. The TRPV1 ion channel is expressed in primary afferent nociceptors and is activated by physical and chemical stimuli. Here we show that in control mice LPA produces acute pain-like behaviors, which are substantially reduced in Trpv1-null animals. Our data also demonstrate that LPA activates TRPV1 through a unique mechanism that is independent of G protein-coupled receptors, contrary to what has been widely shown for other ion channels, by directly interacting with the C terminus of the channel. We conclude that TRPV1 is a direct molecular target of the pain-producing molecule LPA and that this constitutes, to our knowledge, the first example of LPA binding directly to an ion channel to acutely regulate its function.

  20. Trypanosoma brucei 20 S Editosomes Have One RNA Substrate-binding Site and Execute RNA Unwinding Activity*

    PubMed Central

    Böhm, Cordula; Katari, Venkata Subbaraju; Brecht, Michael; Göringer, H. Ulrich

    2012-01-01

    Editing of mitochondrial pre-mRNAs in African trypanosomes generates full-length transcripts by the site-specific insertion and deletion of uridylate nucleotides. The reaction is catalyzed by a 0.8 MDa multienzyme complex, the editosome. Although the binding of substrate pre-edited mRNAs and cognate guide RNAs (gRNAs) represents the first step in the reaction cycle, the biochemical and biophysical details of the editosome/RNA interaction are not understood. Here we show that editosomes bind full-length substrate mRNAs with nanomolar affinity in a nonselective fashion. The complexes do not discriminate–neither kinetically nor thermodynamically–between different mitochondrial pre-mRNAs or between edited and unedited versions of the same transcript. They also bind gRNAs and gRNA/pre-mRNA hybrid RNAs with similar affinities and association rate constants. Gold labeling of editosome-bound RNA in combination with transmission electron microscopy identified a single RNA-binding site per editosome. However, atomic force microscopy of individual pre-mRNA-editosome complexes revealed that multiple editosomes can interact with one pre-mRNA. Lastly, we demonstrate a so far unknown activity of the editing machinery: editosome-bound RNA becomes unfolded by a chaperone-type RNA unwinding activity. PMID:22661715

  1. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg2+ to the second metal binding site

    PubMed Central

    Oppegard, Lisa M.; Schwanz, Heidi A.; Towle, Tyrell R.; Kerns, Robert J.; Hiasa, Hiroshi

    2016-01-01

    Background Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. Methods We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg2+-, Mn2+-, or Ca2+-supported DNA cleavage activity of Esherichia coli Topo IV. Results In the absence of any drug, 20–30 mM Mg2+ was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1 mM of either Mn2+ or Ca2+ was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg2+ concentrations where Topo IV alone could not efficiently cleave DNA. Conclusions and General Significance At low Mg2+ concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg2+ binding to metal binding site B through the structural distortion in DNA. As Mg2+ concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg2+ at site B or inhibition the binding of Mg2+ to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg2+ binding. PMID:26723176

  2. A citrate-binding site in calmodulin.

    PubMed

    Neufeld, T; Eisenstein, M; Muszkat, K A; Fleminger, G

    1998-01-01

    Calmodulin (CaM) is a major Ca2+ messenger which, upon Ca2+ activation, binds and activates a number of target enzymes involved in crucial cellular processes. The dependence on Ca2+ ion concentration suggests that CaM activation may be modulated by low-affinity Ca2+ chelators. The effect on CaM structure and function of citrate ion, a Ca2+ chelator commonly found in the cytosol and the mitochondria, was therefore investigated. A series of structural and biochemical methods, including tryptic mapping, immunological recognition by specific monoclonal antibodies, CIDNP-NMR, binding to specific ligands and association with radiolabeled citrate, showed that citrate induces conformational modifications in CaM which affect the shape and activity of the protein. These changes were shown to be associated with the C-terminal lobe of the molecule and involve actual binding of citrate to CaM. Analyzing X-ray structures of several citrate-binding proteins by computerized molecular graphics enabled us to identify a putative citrate-binding site (CBS) on the CaM molecule around residues Arg106-His107. Owing to the tight proximity of this site to the third Ca(2+)-binding loop of CaM, binding of citrate is presumably translated into changes in Ca2+ binding to site III (and indirectly to site IV). These changes apparently affect the structural and biochemical properties of the conformation-sensitive protein.

  3. (/sup 3/)tetrahydrotrazodone binding. Association with serotonin binding sites

    SciTech Connect

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-05-01

    High (17 nM) and low (603 nM) affinity binding sites for (/sup 3/)tetrahydrotrazodone ((/sup 3/) THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of (/sup 3/)THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, (/sup 3/) THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that (/sup 3/)THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors.

  4. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    PubMed

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  5. Alkynol natural products target ALDH2 in cancer cells by irreversible binding to the active site.

    PubMed

    Heydenreuter, Wolfgang; Kunold, Elena; Sieber, Stephan A

    2015-11-11

    Falcarinol and stipudiol are natural products with potent anti-cancer activity found in several vegetables. Here, we use a chemical proteomic strategy to identify ALDH2 as a molecular target of falcarinol in cancer cells and confirm enzyme inhibition via covalent alkylation of the active site. Furthermore, the synthesis of stipudiol led to the observation that ALDH2 exhibits preference for alkynol-based binders. Inhibition of ALDH2 impairs detoxification of reactive aldehydes and limits oxidative stress response, two crucial pathways for cellular viability.

  6. Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State

    PubMed Central

    Indurthi, Dinesh C.; Lewis, Trevor M.; Ahring, Philip K.; Balle, Thomas; Chebib, Mary; Absalom, Nathan L.

    2016-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors. PMID:27552221

  7. Finding a Needle in the Haystack: Computational Modeling of Mg2+ Binding in the Active Site of Protein Farnesyltransferase

    PubMed Central

    Yang, Yue; Chakravorty, Dhruva K.; Merz, Kenneth M.

    2010-01-01

    Studies aimed at elucidating the unknown Mg2+ binding site in protein farnesyltransferase (FTase) are reported. FTase catalyzes the transfer of a farnesyl group to a conserved cysteine residue (Cys1p) on a target protein, an important step for proteins in the signal transduction pathways (e.g. Ras). Mg2+ ions accelerate the protein farnesylation reaction by up to 700-fold. The exact function of Mg2+ in catalysis and the structural characteristics of its binding remain unresolved to date. Molecular Dynamics (MD) simulations addressing the role of magnesium ions in FTase are presented, and relevant octahedral binding motifs for Mg2+ in wild type (WT) FTase and Dβ352A mutant are explored. Our simulations suggest that the addition of Mg2+ ions causes a conformational changes to occur in the FTase active site, breaking interactions known to keep FPP in its inactive conformation. Two relevant Mg2+ ion binding motifs were determined in WT FTase. In the first binding motif, WT1, the Mg2+ ion is coordinated to D352β, zinc-bound D297β, two water molecules, and one oxygen atoms from the α- and β-phosphates of farnesyl diphosphate (FPP). The second binding motif, WT2, is identical with the exception of the zinc-bound D297β being replaced by a water molecule in the Mg2+ coordination complex. In the Dβ352A mutant Mg2+ binding motif, D297β, three water molecules and one oxygen atom from the α- and β-phosphates of FPP complete the octahedral coordination sphere of Mg2+. Simulations of WT FTase, in which Mg2+ was replaced by water in the active site, re-created the salt bridges and hydrogen bonding patterns around FPP, validating these simulations. In all Mg2+ binding motifs, a key hydrogen bond was identified between a magnesium bound water and Cys1p, bridging the two metallic binding sites, and thereby, reducing the equilibrium distance between the reacting atoms of FPP Cys1p. The free energy profiles calculated for these systems provide a qualitative understanding of

  8. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor

    PubMed Central

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K.; Gorska, Magdalena; Tuszynski, Jack A.; Wozniak, Michal

    2016-01-01

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  9. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2016-01-19

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding.

  10. Probing binding sites and mechanisms of action of an I(Ks) activator by computations and experiments.

    PubMed

    Xu, Yu; Wang, Yuhong; Zhang, Mei; Jiang, Min; Rosenhouse-Dantsker, Avia; Wassenaar, Tsjerk; Tseng, Gea-Ny

    2015-01-06

    The slow delayed rectifier (IKs) channel is composed of the KCNQ1 channel and KCNE1 auxiliary subunit, and functions to repolarize action potentials in the human heart. IKs activators may provide therapeutic efficacy for treating long QT syndromes. Here, we show that a new KCNQ1 activator, ML277, can enhance IKs amplitude in adult guinea pig and canine ventricular myocytes. We probe its binding site and mechanism of action by computational analysis based on our recently reported KCNQ1 and KCNQ1/KCNE1 3D models, followed by experimental validation. Results from a pocket analysis and docking exercise suggest that ML277 binds to a side pocket in KCNQ1 and the KCNE1-free side pocket of KCNQ1/KCNE1. Molecular-dynamics (MD) simulations based on the most favorable channel/ML277 docking configurations reveal a well-defined ML277 binding space surrounded by the S2-S3 loop and S4-S5 helix on the intracellular side, and by S4-S6 transmembrane helices on the lateral sides. A detailed analysis of MD trajectories suggests two mechanisms of ML277 action. First, ML277 restricts the conformational dynamics of the KCNQ1 pore, optimizing K(+) ion coordination in the selectivity filter and increasing current amplitudes. Second, ML277 binding induces global motions in the channel, including regions critical for KCNQ1 gating transitions. We conclude that ML277 activates IKs by binding to an intersubunit space and allosterically influencing pore conductance and gating transitions. KCNE1 association protects KCNQ1 from an arrhythmogenic (constitutive current-inducing) effect of ML277, but does not preclude its current-enhancing effect.

  11. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies.

    PubMed

    McGuire, Andrew T; Hoot, Sam; Dreyer, Anita M; Lippy, Adriana; Stuart, Andrew; Cohen, Kristen W; Jardine, Joseph; Menis, Sergey; Scheid, Johannes F; West, Anthony P; Schief, William R; Stamatatos, Leonidas

    2013-04-08

    Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti-CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions.

  12. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    PubMed Central

    Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D’Amelio, Nicola; Gervasio, Francesco Luigi

    2016-01-01

    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe. PMID:27063862

  13. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    NASA Astrophysics Data System (ADS)

    Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D’Amelio, Nicola; Gervasio, Francesco Luigi

    2016-04-01

    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.

  14. Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis.

    PubMed

    Chi, Gamma; Manos-Turvey, Alexandra; O'Connor, Patrick D; Johnston, Jodie M; Evans, Genevieve L; Baker, Edward N; Payne, Richard J; Lott, J Shaun; Bulloch, Esther M M

    2012-06-19

    MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family.

  15. Sulfide-Binding Hemoglobins: Effects of Mutations on Active-Site Flexibility

    PubMed Central

    Fernandez-Alberti, S.; Bacelo, D. E.; Binning, R. C.; Echave, J.; Chergui, M.; Lopez-Garriga, J.

    2006-01-01

    The dynamics of Hemoglobin I (HbI) from the clam Lucina pectinata, from wild-type sperm whale (SW) myoglobin, and from the L29F/H64Q/V68F triple mutant of SW, both unligated and bound to hydrogen sulfide (H2S), have been studied in molecular dynamics simulations. Features that account for differences in H2S affinity among the three have been examined. Our results verify the existence of an unusual heme rocking motion in unligated HbI that can promote the entrance of large ligands such as H2S. The FQF-mutant partially reproduces the amplitude and relative orientation of the motion of HbI's heme group. Therefore, besides introducing favorable electrostatic interactions with H2S, the three mutations in the distal pocket change the dynamic properties of the heme group. The active-site residues Gln-64(E7), Phe-43(CD1), and His-93(F8) are also shown to be more flexible in unligated HbI than in FQF-mutant and SW. Further contributions to H2S affinity come from differences in hydrogen bonding between the heme propionate groups and nearby amino acid residues. PMID:16782787

  16. Flavonol Activation Defines an Unanticipated Ligand-Binding Site in the Kinase-RNase Domain of IRE1

    SciTech Connect

    Wiseman, R. Luke; Zhang, Yuhong; Lee, Kenneth P.K.; Harding, Heather P.; Haynes, Cole M.; Price, Joshua; Sicheri, Frank; Ron, David

    2010-08-18

    Signaling in the most conserved branch of the endoplasmic reticulum (ER) unfolded protein response (UPR) is initiated by sequence-specific cleavage of the HAC1/XBP1 mRNA by the ER stress-induced kinase-endonuclease IRE1. We have discovered that the flavonol quercetin activates yeast IRE1's RNase and potentiates activation by ADP, a natural activating ligand that engages the IRE1 nucleotide-binding cleft. Enzyme kinetics and the structure of a cocrystal of IRE1 complexed with ADP and quercetin reveal engagement by quercetin of an unanticipated ligand-binding pocket at the dimer interface of IRE1's kinase extension nuclease (KEN) domain. Analytical ultracentrifugation and crosslinking studies support the preeminence of enhanced dimer formation in quercetin's mechanism of action. These findings hint at the existence of endogenous cytoplasmic ligands that may function alongside stress signals from the ER lumen to modulate IRE1 activity and at the potential for the development of drugs that modify UPR signaling from this unanticipated site.

  17. A matrix-focused structure-activity and binding site flexibility study of quinolinol inhibitors of botulinum neurotoxin serotype A.

    PubMed

    Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A

    2017-02-01

    Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay.

  18. The binding mode of an E-64 analog to the active site of cathepsin B.

    PubMed

    Feng, M H; Chan, S L; Xiang, Y; Huber, C P; Lim, C

    1996-11-01

    Two binding modes of the isobutyl-NH-Eps-Leu-Pro inhibitor to cathepsin B have been proposed. Molecular docking using an empirical force field was carried out to distinguish between the two modes. The search began with manual docking, followed by random perturbations of the docking conformation and cycles of Monte Carlo minimization. Finally, molecular dynamics was carried out for the most favorable docking conformations. The present calculations predict that the isobutyl-NH-Eps-Leu-Pro inhibitor preferentially binds to the S' rather than the S subsites of cathepsin B. The S' binding mode prediction is supported by the X-ray crystal structure of cathepsin B bound to a closely related ethyl-O-Eps-Ile-Pro inhibitor, which was found to bind in the S'subsite with the C-terminal epoxy ring carbon making a covalent bond to the sulfur atom of Cys29. This agreement, in turn, validates our docking strategy. Furthermore, the calculations provide evidence that the dominant contribution to the total stabilization energy of the enzyme-inhibitor complex stems from the strong electrostatic interaction between the negatively charged C-terminal carboxylate group of the ligand and the positively charged imidazolium rings of His110 and His111. The latter are stabilized and held in an optimal orientation for interactions with the C-terminal end of the ligand through a salt bridge between the side chains of His110 and Asp22. By comparison with the crystal structure, some insight into the specificity of the epoxyldipeptide family towards cathepsin B inhibition has been extracted. Both the characteristics of the enzyme (e.g. subsite size and hydrophobicity) as well as the nature of the inhibitor influence the selectivity of an inhibitor towards an enzyme.

  19. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation.

    PubMed

    Shima, F; Okada, T; Kido, M; Sen, H; Tanaka, Y; Tamada, M; Hu, C D; Yamawaki-Kataoka, Y; Kariya, K; Kataoka, T

    2000-01-01

    Posttranslational modification, in particular farnesylation, of Ras is crucial for activation of Saccharomyces cerevisiae adenylyl cyclase (CYR1). Based on the previous observation that association of CYR1 with cyclase-associated protein (CAP) is essential for its activation by posttranslationally modified Ras, we postulated that the associated CAP might contribute to the formation of a Ras-binding site of CYR1, which mediates CYR1 activation, other than the primary Ras-binding site, the leucine-rich repeat domain. Here, we observed a posttranslational modification-dependent association of Ras with a complex between CAP and CYR1 C-terminal region. When CAP mutants defective in Ras signaling but retaining the CYR1-binding activity were isolated by screening of a pool of randomly mutagenized CAP, CYR1 complexed with two of the obtained three mutants failed to be activated efficiently by modified Ras and exhibited a severely impaired ability to bind Ras, providing a genetic evidence for the importance of the physical association with Ras at the second Ras-binding site. On the other hand, CYR1, complexed with the other CAP mutant, failed to be activated by Ras but exhibited a greatly enhanced binding to Ras. Conversely, a Ras mutant E31K, which exhibits a greatly enhanced binding to the CYR1-CAP complex, failed to activate CYR1 efficiently. Thus, the strength of interaction at the second Ras-binding site appears to be a critical determinant of CYR1 regulation by Ras: too-weak and too-strong interactions are both detrimental to CYR1 activation. These results, taken together with those obtained with mammalian Raf, suggest the importance of the second Ras-binding site in effector regulation.

  20. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.

    PubMed

    Kaliakin, Danil S; Zaari, Ryan R; Varganov, Sergey A

    2015-02-12

    We investigate the effect of H2 binding on the spin-forbidden nonadiabatic transition probability between the lowest energy singlet and triplet electronic states of [NiFe]-hydrogenase active site model, using a velocity averaged Landau-Zener theory. Density functional and multireference perturbation theories were used to provide parameters for the Landau-Zener calculations. It was found that variation of the torsion angle between the terminal thiolate ligands around the Ni center induces an intersystem crossing between the lowest energy singlet and triplet electronic states in the bare active site and in the active site with bound H2. Potential energy curves between the singlet and triplet minima along the torsion angle and H2 binding energies to the two spin states were calculated. Upon H2 binding to the active site, there is a decrease in the torsion angle at the minimum energy crossing point between the singlet and triplet states. The probability of nonadiabatic transitions at temperatures between 270 and 370 K ranges from 35% to 32% for the active site with bound H2 and from 42% to 38% for the bare active site, thus indicating the importance of spin-forbidden nonadiabatic pathways for H2 binding on the [NiFe]-hydrogenase active site.

  1. A Unique Sugar-binding Site Mediates the Distinct Anti-influenza Activity of Pig Surfactant Protein D*

    PubMed Central

    van Eijk, Martin; Rynkiewicz, Michael J.; White, Mitchell R.; Hartshorn, Kevan L.; Zou, Xueqing; Schulten, Klaus; Luo, Dong; Crouch, Erika C.; Cafarella, Tanya R.; Head, James F.; Haagsman, Henk P.; Seaton, Barbara A.

    2012-01-01

    Pigs can act as intermediate hosts by which reassorted influenza A virus (IAV) strains can be transmitted to humans and cause pandemic influenza outbreaks. The innate host defense component surfactant protein D (SP-D) interacts with glycans on the hemagglutinin of IAV and contributes to protection against IAV infection in mammals. This study shows that a recombinant trimeric neck lectin fragment derived from porcine SP-D (pSP-D) exhibits profound inhibitory activity against IAV, in contrast to comparable fragments derived from human SP-D. Crystallographic analysis of the pSP-D fragment complexed with a viral sugar component shows that a unique tripeptide loop alters the lectin site conformation of pSP-D. Molecular dynamics simulations highlight the role of this flexible loop, which adopts a more stable conformation upon sugar binding and may facilitate binding to viral glycans through contact with distal portions of the branched mannoside. The combined data demonstrate that porcine-specific structural features of SP-D contribute significantly to its distinct anti-IAV activity. These findings could help explain why pigs serve as important reservoirs for newly emerging pathogenic IAV strains. PMID:22685299

  2. Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain

    SciTech Connect

    Altar, C.A.; Burton, L.E.; Bennett, G.L.; Dugich-Djordjevic, M. )

    1991-01-01

    Iodinated recombinant human nerve growth factor (125I-rhNGF) stimulated neurite formation in PC12 cell cultures with a half-maximal potency of 35-49 pg/ml, compared with 39-52 pg/ml for rhNGF. In quantitative ligand autoradiography, the in vitro equilibrium binding of 125I-rhNGF to brain sections showed a 10-fold regional variation in density and was saturable, reversible, and specifically displaced by up to 74% with rhNGF or murine NGF (muNGF). At equilibrium, 125I-rhNGF bound to these sites with high affinity and low capacity (Bmax less than or equal to 13.2 fmol/mg of protein). Calculation of 125I-rhNGF binding affinity by kinetic methods gave average Kd values of 24 and 31 pM. Computer-generated maps revealed binding in brain regions not identified previously with 125I-muNGF, including hippocampus; dentate gyrus; amygdala; paraventricular thalamus; frontal, parietal, occipital, and cingulate cortices; nucleus accumbens; olfactory tubercle; subiculum; pineal gland; and medial geniculate nucleus. NGF binding sites were distributed in a 2-fold increasing medial-lateral gradient in the caudate-putamen and a 2-fold lateral-medial gradient in the nucleus accumbens. 125I-rhNGF binding sites were also found in most areas labeled by 125I-muNGF, including the interpedunucular nucleus, cerebellum, forebrain cholinergic nuclei, caudoventral caudate-putamen, and trigeminal nerve nucleus. 125I-rhNGF binding sites were absent from areas replete with low-affinity NGF binding sites, including circumventricular organs, myelinated fiber bundles, and choroid plexus. The present analysis provides an anatomical differentiation of high-affinity 125I-rhNGF binding sites and greatly expands the number of brain structures that may respond to endogenous NGF or exogenously administered rhNGF.

  3. Synergistic trans-activation of the human C-reactive protein promoter by transcription factor HNF-1 binding at two distinct sites.

    PubMed Central

    Toniatti, C; Demartis, A; Monaci, P; Nicosia, A; Ciliberto, G

    1990-01-01

    The promoter region of the human C-reactive protein (CRP) gene comprises two distinct regions (APREs, for Acute Phase Responsive Elements) each one containing information necessary and sufficient for liver specific and IL-6 inducible expression in human hepatoma Hep3B cells. In this paper we show that both APREs contain a low affinity binding site for the liver specific transcription factor HNF-1/LF-B1. The two sites are separated by approximately 80 bp. Mutations in either of the two sites abolish inducible expression. The same effect is specifically obtained in cotransfection competition experiments when the human albumin HNF-1 site is used as competitor. However, HNF-1 is not the intranuclear mediator of IL-6 because synthetic promoters formed by multimerized copies of different HNF-1 binding sites are not transcriptionally activated by this cytokine. An expression vector encoding full length HNF-1 is capable of trans-activating transcription from the wild-type CRP promoter but not from mutants which have lost the ability to bind HNF-1. Moreover, the level of trans-activation observed with the natural promoter containing both HNF-1 binding sites is far greater than the level of mutated variants containing only one of the two sites. This result strongly suggests that two HNF-1 molecules bound simultaneously to sites distant from each other can act synergistically to activate gene expression. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 7. PMID:2265613

  4. Modulating telomerase activity in tumor patients by targeting dyskerin binding site for hTR.

    PubMed

    Katunaric, M; Zamolo, G

    2012-09-01

    Telomeres shortening, which leads to apoptosis, is prevented by telomerase adding small repeated segments of DNA to the telomeres. The telomerase level has been correlated with progression of several cancer types, including acute leukemia, breast, prostate, lung cancer and melanoma. Suppression of telomerase activity was found to reduce metastatic potential but could have serious side effects in normal proliferative cells. One of the proteins stabilizing the telomerase complex called dyskerin reduces the maximum telomerase activity. We suggest a possible therapeutic agent which would disable the interaction of dyskerin and telomerase, but would not completely inhibit telomerase activity.

  5. The histamine H1-receptor antagonist binding site. Part I: Active conformation of cyproheptadine

    NASA Astrophysics Data System (ADS)

    van Drooge, Marc J.; Donné-op den Kelder, Gabriëlle M.; Timmerman, Hendrik

    1991-08-01

    The active conformation of several histamine H1-antagonists is investigated. As a template molecule we used the antagonist cyproheptadine, which consists of a piperidylene ring connected to a tricyclic system. The piperidylene moiety is shown to be flexible. The global minimum is a chair conformation but, additionally, a second chair and various boat conformations have to be considered, as their energies are less than 5 kcal/mol above the energy of the global minimum. Two semi-rigid histamine H1-antagonists, phenindamine and triprolidine, were fitted onto the various conformations of cyproheptadine in order to derive the pharmacologically active conformation of cyproheptadine. At the same time, the active conformation of both phenindamine and triprolidine was derived. It is demonstrated that, within the receptor-bound conformation of cyproheptadine, the piperidylene ring most probably exists in a boat form.

  6. Human placental estradiol 17. beta. -dehydrogenase: evidence for inverted substrate orientation (wrong-way binding) at the active site

    SciTech Connect

    Murdock, G.L.; Warren, J.C.; Sweet, F.

    1988-06-14

    Human placental estradiol 17..beta..-dehydrogenase was affinity labeled with 17lambda-estradiol 17-(bromo(2-/sup 14/C)acetate) (10 ..mu..M) or 17..beta..-estradiol 17-(bromo(2-/sup 14/C)acetate) (10 ..mu..M). The steroid bromoacetates competitively inhibit the enzyme (against 17..beta..-estradiol) with K/sub i/ values of 90 ..mu..M (17..cap alpha.. bromoacetate) and 134 ..mu..M(17..beta.. bromoacetate). Inactivation of the enzyme followed pseudo-first-order kinetics with t/sub 1/2/ = 110 min (17..cap alpha.. bromoacetate) and t/sub 1/2/ = 220 min (17..beta.. bromoacetate). Amino acid analysis of the affinity radioalkylated enzyme samples from the two bromoacetates revealed that N/sup ..pi../-(carboxy(/sup 14/C)methyl histidine was the modified amino acid labeled in each case. Digestion with trypsin produced peptides that were isolated by reverse-phase high-performance liquid chromatography and found to contain N/sup ..pi../-(carboxy(/sup 14/C)methyl)histidine. Both the 17..cap alpha.. bromoacetate and also the 17..beta.. bromoacetate modified the same histidine in the peptide Phe-Tyr-Gln-Tyr-Leu-Ala-His(..pi..CM)-Ser-Lys. Previously, the same histidine had been exclusively labeled by estrone 3-(bromoacetate) and shown not to be directly involve in catalytic hydrogen transfer at the D-ring of estradiol. Therefore, this histidine was presumed to proximate the A-ring of the bound steroid substrate. The present results suggest that the 17..cap alpha.. bromoacetate and 17..beta.. bromoacetate D-ring analogue of estradiol react with the same active site histidine residue as estrone 3-(bromoacetate), the A-ring analogue of estrone. Moreover, as each of the estradiol 17-(bromoacetates) undergoes the reversible binding step at the enzyme active site, its D-ring is in a reversed binding position relative to that of the natural substrate 17..beta..-estradiol as it undergoes catalytic hydrogen transfer at the same active site.

  7. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  8. Sequences near the Active Site in Chimeric Penicillin Binding Proteins 5 and 6 Affect Uniform Morphology of Escherichia coli

    PubMed Central

    Ghosh, Anindya S.; Young, Kevin D.

    2003-01-01

    Penicillin binding protein (PBP) 5, a dd-carboxypeptidase that removes the terminal d-alanine from peptide side chains of peptidoglycan, plays an important role in creating and maintaining the uniform cell shape of Escherichia coli. PBP 6, a highly similar homologue, cannot substitute for PBP 5 in this respect. Previously, we localized the shape-maintaining characteristics of PBP 5 to the globular domain that contains the active site (domain I), where PBPs 5 and 6 share substantial identity. To identify the specific segment of domain I responsible for shape control, we created a set of hybrids and determined which ones complemented the aberrant morphology of a misshapen PBP mutant, E. coli CS703-1. Fusion proteins were constructed in which 47, 199 and 228 amino-terminal amino acids of one PBP were fused to the corresponding carboxy-terminal amino acids of the other. The morphological phenotype was reversed only by hybrid proteins containing PBP 5 residues 200 to 228, which are located next to the KTG motif of the active site. Because residues 220 to 228 were identical in these proteins, the morphological effect was determined by alterations in amino acids 200 to 219. To confirm the importance of this segment, we constructed mosaic proteins in which these 20 amino acids were grafted from PBP 5 into PBP 6 and vice versa. The PBP 6/5/6 mosaic complemented the aberrant morphology of CS703-1, whereas PBP 5/6/5 did not. Site-directed mutagenesis demonstrated that the Asp218 and Lys219 residues were important for shape maintenance by these mosaic PBPs, but the same mutations in wild-type PBP 5 did not eliminate its shape-promoting activity. Homologous enzymes from five other bacteria also complemented the phenotype of CS703-1. The overall conclusion is that creation of a bacterial cell of regular diameter and uniform contour apparently depends primarily on a slight alteration of the enzymatic activity or substrate accessibility at the active site of E. coli PBP 5. PMID

  9. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode†

    PubMed Central

    Caner, Sami; Nguyen, Nham; Aguda, Adeleke; Zhang, Ran; Pan, Yuan T; Withers, Stephen G; Brayer, Gary D

    2013-01-01

    Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of the key enzymes in the other two pathways have already been determined. Herein, we present the first structure of TreS from Mycobacterium smegmatis, thereby providing insights into the catalytic machinery involved in this intriguing intramolecular reaction. This structure, which is of interest both mechanistically and as a potential pharmaceutical target, reveals a narrow and enclosed active site pocket within which intramolecular substrate rearrangements can occur. We also present the structure of a complex of TreS with acarbose, revealing a hitherto unsuspected oligosaccharide-binding site within the C-terminal domain. This may well provide an anchor point for the association of TreS with glycogen, thereby enhancing its role in glycogen biosynthesis and degradation. PMID:23735230

  10. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode.

    PubMed

    Caner, Sami; Nguyen, Nham; Aguda, Adeleke; Zhang, Ran; Pan, Yuan T; Withers, Stephen G; Brayer, Gary D

    2013-09-01

    Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of the key enzymes in the other two pathways have already been determined. Herein, we present the first structure of TreS from Mycobacterium smegmatis, thereby providing insights into the catalytic machinery involved in this intriguing intramolecular reaction. This structure, which is of interest both mechanistically and as a potential pharmaceutical target, reveals a narrow and enclosed active site pocket within which intramolecular substrate rearrangements can occur. We also present the structure of a complex of TreS with acarbose, revealing a hitherto unsuspected oligosaccharide-binding site within the C-terminal domain. This may well provide an anchor point for the association of TreS with glycogen, thereby enhancing its role in glycogen biosynthesis and degradation.

  11. Activated G-protein releases cGMP from high affinity binding sites on PDE from toad rod outer segments (ROS)

    SciTech Connect

    Yuen, P.S.T.; Walseth, T.F.; Panter, S.S.; Sundby, S.R.; Graeff, R.M.; Goldberg, N.D.

    1987-05-01

    cGMP binding proteins in toad ROS were identified by direct photoaffinity labeling (PAL) with /sup 32/P-cGMP and quantified by retention of complexes on nitrocellulose filters. By PAL, high affinity sites were present on the ..cap alpha.. and ..beta.. subunits of the cGMP-specific phosphodiesterase (PDE) which have MW/sub app/ of 94 and 90 kDa. A doublet was deduced from its photolabeling properties to represent PDE/sub ..gamma../ photocrosslinked with PDE/sub ..cap alpha../ or PDE/sub ..beta../, respectively. cGMP prebound to these high affinity sites was released by light-activated G-protein or its ..cap alpha.. subunit complexed with GTP..gamma..S; this inhibition of cGMP binding to PDE did not result from decreased cGMP availability due to enhanced hydrolysis. A low affinity cGMP binding component identified by PAL is tightly associated with ROS membranes. Apparent ATP/light-dependent stimulation of cGMP binding was shown to result from light activated cGMP hydrolysis in conjunction with ATP-promoted conversion of GMP to GDP/GTP and increased GDP/GTP binding. These findings coincide with a model for light-related regulation of cGMP binding and metabolism predicted from intact and cellfree kinetic measurements: in the dark state the cGMP hydrolic rate is constrained by the availability of cGMP because of its binding to high affinity sites on PDE. Light activated G-protein releases cGMP from these sites and allows for its redistribution to lower affinity sites represented by PDE catalytic site(s) and possible cGMP-dependent membrane cation channels.

  12. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors.

    PubMed

    Maric, Selma; Donnelly, Sheila M; Robinson, Mark W; Skinner-Adams, Tina; Trenholme, Katharine R; Gardiner, Donald L; Dalton, John P; Stack, Colin M; Lowther, Jonathan

    2009-06-16

    The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.

  13. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.

    PubMed

    Gonsalves, Sarah E; Moses, Alan M; Razak, Zak; Robert, Francois; Westwood, J Timothy

    2011-01-14

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.

  14. Data of protein-RNA binding sites.

    PubMed

    Lee, Wook; Park, Byungkyu; Choi, Daesik; Han, Kyungsook

    2017-02-01

    Despite the increasing number of protein-RNA complexes in structure databases, few data resources have been made available which can be readily used in developing or testing a method for predicting either protein-binding sites in RNA sequences or RNA-binding sites in protein sequences. The problem of predicting protein-binding sites in RNA has received much less attention than the problem of predicting RNA-binding sites in protein. The data presented in this paper are related to the article entitled "PRIdictor: Protein-RNA Interaction predictor" (Tuvshinjargal et al. 2016) [1]. PRIdictor can predict protein-binding sites in RNA as well as RNA-binding sites in protein at the nucleotide- and residue-levels. This paper presents four datasets that were used to test four prediction models of PRIdictor: (1) model RP for predicting protein-binding sites in RNA from protein and RNA sequences, (2) model RaP for predicting protein-binding sites in RNA from RNA sequence alone, (3) model PR for predicting RNA-binding sites in protein from protein and RNA sequences, and (4) model PaR for predicting RNA-binding sites in protein from protein sequence alone. The datasets supplied in this article can be used as a valuable resource to evaluate and compare different methods for predicting protein-RNA binding sites.

  15. Enhancer-like activity of A1gR1-binding site in alginate gene activation: positional, orientational, and sequence specificity.

    PubMed Central

    Fujiwara, S; Zielinski, N A; Chakrabarty, A M

    1993-01-01

    Significant activation of promoters of alginate genes such as algD or algC occurs in mucoid Pseudomonas aeruginosa during its proliferation in the lungs of cystic fibrosis patients. These promoters have been shown to be responsive to environmental signals such as high osmolarity. The signaling is mediated by a so-called two-component signal transduction system, in which a soluble protein, AlgR2, undergoes autophosphorylation and transfers the phosphate to a DNA-binding response regulator protein, AlgR1. The phosphorylated form of AlgR1 has a high affinity for binding at upstream sequences of both the algC and algD promoters. Two AlgR1-binding sites (ABS) have been reported upstream of the algC gene. One of the two ABSs (algC-ABS1, located at -94 to -81) is critical for the algC activation process, while the second ABS (algC-ABS2, located at +161 to +174) is only weakly active. We now report the presence of a third ABS within the structural gene of algC, and this ABS (algC-ABS3) is also important for algC promoter activation. algC-ABS1 can be replaced functionally by algC-ABS2, algD-ABS1, or algD-ABS2 and somewhat weakly by algD-ABS3. Introduction of a half-integral turn in the DNA helix between the algC site of transcription initiation and algC-ABS1 allowed only slight reduction of promoter activity, suggesting that the binding site could be appreciably functional even when present in the opposite face of the helix. Activation of the algC promoter is independent of the relative location (upstream or downstream of the mRNA start site), the number of copies, or the orientation of algC-ABS1, suggesting that it behaves like a eukaryotic enhancer element in promoting transcription from the algC promoter. Images PMID:8366031

  16. Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10.

    PubMed

    Tausendschön, Michaela; Rehli, Michael; Dehne, Nathalie; Schmidl, Christian; Döring, Claudia; Hansmann, Martin-Leo; Brüne, Bernhard

    2015-01-01

    Macrophages (MΦ) often accumulate in hypoxic areas, where they significantly influence disease progression. Anti-inflammatory cytokines, such as IL-10, generate alternatively activated macrophages that support tumor growth. To understand how alternative activation affects the transcriptional profile of hypoxic macrophages, we globally mapped binding sites of hypoxia-inducible factor (HIF)-1α and HIF-2α in primary human monocyte-derived macrophages prestimulated with IL-10. 713 HIF-1 and 795 HIF-2 binding sites were identified under hypoxia. Pretreatment with IL-10 altered the binding pattern, with 120 new HIF-1 and 188 new HIF-2 binding sites emerging. HIF-1 binding was most prominent in promoters, while HIF-2 binding was more abundant in enhancer regions. Comparison of ChIP-seq data obtained in other cells revealed a highly cell type specific binding of HIF. In MΦ HIF binding occurred preferentially in already active enhancers or promoters. To assess the roles of HIF on gene expression, primary human macrophages were treated with siRNA against HIF-1α or HIF-2α, followed by genome-wide gene expression analysis. Comparing mRNA expression to the HIF binding profile revealed a significant enrichment of hypoxia-inducible genes previously identified by ChIP-seq. Analysis of gene expression under hypoxia alone and hypoxia/IL-10 showed the enhanced induction of a set of genes including PLOD2 and SLC2A3, while another group including KDM3A and ADM remained unaffected or was reduced by IL-10. Taken together IL-10 influences the DNA binding pattern of HIF and the level of gene induction.

  17. Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site.

    PubMed Central

    Brabletz, T; Pfeuffer, I; Schorr, E; Siebelt, F; Wirth, T; Serfling, E

    1993-01-01

    Transforming growth factor beta (TGF-beta) has a growth-inhibitory effect on numerous different cell types of the immune system, including T lymphocytes. We show in this study that the inhibitory action of TGF-beta on T lymphocytes is accompanied by a block of interleukin 2 (IL-2) gene expression which is mediated, at least in part, by inhibition of IL-2 promoter/enhancer activity. The functional analysis of cis-regulatory (proto-enhancer) elements of the IL-2 enhancer/promoter region showed that the most TGF-beta-responsive element maps to its so-called upstream promoter site. The proto-enhancer activity of the upstream promoter site element is also inhibited by cyclosporin A. The upstream promoter site DNA harbors two noncanonical, closely linked binding sequences for octamer and AP-1-like factors. Both sites are involved in the establishment of IL-2 enhancer activity. Since the activity of genuine octamer sites but not that of AP-1-binding sites is also impaired by TGF-beta and cyclosporin A in El4 T lymphoma cells, we conclude that both immunosuppressives interfere with the activity but not the DNA binding of octamer factors in T lymphocytes. Images PMID:8423782

  18. Three of four GlnR binding sites are essential for GlnR-mediated activation of transcription of the Amycolatopsis mediterranei nas operon.

    PubMed

    Wang, Ying; Wang, Jing-Zhi; Shao, Zhi-Hui; Yuan, Hua; Lu, Yin-Hua; Jiang, Wei-Hong; Zhao, Guo-Ping; Wang, Jin

    2013-06-01

    In Amycolatopsis mediterranei U32, genes responsible for nitrate assimilation formed one operon, nasACKBDEF, whose transcription is induced by the addition of nitrate. Here, we characterized GlnR as a direct transcriptional activator for the nas operon. The GlnR-protected DNA sequences in the promoter region of the nas operon were characterized by DNase I footprinting assay, the previously deduced Streptomyces coelicolor double 22-bp GlnR binding consensus sequences comprising a1, b1, a2, and b2 sites were identified, and the sites were then mutated individually to test their roles in both the binding of GlnR in vitro and the GlnR-mediated transcriptional activation in vivo. The results clearly showed that only three GlnR binding sites (a1, b1, and b2 sites) were required by GlnR for its specific binding to the nas promoter region and efficient activation of the transcription of the nas operon in U32, while the a2 site seemed unnecessary.

  19. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

    SciTech Connect

    Ida, Tomoyo; Suzuki, Hideyuki; Fukuyama, Keiichi; Hiratake, Jun; Wada, Kei

    2014-02-01

    The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp{sup 2} hybridization to Thr403 O{sup γ}, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.

  20. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response.

    PubMed Central

    Fawcett, T W; Martindale, J L; Guyton, K Z; Hai, T; Holbrook, N J

    1999-01-01

    Gadd153, also known as chop, encodes a member of the CCAAT/enhancer-binding protein (C/EBP) transcription factor family and is transcriptionally activated by cellular stress signals. We recently demonstrated that arsenite treatment of rat pheochromocytoma PC12 cells results in the biphasic induction of Gadd153 mRNA expression, controlled in part through binding of C/EBPbeta and two uncharacterized protein complexes to the C/EBP-ATF (activating transcription factor) composite site in the Gadd153 promoter. In this report, we identified components of these additional complexes as two ATF/CREB (cAMP-responsive-element-binding protein) transcription factors having differential binding activities dependent upon the time of arsenite exposure. During arsenite treatment of PC12 cells, we observed enhanced binding of ATF4 to the C/EBP-ATF site at 2 h as Gadd153 mRNA levels increased, and enhanced binding of ATF3 complexes at 6 h as Gadd153 expression declined. We further demonstrated that ATF4 activates, while ATF3 represses, Gadd153 promoter activity through the C/EBP-ATF site. ATF3 also repressed ATF4-mediated transactivation and arsenite-induced activation of the Gadd153 promoter. Our results suggest that numerous members of the ATF/CREB family are involved in the cellular stress response, and that regulation of stress-induced biphasic Gadd153 expression in PC12 cells involves the ordered, sequential binding of multiple transcription factor complexes to the C/EBP-ATF composite site. PMID:10085237

  1. Structural analysis of peroxide-soaked MnSOD crystals reveals side-on binding of peroxide to active-site manganese.

    PubMed

    Porta, Jason; Vahedi-Faridi, Ardeschir; Borgstahl, Gloria E O

    2010-06-11

    The superoxide dismutase (SOD) enzymes are important antioxidant agents that protect cells from reactive oxygen species. The SOD family is responsible for catalyzing the disproportionation of superoxide radical to oxygen and hydrogen peroxide. Manganese- and iron-containing SOD exhibit product inhibition whereas Cu/ZnSOD does not. Here, we report the crystal structure of Escherichia coli MnSOD with hydrogen peroxide cryotrapped in the active site. Crystallographic refinement to 1.55 A and close inspection revealed electron density for hydrogen peroxide in three of the four active sites in the asymmetric unit. The hydrogen peroxide molecules are in the position opposite His26 that is normally assumed by water in the trigonal bipyramidal resting state of the enzyme. Hydrogen peroxide is present in active sites B, C, and D and is side-on coordinated to the active-site manganese. In chains B and D, the peroxide is oriented in the plane formed by manganese and ligands Asp167 and His26. In chain C, the peroxide is bound, making a 70 degrees angle to the plane. Comparison of the peroxide-bound active site with the hydroxide-bound octahedral form shows a shifting of residue Tyr34 towards the active site when peroxide is bound. Comparison with peroxide-soaked Cu/ZnSOD indicates end-on binding of peroxide when the SOD does not exhibit inhibition by peroxide and side-on binding of peroxide in the product-inhibited state of MnSOD.

  2. Synthesis of Zn-MOF incorporating titanium-hydrides as active sites binding H{sub 2} molecules

    SciTech Connect

    Kim, Jongsik; Ok Kim, Dong; Wook Kim, Dong; Sagong, Kil

    2015-10-15

    This paper describes the synthetic effort for a Zn-MOF imparting Ti-H as a preferential binding site potentially capturing H{sub 2} molecules via Kubas-type interaction. The formation mechanism of Ti-H innate to the final material was potentially demonstrated to follow a radical dissociation rather than a β-hydrogen elimination and a C-H reductive elimination. - Graphical abstract: This study details the synthesis and the formation mechanism of Zn-MOF adsorbent site-isolating TiH{sub 3} that can potentially capture H{sub 2} molecules via Kubas-binding mechanism. - Highlights: • OH-functionalized Zn-MOF was employed as a reactive template to site-isolate TiH{sub 3}. • This MOF was post-synthetically modified using a tetracyclohexyl titanium (IV). • This intermediate was hydrogenolyzed to change ligand from cyclohexyl to hydride. • Formation mechanism of TiH{sub 3} was investigated via two control GC–MS experiments. • Final Zn-MOF potentially site-isolating TiH{sub 3} species was used as a H{sub 2} adsorbent.

  3. Memo is homologous to nonheme iron dioxygenases and binds an ErbB2-derived phosphopeptide in its vestigial active site.

    PubMed

    Qiu, Chen; Lienhard, Susanne; Hynes, Nancy E; Badache, Ali; Leahy, Daniel J

    2008-02-01

    Memo (mediator of ErbB2-driven cell motility) is a 297-amino-acid protein recently shown to co-precipitate with the C terminus of ErbB2 and be required for ErbB2-driven cell motility. Memo is not homologous to any known signaling proteins, and how it mediates ErbB2 signals is not known. To provide a molecular basis for understanding Memo function, we have determined and report here the 2.1A crystal structure of human Memo and show it be homologous to class III nonheme iron-dependent dioxygenases, a structural class that now includes a zinc-binding protein of unknown function. No metal binding or enzymatic activity can be detected for Memo, but Memo does bind directly to a specific ErbB2-derived phosphopeptide encompassing Tyr-1227 using its vestigial enzymatic active site. Memo thus represents a new class of phosphotyrosine-binding protein.

  4. Memo is Homologous to Nonheme Iron Dioxygenases and Binds an ErbB2-Derived Phosphopeptide in its Vestigial Active Site

    SciTech Connect

    Qiu,C.; Lienhard, S.; Hynes, N.; Badache, A.; Leahy, D.

    2008-01-01

    Memo (mediator of ErbB2-driven cell motility) is a 297-amino-acid protein recently shown to co-precipitate with the C terminus of ErbB2 and be required for ErbB2-driven cell motility. Memo is not homologous to any known signaling proteins, and how it mediates ErbB2 signals is not known. To provide a molecular basis for understanding Memo function, we have determined and report here the 2.1A crystal structure of human Memo and show it be homologous to class III nonheme iron-dependent dioxygenases, a structural class that now includes a zinc-binding protein of unknown function. No metal binding or enzymatic activity can be detected for Memo, but Memo does bind directly to a specific ErbB2-derived phosphopeptide encompassing Tyr-1227 using its vestigial enzymatic active site. Memo thus represents a new class of phosphotyrosine-binding protein.

  5. (/sup 3/H)-ouabain binding sites and (Na/sup +/ + K/sup +/)ATPase activity in heart of rats fed cholesterol

    SciTech Connect

    Ren, Y.F.; Alam, B.S.; Alam, S.Q.

    1986-03-05

    The purpose of this investigation was to determine the effects of cholesterol on the characteristics of ouabain binding sites and (Na/sup +/ + K/sup +/)ATPase activity in heart. Three groups of male, weanling, Sprague-Dawley rats were fed for 5 weeks diets containing 0, 1 or 2% cholesterol. Membranes were prepared from deoxycholate-treated heart homogenates by differential centrifugation and assayed for ouabain binding and (Na/sup +/ + K/sup +/)ATPase activity. Membranes were incubated with (/sup 3/H)-ouabain in the presence of 10 mM Tris-HCl buffer (pH 7.4) and rapidly filtered on glass fiber filters, GF/A. Non-specific binding was measured in the presence of 6 mM non-labeled ouabain. Concentration of (/sup 3/H)-ouabain binding sites (B/sub max/) was decreased and the binding affinity was increased in the membranes of rats fed 2% cholesterol. The ouabain-sensitive (Na/sup +/ + K/sup +/)ATPase activity was 50-75% lower in membranes prepared from heart of rats fed cholesterol. The Mg/sup 2 +/-ATPase activity was not changed by dietary cholesterol. The results suggest that cholesterol feeding decreases the number of (Na/sup +/ + K/sup +/)ATPase units and allosterically modifies the enzyme.

  6. Conformational changes associated with the binding of zinc acetate at the putative active site of XcTcmJ, a cupin from Xanthomonas campestris pv. campestris

    PubMed Central

    Axelrod, Herbert L.; Kozbial, Piotr; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grzechnik, Slawomir K.; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Murphy, Kevin D.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Tien, Henry J.; Trout, Christina V.; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Zubieta, Chloe; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    In the plant pathogen Xanthomonas campestris pv. campestris, the product of the tcmJ gene, XcTcmJ, encodes a protein belonging to the RmlC family of cupins. XcTcmJ was crystallized in a monoclinic space group (C2) in the presence of zinc acetate and the structure was determined to 1.6 Å resolution. Previously, the apo structure has been reported in the absence of any bound metal ion [Chin et al. (2006 ▶), Proteins, 65, 1046–1050]. The most significant difference between the apo structure and the structure of XcTcmJ described here is a reorganization of the binding site for zinc acetate, which was most likely acquired from the crystallization solution. This site is located in the conserved metal ion-binding domain at the putative active site of XcTcmJ. In addition, an acetate was also bound within coordination distance of the zinc. In order to accommodate this binding, rearrangement of a conserved histidine ligand is required as well as several nearby residues within and around the putative active site. These observations indicate that binding of zinc serves a functional role in this cupin protein. PMID:20944231

  7. Conformational changes associated with the binding of zinc acetate at the putative active site of XcTcmJ, a cupin from Xanthomonas campestris pv. campestris.

    PubMed

    Axelrod, Herbert L; Kozbial, Piotr; McMullan, Daniel; Krishna, S Sri; Miller, Mitchell D; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grzechnik, Slawomir K; Grant, Joanna C; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Murphy, Kevin D; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L; Tien, Henry J; Trout, Christina V; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Zubieta, Chloe; Hodgson, Keith O; Wooley, John; Elsliger, Marc André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2010-10-01

    In the plant pathogen Xanthomonas campestris pv. campestris, the product of the tcmJ gene, XcTcmJ, encodes a protein belonging to the RmlC family of cupins. XcTcmJ was crystallized in a monoclinic space group (C2) in the presence of zinc acetate and the structure was determined to 1.6 Å resolution. Previously, the apo structure has been reported in the absence of any bound metal ion [Chin et al. (2006), Proteins, 65, 1046-1050]. The most significant difference between the apo structure and the structure of XcTcmJ described here is a reorganization of the binding site for zinc acetate, which was most likely acquired from the crystallization solution. This site is located in the conserved metal ion-binding domain at the putative active site of XcTcmJ. In addition, an acetate was also bound within coordination distance of the zinc. In order to accommodate this binding, rearrangement of a conserved histidine ligand is required as well as several nearby residues within and around the putative active site. These observations indicate that binding of zinc serves a functional role in this cupin protein.

  8. A Pit-1 Binding Site Adjacent to E-box133 in the Rat PRL Promoter is Necessary for Pulsatile Gene Expression Activity.

    PubMed

    Bose, Sudeep; Ganguly, Surajit; Kumar, Sachin; Boockfor, Fredric R

    2016-06-01

    Recent evidence reveals that prolactin gene expression (PRL-GE) in mammotropes occurs in pulses, but the molecular process(es) underlying this phenomenon remains unclear. Earlier, we have identified an E-box (E-box133) in the rat PRL promoter that binds several circadian elements and is critical for this dynamic process. Preliminary analysis revealed a Pit-1 binding site (P2) located immediately adjacent to this E-box133 raising the possibility that some type of functional relationship may exist between these two promoter regions. In this study, using serum shocked GH3 cell culture system to synchronize PRL-GE activity, we determined that Pit-1 gene expression occurred in pulses with time phases similar to that for PRL. Interestingly, EMSA analysis not only confirmed Pit-1 binding to the P2 site, but also revealed an interaction with factor(s) binding to the adjacent E-box133 promoter element. Additionally, down-regulation of Pit-1 by siRNA reduced PRL levels during pulse periods. Thus, using multiple evidences, our results demonstrate clearly that the Pit-1 P2 site is necessary for PRL-GE elaboration. Furthermore, the proximity of this critical Pit-1 binding site (P2) and the E-box133 element coupled with the evidences of a site-to-site protein interactions suggest that the process of PRL-GE pulse activity might involve more dynamic and intricate cross-talks between promoter elements that may span some, or all, of the proximal region of the PRL promoter in driving its pulsatile expression.

  9. Sp1 binds two sites in the CD11c promoter in vivo specifically in myeloid cells and cooperates with AP1 to activate transcription.

    PubMed Central

    Noti, J D; Reinemann, B C; Petrus, M N

    1996-01-01

    The leukocyte integrin gene, CD11c, is transcriptionally regulated and is expressed predominantly on differentiated cells of the myelomonocytic lineage. In this study we have demonstrated that the regions -72 to -63 and -132 to -104 of the CD11c promoter contain elements responsible for phorbol ester-induced differentiation of the myeloid cell line HL60. DNase I footprinting analysis revealed that these regions can bind purified Sp1, and supershift analysis with Sp1 antibody confirmed that Sp1 in HL60 nuclear extracts could bind these regions. Transfection analysis of CD11c promoter-chloramphenicol acetyltransferase constructs containing deletions of these Sp1-binding sites revealed that these sites are essential for expression of the CD11c gene in HL60 cells but not in the T-cell line Molt4 or the cervical carcinoma cell line HeLa. Moreover, cotransfection of pPacSp1 along with these CD11c promoter-chloramphenicol acetyltransferase constructs into Sp1-deficient Drosophila Schneider 2 cells verified that these sites are essential for Sp1-dependent expression of the CD11c promoter. In vivo genomic footprinting revealed that Sp1 contacts the CD11c promoter within the regions -69 to -63 and -116 to -105 in phorbol 12-myristate 13-acetate-differentiated HL60 cells but not in undifferentiated HL60 cells or in Molt4 or HeLa cells. Cotransfection assays in HL60 cells revealed that Sp1 acts synergistically with Ap1 to activate CD11c. Further, both Sp1 sites are capable of cooperating with AP1. In vitro DNase I footprinting analysis with purified Sp1 and c-jun proteins showed that Sp1 binding could facilitate binding of c-jun. We propose that myeloid-specific expression of the CD11c promoter and is facilitated by cooperative interaction between the Sp1- and Ap1-binding sites. PMID:8649405

  10. Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae.

    PubMed Central

    Huie, M A; Scott, E W; Drazinic, C M; Lopez, M C; Hornstra, I K; Yang, T P; Baker, H V

    1992-01-01

    GCR1 gene function is required for high-level glycolytic gene expression in Saccharomyces cerevisiae. Recently, we suggested that the CTTCC sequence motif found in front of many genes encoding glycolytic enzymes lay at the core of the GCR1-binding site. Here we mapped the DNA-binding domain of GCR1 to the carboxy-terminal 154 amino acids of the polypeptide. DNase I protection studies showed that a hybrid MBP-GCR1 fusion protein protected a region of the upstream activating sequence of TPI (UASTPI), which harbored the CTTCC sequence motif, and suggested that the fusion protein might also interact with a region of the UAS that contained the related sequence CATCC. A series of in vivo G methylation protection experiments of the native TPI promoter were carried out with wild-type and gcr1 deletion mutant strains. The G doublets that correspond to the C doublets in each site were protected in the wild-type strain but not in the gcr1 mutant strain. These data demonstrate that the UAS of TPI contains two GCR1-binding sites which are occupied in vivo. Furthermore, adjacent RAP1/GRF1/TUF- and REB1/GRF2/QBP/Y-binding sites in UASTPI were occupied in the backgrounds of both strains. In addition, DNA band-shift assays were used to show that the MBP-GCR1 fusion protein was able to form nucleoprotein complexes with oligonucleotides that contained CTTCC sequence elements found in front of other glycolytic genes, namely, PGK, ENO1, PYK, and ADH1, all of which are dependent on GCR1 gene function for full expression. However, we were unable to detect specific interactions with CTTCC sequence elements found in front of the translational component genes TEF1, TEF2, and CRY1. Taken together, these experiments have allowed us to propose a consensus GCR1-binding site which is 5'-(T/A)N(T/C)N(G/A)NC(T/A)TCC(T/A)N(T/A)(T/A)(T/G)-3'. Images PMID:1588965

  11. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) Creates a Binding Site for KSR to Sustain ERK Activation by cAMP.

    PubMed

    Takahashi, Maho; Li, Yanping; Dillon, Tara J; Stork, Philip J S

    2017-01-27

    Cyclic adenosine monophosphate (cAMP) is an important mediator of hormonal stimulation of cell growth and differentiation through its activation of the extracellular signal-regulated kinase (ERK) cascade. Two small G proteins, Ras and Rap1 have been proposed to mediate this activation. Using HEK293 cells as a model system, we have recently shown that both Ras and Rap1 are required for cAMP signaling to ERKs. However, cAMP-dependent Ras signaling to ERKs is transient and rapidly terminated by PKA phosphorylation of the Raf isoforms C-Raf and B-Raf. In contrast, cAMP-dependent Rap1 signaling to ERKs and Rap1 is potentiated by PKA. We show that this is due to sustained binding of B-Raf to Rap1. One of the targets of PKA is Rap1 itself, directly phosphorylating Rap1a on serine 180 and Rap1b on serine 179. We show that these phosphorylations create potential binding sites for the adaptor protein 14-3-3 that links Rap1 to the scaffold protein KSR. These results suggest that Rap1 activation of ERKs requires PKA phosphorylation and KSR binding. Because KSR and B-Raf exist as heterodimers within the cell, this binding also brings B-Raf to Rap1, allowing Rap1 to couple to ERKs through B-Raf binding to Rap1 independently of its Ras-binding domain.

  12. The Role of the β5-α11 Loop in the Active-Site Dynamics of Acylated Penicillin-Binding Protein A from Mycobacterium tuberculosis

    SciTech Connect

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    2013-04-22

    Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constants for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.

  13. Functional homology between the yeast regulatory proteins GAL4 and LAC9: LAC9-mediated transcriptional activation in Kluyveromyces lactis involves protein binding to a regulatory sequence homologous to the GAL4 protein-binding site.

    PubMed Central

    Breunig, K D; Kuger, P

    1987-01-01

    As shown previously, the beta-galactosidase gene of Kluyveromyces lactis is transcriptionally regulated via an upstream activation site (UASL) which contains a sequence homologous to the GAL4 protein-binding site in Saccharomyces cerevisiae (M. Ruzzi, K.D. Breunig, A.G. Ficca, and C.P. Hollenberg, Mol. Cell. Biol. 7:991-997, 1987). Here we demonstrate that the region of homology specifically binds a K. lactis regulatory protein. The binding activity was detectable in protein extracts from wild-type cells enriched for DNA-binding proteins by heparin affinity chromatography. These extracts could be used directly for DNase I and exonuclease III protection experiments. A lac9 deletion strain, which fails to induce the beta-galactosidase gene, did not contain the binding factor. The homology of LAC9 protein with GAL4 (J.M. Salmeron and S. A. Johnston, Nucleic Acids Res. 14:7767-7781, 1986) strongly suggests that LAC9 protein binds directly to UASL and plays a role similar to that of GAL4 in regulating transcription. Images PMID:2830492

  14. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  15. Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands

    NASA Astrophysics Data System (ADS)

    Datar, Prasanna A.; Khedkar, Santosh A.; Malde, Alpeshkumar K.; Coutinho, Evans C.

    2006-06-01

    A novel approach termed comparative residue-interaction analysis (CoRIA), emphasizing the trends and principles of QSAR in a ligand-receptor environment has been developed to analyze and predict the binding affinity of enzyme inhibitors. To test this new approach, a training set of 36 COX-2 inhibitors belonging to nine families was selected. The putative binding (bioactive) conformations of inhibitors in the COX-2 active site were searched using the program DOCK. The docked configurations were further refined by a combination of Monte Carlo and simulated annealing methods with the Affinity program. The non-bonded interaction energies of the inhibitors with the individual amino acid residues in the active site were then computed. These interaction energies, plus specific terms describing the thermodynamics of ligand-enzyme binding, were correlated to the biological activity with G/PLS. The various QSAR models obtained were validated internally by cross validation and boot strapping, and externally using a test set of 13 molecules. The QSAR models developed on the CoRIA formalism were robust with good r 2, q 2 and r pred 2 values. The major highlights of the method are: adaptation of the QSAR formalism in a receptor setting to answer both the type (qualitative) and the extent (quantitative) of ligand-receptor binding, and use of descriptors that account for the complete thermodynamics of the ligand-receptor binding. The CoRIA approach can be used to identify crucial interactions of inhibitors with the enzyme at the residue level, which can be gainfully exploited in optimizing the inhibitory activity of ligands. Furthermore, it can be used with advantage to guide point mutation studies. As regards the COX-2 dataset, the CoRIA approach shows that improving Coulombic interaction with Pro528 and reducing van der Waals interaction with Tyr385 will improve the binding affinity of inhibitors.

  16. Molecular and functional analysis of the XPBC/ERCC-3 promoter: transcription activity is dependent on the integrity of an Sp1-binding site.

    PubMed Central

    Ma, L; Weeda, G; Jochemsen, A G; Bootsma, D; Hoeijmakers, J H; van der Eb, A J

    1992-01-01

    The human XPBC/ERCC-3 gene, which corrects the excision-repair defect in xeroderma pigmentosum group B cells and the UV-sensitive CHO mutant 27-1 cells, appears to be expressed constitutively in various cell types and tissues. We have analysed the structure and functionality of the XPBC/ERCC-3 promoter. Transcription of the XPBC/ERCC-3 gene is initiated from heterogeneous sites, with a major startpoint mapped at position -54 (relative to the translation start codon ATG). The promoter region does not possess classical TATA and CAAT elements, but it is GC-rich and contains three putative Sp1-binding sites. In addition, there are two elements related to the cyclic AMP (cAMP)-response element (CRE) and the 12-O-tetradecanoyl phorbol-13-acetate-response element (TRE) in the 5'-flanking region. Transient expression analysis of XPBC/ERCC-3 promoter-CAT chimeric plasmids revealed that a 127-bp fragment, spanning position -129 to -3, is minimally required for the promoter activity. Transcription of the XPBC/ERCC-3 promoter depends on the integrity of a putative Sp1-binding site in close proximity to the major cap site. Band shift assays showed that this putative Sp1-binding site can interact specifically with a nuclear factor, most likely transcription factor Sp1 (or an Sp1-like factor) in vitro. Images PMID:1741247

  17. The -14010*C variant associated with lactase persistence is located between an Oct-1 and HNF1α binding site and increases lactase promoter activity.

    PubMed

    Jensen, Tine G K; Liebert, Anke; Lewinsky, Rikke; Swallow, Dallas M; Olsen, Jørgen; Troelsen, Jesper T

    2011-10-01

    In most people worldwide intestinal lactase expression declines in childhood. In many others, particularly in Europeans, lactase expression persists into adult life. The lactase persistence phenotype is in Europe associated with the -13910*T single nucleotide variant located 13,910 bp upstream the lactase gene in an enhancer region that affects lactase promoter activity. This variant falls in an Oct-1 binding site and shows greater Oct-1 binding than the ancestral variant and increases enhancer activity. Several other variants have been identified very close to the -13910 position, which are associated with lactase persistence in the Middle East and Africa. One of them, the -14010*C, is associated with lactase persistence in Africa. Here we show by deletion analysis that the -14010 position is located in a 144 bp region that reduces the enhancer activity. In transfections the -14010*C allele shows a stronger enhancer effect than the ancestral -4010*G allele. Binding sites for Oct-1 and HNF1α surrounding the -14010 position were identified by gel shift assays, which indicated that -14010*C has greater binding affinity to Oct-1 than -14010*G.

  18. Directing the mode of nitrite binding to a copper-containing nitrite reductase from Alcaligenes faecalis S-6: characterization of an active site isoleucine.

    PubMed

    Boulanger, Martin J; Murphy, Michael E P

    2003-02-01

    Unlike the heme cd(1)-based nitrite reductase enzymes, the molecular mechanism of copper-containing nitrite reductases remains controversial. A key source of controversy is the productive binding mode of nitrite in the active site. To identify and characterize the molecular determinants associated with nitrite binding, we applied a combinatorial mutagenesis approach to generate a small library of six variants at position 257 in nitrite reductase from Alcaligenes faecalis S-6. The activities of these six variants span nearly two orders of magnitude with one variant, I257V, the only observed natural substitution for Ile257, showing greater activity than the native enzyme. High-resolution (> 1.8 A) nitrite-soaked crystal structures of these variants display different modes of nitrite binding that correlate well with the altered activities. These studies identify for the first time that the highly conserved Ile257 in the native enzyme is a key molecular determinant in directing a catalytically competent mode of nitrite binding in the active site. The O-coordinate bidentate binding mode of nitrite observed in native and mutant forms with high activity supports a catalytic model distinct from the heme cd(1) NiRs. (The atomic coordinates for I257V[NO(2)(-)], I257L[NO(2)(-)], I257A[NO(2)(-)], I257T[NO(2)(-)], I257M[NO(2)(-)] and I257G[NO(2)(-)] AfNiR have been deposited in the Protein Data Bank [PDB identification codes are listed in Table 2].)

  19. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity.

    PubMed

    Bozonnet, Sophie; Jensen, Morten T; Nielsen, Morten M; Aghajari, Nushin; Jensen, Malene H; Kramhøft, Birte; Willemoës, Martin; Tranier, Samuel; Haser, Richard; Svensson, Birte

    2007-10-01

    Some starch-degrading enzymes accommodate carbohydrates at sites situated at a certain distance from the active site. In the crystal structure of barley alpha-amylase 1, oligosaccharide is thus bound to the 'sugar tongs' site. This site on the non-catalytic domain C in the C-terminal part of the molecule contains a key residue, Tyr380, which has numerous contacts with the oligosaccharide. The mutant enzymes Y380A and Y380M failed to bind to beta-cyclodextrin-Sepharose, a starch-mimic resin used for alpha-amylase affinity purification. The K(d) for beta-cyclodextrin binding to Y380A and Y380M was 1.4 mm compared to 0.20-0.25 mm for the wild-type, S378P and S378T enzymes. The substitution in the S378P enzyme mimics Pro376 in the barley alpha-amylase 2 isozyme, which in spite of its conserved Tyr378 did not bind oligosaccharide at the 'sugar tongs' in the structure. Crystal structures of both wild-type and S378P enzymes, but not the Y380A enzyme, showed binding of the pseudotetrasaccharide acarbose at the 'sugar tongs' site. The 'sugar tongs' site also contributed importantly to the adsorption to starch granules, as Kd = 0.47 mg.mL(-1) for the wild-type enzyme increased to 5.9 mg.mL(-1) for Y380A, which moreover catalyzed the release of soluble oligosaccharides from starch granules with only 10% of the wild-type activity. beta-cyclodextrin both inhibited binding to and suppressed activity on starch granules for wild-type and S378P enzymes, but did not affect these properties of Y380A, reflecting the functional role of Tyr380. In addition, the Y380A enzyme hydrolyzed amylose with reduced multiple attack, emphasizing that the 'sugar tongs' participates in multivalent binding of polysaccharide substrates.

  20. The Deviant ATP-binding Site of the Multidrug Efflux Pump Pdr5 Plays an Active Role in the Transport Cycle*

    PubMed Central

    Furman, Christopher; Mehla, Jitender; Ananthaswamy, Neeti; Arya, Nidhi; Kulesh, Bridget; Kovach, Ildiko; Ambudkar, Suresh V.; Golin, John

    2013-01-01

    Pdr5 is the founding member of a large subfamily of evolutionarily distinct, clinically important fungal ABC transporters containing a characteristic, deviant ATP-binding site with altered Walker A, Walker B, Signature (C-loop), and Q-loop residues. In contrast to these motifs, the D-loops of the two ATP-binding sites have similar sequences, including a completely conserved aspartate residue. Alanine substitution mutants in the deviant Walker A and Signature motifs retain significant, albeit reduced, ATPase activity and drug resistance. The D-loop residue mutants D340A and D1042A showed a striking reduction in plasma membrane transporter levels. The D1042N mutation localized properly had nearly WT ATPase activity but was defective in transport and was profoundly hypersensitive to Pdr5 substrates. Therefore, there was a strong uncoupling of ATPase activity and drug efflux. Taken together, the properties of the mutants suggest an additional, critical intradomain signaling role for deviant ATP-binding sites. PMID:24019526

  1. Studies of the Interaction between Isoimperatorin and Human Serum Albumin by Multispectroscopic Method: Identification of Possible Binding Site of the Compound Using Esterase Activity of the Protein

    PubMed Central

    Ranjbar, Samira; Shokoohinia, Yalda; Ghobadi, Sirous; Gholamzadeh, Saeed; Moradi, Nastaran; Ashrafi-Kooshk, Mohammad Reza; Aghaei, Abbas

    2013-01-01

    Isoimperatorin is one of the main components of Prangos ferulacea as a linear furanocoumarin and used as anti-inflammatory, analgesic, antispasmodic, and anticancer drug. Human serum albumin (HSA) is a principal extracellular protein with a high concentration in blood plasma and carrier for many drugs to different molecular targets. Since the carrying of drug by HSA may affect on its structure and action, we decided to investigate the interaction between HSA and isoimperatorin using fluorescence and UV spectroscopy. Fluorescence data indicated that isoimperatorin quenches the intrinsic fluorescence of the HSA via a static mechanism and hydrophobic interaction play the major role in the drug binding. The binding average distance between isoimperatorin and Trp 214 of HSA was estimated on the basis of the theory of Förster energy transfer. Decrease of protein surface hydrophobicity (PSH) was also documented upon isoimperatorin binding. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Site marker compettive and fluorescence experiments revealed that the binding of isoimperatorin to HSA occurred at or near site I. Finally, the binding details between isoimperatorin and HSA were further confirmed by molecular docking and esterase activity inhibition studies which revealed that drug was bound at subdomain IIA. PMID:24319355

  2. An overlapping binding site in the CYP7A1 promoter allows activation of FXR to override the stimulation by LXRalpha.

    PubMed

    Shang, Quan; Pan, Luxing; Saumoy, Monica; Chiang, John Y L; Tint, G Stephen; Salen, Gerald; Xu, Guorong

    2007-10-01

    The aim of this study was to explore why in rabbits activation of farnesoid X receptor (FXR) is dominant over activated liver X receptor-alpha (LXRalpha) in the regulation of CYP7A1. We cloned the rabbit CYP7A1 promoter and found a fetoprotein transcription factor (FTF) binding element embedded within the LXRalpha binding site (LXRE). Gel shift assays demonstrated that FTF competes with LXRalpha for binding to LXRE. Short heterodimer partner (SHP) enhances the competitive ability of FTF. Studies in HepG2 cells showed that SHP combined with FTF had more powerful effect to offset the stimulation of CYP7A1 by LXRalpha. Gel shift and chromatin immunoprecipitation assays demonstrated that SHP with FTF diminished LXRalpha binding to the CYP7A1 promoter. In vivo studies in rabbits fed cholesterol for 10 days showed that hepatic expression of SHP but not FTF rose and LXRalpha-bound LXRE decreased. We propose that the SHP/FTF heterodimer occupies LXRE via the embedded FTF binding element and blocks LXRalpha from recruiting to LXRE. Therefore, activation of FXR, which upregulates SHP expression, will eliminate the stimulatory effect of LXRalpha on the CYP7A1 promoter because increased levels of SHP combined with FTF diminish the recruitment of LXRalpha to CYP7A1 promoter.

  3. Active site binding modes of inhibitors of Staphylococcus aureus mevalonate diphosphate decarboxylase from docking and molecular dynamics simulations.

    PubMed

    Addo, James K; Skaff, D Andrew; Miziorko, Henry M

    2016-01-01

    Bacterial mevalonate diphosphate decarboxylase (MDD) is an attractive therapeutic target for antibacterial drug development. In this work, we discuss a combined docking and molecular dynamics strategy toward inhibitor binding to bacterial MDD. The docking parameters utilized in this study were first validated with observations for the inhibitors 6-fluoromevalonate diphosphate (FMVAPP) and diphosphoglycolylproline (DPGP) using existing structures for the Staphylococcus epidermidis enzyme. The validated docking protocol was then used to predict structures of the inhibitors bound to Staphylococcus aureus MDD using the unliganded crystal structure of Staphylococcus aureus MDD. We also investigated a possible interactions improvement by combining this docking method with molecular dynamics simulations. Thus, the predicted docking structures were analyzed in a molecular dynamics trajectory to generate dynamic models and reinforce the predicted binding modes. FMVAPP is predicted to make more extensive contacts with S. aureus MDD, forming stable hydrogen bonds with Arg144, Arg193, Lys21, Ser107, and Tyr18, as well as making stable hydrophobic interactions with Tyr18, Trp19, and Met196. The differences in predicted binding are supported by experimentally determined Ki values of 0.23 ± 0.02 and 34 ± 8 μM, for FMVAPP and DPGP, respectively. The structural information coupled with the kinetic characterization obtained from this study should be useful in defining the requirements for inhibition as well as in guiding the selection of active compounds for inhibitor optimization.

  4. Increased structural flexibility at the active site of a fluorophore-conjugated beta-lactamase distinctively impacts its binding toward diverse cephalosporin antibiotics.

    PubMed

    Wong, Wai-Ting; Chan, Kwok-Chu; So, Pui-Kin; Yap, Hong-Kin; Chung, Wai-Hong; Leung, Yun-Chung; Wong, Kwok-Yin; Zhao, Yanxiang

    2011-09-09

    The Ω-loop at the active site of β-lactamases exerts significant impact on the kinetics and substrate profile of these enzymes by forming part of the substrate binding site and posing as steric hindrance toward bulky substrates. Mutating certain residues on the Ω-loop has been a general strategy for molecular evolution of β-lactamases to expand their hydrolytic activity toward extended-spectrum antibiotics through a mechanism believed to involve enhanced structural flexibility of the Ω-loop. Yet no structural information is available that demonstrates such flexibility or its relation to substrate profile and enzyme kinetics. Here we report an engineered β-lactamase that contains an environment-sensitive fluorophore conjugated near its active site to probe the structural dynamics of the Ω-loop and to detect the binding of diverse substrates. Our results show that this engineered β-lactamase has improved binding kinetics and positive fluorescence signal toward oxyimino-cephalosporins, but shows little such effect to non-oxyimino-cephalosporins. Structural studies reveal that the Ω-loop adopts a less stabilized structure, and readily undergoes conformational change to accommodate the binding of bulky oxyimino-cephalosporins while no such change is observed for non-oxyimino-cephalosporins. Mutational studies further confirm that this substrate-induced structural change is directly responsible for the positive fluorescence signal specific to oxyimino-cephalosporins. Our data provide mechanistic evidence to support the long-standing model that the evolutionary strategy of mutating the Ω-loop leads to increased structural flexibility of this region, which in turn facilitates the binding of extended spectrum β-lactam antibiotics. The oxyimino-cephalosporin-specific fluorescence profile of our engineered β-lactamase also demonstrates the possibility of designing substrate-selective biosensing systems.

  5. Differences and similarities in binding of pyruvate and L-lactate in the active site of M4 and H4 isoforms of human lactate dehydrogenase.

    PubMed

    Swiderek, Katarzyna; Paneth, Piotr

    2011-01-01

    We present QM/MM calculations that show differences in geometries of active sites of M(4) and H(4) isoforms of human LDH ligated with oxamate, pyruvate or L-lactate. As the consequence of these differences, binding isotope effects of the methyl hydrogen atoms of pyruvate and l-lactate may be used to experimentally distinguish these isoforms. Based on the FEP calculations we argue that L-lactate is a better candidate for the experimental studies. Our calculations of energies of interactions of ligands with the active site residues provide explanation for the observed experimentally sensitivity to inhibition of the M(4) isoenzyme isoform and pinpoint the differences to interactions of the ligand with the histidine residue. We conclude that pyruvate interacts much stronger in the active site of H(4) than M(4) isoform and that the latter interactions are weaker than with water molecules in the aqueous solution.

  6. Mechanical failure, stress redistribution, elastase activity and binding site availability on elastin during the progression of emphysema.

    PubMed

    Suki, Béla; Jesudason, Rajiv; Sato, Susumu; Parameswaran, Harikrishnan; Araujo, Ascanio D; Majumdar, Arnab; Allen, Philip G; Bartolák-Suki, Erzsébet

    2012-08-01

    Emphysema is a disease of the lung parenchyma with progressive alveolar tissue destruction that leads to peripheral airspace enlargement. In this review, we discuss how mechanical forces can contribute to disease progression at various length scales. Airspace enlargement requires mechanical failure of alveolar walls. Because the lung tissue is under a pre-existing tensile stress, called prestress, the failure of a single wall results in a redistribution of the local prestress. During this process, the prestress increases on neighboring alveolar walls which in turn increases the probability that these walls also undergo mechanical failure. There are several mechanisms that can contribute to this increased probability: exceeding the failure threshold of the ECM, triggering local mechanotransduction to release enzymes, altering enzymatic reactions on ECM molecules. Next, we specifically discuss recent findings that stretching of elastin induces an increase in the binding off rate of elastase to elastin as well as unfolds hidden binding sites along the fiber. We argue that these events can initiate a positive feedback loop which generates slow avalanches of breakdown that eventually give rise to the relentless progression of emphysema. We propose that combining modeling at various length scales with corresponding biological assays, imaging and mechanics data will provide new insight into the progressive nature of emphysema. Such approaches will have the potential to contribute to resolving many of the outstanding issues which in turn may lead to the amelioration or perhaps the treatment of emphysema in the future.

  7. FK506-binding protein mutational analysis: defining the active-site residue contributions to catalysis and the stability of ligand complexes.

    PubMed

    DeCenzo, M T; Park, S T; Jarrett, B P; Aldape, R A; Futer, O; Murcko, M A; Livingston, D J

    1996-02-01

    The 12 kDa FK506-binding protein FKBP12 is a cis-trans peptidyl-prolyl isomerase that binds the macrolides FK506 and rapamycin. We have examined the role of the binding pocket residues of FKBP12 in protein-ligand interactions by making conservative substitutions of 12 of these residues by site-directed mutagenesis. For each mutant FKBP12, we measured the affinity for FK506 and rapamycin and the catalytic efficiency in the cis-frans peptidyl-prolyl isomerase reaction. The mutation of Trp59 or Phe99 generates an FKBP12 with a significantly lower affinity for FK506 than wild-type protein. Tyr26 and Tyr82 mutants are enzymatically active, demonstrating that hydrogen bonding by these residues is not required for catalysis of the cis-trans peptidyl-prolyl isomerase reaction, although these mutations alter the substrate specificity of the enzyme. We conclude that hydrophobic interactions in the active site dominate in the stabilization of FKBP12 binding to macrolide ligands and to the twisted-amide peptidyl-prolyl substrate intermediate.

  8. An additional substrate binding site in a bacterial phenylalanine hydroxylase.

    PubMed

    Ronau, Judith A; Paul, Lake N; Fuchs, Julian E; Corn, Isaac R; Wagner, Kyle T; Liedl, Klaus R; Abu-Omar, Mahdi M; Das, Chittaranjan

    2013-09-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 μM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.

  9. Mutation of a Shc binding site tyrosine residue in ErbB3/HER3 blocks heregulin-dependent activation of mitogen-activated protein kinase.

    PubMed

    Vijapurkar, U; Cheng, K; Koland, J G

    1998-08-14

    The ErbB2 and ErbB3 proteins together constitute a functional coreceptor for heregulin (neuregulin). Heregulin stimulates the phosphorylation of both coreceptor constituents and initiates a variety of other signaling events, which include phosphorylation of the Shc protein. The role of Shc in heregulin-stimulated signal transduction through the ErbB2.ErbB3 coreceptor was investigated here. Heregulin was found to promote ErbB3/Shc association in NIH-3T3 cells expressing endogenous ErbB2 and recombinant ErbB3. A mutant ErbB3 protein was generated in which Tyr-1325 in a consensus Shc phosphotyrosine-binding domain recognition site was mutated to Phe (ErbB3-Y/F). This mutation abolished the association of Shc with ErbB3 and blocked the activation of mitogen-activated protein kinase by heregulin. Whereas heregulin induced mitogenesis in NIH-3T3 cells transfected with wild-type ErbB3 cDNA, this mitogenic response was markedly attenuated in NIH-3T3 cells transfected with the ErbB3-Y/F cDNA. These results showed a specific interaction of Shc with the ErbB3 receptor protein and demonstrated the importance of this interaction in the activation of mitogenic responses by the ErbB2. ErbB3 heregulin coreceptor complex.

  10. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  11. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  12. Soluble Phosphatidylserine Binds to Two Sites on Human Factor IXa in a Ca2+ Dependent Fashion to Specifically Regulate Structure and Activity

    PubMed Central

    Majumder, Rinku; Cole, Daud; Chattopadhyay, Rima; Biswas, Subir; Monroe, Dougald; Lentz, Barry R.

    2014-01-01

    Clinical studies have demonstrated a correlation between elevated levels of FIX and the risk of coronary heart disease, while reduced plasma FIX causes hemophilia B. FIXa interacts with FVIIIa in the presence of Ca2+ and phosphatidylserine (PS)-containing membranes to form a factor X-activating complex (Xase) that is key to propagation of the initiated blood coagulation process in human. We test the hypothesis that PS in these membranes up-regulates the catalytic activity of this essential enzyme. We used a soluble form of phosphatidylserine, 1, 2-dicaproyl-sn-glycero-3-phospho-L-serine (C6PS), as a tool to do so. C6PS and PS in membranes are reported to regulate the homologous FXa nearly identically. FIXa binds a molecule of C6PS at each of with two sites with such different affinities (∼100-fold) that these appear to be independent. A high affinity C6PS binding site (Kd∼1.4 µM) regulates structure, whereas a low-affinity binding site (Kd∼140 µM) regulates activity. Equilibrium dialysis experiments were analyzed globally with four other data sets (proteolytic and amidolytic activities, intrinsic fluorescence, ellipticity) to unequivocally demonstrate stoichiometries of one for both sites. Michaelis-Menten parameters for FIXa proteolytic activity were the same in the presence of C6PS or PS/PC membranes. We conclude that the PS molecule and not a membrane surface is the key regulator of both factors Xa and IXa. Despite some minor differences in the details of regulation of factors Xa and IXa, the similarities we found suggest that lipid regulation of these two proteases may be similar, a hypothesis that we continue to test. PMID:24979705

  13. Soluble phosphatidylserine binds to two sites on human factor IXa in a Ca2+ dependent fashion to specifically regulate structure and activity.

    PubMed

    Majumder, Rinku; Koklic, Tilen; Sengupta, Tanusree; Cole, Daud; Chattopadhyay, Rima; Biswas, Subir; Monroe, Dougald; Lentz, Barry R

    2014-01-01

    Clinical studies have demonstrated a correlation between elevated levels of FIX and the risk of coronary heart disease, while reduced plasma FIX causes hemophilia B. FIXa interacts with FVIIIa in the presence of Ca2+ and phosphatidylserine (PS)-containing membranes to form a factor X-activating complex (Xase) that is key to propagation of the initiated blood coagulation process in human. We test the hypothesis that PS in these membranes up-regulates the catalytic activity of this essential enzyme. We used a soluble form of phosphatidylserine, 1, 2-dicaproyl-sn-glycero-3-phospho-L-serine (C6PS), as a tool to do so. C6PS and PS in membranes are reported to regulate the homologous FXa nearly identically. FIXa binds a molecule of C6PS at each of with two sites with such different affinities (∼100-fold) that these appear to be independent. A high affinity C6PS binding site (Kd∼1.4 µM) regulates structure, whereas a low-affinity binding site (Kd∼140 µM) regulates activity. Equilibrium dialysis experiments were analyzed globally with four other data sets (proteolytic and amidolytic activities, intrinsic fluorescence, ellipticity) to unequivocally demonstrate stoichiometries of one for both sites. Michaelis-Menten parameters for FIXa proteolytic activity were the same in the presence of C6PS or PS/PC membranes. We conclude that the PS molecule and not a membrane surface is the key regulator of both factors Xa and IXa. Despite some minor differences in the details of regulation of factors Xa and IXa, the similarities we found suggest that lipid regulation of these two proteases may be similar, a hypothesis that we continue to test.

  14. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    SciTech Connect

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oil than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.

  15. Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer's patch M cells.

    PubMed

    Owen, R L; Bhalla, D K

    1983-10-01

    M cells in Peyer's patch follicle epithelium endocytose and transport luminal materials to intraepithelial lymphocytes. We examined (1) enzymatic characteristics of the epithelium covering mouse and rat Peyer's patches by using cytochemical techniques, (2) distribution of lectin-binding sites by peroxidase-labeled lectins, and (3) anionic site distribution by using cationized ferritin to develop a profile of M cell surface properties. Alkaline phosphatase activity resulted in deposits of dense reaction product over follicle surfaces but was markedly reduced over M cells, unlike esterase which formed equivalent or greater product over M cells. Concanavalin A, ricinus communis agglutinin, wheat germ agglutinin and peanut agglutinin reacted equally with M cells and with surrounding enterocytes over follicle surfaces. Cationized ferritin distributed in a random fashion along microvillus membranes of both M cells and enterocytes, indicating equivalent anionic site distribution. Staining for alkaline phosphatase activity provides a new approach for distinguishing M cells from enterocytes at the light microscopic level. Identical binding of lectins indicates that M cells and enterocytes share common glycoconjugates even though molecular groupings may differ. Lectin binding and anionic charge similarities of M cells and enterocytes may facilitate antigen sampling by M cells of particles and compounds that adhere to intestinal surfaces in non-Peyer's patch areas.

  16. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.

    PubMed

    Mudgal, Richa; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-03-25

    Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology and designing enzymes with new functional capabilities. This article is protected by copyright. All rights reserved.

  17. Chloride binding site of neurotransmitter sodium symporters

    PubMed Central

    Kantcheva, Adriana K.; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A.; Nissen, Poul

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding. PMID:23641004

  18. Chloride binding site of neurotransmitter sodium symporters.

    PubMed

    Kantcheva, Adriana K; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A; Nissen, Poul

    2013-05-21

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.

  19. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies.

    PubMed

    Grönberg, Karin L C; Watmough, Nicholas J; Thomson, Andrew J; Richardson, David J; Field, Sarah J

    2004-04-23

    The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe-non-heme Fe] active site rather than the [heme Fe-Cu(B)] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site. On reduction of the nonheme iron, the micro-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.

  20. Naloxone's pentapeptide binding site on filamin A blocks Mu opioid receptor-Gs coupling and CREB activation of acute morphine.

    PubMed

    Wang, Hoau-Yan; Burns, Lindsay H

    2009-01-01

    Chronic morphine causes the mu opioid receptor (MOR) to switch its coupling from Gi/o to Gs, resulting in excitatory signaling via both Galphas and its Gbetagamma dimer. Ultra-low-dose naloxone (NLX) prevents this switch and attenuates opioid tolerance and dependence. This protective effect is mediated via a high-affinity interaction of NLX to a pentapeptide region in c-terminal filamin A (FLNA), a scaffolding protein interacting with MOR. In organotypic striatal slice cultures, we now show that acute morphine induces a dose-dependent Go-to-Gs coupling switch at 5 and 15 min that resolves by 1 hr. The acute Gs coupling induced by 100 microM morphine was completely prevented by co-treatment with 100 pM NLX, (+)NLX, or naltrexone (NTX), or their pentapeptide binding site (FLNA(2561-2565)), which we show can act as a decoy for MOR or bind to FLNA itself. All of these co-treatments presumably prevent the MOR-FLNA interaction. Since ultra-low-dose NTX also attenuates the addictive properties of opioids, we assessed striatal cAMP production and CREB phosphorylation at S(133). Correlating with the Gs coupling, acute morphine induced elevated cAMP levels and a several-fold increase in pS(133)CREB that were also completely blocked by NLX, NTX or the FLNA pentapeptide. We propose that acute, robust stimulation of MOR causes an interaction with FLNA that allows an initially transient MOR-Gs coupling, which recovers with receptor recycling but persists when MOR stimulation is repeated or prolonged. The complete prevention of this acute, morphine-induced MOR-Gs coupling by 100 pM NLX/NTX or 10 microM pentapeptide segment of FLNA further elucidates both MOR signaling and the mechanism of action of ultra-low-dose NLX or NTX in attenuating opioid tolerance, dependence and addictive potential.

  1. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  2. Predicted metal binding sites for phytoremediation.

    PubMed

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-09-05

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.

  3. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  4. EGFR kinase possesses a broad specificity for ErbB phosphorylation sites, and ligand increases catalytic-centre activity without affecting substrate binding affinity

    PubMed Central

    2005-01-01

    We previously found that EGF (epidermal growth factor) increases the EGFR (EGF receptor) kinase-binding affinity towards the major tyrosine phosphorylation sites in downstream adaptor proteins such as Gab1 (Grb2-associated binding protein 1) and Shc [Src homology 2 (SH2) domain and collagen containing protein], but not that towards EGFR autophosphorylation sites [Fan, Wong, Deb and Johnson (2004) J. Biol. Chem. 279, 38143–38150]. EGFR activation can also result in transphosphorylation of tyrosine resides in the C-terminal region of the related receptors ErbB2, ErbB3 and ErbB4 in heterodimers which are formed upon ligand stimulation. In the present study, we investigated the specificity of EGFR kinase by comparing the steady state kinetic parameters for peptides derived from all four ErbBs in the absence or presence of EGF. Our results demonstrated that (i) EGFR kinase can efficiently phosphorylate a broad range of diverse peptide sequences representing ErbB sites; (ii) certain ErbB2, ErbB3 and ErbB4 sites had higher specificity constants than any EGFR sequence and (iii) EGF stimulation consistently increases the kcat approx. 5-fold, but does not significantly alter the Km for any ErbB peptides. Furthermore, peptides containing lysine at position −2 or −3 N-terminal to the target tyrosine were found to be poor EGFR kinase substrates, and substitution of these lysines with glutamine decreased the Km and increased the kcat for these substrates. We conclude that EGFR kinase-mediated ErbB transphosphorylations are mostly controlled at the level of oligomerization, and not by a preference of the EGFR kinase for phosphorylation sites in any particular ErbB. The results also demonstrated that, unlike phosphorylation sites in select downstream targets, EGF does not regulate the recognition of phosphorylation sites in the C-terminal region of any of the ErbBs. PMID:16122376

  5. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study.

    PubMed

    Flannelly, David F; Aoki, Thalia G; Aristilde, Ludmilla

    2015-09-01

    The complete degradation of cellulose to glucose is essential to carbon turnover in terrestrial ecosystems and to engineered biofuel production. A rate-limiting step in this pathway is catalyzed by beta-glucosidase (BG) enzymes, which convert cellulobiose into two glucose molecules. The activity of these enzymes has been shown to vary with solution pH. However, it is not well understood how pH influences the enzyme conformation required for catalytic action on the substrate. A structural understanding of this pH effect is important for predicting shifts in BG activity in bioreactors and environmental matrices, in addition to informing targeted protein engineering. Here we applied molecular dynamics simulations to explore conformational and substrate binding dynamics in two well-characterized BGs of bacterial (Clostridium cellulovorans) and fungal (Trichoderma reesei) origins as a function of pH. The enzymes were simulated in an explicit solvated environment, with NaCl as electrolytes, at their prominent ionization states obtained at pH 5, 6, 7, and 7.5. Our findings indicated that pH-dependent changes in the ionization states of non-catalytic residues localized outside of the immediate active site led to pH-dependent disruption of the active site conformation. This disruption interferes with favorable H-bonding interactions with catalytic residues required to initiate catalysis on the substrate. We also identified specific non-catalytic residues that are involved in stabilizing the substrate at the optimal pH for enzyme activity. The simulations further revealed the dynamics of water-bridging interactions both outside and inside the substrate binding cleft during structural changes in the enzyme-substrate complex. These findings provide new structural insights into the pH-dependent substrate binding specificity in BGs.

  6. Allosteric binding sites on muscarinic acetylcholine receptors.

    PubMed

    Wess, Jürgen

    2005-12-01

    In this issue of Molecular Pharmacology, Tränkle et al. (p. 1597) present new findings regarding the existence of a second allosteric site on the M2 muscarinic acetylcholine receptor (M2 mAChR). The M2 mAChR is a prototypic class A G protein-coupled receptor (GPCR) that has proven to be a very useful model system to study the molecular mechanisms involved in the binding of allosteric GPCR ligands. Previous studies have identified several allosteric muscarinic ligands, including the acetylcholinesterase inhibitor tacrine and the bis-pyridinium derivative 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3), which, in contrast to conventional allosteric muscarinic ligands, display concentration-effect curves with slope factors >1. By analyzing the interactions of tacrine and Duo3 with other allosteric muscarinic agents predicted to bind to the previously identified ;common' allosteric binding site, Tränkle et al. provide evidence suggesting that two allosteric agents and one orthosteric ligand may be able to bind to the M2 mAChR simultaneously. Moreover, studies with mutant mAChRs indicated that the M2 receptor epitopes involved in the binding of tacrine and Duo3 may not be identical. Molecular modeling and ligand docking studies suggested that the additional allosteric site probably represents a subdomain of the receptor's allosteric binding cleft. Because allosteric binding sites have been found on many other GPCRs and drugs interacting with these sites are thought to have great therapeutic potential, the study by Tränkle et al. should be of considerable general interest.

  7. Bridging lectin binding sites by multivalent carbohydrates.

    PubMed

    Wittmann, Valentin; Pieters, Roland J

    2013-05-21

    Carbohydrate-protein interactions are involved in a multitude of biological recognition processes. Since individual protein-carbohydrate interactions are usually weak, multivalency is often required to achieve biologically relevant binding affinities and selectivities. Among the possible mechanisms responsible for binding enhancement by multivalency, the simultaneous attachment of a multivalent ligand to several binding sites of a multivalent receptor (i.e. chelation) has been proven to have a strong impact. This article summarizes recent examples of chelating lectin ligands of different size. Covered lectins include the Shiga-like toxin, where the shortest distance between binding sites is ca. 9 Å, wheat germ agglutinin (WGA) (shortest distance between binding sites 13-14 Å), LecA from Pseudomonas aeruginosa (shortest distance 26 Å), cholera toxin and heat-labile enterotoxin (shortest distance 31 Å), anti-HIV antibody 2G12 (shortest distance 31 Å), concanavalin A (ConA) (shortest distance 72 Å), RCA120 (shortest distance 100 Å), and Erythrina cristagalli (ECL) (shortest distance 100 Å). While chelating binding of the discussed ligands is likely, experimental proof, for example by X-ray crystallography, is limited to only a few cases.

  8. The neuroprotective activity of the amyloid precursor protein against traumatic brain injury is mediated via the heparin binding site in residues 96-110.

    PubMed

    Corrigan, Frances; Thornton, Emma; Roisman, Laila C; Leonard, Anna V; Vink, Robert; Blumbergs, Peter C; van den Heuvel, Corinna; Cappai, Roberto

    2014-01-01

    We have previously shown that following traumatic brain injury (TBI) the presence of the amyloid precursor protein (APP) may be neuroprotective. APP knockout mice have increased neuronal death and worse cognitive and motor outcomes following TBI, which is rescued by treatment with exogenous sAPPα (the secreted ectodomain of APP generated by α-secretase cleavage). Two neuroprotective regions were identified in sAPPα, the N and C-terminal domains D1 and D6a/E2 respectively. As both D1 and D6a/E2 contain heparin binding activity it was hypothesized that this is responsible for the neuroprotective activity. In this study, we focused on the heparin binding site, encompassed by residues 96-110 in D1, which has previously been shown to have neurotrophic properties. We found that treatment with APP96-110 rescued motor and cognitive deficits in APP-/- mice following focal TBI. APP96-110 also provided neuroprotection in Sprague-Dawley rats following diffuse TBI. Treatment with APP96-110 significantly improved functional outcome as well as preserve histological cellular morphology in APP-/- mice following focal controlled cortical impact injury. Furthermore, following administration of APP96-110 in rats after diffuse impact acceleration TBI, motor and cognitive outcomes were significantly improved and axonal injury reduced. These data define the heparin binding site in the D1 domain of sAPPα, represented by the sequence APP96-110, as the neuroprotective site to confer neuroprotection following TBI. The product of α-secretase cleavage of the amyloid precursor protein, sAPPα is neuroprotective following traumatic brain injury (TBI). Of interest was whether this neuroprotective activity could be further delineated to a heparin binding region within sAPPα, corresponding to the region APP96-110 (see diagram demonstrating the domain structure of sAPPα). Indeed treatment with APP96-110 improved functional outcome following TBI, an effect that was not seen with a mutated

  9. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences.

    PubMed

    Estrada, Javier; Ruiz-Herrero, Teresa; Scholes, Clarissa; Wunderlich, Zeba; DePace, Angela H

    2016-01-01

    DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/.

  10. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences

    PubMed Central

    Scholes, Clarissa; Wunderlich, Zeba; DePace, Angela H.

    2016-01-01

    DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/. PMID:26987123

  11. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (beta-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites.

    PubMed

    Kameyama, K; Haga, K; Haga, T; Moro, O; Sadée, W

    1994-12-01

    A mutant of the human muscarinic acetylcholine receptor m2 subtype (m2 receptor), lacking a large part of the third intracellular loop, was expressed and purified using the baculovirus/insect cell culture system. The mutant was not phosphorylated by beta-adrenergic-receptor kinase, as expected from the previous assignment of phosphorylation sites to the central part of the third intracellular loop. However, the m2 receptor mutant was capable of stimulating beta-adrenergic-receptor-kinase-1-mediated phosphorylation of a glutathione S-transferase fusion protein containing the m2 phosphorylation sites in an agonist-dependent manner. Both mutant and wild-type m2 receptors reconstituted with the guanine-nucleotide-binding regulatory proteins (G protein), G(o) and G(i)2, displayed guanine-nucleotide-sensitive high-affinity agonist binding, as assessed by displacement of [3H]quinuclidinyl-benzilate binding with carbamoylcholine, and both stimulated guanosine 5'-3-O-[35S]thiotriphosphate ([35S]GTP[S]) binding in the presence of carbamoylcholine and GDP. The Ki values of carbamoylcholine effects on [3H]quinuclidinyl-benzilate binding were indistinguishable for the mutant and wild-type m2 receptors. Moreover, the phosphorylation of the wild-type m2 receptor by beta-adrenergic-receptor kinase-1 did not affect m2 interaction with G proteins as assessed by the binding of [3H]quinuclidinyl benzilate or [35S]GTP[S]. These results indicate that (a) the m2 receptor serves both as an activator and as a substrate of beta-adrenergic-receptor kinase, and (b) a large part of the third intracellular loop of the m2 receptor does not contribute to interaction with G proteins and its phosphorylation by beta-adrenergic-receptor kinase does not uncouple the receptor and G proteins in reconstituted lipid vesicles.

  12. Action at a distance: amino acid substitutions that affect binding of the phosphorylated CheY response regulator and catalysis of dephosphorylation can be far from the CheZ phosphatase active site.

    PubMed

    Freeman, Ashalla M; Mole, Beth M; Silversmith, Ruth E; Bourret, Robert B

    2011-09-01

    Two-component regulatory systems, in which phosphorylation controls the activity of a response regulator protein, provide signal transduction in bacteria. For example, the phosphorylated CheY response regulator (CheYp) controls swimming behavior. In Escherichia coli, the chemotaxis phosphatase CheZ stimulates the dephosphorylation of CheYp. CheYp apparently binds first to the C terminus of CheZ and then binds to the active site where dephosphorylation occurs. The phosphatase activity of the CheZ(2) dimer exhibits a positively cooperative dependence on CheYp concentration, apparently because the binding of the first CheYp to CheZ(2) is inhibited compared to the binding of the second CheYp. Thus, CheZ phosphatase activity is reduced at low CheYp concentrations. The CheZ21IT gain-of-function substitution, located far from either the CheZ active site or C-terminal CheY binding site, enhances CheYp binding and abolishes cooperativity. To further explore mechanisms regulating CheZ activity, we isolated 10 intragenic suppressor mutations of cheZ21IT that restored chemotaxis. The suppressor substitutions were located along the central portion of CheZ and were not allele specific. Five suppressor mutants tested biochemically diminished the binding of CheYp and/or the catalysis of dephosphorylation, even when the suppressor substitutions were distant from the active site. One suppressor mutant also restored cooperativity to CheZ21IT. Consideration of results from this and previous studies suggests that the binding of CheYp to the CheZ active site (not to the C terminus) is rate limiting and leads to cooperative phosphatase activity. Furthermore, amino acid substitutions distant from the active site can affect CheZ catalytic activity and CheYp binding, perhaps via the propagation of structural or dynamic perturbations through a helical bundle.

  13. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    SciTech Connect

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L.

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  14. A strategy for the incorporation of water molecules present in a ligand binding site into a three-dimensional quantitative structure--activity relationship analysis.

    PubMed

    Pastor, M; Cruciani, G; Watson, K A

    1997-12-05

    Water present in a ligand binding site of a protein has been recognized to play a major role in ligand-protein interactions. To date, rational drug design techniques do not usually incorporate the effect of these water molecules into the design strategy. This work represents a new strategy for including water molecules into a three-dimensional quantitative structure-activity relationship analysis using a set of glucose analogue inhibitors of glycogen phosphorylase (GP). In this series, the structures of the ligand-enzyme complexes have been solved by X-ray crystallography, and the positions of the ligands and the water molecules at the ligand binding site are known. For the structure-activity analysis, some water molecules adjacent to the ligands were included into an assembly which encompasses both the inhibitor and the water involved in the ligand-enzyme interaction. The mobility of some water molecules at the ligand binding site of GP gives rise to differences in the ligand-water assembly which have been accounted for using a simulation study involving force-field energy calculations. The assembly of ligand plus water was used in a GRID/GOLPE analysis, and the models obtained compare favorably with equivalent models when water was excluded. Both models were analyzed in detail and compared with the crystallographic structures of the ligand-enzyme complexes in order to evaluate their ability to reproduce the experimental observations. The results demonstrate that incorporation of water molecules into the analysis improves the predictive ability of the models and makes them easier to interpret. The information obtained from interpretation of the models is in good agreement with the conclusions derived from the structural analysis of the complexes and offers valuable insights into new characteristics of the ligands which may be exploited for the design of more potent inhibitors.

  15. Autoradiographic localization of relaxin binding sites in rat brain

    SciTech Connect

    Osheroff, P.L.; Phillips, H.S. )

    1991-08-01

    Relaxin is a member of the insulin family of polypeptide hormones and exerts its best understood actions in the mammalian reproductive system. Using a biologically active 32P-labeled human relaxin, the authors have previously shown by in vitro autoradiography specific relaxin binding sites in rat uterus, cervix, and brain tissues. Using the same approach, they describe here a detailed localization of human relaxin binding sites in the rat brain. Displaceable relaxin binding sites are distributed in discrete regions of the olfactory system, neocortex, hypothalamus, hippocampus, thalamus, amygdala, midbrain, and medulla of the male and female rat brain. Characterization of the relaxin binding sites in the subfornical organ and neocortex reveals a single class of high-affinity sites (Kd = 1.4 nM) in both regions. The binding of relaxin to two of the circumventricular organs (subfornical organ and organum vasculosum of the lamina terminalis) and the neurosecretory magnocellular hypothalamic nuclei (i.e., paraventricular and supraoptic nuclei) provides the anatomical and biochemical basis for emerging physiological evidence suggesting a central role for relaxin in the control of blood pressure and hormone release. They conclude that specific, high-affinity relaxin binding sites are present in discrete regions of the rat brain and that the distribution of some of these sites may be consistent with a role for relaxin in control of vascular volume and blood pressure.

  16. Identification of an imidazoline binding protein: Creatine kinase and an imidazoline-2 binding site

    PubMed Central

    Kimura, Atsuko; Tyacke, Robin J.; Robinson, James J.; Husbands, Stephen M.; Minchin, Michael C.W.; Nutt, David J.; Hudson, Alan L.

    2009-01-01

    Drugs that bind to imidazoline binding proteins have major physiological actions. To date, three subtypes of such proteins, I1, I2 and I3, have been proposed, although characterisations of these binding proteins are lacking. I2 binding sites are found throughout the brain, particularly dense in the arcuate nucleus of the hypothalamus. Selective I2 ligands demonstrate antidepressant-like activity and the identity of the proteins that respond to such ligands remained unknown until now. Here we report the isolation of a ∼ 45 kDa imidazoline binding protein from rabbit and rat brain using a high affinity ligand for the I2 subtype, 2-BFI, to generate an affinity column. Following protein sequencing of the isolated ∼ 45 kDa imidazoline binding protein, we identified it to be brain creatine kinase (B-CK). B-CK shows high binding capacity to selective I2 ligands; [3H]-2-BFI (5 nM) specifically bound to B-CK (2330 ± 815 fmol mg protein− 1). We predicted an I2 binding pocket near the active site of B-CK using molecular modelling. Furthermore, B-CK activity was inhibited by a selective I2 irreversible ligand, where 20 μM BU99006 reduced the enzyme activity by 16%, confirming the interaction between B-CK and the I2 ligand. In summary, we have identified B-CK to be the ∼ 45 kDa imidazoline binding protein and we have demonstrated the existence of an I2 binding site within this enzyme. The importance of B-CK in regulating neuronal activity and neurotransmitter release may well explain the various actions of I2 ligands in brain and the alterations in densities of I2 binding sites in psychiatric disorders. PMID:19410564

  17. An active-site phenylalanine directs substrate binding and C-H cleavage in the alpha-ketoglutarate-dependent dioxygenase TauD.

    PubMed

    McCusker, Kevin P; Klinman, Judith P

    2010-04-14

    Enzymes that cleave C-H bonds are often found to depend on well-packed hydrophobic cores that influence the distance between the hydrogen donor and acceptor. Residue F159 in taurine alpha-ketoglutarate dioxygenase (TauD) is demonstrated to play an important role in the binding and orientation of its substrate, which undergoes a hydrogen atom transfer to the active site Fe(IV)=O. Mutation of F159 to smaller hydrophobic side chains (L, V, A) leads to substantially reduced rates for substrate binding and for C-H bond cleavage, as well as increased contribution of the chemical step to k(cat) under steady-state turnover conditions. The greater sensitivity of these substrate-dependent processes to mutation at position 159 than observed for the oxygen activation process supports a previous conclusion of modularity of function within the active site of TauD (McCusker, K. P.; Klinman, J. P. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19791-19795). Extraction of intrinsic deuterium kinetic isotope effects (KIEs) using single turnover transients shows 2- to 4-fold increase in the size of the KIE for F159V in relation to wild-type and F159L. It appears that there is a break in behavior following removal of a single methylene from the side chain of F159L to generate F159V, whereby the protein active site loses its ability to restore the internuclear distance between substrate and Fe(IV)=O that supports optimal hydrogenic wave function overlap.

  18. The structure of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei reveals a zinc binding site at the heart of the active site.

    PubMed

    Harmer, Nicholas J

    2010-07-16

    Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into D-glycero-D-manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.

  19. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase.

    PubMed

    Arjune, Sita; Schwarz, Guenter; Belaidi, Abdel A

    2015-01-01

    Sulfur metabolism has gained increasing medical interest over the last years. In particular, cysteine dioxygenase (CDO) has been recognized as a potential marker in oncology due to its altered gene expression in various cancer types. Human CDO is a non-heme iron-dependent enzyme, which catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid, which is further metabolized to taurine or pyruvate and sulfate. Several studies have reported a unique post-translational modification of human CDO consisting of a cross-link between cysteine 93 and tyrosine 157 (Cys-Tyr), which increases catalytic efficiency in a substrate-dependent manner. However, the reaction mechanism by which the Cys-Tyr cofactor increases catalytic efficiency remains unclear. In this study, steady-state kinetics were determined for wild type CDO and two different variants being either impaired or saturated with the Cys-Tyr cofactor. Cofactor formation in CDO resulted in an approximately fivefold increase in k cat and tenfold increase in k cat/K m over the cofactor-free CDO variant. Furthermore, iron titration experiments revealed an 18-fold decrease in K d of iron upon cross-link formation. This finding suggests a structural role of the Cys-Tyr cofactor in coordinating the ferrous iron in the active site of CDO in accordance with the previously postulated reaction mechanism of human CDO. Finally, we identified product-based inhibition and α-ketoglutarate and glutarate as CDO inhibitors using a simplified well plate-based activity assay. This assay can be used for high-throughput identification of additional inhibitors, which may contribute to understand the functional importance of CDO in sulfur amino acid metabolism and related diseases.

  20. Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites

    SciTech Connect

    Bolger, G.T.; Skolnick, P.; Kempner, E.S. )

    1989-08-01

    In low ionic strength buffer (5 mM Tris.HCl), the binding of (3H) nitrendipine to dihydropyridine calcium antagonist binding sites of mouse forebrain membranes is increased by both Na{sup +} and Ca{sup 2+}. Radiation inactivation was used to determine the target size of ({sup 3}H)nitrendipine binding sites in 5 mM Tris.HCl buffer, in the presence and absence of these cations. After irradiation, ({sup 3}H) nitrendipine binding in buffer with or without Na+ was diminished, due to a loss of binding sites and also to an increase in Kd. After accounting for radiation effects on the dissociation constant, the target size for the nitrendipine binding site in buffer was 160-170 kDa and was 170-180 kDa in the presence of sodium. In the presence of calcium ions, ({sup 3}H)nitrendipine binding showed no radiation effects on Kd and yielded a target size of 150-170 kDa. These findings suggest, as in the case of opioid receptors, the presence of high molecular weight membrane components that modulate cation-induced alterations in radioligand binding to dihydropyridine binding sites.

  1. Computational Prediction of RNA-Binding Proteins and Binding Sites

    PubMed Central

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions. PMID:26540053

  2. The transcription factor EMISSION OF BENZENOIDS II activates the MYB ODORANT1 promoter at a MYB binding site specific for fragrant petunias.

    PubMed

    Van Moerkercke, Alex; Haring, Michel A; Schuurink, Robert C

    2011-09-01

    Fragrance production in petunia flowers is highly regulated. Two transcription factors, ODORANT1 (ODO1) and EMISSION OF BENZENOIDS II (EOBII) have recently been identified as regulators of the volatile benzenoid/phenylpropanoid pathway in petals. Unlike the non-fragrant Petunia hybrida cultivar R27, the fragrant cultivar Mitchell highly expresses ODO1. Using stable reporter lines, we identified the 1.2-kbp ODO1 promoter from Mitchell that is sufficient for tissue-specific, developmental and rhythmic expression. This promoter fragment can be activated in non-fragrant R27 petals, indicating that the set of trans-acting factors driving ODO1 expression is conserved in these two petunias. Conversely, the 1.2-kbp ODO1 promoter of R27 is much less active in Mitchell petals. Transient transformation of 5' deletion and chimeric Mitchell and R27 ODO1 promoter reporter constructs in petunia petals identified an enhancer region, which is specific for the fragrant Mitchell cultivar and contains a putative MYB binding site (MBS). Mutations in the MBS of the Mitchell promoter decreased overall promoter activity by 50%, highlighting the importance of the enhancer region. We show that EOBII binds and activates the ODO1 promoter via this MBS, establishing a molecular link between these two regulators of floral fragrance biosynthesis in petunia.

  3. Transcriptional regulation of the mouse alpha A-crystallin gene: activation dependent on a cyclic AMP-responsive element (DE1/CRE) and a Pax-6-binding site.

    PubMed Central

    Cvekl, A; Kashanchi, F; Sax, C M; Brady, J N; Piatigorsky, J

    1995-01-01

    Two cis-acting promoter elements (-108 to -100 and -49 to -33) of the mouse alpha A-crystallin gene, which is highly expressed in the ocular lens, were studied. Here we show that DE1 (-108 to -100; 5'TGACGGTG3'), which resembles the consensus cyclic AMP (cAMP)-responsive element sequence (CRE; 5'TGACGT[A/C][A/G]3'), behaves like a functional CRE site. Transfection experiments and electrophoretic mobility shift assays (EMSAs) using site-specific mutations correlated a loss of function with deviations from the CRE consensus sequence. Results of EMSAs in the presence of antisera against CREB, delta CREB, and CREM were consistent with the binding of CREB-like proteins to the DE1 sequence. Stimulation of alpha A-crystallin promoter activity via 8-bromo-cAMP, forskolin, or human T-cell leukemia virus type I Tax1 in transfections and reduction of activity of this site in cell-free transcription tests by competition with the somatostatin CRE supported the idea that DE1 is a functional CRE. Finally, Pax-6, a member of the paired-box family of transcription factors, activated the mouse alpha A-crystallin promoter in cotransfected COP-8 fibroblasts and bound to the -59 to -29 promoter sequence in EMSAs. These data provide evidence for a synergistic role of Pax-6 and CREB-like proteins for high expression of the mouse alpha A-crystallin gene in the lens. PMID:7823934

  4. 3'-Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: the peculiarity of the binding on the basis of X-ray study.

    PubMed

    Timofeev, Vladimir; Abramchik, Yulia; Zhukhlistova, Nadezda; Muravieva, Tatiana; Fateev, Ilya; Esipov, Roman; Kuranova, Inna

    2014-04-01

    The structural study of complexes of thymidine phosphorylase (TP) with nucleoside analogues which inhibit its activity is of special interest because many of these compounds are used as chemotherapeutic agents. Determination of kinetic parameters showed that 3'-azido-3'-deoxythymidine (3'-azidothymidine; AZT), which is widely used for the treatment of human immunodeficiency virus, is a reversible noncompetitive inhibitor of Escherichia coli thymidine phosphorylase (TP). The three-dimensional structure of E. coli TP complexed with AZT was solved by the molecular-replacement method and was refined at 1.52 Å resolution. Crystals for X-ray study were grown in microgravity by the counter-diffusion technique from a solution of the protein in phosphate buffer with ammonium sulfate as a precipitant. The AZT molecule was located with full occupancy in the electron-density maps in the nucleoside-binding pocket of TP, whereas the phosphate-binding pocket of the enzyme was occupied by phosphate (or sulfate) ion. The structure of the active-site cavity and conformational changes of the enzyme upon AZT binding are described in detail. It is found that the position of AZT differs remarkably from the positions of the pyrimidine bases and nucleoside analogues in other known complexes of pyrimidine phosphorylases, but coincides well with the position of 2'-fluoro-3'-azido-2',3'-dideoxyuridine (N3FddU) in the recently investigated complex of E. coli TP with this ligand (Timofeev et al., 2013). The peculiarities of the arrangement of N3FddU and 3'-azidothymidine in the nucleoside binding pocket of TP and correlations between the arrangement and inhibitory properties of these compounds are discussed.

  5. Cation binding site of cytochrome c oxidase: progress report.

    PubMed

    Vygodina, Tatiana V; Kirichenko, Anna; Konstantinov, Alexander A

    2014-07-01

    Cytochrome c oxidase from bovine heart binds Ca(2+) reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+) shifts the absorption spectrum of heme a, which allowed earlier the determination of the kinetic and equilibrium characteristics of the binding, and, as shown recently, the binding of calcium to the site inhibits cytochrome oxidase activity at low turnover rates of the enzyme [Vygodina, Т., Kirichenko, A., Konstantinov, A.A (2013). Direct Regulation of Cytochrome c Oxidase by Calcium Ions. PloS ONE 8, e74436]. This paper summarizes further progress in the studies of the Cation Binding Site in this group presenting the results to be reported at 18th EBEC Meeting in Lisbon, 2014. The paper revises specificity of the bovine oxidase Cation Binding Site for different cations, describes dependence of the Ca(2+)-induced inhibition on turnover rate of the enzyme and reports very high affinity binding of calcium with the "slow" form of cytochrome oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

  6. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    SciTech Connect

    Lummis, S.C.R.; Johnston, G.A.R. ); Nicoletti, G. ); Holan, G. )

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.

  7. Conformational Change Observed in the Active Site of Class C β-Lactamase MOX-1 upon Binding to Aztreonam.

    PubMed

    Oguri, Takuma; Ishii, Yoshikazu; Shimizu-Ibuka, Akiko

    2015-08-01

    We solved the crystal structure of the class C β-lactamase MOX-1 complexed with the inhibitor aztreonam at 1.9Å resolution. The main-chain oxygen of Ser315 interacts with the amide nitrogen of aztreonam. Surprisingly, compared to that in the structure of free MOX-1, this main-chain carboxyl changes its position significantly upon binding to aztreonam. This result indicates that the interaction between MOX-1 and β-lactams can be accompanied by conformational changes in the B3 β-strand main chain.

  8. Specific binding sites for muramyl peptides on murine macrophages

    SciTech Connect

    Silverman, D.H.S.; Krueger, J.M.; Karnovsky, M.L.

    1986-03-15

    Two radiolabeled (/sup 125/I) muramyl peptide derivatives of high specific activity were prepared: a tripeptide with an iodinated C-terminal tyrosine methyl ester (Ligand I), and a muramyl tripeptide with a C-terminal lysine derivatized with Bolton-Hunter reagent (Ligand II). These were used to characterize binding of muramyl peptides to monolayers of murine macrophages. Saturable high-affinity binding to resident, caseinate-elicited, and Listeria-activated peritoneal cells was observed with both radioligands. Binding affinities varied with the state of activation of the macrophages, and K/sub D/ values ranged from 48 +/- 33 pM (for resident macrophages, Ligand I) to 1020 +/- 90 pM (for activated macrophages, Ligand II). Specific binding sites were also found on a macrophage-derived cell line. The ability of several unlabeled muramyl peptides to compete with Ligands I and II for their binding sites was tested. Competition was stereospecific and correlated with known biological activities of these compounds (i.e., immunoadjuvanticity, pyrogenicity, and somnogenicity). The sites identified here for Ligands I and II may mediate some of the effects that muramyl peptides have previously been demonstrated to have on macrophages.

  9. Evolution of a family of metazoan active-site-serine enzymes from penicillin-binding proteins: a novel facet of the bacterial legacy

    PubMed Central

    2008-01-01

    Background Bacterial penicillin-binding proteins and β-lactamases (PBP-βLs) constitute a large family of serine proteases that perform essential functions in the synthesis and maintenance of peptidoglycan. Intriguingly, genes encoding PBP-βL homologs occur in many metazoan genomes including humans. The emerging role of LACTB, a mammalian mitochondrial PBP-βL homolog, in metabolic signaling prompted us to investigate the evolutionary history of metazoan PBP-βL proteins. Results Metazoan PBP-βL homologs including LACTB share unique structural features with bacterial class B low molecular weight penicillin-binding proteins. The amino acid residues necessary for enzymatic activity in bacterial PBP-βL proteins, including the catalytic serine residue, are conserved in all metazoan homologs. Phylogenetic analysis indicated that metazoan PBP-βL homologs comprise four alloparalogus protein lineages that derive from α-proteobacteria. Conclusion While most components of the peptidoglycan synthesis machinery were dumped by early eukaryotes, a few PBP-βL proteins were conserved and are found in metazoans including humans. Metazoan PBP-βL homologs are active-site-serine enzymes that probably have distinct functions in the metabolic circuitry. We hypothesize that PBP-βL proteins in the early eukaryotic cell enabled the degradation of peptidoglycan from ingested bacteria, thereby maximizing the yield of nutrients and streamlining the cell for effective phagocytotic feeding. PMID:18226203

  10. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  11. Neuregulin1 signaling targets SRF and CREB and activates the muscle spindle-specific gene Egr3 through a composite SRF-CREB-binding site.

    PubMed

    Herndon, Carter A; Ankenbruck, Nick; Lester, Bridget; Bailey, Julie; Fromm, Larry

    2013-03-10

    Muscle spindles are sensory receptors embedded within muscle that detect changes in muscle length. Each spindle is composed of specialized muscle fibers, known as intrafusal muscle fibers, along with the endings of axons from sensory neurons that innervate these muscle fibers. Formation of muscle spindles requires neuregulin1 (NRG1), which is released by sensory axons, activating ErbB receptors in muscle cells that are contacted. In muscle cells, the transcription factor Egr3 is transcriptionally induced by NRG1, which in turn activates various target genes involved in forming the intrafusal fibers of muscle spindles. The signaling relay within the NRG1-ErbB pathway that acts to induce Egr3 is presumably critical for muscle spindle formation but for the most part has not been determined. In the current studies, we examined, using cultured muscle cells, transcriptional regulatory mechanisms by which Egr3 responds to NRG1. We identified a composite regulatory element for the Egr3 gene, consisting adjacent sites that bind cAMP response element binding protein (CREB) and serum response factor (SRF), with a role in NRG1 responsiveness. The SRF element also influences Egr3 basal expression in unstimulated myotubes, and in the absence of the SRF element, the CREB element influences basal expression. We show that NRG1 signaling, to target SRF, acts on the SRF coactivators myocardian-related transcription factor (MRTF)-A and MRTF-B, which are known to activate SRF-mediated transcription, by stimulating their translocation from the cytoplasm to the nucleus. CREB is phosphorylated, which is known to contribute to its activation, in response to NRG1. These results suggest that NRG1 induces expression of the muscle spindle-specific gene Egr3 by stimulating the transcriptional activity of CREB and SRF.

  12. HIV-1 Receptor Binding Site-Directed Antibodies Using a VH1-2 Gene Segment Orthologue Are Activated by Env Trimer Immunization

    PubMed Central

    Bale, Shridhar; Phad, Ganesh E.; Guenaga, Javier; Wilson, Richard; Soldemo, Martina; McKee, Krisha; Sundling, Christopher; Mascola, John; Li, Yuxing; Wyatt, Richard T.; Karlsson Hedestam, Gunilla B.

    2014-01-01

    Broadly neutralizing antibodies (bNAbs) isolated from chronically HIV-1 infected individuals reveal important information regarding how antibodies target conserved determinants of the envelope glycoprotein (Env) spike such as the primary receptor CD4 binding site (CD4bs). Many CD4bs-directed bNAbs use the same heavy (H) chain variable (V) gene segment, VH1-2*02, suggesting that activation of B cells expressing this allele is linked to the generation of this type of Ab. Here, we identify the rhesus macaque VH1.23 gene segment to be the closest macaque orthologue to the human VH1-2 gene segment, with 92% homology to VH1-2*02. Of the three amino acids in the VH1-2*02 gene segment that define a motif for VRC01-like antibodies (W50, N58, flanking the HCDR2 region, and R71), the two identified macaque VH1.23 alleles described here encode two. We demonstrate that immunization with soluble Env trimers induced CD4bs-specific VH1.23-using Abs with restricted neutralization breadth. Through alanine scanning and structural studies of one such monoclonal Ab (MAb), GE356, we demonstrate that all three HCDRs are involved in neutralization. This contrasts to the highly potent CD4bs-directed VRC01 class of bNAb, which bind Env predominantly through the HCDR2. Also unlike VRC01, GE356 was minimally modified by somatic hypermutation, its light (L) chain CDRs were of average lengths and it displayed a binding footprint proximal to the trimer axis. These results illustrate that the Env trimer immunogen used here activates B cells encoding a VH1-2 gene segment orthologue, but that the resulting Abs interact distinctly differently with the HIV-1 Env spike compared to VRC01. PMID:25166308

  13. HPLC-based activity profiling: discovery of piperine as a positive GABA(A) receptor modulator targeting a benzodiazepine-independent binding site.

    PubMed

    Zaugg, Janine; Baburin, Igor; Strommer, Barbara; Kim, Hyun-Jung; Hering, Steffen; Hamburger, Matthias

    2010-02-26

    A plant extract library was screened for GABA(A) receptor activity making use of a two-microelectrode voltage clamp assay on Xenopus laevis oocytes. An ethyl acetate extract of black pepper fruits [Piper nigrum L. (Piperaceae) 100 microg/mL] potentiated GABA-induced chloride currents through GABA(A) receptors (composed of alpha(1), beta(2), and gamma(2S) subunits) by 169.1 +/- 2.4%. With the aid of an HPLC-based activity profiling approach, piperine (5) was identified as the main active compound, together with 12 structurally related less active or inactive piperamides (1-4, 6-13). Identification was achieved by on-line high-resolution mass spectrometry and off-line microprobe 1D and 2D NMR spectroscopy, using only milligram amounts of extract. Compound 5 induced a maximum potentiation of the chloride currents by 301.9 +/- 26.5% with an EC(50) of 52.4 +/- 9.4 microM. A comparison of the modulatory activity of 5 and other naturally occurring piperamides enabled insights into structural features critical for GABA(A) receptor modulation. The stimulation of chloride currents through GABA(A) receptors by compound 5 was not antagonized by flumazenil (10 microM). These data show that piperine (5) represents a new scaffold of positive allosteric GABA(A) receptor modulators targeting a benzodiazepine-independent binding site.

  14. HPLC-Based Activity Profiling: Discovery of Piperine as a Positive GABAA Receptor Modulator Targeting a Benzodiazepine-Independent Binding Site

    PubMed Central

    Zaugg, Janine; Baburin, Igor; Strommer, Barbara; Kim, Hyun-Jung; Hering, Steffen; Hamburger, Matthias

    2011-01-01

    A plant extract library was screened for GABAA receptor activity making use of a two-microelectrode voltage clamp assay on Xenopus laevis oocytes. An ethyl acetate extract of black pepper fruits [Piper nigrum L. (Piperaceae) 100 μg/mL] potentiated GABA-induced chloride currents through GABAA receptors (composed of α1, β2, and γ2S subunits) by 169.1 ± 2.4%. With the aid of an HPLC-based activity profiling approach, piperine (5) was identified as the main active compound, together with 12 structurally related less active or inactive piperamides (1–4, 6–13). Identification was achieved by on-line high-resolution mass spectrometry and off-line microprobe 1D and 2D NMR spectroscopy, using only milligram amounts of extract. Compound 5 induced a maximum potentiation of the chloride currents by 301.9 ± 26.5% with an EC50 of 52.4 ± 9.4 μM. A comparison of the modulatory activity of 5 and other naturally occurring piperamides enabled insights into structural features critical for GABAA receptor modulation. The stimulation of chloride currents through GABAA receptors by compound 5 was not antagonized by flumazenil (10 μM). These data show that piperine (5) represents a new scaffold of positive allosteric GABAA receptor modulators targeting a benzodiazepine-independent binding site. PMID:20085307

  15. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors

    PubMed Central

    Bulyk, Martha L.; Johnson, Philip L. F.; Church, George M.

    2002-01-01

    We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot be treated independently. This indicates that the current practice of characterizing transcription factor binding sites by mutating individual positions of binding sites one base pair at a time does not provide a true picture of the sequence specificity. Similarly, current bioinformatic practices using either just a consensus sequence, or even mononucleotide frequency weight matrices to provide more complete descriptions of transcription factor binding sites, are not accurate in depicting the true binding site specificities, since these methods rely upon the assumption that the nucleotides of binding sites exert independent effects on binding affinity. Our results stress the importance of complete reference tables of all possible binding sites for comparing protein binding preferences for various DNA sequences. We also show results suggesting that microarray binding data using particular subsets of all possible binding sites can be used to extrapolate the relative binding affinities of all possible full-length binding sites, given a known binding site for use as a starting sequence for site preference refinement. PMID:11861919

  16. Fluorinated analogues of marsanidine, a highly α2-AR/imidazoline I1 binding site-selective hypotensive agent. Synthesis and biological activities.

    PubMed

    Wasilewska, Aleksandra; Sączewski, Franciszek; Hudson, Alan L; Ferdousi, Mehnaz; Scheinin, Mika; Laurila, Jonne M; Rybczyńska, Apolonia; Boblewski, Konrad; Lehmann, Artur

    2014-11-24

    The aim of these studies was to establish the influence of fluorination of the indazole ring on the pharmacological properties of two selective α2-adrenoceptor (α2-AR) agonists: 1-[(imidazolidin-2-yl)imino]-1H-indazole (marsanidine, A) and its methylene analogue 1-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-1H-indazole (B). Introduction of fluorine into the indazole ring of A and B reduced both binding affinity and α2-AR/I1 imidazoline binding site selectivity. The most α2-AR-selective ligands were 6-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6c) and 7-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6d). The in vivo cardiovascular properties of fluorinated derivatives of A and B revealed that in both cases the C-7 fluorination leads to compounds with the highest hypotensive and bradycardic activities. The α2-AR partial agonist 6c was prepared as a potential lead compound for development of a radiotracer for PET imaging of brain α2-ARs.

  17. Oxytocin binding sites in bovine mammary tissue

    SciTech Connect

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  18. Penicillin-binding site on the Escherichia coli cell envelope

    SciTech Connect

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-08-01

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.

  19. A novel non-opioid binding site for endomorphin-1.

    PubMed

    Lengyel, I; Toth, F; Biyashev, D; Szatmari, I; Monory, K; Tomboly, C; Toth, G; Benyhe, S; Borsodi, A

    2016-08-01

    Endomorphins are natural amidated opioid tetrapeptides with the following structure: Tyr-Pro-Trp-Phe-NH2 (endomorphin-1), and Tyr-Pro-Phe-Phe-NH2 (endomorphin-2). Endomorphins interact selectively with the μ-opioid or MOP receptors and exhibit nanomolar or sub-nanomolar receptor binding affinities, therefore they suggested to be endogenous agonists for the μ-opioid receptors. Endomorphins mediate a number of characteristic opioid effects, such as antinociception, however there are several physiological functions in which endomorphins appear to act in a fashion that does not involve binding to and activation of the μ-opioid receptor. Our recent data indicate that a radiolabelled [(3)H]endomorphin-1 with a specific radioactivity of 2.35 TBq/mmol - prepared by catalytic dehalogenation of the diiodinated peptide precursor in the presence of tritium gas - is able to bind to a second, naloxone insensitive recognition site in rat brain membranes. Binding heterogeneity, i.e., the presence of higher (Kd = 0.4 nM / Bmax = 120 fmol/mg protein) and lower (Kd = 8.2 nM / Bmax = 432 fmol/mg protein) affinity binding components is observed both in saturation binding experiments followed by Schatchard analysis, and in equilibrium competition binding studies. The signs of receptor multiplicity, e.g., curvilinear Schatchard plots or biphasic displacement curves are seen only if the non-specific binding is measured in the presence of excess unlabeled endomorphin-1 and not in the presence of excess unlabeled naloxone. The second, lower affinity non-opioid binding site is not recognized by heterocyclic opioid alkaloid ligands, neither agonists such as morphine, nor antagonists such as naloxone. On the contrary, endomorphin-1 is displaced from its lower affinity, higher capacity binding site by several natural neuropeptides, including methionine-enkephalin-Arg-Phe, nociceptin-orphanin FQ, angiotensin and FMRF-amide. This naloxone-insensitive, consequently non-opioid binding site seems

  20. Strychnine activates neuronal α7 nicotinic receptors after mutations in the leucine ring and transmitter binding site domains

    PubMed Central

    Palma, Eleonora; Fucile, Sergio; Barabino, Benedetta; Miledi, Ricardo; Eusebi, Fabrizio

    1999-01-01

    Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors. PMID:10557336

  1. Visualization of specific binding sites of benzodiazepine in human brain

    SciTech Connect

    Shinotoh, H.; Yamasaki, T.; Inoue, O.; Itoh, T.; Suzuki, K.; Hashimoto, K.; Tateno, Y.; Ikehira, H.

    1986-10-01

    Using 11C-labeled Ro15-1788 and positron emission tomography, studies of benzodiazepine binding sites in the human brain were performed on four normal volunteers. Rapid and high accumulation of 11C activity was observed in the brain after i.v. injection of (11C)Ro15-1788, the maximum of which was within 12 min. Initial distribution of 11C activity in the brain was similar to the distribution of the normal cerebral blood flow. Ten minutes after injection, however, a high uptake of 11C activity was observed in the cerebral cortex and moderate uptake was seen in the cerebellar cortex, the basal ganglia, and the thalamus. The accumulation of 11C activity was low in the brain stem. This distribution of 11C activity was approximately parallel to the known distribution of benzodiazepine receptors. Saturation experiments were performed on four volunteers with oral administration of 0.3-1.8 mg/kg of cold Ro15-1788 prior to injection. Initial distribution of 11C activity following injection peaked within 2 min and then the accumulation of 11C activity decreased rapidly and remarkably throughout the brain. The results indicated that (11C) Ro15-1788 associates and dissociates to specific and nonspecific binding sites rapidly and has a high ratio of specific receptor binding to nonspecific binding in vivo. Carbon-11 Ro15-1788 is a suitable radioligand for the study of benzodiazepine receptors in vivo in humans.

  2. Two synthetic Sp1-binding sites functionally substitute for the 21-base-pair repeat region to activate simian virus 40 growth in CV-1 cells.

    PubMed Central

    Lednicky, J; Folk, W R

    1992-01-01

    The 21-bp repeat region of simian virus 40 (SV40) activates viral transcription and DNA replication and contains binding sites for many cellular proteins, including Sp1, LSF, ETF, Ap2, Ap4, GT-1B, H16, and p53, and for the SV40 large tumor antigen. We have attempted to reduce the complexity of this region while maintaining its growth-promoting capacity. Deletion of the 21-bp repeat region from the SV40 genome delays the expression of viral early proteins and DNA replication and reduces virus production in CV-1 cells. Replacement of the 21-bp repeat region with two copies of DNA sequence motifs bound with high affinities by Sp1 promotes SV40 growth in CV-1 cells to nearly wild-type levels, but substitution by motifs bound less avidly by Sp1 or bound by other activator proteins does not restore growth. This indicates that Sp1 or a protein with similar sequence specificity is primarily responsible for the function of the 21-bp repeat region. We speculate about how Sp1 activates both SV40 transcription and DNA replication. Images PMID:1328672

  3. Tetrazepam: a benzodiazepine which dissociates sedation from other benzodiazepine activities. II. In vitro and in vivo interactions with benzodiazepine binding sites

    SciTech Connect

    Keane, P.E.; Bachy, A.; Morre, M.; Biziere, K.

    1988-05-01

    Tetrazepam is a 1,4-benzodiazepine (BZD) derivative which, in rodents, appears to have very little sedative and ataxic effects. In an attempt to identify the molecular mechanisms underlying this particular pharmacological profile we examined the interaction of tetrazepam with BZD binding sites. Tetrazepam interacted competitively with central and peripheral BZD binding sites and exhibited comparable affinities for both sites. Tetrazepam was approximately one-seventh as potent as diazepam at the central receptor and as potent as diazepam at the peripheral binding site. Tetrazepam did not distinguish type I from type II central BZD receptors, as evidenced by comparable affinities for the cerebellar and hippocampal receptors. In vitro autoradiographic studies showed that tetrazepam displaced (3H)flunitrazepam from rat brain membranes without any clear regional specificity. Like all BZD receptor agonists, tetrazepam exhibited a gamma-aminobutyric acid shift, a photoaffinity shift and potentiated the binding of 35S-t-butyl-bicyclophosphorothionate to rat brain membranes. However, the latter effect was observed at relatively high concentrations of tetrazepam. In vivo, tetrazepam displaced specifically bound (3H)flunitrazepam from mouse brain (ID50, 37 mg/kg p.o. vs 3.5 mg/kg p.o. for diazepam) and from mouse kidney (ID50, 38 mg/kg p.o. vs. 21 mg/kg p.o. for diazepam). It is concluded that tetrazepam is a BZD receptor agonist; the molecular mechanisms which underly the low sedative potential of the drug cannot at present be explained by a particular interaction with either central or peripheral BZD binding sites, but may be related to the drug's relatively weak effect on 35S-t-butyl-bicyclophosphorothionate binding.

  4. Being a binding site: characterizing residue composition of binding sites on proteins.

    PubMed

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-12-30

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.

  5. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus.

    PubMed Central

    Schoeffter, P.; Hoyer, D.

    1988-01-01

    1. A number of centrally acting hypotensive agents and other ligands with high affinity for 5-hydroxytryptamine1A (5-HT1A) recognition sites have been tested on forskolin-stimulated adenylate cyclase activity in calf hippocampus, a functional model for 5-HT1A-receptors. 2. Concentration-dependent inhibition of forskolin-stimulated adenylate cyclase activity was elicited by the reference 5-HT1-receptor agonists (mean EC50 value, nM): 5-HT (22), 5-carboxamidotryptamine (5-CT, 3.2), 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 8.6), N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT, 2.3), 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine (PAPP or LY 165163, 20), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H indole (RU 24969, 20), buspirone (65) and ipsapirone (56). Emax amounted to 18-20% inhibition for all but the latter two agonists (14%). 3. The following hypotensive agents with high affinity for 5-HT1A sites were potent agonists in this system (mean EC50 value, nM): flesinoxan (24), indorenate (99), erythro-1-(1-[2-(1,4-benzodioxan-2-yl)-2-hydroxyethyl]-4-piperidyl )- 2-benzimidazolinone (R 28935, 2.5), urapidil (390) and 5-methyl-urapidil (3.5). The first two agents were full agonists, whereas the latter three acted as partial agonists with 60-80% efficacy. 4. Metergoline and methysergide behaved as full agonists and cyanopindolol as a partial agonist with low efficacy. Spiroxatrine and 2-(2,6-dimethoxyphenoxyethyl)aminomethyl- 1,4-benzodioxane (WB 4101) which bind to 5-HT1A sites with nanomolar affinity, were agonists and inhibited potently forskolin-stimulated adenylate cyclase in calf hippocampus, showing mean EC50 values of 23 and 15 nM, respectively. Spiroxatrine and WB 4101 yielded 90% and 50% efficacy, respectively. 5. Spiperone and methiothepin (each 1 microM) caused rightward shifts of the concentration-effect curve to 8-OH-DPAT, without loss of the maximal effect, as did the partial agonist cyanopindolol (0.1 microM) and the

  6. Mutation of serum response factor phosphorylation sites and the mechanism by which its DNA-binding activity is increased by casein kinase II.

    PubMed Central

    Manak, J R; Prywes, R

    1991-01-01

    Casein kinase II (CKII) phosphorylates the mammalian transcription factor serum response factor (SRF) on a serine residue(s) located within a region of the protein spanning amino acids 70 to 92, thereby enhancing its DNA-binding activity in vitro. We report here that serine 83 appears to be the residue phosphorylated by CKII but that three other serines in this region can also be involved in phosphorylation and the enhancement of DNA-binding activity. A mutant that contained glutamate residues in place of these serines had only low-level binding activity; however, when the serines were replaced with glutamates and further mutations were made that increased the negative charge of the region, the resulting mutant showed a constitutively high level of binding equal to that achieved by phosphorylation of wild-type SRF. We have investigated the mechanism by which phosphorylation of SRF increases its DNA-binding activity. We have ruled out the possibilities that phosphorylation affects SRF dimerization or relieves inhibition due to masking of the DNA-binding domain by an amino-terminal region of the protein. Rather, using partial proteolysis to probe SRF's structure, we find that the conformation of SRF's DNA-binding domain is altered by phosphorylation. Images PMID:2046671

  7. The structural analysis of the pro-oxidant copper-binding site of denatured apo-H43R SOD1 and the elucidation of the origin of the acquisition of the pro-oxidant activity.

    PubMed

    Fujimaki, Nobuhiro; Miura, Takashi; Nakabayashi, Takakazu

    2016-02-14

    The pathogenesis of amyotrophic lateral sclerosis (ALS) is associated with mutations of Cu,Zn-superoxide dismutase (SOD1), which is a representative antioxidant enzyme. A previous study showed that the denatured apo-form of an ALS-linked mutant of human SOD1, His43 → Arg (H43R), obtains pro-oxidant activity as the reverse behavior of the native antioxidant activity by rebinding Cu(2+), which is considered to be closely related to the development of ALS. The Cu(2+)-binding site in denatured apo-H43R can be regarded as the center of the pro-oxidant activity, causing cellular oxidative stress. In the present study, the structure of the Cu(2+)-binding site of denatured apo-H43R was investigated to clarify the mechanism of the acquisition of the pro-oxidant activity. His residues constructing the Cu(2+)-binding site in denatured apo-H43R were experimentally assigned by absorption and fluorescence-based assays of SOD1 mutants, in which each of the seven His residues in H43R SOD1 is replaced with Ala. It was found that His120 is not involved with the Cu(2+)-binding site after denaturation, although the other His residues constructing the metal-binding site remain constant after denaturation. The disappearance of His120 from the Cu(2+)-binding site is therefore considered to be one of the important factors in obtaining the pro-oxidant activity. The mechanism of the acquisition of the pro-oxidant activity is discussed based on the results obtained.

  8. Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome.

    PubMed

    Vockley, Christopher M; D'Ippolito, Anthony M; McDowell, Ian C; Majoros, William H; Safi, Alexias; Song, Lingyun; Crawford, Gregory E; Reddy, Timothy E

    2016-08-25

    The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs.

  9. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  10. Curcumin recognizes a unique binding site of tubulin.

    PubMed

    Chakraborti, Soumyananda; Das, Lalita; Kapoor, Neha; Das, Amlan; Dwivedi, Vishnu; Poddar, Asim; Chakraborti, Gopal; Janik, Mark; Basu, Gautam; Panda, Dulal; Chakrabarti, Pinak; Surolia, Avadhesha; Bhattacharyya, Bhabatarak

    2011-09-22

    Although curcumin is known for its anticarcinogenic properties, the exact mechanism of its action or the identity of the target receptor is not completely understood. Studies on a series of curcumin analogues, synthesized to investigate their tubulin binding affinities and tubulin self-assembly inhibition, showed that: (i) curcumin acts as a bifunctional ligand, (ii) analogues with substitution at the diketone and acetylation of the terminal phenolic groups of curcumin are less effective, (iii) a benzylidiene derivative, compound 7, is more effective than curcumin in inhibiting tubulin self-assembly. Cell-based studies also showed compound 7 to be more effective than curcumin. Using fluorescence spectroscopy we show that curcumin binds tubulin 32 Å away from the colchicine-binding site. Docking studies also suggests that the curcumin-binding site to be close to the vinblastine-binding site. Structure-activity studies suggest that the tridented nature of compound 7 is responsible for its higher affinity for tubulin compared to curcumin.

  11. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.

    PubMed Central

    Liaw, S. H.; Kuo, I.; Eisenberg, D.

    1995-01-01

    Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS

  12. Distinct OGT-Binding Sites Promote HCF-1 Cleavage

    PubMed Central

    Bhuiyan, Tanja; Waridel, Patrice; Kapuria, Vaibhav; Zoete, Vincent; Herr, Winship

    2015-01-01

    Human HCF-1 (also referred to as HCFC-1) is a transcriptional co-regulator that undergoes a complex maturation process involving extensive O-GlcNAcylation and site-specific proteolysis. HCF-1 proteolysis results in two active, noncovalently associated HCF-1N and HCF-1C subunits that regulate distinct phases of the cell-division cycle. HCF-1 O-GlcNAcylation and site-specific proteolysis are both catalyzed by O-GlcNAc transferase (OGT), which thus displays an unusual dual enzymatic activity. OGT cleaves HCF-1 at six highly conserved 26 amino acid repeat sequences called HCF-1PRO repeats. Here we characterize the substrate requirements for OGT cleavage of HCF-1. We show that the HCF-1PRO-repeat cleavage signal possesses particular OGT-binding properties. The glutamate residue at the cleavage site that is intimately involved in the cleavage reaction specifically inhibits association with OGT and its bound cofactor UDP-GlcNAc. Further, we identify a novel OGT-binding sequence nearby the first HCF-1PRO-repeat cleavage signal that enhances cleavage. These results demonstrate that distinct OGT-binding sites in HCF-1 promote proteolysis, and provide novel insights into the mechanism of this unusual protease activity. PMID:26305326

  13. Altering the GTP binding site of the DNA/RNA-binding protein, Translin/TB-RBP, decreases RNA binding and may create a dominant negative phenotype.

    PubMed

    Chennathukuzhi, V M; Kurihara, Y; Bray, J D; Yang, J; Hecht, N B

    2001-11-01

    The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by approximately 50% and the poorly hydrolyzed GTP analog, GTPgammaS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBP(GTP) and TB-RBP(GTP) no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBP(GTP) will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBP(GTP) into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBP(GTP) in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.

  14. Photoaffinity labeling in target- and binding-site identification

    PubMed Central

    Smith, Ewan; Collins, Ian

    2015-01-01

    Photoaffinity labeling (PAL) using a chemical probe to covalently bind its target in response to activation by light has become a frequently used tool in drug discovery for identifying new drug targets and molecular interactions, and for probing the location and structure of binding sites. Methods to identify the specific target proteins of hit molecules from phenotypic screens are highly valuable in early drug discovery. In this review, we summarize the principles of PAL including probe design and experimental techniques for in vitro and live cell investigations. We emphasize the need to optimize and validate probes and highlight examples of the successful application of PAL across multiple disease areas. PMID:25686004

  15. New hypotheses for the binding mode of 4- and 7-substituted indazoles in the active site of neuronal nitric oxide synthase.

    PubMed

    Lohou, Elodie; Sopkova-de Oliveira Santos, Jana; Schumann-Bard, Pascale; Boulouard, Michel; Stiebing, Silvia; Rault, Sylvain; Collot, Valérie

    2012-09-01

    Taking into account the potency of 4- and 7-nitro and haloindazoles as nNOS inhibitors previously reported in the literature by our team, a multidisciplinary study, described in this article, has recently been carried out to elucidate their binding mode in the enzyme active site. Firstly, nitrogenous fastening points on the indazole building block have been investigated referring to molecular modeling hypotheses and thanks to the in vitro biological evaluation of N(1)- and N(2)-methyl and ethyl-4-substituted indazoles on nNOS. Secondly, we attempted to confirm the importance of the substitution in position 4 or 7 by a hydrogen bond acceptor group thanks to the synthesis and the in vitro biological evaluation of a new analogous 4-substituted derivative, the 4-cyanoindazole. Finally, by opposition to previous hypotheses describing NH function in position 1 of the indazole as a key fastening point, the present work speaks in favour of a crucial role of nitrogen in position 2.

  16. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides.

    PubMed

    Zhang, Yu; Degen, David; Ho, Mary X; Sineva, Elena; Ebright, Katherine Y; Ebright, Yon W; Mekler, Vladimir; Vahedian-Movahed, Hanif; Feng, Yu; Yin, Ruiheng; Tuske, Steve; Irschik, Herbert; Jansen, Rolf; Maffioli, Sonia; Donadio, Stefano; Arnold, Eddy; Ebright, Richard H

    2014-04-22

    Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center 'i' and 'i+1' nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI: http://dx.doi.org/10.7554/eLife.02450.001.

  17. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site*

    PubMed Central

    Safar, Fatemah; Hurdiss, Elliot; Erotocritou, Marios; Greiner, Timo; Irvine, Mark W.; Fang, Guangyu; Jane, David; Yu, Rilei; Dämgen, Marc A.

    2017-01-01

    Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules. PMID:28174298

  18. List 9 - Active CERCLIS Sites:

    EPA Pesticide Factsheets

    The List 9 displays the sequence of activities undertaken at active CERCLIS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted.

  19. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site

    SciTech Connect

    Min, Andrew B; Miallau, Linda; Sawaya, Michael R; Habel, Jeff; Cascio, Duilio; Eisenberg, David

    2013-01-10

    VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA. The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.

  20. Ouabain binding sites and (Na/sup +/,K/sup +/)-ATPase activity in rat cardiac hypertrophy: expression of the neonatal forms

    SciTech Connect

    Not Available

    1986-01-05

    The adaptation of the myocardium to mechanical overload which results in cardiac hypertrophy involved several membrane functions. The digitalis receptor in sarcolemma vesicles from hypertrophied rat hearts is characterized by binding of (/sup 3/H)ouabain and ouabain-induced inhibition of (Na/sup +/,K/sup +/)-ATPase. The results show the existence of two families of ouabain binding sites with apparent dissociation constants (K/sub d/) of 1.8-3.2 x 10/sup -8/ M and 1-8 x 10/sup -6/ M, respectively, which are similar to those found in normal hearts. The presence of the high affinity receptor in hypertrophied rat heart is correlated to a detectable inhibition of the (Na/sup +/,K/sup +/)-ATPase (IC/sub 50/ = 1-3 x 10/sup -8/ M). However, the high and low affinity sites in hypertrophied hearts bind and release ouabain at 4-5-fold slower rates than the corresponding sites in normal hearts. These properties are similar to that observed in newborn rat cardiac preparations. Taken together with the expression of myosin isoforms, the data show that the physiological adaptation of the heart also involves the resurgence of the neonatal forms of the digitalis receptor.

  1. Mechanistic characterization of the 5′-triphosphate-dependent activation of PKR: Lack of 5′-end nucleobase specificity, evidence for a distinct triphosphate binding site, and a critical role for the dsRBD

    PubMed Central

    Toroney, Rebecca; Hull, Chelsea M.; Sokoloski, Joshua E.; Bevilacqua, Philip C.

    2012-01-01

    The protein kinase PKR is activated by RNA to phosphorylate eIF-2α, inhibiting translation initiation. Long dsRNA activates PKR via interactions with the dsRNA-binding domain (dsRBD). Weakly structured RNA also activates PKR and does so in a 5′-triphosphate (ppp)–dependent fashion, however relatively little is known about this pathway. We used a mutant T7 RNA polymerase to incorporate all four triphosphate-containing nucleotides into the first position of a largely single-stranded RNA and found absence of selectivity, in that all four transcripts activate PKR. Recognition of 5′-triphosphate, but not the nucleobase at the 5′-most position, makes this RNA-mediated innate immune response sensitive to a broad array of viruses. PKR was neither activated in the presence of γ-GTP nor recognized NTPs other than ATP in activation competition and ITC binding assays. This indicates that the binding site for ATP is selective, which contrasts with the site for the 5′ end of ppp-ssRNA. Activation experiments reveal that short dsRNAs compete with 5′-triphosphate RNAs and heparin for activation, and likewise gel-shift assays reveal that activating 5′-triphosphate RNAs and heparin compete with short dsRNAs for binding to PKR's dsRBD. The dsRBD thus plays a critical role in the activation of PKR by ppp-ssRNA and even heparin. At the same time, cross-linking experiments indicate that ppp-ssRNA interacts with PKR outside of the dsRBD as well. Overall, 5′-triphosphate-containing, weakly structured RNAs activate PKR via interactions with both the dsRBD and a distinct triphosphate binding site that lacks 5′-nucleobase specificity, allowing the innate immune response to provide broad-spectrum protection from pathogens. PMID:22912486

  2. Predicting Ca2+-binding Sites Using Refined Carbon Clusters

    PubMed Central

    Zhao, Kun; Wang, Xue; Wong, Hing C.; Wohlhueter, Robert; Kirberger, Michael P.; Chen, Guantao; Yang, Jenny J.

    2012-01-01

    Identifying Ca2+-binding sites in proteins is the first step towards understanding the molecular basis of diseases related to Ca2+-binding proteins. Currently, these sites are identified in structures either through X-ray crystallography or NMR analysis. However, Ca2+-binding sites are not always visible in X-ray structures due to flexibility in the binding region or low occupancy in a Ca2+-binding site. Similarly, both Ca2+ and its ligand oxygens are not directly observed in NMR structures. To improve our ability to predict Ca2+-binding sites in both X-ray and NMR structures, we report a new graph theory algorithm (MUGC) to predict Ca2+-binding sites. Using carbon atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-chain oxygen ligand coordinates, MUGC is able to achieve 94% sensitivity with 76% selectivity on a dataset of X-ray structures comprised of 43 Ca2+-binding proteins. Additionally, prediction of Ca2+-binding sites in NMR structures were obtained by MUGC using a different set of parameters determined by analysis of both Ca2+-constrained and unconstrained Ca2+-loaded structures derived from NMR data. MUGC identified 20 out of 21 Ca2+-binding sites in NMR structures inferred without the use of Ca2+ constraints. MUGC predictions are also highly-selective for Ca2+-binding sites as analyses of binding sites for Mg2+, Zn2+, and Pb2+ were not identified as Ca2+-binding sites. These results indicate that the geometric arrangement of the second-shell carbon cluster is sufficient for both accurate identification of Ca2+-binding sites in NMR and X-ray structures, and for selective differentiation between Ca2+ and other relevant divalent cations. PMID:22821762

  3. Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis

    PubMed Central

    Impellizzeri, Agata Antonina Rita; Pappalardo, Matteo; Basile, Livia; Manfra, Ornella; Andressen, Kjetil Wessel; Krobert, Kurt Allen; Messina, Angela; Levy, Finn Olav; Guccione, Salvatore

    2015-01-01

    The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a) wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K), and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT) and a potent antagonist (SB269970). In addition, the ability of the mutated 5-HT7(a) receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use. PMID

  4. Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis.

    PubMed

    Impellizzeri, Agata Antonina Rita; Pappalardo, Matteo; Basile, Livia; Manfra, Ornella; Andressen, Kjetil Wessel; Krobert, Kurt Allen; Messina, Angela; Levy, Finn Olav; Guccione, Salvatore

    2015-01-01

    The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a) wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K), and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT) and a potent antagonist (SB269970). In addition, the ability of the mutated 5-HT7(a) receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use.

  5. A Conserved Steroid Binding Site in Cytochrome c Oxidase

    SciTech Connect

    Qin, Ling; Mills, Denise A.; Buhrow, Leann; Hiser, Carrie; Ferguson-Miller, Shelagh

    2010-09-02

    Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

  6. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  7. Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    DTIC Science & Technology

    2005-09-01

    Gutendorf, andJ. Westendorf. 2000. Endocrine disruptors in fried meat: PhIP is an estrogen. Proceedings of the American Association for Cancer...binding site of the ERa LBD [3-5]. Because these studies have focused on the estradiol binding site, new potential ER disruptors that bind in the co...activator site have been missed. Our proposal focuses on developing a new computational approach to predict therapeutically useful ERa disruptors by

  8. Substrate and drug binding sites in LeuT.

    PubMed

    Nyola, Ajeeta; Karpowich, Nathan K; Zhen, Juan; Marden, Jennifer; Reith, Maarten E; Wang, Da-Neng

    2010-08-01

    LeuT is a member of the neurotransmitter/sodium symporter family, which includes the neuronal transporters for serotonin, norepinephrine, and dopamine. The original crystal structure of LeuT shows a primary leucine-binding site at the center of the protein. LeuT is inhibited by different classes of antidepressants that act as potent inhibitors of the serotonin transporter. The newly determined crystal structures of LeuT-antidepressant complexes provide opportunities to probe drug binding in the serotonin transporter, of which the exact position remains controversial. Structure of a LeuT-tryptophan complex shows an overlapping binding site with the primary substrate site. A secondary substrate binding site was recently identified, where the binding of a leucine triggers the cytoplasmic release of the primary substrate. This two binding site model presents opportunities for a better understanding of drug binding and the mechanism of inhibition for mammalian transporters.

  9. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    NASA Astrophysics Data System (ADS)

    Clifford, Jacob; Adami, Christoph

    2015-10-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  10. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    PubMed

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides.

  11. Type II oestrogen binding sites in human colorectal carcinoma.

    PubMed Central

    Piantelli, M; Ricci, R; Larocca, L M; Rinelli, A; Capelli, A; Rizzo, S; Scambia, G; Ranelletti, F O

    1990-01-01

    Seven cases of colorectal adenocarcinomas were investigated for the presence of oestrogen receptors and progesterone receptors. The tumours specifically bound oestradiol. This binding almost exclusively resulted from the presence of high numbers of type II oestrogen binding sites. Oestrogen receptors were absent or present at very low concentrations. Immunohistochemical investigation of nuclear oestrogen receptors gave negative results. This indicates that antioestrogen receptor antibodies recognise oestrogen receptors but not type II oestrogen binding sites. The presence of specific type II oestrogen binding sites and progesterone binding offers further evidence for a potential role for these steroids and their receptors in colorectal carcinoma. PMID:2266171

  12. Specificity of Auxin-binding Sites on Maize Coleoptile Membranes as Possible Receptor Sites for Auxin Action 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Dissociation coefficients of auxin-binding sites on maize (Zea mays L.) coleoptile membranes were measured, for 48 auxins and related ring compounds, by competitive displacement of 14C-naphthaleneacetic acid from the binding sites. The sites bind with high affinity several ring compounds with acidic side chains 2 to 4 carbons long, and much more weakly bind neutral ring compounds and phenols related to these active acids, most phenoxyalkylcarboxylic acids, and arylcarboxylic acids except benzoic acid, which scarcely binds, and triiodobenzoic acids, which bind strongly. Specificity of the binding is narrowed in the presence of a low molecular weight “supernatant factor” that occurs in maize and other tissues. Activity of many of the analogs as auxin agonists or antagonists in the cell elongation response was determined with maize coleoptiles. These activities on the whole roughly parallel the affinities of the binding sites for the same compounds, especially affinities measured in the presence of supernatant factor, but there are some quantitative discrepancies, especially among phenoxyalkylcarboxylic acids. In view of several factors that can cause receptor affinity and biological activity values to diverge quantitatively among analogs, the findings appear to support the presumption that the auxin-binding sites may be receptors for auxin action. PMID:16660143

  13. Why Transcription Factor Binding Sites Are Ten Nucleotides Long

    PubMed Central

    Stewart, Alexander J.; Hannenhalli, Sridhar; Plotkin, Joshua B.

    2012-01-01

    Gene expression is controlled primarily by transcription factors, whose DNA binding sites are typically 10 nt long. We develop a population-genetic model to understand how the length and information content of such binding sites evolve. Our analysis is based on an inherent trade-off between specificity, which is greater in long binding sites, and robustness to mutation, which is greater in short binding sites. The evolutionary stable distribution of binding site lengths predicted by the model agrees with the empirical distribution (5–31 nt, with mean 9.9 nt for eukaryotes), and it is remarkably robust to variation in the underlying parameters of population size, mutation rate, number of transcription factor targets, and strength of selection for proper binding and selection against improper binding. In a systematic data set of eukaryotic and prokaryotic transcription factors we also uncover strong relationships between the length of a binding site and its information content per nucleotide, as well as between the number of targets a transcription factor regulates and the information content in its binding sites. Our analysis explains these features as well as the remarkable conservation of binding site characteristics across diverse taxa. PMID:22887818

  14. Positive cooperative regulation of double binding sites for human acetylcholinesterase.

    PubMed

    Liu, Hao; Ye, Wei; Chen, Hai-Feng

    2016-10-25

    Acetylcholinesterase is a potent enzyme that regulates neurotransmission by rapidly hydrolyzing the neurotransmitter acetylcholine in synapses of the nervous system. As drug target of anti-AD, it has catalytic and peripheral anionic sites. However, the regulation relation between these two sites is unclear. Therefore, we constructed dynamics fluctuation network based on all-atom molecular dynamics simulations to reveal the regulation mechanism. The results suggest that the correlation network in double-site system (hAChE/TZ5) is distinctly different from that in the free state and single-site systems (hAChE/huprine and hAChE/1YL). The community network analysis indicates that the information freely transfers from the peripheral anionic site to the catalytic active site in hAChE/TZ5. Furthermore, the binding free energy between the inhibitor and hAChE for hAChE/TZ5 is significantly lower than of either hAChE/huprine or hAChE/1YL. Thus, a hypothesis of 'positive cooperative regulation' is proposed for the regulation of double binding sites and further confirmed by the weakening and mutation community analyses. Finally, one possible cooperative regulation pathway of W86-TZ5-W286 was identified based on the shortest path algorithm and was confirmed by the network perturbation analysis. Interestingly, the regulation pathway for single-site systems is significantly different from that of dual-site system. The process targeting on the shortest pathway can better regulate the hydrolyzing the neurotransmitter acetylcholine and significantly inhibit the aggregation of Aβ amyloid.

  15. Defining the binding site of homotetrameric R67 dihydrofolate reductase and correlating binding enthalpy with catalysis.

    PubMed

    Strader, Michael Brad; Chopra, Shaileja; Jackson, Michael; Smiley, R Derike; Stinnett, Lori; Wu, Jun; Howell, Elizabeth E

    2004-06-15

    R67 dihydrofolate reductase (DHFR) is a novel protein that possesses 222 symmetry. A single active site pore traverses the length of the homotetramer. Although the 222 symmetry implies that four symmetry-related binding sites should exist for each substrate as well as each cofactor, isothermal titration calorimetry (ITC) studies indicate only two molecules bind. Three possible combinations include two dihydrofolate molecules, two NADPH molecules, or one substrate with one cofactor. The latter is the productive ternary complex. To evaluate the roles of A36, Y46, T51, G64, and V66 residues in binding and catalysis, a site-directed mutagenesis approach was employed. One mutation per gene produces four mutations per active site pore, which often result in large cumulative effects. Conservative mutations at these positions either eliminate the ability of the gene to confer trimethoprim resistance or have no effect on catalysis. This result, in conjunction with previous mutagenesis studies on K32, K33, S65, Q67, I68, and Y69 [Strader, M. B., et al. (2001) Biochemistry 40, 11344-11352; Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Park, H., et al. (1997) Protein Eng. 10, 1415-1424], allows mapping of the active site surface. Residues for which conservative mutations have large effects on binding and catalysis include K32, Q67, I68, and Y69. These residues form a stripe that establishes the ligand binding surface. Residues that accommodate conservative mutations that do not greatly affect catalysis include K33, Y46, T51, S65, and V66. Isothermal titration calorimetry studies were also conducted on many of the mutants described above to determine the enthalpy of folate binding to the R67 DHFR.NADPH complex. A linear correlation between this DeltaH value and log k(cat)/K(m) is observed. Since structural tightness appears to be correlated with the exothermicity of the binding interaction, this leads to the hypothesis that enthalpy-driven formation of the ternary

  16. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    SciTech Connect

    Zhao, Y.D.; Springall, D.R.; Wharton, J.; Polak, J.M. )

    1991-01-01

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with the known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.

  17. Protein function annotation by local binding site surface similarity.

    PubMed

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  18. Whole-genome cartography of estrogen receptor alpha binding sites.

    PubMed

    Lin, Chin-Yo; Vega, Vinsensius B; Thomsen, Jane S; Zhang, Tao; Kong, Say Li; Xie, Min; Chiu, Kuo Ping; Lipovich, Leonard; Barnett, Daniel H; Stossi, Fabio; Yeo, Ailing; George, Joshy; Kuznetsov, Vladimir A; Lee, Yew Kok; Charn, Tze Howe; Palanisamy, Nallasivam; Miller, Lance D; Cheung, Edwin; Katzenellenbogen, Benita S; Ruan, Yijun; Bourque, Guillaume; Wei, Chia-Lin; Liu, Edison T

    2007-06-01

    Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha binding and gene

  19. Fibronectin at select sites binds multiple growth factors (GF) and enhances their activity: expansion of the collaborative ECM-GF paradigm

    PubMed Central

    Zhu, Jia; Clark, Richard A.F.

    2013-01-01

    Intensive research has demonstrated that extracellular matrix (ECM) molecules and growth factors (GF) collaborate at many different levels. The ability of ECM to modulate GF signals has important implications in tissue formation and homeostasis as well as novel therapies for acute and chronic wounds. Recently, a number of GF binding sites were identified in fibronectin and were shown to provide another layer of regulation on GF signaling. Here, we review these new findings on fibronectin interaction with GF in context of general ways ECM molecules regulate GF signaling. PMID:24335899

  20. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.

    PubMed

    Meshalkina, L; Nilsson, U; Wikner, C; Kostikowa, T; Schneider, G

    1997-03-01

    The role of two conserved amino acid residues in the thiamin diphosphate binding site of yeast transketolase has been analyzed by site-directed mutagenesis. Replacement of E162, which is part of a cluster of glutamic acid residues at the subunit interface, by alanine or glutamine results in mutant enzymes with most catalytic properties similar to wild-type enzyme. The two mutant enzymes show, however, significant increases in the K0.5 values for thiamin diphosphate in the absence of substrate and in the lag of the reaction progress curves. This suggests that the interaction of E162 with residue E418, and possibly E167, from the second subunit is important for formation and stabilization of the transketolase dimer. Replacement of the conserved residue D382, which is buried upon binding of thiamin diphosphate, by asparagine and alanine, results in mutant enzymes severely impaired in thiamin diphosphate binding and catalytic efficiency. The 25-80-fold increase in K0.5 for thiamin diphosphate suggests that D382 is involved in cofactor binding, probably by electrostatic compensation of the positive charge of the thiazolium ring and stabilization of a flexible loop at the active site. The decrease in catalytic activities in the D382 mutants indicates that this residue might also be important in subsequent steps in catalysis.

  1. Determination of energies and sites of binding of PFOA and PFOS to human serum albumin.

    PubMed

    Salvalaglio, Matteo; Muscionico, Isabella; Cavallotti, Carlo

    2010-11-25

    Structure and energies of the binding sites of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to human serum albumin (HSA) were determined through molecular modeling. The calculations consisted of a compound approach based on docking, followed by molecular dynamics simulations and by the estimation of the free binding energies adopting WHAM-umbrella sampling and semiempirical methodologies. The binding sites so determined are common either to known HSA fatty acids sites or to other HSA sites known to bind to pharmaceutical compounds such as warfarin, thyroxine, indole, and benzodiazepin. Among the PFOA binding sites, five have interaction energies in excess of -6 kcal/mol, which become nine for PFOS. The calculated binding free energy of PFOA to the Trp 214 binding site is the highest among the PFOA complexes, -8.0 kcal/mol, in good agreement with literature experimental data. The PFOS binding site with the highest energy, -8.8 kcal/mol, is located near the Trp 214 binding site, thus partially affecting its activity. The maximum number of ligands that can be bound to HSA is 9 for PFOA and 11 for PFOS. The calculated data were adopted to predict the level of complexation of HSA as a function of the concentration of PFOA and PFOS found in human blood for different levels of exposition. The analysis of the factors contributing to the complex binding energy permitted to outline a set of guidelines for the rational design of alternative fluorinated surfactants with a lower bioaccumulation potential.

  2. Identification of clustered YY1 binding sites in Imprinting Control Regions

    SciTech Connect

    Kim, J D; Hinz, A; Bergmann, A; Huang, J; Ovcharenko, I; Stubbs, L; Kim, J

    2006-04-19

    Mammalian genomic imprinting is regulated by Imprinting Control Regions (ICRs) that are usually associated with tandem arrays of transcription factor binding sites. In the current study, the sequence features derived from a tandem array of YY1 binding sites of Peg3-DMR (differentially methylated region) led us to identify three additional clustered YY1 binding sites, which are also localized within the DMRs of Xist, Tsix, and Nespas. These regions have been shown to play a critical role as ICRs for the regulation of surrounding genes. These ICRs have maintained a tandem array of YY1 binding sites during mammalian evolution. The in vivo binding of YY1 to these regions is allele-specific and only to the unmethylated active alleles. Promoter/enhancer assays suggest that a tandem array of YY1 binding sites function as a potential orientation-dependent enhancer. Insulator assays revealed that the enhancer-blocking activity is detected only in the YY1 binding sites of Peg3-DMR but not in the YY1 binding sites of other DMRs. Overall, our identification of three additional clustered YY1 binding sites in imprinted domains suggests a significant role for YY1 in mammalian genomic imprinting.

  3. Sizes of Mn-binding sites in spinach thylakoids.

    PubMed

    Takahashi, M; Asada, K

    1986-12-25

    The sizes of the Mn-binding sites in spinach thylakoids were estimated by target size analysis, assaying the membrane-bound Mn that was resistant to EDTA washing after radiation inactivation. The inactivation curve showed well the inactivation of two independent Mn-binding sites of different sizes: about two-thirds of the Mn coordinated to a binding site of 65 kDa, and the rest bound to a much smaller site of only about 3 kDa. In the large site, there was about 1 g atom of Mn/110 mol of chlorophyll in spinach thylakoids, which was constant in normally grown plants, although the Mn level in the small site depended on culture conditions. Thylakoids that had been incubated with hydroxylamine or in 0.8 M Tris lost Mn exclusively from the large binding site.

  4. Sizes of Mn-binding sites in spinach thylakoids

    SciTech Connect

    Takahashi, M.; Asada, K.

    1986-12-25

    The sizes of the Mn-binding sites in spinach thylakoids were estimated by target size analysis, assaying the membrane-bound Mn that was resistant to EDTA washing after radiation inactivation. The inactivation curve showed well the inactivation of two independent Mn-binding sites of different sizes: about two-thirds of the Mn coordinated to a binding site of 65 kDa, and the rest bound to a much smaller site of only about 3 kDa. In the large site, there was about 1 g atom of Mn/110 mol of chlorophyll in spinach thylakoids, which was constant in normally grown plants, although the Mn level in the small site depended on culture conditions. Thylakoids that had been incubated with hydroxylamine or in 0.8 M Tris lost Mn exclusively from the large binding site.

  5. Structure and localisation of drug binding sites on neurotransmitter transporters.

    PubMed

    Ravna, Aina W; Sylte, Ingebrigt; Dahl, Svein G

    2009-10-01

    The dopamine (DAT), serotontin (SERT) and noradrenalin (NET) transporters are molecular targets for different classes of psychotropic drugs. The crystal structure of Aquifex aeolicus LeuT(Aa) was used as a template for molecular modeling of DAT, SERT and NET, and two putative drug binding sites (pocket 1 and 2) in each transporter were identified. Cocaine was docked into binding pocket 1 of DAT, corresponding to the leucine binding site in LeuT(Aa), which involved transmembrane helices (TMHs) 1, 3, 6 and 8. Clomipramine was docked into binding pocket 2 of DAT, involving TMHs 1, 3, 6, 10 and 11, and extracellular loops 4 and 6, corresponding to the clomipramine binding site in a crystal structure of a LeuT(Aa)-clomipramine complex. The structures of the proposed cocaine- and tricyclic antidepressant-binding sites may be of particular interest for the design of novel DAT interacting ligands.

  6. Druggability of methyl-lysine binding sites

    NASA Astrophysics Data System (ADS)

    Santiago, C.; Nguyen, K.; Schapira, M.

    2011-12-01

    Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.

  7. Activated RhoA Binds to the Pleckstrin Homology (PH) Domain of PDZ-RhoGEF, a Potential Site for Autoregulation

    SciTech Connect

    Chen, Zhe; Medina, Frank; Liu, Mu-ya; Thomas, Celestine; Sprang, Stephen R.; Sternweis, Paul C.

    2010-07-19

    Guanine nucleotide exchange factors (GEFs) catalyze exchange of GDP for GTP by stabilizing the nucleotide-free state of the small GTPases through their Dbl homology/pleckstrin homology (DH {center_dot} PH) domains. Unconventionally, PDZ-RhoGEF (PRG), a member of the RGS-RhoGEFs, binds tightly to both nucleotide-free and activated RhoA (RhoA {center_dot} GTP). We have characterized the interaction between PRG and activated RhoA and determined the structure of the PRG-DH {center_dot} PH-RhoA {center_dot} GTP{gamma}S (guanosine 5{prime}-O-[{gamma}-thio]triphosphate) complex. The interface bears striking similarity to a GTPase-effector interface and involves the switch regions in RhoA and a hydrophobic patch in PRG-PH that is conserved among all Lbc RhoGEFs. The two surfaces that bind activated and nucleotide-free RhoA on PRG-DH {center_dot} PH do not overlap, and a ternary complex of PRG-DH {center_dot} PH bound to both forms of RhoA can be isolated by size-exclusion chromatography. This novel interaction between activated RhoA and PH could play a key role in regulation of RhoGEF activity in vivo.

  8. Ankyrin-independent membrane protein-binding sites for brain and erythrocyte spectrin.

    PubMed

    Steiner, J P; Bennett, V

    1988-10-05

    Brain spectrin reassociates in in vitro binding assays with protein(s) in highly extracted brain membranes quantitatively depleted of ankyrin and spectrin. These newly described membrane sites for spectrin are biologically significant and involve a protein since (a) binding occurs optimally at physiological pH (6.7-6.9) and salt concentrations (50 mM), (b) binding is abolished by digestion of membranes with alpha-chymotrypsin, (c) Scatchard analysis is consistent with a binding capacity of at least 50 pmol/mg total membrane protein, and highest affinity of 3 nM. The major ankyrin-independent binding activity of brain spectrin is localized to the beta subunit of spectrin. Brain membranes also contain high affinity binding sites for erythrocyte spectrin, but a 3-4 fold lower capacity than for brain spectrin. Some spectrin-binding sites associate preferentially with brain spectrin, some with erythrocyte spectrin, and some associate with both types of spectrin. Erythrocyte spectrin contains distinct binding domains for ankyrin and brain membrane protein sites, since the Mr = 72,000 spectrin-binding fragment of ankyrin does not compete for binding of spectrin to brain membranes. Spectrin binds to a small number of ankyrin-independent sites in erythrocyte membranes present in about 10,000-15,000 copies/cell or 10% of the number of sites for ankyrin. Brain spectrin binds to these sites better than erythrocyte spectrin suggesting that erythrocytes have residual binding sites for nonerythroid spectrin. Ankyrin-independent-binding proteins that selectively bind to certain isoforms of spectrin provide a potentially important flexibility in cellular localization and time of synthesis of proteins involved in spectrin-membrane interactions. This flexibility has implications for assembly of the membrane skeleton and targeting of spectrin isoforms to specialized regions of cells.

  9. Determination of the Substrate Binding Mode to the Active Site Iron of (S)-2-Hydroxypropylphosphonic Acid Epoxidase Using 17O-Enriched Substrates and Substrate Analogues†

    PubMed Central

    Yan, Feng; Moon, Sung-Ju; Liu, Pinghua; Zhao, Zongbao; Lipscomb, John D.; Liu, Aimin; Liu, Hung-wen

    2009-01-01

    (S)-2-hydroxypropylphosphonic acid epoxidase (HppE) is an O2-dependent, nonheme Fe(II)-containing oxidase that converts (S)-2-hydroxypropylphosphonic acid ((S)-HPP) to the regio-and enantiomerically specific epoxide, fosfomycin. Use of (R)-2-hydroxypropylphosphonic acid ((R)-HPP) yields the 2-keto-adduct rather than the epoxide. Here we report the chemical synthesis of a range of HPP analogs designed to probe the basis for this specificity. In past studies, NO has been used as an O2 surrogate to provide an EPR probe of the Fe(II) environment. These studies suggest that O2 binds to the iron, and substrates bind in a single orientation that strongly perturbs the iron environment. Recently, the X-ray crystal structure showed direct binding of the substrate to the iron, but both monodentate (via the phosphonate) and chelated (via the hydroxyl and phosphonate) orientations were observed. In the current study, hyperfine broadening of the homogeneous S = 3/2 EPR spectrum of the HppE-NO-HPP complex was observed when either the hydroxyl or the phosphonate group of HPP was enriched with 17O (I = 5/2). These results indicate that both functional groups of HPP bind to Fe(II) ion at the same time as NO, suggesting that the chelated substrate binding mode dominates in solution. (R)- and (S)-analog compounds that maintained the core structure of HPP but added bulky terminal groups were turned over to give products analogous to those from (R)- and (S)-HPP, respectively. In contrast, substrate analogs lacking either the phosphonate or hydroxyl group were not turned over. Elongation of the carbon chain between the hydroxyl and phosphonate allowed binding to the iron in a variety of orientations to give keto and diol products at positions determined by the hydroxyl substituent, but no stable epoxide was formed. These studies show the importance of the Fe(II)-substrate chelate structure to active antibiotic formation. This fixed orientation may align the substrate next to the iron

  10. A permanent ion binding site located between two gates of the Shaker K+ channel.

    PubMed

    Harris, R E; Larsson, H P; Isacoff, E Y

    1998-04-01

    K+ channels can be occupied by multiple permeant ions that appear to bind at discrete locations in the conduction pathway. Neither the molecular nature of the binding sites nor their relation to the activation or inactivation gates that control ion flow are well understood. We used the permeant ion Ba2+ as a K+ analog to probe for K+ ion binding sites and their relationship to the activation and inactivation gates. Our data are consistent with the existence of three single-file permeant-ion binding sites: one deep site, which binds Ba2+ with high affinity, and two more external sites whose occupancy influences Ba2+ movement to and from the deep site. All three sites are accessible to the external solution in channels with a closed activation gate, and the deep site lies between the activation gate and the C-type inactivation gate. We identify mutations in the P-region that disrupt two of the binding sites, as well as an energy barrier between the sites that may be part of the selectivity filter.

  11. A permanent ion binding site located between two gates of the Shaker K+ channel.

    PubMed Central

    Harris, R E; Larsson, H P; Isacoff, E Y

    1998-01-01

    K+ channels can be occupied by multiple permeant ions that appear to bind at discrete locations in the conduction pathway. Neither the molecular nature of the binding sites nor their relation to the activation or inactivation gates that control ion flow are well understood. We used the permeant ion Ba2+ as a K+ analog to probe for K+ ion binding sites and their relationship to the activation and inactivation gates. Our data are consistent with the existence of three single-file permeant-ion binding sites: one deep site, which binds Ba2+ with high affinity, and two more external sites whose occupancy influences Ba2+ movement to and from the deep site. All three sites are accessible to the external solution in channels with a closed activation gate, and the deep site lies between the activation gate and the C-type inactivation gate. We identify mutations in the P-region that disrupt two of the binding sites, as well as an energy barrier between the sites that may be part of the selectivity filter. PMID:9545043

  12. Crystal structure of phospholipase A2 complex with the hydrolysis products of platelet activating factor: equilibrium binding of fatty acid and lysophospholipid-ether at the active site may be mutually exclusive.

    PubMed

    Pan, Ying H; Yu, Bao-Zhu; Berg, Otto G; Jain, Mahendra K; Bahnson, Brian J

    2002-12-17

    occupancies set to zero in the refined model due to disorder. Together, the crystallographic and equilibrium binding results with the two products show that the simultaneous binding of both the products in a single active site is not favored.

  13. Photoaffinity labeling of uncoupler binding sites on mitochondrial membrane.

    PubMed

    Kurup, C K; Sanadi, D R

    1977-02-01

    3H 2-azido-4-nitrophenol, a photoactive uncoupler, has been synthesized, and its uncoupling action on oxidative phosphorylation and its binding to the mitochondrial membrane have been studied. The uncoupler bound covalently to the mitochondrial membrane on photoirradiation was 3-4 times that bound reversibly in the absence of light. When irradiation was carried out in the presence of serum albumin, covalent binding was significantly depressed. The pattern of loss of ATP-Pi exchange activity with increasing amounts of the uncoupler suggests that serum albumin prevents the binding of the uncoupler to the functional sites as well. Polyacrylamide gel electrophoresis of photoaffinity labeled submitochondrial particles in the presence of sodium dodecyl sulfate revealed that a 9000 dalton peptide bound high levels of uncoupler. Other proteins in the molecular weight range of 20,000-40,000 and 55,000 were also labeled. Photolysis in the presence of serum albumin or ATP decreased the covalent binding of the uncoupler to all the proteins, but particularly to the 20,000 dalton component. Soluble ATPase and the mitochondrial proteolipid purified from labeled mitochondria showed the presence of label.

  14. Structure-activity relationships and binding mode in the human acetylcholinesterase active site of pseudo-irreversible inhibitors related to xanthostigmine.

    PubMed

    Rizzo, Stefano; Cavalli, Andrea; Ceccarini, Luisa; Bartolini, Manuela; Belluti, Federica; Bisi, Alessandra; Andrisano, Vincenza; Recanatini, Maurizio; Rampa, Angela

    2009-04-01

    Structure-activity relationship studies on acetylcholinesterase (AChE) inhibitors were extended to newly synthesized compounds derived from the lead compound xantostigmine (1). The xanthone ring of compound 1 was replaced with several different scaffolds based on the benzopyran skeleton, linked to the tertiary amino nitrogen through an heptyloxy chain. These modifications resulted in 19 new compounds, most of them showing activity in the nanomolar-subnanomolar range. Docking and molecular dynamics simulations were carried out to both define a new computational protocol for the simulation of pseudo-irreversibile AChE covalent inhibitors, and to acquire a better understanding of the structure-activity relationships of the present series of compounds. The results of this computational work prompted us to to evaluate the ability of compounds 5 and 13 to inhibit acetylcholinesterase-induced Abeta aggregation.

  15. Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers

    PubMed Central

    Miotto, Benoit; Ji, Zhe; Struhl, Kevin

    2016-01-01

    The origin recognition complex (ORC) binds sites from which DNA replication is initiated. We address ORC binding selectivity in vivo by mapping ∼52,000 ORC2 binding sites throughout the human genome. The ORC binding profile is broader than those of sequence-specific transcription factors, suggesting that ORC is not bound or recruited to specific DNA sequences. Instead, ORC binds nonspecifically to open (DNase I-hypersensitive) regions containing active chromatin marks such as H3 acetylation and H3K4 methylation. ORC sites in early and late replicating regions have similar properties, but there are far more ORC sites in early replicating regions. This suggests that replication timing is due primarily to ORC density and stochastic firing of origins. Computational simulation of stochastic firing from identified ORC sites is in accord with replication timing data. Large genomic regions with a paucity of ORC sites are strongly associated with common fragile sites and recurrent deletions in cancers. We suggest that replication origins, replication timing, and replication-dependent chromosome breaks are determined primarily by the genomic distribution of activator proteins at enhancers and promoters. These activators recruit nucleosome-modifying complexes to create the appropriate chromatin structure that allows ORC binding and subsequent origin firing. PMID:27436900

  16. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene.

    PubMed Central

    Riccio, A; Pedone, P V; Lund, L R; Olesen, T; Olsen, H S; Andreasen, P A

    1992-01-01

    Transforming growth factor beta (TGF-beta) is the name of a group of closely related polypeptides characterized by a multiplicity of effects, including regulation of extracellular proteolysis and turnover of the extracellular matrix. Its cellular mechanism of action is largely unknown. TGF-beta 1 is a strong and fast inducer of type 1 plasminogen activator inhibitor gene transcription. We have identified a TGF-beta 1-responsive element in the 5'-flanking region of the human type 1 plasminogen activator inhibitor gene and shown that it is functional both in its natural context and when fused to a heterologous nonresponsive promoter. Footprinting and gel retardation experiments showed that two different nuclear factors, present in extracts from both TGF-beta 1-treated and nontreated cells, bind to adjacent sequences contained in the responsive unit. A palindromic sequence binds a trans-acting factor(s) of the CCAAT-binding transcription factor-nuclear factor I family. A partially overlapping dyad symmetry interacts with a second protein that much evidence indicates to be USF. USF is a transactivator belonging to the basic helix-loop-helix family of transcription factors. Mutations which abolish the binding of either CCAAT-binding transcription factor-nuclear factor I or USF result in reduction of transcriptional activation upon exposure to TGF-beta 1, thus showing that both elements of the unit are necessary for the TGF-beta 1 response. We discuss the possible relationship of these findings to the complexity of the TGF-beta action. Images PMID:1549130

  17. Contributions of the substrate-binding arginine residues to maleate-induced closure of the active site of Escherichia coli aspartate aminotransferase.

    PubMed

    Matharu, A; Hayashi, H; Kagamiyama, H; Maras, B; John, R A

    2001-03-01

    Crystallography shows that aspartate aminotransferase binds dicarboxylate substrate analogues by bonds to Arg292 and Arg386, respectively [Jager, J, Moser, M. Sauder, U. & Jansonius, J. N. (1994) J. Mol. Biol., 239, 285-305]. The contribution of each interaction to the conformational change that the enzyme undergoes when it binds ligands via these residues, is assessed by probing mutant forms of the enzyme lacking either or both arginines. The probes used are NaH(3)BCN which reduces the cofactor imine, the reactive substrate analogue, cysteine sulfinate and proteolysis by trypsin. The unreactive substrate analogue, maleate, is used to induce closure. Each single mutant reacted only 2.5-fold more slowly with NaH(3)BCN than the wild-type indicating that charge repulsion by the arginines contributes little to maintaining the open conformation. Maleate lowered the rate of reduction of the wild-type enzyme more than 300-fold but had little effect on the reaction of the mutant enzymes indicating that the ability of this dicarboxylate analogue to bridge the arginines precisely makes the major contribution to closure. The R292L mutant reacted 20 times more rapidly with cysteine sulfinate than R386L but 5 x 10(4) times more slowly than the wild-type enzyme, consistent with the proposal that enzyme's catalytic abilities are not developed unless closure is induced by bridging of the arginines. Proteolysis of the mutants with trypsin showed that, in the wild-type enzyme, the bonds most susceptible to trypsin are those contributed by Arg292 and Arg386. Proteolysis of the next most susceptible bond, at Arg25 in the double mutant, was protected by maleate demonstrating the presence of an additional site on the enzyme for binding dicarboxylates.

  18. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  19. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site

    PubMed Central

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R.; Phillips, Chris; Augustin, Martin A.; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-01-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5–inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented. PMID:27139631

  20. The number of nucleotide binding sites in cytochrome C oxidase.

    PubMed

    Rieger, T; Napiwotzki, J; Hüther, F J; Kadenbach, B

    1995-12-05

    The binding of 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine-5'-triphosphate (TNP-ATP), [35S]ATP alpha S and 8-azido-[gamma-32P]ATP to isolated cytochrome c oxidase of bovine heart and liver and to the two-subunit enzyme of Paracoccus dentrificans was studied by measuring the fluorescence change or bound radioactivity, respectively. With TNP-ATP three binding sites were determined at cytochrome c oxidase from bovine heart and liver, both with two dissociation constants Kd of about 0.2 and 0.9 microM. Trypsin treatment of the enzyme from bovine heart, resulted in one binding site with a Kd of 0.3 microM. The two-subunit enzyme of Paracoccus dentrificans had only one binding site with a Kd of 3.6 microM. The binding of [35S]ATP alpha S to cytochrome c oxidase was studied by equilibrium dialysis. With the enzyme of bovine heart seven and the enzyme of liver six high-affinity binding sites with apparent Kd's of 7.5 and 12 microM, respectively, were obtained. The two-subunit enzyme of Paracoccus denitrificans had one binding site with a Kd of 20 microM. The large number of binding sites at cytochrome c oxidase from bovine heart, mainly at nuclear coded subunits, was verified by photoaffinity labelling with 8-azido-[gamma-32P]ATP.

  1. Salt bridges overlapping the gonadotropin-releasing hormone receptor agonist binding site reveal a coincidence detector for G protein-coupled receptor activation.

    PubMed

    Janovick, Jo Ann; Pogozheva, Irina D; Mosberg, Henry I; Conn, P Michael

    2011-08-01

    G protein-coupled receptors (GPCRs) play central roles in most physiological functions, and mutations in them cause heritable diseases. Whereas crystal structures provide details about the structure of GPCRs, there is little information that identifies structural features that permit receptors to pass the cellular quality control system or are involved in transition from the ground state to the ligand-activated state. The gonadotropin-releasing hormone receptor (GnRHR), because of its small size among GPCRs, is amenable to molecular biological approaches and to computer modeling. These techniques and interspecies comparisons are used to identify structural features that are important for both intracellular trafficking and GnRHR activation yet distinguish between these processes. Our model features two salt (Arg(38)-Asp(98) and Glu(90)-Lys(121)) and two disulfide (Cys(14)-Cys(200) and Cys(114)-Cys(196)) bridges, all of which are required for the human GnRHR to traffic to the plasma membrane. This study reveals that both constitutive and ligand-induced activation are associated with a "coincidence detector" that occurs when an agonist binds. The observed constitutive activation of receptors lacking Glu(90)-Lys(121), but not Arg(38)-Asp(98) ionic bridge, suggests that the role of the former connection is holding the receptor in the inactive conformation. Both the aromatic ring and hydroxyl group of Tyr(284) and the hydrogen bonding of Ser(217) are important for efficient receptor activation. Our modeling results, supported by the observed influence of Lys(191) from extracellular loop 2 (EL2) and a four-residue motif surrounding this loop on ligand binding and receptor activation, suggest that the positioning of EL2 within the seven-α-helical bundle regulates receptor stability, proper trafficking, and function.

  2. Multi-site substrate binding and interplay in barley alpha-amylase 1.

    PubMed

    Nielsen, Morten Munch; Seo, Eun-Seong; Bozonnet, Sophie; Aghajari, Nushin; Robert, Xavier; Haser, Richard; Svensson, Birte

    2008-07-23

    Certain starch hydrolases possess secondary carbohydrate binding sites outside of the active site, suggesting that multi-site substrate interactions are functionally significant. In barley alpha-amylase both Tyr380, situated on a remote non-catalytic domain, and Tyr105 in subsite -6 of the active site cleft are principal carbohydrate binding residues. The dual active site/secondary site mutants Y105A/Y380A and Y105A/Y380M show that each of Tyr380 and Tyr105 is important, albeit not essential for binding, degradation, and multiple attack on polysaccharides, while Tyr105 predominates in oligosaccharide hydrolysis. Additional delicate structure/function relationships of the secondary site are uncovered using Y380A/H395A, Y380A, and H395A AMY1 mutants.

  3. Site-specific N-linked glycosylation of receptor guanylyl cyclase C regulates ligand binding, ligand-mediated activation and interaction with vesicular integral membrane protein 36, VIP36.

    PubMed

    Arshad, Najla; Ballal, Suhas; Visweswariah, Sandhya S

    2013-02-08

    Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.

  4. A functional study of concanavalin A-histamine binding site overlap in Tetrahymena phagocytosis test.

    PubMed

    Csaba, G; Darvas, Z; László, V

    1983-01-01

    Treatment with histamine stimulated the phagocytotic activity of the Tetrahymena to a measurable degree, which was still demonstrable after a week (about 40 generations). Concanavalin A, which binds to the same membrane binding site as histamine, inhibited the stimulatory action of subsequently added histamine, but did not in itself influence phagocytotic activity in any way. The inhibitory effect of Con A on the histamine binding site proved to be dose-dependent. These observations stress the importance of investigating the functional context--as sole realistic measure--of receptor--ligand bindings.

  5. Deformed protein binding sites and cofactor binding sites are required for the function of a small segment-specific regulatory element in Drosophila embryos.

    PubMed Central

    Zeng, C; Pinsonneault, J; Gellon, G; McGinnis, N; McGinnis, W

    1994-01-01

    How each of the homeotic selector proteins can regulate distinct sets of DNA target elements in embryos is not understood. Here we describe a detailed functional dissection of a small element that is specifically regulated by the Deformed homeotic protein. This 120 bp element (module E) is part of a larger 2.7 kb autoregulatory enhancer that maintains Deformed (Dfd) transcription in the epidermis of the maxillary and mandibular segments of Drosophila embryos. In vitro binding assays show that module E contains only one Dfd protein binding site. Mutations in the Dfd binding site that increase or decrease its in vitro affinity for Dfd protein generate parallel changes in the regulatory activity of module E in transgenic embryos, strong evidence that the in vitro-defined binding site is a direct target of Dfd protein in embryos. However, a monomer or multimer of the Dfd binding region alone is not sufficient to supply Dfd-dependent, segment-specific reporter gene expression. An analysis of a systematic series of clustered point mutations in module E revealed that an additional region containing an imperfect inverted repeat sequence is also required for the function of this homeotic protein response element. The Dfd binding site and the putative cofactor binding site(s) in the region of the inverted repeat are both necessary and in combination sufficient for the function of module E. Images PMID:7910795

  6. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites

    PubMed Central

    Grey, Corinne; Clément, Julie A.J.; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent

    2017-01-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis. PMID:28336543

  7. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites.

    PubMed

    Grey, Corinne; Clément, Julie A J; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent; de Massy, Bernard

    2017-04-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis.

  8. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    SciTech Connect

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) have been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.

  9. Structural signatures of antibiotic binding sites on the ribosome

    PubMed Central

    David-Eden, Hilda; Mankin, Alexander S.; Mandel-Gutfreund, Yael

    2010-01-01

    The ribosome represents a major target for antibacterial drugs. Being a complex molecular machine, it offers many potential sites for functional interference. The high-resolution structures of ribosome in complex with various antibiotics provide a unique data set for understanding the universal features of drug-binding pockets on the ribosome. In this work, we have analyzed the structural and evolutionary properties of 65 antibiotic binding sites (ABSs) in the ribosome. We compared these sites to similar-size computed pockets extracted from the small and large ribosomal subunits. Based on this analysis, we defined properties of the known drug-binding sites, which constitute the signature of a ‘druggable’ site. The most noticeable properties of the ABSs are prevalence of non-paired bases, a strong bias in favor of unusual syn conformation of the RNA bases and an unusual sugar pucker. We propose that despite the different geometric and chemical properties of diverse antibiotics, their binding sites tend to have common attributes that possibly reflect the potency of the pocket for binding small molecules. Finally, we utilized the ensemble of properties to derive a druggability index, which can be used in conjunction with site functionality information to identify new drug-binding sites on the ribosome. PMID:20494981

  10. Influence of sulfhydryl sites on metal binding by bacteria

    NASA Astrophysics Data System (ADS)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low

  11. Evaluation of the Significance of Starch Surface Binding Sites on Human Pancreatic α-Amylase.

    PubMed

    Zhang, Xiaohua; Caner, Sami; Kwan, Emily; Li, Chunmin; Brayer, Gary D; Withers, Stephen G

    2016-11-01

    Starch provides the major source of caloric intake in many diets. Cleavage of starch into malto-oligosaccharides in the gut is catalyzed by pancreatic α-amylase. These oligosaccharides are then further cleaved by gut wall α-glucosidases to release glucose, which is absorbed into the bloodstream. Potential surface binding sites for starch on the pancreatic amylase, distinct from the active site of the amylase, have been identified through X-ray crystallographic analyses. The role of these sites in the degradation of both starch granules and soluble starch was probed by the generation of a series of surface variants modified at each site to disrupt binding. Kinetic analysis of the binding and/or cleavage of substrates ranging from simple maltotriosides to soluble starch and insoluble starch granules has allowed evaluation of the potential role of each such surface site. In this way, two key surface binding sites, on the same face as the active site, are identified. One site, containing a pair of aromatic residues, is responsible for attachment to starch granules, while a second site featuring a tryptophan residue around which a malto-oligosaccharide wraps is shown to heavily influence soluble starch binding and hydrolysis. These studies provide insights into the mechanisms by which enzymes tackle the degradation of largely insoluble polymers and also present some new approaches to the interrogation of the binding sites involved.

  12. Binding site number variation and high-affinity binding consensus of Myb-SANT-like transcription factor Adf-1 in Drosophilidae

    PubMed Central

    Lang, Michael; Juan, Elvira

    2010-01-01

    There is a growing interest in the evolution of transcription factor binding sites and corresponding functional change of transcriptional regulation. In this context, we have examined the structural changes of the ADF-1 binding sites at the Adh promoters of Drosophila funebris and D. virilis. We detected an expanded footprinted region in D. funebris that contains various adjacent binding sites with different binding affinities. ADF-1 was described to direct sequence-specific DNA binding to sites consisting of the multiple trinucleotide repeat . The ADF-1 recognition sites with high binding affinity differ from this trinucleotide repeat consensus sequence and a new consensus sequence is proposed for the high-affinity ADF-1 binding sites. In vitro transcription experiments with the D. funebris and D. virilis ADF-1 binding regions revealed that stronger ADF-1 binding to the expanded D. funebris ADF-1 binding region only moderately lead to increased transcriptional activity of the Adh gene. The potential of this regional expansion is discussed in the context of different ADF-1 cellular concentrations and maintenance of the ADF-1 stimulus. Altogether, evolutionary change of ADF-1 binding regions involves both, rearrangements of complex binding site cluster and also nucleotide substitutions within sites that lead to different binding affinities. PMID:20542916

  13. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCδ C1B Domain: In Vitro and in Silico Studies.

    PubMed

    Kongpichitchoke, Teeradate; Hsu, Jue-Liang; Huang, Tzou-Chi

    2015-05-13

    Although flavonoids have been reported for their benefits and nutraceutical potential use, the importance of their structure on their beneficial effects, especially on signal transduction mechanisms, has not been well clarified. In this study, three flavonoids, pinocembrin, naringenin, and eriodictyol, were chosen to determine the effect of hydroxyl groups on the B-ring of flavonoid structure on their antioxidant activity. In vitro assays, including DPPH scavenging activity, ROS quantification by flow cytometer, and proteins immunoblotting, and in silico analysis by molecular docking between the flavonoids and C1B domain of PKCδ phorbol ester binding site were both used to complete this study. Eriodictyol (10 μM), containing two hydroxyl groups on the B-ring, exhibited significantly higher (p < 0.05) antioxidant activity than pinocembrin and naringenin. The IC50 values of eriodictyol, naringenin, and pinocembrin were 17.4 ± 0.40, 30.2 ± 0.61, and 44.9 ± 0.57 μM, respectively. In addition, eriodictyol at 10 μM remarkably inhibited the phosphorylation of PKCδ at 63.4% compared with PMA-activated RAW264.7, whereas pinocembrin and naringenin performed inhibition activity at 76.8 and 72.6%, respectively. According to the molecular docking analysis, pinocembrin, naringenin, and eriodictyol showed -CDOCKER_energy values of 15.22, 16.95, and 21.49, respectively, reflecting that eriodictyol could bind with the binding site better than the other two flavonoids. Interestingly, eriodictyol had a remarkably different pose to bind with the kinase as a result of the two hydroxyl groups on its B-ring, which consequently contributed to greater antioxidant activity over pinocembrin and naringenin.

  14. Design, Synthesis, Acaricidal/Insecticidal Activity, and Structure-Activity Relationship Studies of Novel Oxazolines Containing Sulfone/Sulfoxide Groups Based on the Sulfonylurea Receptor Protein-Binding Site.

    PubMed

    Yu, Xiuling; Liu, Yuxiu; Li, Yongqiang; Wang, Qingmin

    2016-04-20

    Enormous compounds containing sulfone/sulfoxide groups have been used in a variety of fields, especially in drug and pesticide design. To search for novel environmentally benign and ecologically safe pesticides with unique modes of action, a series of 2,4-diphenyl-1,3-oxazolines containing sulfone/sulfoxide groups as chitin synthesis inhibitors (CSIs) were designed and synthesized on the basis of the sulfonylurea receptor protein-binding site for CSIs. Their structures were characterized by (1)H and (13)C nuclear magnetic resonance and high-resolution mass spectrometry. The acaricidal and insecticidal activities of the new compounds were evaluated. It was found that most of the target compounds displayed wonderful acaricidal activities against spider mite (Tetranychus cinnabarinus) larvae and eggs. Especially compounds I-4, II-3, and II-4 displayed higher activities than commercial etoxazole at a concentration of 2.5 mg L(-1). Some target compounds exhibited insecticidal activities against lepidopteran pests. The present work demonstrated that these compounds containing sulfone/sulfoxide groups could be considered as potential candidates for the development of novel acaricides in the future.

  15. Localization of gonadotropin binding sites in human ovarian neoplasms

    SciTech Connect

    Nakano, R.; Kitayama, S.; Yamoto, M.; Shima, K.; Ooshima, A. )

    1989-10-01

    The binding of human luteinizing hormone and human follicle-stimulating hormone to ovarian tumor biopsy specimens from 29 patients was analyzed. The binding sites for human luteinizing hormone were demonstrated in one tumor of epithelial origin (mucinous cystadenoma) and in one of sex cord-stromal origin (theca cell tumor). The binding sites for human follicle-stimulating hormone were found in three tumors of epithelial origin (serous cystadenoma and mucinous cystadenoma) and in two of sex cord-stromal origin (theca cell tumor and theca-granulosa cell tumor). The surface-binding autoradiographic study revealed that the binding sites for gonadotropins were localized in the stromal tissue. The results suggest that gonadotropic hormones may play a role in the growth and differentiation of a certain type of human ovarian neoplasms.

  16. Local conformations and competitive binding affinities of single- and double-stranded primer-template DNA at the polymerization and editing active sites of DNA polymerases.

    PubMed

    Datta, Kausiki; Johnson, Neil P; LiCata, Vince J; von Hippel, Peter H

    2009-06-19

    In addition to their capacity for template-directed 5' --> 3' DNA synthesis at the polymerase (pol) site, DNA polymerases have a separate 3' --> 5' exonuclease (exo) editing activity that is involved in assuring the fidelity of DNA replication. Upon misincorporation of an incorrect nucleotide residue, the 3' terminus of the primer strand at the primer-template (P/T) junction is preferentially transferred to the exo site, where the faulty residue is excised, allowing the shortened primer to rebind to the template strand at the pol site and incorporate the correct dNTP. Here we describe the conformational changes that occur in the primer strand as it shuttles between the pol and exo sites of replication-competent Klenow and Klentaq DNA polymerase complexes in solution and use these conformational changes to measure the equilibrium distribution of the primer between these sites for P/T DNA constructs carrying both matched and mismatched primer termini. To this end, we have measured the fluorescence and circular dichroism spectra at wavelengths of >300 nm for conformational probes comprising pairs of 2-aminopurine bases site-specifically replacing adenine bases at various positions in the primer strand of P/T DNA constructs bound to DNA polymerases. Control experiments that compare primer conformations with available x-ray structures confirm the validity of this approach. These distributions and the conformational changes in the P/T DNA that occur during template-directed DNA synthesis in solution illuminate some of the mechanisms used by DNA polymerases to assure the fidelity of DNA synthesis.

  17. IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site.

    PubMed

    Garcia-Elias, Anna; Lorenzo, Ivan M; Vicente, Rubén; Valverde, Miguel A

    2008-11-14

    Activation of the non-selective cation channel TRPV4 by mechanical and osmotic stimuli requires the involvement of phospholipase A2 and the subsequent production of the arachidonic acid metabolites, epoxieicosatrienoic acids (EET). Previous studies have shown that inositol trisphosphate (IP3) sensitizes TRPV4 to mechanical, osmotic, and direct EET stimulation. We now search for the IP3 receptor-binding site on TRPV4 and its relevance to IP3-mediated sensitization. Three putative sites involved in protein-protein interactions were evaluated: a proline-rich domain (PRD), a calmodulin (CaM)-binding site, and the last four amino acids (DAPL) that show a PDZ-binding motif-like. TRPV4-DeltaCaM-(Delta812-831) channels preserved activation by hypotonicity, 4alpha-phorbol 12,13-didecanoate, and EET but lost their physical interaction with IP3 receptor 3 and IP3-mediated sensitization. Deletion of a PDZ-binding motif-like (TRPV4-DeltaDAPL) did not affect channel activity or IP3-mediated sensitization, whereas TRPV4-DeltaPRD-(Delta132-144) resulted in loss of channel function despite correct trafficking. We conclude that IP3-mediated sensitization requires IP3 receptor binding to a TRPV4 C-terminal domain that overlaps with a previously described calmodulin-binding site.

  18. Dopaminergic activities in the human striatum: rostrocaudal gradients of uptake sites and of D1 and D2 but not of D3 receptor binding or dopamine.

    PubMed

    Piggott, M A; Marshall, E F; Thomas, N; Lloyd, S; Court, J A; Jaros, E; Costa, D; Perry, R H; Perry, E K

    1999-05-01

    The human striatum, which receives dopaminergic innervation from the substantia nigra and ventral tegmental area (cell groups A8, A9 and A10), has structural and functional subdivisions both rostrocaudally and dorsoventrally. These relate to motor and non-motor origins of cortical projections and the specific areas of the substantia nigra and ventral tegmental area providing dopaminergic innervation. In the present study, we have evaluated the distribution of a number of dopaminergic parameters in the caudate, putamen and nucleus accumbens at separate coronal levels in a post mortem study in a series of elderly normal individuals aged 55-94 years, with analysis of the effect of post mortem variables. Dopamine D1 receptor density displayed a rostrocaudally declining gradient in the putamen but not in the caudate, such that at levels posterior to the anterior commissure, there was significantly lower D1 binding in the putamen compared to the caudate. The density of dopamine D2 receptors was similar in the putamen and caudate, increasing rostrocaudally. The density of dopamine uptake sites exhibited an increasing rostrocaudal gradient in the caudate, especially ventrally, but not in the putamen, where binding was more constant. The dopamine D3 receptor was concentrated in the ventral striatum, particularly the nucleus accumbens, although there was no evidence of a rostrocaudal gradient. With respect to striosome-matrix compartmentalization, there was no complete segregation, although D1 and D3 receptors were concentrated in striosomes, whereas D2 receptors and uptake sites showed higher density in the matrix. Levels of dopamine were similar in the caudate and putamen, and were significantly elevated at levels including the nucleus accumbens and the anterior commissure. Homovanillic acid and the metabolic index (homovanillic acid/dopamine ratio) were significantly higher in the putamen compared to the caudate, especially at levels from and caudal to the anterior

  19. Identification, characterization, and developmental regulation of embryonic benzodiazepine binding sites

    SciTech Connect

    Borden, L.A.; Gibbs, T.T.; Farb, D.H.

    1987-06-01

    We report the identification and characterization of 2 classes of benzodiazepine binding sites in the embryonic chick CNS. Binding was examined by competition and saturation binding experiments, using as radioligands /sup 3/H-flunitrazepam, a classical benzodiazepine anxiolytic, and /sup 3/H-Ro5-4864, a convulsant benzodiazepine. The results demonstrate that high-affinity (KD = 2.3 nM) /sup 3/H-flunitrazepam binding sites (site-A) are present by embryonic day 5 (Hamburger and Hamilton stage 27) and increase throughout development (Bmax = 0.3 and 1.3 pmol/mg protein in 7 and 20 d brain membranes, respectively). When 7 or 20 d brain membranes are photoaffinity-labeled with /sup 3/H-flunitrazepam and ultraviolet light, the radioactivity migrates as 2 bands on SDS-PAGE, consistent with Mrs of 48,000 and 51,000. GABA potentiates /sup 3/H-flunitrazepam binding at both 7 and 20 d of development, indicating that site-A is coupled to receptors for GABA early in development. Importantly, we have also identified a novel site (site-B) that binds classical benzodiazepine agonists with low affinity (micromolar) but displays high affinity for Ro5-4864 (KD = 41 nM). Site-B displays characteristics expected for a functional receptor, including stereospecificity and sensitivity to inactivation by heat and protease treatment. Saturation binding studies employing /sup 3/H-Ro5-4864 indicate that the levels of site-B are similar in 7 and 20 d brain (ca. 2.5 pmol/mg protein). The function of site-B is not known, but its preponderance in 7 d brain, relative to site-A, suggests that it might be important during early embryonic development.

  20. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key

    PubMed Central

    Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) – a drug’s ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a

  1. Dynamic coupling of regulated binding sites and cycling myosin heads in striated muscle.

    PubMed

    Campbell, Kenneth S

    2014-03-01

    In an activated muscle, binding sites on the thin filament and myosin heads switch frequently between different states. Because the status of the binding sites influences the status of the heads, and vice versa, the binding sites and myosin heads are dynamically coupled. The functional consequences of this coupling were investigated using MyoSim, a new computer model of muscle. MyoSim extends existing models based on Huxley-type distribution techniques by incorporating Ca(2+) activation and cooperative effects. It can also simulate arbitrary cross-bridge schemes set by the researcher. Initial calculations investigated the effects of altering the relative speeds of binding-site and cross-bridge kinetics, and of manipulating cooperative processes. Subsequent tests fitted simulated force records to experimental data recorded using permeabilized myocardial preparations. These calculations suggest that the rate of force development at maximum activation is limited by myosin cycling kinetics, whereas the rate at lower levels of activation is limited by how quickly binding sites become available. Additional tests investigated the behavior of transiently activated cells by driving simulations with experimentally recorded Ca(2+) signals. The unloaded shortening profile of a twitching myocyte could be reproduced using a model with two myosin states, cooperative activation, and strain-dependent kinetics. Collectively, these results demonstrate that dynamic coupling of binding sites and myosin heads is important for contractile function.

  2. Imidazoline binding sites and receptors in cardiovascular tissue.

    PubMed

    Molderings, G J; Göthert, M

    1999-01-01

    1. Imidazoline binding sites and receptors and their endogenous ligands have been identified in cardiovascular tissue of various species including human beings. 2. I2- (but only exceptionally I1-)imidazoline binding sites have been shown to exist on cardiac myocytes and vascular smooth muscle cells; at present, their functional role is unknown. 3. The sympathetic nerves supplying the cardiovascular system are endowed with presynaptic inhibitory imidazoline receptors that may become of therapeutic relevance as targets of drugs. 4. ATP-sensitive K+ channels present in heart and blood vessels can be blocked by several imidazolines and guanidines; hence, those drugs can interfere with the cardioprotective effects resulting from K(ATP) channel activation by a decrease in the endogenous ligand ATP or by drugs. 5. Imidazoline derivatives exhibit antiarrhythmic properties that are due to a reduction of sympathetic tone by central and peripheral mechanisms and to blockade of postsynaptic alpha2-adrenoceptors in the heart and coronary arteries. 6. Agmatine and clonidine-displacing substance, which are endogenous ligands at imidazoline and alpha2-receptors, are present in the blood serum and appear to participate in vascular smooth muscle proliferation and blood pressure regulation.

  3. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    SciTech Connect

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  4. Aminoglycoside antibiotics: A-site specific binding to 16S

    NASA Astrophysics Data System (ADS)

    Baker, Erin Shammel; Dupuis, Nicholas F.; Bowers, Michael T.

    2009-06-01

    The A-site of 16S rRNA, which is a part of the 30S ribosomal subunit involved in prokaryotic translation, is a well known aminoglycoside binding site. Full characterization of the conformational changes undergone at the A-site upon aminoglycoside binding is essential for development of future RNA/drug complexes; however, the massiveness of 16S makes this very difficult. Recently, studies have found that a 27 base RNA construct (16S27) that comprises the A-site subdomain of 16S behaves similarly to the whole A-site domain. ESI-MS, ion mobility and molecular dynamics methods were utilized in this study to analyze the A-site of 16S27 before and after the addition of ribostamycin (R), paromomycin (P) and lividomycin (L). The ESI mass spectrum for 16S27 alone illustrated both single-stranded 16S27 and double-stranded (16S27)2 complexes. Upon aminoglycoside addition, the mass spectra showed that only one aminoglycoside binds to 16S27, while either one or two bind to (16S27)2. Ion mobility measurements and molecular dynamics calculations were utilized in determining the solvent-free structures of the 16S27 and (16S27)2 complexes. These studies found 16S27 in a hairpin conformation while (16S27)2 existed as a cruciform. Only one aminoglycoside binds to the single A-site of the 16S27 hairpin and this attachment compresses the hairpin. Since two A-sites exist for the (16S27)2 cruciform, either one or two aminoglycosides may bind. The aminoglycosides compress the A-sites causing the cruciform with just one aminoglycoside bound to be larger than the cruciform with two bound. Non-specific binding was not observed in any of the aminoglycoside/16S27 complexes.

  5. Molecular interactions of the gating modifier toxin ProTx-II with NaV 1.5: implied existence of a novel toxin binding site coupled to activation.

    PubMed

    Smith, Jaime J; Cummins, Theodore R; Alphy, Sujith; Blumenthal, Kenneth M

    2007-04-27

    Voltage-gated Na(+) channels are critical components in the generation of action potentials in excitable cells, but despite numerous structure-function studies on these proteins, their gating mechanism remains unclear. Peptide toxins often modify channel gating, thereby providing a great deal of information about these channels. ProTx-II is a 30-amino acid peptide toxin from the venom of the tarantula, Thrixopelma pruriens, that conforms to the inhibitory cystine knot motif and which modifies activation kinetics of Na(v) and Ca(v), but not K(v), channels. ProTx-II inhibits current by shifting the voltage dependence of activation to more depolarized potentials and, therefore, differs from the classic site 4 toxins that shift voltage dependence of activation in the opposite direction. Despite this difference in functional effects, ProTx-II has been proposed to bind to neurotoxin site 4 because it modifies activation. Here, we investigate the bioactive surface of ProTx-II by alanine-scanning the toxin and analyzing the interactions of each mutant with the cardiac isoform, Na(v)1.5. The active face of the toxin is largely composed of hydrophobic and cationic residues, joining a growing group of predominantly K(v) channel gating modifier toxins that are thought to interact with the lipid environment. In addition, we performed extensive mutagenesis of Na(v)1.5 to locate the receptor site with which ProTx-II interacts. Our data establish that, contrary to prior assumptions, ProTx-II does not bind to the previously characterized neurotoxin site 4, thus making it a novel probe of activation gating in Na(v) channels with potential to shed new light on this process.

  6. Identification of the TcpP-binding site in the toxT promoter of Vibrio cholerae and the role of ToxR in TcpP-mediated activation.

    PubMed

    Goss, Thomas J; Seaborn, Craig P; Gray, Miranda D; Krukonis, Eric S

    2010-10-01

    ToxR-dependent recruitment of TcpP to the toxT promoter facilitates toxT transcription in Vibrio cholerae, initiating a regulatory cascade that culminates in cholera toxin expression and secretion. Although TcpP usually requires ToxR to activate the toxT promoter, TcpP overexpression can circumvent the requirement for ToxR in this process. To define nucleotides critical for TcpP-dependent promoter recognition and activation, a series of toxT promoter derivatives with single-base-pair transversions spanning the TcpP-binding site were generated and used as plasmid-borne toxT-lacZ fusions, as DNA mobility shift targets, and as allelic replacements of the chromosomal toxT promoter. When present in ΔtoxR V. cholerae overexpressing TcpP, several transversions affecting nucleotides within two direct repeats present in the TcpP-binding region (TGTAA-N(6)-TGTAA) caused defects in TcpP-dependent toxT-lacZ fusion activation and toxin production. Electrophoretic mobility shift assays demonstrated that these same transversions reduced the affinity of the toxT promoter for TcpP. The presence of ToxR suppressed transcription activation defects associated with most, but not all, transversions. Particularly, the central thymine nucleotide of both pentameric repeats was essential for efficient toxT activation, even in the presence of ToxR. These results suggest that the toxT promoter recognition function provided by ToxR can facilitate the interaction of TcpP with the toxT promoter but is insufficient for promoter activation when the TcpP-binding site has been severely compromised by mutation. Thus, the interaction of TcpP with nucleotides of the direct repeat sequences appears to be a prerequisite for toxT promoter activation.

  7. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    SciTech Connect

    Zoghbi, M. E.; Altenberg, G. A.

    2013-10-15

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.

  8. Functional Analyses of Transcription Factor Binding Sites that Differ between Present-Day and Archaic Humans

    PubMed Central

    Weyer, Sven; Pääbo, Svante

    2016-01-01

    We analyze 25 previously identified transcription factor binding sites that carry DNA sequence changes that are present in all or nearly all present-day humans, yet occur in the ancestral state in Neandertals and Denisovans, the closest evolutionary relatives of humans. When the ancestral and derived forms of the transcription factor binding sites are tested using reporter constructs in 3 neuronal cell lines, the activity of 12 of the derived versions of transcription factor binding sites differ from the respective ancestral variants. This suggests that the majority of this class of evolutionary differences between modern humans and Neandertals may affect gene expression in at least some tissue or cell type. PMID:26454764

  9. Cooperative binding of an Ultrabithorax homeodomain protein to nearby and distant DNA sites.

    PubMed Central

    Beachy, P A; Varkey, J; Young, K E; von Kessler, D P; Sun, B I; Ekker, S C

    1993-01-01

    Cooperativity in binding of regulatory proteins to multiple DNA sites can heighten the sensitivity and specificity of the transcriptional response. We report here the cooperative DNA-binding properties of a developmentally active regulatory protein encoded by the Drosophila homeotic gene Ultrabithorax (Ubx). We show that naturally occurring binding sites for the Ubx-encoded protein contain clusters of multiple individual binding site sequences. Such sites can form complexes containing a dozen or more Ubx-encoded protein molecules, with simultaneous cooperative interactions between adjacent and distant DNA sites. The distant mode of interaction involves a DNA looping mechanism; both modes appear to enhance transcriptional activation in a simple yeast assay system. We found that cooperative binding is dependent on sequences outside the homeodomain, and we have identified regions predicted to form coiled coils carboxy terminal to the homeodomains of the Ubx-encoded protein and several other homeotic proteins. On the basis of our findings, we propose a multisite integrative model of homeotic protein action in which functional regulatory elements can be built from a few high-affinity sites, from many lower-affinity sites, or from sites of some intermediate number and affinity. An important corollary of this model is that even small differences in binding of homeotic proteins to individual sites could be summed to yield large overall differences in binding to multiple sites. This model is consistent with reports that homeodomain protein targets contain multiple individual binding site sequences distributed throughout sizable DNA regions. Also consistent is a recent report that sequences carboxy terminal to the Ubx homeodomain can contribute to segmental specificity. Images PMID:8105373

  10. Characterization of the DNA-binding domain and identification of the active site residue in the 'Gyr A' half of Leishmania donovani topoisomerase II.

    PubMed

    Sengupta, Tanushri; Mukherjee, Mandira; Das, Rakhee; Das, Aditi; Majumder, Hemanta K

    2005-01-01

    DNA topoisomerase II is a multidomain homodimeric enzyme that changes DNA topology by coupling ATP hydrolysis to the transport of one DNA helix through a transient double-stranded break in another. To investigate the biochemical properties of the individual domains of Leishmania donovani topoisomerase II, four truncation mutants were generated. Deletion of 178 aminoacids from the C-terminus (core and LdDeltaC1058) had no apparent effect on the DNA-binding or cleavage activities of the enzymes. However, when 429 aminoacids from the N-terminus and 451 aminoacids from the C-terminus were removed (LdDeltaNDeltaC), the enzyme was no longer active. Moreover, the removal of 429 aminoacids from the N-terminus (LdDeltaNDeltaC, core and LdDeltaN429) render the mutant proteins incapable of performing ATP hydrolysis. The mutant proteins show cleavage activities at wide range of KCl concentrations (25-350 mM). In addition, the mutant proteins, excepting LdDeltaNDeltaC, can also act on kDNA and linearize the minicircles. Surprisingly, the mutant proteins fail to show the formation of the enhanced cleavable complex in the presence of etoposide. Our findings suggest that the conformation required for interaction with the drug is absent in the mutant proteins. Here, we have also identified Tyr(775) through direct sequencing of the DNA linked peptide as the catalytic residue implicated in DNA-breakage and rejoining. Taken together, our results demonstrate that topoisomerase II are functionally and mechanistically conserved enzymes and the variations in activity seem to reflect functional optimization for its physiological role during parasite genome replication.

  11. Characterization of the DNA-binding domain and identification of the active site residue in the ‘Gyr A’ half of Leishmania donovani topoisomerase II

    PubMed Central

    Sengupta, Tanushri; Mukherjee, Mandira; Das, Rakhee; Das, Aditi; Majumder, Hemanta K.

    2005-01-01

    DNA topoisomerase II is a multidomain homodimeric enzyme that changes DNA topology by coupling ATP hydrolysis to the transport of one DNA helix through a transient double-stranded break in another. To investigate the biochemical properties of the individual domains of Leishmania donovani topoisomerase II, four truncation mutants were generated. Deletion of 178 aminoacids from the C-terminus (core and LdΔC1058) had no apparent effect on the DNA-binding or cleavage activities of the enzymes. However, when 429 aminoacids from the N-terminus and 451 aminoacids from the C-terminus were removed (LdΔNΔC), the enzyme was no longer active. Moreover, the removal of 429 aminoacids from the N-terminus (LdΔNΔC, core and LdΔN429) render the mutant proteins incapable of performing ATP hydrolysis. The mutant proteins show cleavage activities at wide range of KCl concentrations (25–350 mM). In addition, the mutant proteins, excepting LdΔNΔC, can also act on kDNA and linearize the minicircles. Surprisingly, the mutant proteins fail to show the formation of the enhanced cleavable complex in the presence of etoposide. Our findings suggest that the conformation required for interaction with the drug is absent in the mutant proteins. Here, we have also identified Tyr775 through direct sequencing of the DNA linked peptide as the catalytic residue implicated in DNA-breakage and rejoining. Taken together, our results demonstrate that topoisomerase II are functionally and mechanistically conserved enzymes and the variations in activity seem to reflect functional optimization for its physiological role during parasite genome replication. PMID:15860773

  12. Mg NMR in DNA solutions: Dominance of site binding effects.

    PubMed

    Rose, D M; Bleam, M L; Record, M T; Bryant, R G

    1980-11-01

    (25)Mg NMR spectroscopy is applied to a study of magnesium ion interactions with DNA, which is considered as a model for a linear polyelectrolyte. It is demonstrated that the magnesium ion spectrum is complicated by a non-Lorent-zian line shape and is dominated by the effects of chemical exchange with macromolecule binding sites. A distinction is made between specific-site interactions in which the magnesium ion loses a water molecule from the first coordination sphere on binding and those interactions, referred to as territorial binding, in which the ion maintains its first coordination sphere complement of solvent. The first type of site-binding interactions are shown to dominate the magnesium ion NMR spectrum, based on a consideration of the magnitudes of the observed (25)Mg relaxation rates compared with (23)Na relaxation rates, the clear contributions of chemical exchange-limited relaxation, and an ion displacement experiment employing sodium.

  13. Site-specific replacement of the thymine methyl group by fluorine in thrombin binding aptamer significantly improves structural stability and anticoagulant activity

    PubMed Central

    Virgilio, Antonella; Petraccone, Luigi; Vellecco, Valentina; Bucci, Mariarosaria; Varra, Michela; Irace, Carlo; Santamaria, Rita; Pepe, Antonietta; Mayol, Luciano; Esposito, Veronica; Galeone, Aldo

    2015-01-01

    Here we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy, molecular modelling, differential scanning calorimetry and prothrombin time assay, on analogues of the thrombin binding aptamer (TBA) in which individual thymidines were replaced by 5-fluoro-2′-deoxyuridine residues. The whole of the data clearly indicate that all derivatives are able to fold in a G-quadruplex structure very similar to the ‘chair-like’ conformation typical of the TBA. However, only ODNs TBA-F4 and TBA-F13 have shown a remarkable improvement both in the melting temperature (ΔTm ≈ +10) and in the anticoagulant activity in comparison with the original TBA. These findings are unusual, particularly considering previously reported studies in which modifications of T4 and T13 residues in TBA sequence have clearly proven to be always detrimental for the structural stability and biological activity of the aptamer. Our results strongly suggest the possibility to enhance TBA properties through tiny straightforward modifications. PMID:26582916

  14. Nucleotide Binding Site Communication in Arabidopsis thaliana Adenosine 5;-Phosphosulfate Kinase

    SciTech Connect

    Ravilious, Geoffrey E.; Jez, Joseph M.

    2012-08-31

    Adenosine 5{prime}-phosphosulfate kinase (APSK) catalyzes the ATP-dependent synthesis of adenosine 3{prime}-phosphate 5{prime}-phosphosulfate (PAPS), which is an essential metabolite for sulfur assimilation in prokaryotes and eukaryotes. Using APSK from Arabidopsis thaliana, we examine the energetics of nucleotide binary and ternary complex formation and probe active site features that coordinate the order of ligand addition. Calorimetric analysis shows that binding can occur first at either nucleotide site, but that initial interaction at the ATP/ADP site was favored and enhanced affinity for APS in the second site by 50-fold. The thermodynamics of the two possible binding models (i.e. ATP first versus APS first) differs and implies that active site structural changes guide the order of nucleotide addition. The ligand binding analysis also supports an earlier suggestion of intermolecular interactions in the dimeric APSK structure. Crystallographic, site-directed mutagenesis, and energetic analyses of oxyanion recognition by the P-loop in the ATP/ADP binding site and the role of Asp136, which bridges the ATP/ADP and APS/PAPS binding sites, suggest how the ordered nucleotide binding sequence and structural changes are dynamically coordinated for catalysis.

  15. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    SciTech Connect

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. )

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  16. SiteLight: binding-site prediction using phage display libraries.

    PubMed

    Halperin, Inbal; Wolfson, Haim; Nussinov, Ruth

    2003-07-01

    Phage display enables the presentation of a large number of peptides on the surface of phage particles. Such libraries can be tested for binding to target molecules of interest by means of affinity selection. Here we present SiteLight, a novel computational tool for binding site prediction using phage display libraries. SiteLight is an algorithm that maps the 1D peptide library onto a three-dimensional (3D) protein surface. It is applicable to complexes made up of a protein Template and any type of molecule termed Target. Given the three-dimensional structure of a Template and a collection of sequences derived from biopanning against the Target, the Template interaction site with the Target is predicted. We have created a large diverse data set for assessing the ability of SiteLight to correctly predict binding sites. SiteLight predictive mapping enables discrimination between the binding and nonbinding parts of the surface. This prediction can be used to effectively reduce the surface by 75% without excluding the binding site. In 63% of the cases we have tested, there is at least one binding site prediction that overlaps the interface by at least 50%. These results suggest the applicability of phage display libraries for automated binding site prediction on three-dimensional structures. For most effective binding site prediction we propose using a random phage display library twice, to scan both binding partners of a given complex. The derived peptides are mapped to the other binding partner (now used as a Template). Here, the surface of each partner is reduced by 75%, focusing their relative positions with respect to each other significantly. Such information can be utilized to improve docking algorithms and scoring functions.

  17. Genome wide features, distribution and correlations of NF-Y binding sites.

    PubMed

    Zambelli, Federico; Pavesi, Giulio

    2016-10-18

    NF-Y is a trimeric transcription factor that binds on DNA the CCAAT-box motif. In this article we reviewed and complemented with additional bioinformatic analysis existing data on genome-wide NF-Y binding characterization in human, reaching the following main conclusions: (1) about half of NF-Y binding sites are located at promoters, about 60-80 base pairs from transcription start sites; NF-Y binding to distal genomic regions takes place at inactive chromatin loci and/or DNA repetitive elements more often than active enhancers; (2) on almost half of its binding sites, regardless of their genomic localization (promoters or distal regions), NF-Y finds on DNA more than one CCAAT-box, and most of those multiple CCAAT binding loci present precise spacing and organization of the elements composing them; (3) there exists a well defined class of transcription factors that show genome-wide co-localization with NF-Y. Some of them lack their canonical binding site in binding regions overlapping with NF-Y, hence hinting at NF-Y mediated recruitment, while others show a precise positioning on DNA of their binding sites with respect to the CCAAT box bound by NF-Y. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.

  18. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  19. Increasing the binding affinity of VEGFR-2 inhibitors by extending their hydrophobic interaction with the active site: Design, synthesis and biological evaluation of 1-substituted-4-(4-methoxybenzyl)phthalazine derivatives.

    PubMed

    Eldehna, Wagdy M; Abou-Seri, Sahar M; El Kerdawy, Ahmed M; Ayyad, Rezk R; Hamdy, Abdallah M; Ghabbour, Hazem A; Ali, Mamdouh M; Abou El Ella, Dalal A

    2016-05-04

    A series of anilinophthalazine derivatives 4a-j was initially synthesized and tested for its VEGFR-2 inhibitory activity where it showed promising activity (IC50 = 0.636-5.76 μM). Molecular docking studies guidance was used to improve the binding affinity for series 4a-j towards VEGFR-2 active site. This improvement was achieved by increasing the hydrophobic interaction with the hydrophobic back pocket of the VEGFR-2 active site lined with the hydrophobic side chains of Ile888, Leu889, Ile892, Val898, Val899, Leu1019 and Ile1044. Increasing the hydrophobic interaction was accomplished by extending the anilinophthalazine scaffold with a substituted phenyl moiety through an uriedo linker which should give this extension the flexibility required to accommodate itself deeply into the hydrophobic back pocket. As planned, the designed uriedo-anilinophthalazines 7a-i showed superior binding affinity than their anilinophthalazine parents (IC50 = 0.083-0.473 μM). In particular, compounds 7g-i showed IC50 of 0.086, 0.083 and 0.086 μM, respectively, which are better than that of the reference drug sorafenib (IC50 = 0.09 μM).

  20. Characterisation of imidazoline I2 binding sites in pig brain.

    PubMed

    Anderson, Neil J; Lupo, Patrick A; Nutt, David J; Hudson, Alan L; Robinson, Emma S J

    2005-09-05

    The imidazoline I2 binding sites in the central nervous system have previously been described in several different species including rat, mouse, rabbit and frog. The present study has investigated the imidazoline I2 binding site, and its relationship to the monoamine oxidase isoforms, in pig whole brain and compared the results obtained with data from other species. Results from saturation binding studies revealed that the imidazoline I2-selective ligand, [3H]2BFI (2-(2-benzofuranyl)-2-imidazoline) labelled a single saturable population of sites with a KD=6.6 nM and Bmax=771.7 fmol/mg protein. The pharmacological characterisation of the sites was similar to that previously reported with a rank order of potency for the imidazoline I2 ligands of 2BFI>BU224>Idazoxan>BU226. Displacement by the imidazoline I1 ligands was low affinity and the monoamine oxidase inhibitors displaced with micromolar affinity. The majority of compounds displaced the binding in a monophasic manner, however, displacement by the putative endogenous ligand, harmane was biphasic. The relative populations of the two monoamine oxidase isoforms revealed a 10 fold greater expression of monoamine oxidase B relative to monoamine oxidase A. These data confirm the presence of imidazoline I2 binding sites in pig brain and show that their pharmacology is characteristic of that seen in other species. The proportion of monoamine oxidase A and B expressed in the pig brain is similar to that seen in the human brain therefore, given the association between imidazoline I2 binding sites and monoamine oxidase, the pig may provide a more useful model for human imidazoline I2 binding sites than other species such as the rat.

  1. Characterization of Staphylococcus aureus SarA binding sites.

    PubMed

    Sterba, Kristen M; Mackintosh, Samuel G; Blevins, Jon S; Hurlburt, Barry K; Smeltzer, Mark S

    2003-08-01

    The staphylococcal accessory regulator locus (sarA) encodes a DNA-binding protein (SarA) that modulates expression of over 100 genes. Whether this occurs via a direct interaction between SarA and cis elements associated with its target genes is unclear, partly because the definitive characteristics of a SarA binding site have not been identified. In this work, electrophoretic mobility shift assays (EMSAs) were used to identify a SarA binding site(s) upstream of the SarA-regulated gene cna. The results suggest the existence of multiple high-affinity binding sites within the cna promoter region. Using a SELEX (systematic evolution of ligands by exponential enrichment) procedure and purified, recombinant SarA, we also selected DNA targets that contain a high-affinity SarA binding site from a random pool of DNA fragments. These fragments were subsequently cloned and sequenced. Randomly chosen clones were also examined by EMSA. These DNA fragments bound SarA with affinities comparable to those of recognized SarA-regulated genes, including cna, fnbA, and sspA. The composition of SarA-selected DNAs was AT rich, which is consistent with the nucleotide composition of the Staphylococcus aureus genome. Alignment of selected DNAs revealed a 7-bp consensus (ATTTTAT) that was present with no more than one mismatch in 46 of 56 sequenced clones. By using the same criteria, consensus binding sites were also identified upstream of the S. aureus genes spa, fnbA, sspA, agr, hla, and cna. With the exception of cna, which has not been previously examined, this 7-bp motif was within the putative SarA binding site previously associated with each gene.

  2. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  3. Modeling lanthanide series binding sites on humic acid.

    PubMed

    Pourret, Olivier; Martinez, Raul E

    2009-02-01

    Lanthanide (Ln) binding to humic acid (HA) has been investigated by combining ultrafiltration and ICP-MS techniques. A Langmuir-sorption-isotherm metal-complexation model was used in conjunction with a linear programming method (LPM) to fit experimental data representing various experimental conditions both in HA/Ln ratio (varying between 5 and 20) and in pH range (from 2 to 10) with an ionic strength of 10(-3) mol L(-1). The LPM approach, not requiring prior knowledge of surface complexation parameters, was used to solve the existing discrepancies in LnHA binding constants and site densities. The application of the LPM to experimental data revealed the presence of two discrete metal binding sites at low humic acid concentrations (5 mg L(-1)), with log metal complexation constants (logK(S,j)) of 2.65+/-0.05 and 7.00 (depending on Ln). The corresponding site densities were 2.71+/-0.57x10(-8) and 0.58+/-0.32x10(-8) mol of Ln(3+)/mg of HA (depending on Ln). Total site densities of 3.28+/-0.28x10(-8), 4.99+/-0.02x10(-8), and 5.01+/-0.01x10(-8) mol mg(-1) were obtained by LPM for humic acid, for humic acid concentrations of 5, 10, and 20 mg L(-1), respectively. These results confirm that lanthanide binding occurs mainly at weak sites (i.e., ca. 80%) and second at strong sites (i.e., ca. 20%). The first group of discrete metal binding sites may be attributed to carboxylic groups (known to be the main binding sites of Ln in HA), and the second metal binding group to phenolic moieties. Moreover, this study evidences heterogeneity in the distribution of the binding sites among Ln. Eventually, the LPM approach produced feasible and reasonable results, but it was less sensitive to error and did not require an a priori assumption of the number and concentration of binding sites.

  4. Structures of Cytochrome P450 2B6 Bound to 4-Benzylpyridine and 4-(4-Nitrobenzyl)pyridine: Insight into Inhibitor Binding and Rearrangement of Active Site Side Chains

    PubMed Central

    Pascual, Jaime; Zhang, Qinghai; Stout, C. David; Halpert, James R.

    2011-01-01

    The biochemical, biophysical, and structural analysis of the cytochrome P450 2B subfamily of enzymes has provided a wealth of information regarding conformational plasticity and substrate recognition. The recent X-ray crystal structure of the drug-metabolizing P450 2B6 in complex with 4-(4-chlorophenyl)imidazole (4-CPI) yielded the first atomic view of this human enzyme. However, knowledge of the structural basis of P450 2B6 specificity and inhibition has remained limited. In this study, structures of P450 2B6 were determined in complex with the potent inhibitors 4-benzylpyridine (4-BP) and 4-(4-nitrobenzyl)pyridine (4-NBP). Comparison of the present structures with the previous P450 2B6-4-CPI complex showed that reorientation of side chains of the active site residue Phe206 on the F-helix and Phe297 on the I-helix was necessary to accommodate the inhibitors. However, P450 2B6 does not require any major side chain rearrangement to bind 4-NBP compared with 4-BP, and the enzyme provides no hydrogen-bonding partners for the polar nitro group of 4-NBP within the hydrophobic active site. In addition, on the basis of these new structures, substitution of residue 172 with histidine as observed in the single nucleotide polymorphism Q172H and in P450 2B4 may contribute to a hydrogen bonding network connecting the E- and I-helices, thereby stabilizing active site residues on the I-helix. These results provide insight into the role of active site side chains upon inhibitor binding and indicate that the recognition of the benzylpyridines in the closed conformation structure of P450 2B6 is based solely on hydrophobicity, size, and shape. PMID:21875942

  5. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    PubMed

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase.

  6. ZNF555 protein binds to transcriptional activator site of 4qA allele and ANT1: potential implication in Facioscapulohumeral dystrophy

    PubMed Central

    Kim, Elena; Rich, Jeremy; Karoutas, Adam; Tarlykov, Pavel; Cochet, Emilie; Malysheva, Daria; Mamchaoui, Kamel; Ogryzko, Vasily; Pirozhkova, Iryna

    2015-01-01

    Facioscapulohumeral dystrophy (FSHD) is an epi/genetic satellite disease associated with at least two satellite sequences in 4q35: (i) D4Z4 macrosatellite and (ii) β-satellite repeats (BSR), a prevalent part of the 4qA allele. Most of the recent FSHD studies have been focused on a DUX4 transcript inside D4Z4 and its tandem contraction in FSHD patients. However, the D4Z4-contraction alone is not pathological, which would also require the 4qA allele. Since little is known about BSR, we investigated the 4qA BSR functional role in the transcriptional control of the FSHD region 4q35. We have shown that an individual BSR possesses enhancer activity leading to activation of the Adenine Nucleotide Translocator 1 gene (ANT1), a major FSHD candidate gene. We have identified ZNF555, a previously uncharacterized protein, as a putative transcriptional factor highly expressed in human primary myoblasts that interacts with the BSR enhancer site and impacts the ANT1 promoter activity in FSHD myoblasts. The discovery of the functional role of the 4qA allele and ZNF555 in the transcriptional control of ANT1 advances our understanding of FSHD pathogenesis and provides potential therapeutic targets. PMID:26184877

  7. ZNF555 protein binds to transcriptional activator site of 4qA allele and ANT1: potential implication in Facioscapulohumeral dystrophy.

    PubMed

    Kim, Elena; Rich, Jeremy; Karoutas, Adam; Tarlykov, Pavel; Cochet, Emilie; Malysheva, Daria; Mamchaoui, Kamel; Ogryzko, Vasily; Pirozhkova, Iryna

    2015-09-30

    Facioscapulohumeral dystrophy (FSHD) is an epi/genetic satellite disease associated with at least two satellite sequences in 4q35: (i) D4Z4 macrosatellite and (ii) β-satellite repeats (BSR), a prevalent part of the 4qA allele. Most of the recent FSHD studies have been focused on a DUX4 transcript inside D4Z4 and its tandem contraction in FSHD patients. However, the D4Z4-contraction alone is not pathological, which would also require the 4qA allele. Since little is known about BSR, we investigated the 4qA BSR functional role in the transcriptional control of the FSHD region 4q35. We have shown that an individual BSR possesses enhancer activity leading to activation of the Adenine Nucleotide Translocator 1 gene (ANT1), a major FSHD candidate gene. We have identified ZNF555, a previously uncharacterized protein, as a putative transcriptional factor highly expressed in human primary myoblasts that interacts with the BSR enhancer site and impacts the ANT1 promoter activity in FSHD myoblasts. The discovery of the functional role of the 4qA allele and ZNF555 in the transcriptional control of ANT1 advances our understanding of FSHD pathogenesis and provides potential therapeutic targets.

  8. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites.

    PubMed

    Dian, Cyril; Vitale, Sylvia; Leonard, Gordon A; Bahlawane, Christelle; Fauquant, Caroline; Leduc, Damien; Muller, Cécile; de Reuse, Hilde; Michaud-Soret, Isabelle; Terradot, Laurent

    2011-03-01

    Fur, the ferric uptake regulator, is a transcription factor that controls iron metabolism in bacteria. Binding of ferrous iron to Fur triggers a conformational change that activates the protein for binding to specific DNA sequences named Fur boxes. In Helicobacter pylori, HpFur is involved in acid response and is important for gastric colonization in model animals. Here we present the crystal structure of a functionally active HpFur mutant (HpFur2M; C78S-C150S) bound to zinc. Although its fold is similar to that of other Fur and Fur-like proteins, the crystal structure of HpFur reveals a unique structured N-terminal extension and an unusual C-terminal helix. The structure also shows three metal binding sites: S1 the structural ZnS₄ site previously characterized biochemically in HpFur and the two zinc sites identified in other Fur proteins. Site-directed mutagenesis and spectroscopy analyses of purified wild-type HpFur and various mutants show that the two metal binding sites common to other Fur proteins can be also metallated by cobalt. DNA protection and circular dichroism experiments demonstrate that, while these two sites influence the affinity of HpFur for DNA, only one is absolutely required for DNA binding and could be responsible for the conformational changes of Fur upon metal binding while the other is a secondary site.

  9. Probing binding hot spots at protein–RNA recognition sites

    PubMed Central

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-01

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein–RNA interfaces to probe the binding hot spots at protein–RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein–protein and protein–RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein–RNA recognition sites with desired affinity. PMID:26365245

  10. Probing binding hot spots at protein-RNA recognition sites.

    PubMed

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity.

  11. Gaussian mapping of chemical fragments in ligand binding sites

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Murcia, Marta; Constans, Pere; Pérez, Carlos; Ortiz, Angel R.

    2004-02-01

    We present a new approach to automatically define a quasi-optimal minimal set of pharmacophoric points mapping the interaction properties of a user-defined ligand binding site. The method is based on a fitting algorithm where a grid of sampled interaction energies of the target protein with small chemical fragments in the binding site is approximated by a linear expansion of Gaussian functions. A heuristic approximation selects from this expansion the smallest possible set of Gaussians required to describe the interaction properties of the binding site within a prespecified accuracy. We have evaluated the performance of the approach by comparing the computed Gaussians with the positions of aromatic sites found in experimental protein-ligand complexes. For a set of 53 complexes, good correspondence is found in general. At a 95% significance level, ˜65% of the predicted interaction points have an aromatic binding site within 1.5 Å. We then studied the utility of these points in docking using the program DOCK. Short docking times, with an average of ˜0.18 s per conformer, are obtained, while retaining, both for rigid and flexible docking, the ability to sample native-like binding modes for the ligand. An average 4-5-fold speed-up in docking times and a similar success rate is estimated with respect to the standard DOCK protocol. Abbreviations: RMSD - root mean square deviation; ASA - Atomic Shell Approximation; LSF - Least-Squares Fitting; 3D - three-dimensional; VDW - Van der Waals.

  12. Internal binding sites for MSH: Analyses in wild-type and variant Cloudman melanoma cells

    SciTech Connect

    Orlow, S.J.; Hotchkiss, S.; Pawelek, J.M. )

    1990-01-01

    Cloudman S91 mouse melanoma cells express both external (plasma membrane) and internal binding sites for MSH. Using 125I-beta melanotropin (beta-MSH) as a probe, we report here an extensive series of studies on the biological relevance of these internal sites. Cells were swollen in a hypotonic buffer and lysed, and a particulate fraction was prepared by high-speed centrifugation. This fraction was incubated with 125I-beta-MSH with or without excess nonradioactive beta-MSH in the cold for 2 hours. The material was then layered onto a step-wise sucrose gradient and centrifuged; fractions were collected and counted in a gamma counter or assayed for various enzymatic activities. The following points were established: (1) Specific binding sites for MSH were observed sedimenting at an average density of 50% sucrose in amelanotic cells and at higher densities in melanotic cells. (2) These sites were similar in density to those observed when intact cells were labeled externally with 125I-beta-MSH and then warmed to promote internalization of the hormone. (3) Most of the internal binding sites were not as dense as fully melanized melanosomes. (4) In control experiments, the MSH binding sites were not found in cultured hepatoma cells. (5) Variant melanoma cells, which differed from the wild-type in their responses to MSH, had reduced expression of internal binding sites even though their ability to bind MSH to the outer cell surface appeared normal. (MSH-induced responses included changes in tyrosinase, dopa oxidase, and dopachrome conversion factor activities, melanization, proliferation, and morphology.) (6) Isobutylmethylxanthine, which enhanced cellular responsiveness to MSH, also enhanced expression of internal binding sites. The results indicate that expression of internal binding sites for MSH is an important criterion for cellular responsiveness to the hormone.

  13. Identification of ligands that target the HCV-E2 binding site on CD81

    NASA Astrophysics Data System (ADS)

    Olaby, Reem Al; Azzazy, Hassan M.; Harris, Rodney; Chromy, Brett; Vielmetter, Jost; Balhorn, Rod

    2013-04-01

    Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.

  14. Functional impact of HIV coreceptor-binding site mutations

    SciTech Connect

    Biscone, Mark J.; Miamidian, John L.; Muchiri, John M.; Baik, Sarah S.W.; Lee, Fang-Hua; Doms, Robert W. . E-mail: doms@mail.med.upenn.edu; Reeves, Jacqueline D. . E-mail: jreeves@MonogramBio.com

    2006-07-20

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner.

  15. Insulin binding sites in various segments of the rabbit nephron

    SciTech Connect

    Nakamura, R.; Emmanouel, D.S.; Katz, A.I.

    1983-07-01

    Insulin binds specifically to basolateral renal cortical membranes and modifies tubular electrolyte transport, but the target sites of this hormone in the nephron have not been identified. Using a microassay that permits measurement of hormone binding in discrete tubule segments we have determined the binding sites of /sup 125/I-insulin along the rabbit nephron. Assays were performed under conditions that minimize insulin degradation, and specific binding was measured as the difference between /sup 125/I-insulin bound in the presence or absence of excess (10(-5) M) unlabeled hormone. Insulin monoiodinated in position A14 was used in all assays. Specific insulin binding (attomol . cm-1 +/- SE) was highest in the distal convoluted tubule (180.5 +/- 15.0) and medullary thick ascending limb of Henle's loop (132.9 +/- 14.6), followed by the proximal convoluted and straight tubule. When expressed per milligram protein, insulin binding capacity was highest along the entire thick ascending limb (medullary and cortical portions) and the distal convoluted tubule, i.e., the ''diluting segment'' (congruent to 10(-13) mol . mg protein-1), and was lower (congruent to 4 X 10(-14) mol . mg protein-1), and remarkably similar, in all other nephron segments. Binding specificity was verified in competition studies with unlabeled insulin, insulin analogues (proinsulin and desoctapeptide insulin), and unrelated hormones (glucagon, 1-34 parathyroid hormone, prolactin, follicle-stimulating hormone). In addition, serum containing antiinsulin receptor antibody from two patients with type B insulin resistance syndrome markedly inhibited insulin binding to isolated tubules. Whether calculated per unit tubule length or protein content, insulin binding is highest in the thick ascending limb and the distal convoluted tubule, the same nephron sites where a regulatory role in sodium transport has been postulated for this hormone.

  16. Binding of Bacillus thuringiensis Cry1 Toxins to the Midgut Brush Border Membrane Vesicles of Chilo suppressalis (Lepidoptera: Pyralidae): Evidence of Shared Binding Sites

    PubMed Central

    Fiuza, L.; Nielsen-Leroux, C.; Goze, E.; Frutos, R.; Charles, J.

    1996-01-01

    Binding and competition among Cry1Aa, Cry1Ac, and Cry1Ba toxins were analyzed quantitatively in vitro by using (sup125)I-labeled activated toxins and brush border membrane vesicles isolated from Chilo suppressalis larval midguts. The three toxins bound specifically to the midgut brush border membrane vesicles. Direct binding experiments showed that Cry1Aa and Cry1Ba recognized a single class of binding sites with different affinities, whereas Cry1Aa recognized two classes of binding sites, one with a high affinity and a low concentration and the other with a lower affinity but higher concentration. Competition experiments showed that toxins Cry1Ac and Cry1Ba shared a binding site in the C. suppressalis midgut membranes and that this site was also the low-affinity binding site for Cry1Aa. PMID:16535306

  17. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression.

    PubMed

    Jones, Bart G; Penkert, Rhiannon R; Xu, Beisi; Fan, Yiping; Neale, Geoff; Gearhart, Patricia J; Hurwitz, Julia L

    2016-09-01

    Females and males differ in antibody isotype expression patterns and in immune responses to foreign- and self-antigens. For example, systemic lupus erythematosus is a condition that associates with the production of isotype-skewed anti-self antibodies, and exhibits a 9:1 female:male disease ratio. To explain differences between B cell responses in males and females, we sought to identify direct interactions of the estrogen receptor (ER) with the immunoglobulin heavy chain locus. This effort was encouraged by our previous identification of estrogen response elements (ERE) in heavy chain switch (S) regions. We conducted a full-genome chromatin immunoprecipitation analysis (ChIP-seq) using DNA from LPS-activated B cells and an ERα-specific antibody. Results revealed ER binding to a wide region of DNA, spanning sequences from the JH cluster to Cδ, with peaks in Eμ and Sμ sites. Additional peaks of ERα binding were coincident with hs1,2 and hs4 sites in the 3' regulatory region (3'RR) of the heavy chain locus. This first demonstration of direct binding of ER to key regulatory elements in the immunoglobulin locus supports our hypothesis that estrogen and other nuclear hormone receptors and ligands may directly influence antibody expression and class switch recombination (CSR). Our hypothesis encourages the conduct of new experiments to evaluate the consequences of ER binding. A better understanding of ER:DNA interactions in the immunoglobulin heavy chain locus, and respective mechanisms, may ultimately translate to better control of antibody expression, better protection against pathogens, and prevention of pathologies caused by auto-immune disease.

  18. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites

    PubMed Central

    Pineda-Molina, Estela; Reyes-Darias, José-Antonio; Lacal, Jesús; Ramos, Juan L.; García-Ruiz, Juan Manuel; Gavira, Jose A.; Krell, Tino

    2012-01-01

    Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate. PMID:23112148

  19. Relations between high-affinity binding sites of markers for binding regions on human serum albumin.

    PubMed Central

    Kragh-Hansen, U

    1985-01-01

    Binding of warfarin, digitoxin, diazepam, salicylate and Phenol Red, individually or in different pair combinations, to defatted human serum albumin at ligand/protein molar ratios less than 1:1 was studied at pH 7.0. The binding was determined by ultrafiltration. Some of the experiments were repeated with the use of equilibrium dialysis in order to strengthen the results. Irrespective of the method used, all ligands bind to one high-affinity binding site with an association constant in the range 10(4)-10(6) M-1. High-affinity binding of the following pair of ligands took place independently: warfarin-Phenol Red, warfarin-diazepam, warfarin-digitoxin and digitoxin-diazepam. Simultaneous binding of warfarin and salicylate led to a mutual decrease in binding of one another, as did simultaneous binding of digitoxin and Phenol Red. Both effects could be accounted for by a coupling constant. The coupling constant is the factor by which the primary association constants are affected; in these examples of anti-co-operativity the factor has a value between 0 and 1. In the first example it was calculated to be 0.8 and in the latter 0.5. Finally, digitoxin and salicylate were found to compete for a common high-affinity binding site. The present findings support the proposal of four separate primary binding sites for warfarin, digitoxin (and salicylate), diazepam and Phenol Red. An attempt to correlate this partial binding model for serum albumin with other models in the literature is made. PMID:3977850

  20. Phosphorylation at Ser²⁶ in the ATP-binding site of Ca²⁺/calmodulin-dependent kinase II as a mechanism for switching off the kinase activity.

    PubMed

    Yilmaz, Mehtap; Gangopadhyay, Samudra S; Leavis, Paul; Grabarek, Zenon; Morgan, Kathleen G

    2013-02-07

    CaMKII (Ca²⁺/calmodulin-dependent kinase II) is a serine/threonine phosphotransferase that is capable of long-term retention of activity due to autophosphorylation at a specific threonine residue within each subunit of its oligomeric structure. The γ isoform of CaMKII is a significant regulator of vascular contractility. Here, we show that phosphorylation of CaMKII γ at Ser²⁶, a residue located within the ATP-binding site, terminates the sustained activity of the enzyme. To test the physiological importance of phosphorylation at Ser²⁶, we generated a phosphospecific Ser²⁶ antibody and demonstrated an increase in Ser²⁶ phosphorylation upon depolarization and contraction of blood vessels. To determine if the phosphorylation of Ser²⁶ affects the kinase activity, we mutated Ser²⁶ to alanine or aspartic acid. The S26D mutation mimicking the phosphorylated state of CaMKII causes a dramatic decrease in Thr²⁸⁷ autophosphorylation levels and greatly reduces the catalytic activity towards an exogenous substrate (autocamtide-3), whereas the S26A mutation has no effect. These data combined with molecular modelling indicate that a negative charge at Ser²⁶ of CaMKII γ inhibits the catalytic activity of the enzyme towards its autophosphorylation site at Thr²⁸⁷ most probably by blocking ATP binding. We propose that Ser²⁶ phosphorylation constitutes an important mechanism for switching off CaMKII activity.

  1. Synthetic human serum albumin Sudlow I binding site mimics.

    PubMed

    Karlsson, Björn C G; Rosengren, Annika M; Näslund, Inga; Andersson, Per Ola; Nicholls, Ian A

    2010-11-25

    Here, we report the design, synthesis, and characterization of molecularly imprinted polymer (MIP) derived mimics of the human serum albumin (HSA) Sudlow I site-the binding site for the anticoagulant warfarin. MIP design was based upon a combination of experimental ((1)H NMR) and computational (molecular dynamics) methods. Two MIPs and corresponding nonimprinted reference polymers were synthesized and characterized (scanning electron microscopy; nitrogen sorption; and Fourier transform infrared spectroscopy). MIP-ligand recognition was examined using radioligand binding studies, where the largest number of selective sites was found in a warfarin-imprinted methacrylic acid-ethylene dimethacrylate copolymer (MAA-MIP). The warfarin selectivity of this MIP was confirmed using radioligand displacement and zonal chromatographic studies. A direct comparison of MIP-warfarin binding characteristics with those of the HSA Sudlow I binding site was made, and similarities in site population (per gram polymer or protein) and affinities were observed. The warfarin selectivity of the MIP suggests its potential for use as a recognition element in a MIP-based warfarin sensor and even as a model to aid in understanding and steering blood-plasma protein-regulated transport processes or even for the development of warfarin sensors.

  2. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.

    PubMed

    Sage, Jay M; Cura, Anthony J; Lloyd, Kenneth P; Carruthers, Anthony

    2015-05-15

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites-the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis.

  3. Tamoxifen increases nuclear respiratory factor 1 transcription by activating estrogen receptor beta and AP-1 recruitment to adjacent promoter binding sites.

    PubMed

    Ivanova, Margarita M; Luken, Kristen H; Zimmer, Amber S; Lenzo, Felicia L; Smith, Ryan J; Arteel, Maia W; Kollenberg, Tara J; Mattingly, Kathleen A; Klinge, Carolyn M

    2011-04-01

    Little is known about endogenous estrogen receptor β (ERβ) gene targets in human breast cancer. We reported that estradiol (E(2)) induces nuclear respiratory factor-1 (NRF-1) transcription through ERα in MCF-7 breast cancer cells. Here we report that 4-hydroxytamoxifen (4-OHT), with an EC(50) of ~1.7 nM, increases NRF-1 expression by recruiting ERβ, cJun, cFos, CBP, and RNA polymerase II to and dismissing NCoR from the NRF1 promoter. Promoter deletion and transient transfection studies showed that the estrogen response element (ERE) is essential and that an adjacent AP-1 site contributes to maximal 4-OHT-induced NRF-1 transcription. siRNA knockdown of ERβ revealed that ERβ inhibits basal NRF-1 expression and is required for 4-OHT-induced NRF-1 transcription. An AP-1 inhibitor blocked 4-OHT-induced NRF-1 expression. The 4-OHT-induced increase in NRF-1 resulted in increased transcription of NRF-1 target CAPNS1 but not CYC1, CYC2, or TFAM despite increased NRF-1 coactivator PGC-1α protein. The absence of TFAM induction corresponds to a lack of Akt-dependent phosphorylation of NRF-1 with 4-OHT treatment. Overexpression of NRF-1 inhibited 4-OHT-induced apoptosis and siRNA knockdown of NRF-1 increased apoptosis, indicating an antiapoptotic role for NRF-1. Overall, NRF-1 expression and activity is regulated by 4-OHT via endogenous ERβ in MCF-7 cells.

  4. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation

    PubMed Central

    Connell, Bridgette Janine; Chang, Sui-Yuan; Prakash, Ekambaranellore; Yousfi, Rahima; Mohan, Viswaraman; Posch, Wilfried; Wilflingseder, Doris; Moog, Christiane; Kodama, Eiichi N.; Clayette, Pascal; Lortat-Jacob, Hugues

    2016-01-01

    Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1–7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS) as well as to an antibody (mAb 17b) directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1. PMID:27788205

  5. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements.

  6. GE23077 binds to the RNA polymerase ‘i’ and ‘i+1’ sites and prevents the binding of initiating nucleotides

    PubMed Central

    Zhang, Yu; Degen, David; Ho, Mary X; Sineva, Elena; Ebright, Katherine Y; Ebright, Yon W; Mekler, Vladimir; Vahedian-Movahed, Hanif; Feng, Yu; Yin, Ruiheng; Tuske, Steve; Irschik, Herbert; Jansen, Rolf; Maffioli, Sonia; Donadio, Stefano; Arnold, Eddy; Ebright, Richard H

    2014-01-01

    Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center ‘i’ and ‘i+1’ nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI: http://dx.doi.org/10.7554/eLife.02450.001 PMID:24755292

  7. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  8. Copper(II) complexes of terminally free alloferon peptide mutants containing two different histidyl (H(1) and H(6) or H(9) or H(12)) binding sites Structure Stability and Biological Activity.

    PubMed

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Urbański, Arkadiusz; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2015-10-01

    Mono- and dinuclear copper(II) complexes of the alloferon 1 with point mutations H9A/H12A H(1)GVSGH(6)GQA(9)GVA(12)G, H6A/H12A H(1)GVSGA(6)GQH(9)GVA(12)G and H6A/H9A H(1)GVSGA(6)GQA(9)GVH(12)G have been studied by potentiometric, UV-visible, CD, EPR spectroscopic, and mass spectrometry (MS) methods. Complete complex speciation at metal-to-ligand molar ratios 1:1 and 2:1 was obtained. For all systems studied in the 5 - 6.5 pH range, the CuL complex dominates with 3N{NH2,NIm-H(1),NIm-H(6 or 9 or 12)} binding site. The stability of the CuL complexes for the ligands studied varies according to the H9A/H12A>H6A/H12A>H6A/H9A series. For the dinuclear systems the amine/imidazole nitrogen donor atoms of the histidine residue H(1) and the imidazole nitrogen atoms of H(6) or H(9) or H(12) can be considered as independent metal-binding sites in the species formed. The stability of the dinuclear complexes is higher when two coordinated copper(II) ions are closer to each other. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 have been studied. The H6A/H9A, H6A/H12A peptides displayed lower hemocytotoxic activity compared to that of alloferon 1, while the H9A/H12A analogue was not active. Among the copper(II) complexes, the most active was the Cu(II)-H9A/H12A complex formed at pH7.4 with 3N{NH2,NIm-H(1),NIm-H(6)} (CuL) and 3N{NH2,N(-),NIm-H(6)} and/or 4N{NH2,NIm-H(1),N(-),NIm-H(6)} (CuH-1L) binding sites. The Cu(II)-H6A/H9A and Cu(II)-H6A/H12A complexes were not active.

  9. Discovery of Fur binding site clusters in Escherichia coli by information theory models

    PubMed Central

    Chen, Zehua; Lewis, Karen A.; Shultzaberger, Ryan K.; Lyakhov, Ilya G.; Zheng, Ming; Doan, Bernard; Storz, Gisela; Schneider, Thomas D.

    2007-01-01

    Fur is a DNA binding protein that represses bacterial iron uptake systems. Eleven footprinted Escherichia coli Fur binding sites were used to create an initial information theory model of Fur binding, which was then refined by adding 13 experimentally confirmed sites. When the refined model was scanned across all available footprinted sequences, sequence walkers, which are visual depictions of predicted binding sites, frequently appeared in clusters that fit the footprints (∼83% coverage). This indicated that the model can accurately predict Fur binding. Within the clusters, individual walkers were separated from their neighbors by exactly 3 or 6 bases, consistent with models in which Fur dimers bind on different faces of the DNA helix. When the E. coli genome was scanned, we found 363 unique clusters, which includes all known Fur-repressed genes that are involved in iron metabolism. In contrast, only a few of the known Fur-activated genes have predicted Fur binding sites at their promoters. These observations suggest that Fur is either a direct repressor or an indirect activator. The Pseudomonas aeruginosa and Bacillus subtilis Fur models are highly similar to the E. coli Fur model, suggesting that the Fur–DNA recognition mechanism may be conserved for even distantly related bacteria. PMID:17921503

  10. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  11. Two additional carbohydrate-binding sites of beta-amylase from Bacillus cereus var. mycoides are involved in hydrolysis and raw starch-binding.

    PubMed

    Ye, Zhengmao; Miyake, Hideo; Tatsumi, Maki; Nishimura, Shigenori; Nitta, Yasunori

    2004-03-01

    In the previous X-ray crystallographic study, it was found that beta-amylase from Bacillus cereus var. mycoides has three carbohydrate-binding sites aside from the active site: two (Site2 and Site3) in domain B and one (Site1) in domain C. To investigate the roles of these sites in the catalytic reaction and raw starch-binding, Site1 and Site2 were mutated. From analyses of the raw starch-binding of wild-type and mutant enzymes, it was found that Site1 contributes to the binding affinity to raw-starch more than Site2, and that the binding capacity is maintained when either Site1 or Site2 exists. The raw starch-digesting ability of this enzyme was poor. From inhibition studies by maltitol, GGX and alpha-CD for hydrolyses of maltopentaose (G5) and amylose ( (n) = 16) catalyzed by wild-type and mutant enzymes, it was found that alpha-CD is a competitive inhibitor, while, maltitol behaves as a mixed-type or competitive inhibitor depending on the chain length of the substrate and the mutant enzyme. From the analysis of the inhibition mechanism, we conclude that the bindings of maltitol and GGX to Site2 in domain B form an abortive ESI complex when amylose ( (n) = 16) is used as a substrate.

  12. Autoradiographic localization of [3H]thiocolchicoside binding sites in the rat brain and spinal cord.

    PubMed

    Balduini, W; De Angelis, V; Mazzoni, E; Depoortere, H; Cattabeni, F; Cimino, M

    2001-06-01

    Thiocolchicoside is used in humans as a myorelaxant drug with anti-inflammatory and analgesic activity. Recently we established the experimental conditions that allowed the identification of [3H]thiocolchicoside binding sites in synaptic membranes of rat spinal cord and cerebral cortex. The pharmacological characterization of these sites indicated that GABA and several of its agonists and antagonists, as well as strychnine, were able to interact with [3H]thiocolchicoside binding in a dose-dependent manner and with different affinities. In order to gain more insight into the nature and the anatomical distribution of the binding sites labeled by [3H]thiocolchicoside, in the present study we examined the localization of these sites on parasagittal and coronal sections of the rat brain and spinal cord, respectively, using receptor autoradiography. In the spinal cord an intense signal was observed in the gray matter, with the highest density occurring in the superficial layers of the dorsal horns. Strychnine completely displaced [3H]thiocolchicoside binding, whereas GABA only partially removed the radioligand from its binding sites. In the brain, specific binding occurred in several areas and was displaced by both GABA and strychnine. The distribution of [3H]thiocolchicoside binding sites in brain sections, however, did not match that found for [3H]muscimol. Furthermore, cold thiocolchicoside was not able to completely displace [3H]muscimol binding, and showed a different efficacy in the various areas labeled by the radioligand. We conclude that thiocolchicoside may interact with a subpopulation of GABA(A) receptors having low-affinity binding sites for GABA. Furthermore, the observed sensitivity to strychnine in the spinal cord indicates an interaction also with strychnine-sensitive glycine receptors, suggesting that the pharmacological effects of thiocolchicoside may be the result of its interaction with different receptor populations.

  13. Interaction of thiocolchicoside with [3H]strychnine binding sites in rat spinal cord and brainstem.

    PubMed

    Cimino, M; Marini, P; Cattabeni, F

    1996-12-27

    Radioreceptor binding assays and receptor autoradiography were used to investigate the activity of thiocolchicoside on strychnine-sensitive binding sites in rat brain and spinal cord using [3H]strychnine as a ligand. Thiocolchicoside displaced the binding of [3H]strychnine with an affinity similar to that of unlabeled glycine, and showed a Hill coefficient and proportionality parameter (P) less than unity. The activity of thiocolchicoside toward [3H]strychnine binding sites was confirmed in autoradiographic studies. The results suggest that thiocolchicoside behaves as an allosteric compound acting on the strychnine-sensitive glycine receptor in rat brainstem and spinal cord, and that this may provide a possible mechanism for the myorelaxant activity of this colchicoside derivative, the first clinically useful drug acting on this receptor.

  14. Validated ligand mapping of ACE active site

    NASA Astrophysics Data System (ADS)

    Kuster, Daniel J.; Marshall, Garland R.

    2005-08-01

    Crystal structures of angiotensin-converting enzyme (ACE) complexed with three inhibitors (lisinopril, captopril, enalapril) provided experimental data for testing the validity of a prior active site model predicting the bound conformation of the inhibitors. The ACE active site model - predicted over 18 years ago using a series of potent ACE inhibitors of diverse chemical structure - was recreated using published data and commercial software. Comparison between the predicted structures of the three inhibitors bound to the active site of ACE and those determined experimentally yielded root mean square deviation (RMSD) values of 0.43-0.81 Å, among the distances defining the active site map. The bound conformations of the chemically relevant atoms were accurately deduced from the geometry of ligands, applying the assumption that the geometry of the active site groups responsible for binding and catalysis of amide hydrolysis was constrained. The mapping of bound inhibitors at the ACE active site was validated for known experimental compounds, so that the constrained conformational search methodology may be applied with confidence when no experimentally determined structure of the enzyme yet exists, but potent, diverse inhibitors are available.

  15. Photoaffinity site-specific covalent labeling of human corticosteroid-binding globulin.

    PubMed Central

    Marver, D; Chiu, W; Wolff, M E; Edelman, I S

    1976-01-01

    A method was developed for the synthesis of high-specific-activity 21-diazo-21-[6,7-(3)H]deoxycorticosterone, an analog of corticosterone. This analog was used as a photoaffinity label of a high affinity steroid-binding protein, human corticosteroid-binding globulin. Based on direct binding studies and crosscompetition experiments, this diazo derivative exhibited the requisite affinity (within a factor of 1.5 times that of corticosterone) and site specificity to qualify as an affinity labeling legand. Irradiation of corticosteroid-binding globulin with the 21-diazo derivative resulted in irreversible binding to corticosteroid-binding globulin, identified by polyacrylamide gel electrophoresis. Specificity of covalent binding to corticosteroid-binding globulin was established by competition analysis with various steroids. Irreversibility of photodependent binding was shown by persistence of the complex on electrophoresis (in contrast to the noncovalently linked complex), and resistance to exchange with corticosterone or pregnanediol and to solvent extraction. Site specificity of covalent binding was inferred from the effects of a scavenger, Tris-HC1, and fluorescence quenching of a neighboring tryptophan. PMID:1069998

  16. Application of molecular docking and ONIOM methods for the description of interactions between anti-quorum sensing active (AHL) analogues and the Pseudomonas aeruginosa LasR binding site.

    PubMed

    Ahumedo, Maicol; Drosos, Juan Carlos; Vivas-Reyes, Ricardo

    2014-05-01

    Molecular docking methods were applied to simulate the coupling of a set of nineteen acyl homoserine lactone analogs into the binding site of the transcriptional receptor LasR. The best pose of each ligand was explored and a qualitative analysis of the possible interactions present in the complex was performed. From the results of the protein-ligand complex analysis, it was found that residues Tyr-64 and Tyr-47 are involved in important interactions, which mainly determine the antagonistic activity of the AHL analogues considered for this study. The effect of different substituents on the aromatic ring, the common structure to all ligands, was also evaluated focusing on how the interaction with the two previously mentioned tyrosine residues was affected. Electrostatic potential map calculations based on the electron density and the van der Waals radii were performed on all ligands to graphically aid in the explanation of the variation of charge density on their structures when the substituent on the aromatic ring is changed through the elements of the halogen group series. A quantitative approach was also considered and for that purpose the ONIOM method was performed to estimate the energy change in the different ligand-receptor complex regions. Those energy values were tested for their relationship with the corresponding IC50 in order to establish if there is any correlation between energy changes in the selected regions and the biological activity. The results obtained using the two approaches may contribute to the field of quorum sensing active molecules; the docking analysis revealed the role of some binding site residues involved in the formation of a halogen bridge with ligands. These interactions have been demonstrated to be responsible for the interruption of the signal propagation needed for the quorum sensing circuit. Using the other approach, the structure-activity relationship (SAR) analysis, it was possible to establish which structural characteristics

  17. Active-site structure, binding and redox activity of the heme–thiolate enzyme CYP2D6 immobilized on coated Ag electrodes: a surface-enhanced resonance Raman scattering study

    PubMed Central

    Bonifacio, Alois; Millo, Diego; Keizers, Peter H. J.; Boegschoten, Roald; Commandeur, Jan N. M.; Vermeulen, Nico P. E.; Gooijer, Cees

    2007-01-01

    Surface-enhance resonance Raman scattering spectra of the heme–thiolate enzyme cytochrome P450 2D6 (CYP2D6) adsorbed on Ag electrodes coated with 11-mercaptoundecanoic acid (MUA) were obtained in various experimental conditions. An analysis of these spectra, and a comparison between them and the RR spectra of CYP2D6 in solution, indicated that the enzyme’s active site retained its nature of six-coordinated low-spin heme upon immobilization. Moreover, the spectral changes detected in the presence of dextromethorphan (a CYP2D6 substrate) and imidazole (an exogenous heme axial ligand) indicated that the immobilized enzyme also preserved its ability to reversibly bind a substrate and form a heme–imidazole complex. The reversibility of these processes could be easily verified by flowing alternately solutions of the various compounds and the buffer through a home-built spectroelectrochemical flow cell which contained a sample of immobilized protein, without the need to disassemble the cell between consecutive spectral data acquisitions. Despite immobilized CYP2D6 being effectively reduced by a sodium dithionite solution, electrochemical reduction via the Ag electrode was not able to completely reduce the enzyme, and led to its extensive inactivation. This behavior indicated that although the enzyme’s ability to exchange electrons is not altered by immobilization per se, MUA-coated electrodes are not suited to perform direct electrochemistry of CYP2D6. Electronic supplementary material The online version of this article (doi:10.1007/s00775-007-0303-1) contains supplementary material, which is available to authorized users. PMID:17899220

  18. Metalloprotein-inhibitor binding: Human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site

    PubMed Central

    Martin, David P.; Hann, Zachary S.; Cohen, Seth M.

    2013-01-01

    An ever increasing number of metalloproteins are being discovered that play essential roles in physiological processes. Inhibitors of these proteins have significant potential for the treatment of human disease, but clinical success of these compounds has been limited. Herein, Zn(II)-dependent metalloprotein inhibitors in clinical use are reviewed, and the potential for using novel metal-binding groups (MBGs) in the design of these inhibitors is discussed. By using human carbonic anhydrase II (hCAII) as a model system, the nuances of MBG-metal interactions in the context of a protein environment can be probed. Understanding how metal coordination influences inhibitor binding may help in the design new therapeutics targeting metalloproteins. PMID:23706138

  19. Dual function of a nuclear factor I binding site in MMTV transcription regulation.

    PubMed Central

    Buetti, E; Kühnel, B; Diggelmann, H

    1989-01-01

    Using linker-scanning mutagenesis we had previously identified four elements within the MMTV LTR which are necessary for transcriptional stimulation by glucocorticoid hormones. Two of them overlapped with regions to which the glucocorticoid receptor binds in vitro. The third element contained a NF-I binding site, and the fourth the TATA box. Here we show that mutations that abolish in vitro binding of NF-I had a negative effect also on the basal activity of the MMTV promoter of LTR-containing plasmids stably integrated in Ltk- fibroblasts. The analysis of double mutants altered in the NF-I plus either one of the receptor binding elements further demonstrated that the NF-I site functionally cooperated with the proximal (-120) element, which alone was extremely inefficient in stimulation. The stronger distal (-181/-172) element was independent of NF-I and showed functional cooperativity with the proximal hormone-binding element. Images PMID:2542892

  20. Characterization of a labile naloxone binding site (lambda site) in rat brain.

    PubMed

    Grevel, J; Yu, V; Sadée, W

    1985-05-01

    A high-affinity binding site selective for naloxone and other 4,5-epoxymorphinans (lambda site) has been previously described in rat brain. Following homogenization of freshly dissected brain, the lambda sites convert from a high-affinity to a low-affinity state. When measured with [3H]naloxone, the decay is very rapid at 20 degrees C (t 1/2 less than 2 min), whereas it is progressively slowed at lower temperatures. Proteinase inhibitors, antoxidants, and sulfhydryl group-protecting agents failed to prevent this conversion. Kinetic measurements of mu and lambda binding at varying temperatures demonstrated that the decrease in lambda binding does not coincide with the concurrent increase in mu binding and that the loss of high-affinity lambda binding at 20 degrees C can be partially restored when the temperature is lowered to 0 degrees C. The low-affinity state of the lambda site is rather stable in the Tris buffer homogenates and is susceptible to digestion by a protease. The (-)-isomer of WIN 44,441, a benzomorphan drug, binds to lambda sites with moderate affinity (dissociation constant, KD = 63 nM), whereas the (+)-isomer does not (KD greater than 10,000 nM), thus establishing stereoselectivity of the binding process. Neither the high-affinity nor the low-affinity state of lambda binding is significantly affected by the presence of 100 mM sodium chloride or 50 microM Gpp(NH)p, (a GTP analog), which is in contrast to the dramatic effect of these agents on the established opioid receptor system. Naltrexone, naloxone, nalorphine, and morphine (in this order of decreasing potency) bind to the lambda site in vivo in intact rat brain over dosage ranges that are commonly employed in pharmacological studies.

  1. Calcium binding to the low affinity sites in troponin C induces conformational changes in the high affinity domain. A possible route of information transfer in activation of muscle contraction.

    PubMed

    Grabarek, Z; Leavis, P C; Gergely, J

    1986-01-15

    Residues 89-100 of troponin C (C89-100) and 96-116 of troponin I (I96-116) interact with each other in the troponin complex (Dalgarno, D.C., Grand, R.J.A., Levine, B.A. Moir, A., J.G., Scott, G.M.M., and Perry, S.V. (1982) FEBS Lett. 150, 54-58) and are necessary for the Ca2+ sensitivity of actomyosin ATPase (Syska, H., Wilkinson, J.M., Grand, R.J.A., and Perry, S.V. (1976) Biochem. J. 153, 375-387 and Grabarek, Z., Drabikowski, W., Leavis, P.C., Rosenfeld, S.S., and Gergely, J. (1981) J. Biol. Chem. 256, 13121-13127). We have studied Ca2+-induced changes in the region C89-100 by monitoring the fluorescence of troponin C (TnC) labeled at Cys-98 with 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid. Equilibrium titration of the labeled TnC with Ca2+ indicates that the probe is sensitive to binding to both classes of sites in free TnC as well as in its complex with TnI. When Mg2 X TnC is mixed with Ca2+ in a stopped flow apparatus, there is a rapid fluorescence increase related to Ca2+ binding to the unoccupied sites I and II followed by a slower increase (k = 9.9 s-1) that represents Mg2+-Ca2+ exchange at sites III and IV. In the TnC X TnI complex, the fast phase is much larger and the Mg2+-Ca2+ exchange at sites III and IV results in a small decrease rather than an increase in the fluorescence of the probe. The possibility is discussed that the fast change in the environment of Cys-98 upon Ca2+ binding to sites I and II may be instrumental in triggering activation of the thin filament by facilitating a contact between C89-100 and I96-116.

  2. Probing Molecular Docking in a Charged Model Binding Site

    PubMed Central

    Brenk, Ruth; Vetter, Stefan W.; Boyce, Sarah E.; Goodin, David B.; Shoichet, Brian K.

    2011-01-01

    A model binding site was used to investigate charge–charge interactions in molecular docking. This simple site, a small (180 Å3) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre”ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20 μM and 60 μM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the “naked” site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions

  3. E2F in vivo binding specificity: Comparison of consensus versus nonconsensus binding sites

    PubMed Central

    Rabinovich, Alina; Jin, Victor X.; Rabinovich, Roman; Xu, Xiaoqin; Farnham, Peggy J.

    2008-01-01

    We have previously shown that most sites bound by E2F family members in vivo do not contain E2F consensus motifs. However, differences between in vivo target sites that contain or lack a consensus E2F motif have not been explored. To understand how E2F binding specificity is achieved in vivo, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) assays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are (1) the site must be in a core promoter and (2) the region must be utilized as a promoter in that cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including (1) indirect recruitment, (2) looping to the core promoter mediated by an E2F bound to a distal motif, and (3) assisted binding of E2F to a site that weakly resembles an E2F motif. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated fragments. Our findings suggest that in vivo (1) a consensus motif is not sufficient to recruit E2Fs, (2) E2Fs can bind to isolated regions that lack a consensus motif, and (3) binding can require regions other than the best match to the E2F motif. PMID:18836037

  4. Peanut lectin-binding sites in large bowel carcinoma.

    PubMed

    Cooper, H S

    1982-10-01

    Peanut lectin is known to bind to B-D-Gal-(1 leads to 3)-D-GalNac which provides antigenic determination for the T (TAg) blood group antigen. We examined 33 rectosigmoid carcinomas and 15 corresponding controls for their ability to express peanut lectin-binding sites. In controls one could localize TAg to the supranuclear portion of the cell, however, in cancers one noticed a cytostructural relocalization of TAg with the following two major patterns: localization to the region of the glycocalyx and localization intracytoplasmically in the apical portion of the cell. These two patterns were associated with glandular differentiation. Less frequently noted or in association with the above was a mucin glob-like pattern and/or a fine diffuse intracytoplasmic pattern associated with solid, nonglandular areas. The more poorly differentiated cancers less frequently expressed peanut lectin-binding sites. Benign (nontransitional zone) epithelium in those patients whose tumor expressed TAg was negative for peanut lectin-binding sites in 66 per cent of the cases. Reduced tumoral glycosyltransferases may explain this increased synthesis of TAg in cancers as compared with controls, if one considers TAg to be an incomplete glycoprotein of the MN blood group system.

  5. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers.

    PubMed Central

    Wang, S W; Speck, N A

    1992-01-01

    The Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major genetic determinant of the thymic disease specificity of the Moloney virus genetically maps to two protein binding sites in the Moloney virus enhancer, the leukemia virus factor b site and the adjacent core site. Point mutations introduced into either of these sites significantly shifts the disease specificity of the Moloney virus from thymic leukemia to erythroleukemia (N. A. Speck, B. Renjifo, E. Golemis, T. Frederickson, J. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We have purified several polypeptides that bind to the core site in the Moloney virus enhancer. These proteins were purified from calf thymus nuclear extracts by selective pH denaturation, followed by chromatography on heparin-Sepharose, nonspecific double-stranded DNA-cellulose, and core oligonucleotide-coupled affinity columns. We have achieved greater than 13,000-fold purification of the core-binding factors (CBFs), with an overall yield of approximately 19%. Analysis of purified protein fractions by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis reveals more than 10 polypeptides. Each of the polypeptides was recovered from an SDS-polyacrylamide gel, and those in the molecular size range of 19 to 35 kDa were demonstrated to have core-binding activity. The purified CBFs were shown by DNase I footprint analyses to bind the core site in the Moloney virus enhancer specifically, and also to core motifs in the enhancers from a simian immunodeficiency virus, the immunoglobulin mu chain, and T-cell receptor gamma-chain genes. Images PMID:1309596

  6. The X-ray Structure of a BAK Homodimer Reveals an Inhibitory Zinc Binding Site

    SciTech Connect

    Modoveanu,T.; Liu, Q.; Tocilj, A.; Watson, M.; Shore, G.; Gehring, K.

    2006-01-01

    BAK/BAX-mediated mitochondrial outer-membrane permeabilization (MOMP) drives cell death during development and tissue homeostasis from zebrafish to humans. In most cancers, this pathway is inhibited by BCL-2 family antiapoptotic members, which bind and block the action of proapoptotic BCL proteins. We report the 1.5 {angstrom} crystal structure of calpain-proteolysed BAK, cBAK, to reveal a zinc binding site that regulates its activity via homodimerization. cBAK contains an occluded BH3 peptide binding pocket that binds a BID BH3 peptide only weakly . Nonetheless, cBAK requires activation by truncated BID to induce cytochrome c release in mitochondria isolated from bak/bax double-knockout mouse embryonic fibroblasts. The BAK-mediated MOMP is inhibited by low micromolar zinc levels. This inhibition is alleviated by mutation of the zinc-coordination site in BAK. Our results link directly the antiapoptotic effects of zinc to BAK.

  7. Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications.

    PubMed

    Chaudhuri, Rima; Tang, Sishi; Zhao, Guijun; Lu, Hui; Case, David A; Johnson, Michael E

    2011-11-25

    The human severe acute respiratory syndrome coronavirus (SARS-CoV) and the NL63 coronaviruses are human respiratory pathogens for which no effective antiviral treatment exists. The papain-like cysteine proteases encoded by the coronavirus (SARS-CoV: PLpro; NL63: PLP1 and PLP2) represent potential targets for antiviral drug development. Three recent inhibitor-bound PLpro structures highlight the role of an extremely flexible six-residue loop in inhibitor binding. The high binding site plasticity is a major challenge in computational drug discovery/design efforts. From conventional molecular dynamics and accelerated molecular dynamics (aMD) simulations, we find that with conventional molecular dynamics simulation, PLpro translationally samples the open and closed conformation of BL2 loop on a picosecond-nanosecond timescale but does not reproduce the peptide bond inversion between loop residues Tyr269 and Gln270 that is observed on inhibitor GRL0617 binding. Only aMD simulation, starting from the closed loop conformation, reproduced the 180° ϕ-ψ dihedral rotation back to the open loop state. The Tyr-Gln peptide bond inversion appears to involve a progressive conformational change of the full loop, starting at one side, and progressing to the other. We used the SARS-CoV apo X-ray structure to develop a model of the NL63-PLP2 catalytic site. Superimposition of the PLP2 model on the PLpro X-ray structure identifies binding site residues in PLP2 that contribute to the distinct substrate cleavage site specificities between the two proteases. The topological and electrostatic differences between the two protease binding sites also help explain the selectivity of non-covalent PLpro inhibitors.

  8. Agonist and antagonist protect sulfhydrals in the binding site of the D-1 dopamine receptor

    SciTech Connect

    Sidhu, A.; Kebabian, J.W.; Fishman, P.H.

    1986-05-01

    An iodinated compound (/sup 125/I)-SCH 23982 (8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol) has been characterized as a specific, high affinity (Kd = 0.7 nM) ligand for the D-1 dopamine receptor. The ligand binding site of the D-1 receptor in rat striatum was inactivated by N-ethylmaleimide (NEM) in a time and concentration dependent manner. The inactivation was rapid and irreversible with a 70% net loss of binding sites. Scatchard analysis of binding to NEM-treated tissue showed a decrease both in receptor number and in radioligand affinity. The remaining receptors retained their selectivity for stereoisomers of both agonist and antagonist. Receptor occupancy by either a D-1 specific agonist or antagonist protected in a dose dependent manner the binding sites from inactivation by NEM; the agonist was more effective than the antagonist. The agonist high affinity site, however, was abolished in the absence or presence of protective compound, presumably because of inactivation of the GTP-binding component of adenylate cyclase. In this regard, there was a total loss of agonist- and forskolin-stimulated adenylate cyclase activity after NEM treatment. The authors conclude that the D-1 dopamine receptor contains NEM-sensitive sulfhydral group(s) at or near the vicinity of the ligand binding site.

  9. Opioid binding site in EL-4 thymoma cell line

    SciTech Connect

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  10. Difference in redox behaviors between copper-binding octarepeat and nonoctarepeat sites in prion protein.

    PubMed

    Yamamoto, Norifumi; Kuwata, Kazuo

    2009-11-01

    We studied the redox behavior of copper-binding sites in prion protein (PrP) to clarify copper's role in the pathological mechanism underlying prion diseases. We investigated the coordination structures, binding affinities, and redox potentials of copper-binding peptide fragments derived from the N-terminal domain of PrP by density functional theory calculations. We used four models for copper-binding moieties in PrP(60-96): two were derived from the PHGGGWGQ octapeptide repeat region of PrP(60-91), and the others were tripeptide Gly-Thr-His fragments derived from the copper-binding nonoctarepeat site around His96. We found that such PrP-derived copper-binding complexes exhibit conformationally dependent redox behavior; for example, the copper-binding complex derived from the octarepeat region tends to possess high reduction potential for the Cu(II)/Cu(I) couple, exceeding 0 V versus the standard hydrogen electrode, whereas the copper-binding nonoctarepeat model around His96 tends to possess high oxidation potential for the Cu(II)/Cu(III) couple and stabilize the higher-valent Cu(III) state. It is possible that such distinct redox activities of a copper-binding PrP are involved in the mechanism underlying prion diseases.

  11. A Variably Occupied CTCF Binding Site in the Ultrabithorax Gene in the Drosophila Bithorax Complex

    PubMed Central

    Magbanua, Jose Paolo; Runneburger, Estelle; Russell, Steven

    2014-01-01

    Although the majority of genomic binding sites for the insulator protein CCCTC-binding factor (CTCF) are constitutively occupied, a subset show variable occupancy. Such variable sites provide an opportunity to assess context-specific CTCF functions in gene regulation. Here, we have identified a variably occupied CTCF site in the Drosophila Ultrabithorax (Ubx) gene. This site is occupied in tissues where Ubx is active (third thoracic leg imaginal disc) but is not bound in tissues where the Ubx gene is repressed (first thoracic leg imaginal disc). Using chromatin conformation capture, we show that this site preferentially interacts with the Ubx promoter region in the active state. The site lies close to Ubx enhancer elements and is also close to the locations of several gypsy transposon insertions that disrupt Ubx expression, leading to the bx mutant phenotype. gypsy insertions carry the Su(Hw)-dependent gypsy insulator and were found to affect both CTCF binding at the variable site and the chromatin topology. This suggests that insertion of the gypsy insulator in this region interferes with CTCF function and supports a model for the normal function of the variable CTCF site as a chromatin loop facilitator, promoting interaction between Ubx enhancers and the Ubx transcription start site. PMID:25368383

  12. Effects of Common Pesticides on Prostaglandin D2 (PGD2) Inhibition in SC5 Mouse Sertoli Cells, Evidence of Binding at the COX-2 Active Site, and Implications for Endocrine Disruption

    PubMed Central

    Kugathas, Subramaniam; Audouze, Karine; Ermler, Sibylle; Orton, Frances; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2015-01-01

    Background: There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. Objectives: We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. Methods: Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. Results: The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos-methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances—o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)—showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. Conclusions: Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrine-disrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action

  13. Specific binding of a dichloroacetamide herbicide safener in maize at a site that also binds thiocarbamate and chloroacetanilide herbicides.

    PubMed

    Walton, J D; Casida, J E

    1995-09-01

    Dichloroacetamide safeners such as N,N-diallyl-2,2-dichloroacetamide and (R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine protect maize (Zea mays) against injury from thiocarbamate and chloroacetanilide herbicides. Binding activity of tritium-labeled (R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine (15 Ci/mmol; referred to as [3H]Saf) was characterized in extracts of etiolated maize seedlings. The binding is saturable, involves a single class of binding sites (Kd 0.12 microM; maximal binding in coleoptiles 0.53 nmol/g fresh weight, equivalent to 55 pmol/mg protein), and is sensitive to boiling and protease treatment. Binding in etiolated maize seedlings is highest in the coleoptile and lowest in the leaves. Binding of [3H]Saf also occurs in etiolated sorghum (Sorghum bicolor) shoots but not several other cereals. There is a good correlation between known safener effectiveness and the concentration that inhibits [3H]Saf binding half-maximally among 21 dichloroacetamides and related compounds. N,N-Diallyl-2,2-dichloroacetamide had the lowest inhibitor concentration that reduces specific binding by 50% (IC50), 0.01 microM. [3H]Saf binding is inhibited by 4 chloroacetanilide herbicides with IC50 values of 0.07 to 0.48 microM and by 12 thiocarbamate herbicides and analogs with IC50 values of 0.06 to 2.3 microM. The inhibition of [3H]Saf binding by alachlor and S-ethyl dipropylthiocarbamate is competitive.

  14. Analysis of binding site hot spots on the surface of Ras GTPase.

    PubMed

    Buhrman, Greg; O'Connor, Casey; Zerbe, Brandon; Kearney, Bradley M; Napoleon, Raeanne; Kovrigina, Elizaveta A; Vajda, Sandor; Kozakov, Dima; Kovrigin, Evgenii L; Mattos, Carla

    2011-11-04

    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the "off" and "on" allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.

  15. Analysis of Binding Site Hot Spots on the Surface of Ras GTPase

    SciTech Connect

    Buhrman, Greg; O; #8242; Connor, Casey; Zerbe, Brandon; Kearney, Bradley M.; Napoleon, Raeanne; Kovrigina, Elizaveta A.; Vajda, Sandor; Kozakov, Dima; Kovrigin, Evgenii L.; Mattos, Carla

    2012-09-17

    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the 'off' and 'on' allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.

  16. Secondary anionic phospholipid binding site and gating mechanism in Kir2.1 inward rectifier channels

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Joo; Wang, Shizhen; Borschel, William; Heyman, Sarah; Gyore, Jacob; Nichols, Colin G.

    2013-11-01

    Inwardly rectifying potassium (Kir) channels regulate multiple tissues. All Kir channels require interaction of phosphatidyl-4,5-bisphosphate (PIP2) at a crystallographically identified binding site, but an additional nonspecific secondary anionic phospholipid (PL(-)) is required to generate high PIP2 sensitivity of Kir2 channel gating. The PL(-)-binding site and mechanism are yet to be elucidated. Here we report docking simulations that identify a putative PL(-)-binding site, adjacent to the PIP2-binding site, generated by two lysine residues from neighbouring subunits. When either lysine is mutated to cysteine (K64C and K219C), channel activity is significantly decreased in cells and in reconstituted liposomes. Directly tethering K64C to the membrane by modification with decyl-MTS generates high PIP2 sensitivity in liposomes, even in the complete absence of PL(-)s. The results provide a coherent molecular mechanism whereby PL(-) interaction with a discrete binding site results in a conformational change that stabilizes the high-affinity PIP2 activatory site.

  17. A Common Anesthetic Binding Site for Inhibition of Pentameric Ligand-gated Ion Channels

    PubMed Central

    Kinde, Monica N.; Bu, Weiming; Chen, Qiang; Xu, Yan; Eckenhoff, Roderic G.; Tang, Pei

    2016-01-01

    Background Identifying functionally relevant anesthetic binding sites in pentameric ligand-gated ion channels (pLGICs) is an important step toward understanding molecular mechanisms underlying anesthetic action. The anesthetic propofol is known to inhibit cation-conducting pLGICs, including a prokaryotic pLGIC ELIC, but the sites responsible for functional inhibition remain undetermined. Methods We photolabeled ELIC with a light-activated derivative of propofol (AziPm) and performed 19F NMR to support propofol binding to a transmembrane domain (TMD) intra-subunit pocket. To differentiate sites responsible for propofol inhibition from those that are functionally irrelevant, we made an ELIC-GABAAR chimera that replaced the ELIC TMD with the α1β3GABAAR TMD and compared functional responses of ELIC-GABAAR and ELIC to propofol modulations. Results Photolabeling showed multiple AziPm-binding sites in the extracellular domain (ECD), but only one site in the TMD with labeled residues M265 and F308 in the resting state of ELIC. Notably, this TMD site is an intra-subunit pocket that overlaps with binding sites for anesthetics, including propofol, found previously in other pLGICs. 19F NMR supported propofol binding to this TMD intra-subunit pocket only in the absence of agonist. Functional measurements of ELIC-GABAAR showed propofol potentiation of the agonist-elicited current instead of inhibition observed on ELIC. Conclusions The distinctly different responses of ELIC and ELIC-GABAAR to propofol support the functional relevance of propofol binding to the TMD. Combining the newly identified TMD intra-subunit pocket in ELIC with equivalent TMD anesthetic sites found previously in other cationic pLGICs, we propose this TMD pocket as a common site for anesthetic inhibition of pLGICs. PMID:26756520

  18. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  19. Minimal Zn2+ Binding Site of Amyloid-β

    PubMed Central

    Tsvetkov, Philipp O.; Kulikova, Alexandra A.; Golovin, Andrey V.; Tkachev, Yaroslav V.; Archakov, Alexander I.; Kozin, Sergey A.; Makarov, Alexander A.

    2010-01-01

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6–14 as the minimal Zn2+ binding site wherein the ion is coordinated by His6, Glu11, His13, and His14. With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11–14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn2+-induced aggregation of Aβ. PMID:21081056

  20. Minimal Zn(2+) binding site of amyloid-β.

    PubMed

    Tsvetkov, Philipp O; Kulikova, Alexandra A; Golovin, Andrey V; Tkachev, Yaroslav V; Archakov, Alexander I; Kozin, Sergey A; Makarov, Alexander A

    2010-11-17

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6-14 as the minimal Zn(2+) binding site wherein the ion is coordinated by His(6), Glu(11), His(13), and His(14). With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11-14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn(2+)-induced aggregation of Aβ.

  1. Analysis of zinc binding sites in protein crystal structures.

    PubMed Central

    Alberts, I. L.; Nadassy, K.; Wodak, S. J.

    1998-01-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations. PMID:10082367

  2. Cloud computing for protein-ligand binding site comparison.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  3. Two mechanisms of ion selectivity in protein binding sites.

    PubMed

    Yu, Haibo; Noskov, Sergei Yu; Roux, Benoît

    2010-11-23

    A theoretical framework is presented to clarify the molecular determinants of ion selectivity in protein binding sites. The relative free energy of a bound ion is expressed in terms of the main coordinating ligands coupled to an effective potential of mean force representing the influence of the rest of the protein. The latter is separated into two main contributions. The first includes all the forces keeping the ion and the coordinating ligands confined to a microscopic subvolume but does not prevent the ligands from adapting to a smaller or larger ion. The second regroups all the remaining forces that control the precise geometry of the coordinating ligands best adapted to a given ion. The theoretical framework makes it possible to delineate two important limiting cases. In the limit where the geometric forces are dominant (rigid binding site), ion selectivity is controlled by the ion-ligand interactions within the matching cavity size according to the familiar "snug-fit" mechanism of host-guest chemistry. In the limit where the geometric forces are negligible, the ion and ligands behave as a "confined microdroplet" that is free to fluctuate and adapt to ions of different sizes. In this case, ion selectivity is set by the interplay between ion-ligand and ligand-ligand interactions and is controlled by the number and the chemical type of ion-coordinating ligands. The framework is illustrated by considering the ion-selective binding sites in the KcsA channel and the LeuT transporter.

  4. Binding sites of retinol and retinoic acid with serum albumins.

    PubMed

    Belatik, A; Hotchandani, S; Bariyanga, J; Tajmir-Riahi, H A

    2012-02-01

    Retinoids are effectively transported in the bloodstream via serum albumins. We report the complexation of bovine serum albumin (BSA) with retinol and retinoic acid at physiological conditions, using constant protein concentration and various retinoid contents. FTIR, CD and fluorescence spectroscopic methods and molecular modeling were used to analyze retinoid binding site, the binding constant and the effects of complexation on BSA stability and secondary structure. Structural analysis showed that retinoids bind BSA via hydrophilic and hydrophobic interactions with overall binding constants of K(Ret)(-BSA) = 5.3 (±0.8) × 10(6) M(-1) and K(Retac-BSA) = 2.3 (±0.4) × 10(6) M(-1). The number of bound retinoid molecules (n) was 1.20 (±0.2) for retinol and 1.8 (±0.3) for retinoic acid. Molecular modeling showed the participation of several amino acids in retinoid-BSA complexes stabilized by H-bonding network. The retinoid binding altered BSA conformation with a major reduction of α-helix from 61% (free BSA) to 36% (retinol-BSA) and 26% (retinoic acid-BSA) with an increase in turn and random coil structures indicating a partial protein unfolding. The results indicate that serum albumins are capable of transporting retinoids in vitro and in vivo.

  5. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    PubMed Central

    Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  6. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    SciTech Connect

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  7. Identification of the NAD(P)H binding site of eukaryotic UDP-galactopyranose mutase.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Solano, Luis M; Oppenheimer, Michelle; Robinson, Reeder M; Ellerbrock, Jacob F; Sobrado, Pablo; Tanner, John J

    2012-10-31

    UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H. Kinetic protein crystallography was used to obtain structures of oxidized Aspergillus fumigatus UGM (AfUGM) complexed with NADPH and NADH, as well as reduced AfUGM after dissociation of NADP(+). NAD(P)H binds with the nicotinamide near the FAD isoalloxazine and the ADP moiety extending toward the mobile 200s active site flap. The nicotinamide riboside binding site overlaps that of the substrate galactopyranose moiety, and thus NADPH and substrate binding are mutually exclusive. On the other hand, the pockets for the adenine of NADPH and uracil of the substrate are distinct and separated by only 6 Å, which raises the possibility of designing novel inhibitors that bind both sites. All 12 residues that contact NADP(H) are conserved among eukaryotic UGMs. Residues that form the AMP pocket are absent in bacterial UGMs, which suggests that eukaryotic and bacterial UGMs have different NADP(H) binding sites. The structures address the longstanding question of how UGM binds NAD(P)H and provide new opportunities for drug discovery.

  8. Mechanism for binding site diversity on ankyrin. Comparison of binding sites on ankyrin for neurofascin and the Cl-/HCO3- anion exchanger.

    PubMed

    Michaely, P; Bennett, V

    1995-12-29

    Ankyrins are a family of spectrin-binding proteins that associate with at least seven distinct membrane proteins, including ion transporters and cell adhesion molecules. The membrane-binding domain of ankyrin is comprised of a tandem array of 24 ANK repeats organized into four 6-repeat folding domains. Tandem arrays of ANK repeats have been proposed to mediate protein interactions in a variety of proteins including factors involved in the regulation of transcription and the cell cycle. This report provides several new insights into the versatility of ANK repeats of ankyrin in protein recognition, using neurofascin and the Cl-/HCO3- anion exchanger as model ligands and ankyrinR as the prototypic ankyrin. Different combinations of ANK repeat domains from this ankyrin form two distinct, high affinity binding sites for neurofascin. One site requires both repeat domains 3 and 4. The other site involves both repeat domains 2 and 3, although domain 2 has significant activity alone. The sites appear to be independent with Kd values of 3 and 14 nM, respectively. Both the Cl-/HCO3- anion exchanger and neurofascin can interact simultaneously with repeat domains 3 and 4, because neurofascin is unable to displace binding of the anion exchanger cytoplasmic domain to domains 3 and 4, despite having a 3-5-fold higher affinity. These results demonstrate two levels of diversity in the binding sites on ankyrin: one resulting from different combinations of ANK repeat domains and another from different determinants within the same combination of repeat domains. One consequence of this diversity is that ankyrin can accommodate two neurofascin molecules as well as the anion exchanger through interactions mediated by ANK repeats. The ability of ankyrin to simultaneously associate with multiple types of membrane proteins is an unanticipated finding with implications for the assembly of integral membrane proteins into specialized regions of the plasma membrane.

  9. Carbene footprinting accurately maps binding sites in protein–ligand and protein–protein interactions

    PubMed Central

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-01-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation. PMID:27848959

  10. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions.

    PubMed

    Manzi, Lucio; Barrow, Andrew S; Scott, Daniel; Layfield, Robert; Wright, Timothy G; Moses, John E; Oldham, Neil J

    2016-11-16

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  11. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  12. Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A

    PubMed Central

    Kaminishi, Tatsuya; Schedlbauer, Andreas; Fabbretti, Attilio; Brandi, Letizia; Ochoa-Lizarralde, Borja; He, Cheng-Guang; Milón, Pohl; Connell, Sean R.; Gualerzi, Claudio O.; Fucini, Paola

    2015-01-01

    Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC. PMID:26464437

  13. Pinealectomy increases ouabain high-affinity binding sites and dissociation constant in rat cerebral cortex.

    PubMed

    Acuña Castroviejo, D; del Aguila, C M; Fernández, B; Gomar, M D; Castillo, J L

    1991-06-24

    The effect of the pineal gland on the ouabain high-affinity binding sites (Kd = 3.1 +/- 0.4 nM, Bmax = 246.4 +/- 18.4 fmol/mg protein) in rat cerebral cortex was studied. Pinealectomy increased Bmax (940.7 +/- 42.8 fmol/mg protein) and Kd (7.6 +/- 1.5 nM) while melatonin injection (100 micrograms/kg b.wt.) counteracted these effects, restoring kinetic parameters (Kd = 1.9 +/- 0.05 nM; Bmax = 262.2 +/- 29.6 fmol/mg prot) to control values. Melatonin activity on ouabain binding in vitro did not depend upon a direct effect on the binding sites themselves. However, in competition experiments, melatonin increased binding affinity of ouabain as shown by the decreased IC50 values.

  14. Specific phospholipid binding to Na,K-ATPase at two distinct sites.

    PubMed

    Habeck, Michael; Kapri-Pardes, Einat; Sharon, Michal; Karlish, Steven J D

    2017-03-14

    Membrane protein function can be affected by the physical state of the lipid bilayer and specific lipid-protein interactions. For Na,K-ATPase, bilayer properties can modulate pump activity, and, as observed in crystal structures, several lipids are bound within the transmembrane domain. Furthermore, Na,K-ATPase activity depends on phosphatidylserine (PS) and cholesterol, which stabilize the protein, and polyunsaturated phosphatidylcholine (PC) or phosphatidylethanolamine (PE), known to stimulate Na,K-ATPase activity. Based on lipid structural specificity and kinetic mechanisms, specific interactions of both PS and PC/PE have been inferred. Nevertheless, specific binding sites have not been identified definitively. We address this question with native mass spectrometry (MS) and site-directed mutagenesis. Native MS shows directly that one molecule each of 18:0/18:1 PS and 18:0/20:4 PC can bind specifically to purified human Na,K-ATPase (α1β1). By replacing lysine residues at proposed phospholipid-binding sites with glutamines, the two sites have been identified. Mutations in the cytoplasmic αL8-9 loop destabilize the protein but do not affect Na,K-ATPase activity, whereas mutations in transmembrane helices (TM), αTM2 and αTM4, abolish the stimulation of activity by 18:0/20:4 PC but do not affect stability. When these data are linked to crystal structures, the underlying mechanism of PS and PC/PE effects emerges. PS (and cholesterol) bind between αTM 8, 9, 10, near the FXYD subunit, and maintain topological integrity of the labile C terminus of the α subunit (site A). PC/PE binds between αTM2, 4, 6, and 9 and accelerates the rate-limiting E1P-E2P conformational transition (site B). We discuss the potential physiological implications.

  15. Camptothecin-binding site in human serum albumin and protein transformations induced by drug binding.

    PubMed

    Fleury, F; Ianoul, A; Berjot, M; Feofanov, A; Alix, A J; Nabiev, I

    1997-07-14

    Circular dichroism (CD) and Raman spectroscopy were employed in order to locate a camptothecin (CPT)-binding site within human serum albumin (HSA) and to identify protein structural transformations induced by CPT binding. A competitive binding of CPT and 3'-azido-3'-deoxythymidine (a ligand occupying IIIA structural sub-domain of the protein) to HSA does not show any competition and demonstrates that the ligands are located in the different binding sites, whereas a HSA-bound CPT may be replaced by warfarin, occupying IIA structural sub-domain of the protein. Raman and CD spectra of HSA and HSA/CPT complexes show that the CPT-binding does not induce changes of the global protein secondary structure. On the other hand, Raman spectra reveal pronounced CPT-induced local structural modifications of the HSA molecule, involving changes in configuration of the two disulfide bonds and transfer of a single Trp-residue to hydrophilic environment. These data suggest that CPT is bound in the region of interdomain connections within the IIA structural domain of HSA and it induces relative movement of the protein structural domains.

  16. Solubilization and characterization of haloperidol-sensitive (+)-( sup 3 H)SKF-10,047 binding sites (sigma sites) from rat liver membranes

    SciTech Connect

    McCann, D.J.; Su, T.P. )

    1991-05-01

    The zwitterionic detergent 3-((3-cholamidopropyl)dimethylamino)-1-propanesulfonate (CHAPS) produced optimal solubilization of (+)-({sup 3}H)SKF-10,047 binding sites from rat liver membranes at a concentration of 0.2%, well below the critical micellular concentration of the detergent. The pharmacological selectivity of the liver (+)-({sup 3}H)SKF-10,047 binding sites corresponds to that of sigma sites from rat and guinea pig brain. When the affinities of 18 different drugs at (+)-({sup 3}H)SKF-10,047 binding sites in membranes and solubilized preparations were compared, a correlation coefficient of 0.99 and a slope of 1.03 were obtained, indicating that the pharmacological selectivity of rat liver sigma sites is retained after solubilization. In addition, the binding of 20 nM ({sup 3}H)progesterone to solubilized rat liver preparations was found to exhibit a pharmacological selectivity appropriate for sigma sites. A stimulatory effect of phenytoin on (+)-({sup 3}H)SKF-10,047 binding to sigma sites persisted after solubilization. When the solubilized preparation was subjected to molecular sizing chromatography, a single peak exhibiting specific (+)-({sup 3}H)SKF-10,047 binding was obtained. The binding activity of this peak was stimulated symmetrically when assays were performed in the presence of 300 microM phenytoin. The molecular weight of the CHAPS-solubilized sigma site complex was estimated to be 450,000 daltons. After solubilization with CHAPS, rat liver sigma sites were enriched to 12 pmol/mg of protein. The present results demonstrate a successful solubilization of sigma sites from rat liver membranes and provide direct evidence that the gonadal steroid progesterone binds to sigma sites. The results also suggest that the anticonvulsant phenytoin binds to an associated allosteric site on the sigma site complex.

  17. Localization of the Substrate-binding Site in the Homodimeric Mannitol Transporter, EIImtl, of Escherichia coli*

    PubMed Central

    Opačić, Milena; Vos, Erwin P. P.; Hesp, Ben H.; Broos, Jaap

    2010-01-01

    The mannitol transporter from Escherichia coli, EIImtl, belongs to a class of membrane proteins coupling the transport of substrates with their chemical modification. EIImtl is functional as a homodimer, and it harbors one high affinity mannitol-binding site in the membrane-embedded C domain (IICmtl). To localize this binding site, 19 single Trp-containing mutants of EIImtl were biosynthetically labeled with 5-fluorotryptophan (5-FTrp) and mixed with azi-mannitol, a substrate analog acting as a Förster resonance energy transfer (FRET) acceptor. Typically, for mutants showing FRET, only one 5-FTrp was involved, whereas the 5-FTrp from the other monomer was too distant. This proves that the mannitol-binding site is asymmetrically positioned in dimeric IICmtl. Combined with the available two-dimensional projection maps of IICmtl, it is concluded that a second resting binding site is present in this transporter. Active transport of mannitol only takes place when EIImtl becomes phosphorylated at Cys384 in the cytoplasmic B domain. Stably phosphorylated EIImtl mutants were constructed, and FRET experiments showed that the position of mannitol in IICmtl remains the same. We conclude that during the transport cycle, the phosphorylated B domain has to move to the mannitol-binding site, located in the middle of the membrane, to phosphorylate mannitol. PMID:20522557

  18. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation.

    PubMed

    Cockburn, Darrell; Nielsen, Morten M; Christiansen, Camilla; Andersen, Joakim M; Rannes, Julie B; Blennow, Andreas; Svensson, Birte

    2015-04-01

    Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley α-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser scanning microscopy, affinity gel electrophoresis and surface plasmon resonance to unravel functional roles of the SBSs. SBS1 was critical for binding to different starch types as Kd increased by 7-62-fold or was not measurable upon mutation. By contrast SBS2 was particularly important for binding to soluble polysaccharides and oligosaccharides with α-1,6 linkages, suggesting that branch points are key structural elements in recognition by SBS2. Mutation at both SBS1 and SBS2 eliminated binding to all starch granule types tested. Taken together, the findings indicate that the two SBSs act in concert to localize AMY1 to the starch granule surface and that SBS2 works synergistically with the active site in the degradation of amylopectin.

  19. Progesterone receptor induces bcl-x expression through intragenic binding sites favoring RNA polymerase II elongation

    PubMed Central

    Bertucci, Paola Y.; Nacht, A. Silvina; Alló, Mariano; Rocha-Viegas, Luciana; Ballaré, Cecilia; Soronellas, Daniel; Castellano, Giancarlo; Zaurin, Roser; Kornblihtt, Alberto R.; Beato, Miguel; Vicent, Guillermo P.; Pecci, Adali

    2013-01-01

    Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3′-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes. PMID:23640331

  20. Molecular modelling and competition binding study of Br-noscapine and colchicine provide insight into noscapinoid-tubulin binding site.

    PubMed

    Naik, Pradeep K; Santoshi, Seneha; Rai, Ankit; Joshi, Harish C

    2011-06-01

    We have previously discovered the tubulin-binding anti-cancer properties of noscapine and its derivatives (noscapinoids). Here, we present three lines of evidence that noscapinoids bind at or near the well studied colchicine binding site of tubulin: (1) in silico molecular docking studies of Br-noscapine and noscapine yield highest docking score with the well characterised colchicine-binding site from the co-crystal structure; (2) the molecular mechanics-generalized Born/surface area (MM-GB/SA) scoring results ΔΔG(bind-cald) for both noscapine and Br-noscapine (3.915 and 3.025 kcal/mol) are in reasonably good agreement with our experimentally determined binding affinity (ΔΔG(bind-Expt) of 3.570 and 2.988 kcal/mol, derived from K(d) values); and (3) Br-noscapine competes with colchicine binding to tubulin. The simplest interpretation of these collective data is that Br-noscapine binds tubulin at a site overlapping with, or very close to colchicine-binding site of tubulin. Although we cannot rule out a formal possibility that Br-noscapine might bind to a site distinct and distant from the colchicine-binding site that might negatively influence the colchicine binding to tubulin.

  1. In vitro and in vivo characterisation of [3H]ANSTO-14 binding to the sigma 1 binding sites.

    PubMed

    Nguyen, V H; Mardon, K; Kassiou, M; Christie, M D

    1999-02-01

    N-(4-phenylbutyl)-3-hydroxy-4-azahexacyclo[5.4.1.0(2,6).0(3, 10).0(5,9) .0(8,11)]dodecane (ANSTO-14) showed the highest activity for the sigma 1 site (Ki = 9.4 nM) and 19-fold sigma 1/sigma 2 selectivity. The present study showed that [3H]ANSTO-14 binds to a single high-affinity site in guinea pig brain membranes with an equilibrium Ki of 8.0 +/- 0.3 nM, in good agreement with the kinetic studies (Kd = 13.3 +/- 5.4 nM, n = 4), and a Bmax of 3.199 +/- 105 fmol/mg protein (n = 4). The in vivo biodistribution of [3H]ANSTO-14 showed a high uptake in the diencephalon. Pretreatment of rats with sigma ligands including (+)-pentazocine (sigma 1), ANSTO-14 (sigma 1), and DTG (sigma 1 and sigma 2) did not significantly reduce radiotracer uptake in the brain, but did in the spleen. A labelled metabolite was found in the liver and brain. Due to its insensitivity to sigma ligands, the accumulation of [3H]ANSTO-14 in the brain indicates high nonspecific binding. Therefore, [3H]ANSTO-14 is a suitable ligand for labelling sigma 1 sites in vitro but is not suitable for brain imaging of sigma binding sites in vivo.

  2. The A Allele of the Single-Nucleotide Polymorphism rs630923 Creates a Binding Site for MEF2C Resulting in Reduced CXCR5 Promoter Activity in B-Cell Lymphoblastic Cell Lines.

    PubMed

    Mitkin, Nikita A; Muratova, Alisa M; Schwartz, Anton M; Kuprash, Dmitry V

    2016-01-01

    Chemokine receptor CXCR5 is highly expressed in B-cells and under normal conditions is involved in their migration to specific areas of secondary lymphoid organs. B-cells are known to play an important role in various autoimmune diseases including multiple sclerosis (MS) where areas of demyelinating lesions attract B-cells by overexpressing CXCL13, the CXCR5 ligand. In this study, we aimed to determine the functional significance of single-nucleotide polymorphism rs630923 (A/C), which is located in cxcr5 gene promoter, and its common allele is associated with increased risk of MS. Using bioinformatics and pull-down assay in B-lymphoblastic cell lines, we showed that protective minor rs630923 "A" allele created functional binding site for MEF2C transcription factor. Elevated MEF2C expression in B-cells correlated with reduced activity of cxcr5 promoter containing rs630923 "A" allele. This effect that was fully neutralized by MEF2C-directed siRNA may mechanistically explain the protective role of the rs630923 minor allele in MS. Using site-directed mutagenesis of the cxcr5 gene promoter, we were unable to find any experimental evidence for the previously proposed role of NFκB transcription factors in rs630923-mediated CXCR5 promoter regulation. Thus, our results identify MEF2C as a possible mediator of protective function of the rs630923 "A" allele in MS.

  3. Novel benzimidazole inhibitors bind to a unique site in the kinesin spindle protein motor domain.

    PubMed

    Sheth, Payal R; Shipps, Gerald W; Seghezzi, Wolfgang; Smith, Catherine K; Chuang, Cheng-Chi; Sanden, David; Basso, Andrea D; Vilenchik, Lev; Gray, Kimberly; Annis, D Allen; Nickbarg, Elliott; Ma, Yao; Lahue, Brian; Herbst, Ronald; Le, Hung V

    2010-09-28

    Affinity selection-mass spectrometry (AS-MS) screening of kinesin spindle protein (KSP) followed by enzyme inhibition studies and temperature-dependent circular dichroism (TdCD) characterization was utilized to identify a series of benzimidazole compounds. This series also binds in the presence of Ispinesib, a known anticancer KSP inhibitor in phase I/II clinical trials for breast cancer. TdCD and AS-MS analyses support simultaneous binding implying existence of a novel non-Ispinesib binding pocket within KSP. Additional TdCD analyses demonstrate direct binding of these compounds to Ispinesib-resistant mutants (D130V, A133D, and A133D + D130V double mutant), further strengthening the hypothesis that the compounds bind to a distinct binding pocket. Also importantly, binding to this pocket causes uncompetitive inhibition of KSP ATPase activity. The uncompetitive inhibition with respect to ATP is also confirmed by the requirement of nucleotide for binding of the compounds. After preliminary affinity optimization, the benzimidazole series exhibited distinctive antimitotic activity as evidenced by blockade of bipolar spindle formation and appearance of monoasters. Cancer cell growth inhibition was also demonstrated either as a single agent or in combination with Ispinesib. The combination was additive as predicted by the binding studies using TdCD and AS-MS analyses. The available data support the existence of a KSP inhibitory site hitherto unknown in the literature. The data also suggest that targeting this novel site could be a productive strategy for eluding Ispinesib-resistant tumors. Finally, AS-MS and TdCD techniques are general in scope and may enable screening other targets in the presence of known drugs, clinical candidates, or tool compounds that bind to the protein of interest in an effort to identify potency-enhancing small molecules that increase efficacy and impede resistance in combination therapy.

  4. Characterization of the binding of [3H]-SB-204269, a radiolabelled form of the new anticonvulsant SB-204269, to a novel binding site in rat brain membranes

    PubMed Central

    Herdon, Hugh J; Jerman, Jeffrey C; Stean, Tania O; Middlemiss, Derek N; Chan, Wai N; Vong, Antonio K; Evans, John M; Thompson, Mervyn; Upton, Neil

    1997-01-01

    SB-204269 (trans-(+)-6-acetyl-4S-(4-fluorobenzoylamino)-3,4-dihydro-2,2-dimethyl-2H-benzol[b]pyran-3R-ol, hemihydrate) shows potent anticonvulsant activity in a range of animal seizure models, with a lack of neurological or cardiovascular side-effects. The profile of the compound suggests that it may have a novel mechanism of action. This study describes the characteristics of a binding site for [3H]-SB-204269 in rat forebrain membranes. Specific [3H]-SB-204269 binding was saturable and analysis indicated binding to a homogenoeous population of non-interacting binding sites with a dissociation constant (KD) of 32±1 nM and a maximum binding capacity (Bmax) of 253±18 fmol mg−1 protein. Kinetic studies indicated monophasic association and dissociation. Binding was similar in HEPES or Tris-HCl buffers and was unaffected by Na+, K+, Ca2+ or Mg2+ ions. Specific binding was widely distributed in brain, but was minimal in a range of peripheral tissues. Specific [3H]-SB-204269 binding was highly stereoselective, with a 1000 fold difference between the affinities of SB-204269 and its enantiomer SB-204268 for the binding site. The affinities of analogues of SB-204269 for binding can be related to their activities in the mouse maximal electroshock seizure threshold (MEST) test of anticonvulsant action. None of the standard anticonvulsant drugs, phenobarbitone, phenytoin, sodium valproate, carbamazepine, diazepam and ethosuximide, or the newer anticonvulsants, lamotrigine, vigabatrin, gabapentin and levetiracetam, showed any affinity for the [3H]-SB-204269 binding site. A wide range of drugs active at amino acid receptors, Na+ or K+ channels or various other receptors did not demonstrate any affinity for the binding site. These studies indicate that SB-204269 possesses a specific CNS binding site which may mediate its anticonvulsant activity. This binding site does not appear to be directly related to the sites of action of other known anticonvulsant agents, but may

  5. A Unitary Anesthetic Binding Site at High Resolution

    SciTech Connect

    L Vedula; G Brannigan; N Economou; J Xi; M Hall; R Liu; M Rossi; W Dailey; K Grasty; et. al.

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  6. A Unitary Anesthetic-Binding Site at High Resolution

    SciTech Connect

    Vedula, L.; Brannigan, G; Economou, N; Xi, J; Hall, M; Liu, R; Rossi, M; Dailey, W; Grasty, K; et. al.

    2009-01-01

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  7. A Unitary Anesthetic Binding Site at High Resolution

    SciTech Connect

    Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.; Xi, Jin; Hall, Michael A.; Liu, Renyu; Rossi, Matthew J.; Dailey, William P.; Grasty, Kimberly C.; Klein, Michael L.; Eckenhoff, Roderic G.; Loll, Patrick J.

    2009-10-21

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  8. Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites

    PubMed Central

    Weth, Oliver; Weth, Christine; Bartkuhn, Marek; Leers, Joerg; Uhle, Florian; Renkawitz, Rainer

    2010-01-01

    The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations. PMID:20404925

  9. Enzyme activation through the utilization of intrinsic dianion binding energy.

    PubMed

    Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P

    2016-11-29

    We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol., 43: , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed.

  10. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    SciTech Connect

    Hu, Xiaohu; Norris, Adrianne; Baudry, Jerome Y; Serpersu, Engin H

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  11. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  12. Locating the binding sites of Pb(II) ion with human and bovine serum albumins.

    PubMed

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of K(Pb-HSA) = 8.2 (±0.8)×10(4) M(-1) and K(Pb-BSA) = 7.5 (±0.7)×10(4) M(-1). The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization.

  13. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data

    PubMed Central

    Jankowski, Aleksander; Tiuryn, Jerzy; Prabhakar, Shyam

    2016-01-01

    Motivation: Computational prediction of transcription factor (TF) binding sites in the genome remains a challenging task. Here, we present Romulus, a novel computational method for identifying individual TF binding sites from genome sequence information and cell-type–specific experimental data, such as DNase-seq. It combines the strengths of previous approaches, and improves robustness by reducing the number of free parameters in the model by an order of magnitude. Results: We show that Romulus significantly outperforms existing methods across three sources of DNase-seq data, by assessing the performance of these tools against ChIP-seq profiles. The difference was particularly significant when applied to binding site prediction for low-information-content motifs. Our method is capable of inferring multiple binding modes for a single TF, which differ in their DNase I cut profile. Finally, using the model learned by Romulus and ChIP-seq data, we introduce Binding in Closed Chromatin (BCC) as a quantitative measure of TF pioneer factor activity. Uniquely, our measure quantifies a defining feature of pioneer factors, namely their ability to bind closed chromatin. Availability and Implementation: Romulus is freely available as an R package at http://github.com/ajank/Romulus. Contact: ajank@mimuw.edu.pl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153645

  14. Neuropeptide Y binding sites in rat brain identified with purified neuropeptide Y-I125

    SciTech Connect

    Walker, M.W.; Miller, R.J.

    1986-03-05

    Neuropeptide Y (NPY) is a widely distributed neuronally localized peptide with 36 amino acids, 5 of which are tyrosines. The authors wished to investigate the properties of specific receptors for NPY. They therefore labeled the tyrosines with I125 using chloramine T and then purified the peptide using HPLC. A single mono-iodinated species of NPY which yielded > 85% specific binding in rat forebrain synaptosomes was selected as the ligand for all subsequent experiments. A time course of binding showed that equilibrium conditions were reached in 60 minutes at 21/sup 0/C. Scatchard plots revealed a single class of binding sites with a Kd and a Bmax of 3 x 10-10 M and 28 pmol/mg, respectively. Competition binding with unlabeled NPY showed 50% displacement of bound ligand at 1 x 10-10 M NPY. Competition binding with rat pancreatic polypeptide (RPP), a homologous peptide possessing little NPY-like activity, showed 50% displacement of bound ligand at 2 x 10/sup -7/ M RPP. No binding was observed on F-11 or PC12 neuronal cell lines, or on HSWP fibroblast cells. They conclude that NPY-I125 purified to homogeneity with HPLC is a highly selective ligand for NPY receptor sites. They are currently investigating such sites in brain, gut, and other tissues.

  15. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle

    SciTech Connect

    Shima, K.; Kitayama, S.; Nakano, R.

    1987-05-01

    Gonadotropin binding sites were localized by autoradiography after incubation of human ovarian sections with /sup 125/I-labeled gonadotropins. The binding sites for /sup 125/I-labeled human follicle-stimulating hormone (/sup 125/I-hFSH) were identified in the granulosa cells and in the newly formed corpora lutea. The /sup 125/I-labeled human luteinizing hormone (/sup 125/I-hLH) binding to the thecal cells increased during follicular maturation, and a dramatic increase was preferentially observed in the granulosa cells of the large preovulatory follicle. In the corpora lutea, the binding of /sup 125/I-hLH increased from the early luteal phase and decreased toward the late luteal phase. The changes in 3 beta-hydroxysteroid dehydrogenase activity in the corpora lutea corresponded to the /sup 125/I-hLH binding. Thus, the changes in gonadotropin binding sites in the follicles and corpora lutea during the menstrual cycle may help in some important way to regulate human ovarian function.

  16. Lipid binding to the carotenoid binding site in photosynthetic reaction centers.

    PubMed

    Deshmukh, Sasmit S; Tang, Kai; Kálmán, László

    2011-10-12

    Lipid binding to the carotenoid binding site near the inactive bacteriochlorophyll monomer was probed in the reaction centers of carotenoid-less mutant, R-26 from Rhodobacter sphaeroides. Recently, a marked light-induced change of the local dielectric constant in the vicinity of the inactive bacteriochlorophyll monomer was reported in wild type that was attributed to structural changes that ultimately lengthened the lifetime of the charge-separated state by 3 orders of magnitude (Deshmukh, S. S.; Williams, J. C.; Allen, J. P.; Kalman, L. Biochemistry 2011, 50, 340). Here in the R-26 reaction centers, the combination of light-induced structural changes and lipid binding resulted in a 5 orders of magnitude increase in the lifetime of the charge-separated state involving the oxidized dimer and the reduced primary quinone in proteoliposomes. Only saturated phospholipids with fatty acid chains of 12 and 14 carbon atoms long were bound successfully at 8 °C by cooling the reaction center protein slowly from room temperature. In addition to reporting a dramatic increase of the lifetime of the charge-separated state at physiologically relevant temperatures, this study reveals a novel lipid binding site in photosynthetic reaction center. These results shed light on a new potential application of the reaction center in energy storage as a light-driven biocapacitor since the charges separated by ∼30 Å in a low-dielectric medium can be prevented from recombination for hours.

  17. Functional characterization of ivermectin binding sites in α1β2γ2L GABA(A) receptors

    PubMed Central

    Estrada-Mondragon, Argel; Lynch, Joseph W.

    2015-01-01

    GABAA receptors (GABAARs) are the major inhibitory neurotransmitter receptors in the brain and are therapeutic targets for many indications including sedation, anesthesia and anxiolysis. There is, however, considerable scope for the development of new therapeutics with improved beneficial effects and reduced side-effect profiles. The anthelminthic drug, ivermectin, activates the GABAAR although its binding site is not known. The molecular site of action of ivermectin has, however, been defined by crystallography in the homologous glutamate-gated chloride channel. Resolving the molecular mechanisms of ivermectin binding to α1β2γ2L GABAARs may provide insights into the design of improved therapeutics. Given that ivermectin binds to subunit interfaces, we sought to define (1) which subunit interface sites it binds to, (2) whether these sites are equivalent in terms of ivermectin sensitivity or efficacy, and (3) how many must be occupied for maximal efficacy. Our approach involved precluding ivermectin from binding to particular interfaces by introducing bulky M3 domain 36′F sidechains to the “+” side of those interfaces. We thereby demonstrated that ivermectin produces irreversible channel activation only when it binds to the single γ2L-β2 interface site. When it binds to α1-β2 sites it elicits potentiation of GABA-gated currents but has no irreversible activating effect. Ivermectin cannot bind to the β2-α1 interface site due to its endogenous bulky 36′ methionine. Replacing this with an alanine creates a functional site at this interface, but surprisingly it is inhibitory. Molecular docking simulations reveal that the γ2L-β2 interface forms more contacts with ivermectin than the other interfaces, possibly explaining why ivermectin appears to bind irreversibly at this interface. This study demonstrates unexpectedly stark pharmacological differences among GABAAR ivermectin binding sites. PMID:26441518

  18. An efficient perturbation method to predict the functionally key sites of glutamine binding protein.

    PubMed

    Lv, Dashuai; Wang, Cunxin; Li, Chunhua; Tan, Jianjun; Zhang, Xiaoyi

    2017-04-01

    Glutamine-Binding Protein (GlnBP) of Escherichia coli, an important member of the periplasmic binding protein family, is responsible for the first step in the active transport of glutamine across the cytoplasmic membrane. In this work, the functionally key regulation sites of GlnBP were identified by utilizing a perturbation method proposed by our group, in which the residues whose perturbations markedly change the binding free energy between GlnBP and glutamine are considered to be functionally key residues. The results show that besides the substrate binding sites, some other residues distant from the binding pocket, including the ones in the hinge regions between the two domains, the front- and back- door channels and the exposed region, are important for the function of glutamine binding and transport. The predicted results are well consistent with the theoretical and experimental data, which indicates that our method is an effective approach to identify the key residues important for both ligand binding and long-range allosteric signal transmission. This work can provide some insights into the function performance of GlnBP and the physical mechanism of its allosteric regulation.

  19. Binding site and subclass specificity of the herpes simplex virus type 1-induced Fc receptor.

    PubMed Central

    Wiger, D; Michaelsen, T E

    1985-01-01

    Immunoglobulin Fc-binding activity was detected by indirect immunofluorescence employing fluorochrome conjugated F(ab')2 antibody fragments on acetone-fixed cell cultures infected with herpes simplex virus type 1 (HSV-1). Using this method the Fc receptor-like activity seemed to be restricted to the IgG class of human immunoglobulins. While IgG1, IgG2, and IgG4 myeloma proteins bind to this putative Fc gamma receptor at a concentration of 0.002 mg/ml, IgG3 myeloma proteins were without activity at 0.1 mg/ml. The binding activity was associated with the Fc fragments of IgG, while the pFc' fragments of IgG appeared to be unable to bind in this assay system. The reactivity and specificity of the HSV-1 Fc receptor was independent of both the type of tissue culture cells used and the strain of HSV-1 inducing the Fc receptor-like activity. The HSV-1-induced Fc receptor has a similar specificity for human immunoglobulin class and subclasses as staphylococcal Protein A. However, these two Fc receptors exhibit at least one striking difference. The IgG3 G3m(st) protein which binds to Protein A does not bind to HSV-1-induced Fc receptor. A possible reaction site for the HSV-1 Fc receptor on IgG could be at or near Asp 276. Images Figure 1 PMID:2982735

  20. Fatty acid binding sites of human and bovine albumins: Differences observed by spin probe ESR

    NASA Astrophysics Data System (ADS)

    Muravsky, Vladimir; Gurachevskaya, Tatjana; Berezenko, Stephen; Schnurr, Kerstin; Gurachevsky, Andrey

    2009-09-01

    Bovine and human serum albumins and recombinant human albumin, all non-covalently complexed with 5- and 16-doxyl stearic acids, were investigated by ESR spectroscopy in solution over a range of pH values (5.5-8.0) and temperatures (25-50 °C), with respect to the allocation and mobility of fatty acid (FA) molecules bound to the proteins and conformation of the binding sites. In all proteins bound FA undergo a permanent intra-albumin migration between the binding sites and inter-domain residence. Nature identity of the recombinant human albumin to its serum-derived analog was observed. However, the binding sites of bovine albumin appeared shorter in length and wider in diameter than those of human albumin. Presumably, less tightly folded domains in bovine albumin allow better penetration of water molecules in the interior of the globule that resulted in higher activation energy of FA dissociation from the binding site. Thus, the sensitive technique based on ESR non-covalent spin labeling allowed quantitative analysis and reliable comparison of the fine features of binding proteins.

  1. Structure-function studies on human retinol-binding protein using site-directed mutagenesis.

    PubMed Central

    Sivaprasadarao, A; Findlay, J B

    1994-01-01

    Retinol-binding protein (RBP) transports vitamin A in the plasma. It consists of eight anti-parallel beta-strands (A to H) that fold to form an orthogonal barrel. The loops connecting the strands A and B, C and D, and E and F form the entrance to the binding site in the barrel. The retinol molecule is found deep inside this barrel. Apart from its specific interaction with retinol, RBP is involved in two other molecular-recognition properties, that is it binds to transthyretin (TTR), another serum protein, and to a cell-surface receptor. Using site-directed mutagenesis, specific changes were made to the loop regions of human RBP and the resultant mutant proteins were tested for their ability to bind to retinol, to TTR and to the RBP receptor. While all the variants retained their ability to bind retinol, that in which residues 92 to 98 of the loop E-F were deleted completely lost its ability to interact with TTR, but retained some binding activity for the receptor. In contrast, the double mutant in which leucine residues at positions 63 and 64 of the loop C-D were changed to arginine and serine respectively partially retained its TTR-binding ability, but completely lost its affinity for the RBP receptor. Mutation of Leu-35 of loop A-B to valine revealed no apparent effect on any of the binding activities of RBP. However, substitution of leucine for proline at position 35 markedly reduced the affinity of the protein for TTR, but showed no apparent change in its receptor-binding activity. These results demonstrate that RBP interacts with both TTR and the receptor via loops C-D and E-F. The binding sites, however, are overlapping rather than identical. RBP also appears to make an additional contact with TTR via its loop A-B. A further implication of these results is that RBP, when bound to TTR, cannot bind simultaneously to the receptor. This observation is consistent with our previously proposed mechanism for delivery of retinol to target tissues [Sivaprasadarao and

  2. Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase.

    PubMed

    Scannapieco, F A; Bhandary, K; Ramasubbu, N; Levine, M J

    1990-12-31

    Previous studies have demonstrated that human salivary alpha-amylase specifically binds to the oral bacterium Streptococcus gordonii. This interaction is inhibited by substrates such as starch and maltotriose suggesting that bacterial binding may involve the enzymatic site of amylase. Experiments were performed to determine if amylase bound to the bacterial surface possessed enzymatic activity. It was found that over one-half of the bound amylase was enzymatically active. In addition, bacterial-bound amylase hydrolyzed starch to glucose which was then metabolized to lactic acid by the bacteria. In further studies, the role of amylase's histidine residues in streptococcal binding and enzymatic function was assessed after their selective modification with diethyl pyrocarbonate. DEP-modified amylase showed a marked reduction in both enzymatic and streptococcal binding activities. These effects were diminished when DEP modification occurred in the presence of maltotriose. DEP-modified amylase had a significantly altered secondary structure when compared with native enzyme or amylase modified in the presence of maltotriose. Collectively, these results suggest that human salivary alpha-amylase may possess multiple sites for bacterial binding and enzymatic activity which share structural similarities.

  3. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines

    PubMed Central

    2016-01-01

    The tetracycline antibiotics are known to be effective in the treatment of both infectious and noninfectious disease conditions. The 16S rRNA binding mechanism currently held for the antibacterial action of the tetracyclines does not explain their activity against viruses, protozoa that lack mitochondria, and noninfectious conditions. Also, the mechanism by which the tetracyclines selectively inhibit microbial protein synthesis against host eukaryotic protein synthesis despite conservation of ribosome structure and functions is still questionable. Many studies have investigated the binding of the tetracyclines to the 16S rRNA using the small ribosomal subunit of different bacterial species, but there seems to be no agreement between various reports on the exact binding site on the 16S rRNA. The wide range of activity of the tetracyclines against a broad spectrum of bacterial pathogens, viruses, protozoa, and helminths, as well as noninfectious conditions, indicates a more generalized effect on RNA. In the light of recent evidence that the tetracyclines bind to various synthetic double-stranded RNAs (dsRNAs) of random base sequences, suggesting that the double-stranded structures may play a more important role in the binding of the tetracyclines to RNA than the specific base pairs, as earlier speculated, it is imperative to consider possible alternative binding modes or sites that could help explain the mechanisms of action of the tetracyclines against various pathogens and disease conditions. PMID:27246781

  4. Conformational changes in the metal-binding sites of cardiac troponin C induced by calcium binding

    SciTech Connect

    Krudy, G.A.; Brito, R.M.M.; Putkey, J.A.; Rosevear, P.R. )

    1992-02-18

    Isotope labeling of recombinant normal cardiac troponin C (cTnC3) with {sup 15}N-enriched amino acids and multidimensional NMR were used to assign the downfield-shifted amide protons of Gly residues at position 6 in Ca{sup 2+}-binding loops II, III, and IV, as well a tightly hydrogen-bonded amides within the short antiparallel {beta}-sheets between pairs of Ca{sup 2+}-binding loops. The amide protons of Gly70, Gly110, and Gly146 were found to be shifted significantly downfield from the remaining amide proton resonances in Ca{sup 2+}-saturated cTnC3. No downfield-shifted Gly resonance was observed from the naturally inactive site I. Comparison of downfield-shifted amide protons in the Ca{sup 2+}-saturated forms of cTnC3 and CBM-IIA, a mutant having Asp65 replaced by Ala, demonstrated the Gly70 is hydrogen bonded to the carboxylate side chain of Asp65. Thus, the hydrogen bond between Gly and Asp in positions 6 and 1, respectively, of the Ca{sup 2+}-binding loop appears crucial for maintaining the integrity of the helix-loop-helix Ca{sup 2+}-binding sites. The amide protons of Ile112 and Ile148 in the C-terminal domain and Ile36 in the N-terminal domain {beta}-sheets exhibit chemical shifts consistent with hydrogen-bond formation between the pair of Ca{sup 2+}-binding loops in each domain of Ca{sup 2+}-saturated cTnC3. In the absence of Ca{sup 2+}, no strong hydrogen bonds were detected between the {beta}-strands in the N-terminal domain of cTnC3. Thus, Ca{sup 2+} binding at site II results in a tightening of the Ca{sup 2+}-binding loop and formation of one strong hydrogen bond between {beta}-strands in the N-terminal domain. These changes may initiate movement of helices in the N-terminal domain responsible for the interaction of TnC with troponin I.

  5. Characterization of the allosteric anion-binding site of O-acetylserine sulfhydrylase.

    PubMed

    Tai, C H; Burkhard, P; Gani, D; Jenn, T; Johnson, C; Cook, P F

    2001-06-26

    A new crystal structure of the A-isozyme of O-acetylserine sulfhydrylase-A (OASS) with chloride bound to an allosteric site located at the dimer interface has recently been determined [Burkhard, P., Tai, C.-H., Jansonius, J. N., and Cook, P. F. (2000) J. Mol. Biol. 303, 279-286]. Data have been obtained from steady state and presteady-state kinetic studies and from UV-visible spectral studies to characterize the allosteric anion-binding site. Data obtained with chloride and sulfate as inhibitors indicate the following: (i) chloride and sulfate prevent the formation of the external aldimines with L-cysteine or L-serine; (ii) chloride and sulfate increase the external aldimine dissociation constants for O-acetyl-L-serine, L-methionine, and 5-oxo-L-norleucine; (iii) chloride and sulfate bind to the allosteric site in the internal aldimine and alpha-aminoacrylate external aldimine forms of OASS; (iv) sulfate also binds to the active site. Sulfide behaves in a manner identical to chloride and sulfate in preventing the formation of the L-serine external aldimine. The binding of chloride to the allosteric site is pH independent over the pH range 7-9, suggesting no ionizable enzyme side chains ionize over this pH range. Inhibition by sulfide is potent (K(d) is 25 microM at pH 8) suggesting that SH(-) is the physiologic inhibitory species.

  6. Identification of Host-Chromosome Binding Sites and Candidate Gene Targets for Kaposi's Sarcoma-Associated Herpesvirus LANA

    PubMed Central

    Lu, Fang; Tsai, Kevin; Chen, Horng-Shen; Wikramasinghe, Priyankara; Davuluri, Ramana V.; Showe, Louise; Domsic, John; Marmorstein, Ronen

    2012-01-01

    LANA is essential for tethering the Kaposi's sarcoma-associated herpesvirus (KSHV) genome to metaphase chromosomes and for modulating host-cell gene expression, but the binding sites in the host-chromosome remain unknown. Here, we use LANA-specific chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to identify LANA binding sites in the viral and host-cell genomes of a latently infected pleural effusion lymphoma cell line BCBL1. LANA bound with high occupancy to the KSHV genome terminal repeats (TR) and to a few minor binding sites in the KSHV genome, including the LANA promoter region. We identified 256 putative LANA binding site peaks with P < 0.01 and overlap in two independent ChIP-Seq experiments. We validated several of the high-occupancy binding sites by conventional ChIP assays and quantitative PCR. Candidate cellular LANA binding motifs were identified and assayed for binding to purified recombinant LANA protein in vitro but bound with low affinity compared to the viral TR binding site. More than half of the LANA binding sites (170/256) could be mapped to within 2.5 kb of a cellular gene transcript. Pathways and Gene Ontogeny (GO) analysis revealed that LANA binds to genes within the p53 and tumor necrosis factor (TNF) regulatory network. Further analysis revealed partial overlap of LANA and STAT1 binding sites in several gamma interferon (IFN-γ)-regulated genes. We show that ectopic expression of LANA can downmodulate IFN-γ-mediated activation of a subset of genes, including the TAP1 peptide transporter and proteasome subunit beta type 9 (PSMB9), both of which are required for class I antigen presentation. Our data provide a potential mechanism through which LANA may regulate several host cell pathways by direct binding to gene regulatory elements. PMID:22419807

  7. Mapping the heparin-binding site of the BMP antagonist gremlin by site-directed mutagenesis based on predictive modelling.

    PubMed

    Tatsinkam, Arnold Junior; Mulloy, Barbara; Rider, Christopher C

    2015-08-15

    Gremlin is a member of the CAN (cerberus and DAN) family of secreted BMP (bone morphogenetic protein) antagonists and also an agonist of VEGF (vascular endothelial growth factor) receptor-2. It is critical in limb skeleton and kidney development and is re-expressed during tissue fibrosis. Gremlin binds strongly to heparin and heparan sulfate and, in the present study, we sought to investigate its heparin-binding site. In order to explore a putative non-contiguous binding site predicted by computational molecular modelling, we substituted a total of 11 key arginines and lysines located in three basic residue sequence clusters with homologous sequences from cerberus and DAN (differential screening selected gene abberative in neuroblastoma), CAN proteins which lack basic residues in these positions. A panel of six Myc-tagged gremlin mutants, MGR-1-MGR-6 (MGR, mutant gremlin), each containing different combinations of targeted substitutions, all showed markedly reduced affinity for heparin as demonstrated by their NaCl elution on heparin affinity chromatography, thus verifying our predictions. Both MGR-5 and MGR-6 retained BMP-4-binding activity comparable to that of wild-type gremlin. Low-molecular-mass heparin neither promoted nor inhibited BMP-4 binding. Finally, glutaraldehyde cross-linking demonstrated that gremlin forms non-covalent dimers, similar behaviour to that of DAN and also PRDC (protein related to cerberus and DAN), another CAN protein. The resulting dimer would possess two heparin-binding sites, each running along an exposed surface on the second β-strand finger loop of one of the monomers.

  8. Functional interaction of nitrogenous organic bases with cytochrome P450: a critical assessment and update of substrate features and predicted key active-site elements steering the access, binding, and orientation of amines.

    PubMed

    Hlavica, Peter

    2006-04-01

    The widespread use of nitrogenous organic bases as environmental chemicals, food additives, and clinically important drugs necessitates precise knowledge about the molecular principles governing biotransformation of this category of substrates. In this regard, analysis of the topological background of complex formation between amines and P450s, acting as major catalysts in C- and N-oxidative attack, is of paramount importance. Thus, progress in collaborative investigations, combining physico-chemical techniques with chemical-modification as well as genetic engineering experiments, enables substantiation of hypothetical work resulting from the design of pharmacophores or homology modelling of P450s. Based on a general, CYP2D6-related construct, the majority of prospective amine-docking residues was found to cluster near the distal heme face in the six known SRSs, made up by the highly variant helices B', F and G as well as the N-terminal portion of helix C and certain beta-structures. Most of the contact sites examined show a frequency of conservation < 20%, hinting at the requirement of some degree of conformational versatility, while a limited number of amino acids exhibiting a higher level of conservation reside close to the heme core. Some key determinants may have a dual role in amine binding and/or maintenance of protein integrity. Importantly, a series of non-SRS elements are likely to be operative via long-range effects. While hydrophobic mechanisms appear to dominate orientation of the nitrogenous compounds toward the iron-oxene species, polar residues seem to foster binding events through H-bonding or salt-bridge formation. Careful uncovering of structure-function relationships in amine-enzyme association together with recently developed unsupervised machine learning approaches will be helpful in both tailoring of novel amine-type drugs and early elimination of potentially toxic or mutagenic candidates. Also, chimeragenesis might serve in the construction

  9. Molecularly imprinted protein recognition cavities bearing exchangeable binding sites for postimprinting site-directed introduction of reporter molecules for readout of binding events.

    PubMed

    Sunayama, Hirobumi; Takeuchi, Toshifumi

    2014-11-26

    Protein-imprinted cavities bearing exchangeable domains to be used for postimprinting fluorophore introduction to transform binding events into fluorescence changes were constructed in molecularly imprinted polymer (MIPs) matrixes prepared on glass substrates. Copolymerization was performed with acrylamide, N,N'-methylenebisaclylamide, and a newly designed functional group-exchangeable monomer, ({[2-(2-methacrylamido)ethyldithio]ethylcarbamoyl}methoxy)acetic acid (MDTA), in the presence of a model basic protein, lysozyme (Lyso); MDTA can interact with Lyso and assemble close to Lyso in the resulting polymer. After removal of Lyso, followed by a disulfide reduction to cleave the (ethylcarbamoylmethoxy)acetic acid moiety from the MDTA residues, the exposed thiol groups within the imprinted cavities were modified by aminoethylpyridyldisulfide to be transformed into aminoethyl groups that function as active sites for amine-reactive fluorophores. Fluorescein isothiocyanate (FITC) was then coupled with the aminoethyl groups, yielding site specifically FITC-modified signaling imprinted cavities for Lyso binding. Because the in-cavity fluorescent labeling was achieved via a disulfide linkage, it was easy to remove, exchange, and/or replace amine-reactive fluorophores. This facilitated the screening of fluorophores to select the highest readout for binding events, replace fluorophores when photobleaching occurred, and introduce other functions. The proposed molecular imprinting process, combined with postimprinting modifications, is expected to provide an affordable route to develop multifunctional MIPs for specific detection of protein binding events.

  10. Probing the role of aromatic residues at the secondary saccharide binding sites of human salivary α-amylase in substrate hydrolysis and bacterial binding

    PubMed Central

    Ragunath, Chandran; Manuel, Suba G.A.; Venkataraman, Venkat; Sait, Hameetha B.R.; Kasinathan, Chinnasamy; Ramasubbu, Narayanan

    2008-01-01

    SUMMARY Human salivary α-amylase (HSAmy) has three distinct functions relevant to oral health: 1) hydrolysis of starch; 2) binding to hydroxyapatite; and 3) binding to bacteria (e.g. viridans streptococci). Although the active site of HSAmy for starch hydrolysis is well characterized, the regions responsible for the bacterial binding are yet to be defined. Since HSAmy possesses several secondary saccharide-binding sites in which aromatic residues are prominently located, we hypothesized that one or more of the secondary saccharide binding sites harboring the aromatic residues may play an important role in bacterial binding. To test this hypothesis, the aromatic residues at five secondary binding sites were mutated to alanine to generate six mutants representing either single (W203A, Y276A and W284A), double (Y276A/W284A and W316A/W388A) or multiple (HSAmy-ar; W134A/W203A/Y276A/W284A/W316A/W388A) mutations. The crystal structure of HSAmy-ar was determined at a resolution of 1.5 Å as an acarbose complex and compared with the existing wild type acarbose complex. The wild type and the mutant enzymes were characterized for their abilities to exhibit enzyme activity, starch binding, hydroxyapatite and bacterial binding activities. Our results clearly showed that 1) mutation of aromatic residues does not alter the overall conformation of the molecule; 2) the single or double mutants showed either moderate or minimal changes in both starch and bacterial binding activities activity whereas the HSAmy-ar showed significant reduction in these activities; 3) the starch hydrolytic activity was reduced 10-fold in HSAmy-ar; 4) oligosaccharide hydrolytic activity was reduced in all the mutants but the action pattern was similar to that of the wild type enzyme; and 5) the hydroxyaptite binding was unaffected in HSAmy-ar. These results clearly show that the aromatic residues at the secondary saccharide binding sites in HSAmy play a critical role in bacterial binding and starch

  11. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  12. Viral receptor-binding site antibodies with diverse germline origins

    PubMed Central

    Schmidt, Aaron G.; Therkelsen, Matthew D.; Stewart, Shaun; Kepler, Thomas B.; Liao, Hua-Xin; Moody, M. Anthony; Haynes, Barton F.; Harrison, Stephen C.

    2015-01-01

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by eleven different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B-cell targets. PMID:25959776

  13. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    SciTech Connect

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  14. An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression.

    PubMed Central

    Schanke, J T; Marcuzzi, A; Podzorski, R P; Van Ness, B

    1994-01-01

    Expression of the kappa immunoglobulin light chain gene requires developmental- and tissue-specific regulation by trans-acting factors which interact with two distinct enhancer elements. A new protein-DNA interaction has been identified upstream of the intron enhancer, within the matrix-associated region of the J-C intron. The binding activity is greatly inducible in pre-B cells by bacterial lipopolysaccharide and interleukin-1 but specific complexes are found at all stages of B cell development tested. The footprinted binding site is homologous to the consensus AP1 motif. The protein components of this complex are specifically competed by an AP1 consensus motif and were shown by supershift to include c-Jun and c-Fos, suggesting that this binding site is an AP1 motif and that the Jun and Fos families of transcription factors play a role in the regulation of the kappa light chain gene. Mutation of the AP1 motif in the context of the intron enhancer was shown to decrease enhancer-mediated activation of the promoter in both pre-B cells induced with LPS and constitutive expression in mature B cells. Images PMID:7816634

  15. Conserved properties of individual Ca2+-binding sites in calmodulin

    PubMed Central

    Halling, D. Brent; Liebeskind, Benjamin J.; Hall, Amelia W.; Aldrich, Richard W.

    2016-01-01

    Calmodulin (CaM) is a Ca2+-sensing protein that is highly conserved and ubiquitous in eukaryotes. In humans it is a locus of life-threatening cardiomyopathies. The primary function of CaM is to transduce Ca2+ concentration into cellular signals by binding to a wide range of target proteins in a Ca2+-dependent manner. We do not fully understand how CaM performs its role as a high-fidelity signal transducer for more than 300 target proteins, but diversity among its four Ca2+-binding sites, called EF-hands, may contribute to CaM’s functional versatility. We therefore looked at the conservation of CaM sequences over deep evolutionary time, focusing primarily on the four EF-hand motifs. Expanding on previous work, we found that CaM evolves slowly but that its evolutionary rate is substantially faster in fungi. We also found that the four EF-hands have distinguishing biophysical and structural properties that span eukaryotes. These results suggest that all eukaryotes require CaM to decode Ca2+ signals using four specialized EF-hands, each with specific, conserved traits. In addition, we provide an extensive map of sites associated with target proteins and with human disease and correlate these with evolutionary sequence diversity. Our comprehensive evolutionary analysis provides a basis for understanding the sequence space associated with CaM function and should help guide future work on the relationship between structure, function, and disease. PMID:26884197

  16. Atrial natriuretic factor binding sites in experimental congestive heart failure

    SciTech Connect

    Bianchi, C.; Thibault, G.; Wrobel-Konrad, E.; De Lean, A.; Genest, J.; Cantin, M. )

    1989-10-01

    A quantitative in vitro autoradiographic study was performed on the aorta, renal glomeruli, and adrenal cortex of cardiomyopathic hamsters in various stages of heart failure and correlated, in some instances, with in vivo autoradiography. The results indicate virtually no correlation between the degree of congestive heart failure and the density of 125I-labeled atrial natriuretic factor ((Ser99, Tyr126)ANF) binding sites (Bmax) in the tissues examined. Whereas the Bmax was increased in the thoracic aorta in moderate and severe heart failure, there were no significant changes in the zona glomerulosa. The renal glomeruli Bmax was lower in mild and moderate heart failure compared with control and severe heart failure. The proportion of ANF B- and C-receptors was also evaluated in sections of the aorta, adrenal, and kidney of control and cardiomyopathic hamsters with severe heart failure. (Arg102, Cys121)ANF (des-(Gln113, Ser114, Gly115, Leu116, Gly117) NH2) (C-ANF) at 10(-6) M displaced approximately 505 of (Ser99, Tyr126)125I-ANF bound in the aorta and renal glomeruli and approximately 20% in the adrenal zona glomerulosa in both series of animals. These results suggest that ANF may exert a buffering effect on the vasoconstriction of heart failure and to a certain extent may inhibit aldosterone secretion. The impairment of renal sodium excretion does not appear to be related to glomerular ANF binding sites at any stage of the disease.

  17. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor.

    PubMed

    Moore, D D; Marks, A R; Buckley, D I; Kapler, G; Payvar, F; Goodman, H M

    1985-02-01

    Glucocorticoid receptor (GCR) protein stimulates transcription from a variety of cellular genes. We show here that GCR partially purified from rat liver binds specifically to a site within the first intron of the human growth hormone (hGH) gene, approximately 100 base pairs downstream from the start of hGH transcription. GCR binding is selectively inhibited by methylation of two short, symmetrically arranged clusters of guanine residues within this site. A cloned synthetic 24-base-pair deoxyoligonucleotide containing the predicted GCR binding sequence interacts specifically with GCR. The hGH binding site shares sequence homology with a GCR binding site upstream from the human metallothionein II gene and a subset of GCR binding sites from mouse mammary tumor virus. All of these binding sites for this eukaryotic transcriptional regulatory protein show remarkable similarity in overall geometry to the binding sites for several prokaryotic transcriptional regulatory proteins.

  18. Probing the Binding Site of Abl Tyrosine Kinase Using in Situ Click Chemistry

    PubMed Central

    2013-01-01

    Modern combinatorial chemistry is used to discover compounds with desired function by an alternative strategy, in which the biological target is directly involved in the choice of ligands assembled from a pool of smaller fragments. Herein, we present the first experimental result where the use of in situ click chemistry has been successfully applied to probe the ligand-binding site of Abl and the ability of this enzyme to form its inhibitor. Docking studies show that Abl is able to allow the in situ click chemistry between specific azide and alkyne fragments by binding to Abl-active sites. This report allows medicinal chemists to use protein-directed in situ click chemistry for exploring the conformational space of a ligand-binding pocket and the ability of the protein to guide its inhibitor. This approach can be a novel, valuable tool to guide drug design synthesis in the field of tyrosine kinases. PMID:24900659

  19. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    PubMed Central

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  20. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    PubMed

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  1. DBD2BS: connecting a DNA-binding protein with its binding sites

    PubMed Central

    Chien, Ting-Ying; Lin, Chih-Kang; Lin, Chih-Wei; Weng, Yi-Zhong; Chen, Chien-Yu; Chang, Darby Tien-Hao

    2012-01-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein–DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD–DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein–DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies. Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw. PMID:22693214

  2. Multiple Ca2+ Binding Sites in the Extracellular Domain of Ca2+-Sensing Receptor Corresponding to Cooperative Ca2+ Response†

    PubMed Central

    Huang, Yun; Zhou, Yubin; Castiblanco, Adriana; Yang, Wei; Brown, Edward M.; Yang, Jenny J.

    2009-01-01

    A small change in the extracellular Ca2+ concentration ([Ca2+]o) integrates cell signaling responses in multiple cellular and tissue networks and functions via activation of Ca2+-sensing receptors (CaSR). Mainly through binding of Ca2+ to the large extracellular domain (ECD) of the dimeric CaSR, intracellular Ca2+ responses are highly cooperative with an apparent Hill coefficient ranging from 2 to 4. We have previously reported the identification of two continuous putative Ca2+-binding sites by grafting CaSR-derived, Ca2+-binding peptides to a scaffold protein, CD2, that does not bind Ca2+. In this paper, we predict more potential non-continuous Ca2+-binding sites in the ECD. We dissect the intact CaSR into three globular subdomains, each of which contains 2 to 3 predicted Ca2+-binding sites. This approach enables us to further understand the mechanisms underlying the binding of multiple metal ions to extended polypeptides derived from within the ECD of the CaSR, which would be anticipated to more closely mimic the structure of the native CaSR ECD. Tb3+-luminescence energy transfer, ANS fluorescence, and NMR studies show biphasic metal-binding components and Ca2+-dependent conformational changes in these subdomains. Removing the predicted Ca2+-binding ligands in site 1 and site 3 abolishes the first binding step and second binding step, respectively. Studies on these subdomains suggest the existence of multiple metal-binding sites and metal-induced conformational changes that might be responsible for switching on/off the CaSR by transition between its open inactive form and closed active form. PMID:19102677

  3. Benzodiazepine binding sites in rat interscapular brown adipose tissue: effect of cold environment, denervation and endocrine ablations

    SciTech Connect

    Solveyra, C.G.; Romeo, H.E.; Rosenstein, R.E.; Estevez, A.G.; Cardinali, D.P.

    1988-01-01

    /sup 3/H-Flunitrazepam (FNZP) binding was examined in a crude membrane fraction obtained from rat interscapular brown adipose tissue (IBAT). A single population of binding sites was apparent with dissociation constant (K/sub D/) = 0.47 +/- 0.04 uM and maximal number of binding sites (B/sub max/ = 31 +/- 5 pmol.mg prot/sup -1/. From the activity of several benzodiazepine (BZP) analogs to compete for the binding, the peripheral nature of FNZP binding was tentatively established. Similar BZP binding sites were detectable in isolated IBAT mitochondria. Exposure of rats to 4 /sup 0/C for 15 days decreased B/sub max/ significantly without affecting K/sub D/. Cold-induced decrease in B/sub max/ of BZP binding was prevented by surgical IBAT denervation. Denervation prevented or impaired the increased activity of the mitochondrial markers succinate dehydrogenase and malate dehydrogenase in IBAT of cold-exposed rats, but did not affect monoamine oxidase activity. Their results indicate that BZP binding in rat IBAT may belong to the peripheral type, is decreased by a cold environment through activation of peripheral sympathetic nerves and is affected by hypophysectomy. BZP and GDP binding in IBAT mitochondria seem not to be functionally related. 23 references, 4 figures, 3 tables.

  4. Mutations in exons 10 and 11 of human glucokinase result in conformational variations in the active site of the structure contributing to poor substrate binding - explains hyperglycemia in type 2 diabetic patients.

    PubMed

    Yellapu, Nandakumar; Mahto, Manoj Kumar; Valasani, Koteswara Rao; Sarma, P V G K; Matcha, Bhaskar

    2015-01-01

    Mutations in the glucokinase (GK) gene play a critical role in the establishment of type 2 diabetes. In our earlier study, R308K mutation in GK in a clinically proven type 2 diabetic patient showed, structural and functional variations that contributed immensely to the hyperglycemic condition. In the extension of this work, a cohort of 30 patients with established type 2 diabetic condition were chosen and the exons 10 and 11 of GK were PCR-amplified and sequenced. The sequence alignment showed A379S, D400Y, E300A, E395A, E395G, H380N, I348N, L301M, M298I, M381G, M402R, R308K, R394P, R397S, and S398R mutations in 12 different patients. The structural analysis of these mutated GKs, showed a variable number of β-α-β units, hairpins, β-bulges, strands, helices, helix-helix interactions, β-turns, and γ-turns along with the RMSD variations when compared to wild-type GK. Molecular modeling studies revealed that the substrate showed variable binding orientations and could not fit into the active site of these mutated structures; moreover, it was expelled out of the conformations. Therefore, these structural variations in GK due to mutations could be one of the strongest reasons for the hyperglycemic levels in these type 2 diabetic patients.

  5. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters.

    PubMed

    Singh, Satinder K; Yamashita, Atsuko; Gouaux, Eric

    2007-08-23

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 A above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of

  6. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    SciTech Connect

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  7. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae.

    PubMed

    Tomberg, Joshua; Temple, Brenda; Fedarovich, Alena; Davies, Christopher; Nicholas, Robert A

    2012-04-03

    Insertion of an aspartate residue at position 345a in penicillin-binding protein 2 (PBP 2), which lowers the rate of penicillin acylation by ~6-fold, is commonly observed in penicillin-resistant strains of Neisseria gonorrhoeae. Here, we show that insertions of other amino acids also lower the penicillin acylation rate of PBP 2, but none supported growth of N. gonorrhoeae, indicating loss of essential transpeptidase activity. The Asp345a mutation likely acts by altering the interaction between its adjacent residue, Asp346, in the β2a-β2d hairpin loop and Ser363, the middle residue of the SXN active site motif. Because the adjacent aspartate creates ambiguity in the position of the insertion, we also examined if insertions at position 346a could confer decreased susceptibility to penicillin. However, only aspartate insertions were identified, indicating that only an Asp-Asp couple can confer resistance and retain transpeptidase function. The importance of the Asp346-Ser363 interaction was assessed by mutation of each residue to Ala. Although both mutants lowered the acylation rate of penicillin G by 5-fold, neither could support growth of N. gonorrhoeae, again indicating loss of transpeptidase function. Interaction between a residue in the equivalent of the β2a-β2d hairpin loop and the middle residue of the SXN motif is observed in crystal structures of other Class B PBPs, and its importance is also supported by multisequence alignments. Overall, these results suggest that this conserved interaction can be manipulated (e.g., by insertion) to lower the acylation rate by β-lactam antibiotics and increase resistance, but only if essential transpeptidase activity is preserved.

  8. Tyrosine and tryptophan act through the same binding site at the dimer interface of yeast chorismate mutase.

    PubMed

    Schnappauf, G; Krappmann, S; Braus, G H

    1998-07-03

    Tyrosine and tryptophan are the regulators of the dimeric yeast chorismate mutase. Biochemical studies reveal two binding sites per molecule for both effectors, tyrosine or tryptophan. A single binding site is built up by helix 8 and helices 4 and 5 of two different subunits. The binding sites have been analyzed in the active enzyme by site directed mutagenesis of critical codons of the coding gene, ARO7. Gly-141 and Ser-142, which both reside on helix 8, are involved in the binding of tyrosine or tryptophan presumably by interacting specifically with the amino- and carboxylate-groups of these amino acid effectors. Interaction with Thr-145 of helix 8 is required for a strong tyrosine binding to the allosteric site. Replacement of Arg-75, which connects helices 4 and 5 or of Arg-76, which is part of helix 5 by alanine residues, resulted in unregulated enzymes. These two residues are bonded to the carboxylate group and phenolic hydroxyl group of tyrosine, respectively, but do not interact with tryptophan by hydrogen bonding in the crystal structures. Phenylalanine, which has low binding affinity slightly activated the chorismate mutase. A T145V mutant chorismate mutase, however, showed increased activation by phenylalanine. Our results support a mechanism by which tyrosine contracts the allosteric site by interacting with its phenolic hydroxyl group. Tryptophan works in an inverse way by opening the allosteric site through the steric size of its side chain.

  9. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    SciTech Connect

    Harada, Y.; Li, H.; Li, Hua; Lennarz, W. J.

    2009-04-28

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.

  10. Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila.

    PubMed

    Ajuria, Leiore; Nieva, Claudia; Winkler, Clint; Kuo, Dennis; Samper, Núria; Andreu, María José; Helman, Aharon; González-Crespo, Sergio; Paroush, Ze'ev; Courey, Albert J; Jiménez, Gerardo

    2011-03-01

    RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways control expression of downstream genes through common octameric elements that are binding sites for the HMG-box factor Capicua, a transcriptional repressor that is downregulated by RTK signaling in different contexts. We show that Torso RTK-dependent regulation of terminal gap gene expression in the early embryo critically depends on Capicua octameric sites, and that binding of Capicua to these sites is essential for recruitment of the Groucho co-repressor to the huckebein enhancer in vivo. We then show that subsequent activation of the EGFR RTK pathway in the neuroectodermal region of the embryo controls dorsal-ventral gene expression by downregulating the Capicua protein, and that this control also depends on Capicua octameric motifs. Thus, a similar mechanism of RTK regulation operates during subdivision of the anterior-posterior and dorsal-ventral embryonic axes. We also find that identical DNA octamers mediate Capicua-dependent regulation of another EGFR target in the developing wing. Remarkably, a simple combination of activator-binding sites and Capicua motifs is sufficient to establish complex patterns of gene expression in response to both Torso and EGFR activation in different tissues. We conclude that Capicua octamers are general response elements for RTK signaling in Drosophila.

  11. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    SciTech Connect

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.; Barker, D.L.

    1985-12-01

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably less effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.

  12. Arf nucleotide binding site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 β-cells and rat islets

    PubMed Central

    Jayaram, Bhavaani; Syed, Ismail; Kyathanahalli, Chandrashekara N.; Rhodes, Christopher J.; Kowluru, Anjaneyulu

    2011-01-01

    Glucose-stimulated insulin secretion [GSIS] involves interplay between small G-proteins and their regulatory factors. Herein, we tested the hypothesis that Arf nucleotide binding site opener [ARNO], a guanine nucleotide exchange factor [GEF] for the small G-protein Arf6, mediates the functional activation of Arf6, and that ARNO/Arf6 signaling axis, in turn, controls the activation of Cdc42 and Rac1, which have been implicated in GSIS. Molecular biological [i.e., expression of inactive mutants or siRNA] and pharmacological approaches were employed to assess the roles for ARNO/Arf6 signaling pathway in insulin secretion in normal rat islets and INS 832/13 cells. Degrees of activation of Arf6 and Cdc42/Rac1 were quantitated by GST-GGA3 and PAK-1 kinase pull-down assays, respectively. ARNO is expressed in INS 832/13 cells, rat islets and human islets. Expression of inactive mutants of Arf6 [Arf6-T27N] or ARNO [ARNO-E156K] or siRNA-ARNO markedly reduced GSIS in isolated β-cells. secinH3, a selective inhibitor of ARNO/Arf6 signaling axis, also inhibited GSIS in INS 832/13 cells and rat islets. Stimulatory concentrations of glucose promoted Arf6 activation, which was inhibited by secinH3 or siRNA-ARNO, suggesting that ARNO/Arf6 signaling cascade is necessary for GSIS. secinH3 or siRNA-ARNO also inhibited glucose-induced activation of Cdc42 and Rac1 suggesting that ARNO/Arf6 might be upstream to Cdc42 and Rac1 activation steps, which are necessary for GSIS. Lastly, co-immunoprecipitation and confocal microscopic studies suggested increased association between Arf6 and ARNO in glucose-stimulated β-cells. These findings provide the first evidence to implicate ARNO in the sequential activation of Arf6, Cdc42 and Rac1 culminating in GSIS. PMID:21276423

  13. Increased serum cortisol binding in chronic active hepatitis

    SciTech Connect

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG.

  14. Mefloquine inhibits voltage dependent Nav1.4 channel by overlapping the local anaesthetic binding site.

    PubMed

    Paiz-Candia, Bertin; Islas, Angel A; Sánchez-Solano, Alfredo; Mancilla-Simbro, Claudia; Scior, Thomas; Millan-PerezPeña, Lourdes; Salinas-Stefanon, Eduardo M

    2017-02-05

    Mefloquine constitutes a multitarget antimalaric that inhibits cation currents. However, the effect and the binding site of this compound on Na(+) channels is unknown. To address the mechanism of action of mefloquine, we employed two-electrode voltage clamp recordings on Xenopus laevis oocytes, site-directed mutagenesis of the rat Na(+) channel, and a combined in silico approach using Molecular Dynamics and docking protocols. We found that mefloquine: i) inhibited Nav1.4 currents (IC50 =60μM), ii) significantly delayed fast inactivation but did not affect recovery from inactivation, iii) markedly the shifted steady-state inactivation curve to more hyperpolarized potentials. The presence of the β1 subunit significantly reduced mefloquine potency, but the drug induced a significant frequency-independent rundown upon repetitive depolarisations. Computational and experimental results indicate that mefloquine overlaps the local anaesthetic binding site by docking at a hydrophobic cavity between domains DIII and DIV that communicates the local anaesthetic binding site with the selectivity filter. This is supported by the fact that mefloquine potency significantly decreased on mutant Nav1.4 channel F1579A and significantly increased on K1237S channels. In silico this compound docked above F1579 forming stable π-π interactions with this residue. We provide structure-activity insights into how cationic amphiphilic compounds may exert inhibitory effects by docking between the local anaesthetic binding site and the selectivity filter of a mammalian Na(+) channel. Our proposed synergistic cycle of experimental and computational studies may be useful for elucidating binding sites of other drugs, thereby saving in vitro and in silico resources.

  15. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques.

    PubMed

    Gupta, Shikhar; Fallarero, Adyary; Järvinen, Päivi; Karlsson, Daniela; Johnson, Mark S; Vuorela, Pia M; Mohan, C Gopi

    2011-02-15

    Dual binding site acetylcholinesterase (AChE) inhibitors are promising for the treatment of Alzheimer's disease (AD). They alleviate the cognitive deficits and AD-modifying agents, by inhibiting the β-amyloid (Aβ) peptide aggregation, through binding to both the catalytic and peripheral anionic sites, the so called dual binding site of the AChE enzyme. In this Letter, chemical features based 3D-pharmacophore models were developed based on the eight potent and structurally diverse AChE inhibitors (I-VIII) obtained from high-throughput in vitro screening technique. The best 3D-pharmacophore model, Hypo1, consists of two hydrogen-bond acceptor lipid, one hydrophobe, and two hydrophobic aliphatic features obtained by Catalyst/HIPHOP algorithm adopted in Discovery studio program. Hypo1 was used as a 3D query in sequential virtual screening study to filter three small compound databases. Further, a total of nine compounds were selected and followed on in vitro analysis. Finally, we identified