Science.gov

Sample records for active biopolymer network

  1. Coupled biopolymer networks

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.; Zhang, Tao

    2015-03-01

    The actin cytoskeleton provides the cell with structural integrity and allows it to change shape to crawl along a surface, for example. The actin cytoskeleton can be modeled as a semiflexible biopolymer network that modifies its morphology in response to both external and internal stimuli. Just inside the inner nuclear membrane of a cell exists a network of filamentous lamin that presumably protects the heart of the cell nucleus--the DNA. Lamins are intermediate filaments that can also be modeled as semiflexible biopolymers. It turns out that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins that bridge the outer and inner nuclear membranes. We, therefore, probe the consequences of such a coupling via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the cytoskeletal network. Such study could have implications for mechanical mechanisms of the regulation of transcription, since DNA--yet another semiflexible polymer--contains lamin-binding domains, and, thus, widen the field of epigenetics.

  2. Heterogeneous Force Chains in Cellularized Biopolymer Network

    NASA Astrophysics Data System (ADS)

    Liang, Long; Jones, Christopher Allen Rucksack; Sun, Bo; Jiao, Yang

    Biopolymer Networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the mechanical response of a model biopolymer network due to the active contraction of embedded cells. Specifically, a graph (bond-node) model derived from confocal microscopy data is used to represent the network microstructure, and cell contraction is modeled by applying correlated displacements at specific nodes, representing the focal adhesion sites. A force-based stochastic relaxation method is employed to obtain force-balanced network under cell contraction. We find that the majority of the forces are carried by a small number of heterogeneous force chains emerged from the contracting cells. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to the reorientation induced by cell contraction. Large fluctuations of the forces along different force chains are observed. Importantly, the decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure could support long-range mechanical signaling between cells.

  3. Special Feature: Liquids and Structural Glasses Special Feature: An active biopolymer network controlled by molecular motors

    NASA Astrophysics Data System (ADS)

    Koenderink, Gijsje H.; Dogic, Zvonimir; Nakamura, Fumihiko; Bendix, Poul M.; MacKintosh, Frederick C.; Hartwig, John H.; Stossel, Thomas P.; Weitz, David A.

    2009-09-01

    We describe an active polymer network in which processive molecular motors control network elasticity. This system consists of actin filaments cross-linked by filamin A (FLNa) and contracted by bipolar filaments of muscle myosin II. The myosin motors stiffen the network by more than two orders of magnitude by pulling on actin filaments anchored in the network by FLNa cross-links, thereby generating internal stress. The stiffening response closely mimics the effects of external stress applied by mechanical shear. Both internal and external stresses can drive the network into a highly nonlinear, stiffened regime. The active stress reaches values that are equivalent to an external stress of 14 Pa, consistent with a 1-pN force per myosin head. This active network mimics many mechanical properties of cells and suggests that adherent cells exert mechanical control by operating in a nonlinear regime where cell stiffness is sensitive to changes in motor activity. This design principle may be applicable to engineering novel biologically inspired, active materials that adjust their own stiffness by internal catalytic control.

  4. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    NASA Astrophysics Data System (ADS)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I

  5. Mechanically induced helix-coil transition in biopolymer networks.

    PubMed

    Courty, Sebastien; Gornall, Joanne L; Terentjev, Eugene M

    2006-02-01

    The quasi-equilibrium evolution of the helical fraction occurring in a biopolymer network (gelatin gel) under an applied stress has been investigated by observing modulation in its optical activity. Its variation with the imposed chain extension is distinctly nonmonotonic and corresponds to the transition of initially coiled strands to induced left-handed helices. The experimental results are in qualitative agreement with theoretical predictions of helices induced on chain extension. This new effect of mechanically stimulated helix-coil transition has been studied further as a function of the elastic properties of the polymer network: crosslink density and network aging.

  6. Micromechanics of cellularized biopolymer networks

    PubMed Central

    Jones, Christopher A. R.; Cibula, Matthew; Feng, Jingchen; Krnacik, Emma A.; McIntyre, David H.; Levine, Herbert; Sun, Bo

    2015-01-01

    Collagen gels are widely used in experiments on cell mechanics because they mimic the extracellular matrix in physiological conditions. Collagen gels are often characterized by their bulk rheology; however, variations in the collagen fiber microstructure and cell adhesion forces cause the mechanical properties to be inhomogeneous at the cellular scale. We study the mechanics of type I collagen on the scale of tens to hundreds of microns by using holographic optical tweezers to apply pN forces to microparticles embedded in the collagen fiber network. We find that in response to optical forces, particle displacements are inhomogeneous, anisotropic, and asymmetric. Gels prepared at 21 °C and 37 °C show qualitative difference in their micromechanical characteristics. We also demonstrate that contracting cells remodel the micromechanics of their surrounding extracellular matrix in a strain- and distance-dependent manner. To further understand the micromechanics of cellularized extracellular matrix, we have constructed a computational model which reproduces the main experiment findings. PMID:26324923

  7. Constitutive modelling of composite biopolymer networks.

    PubMed

    Fallqvist, B; Kroon, M

    2016-04-21

    The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures.

  8. Active biopolymers confer fast reorganization kinetics.

    PubMed

    Swanson, Douglas; Wingreen, Ned S

    2011-11-18

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime (or mean first-passage time, or MFPT) and mean length, MFPT∼, by analogy to 1D Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT∼(1/2). Since, to be biologically useful, structural biopolymers must typically be many monomers long yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify the active polymers' greater energy cost.

  9. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  10. Mechanical response of biopolymer double networks

    NASA Astrophysics Data System (ADS)

    Carroll, Joshua; Das, Moumita

    We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.

  11. Strain induced critical behavior in athermal biopolymer networks

    NASA Astrophysics Data System (ADS)

    Sharma, Abhinav; Licup, Albert; Rens, Robbie; Sheinman, Michael; Jansen, Karin; Koenderink, Gijse; Mackintosh, Fred

    2015-03-01

    Biopolymer networks exhibit highly interesting mechanical behavior. An instructive model system is that of a network composed of rope-like filaments-zero resistance to compression but finite resistance to stretching. For networks with connectivity below Maxwell point,there is no elastic modulus for small deformations. However,when networks are subjected to an external strain, stiffness emerges spontaneously beyond a critical strain. We demonstrate that the spontaneous emergence of elasticity is analogous to a continuous phase transition. The critical point is not fixed but depends on the geometry of the underlying network.The elastic behavior near the critical point can be described analogous to that of Magnetization in ferromagnetic material near the curie temperature.Surprisingly, the critical exponents are independent of the dimensionality and depend only on the average connectivity in the network.By including bending interactions in the rope network, we can capture the mechanical behavior of biologically relevant networks.Bending rigidity acts as a coupling constant analogous to the external magnetic field in a ferromagnetic system.We show that nonlinear mechanics of collagen are successfully captured by our framework of regarding nonlinear mechanics as a critical phenomenon

  12. Length regulation of active biopolymers by molecular motors.

    PubMed

    Johann, Denis; Erlenkämper, Christoph; Kruse, Karsten

    2012-06-22

    For biopolymers like cytoskeletal actin filaments and microtubules, assembly and disassembly are inherently dissipative processes. Molecular motors can affect the rates of subunit removal at filament ends. We introduce a driven lattice-gas model to study the effects of motor-induced depolymerization on the length of active biopolymers and find that increasing motor activity sharpens unimodal steady-state length distributions. Furthermore, for sufficiently fast moving motors, the relative width of the length distribution is determined only by the attachment rate of motors. Our results show how established molecular processes can be used to robustly regulate the size of cytoskeletal structures like mitotic spindles.

  13. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.

    PubMed

    Kurniawan, Nicholas A; Wong, Long Hui; Rajagopalan, Raj

    2012-03-12

    Collagen networks, the main structural/mechanical elements in biological tissues, increasingly serve as biomimetic scaffolds for cell behavioral studies, assays, and tissue engineering, and yet their full spectrum of nonlinear behavior remains unclear. Here, with self-assembled type-I collagen as model, we use metrics beyond those in standard single-harmonic analysis of rheological measurements to reveal strain-softening and strain-stiffening of collagen networks both in instantaneous responses and at steady state. The results show how different deformation mechanisms, such as deformation-induced increase in the elastically active fibrils, nonlinear extension of individual fibrils, and slips in the physical cross-links in the network, can lead to the observed complex nonlinearity. We demonstrate how comprehensive rheological analyses can uncover the rich mechanical properties of biopolymer networks, including the above-mentioned softening as well as an early strain-stiffening, which are important for understanding physiological response of biological materials to mechanical loading.

  14. Assessment of respiration activity and ecotoxicity of composts containing biopolymers.

    PubMed

    Kopeć, Michał; Gondek, Krzysztof; Baran, Agnieszka

    2013-03-01

    The research was conducted to determine if introducing biodegradable polymer materials to the composting process would affect selected biological properties of mature compost. Determination of biological properties of composts composed of testing their respiration activity and toxicity. Respiration activity was measured in material from the composting process by means of OxiTop Control measuring system. The ecotoxicity of composts was estimated by means of a set of biotests composed of three microbiotests using five test organisms. Introduction of polymer materials caused a decrease in respiration activity of mature compost. Similar dependencies as in the case of mass loss were registered. Compost to which a biodegradable polymer with the highest content of starch was added revealed the smallest difference in comparison with organic material composted without polymers. Lower content of starch in a polymer caused lower respiration activity of composts, whereas microorganism vaccine might have accelerated maturing of composts, thus contributing to the smallest respiration of compost. In composts containing biopolymers the following were observed: an increase in germination inhibition--2.5 times, roots growth inhibition--1.8 times, growth inhibition of Heterocypris incongruens--four times and luminescence inhibition of Vibrio fischeri--1.6 times in comparison with the control (compost K1). Composts containing biopolymers were classified as toxicity class III, whereas the compost without polymer addition as class II.

  15. Network and Nakamura tridiagonal computational simulation of electrically-conducting biopolymer micro-morphic transport phenomena.

    PubMed

    Anwar Bég, O; Zueco, J; Norouzi, M; Davoodi, M; Joneidi, A A; Elsayed, Assma F

    2014-01-01

    Magnetic fields have been shown to achieve excellent fabrication control and manipulation of conductive bio-polymer characteristics. To simulate magnetohydrodynamic effects on non-Newtonian electro-conductive bio-polymers (ECBPs) we present herein a theoretical and numerical simulation of free convection magneto-micropolar biopolymer flow over a horizontal circular cylinder (an "enrobing" problem). Eringen's robust micropolar model (a special case of the more general micro-morphic or "microfluid" model) is implemented. The transformed partial differential conservation equations are solved numerically with a powerful and new code based on NSM (Network Simulation Method) i.e. PSPICE. An extensive range of Hartmann numbers, Grashof numbers, micropolar parameters and Prandtl numbers are considered. Excellent validation is also achieved with earlier non-magnetic studies. Furthermore the present PSPICE code is also benchmarked with an implicit tridiagonal solver based on Nakamura's method (BIONAK) again achieving close correlation. The study highlights the excellent potential of both numerical methods described in simulating nonlinear biopolymer micro-structural flows.

  16. Frequency-dependent micromechanics of cellularized biopolymer networks

    NASA Astrophysics Data System (ADS)

    Jones, Chris; Kim, Jihan; McIntyre, David; Sun, Bo

    Mechanical interactions between cells and the extracellular matrix (ECM) influence many cellular behaviors such as growth, differentiation, and migration. These are dynamic processes in which the cells actively remodel the ECM. Reconstituted collagen gel is a common model ECM for studying cell-ECM interactions in vitro because collagen is the most abundant component of mammalian ECM and gives the ECM its material stiffness. We embed micron-sized particles in collagen and use holographic optical tweezers to apply forces to the particles in multiple directions and over a range of frequencies up to 10 Hz. We calculate the local compliance and show that it is dependent on both the direction and frequency of the applied force. Performing the same measurement on many particles allows us to characterize the spatial inhomogeneity of the mechanical properties and shows that the compliance decreases at higher frequencies. Performing these measurements on cell-populated collagen gels shows that cellular remodeling of the ECM changes the mechanical properties of the collagen and we investigate whether this change is dependent on the local strain and distance from nearby cells.

  17. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  18. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    PubMed Central

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  19. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  20. Quantitative characterization of the microstructure and transport properties of biopolymer networks

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Torquato, Salvatore

    2012-06-01

    Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient De and mean survival time τ) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function P(δ) for the networks and present a variety of analytical estimates of the effective diffusion coefficient De for finite-sized diffusing particles, including the low-density approximation, the Ogston approximation and the Torquato approximation. The Hashin-Strikman upper bound on the effective diffusion coefficient De and the pore-size lower bound on the mean survival time τ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to the case of fiber networks and compute the associated effective diffusion coefficient De as well as the mean survival time τ, which is related to nuclear magnetic resonance relaxation times. Our numerical results for De are in excellent agreement with analytical results for simple network microstructures, such as periodic arrays of parallel cylinders. Specifically, the Torquato approximation provides the most accurate estimates of De for all collagen concentrations among all of the analytical approximations we consider. We formulate a universal curve for τ for the networks at different collagen concentrations, extending the work of Torquato and Yeong (1997 J. Chem. Phys. 106 8814). We apply rigorous cross-property relations to estimate the effective bulk modulus of collagen networks from a knowledge of the effective diffusion coefficient computed here. The use of cross-property relations

  1. Quantitative characterization of the microstructure and transport properties of biopolymer networks.

    PubMed

    Jiao, Yang; Torquato, Salvatore

    2012-06-01

    Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient D(e) and mean survival time τ) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function P(δ) for the networks and present a variety of analytical estimates of the effective diffusion coefficient D(e) for finite-sized diffusing particles, including the low-density approximation, the Ogston approximation and the Torquato approximation. The Hashin-Strikman upper bound on the effective diffusion coefficient D(e) and the pore-size lower bound on the mean survival time τ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to the case of fiber networks and compute the associated effective diffusion coefficient D(e) as well as the mean survival time τ, which is related to nuclear magnetic resonance relaxation times. Our numerical results for D(e) are in excellent agreement with analytical results for simple network microstructures, such as periodic arrays of parallel cylinders. Specifically, the Torquato approximation provides the most accurate estimates of D(e) for all collagen concentrations among all of the analytical approximations we consider. We formulate a universal curve for τ for the networks at different collagen concentrations, extending the work of Torquato and Yeong (1997 J. Chem. Phys. 106 8814). We apply rigorous cross-property relations to estimate the effective bulk modulus of collagen networks from a knowledge of the effective diffusion coefficient computed here. The use of cross

  2. Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite.

    PubMed

    Sharma, Anshu; Prakash, Prem; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-09-01

    In the present study, the antimicrobial properties of modified biopolymers such as gelatin and agar have been investigated. These biopolymers (agar and gelatin) are modified by dissolving in ionic liquid (IL) [1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-octyl-3-methyl imidazolium chloride ([C8mim][Cl])] solutions. It was noticed that agar-ionogel (Ag-IL), gelatin-ionogel (GB-IL), and gelatin organogel (gelatin-glycerol solution along with laponite, nanoclay) nanocomposite (GA-NC) formed are highly stable, optically clear, and transparent without any air bubbles. The antimicrobial activity of these (Ag-IL), (GB-IL), and GA-NC were analyzed for both gram-negative (Escherichia coli, Klebsiella pneumoniae) and gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus pyogenes) and fungus A. niger, C. albicans. Antibacterial and antifungal activity studies were carried out at different dilutions such as 100, 99, and 90 % (v/v). It was found that Ag-IL, GB-IL, and individual IL ([C8mim][Cl]) exhibited superior antimicrobial activities, indicating that longer IL chain enhance the cell membrane permeability of S. aureus, S. pyogenes, and E. coli cells. However, GA-NC nanocomposite and [C2mim][Cl]-based composites does not exhibit any bacterial inhibition activity for all bacterial strains.

  3. Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material

    PubMed Central

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500°C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation. PMID:23831846

  4. Functional biopolymer-based matrices for modulation of chronic wound enzyme activities.

    PubMed

    Francesko, Antonio; Soares da Costa, Diana; Reis, Rui L; Pashkuleva, Iva; Tzanov, Tzanko

    2013-02-01

    Collagen, collagen/hyaluronic acid (HA) and collagen/HA/chitosan (CS) sponges loaded with epigallocatechin gallate (EGCG), catechin (CAT) and gallic acid (GA) were developed and evaluated as active chronic wound dressings. Their physico-mechanical properties, biostability, biocompatibility and ability to inhibit in vitro myeloperoxidase (MPO) and collagenase--major enzymes related with the persistent inflammation in chronic wounds--were investigated as a function of the biopolymer composition and the polyphenolic compound used. The results demonstrated that the molecular weight of HA influences significantly the bulk properties of the obtained materials: higher elastic modulus, swelling ability and biostability against collagenase were measured when HA with higher molecular weights (830 and 2000 kDa) were added to the collagen matrices. The addition of CS and the polyphenols increased further the biostability of the sponges. Preliminary in vitro tests with fibroblasts revealed that the cells were able to adhere to all sponges. Cell viability was not affected significantly by the addition of the polyphenols; however, the presence of CS or high molecular weight HA in the sponge composition was associated with lower cellular viability. Finally, all specimens containing polyphenols efficiently inhibited the MPO activity. The highest inhibition capacity was observed for EGCG (IC₅₀=15±1μM) and it was coupled to the highest extent of binding to the biopolymers (>80%) and optimal release profile from the sponges that allowed for prolonged (up to 3-5 days) effects.

  5. Metrologically Traceable Determination of the Water Content in Biopolymers: INRiM Activity

    NASA Astrophysics Data System (ADS)

    Rolle, F.; Beltramino, G.; Fernicola, V.; Sega, M.; Verdoja, A.

    2017-03-01

    Water content in materials is a key factor affecting many chemical and physical properties. In polymers of biological origin, it influences their stability and mechanical properties as well as their biodegradability. The present work describes the activity carried out at INRiM on the determination of water content in samples of a commercial starch-derived biopolymer widely used in shopping bags (Mater-Bi^{circledR }). Its water content, together with temperature, is the most influencing parameter affecting its biodegradability, because of the considerable impact on the microbial activity which is responsible for the biopolymer degradation in the environment. The main scope of the work was the establishment of a metrologically traceable procedure for the determination of water content by using two electrochemical methods, namely coulometric Karl Fischer (cKF) titration and evolved water vapour (EWV) analysis. The obtained results are presented. The most significant operational parameters were considered, and a particular attention was devoted to the establishment of metrological traceability of the measurement results by using appropriate calibration procedures, calibrated standards and suitable certified reference materials. Sample homogeneity and oven-drying temperature were found to be the most important influence quantities in the whole water content measurement process. The results of the two methods were in agreement within the stated uncertainties. Further development is foreseen for the application of cKF and EWV to other polymers.

  6. Inorganic nanoparticles for the spatial and temporal control of organic reactions: Applications to radical degradation of biopolymer networks

    NASA Astrophysics Data System (ADS)

    Walker, Joan Marie

    Nanoparticles of gold and iron oxide not only possess remarkable optical and magnetic properties, respectively, but are also capable of influencing their local environment with an astounding degree of precision. Using nanoparticles to direct the reactivity of organic molecules near their surface provides a unique method of spatial and temporal control. Enediynes represent an exceptional class of compounds that are thermally reactive to produce a diradical intermediate via Bergman cycloaromatization. While natural product enediynes are famously cytotoxic, a rich chemistry of synthetic enediynes has developed utilizing creative means to control this reactivity through structure, electronics, metal chelation, and external triggering mechanisms. In a heretofore unexplored arena for Bergman cyclization, we have investigated the reactivity of enediynes in connection with inorganic nanoparticles in which the physical properties of the nanomaterial are directly excited to thermally promote aromatization. As the first example of this methodology, gold nanoparticles conjugated with (Z)-octa-4-en-2,6-diyne-1,8-dithiol were excited with 514 nm laser irradiation. The formation of aromatic and polymeric products was confirmed through Raman spectroscopy and electron microscopy. Water soluble analogues Au-PEG-EDDA and Fe3O4-PEG-EDDA (EDDA = (Z)-octa-4-en-2,6-diyne-1,8-diamine) show similar reactivity under laser irradiation or alternating magnetic field excitation, respectively. Furthermore, we have used these functionalized nanoparticles to attack proteinaceous substrates including fibrin and extracellular matrix proteins, capitalizing on the ability of diradicals to disrupt peptidic bonds. By delivering a locally high payload of reactive molecules and thermal energy to the large biopolymer, network restructuring and collapse is achieved. As a synthetic extension towards multifunctional nanoparticles, noble metal seed-decorated iron oxides have also been prepared and assessed for

  7. The Impact of Invasive Earthworm Activity on Biopolymer Character of ýDecayed Litter ý

    NASA Astrophysics Data System (ADS)

    Filley, T.; Crow, S.; Johnston, C.; McCormick, M.; Szlavecz, K.

    2007-12-01

    Over the last 400-500 years invasive European earthworm populations have ýmoved steadily into North American forests either previously devoid of ýearthworms or that contained their own native populations. This has profound ýimpacts upon litter decay and soil organic matter dynamics. To determine the ýimpact of earthworm activity on the biopolymer and stable isotope chemistry of ýlitter residues and the nature of organic carbon moved to the soil profile we ýanalyzed tulip poplar leaves from a multi-year addition experiment in open ýsurface decay litter and litter bag decay experiments, as well as the associated ýsoils among forest plots that varied in non-native earthworm density and ýbiomass. The chemical alteration of biopolymers was tracked with FTIR ýspectroscopy, 13C-TMAH thermochemolysis, alkaline CuO extraction, and stable ýisotope mass spectrometry. Earthworm activity resulted in residues and soil ýparticulate organic matter depleted in cuticular aliphatic components and ýpolyphenols but highly enriched in ether-linked lignin with respect to initial litter ýmaterial. Decay in low earthworm abundance plots, as well as all experiments ýwith earthworm-excluding litter bags, resulted in enrichment in cutin aliphatics ýand only minor increases in ether linked lignin phenols which was also reflected ýin the soils below the amendments. Additionally, the stable carbon and nitrogen ýisotope composition of tulip poplar residues became isotopically distinct. The ýresults from litter bag decays were only reflective of the chemistry at sites with ývery low earthworm abundances. ý

  8. Equivalent pathways in melting and gelation of well-defined biopolymer networks.

    PubMed

    Cingil, Hande E; Rombouts, Wolf H; van der Gucht, Jasper; Cohen Stuart, Martien A; Sprakel, Joris

    2015-01-12

    We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent.

  9. Response of biopolymer networks governed by the physical properties of cross-linking molecules.

    PubMed

    Wei, Xi; Zhu, Qian; Qian, Jin; Lin, Yuan; Shenoy, V B

    2016-03-07

    In this study, we examine how the physical properties of cross-linking molecules affect the bulk response of bio-filament networks, an outstanding question in the study of biological gels and the cytoskeleton. We show that the stress-strain relationship of such networks typically undergoes linear increase - strain hardening - stress serration - total fracture transitions due to the interplay between the bending and stretching of individual filaments and the deformation and breakage of cross-linkers. Interestingly, the apparent network modulus is found to scale with the linear and rotational stiffness of the crosslinks to a power exponent of 0.78 and 0.13, respectively. In addition, the network fracture energy will reach its minimum at intermediate rotational compliance values, reflecting the fact that most of the strain energy will be stored in the distorted filaments with rigid cross-linkers while the imposed deformation will be "evenly" distributed among significantly more crosslinking molecules with high rotational compliance.

  10. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes.

    PubMed

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V

    2015-12-21

    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.

  11. Microencapsulation effectiveness of small active molecules in biopolymer by ultrasonic atomization technique.

    PubMed

    Cascone, Sara; Lamberti, Gaetano; Titomanlio, Giuseppe; Barba, Anna Angela; d'Amore, Matteo

    2012-12-01

    A method to produce biopolymeric (alginate) microparticles by ultrasonic assisted atomization, previously developed, has been applied to the production of microparticles loaded with a small active molecule (theophylline). Fine loaded alginate droplets have been cross-linked with divalent ions to produce microparticles. Once produced, the particles have been separated by centrifugation or filtration and then they have been dried. Drug release has been evaluated by dissolution tests, dissolving the dried particles in acidic solution at pH 1 for a given time and then at pH 7 to simulate the stomach and intestinal environment, respectively. The encapsulation efficiency and the drug loading have been investigated and the operating conditions have been changed to clarify the role of the transport phenomena on the overall process. To increase the drug loading, shorter separation time and better network's structure were identified as the key operating parameters to allow the process to gain interest from a practical point of view.

  12. Chemical characteristics and immuno-modulating activities of exo-biopolymers produced by Grifola frondosa during submerged fermentation process.

    PubMed

    Yang, Byung-Keun; Gu, Young-Ah; Jeong, Yong-Tae; Jeong, Hun; Song, Chi-Hyun

    2007-08-01

    The immuno-modulating activities and chemical characteristics of exo-biopolymer (EX-GF) produced by a submerged mycelial culture of Grifola frondosa were studied. The EX-GF was fractionated into EX-GF-Fr.I, II, and III by Sephadex G-100 gel chromatography. Anti-complementary activity of EX-GF-Fr.III was highest (71.1%) among them, and its activation system occurred through both classical and alternative pathways, where the classical pathway found to be major one. Lysosomal enzyme activity and nitric oxide production ability of macrophage were also found to be mediated by EX-GF-Fr.III. The molecular weight of the EX-GF-Fr.I, II, and III was estimated to be about 163, 40, and 2.8 kDa, respectively. Total sugar and protein contents of the three fractions were 80.3, 61.9 and 89.3%, and 17.3, 35.2, and 10.7%, respectively. The sugar and amino acid compositions of the EX-GF-Fr.I, II, and III were also analyzed in detail.

  13. Electrodeposition of chitosan/gelatin/nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity.

    PubMed

    Wang, Yifeng; Guo, Xuecheng; Pan, Ruihao; Han, Di; Chen, Tao; Geng, Zenghua; Xiong, Yanfei; Chen, Yanjun

    2015-08-01

    Electrodeposition of chitosan provides a controllable means to simultaneously assemble biological materials and nanoparticles for various applications. Here, we present a new method to construct biopolymer/nanoparticle composite films with conductivity and antibacterial activity by electrodeposition of chitosan/gelatin/nanosilver. Besides, this method can be employed to build biopolymer/nanoparticle composite hydrogels or coatings on various electrodes or conductive substrates. We initially use a simple approach to prepare the aqueous nanosilver that can be well-dispersed in water. Then, the codeposition mixture containing chitosan, gelatin and nanosilver is prepared, and it can be electrodeposited onto different electrodes or conductive substrates in response to imposed electrical signals. After electrodeposition, it is found that the deposited hydrogels and their dried films are smooth and homogeneous due to the elimination of H2 bubbles by addition of H2O2 in electrodeposition process. Importantly, the composite films are strong enough to completely and readily peel from the electrodes after they reacted with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), which can build a type of biopolymer/nanoparticle film for further applications. Furthermore, the electrodeposition technique is able to offer controllable and convenient method to construct the composite films with diverse shapes. The composite films display improved conductivity and in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus, which may provide attractive applications in biomedical fields such as artificial muscles, skin biomaterials and neuroprosthetic implants.

  14. Actively stressed marginal networks.

    PubMed

    Sheinman, M; Broedersz, C P; MacKintosh, F C

    2012-12-07

    We study the effects of motor-generated stresses in disordered three-dimensional fiber networks using a combination of a mean-field theory, scaling analysis, and a computational model. We find that motor activity controls the elasticity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of nonaffine strain fluctuations as a susceptibility to motor stress.

  15. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  16. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  17. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    NASA Astrophysics Data System (ADS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-10-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85-2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous-organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al2O3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  18. Antimicrobial activity of biopolymer-antibiotic thin films fabricated by advanced pulsed laser methods

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Dorcioman, G.; Miroiu, F. M.; Socol, G.; Mihailescu, I. N.; Gittard, S. D.; Miller, P. R.; Narayan, R. J.; Enculescu, M.; Chrisey, D. B.

    2013-08-01

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer-drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA-gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer-drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  19. Adsorption of valuable metals from leachates of mobile phone wastes using biopolymers and activated carbon.

    PubMed

    Zazycki, Maria A; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2017-03-01

    In this work, chitin (CTN), chitosan (CTS) and activated carbon (AC) were used as adsorbents to recover valuable metals from leachates of mobile phone wastes. The mobile phone wastes (contactors) were collected and characterized. The valuable metals were extracted by thiourea leaching. The adsorption of valuable metals from leachates was studied according to the kinetic and equilibrium viewpoints. It was found that the contactors were composed by Au, Ni, Cu and Sn. The thiourea leaching provided extraction percentages of 68.6% for Au, 22.1% for Ni and 2.8% for Cu. Sn was not extracted. The leachate presented 17.5 mg L(-1) of Au, 324.9 mg L(-1) of Ni and 573.1 mg L(-1) of Cu. The adsorption was fast, being the equilibrium attained within 120 min. The adsorption of Au, Ni and Cu onto CTN and AC followed the Langmuir model, while, the adsorption of these metals onto CTS, followed the Freundlich model. Removal percentages higher than 95% were obtained for all metals, depending of the type and amount of adsorbent. It was demonstrated that the adsorption onto chitin, chitosan and activated carbon can be an alternative to recover valuable metals from leachates of mobile phone wastes.

  20. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    PubMed

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling.

  1. Fast two-dimensional bubble analysis of biopolymer filamentous networks pore size from confocal microscopy thin data stacks.

    PubMed

    Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-03-05

    The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data.

  2. Fiber networks amplify active stress

    PubMed Central

    Ronceray, Pierre; Broedersz, Chase P.

    2016-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  3. Insights into the sorption properties of cutin and cutan biopolymers.

    PubMed

    Shechter, Michal; Chefetz, Benny

    2008-02-15

    Plant cuticles have been reported as highly efficient sorbents for organic compounds. The objective of this study was to elucidate the sorption and desorption behavior of polar and nonpolar organic compounds with the major structural components of the plant cuticle: the biopolymers cutin and cutan. The sorption affinity values of the studied compounds followed the order: phenanthrene > atrazine > chlorotoluron > carbamazepine. A higher sorption affinity of phenanthrene and atrazine to cutin was probably due to the higher level of amorphous paraffinic carbon in this biopolymer. Phenanthrene exhibited reversible sorption behavior and a high ratio of organic-carbon-normalized distribution coefficient (Koc) to carbon-normalized octanol-water partitioning coefficients (Kowc) with both biopolymers. This suggests that both biopolymers provide phenanthrene with a partition medium for hydrophobic interactions with the flexible long alkyl-chain moieties of the biopolymers. The low Koc/Kowc ratios obtained for the polar sorbates suggest that the polar sites in the biopolymers are not accessible for sorption interactions. Atrazine and carbamazepine exhibited sorption-desorption hysteresis with both sorbents, indicating that both sorbates interact with cutin and cutan via both hydrophobic and specific interactions. In general, the sorptive properties of the studied biopolymers were similar, signifying that the active sorption sites are similar even though the biopolymers exhibit different properties.

  4. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  5. Innovative Active Networking Services

    DTIC Science & Technology

    2004-03-01

    Integrating IKE We use the “ pluto ” implementation from Freeswan [Freeswan] as our IKE module. Pluto runs as a daemon on a Linux Network node. This base...implementation though incomplete with respect to some features of IKE is still sufficient in order to inter-operate with other pluto implementations...and many other IKE 30 implementations. Commands to pluto are given using a control interface to the daemon, called “whack”. Pluto uses either shared

  6. Theorizing Network-Centric Activity in Education

    ERIC Educational Resources Information Center

    HaLevi, Andrew

    2011-01-01

    Networks and network-centric activity are increasingly prevalent in schools and school districts. In addition to ubiquitous social network tools like Facebook and Twitter, educational leaders deal with a wide variety of network organizational forms that include professional development, advocacy, informational networks and network-centric reforms.…

  7. Production of novel microbial biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms are well known to produce a wide variety of biobased polymers. These biopolymers have found a wide range of commercial uses, including food, feed, and consumer and industrial products. The production and possible uses of several novel biopolymers from both bacteria and fungi will be d...

  8. Effect of ozone on biopolymers in biofiltration and ultrafiltration processes.

    PubMed

    Siembida-Lösch, Barbara; Anderson, William B; Wang, Yulang Michael; Bonsteel, Jane; Huck, Peter M

    2015-03-01

    The focus of this full-scale study was to determine the effect of ozone on biopolymer concentrations in biofiltration and ultrafiltration (UF) processes treating surface water from Lake Ontario. Ozonation was out of service for maintenance for 9 months, hence, it was possible to investigate ozone's action on biologically active carbon contactors (BACCs) and UF, in terms of biopolymer removal. Given the importance of biopolymers for fouling, this fraction was quantified using a chromatographic technique. Ozone pre-treatment was observed to positively impact the active biomass in biofilters. However, since an increase of the active biomass did not result in higher biopolymer removal, active biomass concentration cannot be a surrogate for biofiltration performance. It was evident that increasing empty bed contact time (EBCT) from 4 to 19 min only had a positive effect on biopolymer removal through BACCs when ozone was out of service. However, as a mass balance experiment showed, ozone-free operation resulted in higher deposition of biopolymers on a UF membrane and slight deterioration in its performance.

  9. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and 14C-labeled plant residues as determined by enzyme activities

    NASA Astrophysics Data System (ADS)

    Mahmoud Awad, Yasser; Ok, Young Sik; Kuzyakov, Yakov

    2014-05-01

    Application of polymers for the improvement of aggregate structure and reduction of soil erosion may alter the availability and decomposition of plant residues. In this study, we assessed the effects of anionic polyacrylamide (PAM), synthesized biopolymer (BP), and biochar (BC) on the decomposition of 14C-labeled maize residue in sandy and sandy loam soils. Specifically, PAM and BP with or without 14C-labeled plant residue were applied at 400 kg ha-1, whereas BC was applied at 5000 kg ha-1, after which the soils were incubated for 80 days at 22 oC. Initially, plant residue decomposition was much higher in untreated sandy loam soil than in sandy soil. Nevertheless, the stimulating effects of BP and BC on the decomposition of plant residue were more pronounced in sandy soil, where it accounted for 13.4% and 23.4% of 14C input, respectively, whereas in sandy loam soil, the acceleration of plant residue decomposition by BP and BC did not exceed 2.6% and 14.1%, respectively, compared to untreated soil with plant residue. The stimulating effects of BP and BC on the decomposition of plant residue were confirmed based on activities of β-cellobiohydrolase, β-glucosidase, and chitinase in both soils. In contrast to BC and BP, PAM did not increase the decomposition of native or added C in both soils.

  10. Adsorption of lead ions on composite biopolymer adsorbent

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1996-04-01

    A fundamental study about the application of biopolymers to the recovery of lead from dilute solution was carried out. A membranous composite biopolymer adsorbent containing two kind of biopolymers, alginic acid (AA) and humic acid (HA), was prepared. HA, which has high solubility in water, was almost completely immobilized in the adsorbent by a combination of calcium alginate gel and activated carbon powder. A general model for complexation between divalent metal ions and acidic sites on biopolymers was applied to explain the adsorption mechanism of lead on the adsorbent (HA-M). The results showed that the complexation constants and the complexation capacities of lead-AA and lead-HA systems were scarcely influenced by immobilization.

  11. Active contraction of microtubule networks

    PubMed Central

    Foster, Peter J; Fürthauer, Sebastian; Shelley, Michael J; Needleman, Daniel J

    2015-01-01

    Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large-scale behaviors of these systems. Here, we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions, which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction. DOI: http://dx.doi.org/10.7554/eLife.10837.001 PMID:26701905

  12. Antifungal activity, experimental infections and nail permeation of an innovative ciclopirox nail lacquer based on a water-soluble biopolymer.

    PubMed

    Togni, Giuseppe; Mailland, Federico

    2010-05-01

    P-3051 is an innovative 8% ciclopirox nail lacquer, based on hydroxypropyl chitosan (HPCH) as a film-forming agent. The authors' aim was to investigate P-3051's in vitro antifungal activity, as well as its in vitro and in vivo nail permeation. The dilution susceptibility tests performed for Trichophyton rubrum (T. rubrum) and Candida parapsilosis (C. parapsilosis) showed that the minimum inhibitory concentrations (MICs) of P-3051, as percent of ciclopirox, was for both fungi < or = 0.0015% (equivalent to a concentration of 15.6 mg/ ml). In the biological assay of in vitro nail permeation and fungal inhibition, the authors observed that P-3051 permeated well through bovine hoof membranes and produced dose-dependent inhibitory effects on dermatophyte, yeast and mold strains. Moreover, the inhibition effects were higher than those obtained by equal amounts of the ciclopirox reference nail lacquer. P-3051 and the reference showed the same protective activity in experimental infections with strains of dermatophytes isolated from clinical samples. The amount of ciclopirox remained in cut fingernails washed six hours after in vivo application of P-3051 ranged between 18 and 35% of the applied dose. After in vitro application to cut human nails, 40-50% of the applied ciclopirox penetrated during the first six hours, independent of nails being infected or uninfected, intact or filed. In both experiments, the concentration of ciclopirox is largely higher (three to four orders of magnitude) than the MICs for nail pathogens.

  13. The spatial response of nonlinear strain propagation in response to actively driven microspheres through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2015-03-01

    The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.

  14. Conformon-driven biopolymer shape changes in cell modeling.

    PubMed

    Ji, Sungchul; Ciobanu, Gabriel

    2003-07-01

    Conceptual models of the atom preceded the mathematical model of the hydrogen atom in physics in the second decade of the 20th century. The computer modeling of the living cell in the 21st century may follow a similar course of development. A conceptual model of the cell called the Bhopalator was formulated in the mid-1980s, along with its twin theories known as the conformon theory of molecular machines and the cell language theory of biopolymer interactions [Ann. N.Y. Acad. Sci. 227 (1974) 211; BioSystems 44 (1997) 17; Ann. N.Y. Acad. Sci. 870 (1999a) 411; BioSystems 54 (2000) 107; Semiotica 138 (1-4) (2002a) 15; Fundamenta Informaticae 49 (2002b) 147]. The conformon theory accounts for the reversible actions of individual biopolymers coupled to irreversible chemical reactions, while the cell language theory provides a theoretical framework for understanding the complex networks of dynamic interactions among biopolymers in the cell. These two theories are reviewed and further elaborated for the benefit of both computational biologists and computer scientists who are interested in modeling the living cell and its functions. One of the critical components of the mechanisms of cell communication and cell computing has been postulated to be space- and time-organized teleonomic (i.e. goal-directed) shape changes of biopolymers that are driven by exergonic (free energy-releasing) chemical reactions. The generalized Franck-Condon principle is suggested to be essential in resolving the apparent paradox arising when one attempts to couple endergonic (free energy-requiring) biopolymer shape changes to the exergonic chemical reactions that are catalyzed by biopolymer shape changes themselves. Conformons, defined as sequence-specific mechanical strains of biopolymers first invoked three decades ago to account for energy coupling in mitochondria, have been identified as shape changers, the agents that cause shape changes in biopolymers. Given a set of space- and time

  15. A modified expression of the major hydrolase activator in Hypocrea jecorina (Trichoderma reesei) changes enzymatic catalysis of biopolymer degradation.

    PubMed

    Pucher, Marion E; Steiger, Matthias G; Mach, Robert L; Mach-Aigner, Astrid R

    2011-06-10

    Hypocrea jecorina (anamorph Trichoderma reesei) is a saprophytic fungus that produces hydrolases, which are applied in different types of industries and used for the production of biofuel. A recombinant Hypocrea strain, which constantly expresses the main transcription activator of hydrolases (Xylanase regulator 1), was found to grow faster on xylan and its monomeric backbone molecule d-xylose. This strain also showed improved ability of clearing xylan medium on plates. Furthermore, this strain has a changed transcription profile concerning genes encoding for hydrolases and enzymes associated with degradation of (hemi)celluloses. We demonstrated that enzymes of this strain from a xylan cultivation favoured break down of hemicelluloses to the monomer d-xylose compared to the parental strain, while the enzymes of the latter one formed more xylobiose. Applying supernatants from cultivation on carboxymethylcellulose in enzymatic conversion of hemicelluloses, the enzymes of the recombinant strain were clearly producing more of both, d-xylose and xylobiose, compared to the parental strain. Altogether, these results point to a changed hydrolase expression profile, an enhanced capability to form the xylan-monomer d-xylose and the assumption that there is a disordered induction pattern if the Xylanase regulator 1 is de-regulated in Hypocrea.

  16. Proton conduction in biopolymer exopolysaccharide succinoglycan

    NASA Astrophysics Data System (ADS)

    Kweon, Jin Jung; Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui; Jung, Seunho; Kwon, Chanho

    2014-07-01

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame 1H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  17. Proton conduction in biopolymer exopolysaccharide succinoglycan

    SciTech Connect

    Kweon, Jin Jung; Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui; Jung, Seunho; Kwon, Chanho

    2014-07-07

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame {sup 1}H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  18. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  19. Stochastic cycle selection in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  20. Microfluidic generation and selective degradation of biopolymer-based Janus microbeads.

    PubMed

    Marquis, Mélanie; Renard, Denis; Cathala, Bernard

    2012-04-09

    We describe a microfluidic approach for generating Janus microbeads from biopolymer hydrogels. A flow-focusing device was used to emulsify the coflow of aqueous solutions of one or two different biopolymers in an organic phase to synthesize homo or hetero Janus microbeads. Biopolymer gelation was initiated, in the chip, by diffusion-controlled ionic cross-linking of the biopolymers. Pectin-pectin (homo Janus) and, for the first time, pectin-alginate (hetero Janus) microbeads were produced. The efficiency of separation of the two hemispheres, which reflected mixing and convection phenomena, was investigated by confocal scanning laser microscopy (CSLM) of previously labeled biopolymers. The interface of the hetero Janus structure was clearly defined, whereas that of the homo Janus microbeads was poorly defined. The Janus structure was confirmed by subjecting each microbead hemisphere to specific enzymatic degradation. These new and original microbeads from renewable resources will open up opportunities for studying relationships between combined enzymatic hydrolysis and active compound release.

  1. Biopolymer based nanosystem for doxorubicin targeted delivery

    PubMed Central

    Csikós, Zsuzsanna; Kerekes, Krisztina; Fazekas, Erika; Kun, Sándor; Borbély, János

    2017-01-01

    This study describes formation of an actively and passively targeted, water-soluble drug delivery system (DDS) which contains doxorubicin (DOX). The system comprises two biocompatible and biodegradable polymers: poly-γ-glutamic acid (PGA) and chitosan (CH). Self-assembly of these biopolymers in aqueous medium results stable nanoparticles (NPs) with a hydrodynamic size of 80-150 nm and slightly negative surface charge. Folic acid (FA) was used as targeting agent bonded to the polyanion (PA) and also to the surface of the NPs. The NP’s physical stability, active targeting effect, cellular toxicity, release profile and in vivo anti-tumor efficacy were investigated. It was found that the targeted, self-assembled nanoparticles are stable at 4°C for several months, cause better in vitro toxicity effect on folate receptor (FR) positive cell lines than the doxorubicin or the non-targeted nanosystem and based on its release profile it is expected, that the nanosystem will remain stable during the circulation in the body. Pharmacodynamic studies demonstrated that the DOX-loaded nanoparticles can deliver greater tumor growth inhibition than the free drug molecules and the liposomal compound, with less general toxicity. It was observed that the overall survival is the main benefit of the biopolymer based drug delivery system.

  2. Crosslinking biopolymers for biomedical applications.

    PubMed

    Reddy, Narendra; Reddy, Roopa; Jiang, Qiuran

    2015-06-01

    Biomaterials made from proteins, polysaccharides, and synthetic biopolymers are preferred but lack the mechanical properties and stability in aqueous environments necessary for medical applications. Crosslinking improves the properties of the biomaterials, but most crosslinkers either cause undesirable changes to the functionality of the biopolymers or result in cytotoxicity. Glutaraldehyde, the most widely used crosslinking agent, is difficult to handle and contradictory views have been presented on the cytotoxicity of glutaraldehyde-crosslinked materials. Recently, poly(carboxylic acids) that can crosslink in both dry and wet conditions have been shown to provide the desired improvements in tensile properties, increase in stability under aqueous conditions, and also promote cell attachment and proliferation. Green chemicals and newer crosslinking approaches are necessary to obtain biopolymeric materials with properties desired for medical applications.

  3. Biopolymer Processing Using Ionic Liquids

    DTIC Science & Technology

    2014-08-07

    AFRL-OSR-VA-TR-2014-0181 (YIP-11) BIOPOLYMER PROCESSING USING IONIC LIQUIDS William Reichert UNIVERSITY OF SOUTH ALABAMA 08/07/2014 Final Report...3. DATES COVERED (From - To) May 2011-May 2014 4. TITLE AND SUBTITLE iopolymer Processing using Ionic Liquids for Feedstock Chemicals 5a...reaction and degradation products of the conversion of chitin and chitosan, and 3) investigate the effects of various reaction conditions, such as

  4. Biocompatibility of plasma nanostructured biopolymers

    NASA Astrophysics Data System (ADS)

    Slepičková Kasálková, N.; Slepička, P.; Bačáková, L.; Sajdl, P.; Švorčík, V.

    2013-07-01

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell's adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  5. Controlling contagion processes in activity driven networks.

    PubMed

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-21

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  6. Biopolymers as a flexible resource for nanochemistry.

    PubMed

    Schnepp, Zoe

    2013-01-21

    Biomass is an abundant source of chemically diverse macromolecules, including polysaccharides, polypeptides, and polyaromatics. Many of these biological polymers (biopolymers) are highly evolved for specific functions through optimized chain length, functionalization, and monomer sequence. As biopolymers are a chemical resource, much current effort is focused on the breakdown of these molecules into fuels or platform chemicals. However there is growing interest in using biopolymers directly to create functional materials. This Minireview uses recent examples to show how biopolymers are providing new directions in the synthesis of nanostructured materials.

  7. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review

    PubMed Central

    Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-01-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance. PMID:26501034

  8. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review.

    PubMed

    Yadav, Preeti; Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-09-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.

  9. Enhancing Biopolymer Dynamics through Destruction

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer

    2012-02-01

    Microtubules are cytoskeletal filaments that organize intracellular space structurally and through active transport along their lengths. They need to be organized and remodeled quickly during development of differentiated cells or in mitosis. Much work has focused on remodeling from the ends because these long polymers can stochastically disassemble through dynamic instability or be actively disassembled. Microtubule-severing enzymes are a novel class of microtubule regulators that create new ends by cutting the filament. Thus, these proteins add a new dimension to microtubule regulation by their ability to create new microtubule ends. Interestingly, despite their destructive capabilities, severing has the ability to create new microtubule networks in cells. We are interested in the inherent biophysical activities of these proteins and their ability to remodel cellular microtubule networks. Interestingly, despite their destructive capabilities, severing has the ability to create new microtubule networks in cells. We use two-color single molecule total internal reflection fluorescence imaging to visualize purified severing enzymes and microtubules in vitro. We have examined two families of severing enzymes to find that their biophysical activities are distinct giving them different network-regulating abilities.

  10. Noise enhanced activity in a complex network

    NASA Astrophysics Data System (ADS)

    Choudhary, Anshul; Kohar, Vivek; Sinha, Sudeshna

    2014-09-01

    We consider the influence of local noise on a generalized network of populations having positive and negative feedbacks. The population dynamics at the nodes is nonlinear, typically chaotic, and allows cessation of activity if the population falls below a threshold value. We investigate the global stability of this large interactive system, as indicated by the average number of nodal populations that manage to remain active. Our central result is that the probability of obtaining active nodes in this network is significantly enhanced under fluctuations. Further, we find a sharp transition in the number of active nodes as noise strength is varied, along with clearly evident scaling behaviour near the critical noise strength. Lastly, we also observe noise induced temporal coherence in the active sub-network, namely, there is an enhancement in synchrony among the nodes at an intermediate noise strength.

  11. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy

    2016-04-01

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  12. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    PubMed

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  13. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  14. Film forming microbial biopolymers for commercial applications--a review.

    PubMed

    Vijayendra, S V N; Shamala, T R

    2014-12-01

    Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging

  15. Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment.

    PubMed

    Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J

    2011-12-01

    The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process.

  16. [Legal aspects of networking of medical activities].

    PubMed

    Preissler, Reinhold

    2005-04-01

    Medical networks lack a legal definition. From the viewpoint of social law, this term means a form of organization of joint-service providers in a non-specified composition for the undertaking of medical care activities; from the point of view of occupational law, this consists of a loose form of joint practice. Such medical network can conclude treatment contracts with the patients and exchange patients' medical records. A practice network can take over services as contract partner of hospitals or other institutions, in the interest of improved competition chances within the integrated care system. The joining of a third partner is basically left open by the MBO, however according to SGB V this is possible only after approval by all contract partners. In advance of a planned medical care center, is it recommended to found a physician network as starting model. Before single practices fuse into a single enterprise, management-, tax-, legal-, as well as psychological aspects must be considered.

  17. Preparation of Biopolymer Aerogels Using Green Solvents

    PubMed Central

    Subrahmanyam, Raman; Gurikov, Pavel; Meissner, Imke; Smirnova, Irina

    2016-01-01

    Although the first reports on aerogels made by Kistler1 in the 1930s dealt with aerogels from both inorganic oxides (silica and others) and biopolymers (gelatin, agar, cellulose), only recently have biomasses been recognized as an abundant source of chemically diverse macromolecules for functional aerogel materials. Biopolymer aerogels (pectin, alginate, chitosan, cellulose, etc.) exhibit both specific inheritable functions of starting biopolymers and distinctive features of aerogels (80-99% porosity and specific surface up to 800 m2/g). This synergy of properties makes biopolymer aerogels promising candidates for a wide gamut of applications such as thermal insulation, tissue engineering and regenerative medicine, drug delivery systems, functional foods, catalysts, adsorbents and sensors. This work demonstrates the use of pressurized carbon dioxide (5 MPa) for the ionic cross linking of amidated pectin into hydrogels. Initially a biopolymer/salt dispersion is prepared in water. Under pressurized CO2 conditions, the pH of the biopolymer solution is lowered to 3 which releases the crosslinking cations from the salt to bind with the biopolymer yielding hydrogels. Solvent exchange to ethanol and further supercritical CO2 drying (10 - 12 MPa) yield aerogels. Obtained aerogels are ultra-porous with low density (as low as 0.02 g/cm3), high specific surface area (350 - 500 m2/g) and pore volume (3 - 7 cm3/g for pore sizes less than 150 nm). PMID:27403649

  18. Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation.

    PubMed

    Lu, Luhua; Chen, Wei

    2011-06-01

    Biopolymers are important natural multifunctional macromolecules for biomimetic and bio-inspired advanced functional material design. They are not only simple dispersants for carbon nanotube stabilization as they have been found to have specific interactions with carbon nanotubes. Their molecular activity, orientation and crystallization are influenced by the CNTs, which endow their composites with a variety of novel sensing and actuation performances. This review focuses on the progress in supramolecular self-assembly of biopolymers with carbon nanotubes, and their advances in sensing and actuation. To promote the development of advanced biopolymer/CNT functional materials, new electromechanical characteristics of biopolymer/CNT composites are discussed in detail based on the relationship between the microscopic biopolymer structures and the macroscopic composite properties.

  19. Sloppiness in spontaneously active neuronal networks.

    PubMed

    Panas, Dagmara; Amin, Hayder; Maccione, Alessandro; Muthmann, Oliver; van Rossum, Mark; Berdondini, Luca; Hennig, Matthias H

    2015-06-03

    Various plasticity mechanisms, including experience-dependent, spontaneous, as well as homeostatic ones, continuously remodel neural circuits. Yet, despite fluctuations in the properties of single neurons and synapses, the behavior and function of neuronal assemblies are generally found to be very stable over time. This raises the important question of how plasticity is coordinated across the network. To address this, we investigated the stability of network activity in cultured rat hippocampal neurons recorded with high-density multielectrode arrays over several days. We used parametric models to characterize multineuron activity patterns and analyzed their sensitivity to changes. We found that the models exhibited sloppiness, a property where the model behavior is insensitive to changes in many parameter combinations, but very sensitive to a few. The activity of neurons with sloppy parameters showed faster and larger fluctuations than the activity of a small subset of neurons associated with sensitive parameters. Furthermore, parameter sensitivity was highly correlated with firing rates. Finally, we tested our observations from cell cultures on an in vivo recording from monkey visual cortex and we confirm that spontaneous cortical activity also shows hallmarks of sloppy behavior and firing rate dependence. Our findings suggest that a small subnetwork of highly active and stable neurons supports group stability, and that this endows neuronal networks with the flexibility to continuously remodel without compromising stability and function.

  20. Biopolymers Containing Unnatural Building Blocks

    SciTech Connect

    Schultz, Peter G.

    2013-06-30

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty amino acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins

  1. Motor Behavior Activates Bergmann Glial Networks

    PubMed Central

    Nimmerjahn, Axel; Mukamel, Eran A.; Schnitzer, Mark J.

    2010-01-01

    SUMMARY Although it is firmly established neuronal activity is a prime determinant of animal behavior, relationships between astrocytic excitation and animal behavior have remained opaque. Cerebellar Bergmann glia are radial astrocytes that are implicated in motor behavior and exhibit Ca2+-excitation. However, Ca2+-excitation in these cells has not previously been studied in behaving animals. Using two-photon microscopy we found that Bergmann glia exhibit three forms of Ca2+-excitation in awake behaving mice. Two of these are ongoing within the cerebellar vermis. During locomotor performance concerted Ca2+-excitation arises in networks of at least hundreds of Bergmann glia extending across several hundred microns or more. Concerted Ca2+-excitation was abolished by anesthesia or blockade of either neural activity or glutamatergic transmission. Thus, large networks of Bergmann glia can be activated by specific animal behaviors and undergo excitation of sufficient magnitude to potentially initiate macroscopic changes in brain dynamics or blood flow. PMID:19447095

  2. Position paper on active countermeasures for computer networks.

    SciTech Connect

    Van Randwyk, Jamie A.

    2003-07-01

    Computer security professionals have used passive network countermeasures for several years in order to secure computer networks. Passive countermeasures such as firewalls and intrusion detection systems are effective but their use alone is not enough to protect a network. Active countermeasures offer new ways of protecting a computer network. Corporations and government entities should adopt active network countermeasures as a means of protecting their computer networks.

  3. Mixed biopolymer systems based on starch.

    PubMed

    Abd Elgadir, M; Akanda, Md Jahurul Haque; Ferdosh, Sahena; Mehrnoush, Amid; Karim, Alias A; Noda, Takahiro; Sarker, Md Zaidul Islam

    2012-01-09

    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.

  4. System for measuring radioactivity of labelled biopolymers

    SciTech Connect

    Gross, V.

    1980-07-08

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs.

  5. A temperature responsive biopolymer for mercury remediation.

    PubMed

    Kostal, Jan; Mulchandani, Ashok; Gropp, Katie E; Chen, Wilfred

    2003-10-01

    Tunable biopolymers based on elastin-like polypeptides (ELP) were engineered for the selective removal of mercury. ELP undergoes a reversible thermal precipitation within a wide range of temperatures and was exploited to enable easy recovery of the sequestered mercury. A bacterial metalloregulatory protein, MerR, which binds mercury with an unusually high affinity and selectivity, was fused to the ELP to provide the highly selective nature of the biopolymers. Selective binding of mercury was demonstrated at an expected ratio of 0.5 mercury/biopolymer, and minimal binding of competing heavy metals (cadmium, nickel, and zinc), even at 100-fold excess, was observed. The sequestered mercury was extracted easily, enabling continuous reuse of the biopolymers. In repeating cycles, mercury concentration was reduced to ppb levels, satisfying even drinking water limits. Utility of the biopolymers with mercury-contaminated Lake Elsinore water was demonstrated with no decrease in efficiency. The nanoscale biopolymers reported here using metalloregulatory proteins represent a "green" technology for environmentally benign mercury removal. As nature offers a wide selection of specific metalloregulatory proteins, this technology offers promising solutions to remediation of other important pollutants such as arsenic or chromium.

  6. Evolutionary optimization of biopolymers and sequence structure maps

    SciTech Connect

    Reidys, C.M.; Kopp, S.; Schuster, P.

    1996-06-01

    Searching for biopolymers having a predefined function is a core problem of biotechnology, biochemistry and pharmacy. On the level of RNA sequences and their corresponding secondary structures we show that this problem can be analyzed mathematically. The strategy will be to study the properties of the RNA sequence to secondary structure mapping that is essential for the understanding of the search process. We show that to each secondary structure s there exists a neutral network consisting of all sequences folding into s. This network can be modeled as a random graph and has the following generic properties: it is dense and has a giant component within the graph of compatible sequences. The neutral network percolates sequence space and any two neutral nets come close in terms of Hamming distance. We investigate the distribution of the orders of neutral nets and show that above a certain threshold the topology of neutral nets allows to find practically all frequent secondary structures.

  7. Transmission of information in active networks

    NASA Astrophysics Data System (ADS)

    Baptista, M. S.; Kurths, J.

    2008-02-01

    Shannon’s capacity theorem is the main concept behind the theory of communication. It says that if the amount of information contained in a signal is smaller than the channel capacity of a physical media of communication, it can be transmitted with arbitrarily small probability of error. This theorem is usually applicable to ideal channels of communication in which the information to be transmitted does not alter the passive characteristics of the channel that basically tries to reproduce the source of information. For an active channel, a network formed by elements that are dynamical systems (such as neurons, chaotic or periodic oscillators), it is unclear if such theorem is applicable, once an active channel can adapt to the input of a signal, altering its capacity. To shed light into this matter, we show, among other results, how to calculate the information capacity of an active channel of communication. Then, we show that the channel capacity depends on whether the active channel is self-excitable or not and that, contrary to a current belief, desynchronization can provide an environment in which large amounts of information can be transmitted in a channel that is self-excitable. An interesting case of a self-excitable active channel is a network of electrically connected Hindmarsh-Rose chaotic neurons.

  8. Endogenous Electric Fields May Guide Neocortical Network Activity

    PubMed Central

    Fröhlich, Flavio; McCormick, David A.

    2011-01-01

    Local field potentials and the underlying endogenous electric fields (EFs) are traditionally considered to be epiphenomena of structured neuronal network activity. Recently, however, externally applied EFs have been shown to modulate pharmacologically evoked network activity in rodent hippocampus. In contrast, very little is known about the role of endogenous EFs during physiological activity states in neocortex. Here we used the neocortical slow oscillation in vitro as a model system to show that weak sinusoidal and naturalistic EFs enhance and entrain physiological neocortical network activity with an amplitude threshold within the range of in vivo endogenous field strengths. Modulation of network activity by positive and negative feedback fields based on the network activity in real-time provide direct evidence for a feedback loop between neuronal activity and endogenous EF. This significant susceptibility of active networks to EFs that only cause small changes in membrane potential in individual neurons suggests that endogenous EFs could guide neocortical network activity. PMID:20624597

  9. Cell patterning with mucin biopolymers

    PubMed Central

    Crouzier, T.; Jang, H.; Ahn, J.; Stocker, R.; Ribbeck, K.

    2014-01-01

    The precise spatial control of cell adhesion to surfaces is an endeavor that has enabled discoveries in cell biology and new possibilities in tissue engineering. The generation of cell-repellent surfaces currently requires advanced chemistry techniques and could be simplified. Here we show that mucins, glycoproteins of high structural and chemical complexity, spontaneously adsorb on hydrophobic substrates to form coatings that prevent the surface adhesion of mammalian epithelial cells, fibroblasts, and myoblasts. These mucin coatings can be patterned with micrometer precision using a microfluidic device, and are stable enough to support myoblast differentiation over seven days. Moreover, our data indicate that the cell-repellent effect is dependent on mucin-associated glycans because their removal results in a loss of effective cell-repulsion. Last, we show that a critical surface density of mucins, which is required to achieve cell-repulsion, is efficiently obtained on hydrophobic surfaces, but not on hydrophilic glass surfaces. However, this limitation can be overcome by coating glass with hydrophobic fluorosilane. We conclude that mucin biopolymers are attractive candidates to control cell adhesion on surfaces. PMID:23980712

  10. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    PubMed

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications.

  11. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  12. Stiff substrates enhance cultured neuronal network activity.

    PubMed

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  13. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials.

    PubMed

    Tang, X Z; Kumar, P; Alavi, S; Sandeep, K P

    2012-01-01

    Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like petroleum. With the current focus on exploring alternatives to petroleum and emphasis on reduced environmental impact, research is increasingly being directed at development of biodegradable food packaging from biopolymer-based materials. The proposed paper will present a review of recent developments in biopolymer-based food packaging materials including natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blends, and nanocomposites based on natural and synthetic biopolymers. The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards development of a new generation of biopolymer-based food packaging materials with possible applications in other areas.

  14. Molecular entanglement and electrospinnability of biopolymers.

    PubMed

    Kong, Lingyan; Ziegler, Gregory R

    2014-09-03

    Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level.

  15. TOPICAL REVIEW: Biopolymer organization upon confinement

    NASA Astrophysics Data System (ADS)

    Marenduzzo, D.; Micheletti, C.; Orlandini, E.

    2010-07-01

    Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered.

  16. Deep Neural Networks with Multistate Activation Functions

    PubMed Central

    Cai, Chenghao; Xu, Yanyan; Ke, Dengfeng; Su, Kaile

    2015-01-01

    We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs perform when used to resolve classification problems. Experimental results on the TIMIT corpus reveal that, on speech recognition tasks, DNNs with MSAFs perform better than the conventional DNNs, getting a relative improvement of 5.60% on phoneme error rates. Further experiments also reveal that mean-normalised SGD facilitates the training processes of DNNs with MSAFs, especially when being with large training sets. The models can also be directly trained without pretraining when the training set is sufficiently large, which results in a considerable relative improvement of 5.82% on word error rates. PMID:26448739

  17. Technology Transfer of Biopolymer Soil Amendment for Rapid Revegetation and Erosion Control at Fort A. P. Hill, Virginia

    DTIC Science & Technology

    2016-05-01

    consisting of a polysaccharide polymeric material, a natural product of plant/soil rhyzobial microbial activity, was demonstrated to enhance site...its prolific production of a gel-like, extracellular polymeric substance (EPS), a biopolymer (Gil-Serrano et al. 1990). The natural functions of the...TN) evaluates application of this biopolymer to a highly disturbed and erodible soil. BACKGROUND: Most training areas present soil erosion

  18. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect

    Davison, Brian H.; Kurtiz,Tanya

    1999-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  19. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect

    Davison, Brian H.; Kuritz, Tanya

    2000-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  20. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect

    Davison, Brian H.

    2002-04-30

    The proposed research aimed to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government. We proposed to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) was to be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  1. Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.

    PubMed

    Pawelec, K M; Husmann, A; Best, S M; Cameron, R E

    2014-04-01

    Biopolymer scaffolds have great therapeutic potential within tissue engineering due to their large interconnected porosity and biocompatibility. Using an ice-templated technique, where collagen is concentrated into a porous network by ice nucleation and growth, scaffolds with anisotropic pore architecture can be created, mimicking natural tissues like cardiac muscle and bone. This paper describes a systematic set of experiments undertaken to understand the effect of local temperatures on architecture in ice-templated biopolymer scaffolds. The scaffolds within this study were at least 10mm in all dimensions, making them applicable to critical sized defects for biomedical applications. It was found that monitoring the local freezing behavior within the slurry was critical to predicting scaffold structure. Aligned porosity was produced only in parts of the slurry volume which were above the equilibrium freezing temperature (0°C) at the time when nucleation first occurs in the sample as a whole. Thus, to create anisotropic scaffolds, local slurry cooling rates must be sufficiently different to ensure that the equilibrium freezing temperature is not reached throughout the slurry at nucleation. This principal was valid over a range of collagen slurries, demonstrating that by monitoring the temperature within slurry during freezing, scaffold anisotropy with ice-templated scaffolds can be predicted.

  2. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications.

    PubMed

    Ghanbarzadeh, Babak; Oleyaei, Seyed Amir; Almasi, Hadi

    2015-01-01

    Most materials currently used for food packaging are nondegradable, generating environmental problems. Several biopolymers have been exploited to develop materials for ecofriendly food packaging. However, the use of biopolymers has been limited because of their usually poor mechanical and barrier properties, which may be improved by adding reinforcing compounds (fillers), forming composites. Most reinforced materials present poor matrix-filler interactions, which tend to improve with decreasing filler dimensions. The use of fillers with at least one nanoscale dimension (nanoparticles) produces nanocomposites. Nanoparticles have proportionally larger surface area than their microscale counterparts, which favors the filler-matrix interactions and the performance of the resulting material. Besides nanoreinforcements, nanoparticles can have other functions when added to a polymer, such as antimicrobial activity, etc. in this review paper, the structure and properties of main kinds of nanostructured materials which have been studied to use as nanofiller in biopolymer matrices are overviewed, as well as their effects and applications.

  3. Exploring Modifications of Cotton with Biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biopolymers including starch, alginate, and chitosan were grafted on to both nonwoven and woven cotton fabrics to examine their hemostatic and antimcrobial properties. The development of cotton-based health care fabrics that promote blood clotting and prevent microbial growth have wide applicability...

  4. Production of biopolymer composites by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes a new technology to produce biopolymer composites at room temperature. During the process, micrometer-scale raw material is coated with zein that has strong adhesive property, which is then compressed to form a rigid material. Since this technology does not require purificati...

  5. Production of biopolymer composites by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article describes a new process, particle-bonding technology, to produce biopolymer composites from agricultural commodities. In this technology, matrix-protein complexes are formed by the interaction of micrometer-scale matrix material with an adhesive protein, zein. This spontaneous process m...

  6. Biopolymer colloids for controlling and templating inorganic synthesis

    PubMed Central

    Preiss, Laura C; Landfester, Katharina

    2014-01-01

    Summary Biopolymers and biopolymer colloids can act as controlling agents and templates not only in many processes in nature, but also in a wide range of synthetic approaches. Inorganic materials can be either synthesized ex situ and later incorporated into a biopolymer structuring matrix or grown in situ in the presence of biopolymers. In this review, we focus mainly on the latter case and distinguish between the following possibilities: (i) biopolymers as controlling agents of nucleation and growth of inorganic materials; (ii) biopolymers as supports, either as molecular supports or as carrier particles acting as cores of core–shell structures; and (iii) so-called “soft templates”, which include on one hand stabilized droplets, micelles, and vesicles, and on the other hand continuous scaffolds generated by gelling biopolymers. PMID:25551041

  7. Genetic Networks Activated by Blast Injury to the Eye

    DTIC Science & Technology

    2013-08-01

    AD_________________ Award Number: W81XWH-12-1-0255 TITLE: Genetic Networks Activated by Blast...DATES COVERED 15 July 2012 – 14 July 2013 4. TITLE AND SUBTITLE Genetic Networks Activated by Blast Injury to the Eye 5a. CONTRACT NUMBER 5b...following a blast injury to the eye. In this process the genetic networks activated by injury will be defined along with biological markers of

  8. Models of neural networks with fuzzy activation functions

    NASA Astrophysics Data System (ADS)

    Nguyen, A. T.; Korikov, A. M.

    2017-02-01

    This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.

  9. Network Patch Cables Demystified: A Super Activity for Computer Networking Technology

    ERIC Educational Resources Information Center

    Brown, Douglas L.

    2004-01-01

    This article de-mystifies network patch cable secrets so that people can connect their computers and transfer those pesky files--without screaming at the cables. It describes a network cabling activity that can offer students a great hands-on opportunity for working with the tools, techniques, and media used in computer networking. Since the…

  10. Gel Point Determination of Biopolymer Based Semi-IPN Hydrogels

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra; Bhatia, Surita R.

    2008-07-01

    Water-based semi-IPNs (Interpenetrating Polymer Networks) were prepared by mixing two biopolymers, alginate and hydrophobically modified ethylhydroxy ethyl cellulose (HMEHEC), followed by crosslinking the alginate by in-situ release of calcium ions. By altering two different parameters, molecular weight of HMEHEC and calcium crosslinker concentration, we were able to fine tune the rheological properties of the semi-IPNs. Rheological studies in the linear viscoelastic region indicate storage moduli comparable to soft tissue for hydrogels having 90 wt% water. The system is found to be stable over a prolonged period of time, i.e. no phase separation is observed. Uniformity of the structure is confirmed by monotonic behavior of the intensity-q slope in SAXS and SANS over the entire length scale.

  11. Identities in flux: cognitive network activation in times of change.

    PubMed

    Menon, Tanya; Smith, Edward Bishop

    2014-05-01

    Using a dynamic cognitive model, we experimentally test two competing hypotheses that link identity and cognitive network activation during times of change. On one hand, affirming people's sense of power might give them confidence to think beyond the densest subsections of their social networks. Alternatively, if such power affirmations conflict with people's more stable status characteristics, this could create tension, deterring people from considering their networks' diversity. We test these competing hypotheses experimentally by priming people at varying levels of status with power (high/low) and asking them to report their social networks. We show that confirming identity-not affirming power-cognitively prepares people to broaden their social networks when the world is changing around them. The emotional signature of having a confirmed identity is feeling comfortable and in control, which mediates network activation. We suggest that stable, confirmed identities are the foundation from which people can exhibit greater network responsiveness.

  12. Workflow Modeling Using Stochastic Activity Networks

    NASA Astrophysics Data System (ADS)

    Javadi Mottaghi, Fatemeh; Abdollahi Azgomi, Mohammad

    The essence of workflow systems is workflow patterns. The aim is to use an existing powerful formal modeling language with workflow systems. Stochastic activity networks (SANs) are a powerful extension of Petri nets. Having the SAN model of a system, one can verify the functional aspects and evaluate the operational measures, both on a same model. SANs have already been used in a wide range of applications. As a new application area, we have used SANs for modeling workflow systems. The results show that the most important workflow patterns can be modeled in SANs. In addition, the resulting SAN models of workflow systems can be used for model checking and/or performance evaluation purposes using the existing tools. In this paper, we will present the results of this work. For this purpose, we will present the SAN submodels corresponding to the most important workflow patterns. Then, the proposed SAN submodels are used in a case study for workflow modeling, which will also be presented in this paper. Finally, we will present the results of the evaluation of the model using the Möbius modeling tool.

  13. Mesoscale architecture shapes initiation and richness of spontaneous network activity.

    PubMed

    Okujeni, Samora; Kandler, Steffen; Egert, Ulrich

    2017-03-14

    Spontaneous activity in the absence of external input, including propagating waves of activity, is a robust feature of neuronal networks in vivo and in vitro. The neurophysiological and anatomical requirements for initiation and persistence of such activity, however, are poorly understood, as is their role in the function of neuronal networks. Computational network studies indicate that clustered connectivity may foster the generation, maintenance and richness of spontaneous activity. Since this mesoscale architecture cannot be systematically modified in intact tissue, testing these predictions is impracticable in vivo. Here, we investigate how the mesoscale structure shapes spontaneous activity in generic networks of rat cortical neurons in vitro. In these networks, neurons spontaneously arrange into local clusters with high neurite density and form fasciculating long-range axons. We modified this structure by modulation of protein kinase C, an enzyme regulating neurite growth and cell migration. Inhibition of protein kinase C reduced neuronal aggregation and fasciculation of axons, i.e. promoted uniform architecture. Conversely, activation of protein kinase C promoted aggregation of neurons into clusters, local connectivity and bundling of long-range axons. Supporting predictions from theory, clustered networks were more spontaneously active and generated diverse activity patterns. Neurons within clusters received stronger synaptic inputs and displayed increased membrane potential fluctuations. Intensified clustering promoted the initiation of synchronous bursting events but entailed incomplete network recruitment. Moderately clustered networks appear optimal for initiation and propagation of diverse patterns of activity. Our findings support a crucial role of the mesoscale architectures in the regulation of spontaneous activity dynamics.SIGNIFICANCE STATEMENTComputational studies predict richer and persisting spatio-temporal patterns of spontaneous activity in

  14. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  15. Nano-Fibrous Biopolymer Hydrogels via Biological Conjugation for Osteogenesis.

    PubMed

    Chen, Huinan; Xing, Xiaodong; Jia, Yang; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2016-06-01

    Nanostructured biopolymer hydrogels have great potential in the field of drug delivery and regenerative medicine. In this work, a nano-fibrous (NF) biopolymer hydrogel was developed for cell growth factors (GFs) delivery and in vitro osteogenesis. The nano-fibrous hydrogel was produced via biological conjugation of streptavidin functionalized hyaluronic acid (HA-Streptavidin) and biotin terminated star-shaped poly(ethylene glycol) (PEG-Biotin). In the present work, in vitro gelation, mechanical properties, degradation and equilibrium swelling of the NF hydrogel were examined. The potential application of this NF gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. Osteoblasts seeded directly in NF gel scaffold containing cell growth factor, e.g. bone morphogenetic protein 2 (BMP-2), was to mimic the in vivo microenvironment in which cells interface biomaterials and interact with BMP-2. In combination with BMP-2, the NF hydrogel exhibited beneficial effects on osteoblast activity and differentiation, which suggested a promising future for local treatment of pathologies involving bone loss.

  16. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life.

  17. Brain Network Activity in Monolingual and Bilingual Older Adults

    PubMed Central

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  18. Scleroglucan biopolymer production, properties, and economics

    SciTech Connect

    Compere, A. L.; Griffith, W. L.

    1980-01-01

    Production and solution properties which may make scleroglucan polysaccharide economically advantageous for onsite production and use in tertiary oil recovery were investigated. Scleroglucan, which is similar in viscosity and shear thinning to xanthan, can be produced in a 3-day batch or 12 h continuous fermentation. Yield is nearly 50% based on input glucose. Gross biopolymer-biomass separation may be effected using microscreening, a low energy process, followed by polish filtration. Polymer flux may be improved by hydrolysis with an endolaminarinase from Rhizopus arrhizius QM 1032. Simple feedstock requirements and low growth pH, together with the difficulty of resuspending dried polymer, may encourage field biopolymer fermentation and use of purified culture broth.

  19. Fate of biopolymers during rapeseed meal and wheat bran composting as studied by two-dimensional correlation spectroscopy in combination with multiple fluorescence labeling techniques.

    PubMed

    Wang, Li-Ping; Shen, Qi-Rong; Yu, Guang-Hui; Ran, Wei; Xu, Yang-Chun

    2012-02-01

    Detailed knowledge of the molecular events during composting is important in improving the efficiency of this process. By combining two-dimensional Fourier transform infrared (FTIR) correlation spectroscopy and multiple fluorescent labeling, it was possible to study the degradation of biopolymers during rapeseed meal and wheat bran composting. Two-dimensional FTIR correlation spectroscopy provided structural information and was used to deconvolute overlapping bands found in the compost FTIR spectra. The degradation of biopolymers in rapeseed meal and wheat bran composts followed the sequence: cellulose, heteropolysaccharides, and proteins. Fluorescent labeling suggested that cellulose formed an intact network-like structure and the other biopolymers were embedded in the core of this structure. The sequence of degradation of biopolymers during composting was related to their distribution patterns.

  20. Network-dependent modulation of brain activity during sleep.

    PubMed

    Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki

    2014-09-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks.

  1. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers.

    PubMed

    Cheng, Chong Sage; Deng, Jie; Lei, Bei; He, Ai; Zhang, Xiang; Ma, Lang; Li, Shuang; Zhao, Changsheng

    2013-12-15

    Recent studies showed that graphene oxide (GO) presented high adsorption capacities to various water contaminants. However, the needed centrifugation after adsorption and the potential biological toxicity of GO restricted its applications in wastewater treatment. In this study, a facile method is provided by using biopolymers to mediate and synthesize 3D GO based gels. The obtained hybrid gels present well-defined and interconnected 3D porous network, which allows the adsorbate molecules to diffuse easily into the adsorbent. The adsorption experiments indicate that the obtained porous GO-biopolymer gels can efficiently remove cationic dyes and heavy metal ions from wastewater. Methylene blue (MB) and methyl violet (MV), two cationic dyes, are chosen as model adsorbates to investigate the adsorption capability and desorption ratio; meanwhile, the influence of contacting time, initial concentration, and pH value on the adsorption capacity of the prepared GO-biopolymer gels are also studied. The GO-biopolymer gels displayed an adsorption capacity as high as 1100 mg/g for MB dye and 1350 mg/g for MV dye, respectively. Furthermore, the adsorption kinetics and isotherms of the MB were studied in details. The experimental data of MB adsorption fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm, and the results indicated that the adsorption process was controlled by the intraparticle diffusion. Moreover, the adsorption data revealed that the porous GO-biopolymer gels showed good selective adsorbability to cationic dyes and metal ions.

  2. Finding Quasi-Optimal Network Topologies for Information Transmission in Active Networks

    PubMed Central

    Baptista, Murilo S.; de Carvalho, Josué X.; Hussein, Mahir S.

    2008-01-01

    This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons. PMID:18941516

  3. "Practical" Electrospinning of Biopolymers in Ionic Liquids.

    PubMed

    Shamshina, Julia L; Zavgorodnya, Oleksandra; Bonner, Jonathan R; Gurau, Gabriela; Di Nardo, Thomas; Rogers, Robin D

    2017-01-10

    To address the need to scale up technologies for electrospinning of biopolymers from ionic liquids to practical volumes, a setup for the multi-needle electrospinning of chitin using the ionic liquid 1-ethyl-3-methylimidazolium acetate, [C2 mim]-[OAc], was designed, built, and demonstrated. Materials with controllable and high surface area were prepared at the nanoscale using ionic-liquid solutions of high-molecular-weight chitin extracted with the same ionic liquid directly from shrimp shells.

  4. Molecular Entanglement and Electrospinnability of Biopolymers

    PubMed Central

    Kong, Lingyan; Ziegler, Gregory R.

    2014-01-01

    Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level. PMID:25226274

  5. The salience network causally influences default mode network activity during moral reasoning

    PubMed Central

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in

  6. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  7. Hydrogels from biopolymer hybrid for biomedical, food, and functional food applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer st...

  8. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  9. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  10. Beam finite-element model of a molecular motor for the simulation of active fibre networks

    PubMed Central

    Müller, Kei W.; Birzle, Anna M.; Wall, Wolfgang A.

    2016-01-01

    Molecular motors are proteins that excessively increase the efficiency of subcellular transport processes. They allow for cell division, nutrient transport and even macroscopic muscle movement. In order to understand the effect of motors in large biopolymer networks, e.g. the cytoskeleton, we require a suitable model of a molecular motor. In this contribution, we present such a model based on a geometrically exact beam finite-element formulation. We discuss the numerical model of a non-processive motor such as myosin II, which interacts with actin filaments. Based on experimental data and inspired by the theoretical understanding offered by the power-stroke model and the swinging-cross-bridge model, we parametrize our numerical model in order to achieve the effect that a physiological motor has on its cargo. To this end, we introduce the mechanical and mathematical foundations of the model, then discuss its calibration, prove its usefulness by conducting finite-element simulations of actin–myosin motility assays and assess the influence of motors on the rheology of semi-flexible biopolymer networks. PMID:26997891

  11. Impact of Network Activity Levels on the Performance of Passive Network Service Dependency Discovery

    SciTech Connect

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    2015-11-02

    Network services often do not operate alone, but instead, depend on other services distributed throughout a network to correctly function. If a service fails, is disrupted, or degraded, it is likely to impair other services. The web of dependencies can be surprisingly complex---especially within a large enterprise network---and evolve with time. Acquiring, maintaining, and understanding dependency knowledge is critical for many network management and cyber defense activities. While automation can improve situation awareness for network operators and cyber practitioners, poor detection accuracy reduces their confidence and can complicate their roles. In this paper we rigorously study the effects of network activity levels on the detection accuracy of passive network-based service dependency discovery methods. The accuracy of all except for one method was inversely proportional to network activity levels. Our proposed cross correlation method was particularly robust to the influence of network activity. The proposed experimental treatment will further advance a more scientific evaluation of methods and provide the ability to determine their operational boundaries.

  12. Structure and Properties of Polysaccharide Based BioPolymer Gels

    NASA Astrophysics Data System (ADS)

    Prud'Homme, Robert K.

    2000-03-01

    Nature uses the pyranose ring as the basic building unit for a wideclass of biopolymers. Because of their biological origin these biopolymers naturally find application as food additives, rheology modifiers. These polymers range from being rigid skeletal material, such as cellulose that resist dissolution in water, to water soluble polymers, such as guar or carrageenan. The flexibility of the basic pyranose ring structure to provide materials with such a wide range of properties comes from the specific interactions that can be engineered by nature into the structure. We will present several examples of specific interactions for these systems: hydrogen bonding, hydrophobic interactions, and specific ion interactions. The relationship between molecular interations and rheology will be emphasized. Hydrogen bonding mediated by steric interference is used to control of solubility of starch and the rheology of guar gels. A more interesting example is the hydrogen bonding induced by chemical modification in konjac glucomannan that results in a gel that melts upon cooling. Hydrogen bonding interactions in xanthan lead to gel formation at very low polymer concentrations which is a result of the fine tuning of the polymer persistence length and total contour length. Given the function of xanthan in nature its molecular architecture has been optimized. Hydrophobic interactions in methylcellulose show a reverse temperature dependence arising from solution entropy. Carrageenan gelation upon the addition of specific cations will be addressed to show the interplay of polymer secondary structure on chemical reactivity. And finally the cis-hydroxyls on galactomannans permit crosslinking by a variety of metal ions some of which lead to "living gels" and some of which lead to permanently crosslinked networks.

  13. Microfluidic partition with in situ biofabricated semipermeable biopolymer membranes for static gradient generation.

    PubMed

    Luo, Xiaolong; Vo, Thanh; Jambi, Fahad; Pham, Phu; Choy, John S

    2016-09-21

    We report an in situ biofabrication strategy that conveniently partitions microfluidic networks into physically separated while chemically communicating microchannels with semipermeable biopolymer membranes, which enable the facile generation of static gradients for biomedical applications. The biofabrication of parallel biopolymer membranes was initiated with the dissipation of trapped air bubbles in parallel apertures in polydimethylsiloxane (PDMS) microfluidic devices, followed by tunable membrane growth with precise temporal and spatial control to the desired thickness. Static gradients were generated within minutes and well maintained over time by pure diffusion of molecules through the biofabricated semipermeable membranes. As an example application, the static gradient of alpha factor was generated to study the development of the "shmoo" morphology of yeast over time. The in situ biofabrication provides a simple approach to generate static gradients and an ideal platform for biological applications where flow-free static gradients are indispensable.

  14. Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin.

    PubMed

    Zhao, Shanyu; Malfait, Wim J; Demilecamps, Arnaud; Zhang, Yucheng; Brunner, Samuel; Huber, Lukas; Tingaut, Philippe; Rigacci, Arnaud; Budtova, Tatiana; Koebel, Matthias M

    2015-11-23

    Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica-biopolymer hybrids are a promising alternative. A one-pot process to monolithic, superinsulating pectin-silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed "neck-free" nanoscale network structure with thicker struts. Such a design is superior to "neck-limited", classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica-biopolymer nanocomposite aerogels.

  15. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  16. Bayesian Inference Networks and Spreading Activation in Hypertext Systems.

    ERIC Educational Resources Information Center

    Savoy, Jacques

    1992-01-01

    Describes a method based on Bayesian networks for searching hypertext systems. Discussion covers the use of Bayesian networks for structuring index terms and representing user information needs; use of link semantics based on constrained spreading activation to find starting points for browsing; and evaluation of a prototype system. (64…

  17. The Global Space Geodesy Network: Activities Underway

    NASA Astrophysics Data System (ADS)

    Pearlman, Michael R.; Ipatov, Alexander; Long, James; Ma, Chopo; Merkowitz, Stephen; Neilan, Ruth; Noll, Carey; Pavlis, Erricos; Shargorodsky, Victor; Stowers, David; Wetzel, Scott

    2014-05-01

    Several initiatives are underway that should make substantial improvement over the next decade to the international space geodesy network as the international community works toward the GGOS 2020 goal of 32 globally distributed Core Sites with co-located VLBI, SLR, GNSS and DORIS. The Russian Space Agency and the Russian Academy of Sciences are moving forward with an implementation of six additional SLR systems and a number of GNSS receivers to sites outside Russia to expand GNSS tracking and support GGOS. The NASA Space Geodesy program has completed its prototype development phase and is now embarking on an implementation phase that is planning for deployment of 6 - 10 core sites in key geographic locations to support the global network. Additional sites are in the process of implementation in Europe and Asia. Site evaluation studies are in progress, looking at some new potential sites and there are ongoing discussions for partnership arrangements with interested agencies for new sites in South America and Africa. Work continues on the site layout design to avoid RF interference issues among co-located instruments and with external communications and media system. The placement of new and upgraded sites is guided by appropriate Observing System Simulation Experiments (OSSEs) conducted under the support of the interested international agencies. The results will help optimize the global distribution of core geodetic observatories and they will lead to the improvement of the data products from the future network. During this effort it is also recognized that co-located sites with less than the full core complement will continue to play an important and critical role in filling out the global network and strengthening the connection among the techniques. This talk will give an update on the current state of expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.

  18. Criticalities in crosslinked actin networks due to myosin activity

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael

    2013-03-01

    Many essential processes in cells and tissues, like motility and morphogenesis, are orchestrated by molecular motors applying internal, active stresses on crosslinked networks of actin filaments. Using scaling analysis, mean-field calculation, numerical modelling and in vitro experiments of such active networks we predict and observe different mechanical regimes exhibiting interesting critical behaviours with non-trivial power-law dependencies. Firstly, we find that the presence of active stresses can dramatically increase the stiffness of a floppy network, as was observed in reconstituted intracellular F-actin networks with myosin motors and extracellular gels with contractile cells. Uniform internal stress results in an anomalous, critical mechanical regime only in the vicinity of the rigidity percolation points of the network. However, taking into account heterogeneity of motors, we demonstrate that the motors, stiffening any floppy network, induce large non-affine fluctuations, giving rise to a critical mechanical regime. Secondly, upon increasing motor concentration, the resulting large internal stress is able to significantly enhance unbinding of the network's crosslinks and, therefore, disconnect the initially well-connected network to isolated clusters. However, during this process, when the network approaches marginal connectivity the internal stresses are expected to drop drastically such that the connectivity stabilizes. This general argument and detailed numerical simulations show that motors should drive a well connected network to a close vicinity of a critical point of marginal connectivity. Experiments clearly confirm this conclusion and demonstrate robust critical connectivity of initially well-connected networks, ruptured by the motor activity for a wide range of parameters. M. Sheinman, C.P. Broedersz and F.C. MacKintosh, Phys. Rev. Lett, in press. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh and G. Koenderink, in preparation.

  19. Distal gap junctions and active dendrites can tune network dynamics.

    PubMed

    Saraga, Fernanda; Ng, Leo; Skinner, Frances K

    2006-03-01

    Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed

  20. How to Identify Success Among Networks That Promote Active Living

    PubMed Central

    Litt, Jill; Varda, Danielle; Reed, Hannah; Retrum, Jessica; Tabak, Rachel; Gustat, Jeanette; Tompkins, Nancy O’Hara

    2017-01-01

    Objectives We evaluated organization- and network-level factors that influence organizations’ perceived success. This is important for managing interorganizational networks, which can mobilize communities to address complex health issues such as physical activity, and for achieving change. Methods In 2011, we used structured interview and network survey data from 22 states in the United States to estimate multilevel random-intercept models to understand organization- and network-level factors that explain perceived network success. Results A total of 53 of 59 “whole networks” met the criteria for inclusion in the analysis (89.8%). Coordinators identified 559 organizations, with 3 to 12 organizations from each network taking the online survey (response rate: 69.7%; range: 33%–100%). Occupying a leadership position (P < .01), the amount of time with the network (P < .05), and support from community leaders (P < .05) emerged as correlates of perceived success. Conclusions Organizations’ perceptions of success can influence decisions about continuing involvement and investment in networks designed to promote environment and policy change for active living. Understanding these factors can help leaders manage complex networks that involve diverse memberships, varied interests, and competing community-level priorities. PMID:26378863

  1. Fine Structure of Starch-Clay Composites as Biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Midsol 50 wheat starch and 5% Cloisite clay with or without the addition of glycerin were used to prepare biopolymers in a twin-screw extruder. Early trials of sectioning the unembedded biopolymer resulted in the immediate absorption of water and subsequent dissolution of the sample due to the the ...

  2. Using biopolymers to remove heavy metals from soil and water

    SciTech Connect

    Krishnamurthy, S.; Frederick, R.M.

    1993-11-19

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy metals. The biopolymers discussed are chitin and chitosan, modified starch, cellulose, and polymer-containing algae. (Copyright (c) Remediation 1994.)

  3. Formulation of indomethacin emulsion using biopolymer of Prunus avium.

    PubMed

    Verma, Shivangi; Dabral, Prashant; Rana, Vinod; Upadhaya, Kumud; Bhardwaj

    2012-03-01

    The aim of the investigation was to formulate Indomethacin Emulsion using Bio-polymer as Emulsifier. Different batches of emulsions were prepared by varying concentration of biopolymer prunus avium. Based evaluation of the prepared polymers, a conclusion can be drawn that in the Prunus avium bio-material can serve as a promising film forming agent for formulating various drug.

  4. Network Interventions on Physical Activity in an Afterschool Program: An Agent-Based Social Network Study

    PubMed Central

    Zhang, Jun; Shoham, David A.; Tesdahl, Eric

    2015-01-01

    Objectives. We studied simulated interventions that leveraged social networks to increase physical activity in children. Methods. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children’s physical activity. We tested 3 intervention strategies. Results. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Conclusions. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children’s physical activity. PMID:25689202

  5. On the Dynamics of the Spontaneous Activity in Neuronal Networks

    PubMed Central

    Bonifazi, Paolo; Ruaro, Maria Elisabetta; Torre, Vincent

    2007-01-01

    Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABAA receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics. PMID:17502919

  6. Hub-activated signal transmission in complex networks

    NASA Astrophysics Data System (ADS)

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2014-03-01

    A wide range of networked systems exhibit highly connected nodes (hubs) as prominent structural elements. The functional roles of hubs in the collective nonlinear dynamics of many such networks, however, are not well understood. Here, we propose that hubs in neural circuits may activate local signal transmission along sequences of specific subnetworks. Intriguingly, in contrast to previous suggestions of the functional roles of hubs, here, not the hubs themselves, but nonhub subnetworks transfer the signals. The core mechanism relies on hubs and nonhubs providing activating feedback to each other. It may, thus, induce the propagation of specific pulse and rate signals in neuronal and other communication networks.

  7. Active system area networks for data intensive computations. Final report

    SciTech Connect

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  8. Chitosan biopolymer for fuel cell applications.

    PubMed

    Ma, Jia; Sahai, Yogeshwar

    2013-02-15

    Fuel cell is an electrochemical device which converts chemical energy stored in a fuel into electrical energy. Fuel cells have been receiving attention due to its potential applicability as a good alternative power source. Recently, cost-effective and eco-friendly biopolymer chitosan has been extensively studied as a material for membrane electrolytes and electrodes in low to intermediate temperature hydrogen polymer electrolyte fuel cell, direct methanol fuel cell, alkaline fuel cell, and biofuel cell. This paper reviews structure and property of chitosan with respect to its applications in fuel cells. Recent achievements and prospect of its applications have also been included.

  9. Cultured Neuronal Networks Express Complex Patterns of Activity and Morphological Memory

    NASA Astrophysics Data System (ADS)

    Raichman, Nadav; Rubinsky, Liel; Shein, Mark; Baruchi, Itay; Volman, Vladislav; Ben-Jacob, Eshel

    The following sections are included: * Cultured Neuronal Networks * Recording the Network Activity * Network Engineering * The Formation of Synchronized Bursting Events * The Characterization of the SBEs * Highly-Active Neurons * Function-Form Relations in Cultured Networks * Analyzing the SBEs Motifs * Network Repertoire * Network under Hypothermia * Summary * Acknowledgments * References

  10. Viking mission support. [Deep Space Network activities

    NASA Technical Reports Server (NTRS)

    Johnston, D. W. H.

    1977-01-01

    Statistics listing the Deep Space Network tracking and command support and the discrepancy report status for 1 January through 28 February 1977 are presented in tables. The initial Viking extended mission period of normal DSN support, following the nonstandard operations during the solar conjunction period is included. Operational testing subsequent to the MK III data system installations at DSS 12, 44, and 62 during this period are also discussed.

  11. Systematic fluctuation expansion for neural network activity equations.

    PubMed

    Buice, Michael A; Cowan, Jack D; Chow, Carson C

    2010-02-01

    Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.

  12. Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships.

    PubMed

    Müller, Alex T; Kaymaz, Aral C; Gabernet, Gisela; Posselt, Gernot; Wessler, Silja; Hiss, Jan A; Schneider, Gisbert

    2016-12-01

    We present an adaptive neural network model for chemical data classification. The method uses an evolutionary algorithm for optimizing the network structure by seeking sparsely connected architectures. The number of hidden layers, the number of neurons in each layer and their connectivity are free variables of the system. We used the method for predicting antimicrobial peptide activity from the amino acid sequence. Visualization of the evolved sparse network structures suggested a high charge density and a low aggregation potential in solution as beneficial for antimicrobial activity. However, different training data sets and peptide representations resulted in greatly varying network structures. Overall, the sparse network models turned out to be less accurate than fully-connected networks. In a prospective application, we synthesized and tested 10 de novo generated peptides that were predicted to either possess antimicrobial activity, or to be inactive. Two of the predicted antibacterial peptides showed cosiderable bacteriostatic effects against both Staphylococcus aureus and Escherichia coli. None of the predicted inactive peptides possessed antibacterial properties. Molecular dynamics simulations of selected peptide structures in water and TFE suggest a pronounced peptide helicity in a hydrophobic environment. The results of this study underscore the applicability of neural networks for guiding the computer-assisted design of new peptides with desired properties.

  13. Connectivity, excitability and activity patterns in neuronal networks

    NASA Astrophysics Data System (ADS)

    le Feber, Joost; Stoyanova, Irina I.; Chiappalone, Michela

    2014-06-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFPi,j) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFPi,j with the autocorrelation of i (i.e. CFPi,i), to obtain the single pulse response (SPRi,j)—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression.

  14. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts.

    PubMed

    Dranias, Mark R; Westover, M Brandon; Cash, Sidney; VanDongen, Antonius M J

    2015-01-01

    In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus. As a model approach to understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array (MEA) recordings of cultured neuronal networks were used to study whether stimulus information represented in these networks survives SNBs. When such networks are optically stimulated they encode and maintain stimulus information for as long as one second. Experiments involved recording the network response to a single stimulus and trials where two different stimuli were presented sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific information was impaired. SNBs were observed to increase the mean network firing rate, but this did not translate monotonically into increases in network entropy. It was found that the more excitable a network, the more stereotyped its response was during a network burst. These measurements speak to whether SNBs are capable of transmitting information in addition to blocking it. These results are consistent with previous reports and provide baseline predictions concerning the neural mechanisms by which IEDs might cause TCI.

  15. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers.

    PubMed

    Liu, Yun; Lehn, Jean-Marie; Hirsch, Anna K H

    2017-02-21

    Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular

  16. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    PubMed Central

    2017-01-01

    Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition

  17. Goal-congruent default network activity facilitates cognitive control.

    PubMed

    Spreng, R Nathan; DuPre, Elizabeth; Selarka, Dhawal; Garcia, Juliana; Gojkovic, Stefan; Mildner, Judith; Luh, Wen-Ming; Turner, Gary R

    2014-10-15

    Substantial neuroimaging evidence suggests that spontaneous engagement of the default network impairs performance on tasks requiring executive control. We investigated whether this impairment depends on the congruence between executive control demands and internal mentation. We hypothesized that activation of the default network might enhance performance on an executive control task if control processes engage long-term memory representations that are supported by the default network. Using fMRI, we scanned 36 healthy young adult humans on a novel two-back task requiring working memory for famous and anonymous faces. In this task, participants (1) matched anonymous faces interleaved with anonymous face, (2) matched anonymous faces interleaved with a famous face, or (3) matched a famous faces interleaved with an anonymous face. As predicted, we observed a facilitation effect when matching famous faces, compared with anonymous faces. We also observed greater activation of the default network during these famous face-matching trials. The results suggest that activation of the default network can contribute to task performance during an externally directed executive control task. Our findings provide evidence that successful activation of the default network in a contextually relevant manner facilitates goal-directed cognition.

  18. Mechanisms of spontaneous activity in developing spinal networks.

    PubMed

    O'Donovan, M J; Chub, N; Wenner, P

    1998-10-01

    Developing networks of the chick spinal cord become spontaneously active early in development and remain so until hatching. Experiments using an isolated preparation of the spinal cord have begun to reveal the mechanisms responsible for this activity. Whole-cell and optical recordings have shown that spinal neurons receive a rhythmic, depolarizing synaptic drive and experience rhythmic elevations of intracellular calcium during spontaneous episodes. Activity is expressed throughout the neuraxis and can be produced by different parts of the cord and by the isolated brain stem, suggesting that it does not depend upon the details of network architecture. Two factors appear to be particularly important for the production of endogenous activity. The first is the predominantly excitatory nature of developing synaptic connections, and the second is the presence of prolonged activity-dependent depression of network excitability. The interaction between high excitability and depression results in an equilibrium in which episodes are expressed periodically by the network. The mechanism of the rhythmic bursting within an episode is not understood, but it may be due to a "fast" form of network depression. Spontaneous embryonic activity has been shown to play a role in neuron and muscle development, but is probably not involved in the initial formation of connections between spinal neurons. It may be important in refining the initial connections, but this possibility remains to be explored.

  19. A network model for activity-dependent sleep regulation.

    PubMed

    Roy, Sandip; Krueger, James M; Rector, David M; Wan, Yan

    2008-08-07

    We develop and characterize a dynamical network model for activity-dependent sleep regulation. Specifically, in accordance with the activity-dependent theory for sleep, we view organism sleep as emerging from the local sleep states of functional units known as cortical columns; these local sleep states evolve through integration of local activity inputs, loose couplings with neighboring cortical columns, and global regulation (e.g. by the circadian clock). We model these cortical columns as coupled or networked activity-integrators that transition between sleep and waking states based on thresholds on the total activity. The model dynamics for three canonical experiments (which we have studied both through simulation and system-theoretic analysis) match with experimentally observed characteristics of the cortical-column network. Most notably, assuming connectedness of the network graph, our model predicts the recovery of the columns to a synchronized state upon temporary overstimulation of a single column and/or randomization of the initial sleep and activity-integration states. In analogy with other models for networked oscillators, our model also predicts the possibility for such phenomena as mode-locking.

  20. Nuclear-Shell Biopolymers Initiated by Telomere Elongation for Individual Cancer Cell Imaging and Drug Delivery.

    PubMed

    Zhang, Zhen; Jiao, Yuting; Zhu, Mengting; Zhang, Shusheng

    2017-04-04

    Here, we propose a strategy for unique nuclear-shell biopolymers initiated by telomere elongation for telomerase activity detection and precise drug delivery to individual cancer cells. Telomerase-triggered DNA rolling-circle amplification (RCA) is used to assemble nuclear-shell biopolymers with signal molecules for selective cancer cell recognition and efficient drug delivery to targeted individual cells. This strategy not only should allow the creation of clustered 5-carboxyfluorescein (FAM)-fluorescence spots in response to human-telomerase activity in individual cancer cells but also could efficiently deliver drugs to reduce the undesired death of healthy cells. These findings offer new opportunities to improve the efficacy of cancer cell imaging and therapy.

  1. Plasticity of recurring spatiotemporal activity patterns in cortical networks

    NASA Astrophysics Data System (ADS)

    Madhavan, Radhika; Chao, Zenas C.; Potter, Steve M.

    2007-09-01

    How do neurons encode and store information for long periods of time? Recurring patterns of activity have been reported in various cortical structures and were suggested to play a role in information processing and memory. To study the potential role of bursts of action potentials in memory mechanisms, we investigated patterns of spontaneous multi-single-unit activity in dissociated rat cortical cultures in vitro. Spontaneous spikes were recorded from networks of approximately 50 000 neurons and glia cultured on a grid of 60 extracellular substrate- embedded electrodes (multi-electrode arrays). These networks expressed spontaneous culture- wide bursting from approximately one week in vitro. During bursts, a large portion of the active electrodes showed elevated levels of firing. Spatiotemporal activity patterns within spontaneous bursts were clustered using a correlation-based clustering algorithm, and the occurrences of these burst clusters were tracked over several hours. This analysis revealed spatiotemporally diverse bursts occurring in well-defined patterns, which remained stable for several hours. Activity evoked by strong local tetanic stimulation resulted in significant changes in the occurrences of spontaneous bursts belonging to different clusters, indicating that the dynamical flow of information in the neuronal network had been altered. The diversity of spatiotemporal structure and long-term stability of spontaneous bursts together with their plastic nature strongly suggests that such network patterns could be used as codes for information transfer and the expression of memories stored in cortical networks.

  2. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  3. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    NASA Astrophysics Data System (ADS)

    McCullen, Nick; Wagenknecht, Thomas

    2016-06-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system.

  4. Poly(Capro-Lactone) Networks as Actively Moving Polymers

    NASA Astrophysics Data System (ADS)

    Meng, Yuan

    Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double

  5. Elastin-like polypeptides: biomedical applications of tunable biopolymers.

    PubMed

    MacEwan, Sarah R; Chilkoti, Ashutosh

    2010-01-01

    Artificial repetitive polypeptides have grown in popularity as a bioinspired alternative to synthetic polymers. The genetically encoded synthesis, monodispersity, potential lack of toxicity, and biocompatibility are attractive features of these biopolymers for biological applications. Elastin-like polypeptides (ELPs) are one such class of biopolymers that are of particular interest because of their "smart"-stimuli responsive-properties. Herein, we discuss the genetically encoded design and recombinant synthesis of ELPs that enable precise control of their physicochemical properties and which have led to a wide range of biomedical applications of these biopolymers in the last decade.

  6. Optical properties of DNA-CTMA biopolymers and applications in metal-biopolymer-metal photodetectors

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Kim, Sung Jin; Bartsch, Carrie M.; Heckman, Emily M.; Ouchen, Fahima; Cartwright, Alexander N.

    2011-09-01

    The potential of using a DNA biopolymer in an electro-optic device is presented. A complex of DNA with the cationic surfactant cetyltrimethylammonium-chloride (CTMA) was used to obtain an organic-soluble DNA material (DNA-CTMA). Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) was added to the DNACTMA to increase the electrical conductivity of the biopolymer. The CW absorbance and time-resolved photoluminescence of the resulting DNA-CTMA and DNA-CTMA-PEDOT:PSS were investigated. Both DNA materials have absorbance peaks at ~260 nm and a broad, Stokes shifted, photoluminescence peak around 470nm. The photoluminescence lifetime of the materials was observed to decrease with increasing UV excitation. Specifically, excitation with a high power ultrafast (~150fs) UV (266nm) laser pulse resulted in a drastic decrease in the photoluminescence lifetime decreases after a few minutes. Moreover, the observed decrease was faster in an air ambient than in a nitrogen ambient. This is most likely due to photo-oxidation that degrades the polymer surface resulting in an increase in the non-radiative recombination. In order to investigate the photoconductivity of these two materials, metal-biopolymer-metal (MBM) ultraviolet photodetectors with interdigitated electrodes were fabricated and characterized. The photoresponsivity of these devices was limited by the transport dynamics within the film. The prospects for the use of these materials in optical devices will be discussed.

  7. Mechanisms Underlying Desynchronization of Cholinergic-Evoked Thalamic Network Activity

    PubMed Central

    Pita-Almenar, Juan Diego; Yu, Dinghui; Lu, Hui-Chen

    2014-01-01

    Synchronous neuronal activity in the thalamocortical system is critical for a number of behaviorally relevant computations, but hypersynchrony can limit information coding and lead to epileptiform responses. In the somatosensory thalamus, afferent inputs are transformed by networks of reciprocally connected thalamocortical neurons in the ventrobasal nucleus (VB) and GABAergic neurons in the thalamic reticular nucleus (TRN). These networks can generate oscillatory activity, and studies in vivo and in vitro have suggested that thalamic oscillations are often accompanied by synchronous neuronal activity, in part mediated by widespread divergence and convergence of both reticulothalamic and thalamoreticular pathways, as well as by electrical synapses interconnecting TRN neurons. However, the functional organization of thalamic circuits and its role in shaping input-evoked activity patterns remain poorly understood. Here we show that optogenetic activation of cholinergic synaptic afferents evokes near-synchronous firing in mouse TRN neurons that is rapidly desynchronized in thalamic networks. We identify several mechanisms responsible for desynchronization: (1) shared inhibitory inputs in local VB neurons leading to asynchronous and imprecise rebound bursting; (2) TRN-mediated lateral inhibition that further desynchronizes firing in the VB; and (3) powerful yet sparse thalamoreticular connectivity that mediates re-excitation of the TRN but preserves asynchronous firing. Our findings reveal how distinct local circuit features interact to desynchronize thalamic network activity. PMID:25339757

  8. Locust bean gum: a versatile biopolymer.

    PubMed

    Prajapati, Vipul D; Jani, Girish K; Moradiya, Naresh G; Randeria, Narayan P; Nagar, Bhanu J

    2013-05-15

    Biopolymers or natural polymers are an attractive class of biodegradable polymers since they are derived from natural sources, easily available, relatively cheap and can be modified by suitable reagent. Locust bean gum is one of them that have a wide potentiality in drug formulations due to its extensive application as food additive and its recognized lack of toxicity. It can be tailored to suit its demands of applicants in both the pharmaceutical and biomedical areas. Locust bean gum has a wide application either in the field of novel drug delivery system as rate controlling excipients or in tissue engineering as scaffold formation. Through keen references of reported literature on locust bean gum, in this review, we have described critical aspects of locust bean gum, its manufacturing process, physicochemical properties and applications in various drug delivery systems.

  9. Dual production of biopolymers from bacteria.

    PubMed

    Sukan, Artun; Roy, Ipsita; Keshavarz, Tajalli

    2015-08-01

    Rapid depletion of natural resources with continued demands of an increasing population and high consumption rates of today's world will cause serious problems in the future. This, along with environmental concerns, has directed research towards finding alternatives in variety of sectors including sustainable and environmentally friendly consumer goods. Biopolymers of bacterial origin, with their vast range of applications, biodegradability and eco-friendly manufacturing processes, are one of the alternatives for a more sustainable future. However, the cost of their production is a drawback. Simultaneous production processes have always been an option for researchers in order to reduce cost, but the variable requirements of microorganisms to produce both different and valuable products are a hindering factor. This review will look at some examples and identify ideas towards developing a successful strategy for simultaneous production of bio-products.

  10. Submicro foaming in biopolymers by UV pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Oujja, Mohamed; Rebollar, Esther; Gaspard, Solenne; Abrusci, Concepción; Catalina, Fernando; Lazare, Sylvain; Castillejo, Marta

    2006-05-01

    Microstructuring of polymers and biopolymers is of application in medical technology and biotechnology. Using different fabrication techniques three-dimensionally shaped and micro structured constructs can be developed for drug release and tissue engineering. As an alternative method, laser microstructuring offers a series of advantages including high resolution capability, low heat deposition in the substrate and high level of flexibility. In this work we present evidence of laser microfoam formation in collagen and gelatine by nanosecond pulsed laser irradiation in the UV at 248 and 266 nm. Irradiation at 355 nm produces melting followed by resolidification of the substrate, whereas irradiation at 532 and 1064 nm induces the formation of craters of irregular contours. Single pulse irradiation of a collagen film with an homogenized KrF microbeam yields a 20 μm thick expanded layer, which displays the interesting features of a nanofibrous 3-dimensional network with open cells. In gelatine, irradiation at 248 and 266 nm produces similar morphological modifications. The effect of the structural properties of the substrate on the laser induced microfoam is studied by comparing gelatines differing in gel strength (Bloom values 225 and 75) and in crosslinking degree. While results are discussed on the basis of thermal and photomechanical mechanisms and of the role played by the water content of the substrates, it is thought that such structures could have a biomimic function in future 3D cell culture devices for research.

  11. Fast transient networks in spontaneous human brain activity

    PubMed Central

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-01-01

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100–200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001 PMID:24668169

  12. Development of Budesonide Loaded Biopolymer Based Dry Powder Inhaler: Optimization, In Vitro Deposition, and Cytotoxicity Study

    PubMed Central

    Mali, Ashwin J.; Pawar, Atmaram P.; Purohit, Ravindra N.

    2014-01-01

    The progress in the development of DPI technology has boosted the use of sensitive drug molecules for lung diseases. However, delivery of these molecules from conventional DPI to the active site still poses a challenge with respect to deposition efficiency in the lung. At same time, serious systemic side effects of drugs have become a cause for concern. The developed budesonide loaded biopolymer based controlled release DPI had shown maximum in vitro lung deposition with least toxicity. The subject of present study, lactose-free budesonide loaded biopolymer based DPI, further corroborates the great potential of antiasthmatic drugs. This technology is expected to revolutionize the approaches towards enhanced therapeutic delivery of prospective drugs. PMID:26556201

  13. Studies of antibacterial efficacy of different biopolymer protected silver nanoparticles synthesized under reflux condition

    NASA Astrophysics Data System (ADS)

    Su, Chia Hung; Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Adhikary, Shritama; Pandian, Kannaiyan; Anbu, Periyasamy

    2017-01-01

    In the present study, a simple method to impregnate silver nanoparticles (AgNPs) into carboxymethyl cellulose (CMC) and sodium alginate (SA) is reported for the first time. Single step synthesis of carboxymethyl cellulose (CMC) and sodium alginate (SA) biopolymer protected silver nanoparticles (AgNPs) using aniline as a reducing agent under reflux conditions was investigated. The synthesized nanoparticles were characterized by UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The FESEM results of CMC@AgNPs and SA@AgNPs showed the formation of spherical nanoparticles sized 30-60 nm. Testing of the antibiofilm efficacy of the polymer protected AgNPs against different bacterial strains such as Klebsiella pneumoniae MTCC 4032 and Streptococcus pyogenes MTCC 1924 revealed that the biopolymer protected AgNPs had excellent antibiofilm activity.

  14. Stereolithographic models of the solvent-accessible surface of biopolymers. Topical report

    SciTech Connect

    Bradford, J.; Noel, P.; Emery, J.D.

    1996-11-01

    The solvent-accessible surfaces of several biopolymers were calculated. As part of the DOE education outreach activity, two high school students participated in this project. Computer files containing sets of triangles were produced. These files are called stl files and are the ISO 9001 standard. They have been written onto CD-ROMs for distribution to American companies. Stereolithographic models were made of some of them to ensure that the computer calculations were done correctly. Stereolithographic models were made of interleukin 1{beta} (IL-1{beta}), three antibodies (an anti-p-azobenzene arsonate, an anti-Brucella A cell wall polysaccharide, and an HIV neutralizing antibody), a triple stranded coiled coil, and an engrailed homeodomain. Also, the biopolymers and their files are described.

  15. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

  16. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  17. Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating.

    PubMed

    Greque de Morais, Michele; Greque de Morais, Etiele; Vaz, Bruna da Silva; Gonçalves, Carolina Ferrer; Lisboa, Cristiane; Costa, Jorge Alberto Vieira

    2016-01-01

    Microalgae have been studied in biotechnological processes due to the various biocompounds that can be obtained from their biomasses, including pigments, proteins, antioxidants, biopeptides, fatty acids and biopolymers. Microalgae biopolymers are biodegradable materials that present similar characteristics to traditional polymers, with the advantage of being rapidly degraded when discarded. In addition, nanoencapsulation is capable of increasing the availability of bioactive compounds by allowing the release of these biocompounds to occur slowly over time. The use of polymers in the nanoencapsulation of active ingredients can mask the undesired physicochemical properties of the compounds to be encapsulated, thereby enhancing consumer acceptability. This covering also acts as a barrier against several foreign substances that can react with bioactive compounds and reduce their activity. Studies of the development of poly-3-hydroxybutyrate (PHB) nanocapsules from microbial sources are little explored; this review addresses the use of nanotechnology to obtain bioactive compounds coated with biopolymer nanocapsules, both obtained from Spirulina biomasses. These microalgae are Generally Recognized as Safe (GRAS) certified, which guarantees that the biomass can be used to obtain high added value biocompounds, which can be used in human and animal supplementation.

  18. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Gupta, Indarchand; Brandelli, Adriano

    2015-12-30

    The unique properties of nanomaterials can be applied to solve different problems including new ways of drug delivery. Noble metal nanoparticles are most promising because they have been used for medicinal purposes since ancient time. It is evident from the past studies that the metallic nanoparticles are much more effective against various microorganisms when compared to their conventional counterparts. However, decoration of such nanoparticles with biomaterials add more advantages to their antimicrobial activity. Decoration of metal nanoparticles with biopolymers is a quite new area of research. Studies performed hitherto shown that nanoparticles of noble metals like silver, gold and platinum demonstrated better antibacterial, antifungal and antiviral activities when conjugated with biopolymers. The development of such technology has potential to develop materials that are more effective in the field of health science. Considering the importance and uniqueness of this concept, the present review aims to discuss the use of biopolymer-decorated metal nanoparticles for combating various diseases caused by microbial pathogens. Moreover, the nanotoxicity aspect has also been discussed.

  19. Effects of Dietary Conjugated Linoleic Acid and Biopolymer Encapsulation on Lipid Metabolism in Mice

    PubMed Central

    Hur, Sun Jin; Kim, Doo Hwan; Chun, Se Chul; Lee, Si Kyung

    2013-01-01

    Forty mice were randomly divided into four groups on the basis of the diet to be fed as follows: 5% (low) fat diet (T1: LF); 20% (high) fat diet (T2: HF); 20% fat containing 1% conjugated linoleic acid (CLA) (T3: HFC); and 20% fat containing 1% CLA with 0.5% biopolymers (T4: HFCB). The high-fat with CLA diet groups (HFC and HFCB) and the low-fat diet group (LF) tended to have lower body weights and total adipose tissue weights than those of the high-fat diet group (HF). Serum leptin and triglyceride were significantly lower in the high fat with CLA-fed groups (HFC and HFCB) and the low-fat diet group (LF) than those in the high-fat diet group (HF). It is noteworthy that the high-fat with CLA and biopolymers group (HFCB) showed the lowest serum triglyceride and cholesterol concentrations. In the high-fat-fed group (HF), voluntary travel distance as a measure of physical activity decreased after three weeks of feeding. However, the CLA-fed groups showed increased physical activity. The groups fed high-fat diets supplemented with CLA alone and with CLA and biopolymers had higher viscosity of small intestinal contents than that in the low- and high-fat dietary groups. PMID:23531540

  20. End-of-life of starch-polyvinyl alcohol biopolymers.

    PubMed

    Guo, M; Stuckey, D C; Murphy, R J

    2013-01-01

    This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model.

  1. Laser-induced periodic surface structuring of biopolymers

    NASA Astrophysics Data System (ADS)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  2. Activity-Dependent Neuronal Model on Complex Networks

    PubMed Central

    de Arcangelis, Lucilla; Herrmann, Hans J.

    2012-01-01

    Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally found in vitro and in vivo, and exhibit a robust critical behavior: these avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems. We present a recent model inspired in self-organized criticality, which consists of an electrical network with threshold firing, refractory period, and activity-dependent synaptic plasticity. The model reproduces the critical behavior of the distribution of avalanche sizes and durations measured experimentally. Moreover, the power spectra of the electrical signal reproduce very robustly the power law behavior found in human electroencephalogram (EEG) spectra. We implement this model on a variety of complex networks, i.e., regular, small-world, and scale-free and verify the robustness of the critical behavior. PMID:22470347

  3. Activity flow over resting-state networks shapes cognitive task activations

    PubMed Central

    Cole, Michael W.; Ito, Takuya; Bassett, Danielle S.; Schultz, Douglas H.

    2016-01-01

    Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allows prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations. PMID:27723746

  4. Biomimetic active emulsions capture cell dynamics and direct bio-inspired materials

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen; Amstad, Esther; Segmehl, Jana; Nakamura, Fumihiko; Stossel, Thomas; Pollak, Martin; Weitz, David

    2013-03-01

    The main biopolymers which make up the cellular cytoskeleton and provide cells with their shape are well understood, yet, how they organize into structures and set given cellular behavior remains unclear. We have reconstituted minimal networks of actin, a ubiquitous biopolymer, along with an associated motor protein myosin II to create biomimetic networks which replicate cell structure and actively contract when selectively provided with ATP. We emulsify these networks in 10-100 micron drops, provide a system to investigate strain-mediated protein interactions and network behavior in confined cell-similar volumes. These networks allow us to study strain-mediated protein-specific interactions in an actin network at a precision impossible in vivo. Using this system, we have identified strain-dependent behavior in actin cross linking proteins; mechanotransduction of signaling proteins in Filamin A, and unique catch-bond behavior in Alpha-actinin. This understanding of biopolymer self-organization to set cell mechanics, will help clarify how biology both generates and reacts to force; moreover this system provides a highly controlled platform for studying non-equilibrium materials, and creating microscopic building block for a entirely new class of active materials.

  5. California Health Services/Educational Activities. Consortium Network.

    ERIC Educational Resources Information Center

    White, Charles H.

    Profiles are presented of each of the 10 consortia that make up the California Health Services/Education Activities (HS/EA) network (new relationships between educational facilities where health care manpower is trained in the community settings where they practice). The first part of the booklet is a comparative analysis of (1) Area Health…

  6. Importance of structural makeup of biopolymers for organic contaminant sorption.

    PubMed

    Wang, Xilong; Xing, Baoshan

    2007-05-15

    Sorption of pyrene, phenanthrene, naphthalene, and 1-naphthol by original (lignin, chitin, and cellulose) and coated biopolymers was examined. Organic carbon normalized distribution coefficients (Koc) of all compounds by the original biopolymers followed the order lignin > chitin > cellulose, in line with the order of their hydrophobicity. Hydrophobicity of structurally similar organic compounds is the main factor determining their ability to occupy sorption sites in biopolymers. Specific interactions (e.g., H-bonding) between 1-naphthol and chitin or cellulose increased its ability to occupy sorption sites. Lignin coating resulted in an increased Koc for phenanthrene (13.6 times for chitin and 6.9 times for cellulose) and 1-naphthol (6.0 times for chitin and 3.7 times for cellulose) relative to the acetone-treated chitin and cellulose. Also, these coated biopolymers had increased isotherm nonlinearity, due to the newly formed condensed domains. An increase in phenanthrene and 1-naphthol sorption by lignin-coated biopolymers as compared to chitin and cellulose was contributed by the newly created high-energy sites in condensed domains and coated lignin. Results of this study highlight the importance of the structural makeup of biopolymers in controlling the sorption of hydrophobic organic compounds.

  7. Photonic network R and D activities in Japan

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-ichi; Onaka, Hiroshi; Namiki, Shu; Aovama, Tomonori

    2005-11-01

    R and D activities on photonic networks in Japan are presented. First, milestones in current, ongoing R and D programs supported by Japanese government agencies are introduced, including long-distance and WDM fiber transmission, wavelength routing, optical burst switching, and control plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP over WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R and D programs for photonic networks over the next five years until 2010, by focusing on the report which has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R and D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis through the customer's initiative, to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  8. RelEx: Visualization for Actively Changing Overlay Network Specifications.

    PubMed

    Sedlmair, M; Frank, A; Munzner, T; Butz, A

    2012-12-01

    We present a network visualization design study focused on supporting automotive engineers who need to specify and optimize traffic patterns for in-car communication networks. The task and data abstractions that we derived support actively making changes to an overlay network, where logical communication specifications must be mapped to an underlying physical network. These abstractions are very different from the dominant use case in visual network analysis, namely identifying clusters and central nodes, that stems from the domain of social network analysis. Our visualization tool RelEx was created and iteratively refined through a full user-centered design process that included a full problem characterization phase before tool design began, paper prototyping, iterative refinement in close collaboration with expert users for formative evaluation, deployment in the field with real analysts using their own data, usability testing with non-expert users, and summative evaluation at the end of the deployment. In the summative post-deployment study, which entailed domain experts using the tool over several weeks in their daily practice, we documented many examples where the use of RelEx simplified or sped up their work compared to previous practices.

  9. Self-regulated homoclinic chaos in neural networks activity

    NASA Astrophysics Data System (ADS)

    Volman, Vladislav; Baruchi, Itay; Ben-Jacob, Eshel

    2004-12-01

    We compare the recorded activity of cultured neuronal networks with hybridized model simulations, in which the model neurons are driven by the recorded activity of special neurons. The latter, named `spiker' neurons, that exhibit fast firing with homoclinic chaos like characteristics, are expected to play an important role in the networks' self regulation. The cultured networks are grown from dissociated mixtures of cortical neurons and glia cells. Despite the artificial manner of their construction, the spontaneous activity of these networks exhibits rich dynamical behavior, marked by the formation of temporal sequences of synchronized bursting events (SBEs), and additional features which seemingly reflect the action of underlying regulating mechanism, rather than arbitrary causes and effects. Our model neurons are composed of soma described by the two Morris-Lecar dynamical variables (voltage and fraction of open potassium channels), with dynamical synapses described by the Tsodyks-Markram three variables dynamics. To study the recorded and simulated activities we evaluated the inter-neuron correlation matrices, and analyzed them utilizing the functional holography approach: the correlations are re-normalized by the correlation distances — Euclidean distances between the matrix columns. Then, we project the N-dimensional (for N channels) space spanned by the matrix of re-normalized correlations, or correlation affinities, onto a corresponding 3-D causal manifold (3-D Cartesian space constructed by the 3 leading principal vectors of the N-dimensional space. The neurons are located by their principal eigenvalues and linked by their original (not-normalized) correlations. This reveals hidden causal motifs: the neuron locations and their links form simple structures. Similar causal motifs are exhibited by the model simulations when feeded by the recorded activity of the spiker neurons. We illustrate that the homoclinic chaotic behavior of the spiker neurons can be

  10. Biopolymers production with carbon source from the wastes of a beer brewery industry

    NASA Astrophysics Data System (ADS)

    Wong, Phoeby Ai Ling

    The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)

  11. Rescaling metal molybdate nanostructures with biopolymer for energy storage having high capacitance with robust cycle stability.

    PubMed

    Minakshi, Manickam; Barmi, Maryam J; Jones, Robert T

    2017-03-14

    Hybrid capacitors can replace or complement batteries, while storing energy through ion adsorption and fast surface redox reactions. There is a growing demand in developing nanostructured materials as electrodes for hybrid systems that can enhance the specific capacitance by ion desolvation in the nanopores. Here, we demonstrate that rescaling the pore diameter with the aid of biopolymer at an optimal level during the synthesis of metal molybdate leads to high capacitance 124 F g(-1) giving robust capacitance retention of 80% over 2000 cycles for a constructed device (activated carbon vs. metal molybdate). The presence of biopolymer (l-glutamic acid) in the metal molybdate acts as a complexing agent of the metal ion while enhancing the mass transport and hence it's improved electrochemical performance. However, XPS and other elemental analyses illustrated no evidence for N doping but traces of other surface functional groups (i.e. C and O) could be present on the molybdate surface. The biopolymer synthetic approach has the advantage of yielding nanostructured material with a relatively narrow pore size distribution controlled by l-glutamic acid. This study will provide a generic route to rescale other metal molybdate, phosphate or oxide counterparts and be an added value to the database.

  12. Ion- and pH-dependent volume transitions in biopolymer gels

    NASA Astrophysics Data System (ADS)

    Horkay, Ference

    2008-03-01

    Swelling and collapse of polyelectrolyte gels are the result of a balance of different interactions that control the osmotic pressure and network elasticity. In biopolymer systems ions often play a central role in determining the phase behavior. For example, DNA condensation induced by multivalent cations is crucial for its packaging. It is known that biological processes, such as nerve excitation and muscle contraction, are mediated by divalent cations. In general, relatively little is known about the interaction between multivalent ions and charged biopolymers due to the lack of an appropriate theory and the absence of a sufficiently broad base of experimental data. Recent experimental observations made by anomalous small-angle X-ray scattering indicate that the spatial extent of the counterion cloud is significantly reduced in the case of divalent ions relative to the monovalent ions. An understanding of ion induced swelling/collapse transition in polyelectrolyte gels may shed light on the mechanism of important physiological processes. We compare the effects of pH, ionic strength and counterion valence on the structure and osmotic properties of biopolymer gels. Systematic studies made on DNA gels indicate that monovalent salts gradually reduce gel swelling but do not cause discontinuous volume transition. Introducing calcium ions into the gels produces a reversible volume change. Similarly, decreasing the pH in the surrounding environment leads to shrinkage of the swollen networks. Scattering observations reveal that cations mediate the equilibrium properties by modifying the local environment and the organization of the polymer chains. Osmotic pressure measurements detect significant differences between the effects of pH and ion valence.

  13. Multichannel activity propagation across an engineered axon network

    NASA Astrophysics Data System (ADS)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers

  14. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  15. Terrestrial plant biopolymers in marine sediments

    NASA Astrophysics Data System (ADS)

    Gough, Mark A.; Fauzi, R.; Mantoura, C.; Preston, Martin

    1993-03-01

    The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterised terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial land plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary lignin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations ( ca. 0.5 μgg-1 in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. To account for these observations, preferential offshore transport of finer and more degraded material is proposed. Nonspecific oxidation products dominated the gas chromatograms of NEA sediments, which appear to originate from marine sources of sedimentary organic carbon

  16. Multiview fusion for activity recognition using deep neural networks

    NASA Astrophysics Data System (ADS)

    Kavi, Rahul; Kulathumani, Vinod; Rohit, Fnu; Kecojevic, Vlad

    2016-07-01

    Convolutional neural networks (ConvNets) coupled with long short term memory (LSTM) networks have been recently shown to be effective for video classification as they combine the automatic feature extraction capabilities of a neural network with additional memory in the temporal domain. This paper shows how multiview fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The system is first evaluated in the context of a driver activity recognition system using data collected in a multicamera driving simulator. These results show significant improvement in accuracy with multiview fusion and also show that deep learning performs better than a traditional approach using spatiotemporal features even without requiring any background subtraction. The system is also validated on another publicly available multiview action recognition dataset that has 12 action classes and 8 camera views.

  17. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  18. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity.

    PubMed

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-05-23

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.

  19. 3D actin network centerline extraction with multiple active contours.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-02-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels.

  20. Optimal stimulus scheduling for active estimation of evoked brain networks

    NASA Astrophysics Data System (ADS)

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  1. Scalable wavelet-based active network detection of stepping stones

    NASA Astrophysics Data System (ADS)

    Gilbert, Joseph I.; Robinson, David J.; Butts, Jonathan W.; Lacey, Timothy H.

    2012-06-01

    Network intrusions leverage vulnerable hosts as stepping stones to penetrate deeper into a network and mask malicious actions from detection. Identifying stepping stones presents a significant challenge because network sessions appear as legitimate traffic. This research focuses on a novel active watermark technique using discrete wavelet transformations to mark and detect interactive network sessions. This technique is scalable, resilient to network noise, and difficult for attackers to discern that it is in use. Previously captured timestamps from the CAIDA 2009 dataset are sent using live stepping stones in the Amazon Elastic Compute Cloud service. The client system sends watermarked and unmarked packets from California to Virginia using stepping stones in Tokyo, Ireland and Oregon. Five trials are conducted in which the system sends simultaneous watermarked samples and unmarked samples to each target. The live experiment results demonstrate approximately 5% False Positive and 5% False Negative detection rates. Additionally, watermark extraction rates of approximately 92% are identified for a single stepping stone. The live experiment results demonstrate the effectiveness of discerning watermark traffic as applied to identifying stepping stones.

  2. Fabrication, functionalization, and application of electrospun biopolymer nanofibers.

    PubMed

    Kriegel, Christina; Arecchi, Alessandra; Arrechi, Alessandra; Kit, Kevin; McClements, D J; Weiss, Jochen

    2008-09-01

    The use of novel nanostructured materials has attracted considerable interest in the food industry for their utilization as highly functional ingredients, high-performance packaging materials, processing aids, and food quality and safety sensors. Most previous application interest has focused on the development of nanoparticles. However, more recently, the ability to produce non-woven mats composed of nanofibers that can be used in food applications is beginning to be investigated. Electrospinning is a novel fabrication technique that can be used to produce fibers with diameters below 100 nm from (bio-) polymer solutions. These nanofibers have been shown to possess unique properties that distinguish them from non-woven fibers produced by other methods, e.g., melt-blowing. This is because first the process involved results in a high orientation of polymers within the fibers that leads to mechanically superior properties, e.g., increased tensile strengths. Second, during the spinning of the fibers from polymer solutions, the solvent is rapidly evaporated allowing the production of fibers composed of polymer blends that would typically phase separate if spun with other processes. Third, the small dimensions of the fibers lead to very high specific surface areas. Because of this the fiber properties may be greatly influenced by surface properties giving rise to fiber functionalities not found in fibers of larger sizes. For food applications, the fibers may find uses as ingredients if they are composed solely of edible polymers and GRAS ingredients, (e.g., fibers could contain functional ingredients such as nutraceuticals, antioxidants, antimicrobials, and flavors), as active packaging materials or as processing aids (e.g., catalytic reactors, membranes, filters (Lala et al., 2007), and sensors (Manesh et al., 2007; Ren et al., 2006; Sawicka et al., 2005). This review is therefore intended to introduce interested food and agricultural scientists to the concept of nano

  3. CRAFFT: An Activity Prediction Model based on Bayesian Networks.

    PubMed

    Nazerfard, Ehsan; Cook, Diane J

    2015-04-01

    Recent advances in the areas of pervasive computing, data mining, and machine learning offer unique opportunities to provide health monitoring and assistance for individuals facing difficulties to live independently in their homes. Several components have to work together to provide health monitoring for smart home residents including, but not limited to, activity recognition, activity discovery, activity prediction, and prompting system. Compared to the significant research done to discover and recognize activities, less attention has been given to predict the future activities that the resident is likely to perform. Activity prediction components can play a major role in design of a smart home. For instance, by taking advantage of an activity prediction module, a smart home can learn context-aware rules to prompt individuals to initiate important activities. In this paper, we propose an activity prediction model using Bayesian networks together with a novel two-step inference process to predict both the next activity features and the next activity label. We also propose an approach to predict the start time of the next activity which is based on modeling the relative start time of the predicted activity using the continuous normal distribution and outlier detection. To validate our proposed models, we used real data collected from physical smart environments.

  4. Formatting and ligating biopolymers using adjustable nanoconfinement

    NASA Astrophysics Data System (ADS)

    Berard, Daniel J.; Shayegan, Marjan; Michaud, Francois; Henkin, Gil; Scott, Shane; Leslie, Sabrina

    2016-07-01

    Sensitive visualization and conformational control of long, delicate biopolymers present critical challenges to emerging biotechnologies and biophysical studies. Next-generation nanofluidic manipulation platforms strive to maintain the structural integrity of genomic DNA prior to analysis but can face challenges in device clogging, molecular breakage, and single-label detection. We address these challenges by integrating the Convex Lens-induced Confinement (CLiC) technique with a suite of nanotopographies embedded within thin-glass nanofluidic chambers. We gently load DNA polymers into open-face nanogrooves in linear, concentric circular, and ring array formats and perform imaging with single-fluorophore sensitivity. We use ring-shaped nanogrooves to access and visualize confinement-enhanced self-ligation of long DNA polymers. We use concentric circular nanogrooves to enable hour-long observations of polymers at constant confinement in a geometry which eliminates the confinement gradient which causes drift and can alter molecular conformations and interactions. Taken together, this work opens doors to myriad biophysical studies and biotechnologies which operate on the nanoscale.

  5. Dynamic Elasticity Model of Resilin Biopolymers

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Duki, Solomon

    2013-03-01

    Resilin proteins are `super elastic rubbers' in the flight and jumping systems of most insects, and can extend and retract millions of times. Natural resilin exhibits high resilience (> 95%) under high-frequency conditions, and could be stretched to over 300% of its original length with a low elastic modulus of 0.1-3 MPa. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. We report on the dynamic structure transitions and functions of full length resilin from fruit fly (D. melanogaster CG15920) and its different functional domains. A dynamic computational model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for resilins, as well as other elastomeric proteins. A strong beta-turn transition was experimentally identified in the full length resilin and its non-elastic domains (Exon III). Changes in periodic long-range order were demonstrated during this transition, induced either by thermal or mechanical inputs, to confirm the universality of proposed mechanism. Further, this model offers new options for designing protein-based biopolymers with tunable material applications.

  6. Proton Conductivity Studies on Biopolymer Electrolytes

    SciTech Connect

    Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.

    2010-07-07

    Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH{sub 4}NO{sub 3}) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R{sub b}) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10{sup -4} Scm{sup -1} for the sample with composition ratio of MC(50): NH{sub 4}NO{sub 3}(50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH{sub 4}NO{sub 3}-PC was enhanced up to 4.91x10{sup -3} Scm{sup -1} while for the MC-NH{sub 4}NO{sub 3}-EC system, the highest conductivity was 1.74x10{sup -2} Scm{sup -1}. The addition of more plasticizer however decreases in mechanical stability of the membranes.

  7. Customizable Biopolymers for Heavy Metal Remediation

    NASA Astrophysics Data System (ADS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen, Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen*, Wilfred

    2005-10-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create `artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  8. Rotational molding of bio-polymers

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Forleo, Stefania

    2014-05-01

    This paper is aimed to study the suitability of bio-polymers, including poly-lactic acid (PLLA) and Mater-Bi, for the production of hollow components by rotational molding. In order to reduce the brittleness of PLLA, the material was mixed with two different plasticizers, bis-ethyl-hexyl-phthalate (DEHP) and poly-ethylene-glycol (PEG). The materials were characterized in terms of sinterability. To this purpose, thermomechanical (TMA) analysis was performed at different heating rates, in order to identify the endset temperatures of densification and the onset temperatures of degradation. Results obtained indicated that the materials are characterized by a very fast sintering process, occurring just above the melting temperature, and an adequately high onset of degradation. The difference between the onset of degradation and the endset of sintering, defined as the processing window of the polymer, is sufficiently wide, indicating that the polymers can be efficiently processed by rotational molding. Therefore, a laboratory scale apparatus was used for the production of PLLA and Mater-Bi prototypes. The materials were processed using very similar conditions to those used for LLDPE. The production of void-free samples of uniform wall thickness was considered as an indication of the potentiality of the process for the production of biodegradable containers.

  9. Generalized activity equations for spiking neural network dynamics

    PubMed Central

    Buice, Michael A.; Chow, Carson C.

    2013-01-01

    Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales—the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances. PMID:24298252

  10. Dopamine depresses cholinergic oscillatory network activity in rat hippocampus.

    PubMed

    Weiss, Torsten; Veh, Rüdiger W; Heinemann, Uwe

    2003-11-01

    The dopaminergic neuronal system is implicated in cognitive processes in a variety of brain regions including the mesolimbic system. We have investigated whether dopamine also affects synchronized network activity in the hippocampus, which has been ascribed to play a pivotal role in memory formation. Gamma frequency (20-80 Hz) oscillations were induced by the cholinergic agonist carbachol. Oscillatory activity was examined in area CA3 of Wistar rat hippocampal slices, employing field potential and intracellular recordings. Application of carbachol initiated synchronized population activity in the gamma band at 40 Hz. Induced gamma activity persisted over hours and required GABAA receptors. Dopamine reversibly decreased the integrated gamma band power of the carbachol rhythm by 62%, while its frequency was not changed. By contrast, individual pyramidal cells recorded during carbachol-induced field gamma activity exhibited theta frequency (5-15 Hz) membrane potential oscillations that were not altered by dopamine. The dopamine effect on the field gamma activity was mimicked by the D1 receptor agonist SKF-383393 and partially antagonized by the D1 antagonist SCH-23390. Conversely, the D2 receptor agonist quinpirole failed to depress the oscillations, and the D2 antagonist sulpiride did not prevent the suppressive dopamine effect. The data indicate that dopamine strongly depresses cholinergic gamma oscillations in area CA3 of rat hippocampus by activation of D1-like dopamine receptors and that this effect is most likely mediated via impairment of interneurons involved in generation and maintenance of the carbachol-induced network rhythm.

  11. The effect of the neural activity on topological properties of growing neural networks.

    PubMed

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  12. Electromechanical actuation with controllable motion based on a single-walled carbon nanotube and natural biopolymer composite.

    PubMed

    Hu, Ying; Chen, Wei; Lu, Luhua; Liu, Jinghai; Chang, Chunrui

    2010-06-22

    This paper reports novel electromechanical behavior for a natural biopolymer film due to the incorporation of a conductive carbon nanotube network. Through simple solution blending and casting, high weight fraction single-walled carbon nanotube-chitosan composite films were fabricated and exhibited electromechanical actuation properties with motion controlled by low alternating voltage stimuli in atmospheric conditions. Of particular interest and importance is that the displacement output imitated perfectly the electrical input signal in terms of frequency (<10 Hz) and waveform. Operational reliability was confirmed by stable vibration testing in air for more than 3000 cycles. Proposed electrothermal mechanism considering the alternating current-induced periodic thermal expansion and contraction of the composite film was discussed. The unique actuation performance of the carbon nanotube-biopolymer composite, coupled with ease of fabrication, low driven voltage, tunable vibration, reliable operation, and good biocompatibility, shows great possibility for implementation of dry actuators in artificial muscle and microsystems for biomimetic applications.

  13. Structural damage detection using active members and neural networks

    NASA Astrophysics Data System (ADS)

    Manning, R. A.

    1994-06-01

    The detection of damage in structures is a topic which has considerable interest in many fields. In the past many methods for detecting damage in structures has relied on finite element model refinement methods. This note presents a structural damage methodology in which only active member transfer function data are used in conjunction with an artificial neural network to detect damage in structures. Specifically, the method relies on training a neural network using active member transfer function pole/zero information to classify damaged structure measurements and to predict the degree of damage in the structure. The method differs from many of the past damage detection algorithms in that no attempt is made to update a finite element model or to match measured data with new finite element analyses of the structure in a damaged state.

  14. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Snadra L. Fox; X. Xie; K. D. Schaller; E. P. Robertson; G. A. Bala

    2003-10-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones. Current technology relies on the use of cross-linking agents to initiate gelation. The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have produced a reactive alkaline-soluble biopolymer from Agrobacterium sp. ATCC no. 31749 that gels upon decreasing the pH of the polymeric solution. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability. Permeability modification was investigated by injecting solubilized biopolymer into Berea sandstone cores and defining the contribution of pH, salt, temperature, and Schuricht crude oil on biopolymer gelation. The biopolymer was soluble in KOH at a pH greater than 11.4 and gelled when the pH dropped below 10.8. The Berea sandstone core buffered the biopolymer solution, decreasing the pH sufficiently to form a gel, which subsequently decreased the permeability. The effluent pH of the control cores injected with 0.01 {und M} KOH (pH 12.0) and 0.10{und M} KOH (pH 13.0) decreased to 10.6 and 12.7, respectively. The permeability of the sandstone core injected with biopolymer was decreased to greater than 95% of the original permeability at 25 C in the presence of 2% NaCl, and Schuricht crude oil; however, the permeability increased when the temperature of the core was increased to 60 C. Residual resistance factors as high as 792 were seen in Berea cores treated with biopolymer. The buffering capacity of sandstone has been demonstrated to reduce the pH of a biopolymer solution sufficiently to cause the polymer to form a stable in-situ gel. This finding could potentially lead to alternate technology for permeability modification, thus

  15. An Assessment of Overt Malicious Activity Manifest in Residential Networks

    DTIC Science & Technology

    2011-07-07

    also monitor for network-level signatures aimed at detecting three malware families, Zlob, Conficker, and Zeus . To take advantage of the long...compromise by flagging activity related to known malware families. To do so, we focused on Zlob, Conficker, and Zeus . The Zlob malware family [24] changes... Zeus Domainblocklist [25] to identify local systems infected with Zeus . Since the list does not only contain seemingly random domain names but also

  16. Local Jurisdictions and Active Shooters: Building Networks, Building Capacities

    DTIC Science & Technology

    2010-12-01

    AND ACTIVE SHOOTERS: BUILDING NETWORKS, BUILDING CAPACITIES by Tracy L. Frazzano December 2010 Thesis Advisors: Sam Clovis , Jr...SCHOOL December 2010 Author: Tracy L. Frazzano Approved by: Sam H. Clovis ., Jr. Thesis Advisor Lauren Fernandez Co-Advisor...thesis in and of itself, so I will try and limit it as best I can. To my advisors, Lauren Fernandez and Samuel Clovis , I would like to thank you for

  17. Ultrananocrystalline diamond thin films functionalized with therapeutically active collagen networks.

    SciTech Connect

    Huang, H.; Chen, M.; Bruno, P.; Lam, R.; Robinson, E.; Gruen, D.; Ho, D.; Materials Science Division; Northwestern Univ.

    2009-01-01

    The fabrication of biologically amenable interfaces in medicine bridges translational technologies with their surrounding biological environment. Functionalized nanomaterials catalyze this coalescence through the creation of biomimetic and active substrates upon which a spectrum of therapeutic elements can be delivered to adherent cells to address biomolecular processes in cancer, inflammation, etc. Here, we demonstrate the robust functionalization of ultrananocrystalline diamond (UNCD) with type I collagen and dexamethasone (Dex), an anti-inflammatory drug, to fabricate a hybrid therapeutically active substrate for localized drug delivery. UNCD oxidation coupled with a pH-mediated collagen adsorption process generated a comprehensive interface between the two materials, and subsequent Dex integration, activity, and elution were confirmed through inflammatory gene expression assays. These studies confer a translational relevance to the biofunctionalized UNCD in its role as an active therapeutic network for potent regulation of cellular activity toward applications in nanomedicine.

  18. Energy-aware activity classification using wearable sensor networks

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Montoye, Alexander; Moore, Rebecca; Pfeiffer, Karin; Biswas, Subir

    2013-05-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities for the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Impacts of varying number of sensors in terms of activity classification accuracy are also evaluated. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors.

  19. Energy-aware Activity Classification using Wearable Sensor Networks

    PubMed Central

    Dong, Bo; Montoye, Alexander; Moore, Rebecca; Pfeiffer, Karin; Biswas, Subir

    2014-01-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities for the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Impacts of varying number of sensors in terms of activity classification accuracy are also evaluated. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors. PMID:25075266

  20. Biopolymers as transdermal drug delivery systems in dermatology therapy.

    PubMed

    Basavaraj, K H; Johnsy, George; Navya, M A; Rashmi, R; Siddaramaiah

    2010-01-01

    The skin is considered a complex organ for drug delivery because of its structure. Drug delivery systems are designed for the controlled release of drugs through the skin into the systemic circulation, maintaining consistent efficacy and reducing the dose of the drugs and their related side effects. Transdermal drug delivery represents one of the most rapidly advancing areas of novel drug delivery. The excellent impervious nature of the skin is the greatest challenge that must be overcome for successful drug delivery. Today, polymers have been proven to be successful for long-term drug delivery applications as no single polymer can satisfy all of the requirements. Biopolymers in the field of dermal application are rare and the mechanisms that affect skin absorption are almost unknown. Biopolymers are widely used as drug delivery systems, but as such the use of biopolymers as drug delivery systems in dermatologic therapy is still in progress. Commonly used biopolymers include hydrocolloids, alginates, hydrogels, polyurethane, collagen, poly(lactic-co-glycolic acid), chitosan, proteins and peptides, pectin, siRNAs, and hyaluronic acid. These new and exciting methods for drug delivery are already increasing the number and quality of dermal and transdermal therapies. This article reviews current research on biopolymers and focuses on their potential as drug carriers, particularly in relation to the dermatologic aspects of their use.

  1. Quantitative analysis of biopolymers by matrix-assisted laser desorption

    SciTech Connect

    Tang, K.; Allman, S.L.; Jones, R.B.; Chen, C.H. )

    1993-08-01

    During the past few years, major efforts have been made to use mass spectrometry to measure biopolymers because of the great potential benefit to biological and medical research. Although the theoretical details of laser desorption and ionization mechanisms of MALDI are not yet fully understood, several models have been presented to explain the production of large biopolymer ions. In brief, it is very difficult to obtain reliable measurements of the absolute quantity of analytes by MALDI. If MALDI is going to become a routine analytical tool, it is obvious that quantitative measurement capability must be pursued. Oligonucleotides and protein samples used in this work were purchased from commercial sources. Nicotinic acid was used as matrix for both types of biopolymers. From this experiment, it is seen that it is difficult to obtain absolute quantitative measurements of biopolymers using MALDI. However, internal calibration with molecules having similar chemical properties can be used to resolve these difficulties. Chemical reactions between biopolymers must be avoided to prevent the destruction of the analyte materials. 10 refs., 8 figs.

  2. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  3. Imperfection sensitivity of pressured buckling of biopolymer spherical shells.

    PubMed

    Zhang, Lei; Ru, C Q

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  4. Surface enhaced raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A biopolymer encapsulated with silver nanoparticles was prepared using polyvinyl alcohol (PVA) solution, silver nitrate, and trisodium citrate. Biopolymer based nanosubstrates were deposited on a mica sheet for SERS. Fresh cultures of Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus a...

  5. Network feedback regulates motor output across a range of modulatory neuron activity.

    PubMed

    Spencer, Robert M; Blitz, Dawn M

    2016-06-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation.

  6. Interaction of a food-grade cationic surfactant (lauric arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan).

    PubMed

    Bonnaud, Marieange; Weiss, Jochen; McClements, David J

    2010-09-08

    Lauric arginate (LAE) is a food-grade cationic surfactant that is a highly potent antimicrobial active against a wide range of food pathogens and spoilage organisms. In compositionally complex environments, the antimicrobial activity of cationic LAE is likely to be impacted by its interactions with other charged components. The purpose of this study was to characterize the interactions between cationic LAE and various food grade biopolymers with different charge characteristics: anionic (pectin, alginate, carrageenan, xanthan), neutral (dextran), and cationic (chitosan). Isothermal titration calorimetry (ITC) and turbidity measurements were used to characterize surfactant-biopolymer interactions and the solubility of any aggregates formed. ITC and turbidity measurements suggested that no complex formation occurred between the cationic LAE and the cationic or neutral biopolymers, although the critical micelle concentration (cmc) of the surfactant was changed because of excluded volume effects. On the other hand, ITC measurements indicated a strong binding interaction between cationic LAE and anionic biopolymers. The amount of surfactant bound and the solubility of the aggregates formed depended strongly on biopolymer type. The results of this study have important implications for the application of LAE in compositionally complex systems.

  7. A study of epidemic spreading on activity-driven networks

    NASA Astrophysics Data System (ADS)

    Zou, Yijiang; Deng, Weibing; Li, Wei; Cai, Xu

    2016-03-01

    The epidemic spreading was explored on activity-driven networks (ADNs), accounting for the study of dynamics both on and of the ADN. By employing the susceptible-infected-susceptible (SIS) model, two aspects were considered: (1) the infection rate of susceptible agent (depending on the number of its infected neighbors) evolves due to the temporal structure of ADN, rather than being a constant number; (2) the susceptible and infected agents generate unequal links while being activated, namely, the susceptible agent gets few contacts with others in order to protect itself. Results show that, in both cases, the larger epidemic threshold and smaller outbreak size were obtained.

  8. Multivariate neural network operators with sigmoidal activation functions.

    PubMed

    Costarelli, Danilo; Spigler, Renato

    2013-12-01

    In this paper, we study pointwise and uniform convergence, as well as order of approximation, of a family of linear positive multivariate neural network (NN) operators with sigmoidal activation functions. The order of approximation is studied for functions belonging to suitable Lipschitz classes and using a moment-type approach. The special cases of NN operators, activated by logistic, hyperbolic tangent, and ramp sigmoidal functions are considered. Multivariate NNs approximation finds applications, typically, in neurocomputing processes. Our approach to NN operators allows us to extend previous convergence results and, in some cases, to improve the order of approximation. The case of multivariate quasi-interpolation operators constructed with sigmoidal functions is also considered.

  9. Using Active Networking to Detect and Troubleshoot Issues in Tactical Data Networks

    DTIC Science & Technology

    2014-06-01

    MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY (COMMAND, CONTROL, AND COMMUNICATIONS) from the NAVAL POSTGRADUATE SCHOOL June 2014 Author: Kevin McMullen...Style Sheets D3 Data-Driven Documents DOM Document Object Model EKMS Electronic Key Management System FDDI Fiber Distributed Data Interface FIPS Federal...Enduring Freedom OSI open systems interconnection PLAN Programming Language for Active Networks PPP Point-to-Point Protocol RCT regimental combat

  10. Tera-node Network Technology (TASK 4) Network Infrastructure Activities (NIA) final report

    SciTech Connect

    Postel, John; Bannister, Joe

    2000-03-15

    The TNT project developed software technologies in scalable personal telecommunications (SPT), Reservation Protocol 2 (RSVP2), Scalable Computing Infrastructure (SCOPE), and Network Infrastructure Activities (NIA). SPT = developed many innovative protocols to support the use of videoconferencing applications on the Internet. RSVP2 = developed a new reference model and further standardization of RSVP. SCOPE = developed dynamic resource discovery techniques and distributed directory services in support of resource allocation for large distributed systems and computations. NIA = provided policy, operational, and support to the transitioning Internet.

  11. A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network.

    PubMed

    Wang, Zhenhua; Tian, Changhai; Dhamala, Mukesh; Liu, Zonghua

    2017-04-03

    We here study explosive synchronization transitions and network activity propagation in networks of coupled neurons to provide a new understanding of the relationship between network topology and explosive dynamical transitions as in epileptic seizures and their propagations in the brain. We model local network motifs and configurations of coupled neurons and analyze the activity propagations between a group of active neurons to their inactive neuron neighbors in a variety of network configurations. We find that neuronal activity propagation is limited to local regions when network is highly clustered with modular structures as in the normal brain networks. When the network cluster structure is slightly changed, the activity propagates to the entire network, which is reminiscent of epileptic seizure propagation in the brain. Finally, we analyze intracranial electroencephalography (IEEG) recordings of a seizure episode from a epilepsy patient and uncover that explosive synchronization-like transition occurs around the clinically defined onset of seizure. These findings may provide a possible mechanism for the recurrence of epileptic seizures, which are known to be the results of aberrant neuronal network structure and/or function in the brain.

  12. PersonA: Persuasive social network for physical Activity.

    PubMed

    Ayubi, Soleh U; Parmanto, Bambang

    2012-01-01

    Advances in physical activity (PA) monitoring devices provide ample opportunities for innovations in the way the information produced by these devices is used to encourage people to have more active lifestyles. One such innovation is expanding the current use of the information from self-management to social support. We developed a Persuasive social network for physical Activity (PersonA) that combines automatic input of physical activity data, a smartphone, and a social networking system (SNS). This paper describes the motivation for and overarching design of the PersonA and its functional and non-functional features. PersonA is designed to intelligently and automatically receive raw PA data from the sensors in the smartphone, calculate the data into meaningful PA information, store the information on a secure server, and show the information to the users as persuasive and real-time feedbacks or publish the information to the SNS to generate social support. The implementation of self-monitoring, social support, and persuasive concepts using currently available technologies has the potential for promoting healthy lifestyle, greater community participation, and higher quality of life. We also expect that PersonA will enable health professionals to collect in situ data related to physical activity. The platform is currently being used and tested to improve PA level of three groups of users in Pittsburgh, PA, USA.

  13. Taurine activates GABAergic networks in the neocortex of immature mice

    PubMed Central

    Sava, Bogdan A.; Chen, Rongqing; Sun, Haiyan; Luhmann, Heiko J.; Kilb, Werner

    2014-01-01

    Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-green fluorescent protein (GFP) transgenic mice (postnatal days 2–4). In 46% of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 μM significantly enhanced the frequency of postsynaptic currents (PSCs) by 744.3 ± 93.8% (n = 120 cells). This taurine-induced increase of PSC frequency was abolished by 0.2 μM tetrodotoxin (TTX), 1 μM strychnine or 3 μM gabazine, but was unaffected by the glutamatergic antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (±) R(-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP), suggesting that taurine specifically activates GABAergic network activity projecting to pyramidal neurons. Cell-attached recordings revealed that taurine enhanced the frequency of action potentials (APs) in pyramidal neurons, indicating an excitatory action of the GABAergic PSCs. In order to identify the presynaptic targets of taurine we demonstrate that bath application of taurine induced in GAD67-GFP labeled interneurons an inward current that is mainly mediated by glycine receptors and can generate APs in these cells. We conclude from these results that taurine can enhance network excitability in the immature neocortex by selectively activating GABAergic interneurons via interactions with glycine receptors. PMID:24550782

  14. Synthetic and Biopolymer Gels - Similarities and Difference.

    NASA Astrophysics Data System (ADS)

    Horkay, Ferenc

    2006-03-01

    Ion exchange plays a central role in a variety of physiological processes, such as nerve excitation, muscle contraction and cell locomotion. Hydrogels can be used as model systems for identifying fundamental chemical and physical interactions that govern structure formation, phase transition, etc. in biopolymer systems. Polyelectrolyte gels are particularly well-suited to study ion-polymer interactions because their structure and physical-chemical properties (charge density, crosslink density, etc) can be carefully controlled. They are sensitive to different external stimuli such as temperature, ionic composition and pH. Surprisingly few investigations have been made on polyelectrolyte gels in salt solutions containing both monovalent and multivalent cations. We have developed an experimental approach that combines small angle neutron scattering and osmotic swelling pressure measurements. The osmotic pressure exerted on a macroscopic scale is a consequence of changes occurring at a molecular level. The intensity of the neutron scattering signal, which provides structural information as a function of spatial resolution, is directly related to the osmotic pressure. We have found a striking similarity in the scattering and osmotic behavior of polyacrylic acid gels and DNA gels swollen in nearly physiological salt solutions. Addition of calcium ions to both systems causes a sudden volume change. This volume transition, which occurs when the majority of the sodium counterions are replaced by calcium ions, is reversible. Such reversibility implies that the calcium ions are not strongly bound by the polyanion, but are free to move along the polymer chain, which allows these ions to form temporary bridges between negative charges on adjacent chains. Mechanical measurements reveal that the elastic modulus is practically unchanged in the calcium-containing gels, i.e., ion bridging is qualitatively different from covalent crosslinks.

  15. Biopolymers for sample collection, protection, and preservation.

    PubMed

    Sorokulova, Iryna; Olsen, Eric; Vodyanoy, Vitaly

    2015-07-01

    One of the principal challenges in the collection of biological samples from air, water, and soil matrices is that the target agents are not stable enough to be transferred from the collection point to the laboratory of choice without experiencing significant degradation and loss of viability. At present, there is no method to transport biological samples over considerable distances safely, efficiently, and cost-effectively without the use of ice or refrigeration. Current techniques of protection and preservation of biological materials have serious drawbacks. Many known techniques of preservation cause structural damages, so that biological materials lose their structural integrity and viability. We review applications of a novel bacterial preservation process, which is nontoxic and water soluble and allows for the storage of samples without refrigeration. The method is capable of protecting the biological sample from the effects of environment for extended periods of time and then allows for the easy release of these collected biological materials from the protective medium without structural or DNA damage. Strategies for sample collection, preservation, and shipment of bacterial, viral samples are described. The water-soluble polymer is used to immobilize the biological material by replacing the water molecules within the sample with molecules of the biopolymer. The cured polymer results in a solid protective film that is stable to many organic solvents, but quickly removed by the application of the water-based solution. The process of immobilization does not require the use of any additives, accelerators, or plastifiers and does not involve high temperature or radiation to promote polymerization.

  16. The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity

    PubMed Central

    Alfonsa, Hannah; Merricks, Edward M.; Codadu, Neela K.; Cunningham, Mark O.; Deisseroth, Karl; Racca, Claudia

    2015-01-01

    Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl−. Brief (1–10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl− level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002). PMID:25995461

  17. Biopolymers and supramolecular polymers as biomaterials for biomedical applications

    PubMed Central

    Freeman, Ronit; Boekhoven, Job; Dickerson, Matthew B.; Naik, Rajesh R.

    2015-01-01

    Protein- and peptide-based structural biopolymers are abundant building blocks of biological systems. Either in their natural forms, such as collagen, silk or fibronectin, or as related synthetic materials they can be used in various technologies. An emerging area is that of biomimetic materials inspired by protein-based biopolymers, which are made up of small molecules rather than macromolecules and can therefore be described as supramolecular polymers. These materials are very useful in biomedical applications because of their ability to imitate the extracellular matrix both in architecture and their capacity to signal cells. This article describes important features of the natural extracellular matrix and highlight how these features are being incorporated into biomaterials composed of biopolymers and supramolecular polymers. We particularly focus on the structures, properties, and functions of collagen, fibronectin, silk, and the supramolecular polymers inspired by them as biomaterials for regenerative medicine. PMID:26989295

  18. Optically controlled multiple switching operations of DNA biopolymer devices

    SciTech Connect

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  19. Conducting and non-conducting biopolymer composites produced by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this report, we introduce two types of processes for the production of biopolymer composites: one is fabricated by bonding biopolymers with corn protein or wheat protein and the other by bonding starch with a synthetic polymer. These two types of biopolymer composites make use of the strong bon...

  20. Application of neural networks to seismic active control

    SciTech Connect

    Tang, Yu

    1995-07-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads.

  1. Beyond Statistical Significance: Implications of Network Structure on Neuronal Activity

    PubMed Central

    Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2012-01-01

    It is a common and good practice in experimental sciences to assess the statistical significance of measured outcomes. For this, the probability of obtaining the actual results is estimated under the assumption of an appropriately chosen null-hypothesis. If this probability is smaller than some threshold, the results are deemed statistically significant and the researchers are content in having revealed, within their own experimental domain, a “surprising” anomaly, possibly indicative of a hitherto hidden fragment of the underlying “ground-truth”. What is often neglected, though, is the actual importance of these experimental outcomes for understanding the system under investigation. We illustrate this point by giving practical and intuitive examples from the field of systems neuroscience. Specifically, we use the notion of embeddedness to quantify the impact of a neuron's activity on its downstream neurons in the network. We show that the network response strongly depends on the embeddedness of stimulated neurons and that embeddedness is a key determinant of the importance of neuronal activity on local and downstream processing. We extrapolate these results to other fields in which networks are used as a theoretical framework. PMID:22291581

  2. Innovation diffusion on time-varying activity driven networks

    NASA Astrophysics Data System (ADS)

    Rizzo, Alessandro; Porfiri, Maurizio

    2016-01-01

    Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.

  3. Voluntary control of intracortical oscillations for reconfiguration of network activity

    PubMed Central

    Corlier, Juliana; Valderrama, Mario; Navarrete, Miguel; Lehongre, Katia; Hasboun, Dominique; Adam, Claude; Belaid, Hayat; Clémenceau, Stéphane; Baulac, Michel; Charpier, Stéphane; Navarro, Vincent; Le Van Quyen, Michel

    2016-01-01

    Voluntary control of oscillatory activity represents a key target in the self-regulation of brain function. Using a real-time closed-loop paradigm and simultaneous macro- and micro-electrode recordings, we studied the effects of self-induced intracortical oscillatory activity (4–8 Hz) in seven neurosurgical patients. Subjects learned to robustly and specifically induce oscillations in the target frequency, confirmed by increased oscillatory event density. We have found that the session-to-session variability in performance was explained by the functional long-range decoupling of the target area suggesting a training-induced network reorganization. Downstream effects on more local activities included progressive cross-frequency-coupling with gamma oscillations (30–120 Hz), and the dynamic modulation of neuronal firing rates and spike timing, indicating an improved temporal coordination of local circuits. These findings suggest that effects of voluntary control of intracortical oscillations can be exploited to specifically target plasticity processes to reconfigure network activity, with a particular relevance for memory function or skill acquisition. PMID:27808225

  4. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  5. Nonlinearities of biopolymer gels increase the range of force transmission.

    PubMed

    Xu, Xinpeng; Safran, Samuel A

    2015-09-01

    We present a model of biopolymer gels that includes two types of elastic nonlinearities, stiffening under extension and softening (due to buckling) under compression, to predict the elastic anisotropy induced by both external as well as internal (e.g., due to cell contractility) stresses in biopolymer gels. We show how the stretch-induced anisotropy and the strain-stiffening nonlinearity increase both the amplitude and power-law range of transmission of internal, contractile, cellular forces, and relate this to recent experiments.

  6. Models of the solvent-accessible surface of biopolymers

    SciTech Connect

    Smith, R.E.

    1996-09-01

    Many biopolymers such as proteins, DNA, and RNA have been studied because they have important biomedical roles and may be good targets for therapeutic action in treating diseases. This report describes how plastic models of the solvent-accessible surface of biopolymers were made. Computer files containing sets of triangles were calculated, then used on a stereolithography machine to make the models. Small (2 in.) models were made to test whether the computer calculations were done correctly. Also, files of the type (.stl) required by any ISO 9001 rapid prototyping machine were written onto a CD-ROM for distribution to American companies.

  7. Precision biopolymers from protein precursors for biomedical applications.

    PubMed

    Kuan, Seah Ling; Wu, Yuzhou; Weil, Tanja

    2013-03-12

    The synthesis of biohybrid materials with tailored functional properties represents a topic of emerging interest. Combining proteins as natural, macromolecular building blocks, and synthetic polymers opens access to giant brush-like biopolymers of high structural definition. The properties of these precision polypeptide copolymers can be tailored through various chemical modifications along their polypeptide backbone, which expands the repertoire of known protein-based materials to address biomedical applications. In this article, the synthetic strategies for the design of precision biopolymers from proteins through amino acid specific conjugation reagents are highlighted and the different functionalization strategies, their characterization, and applications are discussed.

  8. Default-mode-like network activation in awake rodents.

    PubMed

    Upadhyay, Jaymin; Baker, Scott J; Chandran, Prasant; Miller, Loan; Lee, Younglim; Marek, Gerard J; Sakoglu, Unal; Chin, Chih-Liang; Luo, Feng; Fox, Gerard B; Day, Mark

    2011-01-01

    During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess 'DMN-like' functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = -0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks.

  9. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention.

    PubMed

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)-the default mode network (DMN), the dorsal attention, the right and the left WM network-were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be "online" synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals.

  10. Antituberculosis activity of the molecular libraries screening center network library.

    PubMed

    Maddry, Joseph A; Ananthan, Subramaniam; Goldman, Robert C; Hobrath, Judith V; Kwong, Cecil D; Maddox, Clinton; Rasmussen, Lynn; Reynolds, Robert C; Secrist, John A; Sosa, Melinda I; White, E Lucile; Zhang, Wei

    2009-09-01

    There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against Mycobacterium tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein.

  11. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  12. Active traffic management on road networks: a macroscopic approach.

    PubMed

    Kurzhanskiy, Alex A; Varaiya, Pravin

    2010-10-13

    Active traffic management (ATM) is the ability to dynamically manage recurrent and non-recurrent congestion based on prevailing traffic conditions in order to maximize the effectiveness and efficiency of road networks. It is a continuous process of (i) obtaining and analysing traffic measurement data, (ii) operations planning, i.e. simulating various scenarios and control strategies, (iii) implementing the most promising control strategies in the field, and (iv) maintaining a real-time decision support system that filters current traffic measurements to predict the traffic state in the near future, and to suggest the best available control strategy for the predicted situation. ATM relies on a fast and trusted traffic simulator for the rapid quantitative assessment of a large number of control strategies for the road network under various scenarios, in a matter of minutes. The open-source macrosimulation tool Aurora ROAD NETWORK MODELER is a good candidate for this purpose. The paper describes the underlying dynamical traffic model and what it takes to prepare the model for simulation; covers the traffic performance measures and evaluation of scenarios as part of operations planning; introduces the framework within which the control strategies are modelled and evaluated; and presents the algorithm for real-time traffic state estimation and short-term prediction.

  13. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    PubMed

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated.

  14. Infrared linear dichroism as a tool to monitor antitumor drug-induced changes of the conformational flexibility of biopolymers

    NASA Astrophysics Data System (ADS)

    Fritzsche, H.

    1990-03-01

    Conformational changes of biopolymers are often a prerequisite for their biological functioning. Drugs are able to induce restrictions of the conformational flexibility of their biopolymer targets. We studied oriented films of DNA complexed with drugs of potential antitumor activity. The infrared linear dichroism reflects quantitatively the extent of restriction, in this case the repression of the conformational transition of DNA from the B to the A form which is driven by the water activity. The investigated drugs show very different capabilities to restrict the B-A transition of DNA. Strong effects have been found with several nonintercalating as well as intercalating antitumor antibiotics which "freeze" 10-24 DNA base pairs per drug molecule which is up to 2.5 turns of the double helix. The results contribute to a rationale drug design as well as to a better understanding of their antitumor action on the molecular level.

  15. Role of Native and Exotic Earthworms in Plant Biopolymer Dynamics in Forest Soil

    NASA Astrophysics Data System (ADS)

    Filley, Timothy

    2010-05-01

    Many forests within northern North America are experiencing the introduction of earthworms for the first time, presumably since before the last major glaciation. Forest dynamics are undergoing substantial changes because of the activity of the mainly European lumbricid species. Documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations have all been documented in invaded zones. Two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) lie within the zones of invasion and exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. Considerations of carbon accrual dynamics and relative input of above vs. below ground plant input in these young successional systems do not consider the potential impact of these ecosystem engineers. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicates how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA

  16. Dysregulated but not decreased salience network activity in schizophrenia

    PubMed Central

    White, Thomas P.; Gilleen, James; Shergill, Sukhwinder S.

    2013-01-01

    Effective estimation of the salience of environmental stimuli underlies adaptive behavior, while related aberrance is believed to undermine rational thought processes in schizophrenia. A network including bilateral frontoinsular cortex (FIC) and dorsal anterior cingulate cortex (dACC) has been observed to respond to salient stimuli using functional magnetic resonance imaging (fMRI). To test the hypothesis that activity in this salience network (SN) is less discriminately modulated by contextually-relevant stimuli in schizophrenia than in healthy individuals, fMRI data were collected in 20 individuals with schizophrenia and 13 matched controls during performance of a modified monetary incentive delay (MID) task. After quantitatively identifying spatial components representative of the FIC and dACC features of the SN, two principal analyses were conducted. In the first, modulation of SN activity by salience was assessed by measuring response to trial outcome. First-level general linear models were applied to individual-specific time-courses of SN activity identified using spatial independent component analysis (ICA). This analysis revealed a significant salience-by-performance-by-group interaction on the best-fit FIC component's activity at trial outcome, whereby healthy individuals but not individuals with schizophrenia exhibited greater distinction between the response to hits and misses in high salience trials than in low salience trials. The second analysis aimed to ascertain whether SN component amplitude differed between the study groups over the duration of the experiment. Independent-samples T-tests on back-projected, percent-signal-change scaled SN component images importantly showed that the groups did not differ in the overall amplitude of SN expression over the entire dataset. These findings of dysregulated but not decreased SN activity in schizophrenia provide physiological support for mechanistic conceptual frameworks of delusional thought formation

  17. Construction of new biopolymer (chitosan)-based pincer-type Pd(II) complex and its catalytic application in Suzuki cross coupling reactions

    NASA Astrophysics Data System (ADS)

    Baran, Talat; Menteş, Ayfer

    2017-04-01

    In this paper we described the fabrication, characterization and application of a new biopolymer (chitosan)-based pincer-type Pd(II) catalyst in Suzuki cross coupling reactions using a non-toxic, cheap, eco-friendly and practical method. The catalytic activity tests showed remarkable product yields as well as TON (19800) and TOF (330000) values with a small catalyst loading. In addition, the catalyst indicated good recyclability in the Suzuki C-C reaction. This biopolymer supported catalyst can be used with various catalyst systems due to its unique properties, such as being inert, green in nature, low cost and chemically durable.

  18. Production of a Biopolymer at Reactor Scale: A Laboratory Experience

    ERIC Educational Resources Information Center

    Genc, Rukan; Rodriguez-Couto, Susana

    2011-01-01

    Undergraduate students of biotechnology became familiar with several aspects of bioreactor operation via the production of xanthan gum, an industrially relevant biopolymer, by "Xanthomonas campestris" bacteria. The xanthan gum was extracted from the fermentation broth and the yield coefficient and productivity were calculated. (Contains 2 figures.)

  19. Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyanophycin is a poly(arginyl-aspartate) biopolymer produced and stored intracellularly by bacteria. Cyanophycin has been proposed as a renewable replacement for petrochemical-based industrial products. An abundant source of amino acids and nitrogen such as in the form of protein hydrolysates is n...

  20. Production of Degradable Biopolymer Composites by Particle-bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventionally, polymer composites had been manufactured by mixing the component materials in the extruder at high temperature. Agricultural biopolymers are usually mixtures of many types of compounds; when used as raw materials, however, high-temperature process causes unwanted consequences such a...

  1. Biopolymers in controlled release devices for agricultural applications.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of biopolymers such as starch for agricultural applications including controlled release devices is growing due the environmental benefits. Recently, concerns have grown about the worldwide spread of parasitic mites (Varroa destructor) that infect colonies of honey bees (Apis mellifera L.). ...

  2. USING BIOPOLYMERS TO REMOVE HEAVY METALS FROM SOIL AND WATER

    EPA Science Inventory

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy me...

  3. Biopolymers produced from gelatin and other sustainable resources using polyphenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several researchers have recently demonstrated the feasibility of producing biopolymers from the reaction of polyphenolics with gelatin in combination with other proteins (e.g. whey) or with carbohydrates (e.g. chitosan and pectin). These combinations would take advantage of the unique properties o...

  4. Polymer and biopolymer mediated self-assembly of gold nanoparticles.

    PubMed

    Ofir, Yuval; Samanta, Bappaditya; Rotello, Vincent M

    2008-09-01

    Gold nanoparticle-polymer composites are versatile and diverse functional materials, with applications in optical, electronic and sensing devices. This tutorial review focuses on the use of polymers to control the assembly of gold nanoparticles. Examples of synthetic polymers and biopolymers are provided, as well as applications of the composite materials in sensing and memory devices.

  5. Development of correlations to predict biopolymer mobility in porous media

    SciTech Connect

    Hejri, S.; Willhite, G.P.; Green, D.W. )

    1991-02-01

    This paper describes the flow and rheological behavior of biopolymer solutions in sandpacks over a wide range of permeability and frontal advance rates. Empirical correlations were developed to estimate polymer mobility in porous media. The correlations are based on porous medium properties, polymer concentration, and rheological parameters for the polymer derived from steady-shear measurements.

  6. Photonic Network R&D Activities in Japan-Current Activities and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-Ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-Ichi; Onaka, Hiroshi; Namiki, Shu; Aoyama, Tomonori

    2005-10-01

    R&D activities on photonic networks in Japan are presented. First, milestones in current ongoing R&D programs supported by Japanese government agencies are introduced, including long-distance and wavelength division multiplexing (WDM) fiber transmission, wavelength routing, optical burst switching (OBS), and control-plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP-over-WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R&D programs for photonic networks over the next 5 years until 2010, by focusing on the report that has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R&D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis, through the customer's initiative to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  7. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    PubMed Central

    Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques. PMID:24790586

  8. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons

    PubMed Central

    Hutt, Axel; Mierau, Andreas; Lefebvre, Jérémie

    2016-01-01

    Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system’s response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles. PMID:27669018

  9. Vibrational spectroscopic studies of newly developed synthetic biopolymers.

    PubMed

    Bista, Rajan K; Bruch, Reinhard F; Covington, Aaron M

    2010-05-01

    Vibrational spectroscopic techniques such as near-infrared (NIR), Fourier transform infrared (FTIR), and Raman spectroscopy are valuable diagnostic tools that can be used to elucidate comprehensive structural information of numerous biological samples. In this review article, we have highlighted the advantages of nanotechnology and biophotonics in conjunction with vibrational spectroscopic techniques in order to understand the various aspects of new kind of synthetic biopolymers termed as polyethylene glycol (PEG)ylated lipids. In contrast to conventional phospholipids, these novel lipids spontaneously form liposomes or nanovesicles upon hydration, without the supply of external activation energy. The amphiphiles considered in this study differ in their hydrophobic acyl chain length and contain different units of PEG hydrophilic headgroups. We have further explored the thermotropic phase behaviors and associated changes in the conformational order/disorder of such lipids by using variable-temperature FTIR and Raman spectroscopy. Phase transition temperature profiles and correlation between various spectral indicators have been identified by either monitoring the shifts in the vibrational peak positions or plotting vibrational peak intensity ratios in the C--H stretching region as a function of temperature. To supplement our observations of phase transformations, a thermodynamic approach known as differential scanning calorimetry (DSC) has been applied and revealed a good agreement with the infrared and Raman spectroscopic data. Finally, the investigation of thermal properties of lipids is extremely crucial for numerous purposes, thus the results obtained in this work may find application in a wide variety of studies including the development of PEGylated lipid based drug and substances delivery vehicles.

  10. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food.

  11. Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State

    PubMed Central

    2017-01-01

    Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 µm) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network. PMID:28144626

  12. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    PubMed

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers.

  13. The origin of spontaneous activity in developing networks of the vertebrate nervous system.

    PubMed

    O'Donovan, M J

    1999-02-01

    Spontaneous neuronal activity has been detected in many parts of the developing vertebrate nervous system. Recent studies suggest that this activity depends on properties that are probably shared by all developing networks. Of particular importance is the high excitability of recurrently connected, developing networks and the presence of activity-induced transient depression of network excitability. In the spinal cord, it has been proposed that the interaction of these properties gives rise to spontaneous, periodic activity.

  14. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.

    PubMed

    Bayati, Mehdi; Valizadeh, Alireza; Abbassian, Abdolhossein; Cheng, Sen

    2015-01-01

    Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural activity could emerge in recurrent neuronal networks through synaptic plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a higher frequency than the other, spontaneously active neurons in the network, can shape a network to allow for synchronous activity propagation. We use two-dimensional, locally connected and heterogeneous neuronal networks with spike-timing dependent plasticity (STDP). We find that, in our model, local excitation drives profound network changes within seconds. In the emergent network, neural activity propagates synchronously through the network. This activity originates from the site of the local excitation and propagates through the network. The synchronous activity propagation persists, even when the local excitation is removed, since it derives from the synaptic weight matrix. Importantly, once this connectivity is established it remains stable even in the presence of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in a relatively simple way in realistic neural networks by locally exciting the desired origin of the neuronal sequence.

  15. Emulation of the Active Immune Response in a Computer Network

    DTIC Science & Technology

    2009-01-15

    Dynamics of the Estimation Process 53 15 Dual Network Interface for concurrent execution of testbed experiments and lab management 57 16 Hardware Testbed...Two Physical Nodes 62 20 Network Security Testbed Management Software Stack 63 21 Virtual Network Topology for Worm Propagation Experiment Generated...system could be reformulated in terms of the characteristics of computer networks and interpreted as a set of instructions to a network manager . This

  16. A Wolf Pack Algorithm for Active and Reactive Power Coordinated Optimization in Active Distribution Network

    NASA Astrophysics Data System (ADS)

    Zhuang, H. M.; Jiang, X. J.

    2016-08-01

    This paper presents an active and reactive power dynamic optimization model for active distribution network (ADN), whose control variables include the output of distributed generations (DGs), charge or discharge power of energy storage system (ESS) and reactive power from capacitor banks. To solve the high-dimension nonlinear optimization model, a new heuristic swarm intelligent method, namely wolf pack algorithm (WPA) with better global convergence and computational robustness, is adapted so that the network loss minimization can be achieved. In this paper, the IEEE33-bus system is used to show the effectiveness of WPA technique compared with other techniques. Numerical tests on the modified IEEE 33-bus system show that WPA for active and reactive multi-period optimization of ADN is exact and effective.

  17. Organization of prefrontal network activity by respiration-related oscillations

    PubMed Central

    Biskamp, Jonatan; Bartos, Marlene; Sauer, Jonas-Frederic

    2017-01-01

    The medial prefrontal cortex (mPFC) integrates information from cortical and sub-cortical areas and contributes to the planning and initiation of behaviour. A potential mechanism for signal integration in the mPFC lies in the synchronization of neuronal discharges by theta (6–12 Hz) activity patterns. Here we show, using in vivo local field potential (LFP) and single-unit recordings from awake mice, that prominent oscillations in the sub-theta frequency band (1–5 Hz) emerge during awake immobility in the mPFC. These oscillation patterns are distinct from but phase-locked to hippocampal theta activity and occur synchronized with nasal respiration (hence termed prefrontal respiration rhythm [PRR]). PRR activity modulates the amplitude of prefrontal gamma rhythms with greater efficacy than theta oscillations. Furthermore, single-unit discharges of putative pyramidal cells and GABAergic interneurons are entrained by prefrontal PRR and nasal respiration. Our data thus suggest that PRR activity contributes to information processing in the prefrontal neuronal network. PMID:28349959

  18. Rheology of Active Gels

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  19. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles.

    PubMed

    Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R

    2015-03-01

    In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process.

  20. Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension.

    PubMed

    Kim, Won Kyu; Hyeon, Changbong; Sung, Wokyung

    2012-09-04

    In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance and resonant activation. Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises.

  1. Design of biomimetic super-lubricants by hydrogel-biopolymer aggregates

    NASA Astrophysics Data System (ADS)

    Seekell, Raymond; Dever, Rachel; Zhu, Yingxi

    2013-03-01

    Inspired by the superb lubricity of natural synovial fluids for moving articular cartilage joints, we investigate a biomimetic artificial lubricant based on a hydrogel-biopolymer mixture with optimized rheological properties at a microscopic level. Specifically, we examine the structure and rheological relationship of stimuli-responsive poly (N-isopropylacrylamide) (PNIPAM) hydrogel added with hyaluronic acid (HA) to simulate the complexes of HA with a globule protein, lubricin, which are credited as the two key lubricious constituents in natural synovial fluids. By combined microscopic structural characterization and rheology measurement, we tune the rheological and frictional behaviors of HA solutions by optimizing the content of added micron-sized PNIPAM hydrogel particles to form stable PNIPAM-HA network. In a recent work on using zwitterionic hydrogel particles instead of negatively charged PNIPAM, comparable structure and rheological properties of hydrogel-HA aggregates are observed, which may give insight to design new biocompatible lubricants and lubricious coatings for medical ramification.

  2. Enzymatic activity preservation through entrapment within degradable hydrogel networks

    NASA Astrophysics Data System (ADS)

    Mariani, Angela Marie

    This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping β-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small

  3. Epidemic process on activity-driven modular networks

    NASA Astrophysics Data System (ADS)

    Han, Dun; Sun, Mei; Li, Dandan

    2015-08-01

    In this paper, we propose two novel models of epidemic spreading by considering the activity-driven and the network modular. Firstly, we consider the susceptible-infected-susceptible (SIS) contagion model and derive analytically the epidemic threshold. The results indicate that the epidemic threshold only involves with the value of the spread rate and the recovery rate. In addition, the asymptotic refractory density of infected nodes in the different communities exhibits different trends with the change of the modularity-factor. Then, the infected-driven vaccination model is presented. Simulation results illustrate that the final density of vaccination will increase with the increase of the response strength of vaccination. Moreover, the final infected density in the original-infected-community shows different trends with the change of the response strength of vaccination and the spreading rate. The infected-driven vaccination is a good way to control the epidemic spreading.

  4. Natural lecithin promotes neural network complexity and activity

    PubMed Central

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called “essential” fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  5. Antituberculosis Activity of the Molecular Libraries Screening Center Network Library

    PubMed Central

    MADDRY, JOSEPH A.; ANANTHAN, SUBRAMANIAM; GOLDMAN, ROBERT C.; HOBRATH, JUDITH V.; KWONG, CECIL D.; MADDOX, CLINTON; RASMUSSEN, LYNN; REYNOLDS, ROBERT C.; SECRIST, JOHN A.; SOSA, MELINDA I.; WHITE, E. LUCILE; ZHANG, WEI

    2009-01-01

    SUMMARY There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against M. tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein. PMID:19783214

  6. Size-dependent regulation of synchronized activity in living neuronal networks

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (˜20 cells), medium (˜100 cells), and large (˜400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  7. Size-dependent regulation of synchronized activity in living neuronal networks.

    PubMed

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (∼20 cells), medium (∼100 cells), and large (∼400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  8. How networks communicate: propagation patterns in spontaneous brain activity.

    PubMed

    Mitra, Anish; Raichle, Marcus E

    2016-10-05

    Initially regarded as 'noise', spontaneous (intrinsic) activity accounts for a large portion of the brain's metabolic cost. Moreover, it is now widely known that infra-slow (less than 0.1 Hz) spontaneous activity, measured using resting state functional magnetic resonance imaging of the blood oxygen level-dependent (BOLD) signal, is correlated within functionally defined resting state networks (RSNs). However, despite these advances, the temporal organization of spontaneous BOLD fluctuations has remained elusive. By studying temporal lags in the resting state BOLD signal, we have recently shown that spontaneous BOLD fluctuations consist of remarkably reproducible patterns of whole brain propagation. Embedded in these propagation patterns are unidirectional 'motifs' which, in turn, give rise to RSNs. Additionally, propagation patterns are markedly altered as a function of state, whether physiological or pathological. Understanding such propagation patterns will likely yield deeper insights into the role of spontaneous activity in brain function in health and disease.This article is part of the themed issue 'Interpreting blood oxygen level-dependent: a dialogue between cognitive and cellular neuroscience'.

  9. Functional modules, structural topology, and optimal activity in metabolic networks.

    PubMed

    Resendis-Antonio, Osbaldo; Hernández, Magdalena; Mora, Yolanda; Encarnación, Sergio

    2012-01-01

    Modular organization in biological networks has been suggested as a natural mechanism by which a cell coordinates its metabolic strategies for evolving and responding to environmental perturbations. To understand how this occurs, there is a need for developing computational schemes that contribute to integration of genomic-scale information and assist investigators in formulating biological hypotheses in a quantitative and systematic fashion. In this work, we combined metabolome data and constraint-based modeling to elucidate the relationships among structural modules, functional organization, and the optimal metabolic phenotype of Rhizobium etli, a bacterium that fixes nitrogen in symbiosis with Phaseolus vulgaris. To experimentally characterize the metabolic phenotype of this microorganism, we obtained the metabolic profile of 220 metabolites at two physiological stages: under free-living conditions, and during nitrogen fixation with P. vulgaris. By integrating these data into a constraint-based model, we built a refined computational platform with the capability to survey the metabolic activity underlying nitrogen fixation in R. etli. Topological analysis of the metabolic reconstruction led us to identify modular structures with functional activities. Consistent with modular activity in metabolism, we found that most of the metabolites experimentally detected in each module simultaneously increased their relative abundances during nitrogen fixation. In this work, we explore the relationships among topology, biological function, and optimal activity in the metabolism of R. etli through an integrative analysis based on modeling and metabolome data. Our findings suggest that the metabolic activity during nitrogen fixation is supported by interacting structural modules that correlate with three functional classifications: nucleic acids, peptides, and lipids. More fundamentally, we supply evidence that such modular organization during functional nitrogen fixation is

  10. Enhanced excitatory synaptic network activity following transient group I metabotropic glutamate activation.

    PubMed

    Pan, Y-Z; Rutecki, P A

    2014-09-05

    Prolonged activation of group I metabotropic glutamate receptors (mGluRs) using the agonist (S)-3,5-dihydroxyphenylglycine (DHPG) produces long-lasting changes in the CA3 region of the hippocampal slice. Changes in CA3 pyramidal neuron excitability that follow DHPG exposure result in abnormal network activity manifest by epileptiform activity that consists of interictal and longer lasting ictal epileptiform discharges. In this study we evaluated changes in synaptic activity of CA3 neurons in rat hippocampal slices that occurred after exposure to DHPG. Whole-cell voltage-clamp recordings were made from visually identified CA3 neurons in control artificial cerebrospinal fluid at times greater than 1h after DHPG exposure. Compared to control slices, neurons from slices exposed to DHPG showed enhanced amplitude and frequency of spontaneously occurring excitatory postsynaptic currents (EPSCs) without a concurrent change in inhibitory postsynaptic current (IPSC) amplitude or frequency. Miniature EPSCs were not affected by DHPG exposure but mIPSCs occurred less frequently and were of reduced amplitude. IPSCs recorded in the presence of ionotropic glutamate receptor blockade occurred less frequently in neurons that had been exposed to DHPG. Monosynaptic-evoked IPSPs were also reduced in amplitude in neurons that had been exposed to DHPG. Taken together, these findings demonstrated an enhanced network excitability of the CA3 region and failure of compensatory synaptic inhibition. We propose that prolonged activation of group I mGluR that may occur under conditions of pathological glutamate release results in long-lasting changes in CA3 synaptic network activity and epileptiform activity driven by excessive synaptic excitation.

  11. Who Can You Turn to? Tie Activation within Core Business Discussion Networks

    ERIC Educational Resources Information Center

    Renzulli, Linda A.; Aldrich, Howard

    2005-01-01

    We examine the connection between personal network characteristics and the activation of ties for access to resources during routine times. We focus on factors affecting business owners' use of their core network ties to obtain legal, loan, financial and expert advice. Owners rely more on core business ties when their core networks contain a high…

  12. Mobility Enhancement of Red Blood Cells with Biopolymers

    NASA Astrophysics Data System (ADS)

    Tahara, Daiki; Oikawa, Noriko; Kurita, Rei

    2016-03-01

    Adhesion of red blood cells (RBC) to substrates are one of crucial problems for a blood clot. Here we investigate the mobility of RBC between two glass substrates in saline with polymer systems. We find that RBCs are adhered to the glass substrate with PEG, however the mobility steeply increases with fibrinogen and dextran, which are biopolymers. We also find that the mobility affects an aggregation dynamics of RBCs, which is related with diseases such as influenza, blood clot and so on. The Brownian motion helps to increase probability of contact with each other and to find a more stable condition of the aggregation. Thus the biopolymers play important roles not only for preventing the adhesion but also for the aggregation.

  13. Non-biodegradable biopolymers from renewable resources: perspectives and impacts.

    PubMed

    Steinbüchel, Alexander

    2005-12-01

    In recent years the biotechnological production of bulk biopolymers has focused on the synthesis of biodegradable polymers to replace their non-biodegradable counterparts derived from fossil resources. Examples include polyhydroxyalkanoates and polylactic acid, which act as substitutes for polyolefins. By contrast, the biotechnological production of non-biodegradable polymers from renewable resources has so far been scarcely considered, probably because this idea contradicts the paradigm that all natural compounds are biodegradable. Polythioesters, which were recently described as new biopolymers, do not follow this paradigm because although they are produced by bacteria, they are persistent to microbial degradation. Mankind has a need for both non-biodegradable and biodegradable polymers and methods to produce them from renewable resources will be of great value.

  14. Mucin biopolymers as broad-spectrum antiviral agents

    PubMed Central

    Lieleg, Oliver; Lieleg, Corinna; Bloom, Jesse; Buck, Christopher B.; Ribbeck, Katharina

    2012-01-01

    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system. PMID:22475261

  15. Both novelty and expertise increase action observation network activity

    PubMed Central

    Liew, Sook-Lei; Sheng, Tong; Margetis, John L.; Aziz-Zadeh, Lisa

    2013-01-01

    Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON), is modulated by one's expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal) on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices), 11 experienced occupational therapists (OTs) who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ), as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ) and extreme novelty (novices) can result in the greatest AON activity. PMID:24062656

  16. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    PubMed

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  17. The effects of biopolymer encapsulation on total lipids and cholesterol in egg yolk during in vitro human digestion.

    PubMed

    Hur, Sun-Jin; Kim, Young-Chan; Choi, Inwook; Lee, Si-Kyung

    2013-08-07

    The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of total lipids was monitored by confocal fluorescence microscopy. The digestion rate of total lipids and cholesterol in all egg yolk samples dramatically increased after in vitro human digestion. The digestion rate of total lipids and cholesterol in egg yolks encapsulated with chitosan or pectin was reduced compared to the digestion rate of total lipids and cholesterol in other egg yolk samples. Egg yolks encapsulated with pectin or chitosan had lower free fatty acid content, and lipid oxidation values than samples without biopolymer encapsulation. Moreover, the lipase activity decreased, after in vitro digestion, in egg yolks encapsulated with biopolymers. These results improve our understanding of the effects of digestion on total lipids and cholesterol in egg yolk within the gastrointestinal tract.

  18. The Effects of Biopolymer Encapsulation on Total Lipids and Cholesterol in Egg Yolk during in Vitro Human Digestion

    PubMed Central

    Hur, Sun-Jin; Kim, Young-Chan; Choi, Inwook; Lee, Si-Kyung

    2013-01-01

    The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of total lipids was monitored by confocal fluorescence microscopy. The digestion rate of total lipids and cholesterol in all egg yolk samples dramatically increased after in vitro human digestion. The digestion rate of total lipids and cholesterol in egg yolks encapsulated with chitosan or pectin was reduced compared to the digestion rate of total lipids and cholesterol in other egg yolk samples. Egg yolks encapsulated with pectin or chitosan had lower free fatty acid content, and lipid oxidation values than samples without biopolymer encapsulation. Moreover, the lipase activity decreased, after in vitro digestion, in egg yolks encapsulated with biopolymers. These results improve our understanding of the effects of digestion on total lipids and cholesterol in egg yolk within the gastrointestinal tract. PMID:23965957

  19. Recent Progress in Some Active Topics on Complex Networks

    NASA Astrophysics Data System (ADS)

    Gu, J.; Zhu, Y.; Guo, L.; Jiang, J.; Chi, L.; Li, W.; Wang, Q. A.; Cai, X.

    2015-04-01

    Complex networks have been extensively studied across many fields, especially in interdisciplinary areas. It has since long been recognized that topological structures and dynamics are important aspects for capturing the essence of complex networks. The recent years have also witnessed the emergence of several new elements which play important roles in network study. By combining the results of different research orientations in our group, we provide here a review of the recent advances in regards to spectral graph theory, opinion dynamics, interdependent networks, graph energy theory and temporal networks. We hope this will be helpful for the newcomers of those fields to discover new intriguing topics.

  20. Interaction between polymer constituents and the structure of biopolymers

    NASA Technical Reports Server (NTRS)

    Rein, R.

    1974-01-01

    The paper reviews the current status of methods for calculating intermolecular interactions between biopolymer units. The nature of forces contributing to the various domains of intermolecular separations is investigated, and various approximations applicable in the respective regions are examined. The predictive value of current theory is tested by establishing a connection with macroscopic properties and comparing the theoretical predicted values with those derived from experimental data. This has led to the introduction of a statistical model describing DNA.

  1. Recent synchrotron radiation microdiffraction experiments on polymer and biopolymer fibers.

    PubMed

    Riekel, C; García Gutiérrez, M C; Gourrier, A; Roth, S

    2003-07-01

    The status of synchrotron radiation (SR) microdiffraction techniques developed at the ID13 beamline of the European Synchrotron Radiation Facility (ESRF) is reviewed for polymer and biopolymer fiber applications. Beam sizes in the micrometer-range have been used to study the local structure of whole fibers such as viscose-rayon or poly(p-phenylene terephthalamide). The possibilities for in situ studies during stretching, extrusion, or indentation will be discussed.

  2. Application of Raman spectroscopy method for analysis of biopolymer materials

    NASA Astrophysics Data System (ADS)

    Timchenko, Elena V.; Timchenko, Pavel E.; Volchkov, S. E.; Mahortova, Alexsandra O.; Asadova, Anna A.; Kornilin, Dmitriy V.

    2016-10-01

    This work presents the results of spectral analysis of biopolymer materials that are implemented in medical sphere. Polymer samples containing polycaprolactone and iron oxides of different valence were used in the studies. Raman spectroscopy method was used as a main control method. Relative content of iron and polycaprolactone in studied materials was assessed using ratio of RS intensities values at 604 cm-1 and 1726 cm-1 wavenumbers to intensity value of 1440 cm-1 line.

  3. Detailed electrical measurements on sago starch biopolymer solid electrolyte

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Baghel, Jaya; Shukla, S.; Bhattacharya, B.; Rhee, Hee-Woo; Singh, Pramod K.

    2014-12-01

    The biopolymer solid electrolyte has been synthesized and characterized. Potassium iodide (KI) has been added in polymer matrix to develop solid polymer electrolyte. Relationships between electrical, ionic transport parameter and mechanism have been studied in detail. Impedance spectroscopy reveals the detailed electrical studies and ion transport mechanism. The ion dissociation factor is compared with a measured dielectric constant at a fixed frequency. The dielectric data are calculated which support the ionic conductivity data.

  4. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  5. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  6. Predicting Single-Neuron Activity in Locally Connected Networks

    PubMed Central

    Azhar, Feraz; Anderson, William S.

    2014-01-01

    The characterization of coordinated activity in neuronal populations has received renewed interest in the light of advancing experimental techniques that allow recordings from multiple units simultaneously. Across both in vitro and in vivo preparations, nearby neurons show coordinated responses when spontaneously active and when subject to external stimuli. Recent work (Truccolo, Hochberg, & Donoghue, 2010) has connected these coordinated responses to behavior, showing that small ensembles of neurons in arm-related areas of sensorimotor cortex can reliably predict single-neuron spikes in behaving monkeys and humans. We investigate this phenomenon using an analogous point process model, showing that in the case of a computational model of cortex responding to random background inputs, one is similarly able to predict the future state of a single neuron by considering its own spiking history, together with the spiking histories of randomly sampled ensembles of nearby neurons. This model exhibits realistic cortical architecture and displays bursting episodes in the two distinct connectivity schemes studied. We conjecture that the baseline predictability we find in these instances is characteristic of locally connected networks more broadly considered. PMID:22845824

  7. How yawning switches the default-mode network to the attentional network by activating the cerebrospinal fluid flow.

    PubMed

    Walusinski, Olivier

    2014-03-01

    Yawning is a behavior to which little research has been devoted. However, its purpose has not yet been demonstrated and remains controversial. In this article, we propose a new theory involving the brain network that is functional during the resting state, that is, the default mode network. When this network is active, yawning manifests a process of switching to the attentional system through its capacity to increase circulation of cerebrospinal fluid (CSF), thereby increasing clearance of somnogenic factors (prostaglandin D(2), adenosine, and others) accumulating in the cerebrospinal fluid.

  8. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  9. Biophysical Model of Cortical Network Activity and the Influence of Electrical Stimulation

    DTIC Science & Technology

    2015-11-13

    parameters for seizure disruption using neural network simulations, Biological Cybernetics (08 2007) W.S. Anderson, P. Kudela, S. Weinberg, G.K...Bergey, P.J. Franaszczuk. Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation, Epilepsy Research (07 2008...Epilepsy Research (06 2011) WS Anderson, F Azhar. Predicting Single-Neuron Activity in Locally Connected Networks , Neural Computation (05 2011

  10. Active Readers--What Benefits Do They Gain from an Educational Telecommunications Network?

    ERIC Educational Resources Information Center

    Jacobs, Gloria; DiMauro, Vanessa

    "Active readers" are silent members of telecommunications networks who read but do not contribute. Often derided as lurkers, active readers benefit from their network participation and in turn professionally benefit others. A study, still in progress, is interviewing 20 silent participants of the LabNet community who have posted fewer…

  11. Impact of amylases on biopolymer dynamics during storage of straight-dough wheat bread.

    PubMed

    Bosmans, Geertrui M; Lagrain, Bert; Fierens, Ellen; Delcour, Jan A

    2013-07-03

    When Bacillus stearothermophilus α-amylase (BStA), Pseudomonas saccharophila α-amylase (PSA), or Bacillus subtilis α-amylase (BSuA) was added to a bread recipe to impact bread firming, amylose crystal formation was facilitated, leading to lower initial crumb resilience. Bread loaves that best retained their quality were those obtained when BStA was used. The enzyme hindered formation of an extended starch network, resulting in less water immobilization and smaller changes in crumb firmness and resilience. BSuA led to extensive degradation of the starch network during bread storage with release of immobilized water, eventually resulting in partial structure collapse and poor crumb resilience. The most important effect of PSA was an increased bread volume, resulting in smaller changes in crumb firmness and resilience. A negative linear relation was found between NMR proton mobilities of water and biopolymers in the crumb and crumb firmness. The slope of that relation gave an indication of the strength of the starch network.

  12. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  13. Dynamics on Networks: The Role of Local Dynamics and Global Networks on the Emergence of Hypersynchronous Neural Activity

    PubMed Central

    Schmidt, Helmut; Petkov, George; Richardson, Mark P.; Terry, John R.

    2014-01-01

    Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3–6 Hz) and low-alpha (6–9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80 predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people

  14. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  15. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    PubMed Central

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-01-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity. PMID:27824075

  16. Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network.

    PubMed

    Tabak, J; Senn, W; O'Donovan, M J; Rinzel, J

    2000-04-15

    Spontaneous episodic activity is a general feature of developing neural networks. In the chick spinal cord, the activity comprises episodes of rhythmic discharge (duration 5-90 sec; cycle rate 0.1-2 Hz) that recur every 2-30 min. The activity does not depend on specialized connectivity or intrinsic bursting neurons and is generated by a network of functionally excitatory connections. Here, we develop an idealized, qualitative model of a homogeneous, excitatory recurrent network that could account for the multiple time-scale spontaneous activity in the embryonic chick spinal cord. We show that cycling can arise from the interplay between excitatory connectivity and fast synaptic depression. The slow episodic behavior is attributable to a slow activity-dependent network depression that is modeled either as a modulation of cellular excitability or as synaptic depression. Although the two descriptions share many features, the model with a slow synaptic depression accounts better for the experimental observations during blockade of excitatory synapses.

  17. Studying modulation on simultaneously activated SSVEP neural networks by a cognitive task.

    PubMed

    Wu, Zhenghua

    2014-01-01

    Since the discovery of steady-state visually evoked potential (SSVEP), it has been used in many fields. Numerous studies suggest that there exist three SSVEP neural networks in different frequency bands. An obvious phenomenon has been observed, that the amplitude and phase of SSVEP can be modulated by a cognitive task. Previous works have studied this modulation on separately activated SSVEP neural networks by a cognitive task. If two or more SSVEP neural networks are activated simultaneously in the process of a cognitive task, is the modulation on different SSVEP neural networks the same? In this study, two different SSVEP neural networks were activated simultaneously by two different frequency flickers, with a working memory task irrelevant to the flickers being conducted at the same time. The modulated SSVEP waves were compared with each other and to those only under one flicker in previous studies. The comparison results show that the cognitive task can modulate different SSVEP neural networks with a similar style.

  18. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors.

    PubMed

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-06-14

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3(-/-) but not in mGluR2(-/-) mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity.

  19. Rheological and Tribological Properties of Complex Biopolymer Solutions

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca Reese

    2011-12-01

    The rheological and tribological properties of an experimental synovial fluid model were investigated in order to determine the solution dynamics of the three most abundant macromolecules present in synovial fluid, the fluid that lubricates freely moving (synovial) joints. These components, hyaluronic acid (HA) and the plasma proteins, albumin and gamma-globulins are combined in a phosphate buffered saline solution (PBS) and subjected to steady shear rheology testing, as well as nanoindenter-based scratch testing, which allows for the study of the lubrication properties of the experimental synovial fluid model. Steady shear experiments, where the shear rate was increased from low to high, and then decreased from high to low, showed hysteresis in only protein containing solutions, whereas samples of HA in PBS behaved as a "typical" polyelectrolyte in solution. Subsequent rheological experiments on the synovial fluid model exhibited an increase in viscosity at low shear stresses, indicating that a structure was present at these low shear stresses, which was not found at higher shear stresses. This result is in agreement with studies conducted on the same model which show unusual rheological behavior at low shear rates. Low shear stresses can cause modifications to the external protein surface, resulting in their unfolding and creating many opportunities for the molecules to reorder themselves. As the proteins reorder themselves, the newly exposed hydrophobic patches will have a tendency to aggregate together, creating a network within the fluid, and, in turn causing the observed increased viscosity at low shear stresses. Additionally, an anti-inflammatory drug, hydroxychloroquine (HCQ) was added to the solutions. This addition diminishes the protein aggregation process substantially. Finally, the HA component of the synovial fluid model was replaced with a neutral polymer in order to examine the role of HA in synovial fluid. As suspected, the HA appears to have

  20. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    PubMed

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  1. Social networks of experientially similar others: formation, activation, and consequences of network ties on the health care experience.

    PubMed

    Gage, Elizabeth A

    2013-10-01

    Research documents that interactions among experientially similar others (individuals facing a common stressor) shape health care behavior and ultimately health outcomes. However, we have little understanding of how ties among experientially similar others are formed, what resources and information flows through these networks, and how network embeddedness shapes health care behavior. This paper uses in-depth interviews with 76 parents of pediatric cancer patients to examine network ties among experientially similar others after a serious medical diagnosis. Interviews were conducted between August 2009 and May 2011. Findings demonstrate that many parents formed ties with other families experiencing pediatric cancer, and that information and resources were exchanged during the everyday activities associated with their child's care. Network flows contained emotional support, caregiving strategies, information about second opinions, health-related knowledge, and strategies for navigating the health care system. Diffusion of information, resources, and support occurred through explicit processes (direct information and support exchanges) and implicit processes (parents learning through observing other families). Network flows among parents shaped parents' perceptions of the health care experience and their role in their child's care. These findings contribute to the social networks and social support literatures by elucidating the mechanisms through which network ties among experientially similar others influence health care behavior and experiences.

  2. Social network activation: the role of health discussion partners in recovery from mental illness.

    PubMed

    Perry, Brea L; Pescosolido, Bernice A

    2015-01-01

    In response to health problems, individuals may strategically activate their social network ties to help manage crisis and uncertainty. While it is well-established that social relationships provide a crucial safety net, little is known about who is chosen to help during an episode of illness. Guided by the Network Episode Model, two aspects of consulting others in the face of mental illness are considered. First, we ask who activates ties, and what kinds of ties and networks they attempt to leverage for discussing health matters. Second, we ask about the utility of activating health-focused network ties. Specifically, we examine the consequences of network activation at time of entry into treatment for individuals' quality of life, social satisfaction, ability to perform social roles, and mental health functioning nearly one year later. Using interview data from the longitudinal Indianapolis Network Mental Health Study (INMHS, N = 171), we focus on a sample of new patients with serious mental illness and a group with less severe disorders who are experiencing their first contact with the mental health treatment system. Three findings stand out. First, our results reveal the nature of agency in illness response. Whether under a rational choice or habitus logic, individuals appear to evaluate support needs, identifying the best possible matches among a larger group of potential health discussants. These include members of the core network and those with prior mental health experiences. Second, selective activation processes have implications for recovery. Those who secure adequate network resources report better outcomes than those who injudiciously activate network ties. Individuals who activate weaker relationships and those who are unsupportive of medical care experience poorer functioning, limited success in fulfilling social roles, and lower social satisfaction and quality of life later on. Third, the evidence suggests that social networks matter above and

  3. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations.

    PubMed

    Wang, Sheng-Jun; Hilgetag, Claus C; Zhou, Changsong

    2011-01-01

    Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information

  4. Low attentional engagement makes attention network activity susceptible to emotional interference.

    PubMed

    Mäki-Marttunen, Verónica; Pickard, Natasha; Solbakk, Anne-Kristin; Ogawa, Keith H; Knight, Robert T; Hartikainen, Kaisa M

    2014-09-10

    The aim of this study was to investigate whether emotion-attention interaction depends on attentional engagement. To investigate emotional modulation of attention network activation, we used a functional MRI paradigm consisting of a visuospatial attention task with either frequent (high-engagement) or infrequent (low-engagement) targets and intermittent emotional or neutral distractors. The attention task recruited a bilateral frontoparietal network with no emotional interference on network activation when the attentional engagement was high. In contrast, when the attentional engagement was low, the unpleasant stimuli interfered with the activation of the frontoparietal attention network, especially in the right hemisphere. This study provides novel evidence for low attentional engagement making attention control network activation susceptible to emotional interference.

  5. Blink-related momentary activation of the default mode network while viewing videos.

    PubMed

    Nakano, Tamami; Kato, Makoto; Morito, Yusuke; Itoi, Seishi; Kitazawa, Shigeru

    2013-01-08

    It remains unknown why we generate spontaneous eyeblinks every few seconds, more often than necessary for ocular lubrication. Because eyeblinks tend to occur at implicit breakpoints while viewing videos, we hypothesized that eyeblinks are actively involved in the release of attention. We show that while viewing videos, cortical activity momentarily decreases in the dorsal attention network after blink onset but increases in the default-mode network implicated in internal processing. In contrast, physical blackouts of the video do not elicit such reciprocal changes in brain networks. The results suggest that eyeblinks are actively involved in the process of attentional disengagement during a cognitive behavior by momentarily activating the default-mode network while deactivating the dorsal attention network.

  6. Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.

    1980-01-01

    Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.

  7. Stimulus-free thoughts induce differential activation in the human default network.

    PubMed

    Preminger, Son; Harmelech, Tal; Malach, Rafael

    2011-01-15

    Despite extensive research of the Default network, a set of regions which tend to reduce their activity relative to rest in response to stimulus-driven tasks, its function is still debated. Specifically, it is still not clear to what extent the activation profile of this network is driven by processes related to external stimulation (inhibitory or anticipatory), or is driven by specific thought contents. To address this question, we examined the ability of thoughts, generated in the absence of external stimulation, to modulate default network activation. In a set of experiments, several types of long lasting stimulus-free thoughts were elicited by brief (<1s) auditory cues. Sustained (40s) brain activations, far outlasting the cue, were demonstrated during these stimulus-free conditions. Importantly, brain activity in the default network showed a striking modulation associated with stimulus-free thought content. More specifically, a preferential activation was observed in essentially the entire default network during volitional-prospection thoughts when compared to the other stimulus-free thought conditions. Furthermore, several regions of the default network showed long-lasting above rest activations during the volitional-prospection condition. Our results demonstrate that default network activation can be modulated in the absence of external stimuli, thus pointing to the importance of thought-content in default-network specialization. Furthermore, together with previous research, these results support the notion that intrinsically oriented processing is a core specialization of the default network. Finally, our stimulus-free experimental paradigm introduces a new method for studying default network functionality.

  8. Micro-Heterogeneity of Cellulosic Fiber Biopolymer Prepared from Corn Hulls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Z-trim is a zero calorie cellulosic fiber biopolymer produced from corn hulls. The micro-structural heterogeneities of Z-trim biopolymer were investigated by monitoring the thermally driven displacements of well-dispersed micro-spheres via video fluorescence microscopy named multiple-particle track...

  9. Micro-heterogeneity of Cellulosic Fiber Biopolymer Prepared from Corn Hulls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Z-trim is a zero calorie cellulosic fiber biopolymer produced from corn hulls. The micro-structural heterogeneities of Z-trim biopolymer were investigated by monitoring the thermally driven displacements of well-dispersed micro-spheres via video fluorescence microscopy named multiple-particle track...

  10. The wear of two orthopaedic biopolymers against each other.

    PubMed

    Joyce, T J

    2005-01-01

    The potential for all-polymer prostheses has not been widely investigated. It might be expected that the wear of such biomaterial combinations would be excessive, but an in vivo study of all polymer knee prostheses reported that there were no failures due to wear, even after ten years of clinical use. This design of knee prosthesis used polyacetal and ultra high molecular weight polyethylene (UHMWPE) as the biopolymers. Similarly, an earlier in vitro study of polyacetal and UHMWPE hip prostheses indicated lower wear than for a cobalt chrome and UHMWPE combination. Therefore this study set out to test the poly-acetal and UHMWPE combination in a wear screening rig which had previously been validated against clinical data for artificial hip joints. Two different motion conditions were applied to the test samples and each biopolymer was tested as both pin and plate. Interestingly it was found that, whatever the contribution from pin or plate, the total mean wear factors were 1.5 10 -6 mm 3/Nm under reciprocation-only, and 4.1 10 -6 mm 3 /Nm under multi-directional motion. These wear factors were greater than those found when a conventional metal-on-UHMWPE couple was tested under the same loading, motion and lu-bricant conditions. A comparison was also undertaken with the wear of other orthopaedic biopolymer combinations, namely cross-linked polyethylene (XLPE) against itself, and UHMWPE against itself. The XLPE pairing showed somewhat lower wear than the polyacetal and UHMWPE couple, while the UHMWPE pairing showed the highest wear of all, approximately an or-der of magnitude greater than the polyacetal and UHMWPE combination.

  11. Coherent periodic activity in excitatory Erdös-Renyi neural networks: the role of network connectivity.

    PubMed

    Tattini, Lorenzo; Olmi, Simona; Torcini, Alessandro

    2012-06-01

    In this article, we investigate the role of connectivity in promoting coherent activity in excitatory neural networks. In particular, we would like to understand if the onset of collective oscillations can be related to a minimal average connectivity and how this critical connectivity depends on the number of neurons in the networks. For these purposes, we consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erdös-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level, we observe two distinct dynamical phases: an asynchronous state corresponding to a desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous state, while PS emerges above a certain critical average connectivity (c). For sufficiently large networks, (c) saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous

  12. Coherent periodic activity in excitatory Erdös-Renyi neural networks: The role of network connectivity

    NASA Astrophysics Data System (ADS)

    Tattini, Lorenzo; Olmi, Simona; Torcini, Alessandro

    2012-06-01

    In this article, we investigate the role of connectivity in promoting coherent activity in excitatory neural networks. In particular, we would like to understand if the onset of collective oscillations can be related to a minimal average connectivity and how this critical connectivity depends on the number of neurons in the networks. For these purposes, we consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erdös-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level, we observe two distinct dynamical phases: an asynchronous state corresponding to a desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous state, while PS emerges above a certain critical average connectivity c. For sufficiently large networks, c saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous fully

  13. Efficient Strategies for Active Interface-Level Network Topology Discovery

    DTIC Science & Technology

    2013-09-01

    production system to probe 500 randomly selected Internet subnetworks and gather real -world network maps . As compared to datasets from existing measurement...load while producing reliable network topology maps . Although SCP has been shown to work well in simulation over real -data from CAIDA’s Archipelago...testing of SCP to perform real , production, Internet mapping . We find that, as originally proposed, SCP has a critical flaw stemming load-balancing

  14. Production of novel biopolymers in plants: recent technological advances and future prospects.

    PubMed

    Snell, Kristi D; Singh, Vijay; Brumbley, Stevens M

    2015-04-01

    The production of novel biopolymers in plants has the potential to provide renewable sources of industrial materials through agriculture. In this review we will highlight recent progress with plant-based production of polyhydroxyalkanoates (PHAs), silk, elastin, collagen, and cyanophycin with an emphasis on the synthesis of poly[(R)-3-hydroxybutyrate] (PHB), a renewable biodegradable PHA polymer with potential commercial applications in plastics, chemicals, and feed markets. Improved production of PHB has required manipulation of promoters driving expression of transgenes, reduction in activity of endogenous enzymes in competing metabolic pathways, insertion of genes to increase carbon flow to polymer, and basic plant biochemistry to understand metabolic limitations. These experiments have increased our understanding of carbon availability and partitioning in different plant organelles, cell types, and organs, information that is useful for the production of other novel molecules in plants.

  15. Biopolymer as an electron selective layer for inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Jin Tan, Mein; Zhong, Shu; Wang, Rui; Zhang, Zhongxing; Chellappan, Vijila; Chen, Wei

    2013-08-01

    In this work, a solution-processable electron selective layer is introduced for inverted polymer solar cells (PSCs). Cationic biopolymer poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) is used as a solution-processable work function modifier of indium-tin-oxide transparent conducting electrode to yield efficient inverted PSCs of 3.3% under AM1.5G illumination, with poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester as the active layer. Devices using PDMAEMA exhibit greater stability in ambient "working conditions" as compared to devices using ZnO, retaining 90% of peak power conversion efficiency after 8 weeks. Therefore, PDMAEMA has great potential as a universal work function modifier material with high robustness.

  16. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  17. Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays.

    PubMed

    Cao, Jinde; Wang, Jun

    2004-04-01

    This paper investigates the absolute exponential stability of a general class of delayed neural networks, which require the activation functions to be partially Lipschitz continuous and monotone nondecreasing only, but not necessarily differentiable or bounded. Three new sufficient conditions are derived to ascertain whether or not the equilibrium points of the delayed neural networks with additively diagonally stable interconnection matrices are absolutely exponentially stable by using delay Halanay-type inequality and Lyapunov function. The stability criteria are also suitable for delayed optimization neural networks and delayed cellular neural networks whose activation functions are often nondifferentiable or unbounded. The results herein answer a question: if a neural network without any delay is absolutely exponentially stable, then under what additional conditions, the neural networks with delay is also absolutely exponentially stable.

  18. Young adolescents' perceived activity space risk, peer networks, and substance use.

    PubMed

    Mason, Michael; Mennis, Jeremy; Way, Thomas; Light, John; Rusby, Julie; Westling, Erika; Crewe, Stephanie; Flay, Brian; Campbell, Leah; Zaharakis, Nikola; McHenry, Chantal

    2015-07-01

    Adolescent substance use is a developmentally contingent social practice that is constituted within the routine social-environment of adolescents' lives. Few studies have examined peer networks, perceived activity space risk (risk of substance use at routine locations), and substance use. We examined the moderating influence of peer network characteristics on the relationship between perceived activity space risk and substance use among a sample of 250 urban adolescents. Significant interactions were found between peer networks and perceived activity space risk on tobacco and marijuana use, such that protective peer networks reduced the effect of activity place risk on substance use. A significant 3-way interaction was found on marijuana use indicating that gender moderated peer network's effect on activity space risk. Conditional effect analysis found that boys' peer networks moderated the effect of perceived activity space risk on marijuana use, whereas for girls, the effect of perceived activity space risk on marijuana use was not moderated by their peer networks. These findings could advance theoretical models to inform social-environmental research among adolescents.

  19. Scaling Equations for a Biopolymer in Salt Solution

    NASA Astrophysics Data System (ADS)

    Geissler, Erik; Hecht, Anne-Marie; Horkay, Ferenc

    2007-12-01

    The effect of the simultaneous presence of monovalent and divalent cations on the thermodynamics of polyelectrolyte solutions is an incompletely solved problem. In physiological conditions, combinations of these ions affect structure formation in biopolymer systems. Dynamic light scattering measurements of the collective diffusion coefficient D and the osmotic compressibility of semidilute hyaluronan solutions containing different ratios of sodium and calcium ions are compared with simple polyelectrolyte models. Scaling relationships are proposed in terms of polymer concentration and ionic strength J of the added salt. Differences in the effects of sodium and calcium ions are found to be expressed only through J.

  20. Adsorption of biopolymers at hydrophilic cellulose-water interface.

    PubMed

    Halder, Ebrahim; Chattoraj, D K; Das, K P

    2005-04-05

    The extent of adsorption (Gamma2(1)) of bovine serum albumin (BSA), beta-lactoglobulin, lysozyme, gelatin, and DNA from aqueous solution onto the hydrophilic surface of cellulose has been measured as function of biopolymer concentration at different temperatures, pHs, and ionic strengths, and in the presence of a high concentration of inorganic salts and denaturants. In all cases, the value of Gamma2(1) increases with the increase of biopolymer concentration (X2) in bulk and it attains a maximum value at a critical mole fraction concentration X2m. The value of Gamma2m depends upon the nature of protein, temperature, pH, and ionic strength, as well as the nature of neutral salts present in excess. Gamma2m for proteins at a fixed physicochemical condition stands in the following order: Gelatin>betalactoglobulin>lysozyme>BSA. The isotherms for adsorption of DNA nucleotides on cellulose surface at pH 4.0 have been compared at different temperatures and ionic strengths, and in the presence of high concentration of inorganic salts LiCl, NaCl, KCl, and Na2SO4. Values of Gamma2m for different systems have been evaluated and critically compared. At pH 6.0 and 8.0, Gamma2(1) values of DNA nucleotides on cellulose are all negative due to the excess positive hydration of cellulose. At pH 4.0, adsorption of nucleotides of acid, alkali, and heat-denatured DNA widely differ from each other and in the presence of excess concentration of urea becomes negative. The probable mechanisms of biopolymer-cellulose adsorption in terms of polymer hydration, steric interaction, London-van der Waals, hydrophobic, and other types of interactions have been discussed qualitatively. The standard free energy change for the adsorption of protein and DNA nucleotides on the cellulose surface at the state of adsorption saturation has been calculated in kJ per kg of cellulose using an integrated form of the Gibbs adsorption equation. The relation between DeltaG degrees and maximum affinities between

  1. Peptide-based Biopolymers in Biomedicine and Biotechnology

    PubMed Central

    Chow, Dominic; Nunalee, Michelle L.; Lim, Dong Woo; Simnick, Andrew J.; Chilkoti, Ashutosh

    2008-01-01

    Peptides are emerging as a new class of biomaterials due to their unique chemical, physical, and biological properties. The development of peptide-based biomaterials is driven by the convergence of protein engineering and macromolecular self-assembly. This review covers the basic principles, applications, and prospects of peptide-based biomaterials. We focus on both chemically synthesized and genetically encoded peptides, including poly-amino acids, elastin-like polypeptides, silk-like polymers and other biopolymers based on repetitive peptide motifs. Applications of these engineered biomolecules in protein purification, controlled drug delivery, tissue engineering, and biosurface engineering are discussed. PMID:19122836

  2. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer.

    PubMed

    Heredia, Antonio

    2003-03-17

    Cutin is a support biopolyester involved in waterproofing the leaves and fruits of higher plants, regulating the flow of nutrients among various plant cells and organs, and minimizing the deleterious impact of pathogens. Despite the complexity and intractable nature of this biopolymer, significant progress in chemical composition, molecular architecture and, more recently, biosynthesis have been made in the past 10 years. This review is focused in the description of these advances and their physiological impacts to improve our knowledge on plant cutin, an unusual topic in most plant physiology and biochemistry books and reviews.

  3. DOC2B and Munc13-1 Differentially Regulate Neuronal Network Activity

    PubMed Central

    Lavi, Ayal; Sheinin, Anton; Shapira, Ronit; Zelmanoff, Daniel; Ashery, Uri

    2014-01-01

    Alterations in the levels of synaptic proteins affect synaptic transmission and synaptic plasticity. However, the precise effects on neuronal network activity are still enigmatic. Here, we utilized microelectrode array (MEA) to elucidate how manipulation of the presynaptic release process affects the activity of neuronal networks. By combining pharmacological tools and genetic manipulation of synaptic proteins, we show that overexpression of DOC2B and Munc13-1, proteins known to promote vesicular maturation and release, elicits opposite effects on the activity of the neuronal network. Although both cause an increase in the overall number of spikes, the distribution of spikes is different. While DOC2B enhances, Munc13-1 reduces the firing rate within bursts of spikes throughout the network; however, Munc13-1 increases the rate of network bursts. DOC2B's effects were mimicked by Strontium that elevates asynchronous release but not by a DOC2B mutant that enhances spontaneous release rate. This suggests for the first time that increased asynchronous release on the single-neuron level promotes bursting activity in the network level. This innovative study demonstrates the complementary role of the network level in explaining the physiological relevance of the cellular activity of presynaptic proteins and the transformation of synaptic release manipulation from the neuron to the network level. PMID:23537531

  4. Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surfaces

    SciTech Connect

    Roe, F.L.; Lewandowski, Z.; Funk, T.

    1996-10-01

    Electrochemical properties of corroding mild steel (MS) surfaces were measured in real time using three closely spaced microelectrodes. Dissolved oxygen, pH, and ion currents were mapped simultaneously and noninvasively above a MS coupon partially coated with biopolymer gels. Calcium alginate (Ca-Alg [an extracellular biopolymer containing carboxylate functional groups]) and agarose (one without carboxylate functional groups) were tested. Corrosion occurred at approximately the same rate under the two biopolymer spots on the same coupon. Corrosion rates under these biopolymers were {approx} 4 mpy in a weak saline solution. Results suggested corrosion was not influenced by chemical properties of the biopolymer but possibly was controlled by oxygen reduction in noncoated regions of the coupon (i.e., a differential aeration cell).

  5. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    PubMed

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  6. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis.

    PubMed

    Ivanova, Anastasia A; Wegner, Carl-Eric; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N

    2016-10-01

    Northern peatlands play a crucial role in the global carbon balance, serving as a persistent sink for atmospheric CO2 and a global carbon store. Their most extensive type, Sphagnum-dominated acidic peatlands, is inhabited by microorganisms with poorly understood degradation capabilities. Here, we applied a combination of barcoded pyrosequencing of SSU rRNA genes and Illumina RNA-Seq of total RNA (metatranscriptomics) to identify microbial populations and enzymes involved in degrading the major components of Sphagnum-derived litter and exoskeletons of peat-inhabiting arthropods: cellulose, xylan, pectin and chitin. Biopolymer addition to peat induced a threefold to fivefold increase in bacterial cell numbers. Functional community profiles of assembled mRNA differed between experimental treatments. In particular, pectin and xylan triggered increased transcript abundance of genes involved in energy metabolism and central carbon metabolism, such as glycolysis and TCA cycle. Concurrently, the substrate-induced activity of bacteria on these two biopolymers stimulated grazing of peat-inhabiting protozoa. Alveolata (ciliates) was the most responsive protozoa group as confirmed by analysis of both SSU rRNA genes and SSU rRNA. A stimulation of alphaproteobacterial methanotrophs on pectin was consistently shown by rRNA and mRNA data. Most likely, their significant enrichment was due to the utilization of methanol released during the degradation of pectin. Analysis of SSU rRNA and total mRNA revealed a specific response of Acidobacteria and Actinobacteria to chitin and pectin, respectively. Relatives of Telmatobacter bradus were most responsive among the Acidobacteria, while the actinobacterial response was primarily affiliated with Frankiales and Propionibacteriales. The expression of a wide repertoire of carbohydrate-active enzymes (CAZymes) corresponded well to the detection of a highly diverse peat-inhabiting microbial community, which is dominated by yet uncultivated

  7. Modelling temporal networks of human face-to-face contacts with public activity and individual reachability

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang

    2016-02-01

    Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.

  8. P and S wave responses of bacterial biopolymer formation in unconsolidated porous media

    NASA Astrophysics Data System (ADS)

    Noh, Dong-Hwa; Ajo-Franklin, Jonathan B.; Kwon, Tae-Hyuk; Muhunthan, Balasingam

    2016-04-01

    This study investigated the P and S wave responses and permeability reduction during bacterial biopolymer formation in unconsolidated porous media. Column experiments with fine sands, where the model bacteria Leuconostoc mesenteroides were stimulated to produce insoluble biopolymer, were conducted while monitoring changes in permeability and P and S wave responses. The bacterial biopolymer reduced the permeability by more than 1 order of magnitude, occupying ~10% pore volume after 38 days of growth. This substantial reduction was attributed to the bacterial biopolymer with complex internal structures accumulated at pore throats. S wave velocity (VS) increased by more than ~50% during biopolymer accumulation; this indicated that the bacterial biopolymer caused a certain level of stiffening effect on shear modulus of the unconsolidated sediment matrix at low confining stress conditions. Whereas replacing pore water by insoluble biopolymer was observed to cause minimal changes in P wave velocity (VP) due to the low elastic moduli of insoluble biopolymer. The spectral ratio analyses revealed that the biopolymer formation caused a ~50-80% increase in P wave attenuation (1/QP) at the both ultrasonic and subultrasonic frequency ranges, at hundreds of kHz and tens of kHz, respectively, and a ~50-60% increase in S wave attenuation (1/QS) in the frequency band of several kHz. Our results reveal that in situ biopolymer formation and the resulting permeability reduction can be effectively monitored by using P and S wave attenuation in the ultrasonic and subultrasonic frequency ranges. This suggests that field monitoring using seismic logging techniques, including time-lapse dipole sonic logging, may be possible.

  9. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging.

    PubMed

    Voss, Michelle W; Weng, Timothy B; Burzynska, Agnieszka Z; Wong, Chelsea N; Cooke, Gillian E; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P; Olson, Erin A; McAuley, Edward; Kramer, Arthur F

    2016-05-01

    Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks.

  10. Time structure of the activity in neural network models

    NASA Astrophysics Data System (ADS)

    Gerstner, Wulfram

    1995-01-01

    Several neural network models in continuous time are reconsidered in the framework of a general mean-field theory which is exact in the limit of a large and fully connected network. The theory assumes pointlike spikes which are generated by a renewal process. The effect of spikes on a receiving neuron is described by a linear response kernel which is the dominant term in a weak-coupling expansion. It is shown that the resulting ``spike response model'' is the most general renewal model with linear inputs. The standard integrate-and-fire model forms a special case. In a network structure with several pools of identical spiking neurons, the global states and the dynamic evolution are determined by a nonlinear integral equation which describes the effective interaction within and between different pools. We derive explicit stability criteria for stationary (incoherent) and oscillatory (coherent) solutions. It is shown that the stationary state of noiseless systems is ``almost always'' unstable. Noise suppresses fast oscillations and stabilizes the system. Furthermore, collective oscillations are stable only if the firing occurs while the synaptic potential is increasing. In particular, collective oscillations in a network with delayless excitatory interaction are at most semistable. Inhibitory interactions with short delays or excitatory interactions with long delays lead to stable oscillations. Our general results allow a straightforward application to different network models with spiking neurons. Furthermore, the theory allows an estimation of the errors introduced in firing rate or ``graded-response'' models.

  11. A community-organizing approach to promoting physical activity in older adults: the southeast senior physical activity network.

    PubMed

    Cheadle, Allen; Egger, Ruth; LoGerfo, James P; Walwick, Julie; Schwartz, Sheryl

    2010-03-01

    This article describes a community organizing approach to promoting physical activity among underserved older adults in southeast Seattle: the Southeast Senior Physical Activity Network (SESPAN). The organizing strategy involves networking with a variety of community-based organizations, with two broad objectives: (a) program objective-to make connections between two (or more) community-based organizations to create senior physical activity programs where none existed before; and (b) coalition objective-to build a broader network or coalition of groups and organizations to assist in making larger scale environmental and policy changes. Networking among organizations led to the creation of a number of potentially sustainable walking and exercise programs that are reaching previously underserved communities within Southeast Seattle. In addition, a major community event led to the establishment of a health coalition that has the potential to continue to generate new broad-based programs and larger scale environmental changes.

  12. AST: Activity-Security-Trust driven modeling of time varying networks

    PubMed Central

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-01-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717

  13. AST: Activity-Security-Trust driven modeling of time varying networks.

    PubMed

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-02-18

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.

  14. AST: Activity-Security-Trust driven modeling of time varying networks

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen

    2016-02-01

    Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.

  15. "Who Do You Talk to about Your Teaching?": Networking Activities among University Teachers

    ERIC Educational Resources Information Center

    Pataraia, Nino; Falconer, Isobel; Margaryan, Anoush; Littlejohn, Allison; Fincher, Sally

    2014-01-01

    As the higher education environment changes, there are calls for university teachers to change and enhance their teaching practices to match. Networking practices are known to be deeply implicated in studies of change and diffusion of innovation, yet academics' networking activities in relation to teaching have been little studied. This paper…

  16. Students' Network Project Activities in the Context of the Information Educational Medium of Higher Education Institution

    ERIC Educational Resources Information Center

    Samerkhanova, Elvira K.; Krupoderova, Elena P.; Krupoderova, Klimentina R.; Bahtiyarova, Lyudmila N.; Ponachugin, Alexander V.

    2016-01-01

    The purpose of the research is justifying didactic possibilities of the use of network services for the organization of information for the learning environment of college, where students carry out their project activities, and where effective networking between students and teachers takes place. The authors consider didactic possibilities of…

  17. 75 FR 75593 - Financial Crimes Enforcement Network; Confidentiality of Suspicious Activity Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... 31 CFR Part 103 RIN 1506-AA99 Financial Crimes Enforcement Network; Confidentiality of Suspicious Activity Reports AGENCY: The Financial Crimes Enforcement Network (``FinCEN''), Treasury. ACTION: Final... functions to promote the integrity of financial markets and mitigate risks of financial crime....

  18. DELTAMETHRIN AND ESFENVALERATE INHIBIT SPONTANEOUS NETWORK ACTIVITY IN RAT CORTICAL NEURONS IN VITRO.

    EPA Science Inventory

    Understanding pyrethroid actions on neuronal networks will help to establish a mode of action for these compounds, which is needed for cumulative risk decisions under the Food Quality Protection Act of 1996. However, pyrethroid effects on spontaneous activity in networks of inter...

  19. Visualizing the Hidden Activity of Artificial Neural Networks.

    PubMed

    Rauber, Paulo E; Fadel, Samuel G; Falcao, Alexandre X; Telea, Alexandru C

    2017-01-01

    In machine learning, pattern classification assigns high-dimensional vectors (observations) to classes based on generalization from examples. Artificial neural networks currently achieve state-of-the-art results in this task. Although such networks are typically used as black-boxes, they are also widely believed to learn (high-dimensional) higher-level representations of the original observations. In this paper, we propose using dimensionality reduction for two tasks: visualizing the relationships between learned representations of observations, and visualizing the relationships between artificial neurons. Through experiments conducted in three traditional image classification benchmark datasets, we show how visualization can provide highly valuable feedback for network designers. For instance, our discoveries in one of these datasets (SVHN) include the presence of interpretable clusters of learned representations, and the partitioning of artificial neurons into groups with apparently related discriminative roles.

  20. Effects of active links on epidemic transmission over social networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guanghu; Chen, Guanrong; Fu, Xinchu

    2017-02-01

    A new epidemic model with two infection periods is developed to account for the human behavior in social network, where newly infected individuals gradually restrict most of future contacts or are quarantined, causing infectivity change from a degree-dependent form to a constant. The corresponding dynamics are formulated by a set of ordinary differential equations (ODEs) via mean-field approximation. The effects of diverse infectivity on the epidemic dynamics ​are examined, with a behavioral interpretation of the basic reproduction number. Results show that such simple adaptive reactions largely determine the impact of network structure on epidemics. Particularly, a theorem proposed by Lajmanovich and Yorke in 1976 is generalized, so that it can be applied for the analysis of the epidemic models with multi-compartments especially network-coupled ODE systems.

  1. Noise influence on spike activation in a Hindmarsh-Rose small-world neural network

    NASA Astrophysics Data System (ADS)

    Zhe, Sun; Micheletto, Ruggero

    2016-07-01

    We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh-Rose (H-R) neural networks.

  2. Direct adhesive measurements between wood biopolymer model surfaces.

    PubMed

    Gustafsson, Emil; Johansson, Erik; Wågberg, Lars; Pettersson, Torbjörn

    2012-10-08

    For the first time the dry adhesion was measured for an all-wood biopolymer system using Johnson-Kendall-Roberts (JKR) contact mechanics. The polydimethylsiloxane hemisphere was successfully surface-modified with a Cellulose I model surface using layer-by-layer assembly of nanofibrillated cellulose and polyethyleneimine. Flat surfaces of cellulose were equally prepared on silicon dioxide substrates, and model surfaces of glucomannan and lignin were prepared on silicon dioxide using spin-coating. The measured work of adhesion on loading and the adhesion hysteresis was found to be very similar between cellulose and all three wood polymers, suggesting that the interaction between these biopolymers do not differ greatly. Surface energy calculations from contact angle measurements indicated similar dispersive surface energy components for the model surfaces. The dispersive component was dominating the surface energy for all surfaces. The JKR work of adhesion was lower than that calculated from contact angle measurements, which partially can be ascribed to surface roughness of the model surfaces and overestimation of the surface energies from contact angle determinations.

  3. Nonlinear viscoelasticity and generalized failure criterion for biopolymer gels

    NASA Astrophysics Data System (ADS)

    Divoux, Thibaut; Keshavarz, Bavand; Manneville, Sébastien; McKinley, Gareth

    2016-11-01

    Biopolymer gels display a multiscale microstructure that is responsible for their solid-like properties. Upon external deformation, these soft viscoelastic solids exhibit a generic nonlinear mechanical response characterized by pronounced stress- or strain-stiffening prior to irreversible damage and failure, most often through macroscopic fractures. Here we show on a model acid-induced protein gel that the nonlinear viscoelastic properties of the gel can be described in terms of a 'damping function' which predicts the gel mechanical response quantitatively up to the onset of macroscopic failure. Using a nonlinear integral constitutive equation built upon the experimentally-measured damping function in conjunction with power-law linear viscoelastic response, we derive the form of the stress growth in the gel following the start up of steady shear. We also couple the shear stress response with Bailey's durability criteria for brittle solids in order to predict the critical values of the stress σc and strain γc for failure of the gel, and how they scale with the applied shear rate. This provides a generalized failure criterion for biopolymer gels in a range of different deformation histories. This work was funded by the MIT-France seed fund and by the CNRS PICS-USA scheme (#36939). BK acknowledges financial support from Axalta Coating Systems.

  4. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  5. Synthesis of 9-oxononanoic acid, a precursor for biopolymers.

    PubMed

    Otte, Konrad B; Kirtz, Marko; Nestl, Bettina M; Hauer, Bernhard

    2013-11-01

    Polymers based on renewable resources have become increasingly important. The natural functionalization of fats and oils enables an easy access to interesting monomeric building blocks, which in turn transform the derivative biopolymers into high-performance materials. Unfortunately, interesting building blocks of medium-chain length are difficult to obtain by traditional chemical means. Herein, a biotechnological pathway is established that could provide an environmentally suitable and sustainable alternative. A multiple enzyme two-step one-pot process efficiently catalyzed by a coupled 9S-lipoxygenase (St-LOX1, Solanum tuberosum) and 9/13-hydroperoxide lyase (Cm-9/13HPL, Cucumis melo) cascade reaction is proposed as a potential route for the conversion of linoleic acid into 9-oxononanoic acid, which is a precursor for biopolymers. Lipoxygenase catalyzes the insertion of oxygen into linoleic acid through a radical mechanism to give 9S-hydroperoxy-octadecadienoic acid (9S-HPODE) as a cascade intermediate, which is subsequently cleaved by the action of Cm-9/13HPL. This one-pot process afforded a yield of 73 % combined with high selectivity. The best reaction performance was achieved when lipoxygenase and hydroperoxide lyase were applied in a successive rather than a simultaneous manner. Green leaf volatiles, which are desired flavor and fragrance products, are formed as by-products in this reaction cascade. Furthermore, we have investigated the enantioselectivity of 9/13-HPLs, which exhibited a strong preference for 9S-HPODE over 9R-HPODE.

  6. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    PubMed

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  7. Prefrontal cortical network activity: Opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation.

    PubMed

    Lambe, E K; Aghajanian, G K

    2007-03-30

    The fine-tuning of network activity provides a modulating influence on how information is processed and interpreted in the brain. Here, we use brain slices of rat prefrontal cortex to study how recurrent network activity is affected by neuromodulators known to alter normal cortical function. We previously determined that glutamate spillover and stimulation of extrasynaptic N-methyl-d-aspartic acid (NMDA) receptors are required to support hallucinogen-induced cortical network activity. Since microdialysis studies suggest that psychedelic hallucinogens and dopamine D1/D5 receptor agonists have opposite effects on extracellular glutamate in prefrontal cortex, we hypothesized that these two families of psychoactive drugs would have opposite effects on cortical network activity. We found that network activity can be enhanced by 2,5-dimethoxy-4-iodoamphetamine (DOI) (a psychedelic hallucinogen that is a partial agonist of 5-HT(2A/2C) receptors) and suppressed by the selective D1/D5 agonist SKF 38393. This suppression could be mimicked by direct activation of adenylyl cyclase with forskolin or by addition of a cAMP analog. These findings are consistent with previous work showing that activation of adenylyl cyclase can upregulate neuronal glutamate transporters, thereby decreasing synaptic spillover of glutamate. Consistent with this hypothesis, a low concentration of the glutamate transporter inhibitor threo-beta-benzoylaspartic acid (TBOA) restored electrically-evoked recurrent activity in the presence of a selective D1/D5 agonist, whereas recurrent activity in the presence of a low level of the GABA(A) antagonist bicuculline was not resistant to suppression by the D1/D5 agonist. The tempering of network UP states by D1/D5 receptor activation may have implications for the proposed use of D1/D5 agonists in the treatment of schizophrenia.

  8. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    PubMed

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  9. SAN-RL: combining spreading activation networks and reinforcement learning to learn configurable behaviors

    NASA Technical Reports Server (NTRS)

    White, J.; Gaines, D. M.; Wilkes, M.; Kusumalnukool, K.; Thongchai, S.; Kawamura, K.

    2001-01-01

    This approach provides the agent with a causal structure, the spreading activation network, relating goals to the actions that can achieve those goals. This enables the agent to select actions relative to the goal priorities.

  10. Activity Changes Induced by Spatio-Temporally Correlated Stimuli in Cultured Cortical Networks

    NASA Astrophysics Data System (ADS)

    Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko

    Activity-dependent plasticity probably plays a key role in learning and memory in biological information processing systems. Though long-term potentiation and depression have been extensively studied in the filed of neuroscience, little is known on the mechanisms for integrating these modifications on network-wide activity changes. In this report, we studied effects of spatio-temporally correlated stimuli on the neuronal network activity. Rat cortical neurons were cultured on substrates with 64 embedded micro-electrodes and the evoked responses were extracellularly recorded and analyzed. We compared spatio-temporal patterns of the responses between before and after repetitive application of correlated stimuli. After the correlated stimuli, the networks showed significantly different responses from those in the initial states. The modified activity reflected structures of the repeatedly applied correlated stimuli. The results suggested that spatiotemporally correlated inputs systematically induced modification of synaptic strengths in neuronal networks, which could serve as an underlying mechanism of associative memory.

  11. Topic-Aware Physical Activity Propagation in a Health Social Network

    PubMed Central

    Phan, Nhathai; Ebrahimi, Javid; Kil, Dave; Piniewski, Brigitte; Dou, Dejing

    2016-01-01

    Modeling physical activity propagation, such as physical exercise level and intensity, is the key to preventing the conduct that can lead to obesity; it can also help spread wellness behavior in a social network. PMID:27087794

  12. Cross-layer active predictive congestion control protocol for wireless sensor networks.

    PubMed

    Wan, Jiangwen; Xu, Xiaofeng; Feng, Renjian; Wu, Yinfeng

    2009-01-01

    In wireless sensor networks (WSNs), there are numerous factors that may cause network congestion problems, such as the many-to-one communication modes, mutual interference of wireless links, dynamic changes of network topology and the memory-restrained characteristics of nodes. All these factors result in a network being more vulnerable to congestion. In this paper, a cross-layer active predictive congestion control scheme (CL-APCC) for improving the performance of networks is proposed. Queuing theory is applied in the CL-APCC to analyze data flows of a single-node according to its memory status, combined with the analysis of the average occupied memory size of local networks. It also analyzes the current data change trends of local networks to forecast and actively adjust the sending rate of the node in the next period. In order to ensure the fairness and timeliness of the network, the IEEE 802.11 protocol is revised based on waiting time, the number of the node's neighbors and the original priority of data packets, which dynamically adjusts the sending priority of the node. The performance of CL-APCC, which is evaluated by extensive simulation experiments. is more efficient in solving the congestion in WSNs. Furthermore, it is clear that the proposed scheme has an outstanding advantage in terms of improving the fairness and lifetime of networks.

  13. Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus.

    PubMed

    Lauri, Sari E; Segerstråle, Mikael; Vesikansa, Aino; Maingret, Francois; Mulle, Christophe; Collingridge, Graham L; Isaac, John T R; Taira, Tomi

    2005-05-04

    Kainate receptors (KARs) are highly expressed throughout the neonatal brain, but their function during development is unclear. Here, we show that the maturation of the hippocampus is associated with a switch in the functional role of presynaptic KARs. In a developmental period restricted to the first postnatal week, endogenous L-glutamate tonically activates KARs at CA3 glutamatergic synapses to regulate release in an action potential-independent manner. At synapses onto pyramidal cells, KARs inhibit glutamate release via a G-protein and PKC-dependent mechanism. In contrast, at glutamatergic terminals onto CA3 interneurons, presynaptic KARs can facilitate release in a G-protein-independent mechanism. In both cell types, however, KAR activation strongly upregulates inhibitory transmission. We show that, through the interplay of these novel diverse mechanisms, KARs strongly regulate the characteristic synchronous network activity observed in the neonatal hippocampus. By virtue of this, KARs are likely to play a central role in the development of hippocampal synaptic circuits.

  14. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions

    PubMed Central

    Luhmann, Heiko J.; Sinning, Anne; Yang, Jenq-Wei; Reyes-Puerta, Vicente; Stüttgen, Maik C.; Kirischuk, Sergei; Kilb, Werner

    2016-01-01

    Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits. PMID:27252626

  15. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities

    PubMed Central

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D.; Correia, Cristina; Li, Hu

    2016-01-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  16. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-02

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets.

  17. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity.

    PubMed

    Egorov, Alexei V; Draguhn, Andreas

    2013-01-01

    Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully

  18. Analyzing heterogeneity in the effects of physical activity in children on social network structure and peer selection dynamics

    PubMed Central

    Henry, Teague; Gesell, Sabina B.; Ip, Edward H.

    2016-01-01

    Background Social networks influence children and adolescents’ physical activity. The focus of this paper is to examine the differences in the effects of physical activity on friendship selection, with eye to the implications on physical activity interventions for young children. Network interventions to increase physical activity are warranted but have not been conducted. Prior to implementing a network intervention in the field, it is important to understand potential heterogeneities in the effects that activity level have on network structure. In this study, the associations between activity level and cross sectional network structure, and activity level and change in network structure are assessed. Methods We studied a real-world friendship network among 81 children (average age 7.96 years) who lived in low SES neighborhoods, attended public schools, and attended one of two structured aftercare programs, of which one has existed and the other was new. We used the exponential random graph model (ERGMs) and its longitudinal extension to evaluate the association between activity level and various demographic factors in having, forming, and dissolving friendship. Due to heterogeneity between the friendship networks within the aftercare programs, separate analyses were conducted for each network. Results There was heterogeneity in the effect of physical activity on both cross sectional network structure and the formation and dissolution processes, both across time and between networks. Conclusions Network analysis could be used to assess the unique structure and dynamics of a social network before an intervention is implemented, so as to optimize the effects of the network intervention for increasing childhood physical activity. Additionally, if peer selection processes are changing within a network, a static network intervention strategy for childhood physical activity could become inefficient as the network evolves. PMID:27867518

  19. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks.

    PubMed

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results.

  20. Friendship networks and physical activity and sedentary behavior among youth: a systematized review

    PubMed Central

    2013-01-01

    Background Low levels of physical activity and increased participation in sedentary leisure-time activities are two important obesity-risk behaviors that impact the health of today’s youth. Friend’s health behaviors have been shown to influence individual health behaviors; however, current evidence on the specific role of friendship networks in relation to levels of physical activity and sedentary behavior is limited. The purpose of this review was to summarize evidence on friendship networks and both physical activity and sedentary behavior among children and adolescents. Method After a search of seven scientific databases and reference scans, a total of thirteen articles were eligible for inclusion. All assessed the association between friendship networks and physical activity, while three also assessed sedentary behavior. Results Overall, higher levels of physical activity among friends are associated with higher levels of physical activity of the individual. Longitudinal studies reveal that an individual’s level of physical activity changes to reflect his/her friends’ higher level of physical activity. Boys tend to be influenced by their friendship network to a greater extent than girls. There is mixed evidence surrounding a friend’s sedentary behavior and individual sedentary behavior. Conclusion Friends’ physical activity level appears to have a significant influence on individual’s physical activity level. Evidence surrounding sedentary behavior is limited and mixed. Results from this review could inform effective public health interventions that harness the influence of friends to increase physical activity levels among children and adolescents. PMID:24289113

  1. Frequency domain active vibration control of a flexible plate based on neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; He, Zhengjia

    2013-06-01

    A neural-network (NN)-based active control system was proposed to reduce the low frequency noise radiation of the simply supported flexible plate. Feedback control system was built, in which neural network controller (NNC) and neural network identifier (NNI) were applied. Multi-frequency control in frequency domain was achieved by simulation through the NN-based control systems. A pre-testing experiment of the control system on a real simply supported plate was conducted. The NN-based control algorithm was shown to perform effectively. These works lay a solid foundation for the active vibration control of mechanical structures.

  2. The optimization of force inputs for active structural acoustic control using a neural network

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Lester, H. C.; Silcox, R. J.

    1992-01-01

    This paper investigates the use of a neural network to determine which force actuators, of a multi-actuator array, are best activated in order to achieve structural-acoustic control. The concept is demonstrated using a cylinder/cavity model on which the control forces, produced by piezoelectric actuators, are applied with the objective of reducing the interior noise. A two-layer neural network is employed and the back propagation solution is compared with the results calculated by a conventional, least-squares optimization analysis. The ability of the neural network to accurately and efficiently control actuator activation for interior noise reduction is demonstrated.

  3. Large-Scale Coronal Heating from "Cool" Activity in the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1999-01-01

    In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Taken together, the coronal network emission and bright point emission are only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX-X, and Fe XII). Using the median-brightness contour, we divide the large-scale Fe XII corona into dim and bright halves, and find that the bright-half/dim half brightness ratio is about 1.5. We also find that the bright half relative to the dim half has 10 times greater total bright point Fe XII emission, 3 times greater Fe XII network emission, 2 times greater Fe IX-X network emission, 1.3 times greater He II network emission, and has 1.5 times more magnetic flux. Also, the cooler network (He II) radiates an order of magnitude more energy than the hotter coronal network (Fe IX-X, and Fe XII). From these results we infer that: 1) The heating of the network and the heating of the large-scale corona each increase roughly linearly with the underlying magnetic flux. 2) The production of network coronal bright points and heating of the coronal network each increase nonlinearly with the magnetic flux. 3) The heating of the large-scale corona is driven by widespread cooler network activity rather than by the exceptional network activity that produces the network coronal bright points and the coronal network. 4) The large-scale corona is heated by a nonthermal process since the driver of its heating is cooler than it is. This work was funded by the Solar Physics Branch of NASA's office of

  4. Temporal Sequence of Hemispheric Network Activation during Semantic Processing: A Functional Network Connectivity Analysis

    ERIC Educational Resources Information Center

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey

    2009-01-01

    To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…

  5. Real-time Neural Network predictions of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Bala, R.; Reiff, P. H.

    2009-12-01

    The Boyle potential or the Boyle Index (BI), Φ (kV)=10-4 (V/(km/s))2 + 11.7 (B/nT) sin3(θ/2), is an empirically-derived formula that can characterize the Earth's polar cap potential, which is readily derivable in real time using the solar wind data from ACE (Advanced Composition Explorer). The BI has a simplistic form that utilizes a non-magnetic "viscous" and a magnetic "merging" component to characterize the magnetospheric behavior in response to the solar wind. We have investigated its correlation with two of conventional geomagnetic activity indices in Kp and the AE index. We have shown that the logarithms of both 3-hr and 1-hr averages of the BI correlate well with the subsequent Kp: Kp = 8.93 log10(BI) - 12.55 along with 1-hr BI correlating with the subsequent log10(AE): log10(AE) = 1.78 log10(BI) - 3.6. We have developed a new set of algorithms based on Artificial Neural Networks (ANNs) suitable for short term space weather forecasts with an enhanced lead-time and better accuracy in predicting Kp and AE over some leading models; the algorithms omit the time history of its targets to utilize only the solar wind data. Inputs to our ANN models benefit from the BI and its proven record as a forecasting parameter since its initiation in October, 2003. We have also performed time-sensitivity tests using cross-correlation analysis to demonstrate that our models are as efficient as those that incorporates the time history of the target indices in their inputs. Our algorithms can predict the upcoming full 3-hr Kp, purely from the solar wind data and achieve a linear correlation coefficient of 0.840, which means that it predicts the upcoming Kp value on average to within 1.3 step, which is approximately the resolution of the real-time Kp estimate. Our success in predicting Kp during a recent unexpected event (22 July ’09) is shown in the figure. Also, when predicting an equivalent "one hour Kp'', the correlation coefficient is 0.86, meaning on average a prediction

  6. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.

    PubMed

    Li, Xiumin; Small, Michael

    2012-06-01

    Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.

  7. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure

    NASA Astrophysics Data System (ADS)

    Li, Xiumin; Small, Michael

    2012-06-01

    Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both invivo and invitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.

  8. A reanalysis of "Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons".

    PubMed

    Engelken, Rainer; Farkhooi, Farzad; Hansel, David; van Vreeswijk, Carl; Wolf, Fred

    2016-01-01

    Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF) neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.

  9. Sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios

    NASA Astrophysics Data System (ADS)

    Başağaoğlu, Hakan; Succi, Sauro; Manepally, Chandrika; Fedors, Randall; Wyrick, Danielle Y.

    2009-09-01

    Active fractures refer to the portions of unsaturated, connected fractures that actively conduct water. The active fracture model parameter accounts for the reduction in the number of fractures carrying water and in the fracture-matrix interface area in field-scale simulations of flow and transport in unsaturated fractured rocks. One example includes the numerical analyses of the fault test results at the Yucca Mountain site, Nevada (USA). In such applications, the active fracture model parameter is commonly used as a calibration parameter without relating it to fracture network orientations and infiltration rates. A two-dimensional, multiphase lattice-Boltzmann model was used in this study to investigate the sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios for an unsaturated, variable dipping, and geometrically simple fracture network. The active fracture model parameter differed by as much as 0.11-0.44 when the effects of fracture network orientation, injection rate, and injection mode were included in the simulations. Hence, the numerical results suggest that the sensitivity of the active fracture model parameter to fracture network orientation, injection rates, and injection modes should be explored at the field-scale to strengthen the technical basis and range of applicability of the active fracture model.

  10. AmeriFlux Network Data Activities: updates, progress and plans

    NASA Astrophysics Data System (ADS)

    Yang, B.; Boden, T.; Krassovski, M.; Song, X.

    2013-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory serves as the long-term data repository for the AmeriFlux network. Datasets currently available include hourly or half-hourly meteorological and flux observations, biological measurement records, and synthesis data products. In this presentation, we provide an update of this network database including a comprehensive review and evaluation of the biological data from about 70 sites, development of a new product for flux uncertainty estimates, and re-formatting of Level-2 standard files. In 2013, we also provided data support to two synthesis studies --- 2012 drought synthesis and FACE synthesis. Issues related to data quality and solutions in compiling datasets for these synthesis studies will be discussed. We will also present our work plans in developing and producing other high-level products, such as derivation of phenology from the available measurements at flux sites.

  11. Updates on AmeriFlux Network Data Activities

    NASA Astrophysics Data System (ADS)

    Yang, B.; Boden, T.; Krassovski, M.; Jackson, B.

    2011-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory serves as the central data repository for the AmeriFlux network. The currently available datasets include hourly or half-hourly meteorological and flux observations, biological measurement records, and synthesis data products. In this presentation, we provide an update on this network database including the recent release of gap-filled meteorological records and progress in generating value-added high level products for the flux measurements. We will also discuss our plans in developing and producing other high-level products, such as uncertainty estimates for flux measurement and derivation of phenology from the available measurements at flux sites.

  12. Complex Active Optical Networks as a New Laser Concept

    NASA Astrophysics Data System (ADS)

    Lepri, Stefano; Trono, Cosimo; Giacomelli, Giovanni

    2017-03-01

    Complex optical networks containing one or more gain sections are investigated, and the evidence of lasing action is reported; the emission spectrum reflects the topological disorder induced by the connections. A theoretical description compares well with the measurements, mapping the networks to directed graphs and showing the analogies with the problem of quantum chaos on graphs. We show that the interplay of chaotic diffusion and amplification leads to an emission statistic with characteristic heavy tails: for different topologies, an unprecedented experimental demonstration of Lévy statistics expected for random lasers is here provided for a continuous-wave pumped system. This result is also supported by a Monte Carlo simulation based on the ray random walk on the graph.

  13. Morphological Transformation and Force Generation of Active Cytoskeletal Networks

    PubMed Central

    Maruri, Daniel; Kamm, Roger D.

    2017-01-01

    Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation. PMID:28114384

  14. Active Control of Complex Systems via Dynamic (Recurrent) Neural Networks

    DTIC Science & Technology

    1992-05-30

    course, to on-going changes brought about by learning processes. As research in neurodynamics proceeded, the concept of reverberatory information flows...Microstructure of Cognition . Vol. 1: Foundations, M.I.T. Press, Cambridge, Massachusetts, pp. 354-361, 1986. 100 I Schwarz, G., "Estimating the dimension of a...Continually Running Fully Recurrent Neural Networks, ICS Report 8805, Institute of Cognitive Science, University of California at San Diego, 1988. 10 II

  15. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  16. Hemostatic, antibacterial biopolymers from Acacia arabica (Lam.) Willd. and Moringa oleifera (Lam.) as potential wound dressing materials.

    PubMed

    Bhatnagar, Monica; Parwani, Laxmi; Sharma, Vinay; Ganguli, Jhuma; Bhatnagar, Ashish

    2013-10-01

    Acacia arabica and Moringa oleifera are credited with a number of medicinal properties. Traditionally gum of Acacia plant is used in the treatment of skin disorders to soothe skin rashes, soreness, inflammation and burns while Moringa seed extracts are known to have antibacterial activity. In the present study the potential of the polymeric component of aqueous extracts of gum acacia (GA) and the seeds of M. oleifera (MSP) in wound management was evaluated. The results revealed that both biopolymers were hemostatic and hasten blood coagulation. They showed shortening of activated partial thromboplastin time and prothrombin time and were non-cytotoxic in nature. Both showed antibacterial activity against organisms known to be involved in wound infections with MIC ranging from 500-600 microg mL(-1) for GA and 300-700 microg mL(-1) for MSP. They were biodegradable and exhibited water absorption capacity in the range of 415 to 935%. The hemostatic character coupled to these properties envisions their potential in preparation of dressings for bleeding and profusely exuding wounds. The biopolymers have been further analysed for their composition by Gas chromatography.

  17. Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit

    PubMed Central

    Spielberg, Jeffrey M.; Heller, Wendy; Miller, Gregory A.

    2013-01-01

    Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures. PMID:23785328

  18. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks.

    PubMed

    Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis

    2016-07-05

    Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.

  19. Synthesis and characterization of CaCO3-biopolymer hybrid nanoporous microparticles for controlled release of doxorubicin.

    PubMed

    Bosio, Valeria E; Cacicedo, Maximiliano L; Calvignac, Brice; León, Ignacio; Beuvier, Thomas; Boury, Frank; Castro, Guillermo R

    2014-11-01

    Doxorubicin (Dox) is a hydrophilic drug extensively used for treatment of breast, lung, and ovarian cancer, among others; it is highly toxic and can cause serious side effects on nontargeted tissues. We developed and studied a hybrid nanoporous microparticle (hNP) carrier based on calcium carbonate and biopolymers derivatized with folic acid (FA) and containing Dox as a chemotherapeutic drug model. The hNPs were characterized by X-ray diffraction, and Raman and Fourier transform infrared (FTIR) spectroscopies. The X-ray diffraction patterns of calcium carbonate particles showed about 30-70% vaterite-calcite polymorphisms and up to 95% vaterite, depending on the absence or the presence of biopolymers as well as their type. Scanning electron microcopy images revealed that all types of hNPs were approximately spherical and porous with average diameter 1-5 μm, and smaller than CaCO3 microparticles. The presence of biopolymers in the matrices was confirmed after derivatization with a fluorescein isothiocyanate probe by means of confocal microscopy and FTIR synchrotron beamline analysis. In addition, the coupling of lambda carrageenan (λ-Car) to FA in the microparticles (FA-λ-Car-hNPs) increased the cancer-cell targeting and also extended the specific surface area by up to ninefold (26.6 m2 g(-1)), as determined by the Brunauer-Emmett-Teller isotherm. A nanostructured porous surface was found in all instances, and the FA-λ-Car-hNP pore size was about 30 nm, as calculated by means of the Barrett-Joyner-Halenda adsorption average. The test of FA-λ-Car-hNP anticancer activity on human osteosarcoma MG-63 cell line showed cell viabilities of 13% and 100% with and without Dox, respectively, as determined by crystal violet staining after 24 h of incubation.

  20. The Feasibility of a Physical Activity Referral Network for Pediatric Obesity

    PubMed Central

    Garber, Andrea; Martin, Maria; Gonzaga, Michael; Linchey, Jennifer

    2014-01-01

    Abstract Background: Pediatricians cite a lack of physical activity referral (PAR) opportunities as a major barrier to treating obesity. However, no literature exists on PARs for youth in the clinical setting. This study explores the feasibility of implementing PARs in a pediatric obesity clinic. Methods: Patients ages 6–18 years in an obesity clinic from July 2010 to October 2011 were referred to PARs in their community. Researchers confirmed enrollment and participation in activities by follow-up phone calls. Results: Of 130 eligible youth, 102 (78%) agreed to be referred to a physical activity program; 45 (35%) enrolled and 35 (27%) reported actually participating in an activity, for an average of 1.4 hours per week. Youth participated in 9 of 69 available activity programs included in the PAR network. Patient characteristics at baseline did not predict participation in an activity. Youth referred to organizations that contacted interested families were 5 times as likely to enroll in activities as youth referred to organizations that did not contact families (p<0.001). Conclusion: Although only 27% of eligible youth participated in an activity through the PAR network, exposing 1 in 4 obese youth to 1.4 hours of physical activity weekly could have a significant public health impact. These results suggest that PAR networks for overweight and obese youth should focus on organizations that have the infrastructure to contact youth and their families, and that a small number of physical activity programs could form the basis for launching PAR networks. PMID:24568652

  1. Chronic exposure to alcohol alters network activity and morphology of cultured hippocampal neurons.

    PubMed

    Korkotian, Eduard; Botalova, Alena; Odegova, Tatiana; Segal, Menahem

    2015-03-01

    The effects of chronic exposure to moderate concentrations of ethanol were studied in cultured hippocampal neurons. Network activity, assessed by imaging of [Ca(2+)]i variations, was markedly suppressed following 5 days of exposure to 0.25-1% ethanol. The reduced activity was sustained following extensive washout of ethanol, but the activity recovered by blockade of inhibition with bicuculline. This reduction of network activity was associated with a reduction in rates of mEPSCs, but not in a change in inhibitory synaptic activity. Chronic exposure to ethanol caused a significant reduction in the density of mature dendritic spines, without an effect on dendritic length or arborization. These results indicate that chronic exposure to ethanol causes a reduction in excitatory network drive in hippocampal neurons adding another dimension to the chronic effects of alcohol abuse.

  2. Sustained activity within the default mode network during an implicit memory task

    PubMed Central

    Yang, Jiongjiong; Weng, Xuchu; Zang, Yufeng; Xu, Mingwei; Xu, Xiaohong

    2009-01-01

    Recent neuroimaging studies have shown that several brain regions -- namely, the posterior cingulate cortex (PCC), ventral medial prefrontal cortex (vmPFC), and the bilateral angular gyrus -- are more active during resting states than during cognitive tasks (i.e., default mode network). Although there is evidence showing that the default mode network is associated with unconscious state, it is unclear whether this network is associated with unconscious processing when normal human subjects perform tasks without awareness. We manipulated the level of conscious processing in normal subjects by asking them to perform an implicit and an explicit memory task, and analyzed signal changes in the default mode network for the stimuli versus baseline in both tasks. The fMRI analysis showed that the level of activation in regions within this network during the implicit task was not significantly different from that during the baseline, except in the left angular gyrus and the insula. There was strong deactivation for the explicit task when compared with the implicit task in the default mode regions, except in the left angular gyrus and the left middle temporal gyrus. These data suggest that the activity in the default network is sustained and less disrupted when an implicit memory task is performed, but is suspended when explicit retrieval is required. These results provide evidence that the default mode network is associated with unconscious processing when human subjects perform an implicit memory task. PMID:19552900

  3. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    PubMed Central

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  4. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-08-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces.

  5. Classic Analysis of Biopolymer Dynamics Is Model Free.

    PubMed

    Fenwick, R Bryn; Dyson, H Jane

    2016-01-05

    Early analysis of biopolymer dynamics relied on a variety of motional models that were difficult to distinguish and sometimes gave contradictory results. The Lipari-Szabo model-free approach (documented in a 1980 article in Biophysical Journal, as well as in two more comprehensive 1982 articles in the Journal of the American Chemical Society, provided a simple formalism that allowed investigators to understand fluorescence and NMR experimental data without having to specify a motional model. Although the model-free method is not universally applicable (for example, its assumption of a uniform correlation time for overall molecular tumbling can be problematic for biomolecules containing areas of disorder), it remains the most popular and widely used technique for analyzing molecular motion.

  6. Topologically ordered magnesium-biopolymer hybrid composite structures.

    PubMed

    Oosterbeek, Reece N; Seal, Christopher K; Staiger, Mark P; Hyland, Margaret M

    2015-01-01

    Magnesium and its alloys are intriguing as possible biodegradable biomaterials due to their unique combination of biodegradability and high specific mechanical properties. However, uncontrolled biodegradation of magnesium during implantation remains a major challenge in spite of the use of alloying and protective coatings. In this study, a hybrid composite structure of magnesium metal and a biopolymer was fabricated as an alternative approach to control the corrosion rate of magnesium. A multistep process that combines metal foam production and injection molding was developed to create a hybrid composite structure that is topologically ordered in all three dimensions. Preliminary investigations of the mechanical properties and corrosion behavior exhibited by the hybrid Mg-polymer composite structures suggest a new potential approach to the development of Mg-based biomedical devices.

  7. The Rheological Properties of the Biopolymers in Synovial Fluid

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.; Klossner, Rebecca R.; Wetsch, Julie; Oates, Katherine M. N.; Colby, Ralph H.

    2005-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan), its interactions with anti-inflammatory drugs and other biopolymers, and its role in synovial fluid are being studied. We are investigating the rheological properties of sodium hyaluronate (NaHA) solutions and an experimental model of synovial fluid (comprised of NaHA, and the plasma proteins albumin and γ-globulins). Steady shear measurements on bovine synovial fluid and the synovial fluid model indicate that the fluids are highly viscoeleastic and rheopectic (stress increases with time under steady shear). In addition, the influence of anti-inflammatory agents on these solutions is being explored. Initial results indicate that D-penicillamine and hydroxychloroquine affect the rheology of the synovial fluid model and its components. The potential implications of these results will be discussed.

  8. Quercetin as natural stabilizing agent for bio-polymer

    NASA Astrophysics Data System (ADS)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  9. Carbohydrate nanotechnology: hierarchical assembly using nature's other information carrying biopolymers.

    PubMed

    Han, Xu; Zheng, Yeting; Munro, Catherine J; Ji, Yiwen; Braunschweig, Adam B

    2015-08-01

    Despite their central role in directing some of the most complex biological processes, carbohydrates--nature's other information carrying biopolymer--have been largely ignored as building blocks for synthetic hierarchical assemblies. The non-stoichiometric binding and astronomical diversity characteristic of carbohydrates could lead to tantalizingly complex assembly algorithms, but these attributes simultaneously increase the difficulty of preparing carbohydrate assemblies and anticipating their behavior. Convergences in biotechnology, nanotechnology, polymer chemistry, surface science, and supramolecular chemistry have led to many recent important breakthroughs in glycan microarrays and synthetic carbohydrate receptors, where the idiosyncrasies of carbohydrate structure and binding are increasingly considered. We hope to inspire more researchers to consider carbohydrate structure, diversity, and binding as attractive tools for constructing synthetic hierarchical assemblies.

  10. Conjugates of a photoactivated rhodamine with biopolymers for cell staining.

    PubMed

    Zaitsev, Sergei Yu; Shaposhnikov, Mikhail N; Solovyeva, Daria O; Solovyeva, Valeria V; Rizvanov, Albert A

    2014-01-01

    Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan ("Chitosan-PFD") and histone H1 ("Histone H1.3-PFD"). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes ("caged" dyes) for microscopic probing of biological objects. Thus, the synthesized "Chitosan-PFD" and "Histone H1-PFD" have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy.

  11. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    PubMed

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds.

  12. LassoProt: server to analyze biopolymers with lassos

    PubMed Central

    Dabrowski-Tumanski, Pawel; Niemyska, Wanda; Pasznik, Pawel; Sulkowska, Joanna I.

    2016-01-01

    The LassoProt server, http://lassoprot.cent.uw.edu.pl/, enables analysis of biopolymers with entangled configurations called lassos. The server offers various ways of visualizing lasso configurations, as well as their time trajectories, with all the results and plots downloadable. Broad spectrum of applications makes LassoProt a useful tool for biologists, biophysicists, chemists, polymer physicists and mathematicians. The server and our methods have been validated on the whole PDB, and the results constitute the database of proteins with complex lassos, supported with basic biological data. This database can serve as a source of information about protein geometry and entanglement-function correlations, as a reference set in protein modeling, and for many other purposes. PMID:27131383

  13. LassoProt: server to analyze biopolymers with lassos.

    PubMed

    Dabrowski-Tumanski, Pawel; Niemyska, Wanda; Pasznik, Pawel; Sulkowska, Joanna I

    2016-07-08

    The LassoProt server, http://lassoprot.cent.uw.edu.pl/, enables analysis of biopolymers with entangled configurations called lassos. The server offers various ways of visualizing lasso configurations, as well as their time trajectories, with all the results and plots downloadable. Broad spectrum of applications makes LassoProt a useful tool for biologists, biophysicists, chemists, polymer physicists and mathematicians. The server and our methods have been validated on the whole PDB, and the results constitute the database of proteins with complex lassos, supported with basic biological data. This database can serve as a source of information about protein geometry and entanglement-function correlations, as a reference set in protein modeling, and for many other purposes.

  14. Interpretation of fluorescence correlation spectra of biopolymer solutions.

    PubMed

    Phillies, George D J

    2016-05-01

    Fluorescence correlation spectroscopy (FCS) is regularly used to study diffusion in non-dilute "crowded" biopolymer solutions, including the interior of living cells. For fluorophores in dilute solution, the relationship between the FCS spectrum G(t) and the diffusion coefficient D is well-established. However, the dilute-solution relationship between G(t) and D has sometimes been used to interpret FCS spectra of fluorophores in non-dilute solutions. Unfortunately, the relationship used to interpret FCS spectra in dilute solutions relies on an assumption that is not always correct in non-dilute solutions. This paper obtains the correct form for interpreting FCS spectra of non-dilute solutions, writing G(t) in terms of the statistical properties of the fluorophore motions. Approaches for applying this form are discussed.

  15. Quercetin as natural stabilizing agent for bio-polymer

    SciTech Connect

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  16. Biopolymers Confined in Surface-Modified Silicon Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pfohl, T.; Yasa, M.; Safinya, C. R.; Kim, J. H.; Kim, M. W.; Wen, Z.

    2001-03-01

    We have developed surface modification techniques for control of wettability and surface charge in lithographically fabricated Si microfluidic channels. Surface microstructures (patterns) with contrasting wetting properties were created using a combination of microcontact printing and polyelectrolyte adsorption. The selective control of the surface property enabled us to devise various techniques for loading and processing biomaterials in the channels. Using fluorescence and laser scanning confocal microscopy, we studied the structure of biopolymers including DNA, F-Actin and microtubules confined in the surface-modified microchannels. The polymers were observed to align linearly along the channels, which suggests that the channel arrays can be used as effective substrates for aligning filamentous proteins for structural characterization by x-ray diffraction. (Work supported by NSF-DMR-9972246, NSF-DMR-0076357, ONR-N00014-00-1-0214, UC-Biotech 99-14, and CULAR 99-216)

  17. Interactive protein network of FXIII-A1 in lipid rafts of activated and non-activated platelets.

    PubMed

    Rabani, Vahideh; Montange, Damien; Davani, Siamak

    2016-09-01

    Lipid-rafts are defined as membrane microdomains enriched in cholesterol and glycosphingolipids within platelet plasma membrane. Lipid raft-mediated clot retraction requires factor XIII and other interacting proteins. The aim of this study was to investigate the proteins that interact with factor XIII in raft and non-raft domains of activated and non-activated platelet plasma membrane. By lipidomics analysis, we identified cholesterol- and sphingomyelin-enriched areas as lipid rafts. Platelets were activated by thrombin. Proteomics analysis provided an overview of the pathways in which proteins of rafts and non-rafts participated in the interaction network of FXIII-A1, a catalytic subunit of FXIII. "Platelet activation" was the principal pathway among KEGG pathways for proteins of rafts, both before and after activation. Network analysis showed four types of interactions (activation, binding, reaction, and catalysis) in raft and non-raft domains in interactive network of FXIII-A1. FXIII-A1 interactions with other proteins in raft domains and their role in homeostasis highlight the specialization of the raft domain in clot retraction via the Factor XIII protein network.

  18. Load sharing in the growth of bundled biopolymers

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe; Carlsson, A. E.

    2014-11-01

    To elucidate the nature of load sharing in the growth of multiple biopolymers, we perform stochastic simulations of the growth of biopolymer bundles against obstacles under a broad range of conditions and varying assumptions. The obstacle motion due to thermal fluctuations is treated explicitly. We assume the ‘perfect Brownian ratchet’ model, in which the polymerization rate equals the free-filament rate as soon as the filament-obstacle distance exceeds the monomer size. Accurate closed-form formulas are obtained for the case of a rapidly moving obstacle. We find the following: (1) load sharing is usually sub-perfect in the sense that polymerization is slower than for a single filament carrying the same average force; (2) the sub-perfect behavior becomes significant at a total force proportional to the logarithm or the square root of the number of filaments, depending on the alignment of the filaments; (3) for the special case of slow barrier diffusion and low opposing force, an enhanced obstacle velocity for an increasing number of filaments is possible; (4) the obstacle velocity is very sensitive to the alignment of the filaments in the bundle, with a staggered alignment being an order of magnitude faster than an unstaggered one at forces of only 0.5 pN per filament for 20 filaments; (5) for large numbers of filaments, the power is maximized at a force well below 1 pN per filament; (6) for intermediate values of the obstacle diffusion coefficient, the shape of the force velocity relation is very similar to that for rapid obstacle diffusion.

  19. Brain Network Activation (BNA) reveals scopolamine-induced impairment of visual working memory.

    PubMed

    Reches, Amit; Levy-Cooperman, Naama; Laufer, Ilan; Shani-Hershkovitch, Revital; Ziv, Keren; Kerem, Dani; Gal, Noga; Stern, Yaki; Cukierman, Guy; Romach, Myroslava K; Sellers, Edward M; Geva, Amir B

    2014-09-01

    The overarching goal of this event-related potential (ERP) study was to examine the effects of scopolamine on the dynamics of brain network activation using a novel ERP network analysis method known as Brain Network Activation (BNA). BNA was used for extracting group-common stimulus-activated network patterns elicited to matching probe stimuli in the context of a delayed matching-to-sample task following placebo and scopolamine treatments administered to healthy participants. The BNA extracted networks revealed the existence of two pathophysiological mechanisms following scopolamine, disconnection, and compensation. Specifically, weaker frontal theta and parietal alpha coupling was accompanied with enhanced fronto-centro-parietal theta activation relative to placebo. In addition, using the characteristic BNA network of each treatment as well as corresponding literature-guided selective subnetworks as combined biomarkers managed to differentiate between individual responses to each of the treatments. Behavioral effects associated with scopolamine included delayed response time and impaired response accuracy. These results indicate that the BNA method is sensitive to the effects of scopolamine on working memory and that it may potentially enable diagnosis and treatment assessment of dysfunctions associated with cholinergic deficiency.

  20. ModuleBlast: identifying activated sub-networks within and across species.

    PubMed

    Zinman, Guy E; Naiman, Shoshana; O'Dee, Dawn M; Kumar, Nishant; Nau, Gerard J; Cohen, Haim Y; Bar-Joseph, Ziv

    2015-02-18

    Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NFκB activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein.

  1. Dynamical Behaviors of Multiple Equilibria in Competitive Neural Networks With Discontinuous Nonmonotonic Piecewise Linear Activation Functions.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing

    2016-03-01

    This paper addresses the problem of coexistence and dynamical behaviors of multiple equilibria for competitive neural networks. First, a general class of discontinuous nonmonotonic piecewise linear activation functions is introduced for competitive neural networks. Then based on the fixed point theorem and theory of strict diagonal dominance matrix, it is shown that under some conditions, such n -neuron competitive neural networks can have 5(n) equilibria, among which 3(n) equilibria are locally stable and the others are unstable. More importantly, it is revealed that the neural networks with the discontinuous activation functions introduced in this paper can have both more total equilibria and locally stable equilibria than the ones with other activation functions, such as the continuous Mexican-hat-type activation function and discontinuous two-level activation function. Furthermore, the 3(n) locally stable equilibria given in this paper are located in not only saturated regions, but also unsaturated regions, which is different from the existing results on multistability of neural networks with multiple level activation functions. A simulation example is provided to illustrate and validate the theoretical findings.

  2. Frequency Count Attribute Oriented Induction of Corporate Network Data for Mapping Business Activity

    NASA Astrophysics Data System (ADS)

    Tanutama, Lukas

    2014-03-01

    Companies increasingly rely on Internet for effective and efficient business communication. As Information Technology infrastructure backbone for business activities, corporate network connects the company to Internet and enables its activities globally. It carries data packets generated by the activities of the users performing their business tasks. Traditionally, infrastructure operations mainly maintain data carrying capacity and network devices performance. It would be advantageous if a company knows what activities are running in its network. The research provides a simple method of mapping the business activity reflected by the network data. To map corporate users' activities, a slightly modified Attribute Oriented Induction (AOI) approach to mine the network data was applied. The frequency of each protocol invoked were counted to show what the user intended to do. The collected data was samples taken within a certain sampling period. Samples were taken due to the enormous data packets generated. Protocols of interest are only Internet related while intranet protocols are ignored. It can be concluded that the method could provide the management a general overview of the usage of its infrastructure and lead to efficient, effective and secure ICT infrastructure.

  3. Hierarchical self-organization of cytoskeletal active networks

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel; Bernheim-Groswasser, Anne; Keasar, Chen; Farago, Oded

    2012-04-01

    The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system behaves in a very noisy manner, on larger scales it evolves into several well distinct patterns such as bundles, asters and networks. These patterns are characterized by junctions with high connectivity, whose formation is possible due to the organization of the motors in ‘oligoclusters’ (intermediate-size aggregates). The simulations reveal that the self-organization process proceeds through a series of hierarchical steps, starting from local microscopic moves and ranging up to the macroscopic large scales where the steady-state structures are formed. Our results shed light on the mechanisms involved in processes such as cytokinesis and cellular contractility, where myosin motors organized in clusters operate cooperatively to induce the structural organization of cytoskeletal networks.

  4. School-based friendship networks and children's physical activity: A spatial analytical approach.

    PubMed

    Macdonald-Wallis, Kyle; Jago, Russell; Page, Angie S; Brockman, Rowan; Thompson, Janice L

    2011-07-01

    Despite the known health benefits, the majority of children do not meet physical activity guidelines, with past interventions to increase physical activity yielding little success. Social and friendship networks have been shown to influence obesity, smoking and academic achievement, and peer-led interventions have successfully reduced the uptake of adolescent smoking. However, the role of social networks on physical activity is not clear. This paper investigates the extent to which friendship networks influence children's physical activity, and attempts to quantify the association using spatial analytical techniques to account for the social influence. Physical activity data were collected for 986 children, aged 10-11 years old, from 40 schools in Bristol, UK. Data from 559 children were used for analysis. Mean accelerometer counts per minute (CPM) and mean minutes of moderate to vigorous physical activity per day (MVPA) were calculated as objective measures of physical activity. Children nominated up to 4 school-friends, and school-based friendship networks were constructed from these nominations. Networks were tested to assess whether physical activity showed spatial dependence (in terms of social proximity in social space) using Moran's I statistic. Spatial autoregressive modelling was then used to assess the extent of spatial dependence, whilst controlling for other known predictors of physical activity. This model was compared with linear regression models for improvement in goodness-of-fit. Results indicated spatial autocorrelation of both mean MVPA (I = .346) and mean CPM (I = .284) in the data, indicating that children clustered in friendship groups with similar activity levels. Spatial autoregressive modelling of mean MVPA concurred that spatial dependence was present (ρ = .26, p < .001), and improved model fit by 31% on the linear regression model. These results demonstrate an association between physical activity levels of children and their

  5. Biopolymers under large external forces and mean-field RNA virus evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Ahsan, Syed Amir

    The modeling of the mechanical response of single-molecules of DNA and RNA under large external forces through statistical mechanical methods is central to this thesis with a small portion devoted to modeling the evolutionary dynamics of positive-sense single-stranded RNA viruses. In order to develop and test models of biopolymer mechanics and illuminate the mechanisms underlying biological processes where biopolymers undergo changes in energy on the order of the thermal energy, , entails measuring forces and lengths on the scale of piconewtons (pN) and nanometers (nm), respectively. A capacity achieved in the past two decades at the single-molecule level through the development of micromanipulation techniques such as magnetic and optical tweezers, atomic force microscopy, coupled with advances in micro- and nanofabrication. The statistical mechanical models of biopolymers developed in this dissertation are dependent upon and the outcome of these advancements and resulting experiments. The dissertation begins in chapter 1 with an introduction to the structure and thermodynamics of DNA and RNA, highlighting the importance and effectiveness of simple, two-state models in their description as a prelude to the emergence of two-state models in the research manuscripts. In chapter 2 the standard models of the elasticity of polymers and of a polymer gel are reviewed, characterizing the continuum and mean-field models, including the scaling behavior of DNA in confined spaces. The research manuscript presented in the last section of chapter 2 (section 2.5), subsequent to a review of a Flory gel and in contrast to it, is a model of the elasticity of RNA as a gel, with viral RNA illustrating an instance of such a network, and shown to exhibit anomalous elastic behavior, a negative Poisson ratio, and capable of facilitating viral RNA encapsidation with further context provided in section 5.1. In chapter 3 the experimental methods and behavior of DNA and RNA under mechanical

  6. Analysis and synthesis of distributed-lumped-active networks by digital computer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.

  7. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure.

  8. Controlling self-sustained spiking activity by adding or removing one network link

    NASA Astrophysics Data System (ADS)

    Xu, Kesheng; Huang, Wenwen; Li, Baowen; Dhamala, Mukesh; Liu, Zonghua

    2013-06-01

    Being able to control the neuronal spiking activity in specific brain regions is central to a treatment scheme in several brain disorders such as epileptic seizures, mental depression, and Parkinson's diseases. Here, we present an approach for controlling self-sustained oscillations by adding or removing one directed network link in coupled neuronal oscillators, in contrast to previous approaches of adding stimuli or noise. We find that such networks can exhibit a variety of activity patterns such as on-off switch, sustained spikes, and short-term spikes. We derive the condition for a specific link to be the controller of the on-off effect. A qualitative analysis is provided to facilitate the understanding of the mechanism for spiking activity by adding one link. Our findings represent the first report on generating spike activity with the addition of only one directed link to a network and provide a deeper understanding of the microscopic roots of self-sustained spiking.

  9. Network-Based Business Simulation Activities in Technical Professional Education

    ERIC Educational Resources Information Center

    Vescoukis, Vassilios C.; Retalis, Symeon; Anagnostopoulos, Dimosthenis

    2003-01-01

    For a long time on-the-job training has been considered as the single point of contact of technical education with the real world job market. Indeed, traditional on-the-job training activities are of great educational value and complement uniquely any classroom-based learning activity. However, it has been observed that several obstacles arise…

  10. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  11. Ethanol Affects Network Activity in Cultured Rat Hippocampus: Mediation by Potassium Channels

    PubMed Central

    Korkotian, Eduard; Bombela, Tatyana; Odegova, Tatiana; Zubov, Petr; Segal, Menahem

    2013-01-01

    The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25–0.5%) ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor. PMID:24260098

  12. The Contribution of Extracurricular Activities to Adolescent Friendships: New Insights through Social Network Analysis

    ERIC Educational Resources Information Center

    Schaefer, David R.; Simpkins, Sandra D.; Vest, Andrea E.; Price, Chara D.

    2011-01-01

    Extracurricular activities are settings that are theorized to help adolescents maintain existing friendships and develop new friendships. The overarching goal of the current investigation was to examine whether coparticipating in school-based extracurricular activities supported adolescents' school-based friendships. We used social network methods…

  13. A water-mediated allosteric network governs activation of Aurora kinase A.

    PubMed

    Cyphers, Soreen; Ruff, Emily F; Behr, Julie M; Chodera, John D; Levinson, Nicholas M

    2017-04-01

    The catalytic activity of many protein kinases is controlled by conformational changes of a conserved Asp-Phe-Gly (DFG) motif. We used an infrared probe to track the DFG motif of the mitotic kinase Aurora A (AurA) and found that allosteric activation by the spindle-associated protein Tpx2 involves an equilibrium shift toward the active DFG-in state. Förster resonance energy transfer experiments show that the activation loop undergoes a nanometer-scale movement that is tightly coupled to the DFG equilibrium. Tpx2 further activates AurA by stabilizing a water-mediated allosteric network that links the C-helix to the active site through an unusual polar residue in the regulatory spine. The polar spine residue and water network of AurA are essential for phosphorylation-driven activation, but an alternative form of the water network found in related kinases can support Tpx2-driven activation, suggesting that variations in the water-mediated hydrogen bond network mediate regulatory diversification in protein kinases.

  14. The effect of ultrasonication on calcium carbonate crystallization in the presence of biopolymer

    NASA Astrophysics Data System (ADS)

    Kirboga, Semra; Oner, Mualla; Akyol, Emel

    2014-09-01

    Synthesis of calcium carbonate (CaCO3) was carried out using sonication in aqueous solution medium. The effect of the probe immersion depth (PID) and the amplitude of sonicator on calcium carbonate crystallization were studied in the absence and presence of biopolymer, carboxymethyl inulin (CMI). Calcium carbonate crystals synthesized with and without ultrasound were compared. X-ray diffraction (XRD) analysis showed that calcium carbonate obtained in the presence of biopolymer was a mixture of calcite and vaterite whereas there was only calcite polymorph in the absence of biopolymer. In the presence of biopolymer, the relative fraction of vaterite increased with the application of sonication process. The higher amplitude resulted in the higher relative vaterite fraction. The results showed that the probe immersion depth and the amplitude affected the morphology of calcium carbonate.

  15. Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Lytvyn, O. S.; Karachevtsev, V. A.

    2014-06-01

    The influence of biopolymer wrapped around nanotube on the enhancement of the semiconducting single-walled carbon nanotube (SWNT) photoluminescence (PL) in aqueous suspension which increases due to the reducing agent dithiothreitol (DTT) doping effect was revealed. The greatest enhancement of PL was observed for SWNTs covered with double- or single stranded DNA (above 170%) and DTT weak influence was revealed for SWNTs:polyC suspension (∼45%). The magnitude of the PL enhancement depends also on nanotube chirality and sample aging. The behavior of PL from SWNTs covered with various polymers is explained by the different biopolymers ordering on the nanotube surface. The ordered polymer conformation on the nanotube weakens the reducing agent doping effect. The method of reducing agent doping of nanotube:biopolymer aqueous suspension can serve as a sensitive luminescent probe of the biopolymer ordering on the carbon nanotube and can be used to increase the sensitivity of luminescent biosensors.

  16. Binary and Ternary Mixtures of Biopolymers and Water: Viscosity, Refractive Index, and Density

    NASA Astrophysics Data System (ADS)

    Silva, Bárbara Louise L. D.; Costa, Bernardo S.; Garcia-Rojas, Edwin E.

    2016-08-01

    Biopolymers have been the focus of intense research because of their wide applicability. The thermophysical properties of solutions containing biopolymers have fundamental importance for engineering calculations, as well as for thermal load calculations, energy expenditure, and development of new products. In this work, the thermophysical properties of binary and ternary solutions of carboxymethylcellulose and/or high methoxylation pectin and water at different temperatures have been investigated taking into consideration different biopolymer concentrations. The experimental data related to the thermophysical properties were correlated to obtain empirical models that can describe the temperature-concentration combined effect on the density, refractive index, and dynamic viscosity. From data obtained from the experiments, the density, refractive index, and dynamic viscosity increase with increasing biopolymer concentration and decrease with increasing temperature. The polynomial models showed a good fit to the experimental data and high correlation coefficients (R2ge 0.98) for each studied system.

  17. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T.; Gelperin, Alan; Staii, Cristian

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  18. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain

    PubMed Central

    2016-01-01

    Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540

  19. Buckling-induced F-actin fragmentation modulates the contraction of active cytoskeletal networks.

    PubMed

    Li, Jing; Biel, Thomas; Lomada, Pranith; Yu, Qilin; Kim, Taeyoon

    2017-04-11

    Actomyosin contractility originating from interactions between F-actin and myosin facilitates various structural reorganizations of the actin cytoskeleton. Cross-linked actomyosin networks show a tendency to contract to single or multiple foci, which has been investigated extensively in numerous studies. Recently, it was suggested that suppression of F-actin buckling via an increase in bending rigidity significantly reduces network contraction. In this study, we demonstrate that networks may show the largest contraction at intermediate bending rigidity, not at the lowest rigidity, if filaments are severed by buckling arising from myosin activity as demonstrated in recent experiments; if filaments are very flexible, frequent severing events can severely deteriorate network connectivity, leading to the formation of multiple small foci and low network contraction. By contrast, if filaments are too stiff, the networks exhibit minimal contraction due to the inhibition of filament buckling. This study reveals that buckling-induced filament severing can modulate the contraction of active cytoskeletal networks, which has been neglected to date.

  20. Contagion processes on the static and activity-driven coupling networks.

    PubMed

    Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2016-03-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.

  1. Creative constraints: Brain activity and network dynamics underlying semantic interference during idea production.

    PubMed

    Beaty, Roger E; Christensen, Alexander P; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L

    2017-03-01

    Functional neuroimaging research has recently revealed brain network interactions during performance on creative thinking tasks-particularly among regions of the default and executive control networks-but the cognitive mechanisms related to these interactions remain poorly understood. Here we test the hypothesis that the executive control network can interact with the default network to inhibit salient conceptual knowledge (i.e., pre-potent responses) elicited from memory during creative idea production. Participants studied common noun-verb pairs and were given a cued-recall test with corrective feedback to strengthen the paired association in memory. They then completed a verb generation task that presented either a previously studied noun (high-constraint) or an unstudied noun (low-constraint), and were asked to "think creatively" while searching for a novel verb to relate to the presented noun. Latent Semantic Analysis of verbal responses showed decreased semantic distance values in the high-constraint (i.e., interference) condition, which corresponded to increased neural activity within regions of the default (posterior cingulate cortex and bilateral angular gyri), salience (right anterior insula), and executive control (left dorsolateral prefrontal cortex) networks. Independent component analysis of intrinsic functional connectivity networks extended this finding by revealing differential interactions among these large-scale networks across the task conditions. The results suggest that interactions between the default and executive control networks underlie response inhibition during constrained idea production, providing insight into specific neurocognitive mechanisms supporting creative cognition.

  2. Contagion processes on the static and activity-driven coupling networks

    NASA Astrophysics Data System (ADS)

    Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2016-03-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.

  3. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  4. Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating.

    PubMed

    Ibe, Takeshi; Frings, Rainer B; Lachowicz, Artur; Kyo, Soichi; Nishide, Hiroyuki

    2010-05-28

    Highly and homogeneously crosslinked poly(beta-ketoester) networks densely bearing robust nitroxide radicals were prepared via a click-type and stepwise Michael polyaddition. A half-battery cell composed of the thermally-cured radical network coatings displayed a rapid, reversible, and almost stoichiometric redox-activity even with a thickness of ca. 10 mum, which may be applicable as the electrode of organic-based rechargeable devices.

  5. Online Social Networks That Connect Users to Physical Activity Partners: A Review and Descriptive Analysis

    PubMed Central

    Passarella, Ralph Joseph; Appel, Lawrence J

    2014-01-01

    Background The US Centers for Disease Control and Prevention have identified a lack of encouragement, support, or companionship from family and friends as a major barrier to physical activity. To overcome this barrier, online social networks are now actively leveraging principles of companion social support in novel ways. Objective The aim was to evaluate the functionality, features, and usability of existing online social networks which seek to increase physical activity and fitness among users by connecting them to physical activity partners, not just online, but also face-to-face. Methods In September 2012, we used 3 major databases to identify the website addresses for relevant online social networks. We conducted a Google search using 8 unique keyword combinations: the common keyword “find” coupled with 1 of 4 prefix terms “health,” “fitness,” “workout,” or “physical” coupled with 1 of 2 stem terms “activity partners” or “activity buddies.” We also searched 2 prominent technology start-up news sites, TechCrunch and Y Combinator, using 2 unique keyword combinations: the common keyword “find” coupled with 1 of 2 stem terms “activity partners” and “activity buddies.” Sites were defined as online social health activity networks if they had the ability to (1) actively find physical activity partners or activities for the user, (2) offer dynamic, real-time tracking or sharing of social activities, and (3) provide virtual profiles to users. We excluded from our analysis sites that were not Web-based, publicly available, in English, or free. Results Of the 360 initial search results, we identified 13 websites that met our complete criteria of an online social health activity network. Features such as physical activity creation (13/13, 100%) and private messaging (12/13, 92%) appeared almost universally among these websites. However, integration with Web 2.0 technologies such as Facebook and Twitter (9/13, 69%) and the option of

  6. Drug target identification using network analysis: Taking active components in Sini decoction as an example.

    PubMed

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-20

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  7. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder.

    PubMed

    Wu, Ping; Yu, Huan; Peng, Shichun; Dauvilliers, Yves; Wang, Jian; Ge, Jingjie; Zhang, Huiwei; Eidelberg, David; Ma, Yilong; Zuo, Chuantao

    2014-12-01

    Rapid eye movement sleep behaviour disorder has been evaluated using Parkinson's disease-related metabolic network. It is unknown whether this disorder is itself associated with a unique metabolic network. 18F-fluorodeoxyglucose positron emission tomography was performed in 21 patients (age 65.0±5.6 years) with idiopathic rapid eye movement sleep behaviour disorder and 21 age/gender-matched healthy control subjects (age 62.5±7.5 years) to identify a disease-related pattern and examine its evolution in 21 hemi-parkinsonian patients (age 62.6±5.0 years) and 16 moderate parkinsonian patients (age 56.9±12.2 years). We identified a rapid eye movement sleep behaviour disorder-related metabolic network characterized by increased activity in pons, thalamus, medial frontal and sensorimotor areas, hippocampus, supramarginal and inferior temporal gyri, and posterior cerebellum, with decreased activity in occipital and superior temporal regions. Compared to the healthy control subjects, network expressions were elevated (P<0.0001) in the patients with this disorder and in the parkinsonian cohorts but decreased with disease progression. Parkinson's disease-related network activity was also elevated (P<0.0001) in the patients with rapid eye movement sleep behaviour disorder but lower than in the hemi-parkinsonian cohort. Abnormal metabolic networks may provide markers of idiopathic rapid eye movement sleep behaviour disorder to identify those at higher risk to develop neurodegenerative parkinsonism.

  8. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  9. Tristable and multiple bistable activity in complex random binary networks of two-state units

    NASA Astrophysics Data System (ADS)

    Christ, Simon; Sonnenschein, Bernard; Schimansky-Geier, Lutz

    2017-01-01

    We study complex networks of stochastic two-state units. Our aim is to model discrete stochastic excitable dynamics with a rest and an excited state. Both states are assumed to possess different waiting time distributions. The rest state is treated as an activation process with an exponentially distributed life time, whereas the latter in the excited state shall have a constant mean which may originate from any distribution. The activation rate of any single unit is determined by its neighbors according to a random complex network structure. In order to treat this problem in an analytical way, we use a heterogeneous mean-field approximation yielding a set of equations generally valid for uncorrelated random networks. Based on this derivation we focus on random binary networks where the network is solely comprised of nodes with either of two degrees. The ratio between the two degrees is shown to be a crucial parameter. Dependent on the composition of the network the steady states show the usual transition from disorder to homogeneously ordered bistability as well as new scenarios that include inhomogeneous ordered and disordered bistability as well as tristability. The various steady states differ in their spiking activity expressed by a state dependent spiking rate. Numerical simulations agree with analytic results of the heterogeneous mean-field approximation.

  10. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  11. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    PubMed

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  12. An investigation of the relationship between activation of a social cognitive neural network and social functioning.

    PubMed

    Pinkham, Amy E; Hopfinger, Joseph B; Ruparel, Kosha; Penn, David L

    2008-07-01

    Previous work examining the neurobiological substrates of social cognition in healthy individuals has reported modulation of a social cognitive network such that increased activation of the amygdala, fusiform gyrus, and superior temporal sulcus are evident when individuals judge a face to be untrustworthy as compared with trustworthy. We examined whether this pattern would be present in individuals with schizophrenia who are known to show reduced activation within these same neural regions when processing faces. Additionally, we sought to determine how modulation of this social cognitive network may relate to social functioning. Neural activation was measured using functional magnetic resonance imaging with blood oxygenation level dependent contrast in 3 groups of individuals--nonparanoid individuals with schizophrenia, paranoid individuals with schizophrenia, and healthy controls--while they rated faces as either trustworthy or untrustworthy. Analyses of mean percent signal change extracted from a priori regions of interest demonstrated that both controls and nonparanoid individuals with schizophrenia showed greater activation of this social cognitive network when they rated a face as untrustworthy relative to trustworthy. In contrast, paranoid individuals did not show a significant difference in levels of activation based on how they rated faces. Further, greater activation of this social cognitive network to untrustworthy faces was significantly and positively correlated with social functioning. These findings indicate that impaired modulation of neural activity while processing social stimuli may underlie deficits in social cognition and social dysfunction in schizophrenia.

  13. Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations?

    PubMed Central

    Allene, Camille; Cossart, Rosa

    2010-01-01

    Several patterns of coherent activity have been described in developing cortical structures, thus providing a general framework for network maturation. A detailed timely description of network patterns at circuit and cell levels is essential for the understanding of pathogenic processes occurring during brain development. Disturbances in the expression timetable of this pattern sequence are very likely to affect network maturation. This review focuses on the maturation of coherent activity patterns in developing neocortical structures. It emphasizes the intrinsic and synaptic cellular properties that are unique to the immature neocortex and, in particular, the critical role played by extracellular glutamate in controlling network excitability and triggering synchronous network waves of activity. PMID:19917570

  14. Photoacoustic monitoring of water transport process in calcareous stone coated with biopolymers

    NASA Astrophysics Data System (ADS)

    May-Crespo, J.; Ortega-Morales, B. O.; Camacho-Chab, J. C.; Quintana, P.; Alvarado-Gil, J. J.; Gonzalez-García, G.; Reyes-Estebanez, M.; Chan-Bacab, M. J.

    2016-12-01

    Moisture is a critical control of chemical and physical processes leading to stone deterioration. These processes can be enhanced by microbial biofilms and associated exopolymers (EPS). There is limited current understanding of the water transport process across rocks covered by EPS. In the present work, we employed the photoacoustic technique to study the influence of three biopolymers (xanthan, microbactan and arabic gum) in the water transport process of two types of limestone rock of similar mineralogy but contrasting porosity. Both controls of RL (low porosity) and RP (high porosity) presented the higher values of water diffusion coefficient ( D) than biopolymer-coated samples, indicating that biopolymer layers slowed down the transport of water. This trend was steeper for RP samples as water was transported seven times faster than in the more porous rock. Important differences of D values were observed among samples coated by different biopolymers. Scanning electron microscopy and optical microscopy showed that surface topography was different between both types of rocks; adherence of coatings was seen predominantly in the less porous rocks samples. FTIR and NMR analysis showed the presence of pyruvate and acetate in microbactan and xanthan gum, suggesting their participation on adherence to the calcareous surfaces, sealing surface pores. These results indicate that water transport at rock interfaces is dependent on the chemistry of biopolymer and surface porosity. The implications for reduced water transport in stone conservation under the influence of biopolymers include both enhanced and lower deterioration rates along with altered efficiency of biocide treatment of epilithic biofilms.

  15. Networking.

    ERIC Educational Resources Information Center

    Duvall, Betty

    Networking is an information giving and receiving system, a support system, and a means whereby women can get ahead in careers--either in new jobs or in current positions. Networking information can create many opportunities: women can talk about how other women handle situations and tasks, and previously established contacts can be used in…

  16. Optimizing delivery systems for cationic biopolymers: competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin.

    PubMed

    Lopez-Pena, Cynthia Lyliam; McClements, David Julian

    2014-06-15

    Polylysine is a cationic biopolymer with a strong antimicrobial activity against a wide range of microorganisms, however, its functional performance is influenced by its interactions with anionic biopolymers. We examined the stability of polylysine-pectin complexes in the presence of carrageenan, and vice versa. Polylysine-pectin or polylysine-carrageenan complexes were formed at mass ratios of 1:0 to 1:32 (pH 3.5), and then micro-electrophoresis, turbidity, microscopy, and isothermal titration calorimetry (ITC) were used to characterise them. Solutions containing polylysine-pectin complexes were slightly turbid and relatively stable to aggregation at high mass ratios, whereas those containing polylysine-carrageenan complexes were turbid and unstable to aggregation and precipitation. Pectin did not strongly interact with polylysine-carrageenan complexes, whereas carrageenan displaced pectin from polylysine-pectin complexes, which was attributed to differences in electrostatic attraction between polylysine, carrageenan, and pectin. These results have important implications for the design of effective antimicrobial delivery systems for foods and beverages.

  17. Rumor spreading model considering the activity of spreaders in the homogeneous network

    NASA Astrophysics Data System (ADS)

    Huo, Liang'an; Wang, Li; Song, Naixiang; Ma, Chenyang; He, Bing

    2017-02-01

    There are some similarities between the rumor spreading and the infectious disease transmission. In this paper, we investigate rumor spreading dynamics with the activity of spreaders based on compartment model in the homogeneous network. Different from previous studies, each spreader individual in network rotates between high active and low active state according to certain probabilities. We introduce a dynamic model for the rumor spreading called I2SR, in which we consider the activity of nodes and divide spreaders into spreaders with the high rate of active state and the low rate of active spreaders. Then, the locally asymptotic stability of equilibrium is established by using Routh-Hurwitz criteria. The global stability of internal equilibrium of model is proved based on Lasalle's invariance principle. Finally, numerical simulations are carried to illustrate the impact of different parameters on the rumor spreading.

  18. The contribution of extracurricular activities to adolescent friendships: new insights through social network analysis.

    PubMed

    Schaefer, David R; Simpkins, Sandra D; Vest, Andrea E; Price, Chara D

    2011-07-01

    Extracurricular activities are settings that are theorized to help adolescents maintain existing friendships and develop new friendships. The overarching goal of the current investigation was to examine whether coparticipating in school-based extracurricular activities supported adolescents' school-based friendships. We used social network methods and data from the National Longitudinal Study of Adolescent Health to examine whether dyadic friendship ties were more likely to exist among activity coparticipants while controlling for alternative friendship processes, namely dyadic homophily (e.g., demographic and behavioral similarities) and network-level processes (e.g., triadic closure). Results provide strong evidence that activities were associated with current friendships and promoted the formation of new friendships. These associations varied based on school level (i.e., middle vs. high school) and activity type (i.e., sports, academic, arts). Results of this study provide new insight into the complex relations between activities and friendship that can inform theories of their developmental outcomes.

  19. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks

    PubMed Central

    Soper, Colin; Wicker, Evan; Kulick, Catherine V.; N’Gouemo, Prosper; Forcelli, Patrick A.

    2016-01-01

    Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy. PMID:26721319

  20. New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations.

    PubMed

    Cai, Zuowei; Huang, Lihong; Zhang, Lingling

    2015-05-01

    This paper investigates the problem of exponential synchronization of time-varying delayed neural networks with discontinuous neuron activations. Under the extended Filippov differential inclusion framework, by designing discontinuous state-feedback controller and using some analytic techniques, new testable algebraic criteria are obtained to realize two different kinds of global exponential synchronization of the drive-response system. Moreover, we give the estimated rate of exponential synchronization which depends on the delays and system parameters. The obtained results extend some previous works on synchronization of delayed neural networks not only with continuous activations but also with discontinuous activations. Finally, numerical examples are provided to show the correctness of our analysis via computer simulations. Our method and theoretical results have a leading significance in the design of synchronized neural network circuits involving discontinuous factors and time-varying delays.

  1. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    NASA Astrophysics Data System (ADS)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  2. Lactate Effectively Covers Energy Demands during Neuronal Network Activity in Neonatal Hippocampal Slices

    PubMed Central

    Ivanov, Anton; Mukhtarov, Marat; Bregestovski, Piotr; Zilberter, Yuri

    2011-01-01

    Although numerous experimental data indicate that lactate is efficiently used for energy by the mature brain, the direct measurements of energy metabolism parameters during neuronal network activity in early postnatal development have not been performed. Therefore, the role of lactate in the energy metabolism of neurons at this age remains unclear. In this study, we monitored field potentials and contents of oxygen and NAD(P)H in correlation with oxidative metabolism during intense network activity in the CA1 hippocampal region of neonatal brain slices. We show that in the presence of glucose, lactate is effectively utilized as an energy substrate, causing an augmentation of oxidative metabolism. Moreover, in the absence of glucose lactate is fully capable of maintaining synaptic function. Therefore, during network activity in neonatal slices, lactate can be an efficient energy substrate capable of sustaining and enhancing aerobic energy metabolism. PMID:21602909

  3. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity

    PubMed Central

    Savtchenko, Leonid; Megalogeni, Maria; Rusakov, Dmitri A.; Walker, Matthew C.; Pavlov, Ivan

    2015-01-01

    GABA transporters control extracellular GABA, which regulates the key aspects of neuronal and network behaviour. A prevailing view is that modest neuronal depolarization results in GABA transporter type-1 (GAT-1) reversal causing non-vesicular GABA release into the extracellular space during intense network activity. This has important implications for GABA uptake-targeting therapies. Here we combined a realistic kinetic model of GAT-1 with experimental measurements of tonic GABAA receptor currents in ex vivo hippocampal slices to examine GAT-1 operation under varying network conditions. Our simulations predict that synaptic GABA release during network activity robustly prevents GAT-1 reversal. We test this in the 0 Mg2+ model of epileptiform discharges using slices from healthy and chronically epileptic rats and find that epileptiform activity is associated with increased synaptic GABA release and is not accompanied by GAT-1 reversal. We conclude that sustained efflux of GABA through GAT-1 is unlikely to occur during physiological or pathological network activity. PMID:25798861

  4. Selective attention modulates high-frequency activity in the face-processing network.

    PubMed

    Müsch, Kathrin; Hamamé, Carlos M; Perrone-Bertolotti, Marcela; Minotti, Lorella; Kahane, Philippe; Engel, Andreas K; Lachaux, Jean-Philippe; Schneider, Till R

    2014-11-01

    Face processing depends on the orchestrated activity of a large-scale neuronal network. Its activity can be modulated by attention as a function of task demands. However, it remains largely unknown whether voluntary, endogenous attention and reflexive, exogenous attention to facial expressions equally affect all regions of the face-processing network, and whether such effects primarily modify the strength of the neuronal response, the latency, the duration, or the spectral characteristics. We exploited the good temporal and spatial resolution of intracranial electroencephalography (iEEG) and recorded from depth electrodes to uncover the fast dynamics of emotional face processing. We investigated frequency-specific responses and event-related potentials (ERP) in the ventral occipito-temporal cortex (VOTC), ventral temporal cortex (VTC), anterior insula, orbitofrontal cortex (OFC), and amygdala when facial expressions were task-relevant or task-irrelevant. All investigated regions of interest (ROI) were clearly modulated by task demands and exhibited stronger changes in stimulus-induced gamma band activity (50-150 Hz) when facial expressions were task-relevant. Observed latencies demonstrate that the activation is temporally coordinated across the network, rather than serially proceeding along a processing hierarchy. Early and sustained responses to task-relevant faces in VOTC and VTC corroborate their role for the core system of face processing, but they also occurred in the anterior insula. Strong attentional modulation in the OFC and amygdala (300 msec) suggests that the extended system of the face-processing network is only recruited if the task demands active face processing. Contrary to our expectation, we rarely observed differences between fearful and neutral faces. Our results demonstrate that activity in the face-processing network is susceptible to the deployment of selective attention. Moreover, we show that endogenous attention operates along the whole

  5. Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions.

    PubMed

    Hu, Kun; Meijer, Johanna H; Shea, Steven A; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A J L

    2012-01-01

    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ~24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales--from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation.

  6. Improved training of neural networks for the nonlinear active control of sound and vibration.

    PubMed

    Bouchard, M; Paillard, B; Le Dinh, C T

    1999-01-01

    Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers.

  7. Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex.

    PubMed

    Neske, Garrett T; Patrick, Saundra L; Connors, Barry W

    2015-01-21

    The recurrent synaptic architecture of neocortex allows for self-generated network activity. One form of such activity is the Up state, in which neurons transiently receive barrages of excitatory and inhibitory synaptic inputs that depolarize many neurons to spike threshold before returning to a relatively quiescent Down state. The extent to which different cell types participate in Up states is still unclear. Inhibitory interneurons have particularly diverse intrinsic properties and synaptic connections with the local network, suggesting that different interneurons might play different roles in activated network states. We have studied the firing, subthreshold behavior, and synaptic conductances of identified cell types during Up and Down states in layers 5 and 2/3 in mouse barrel cortex in vitro. We recorded from pyramidal cells and interneurons expressing parvalbumin (PV), somatostatin (SOM), vasoactive intestinal peptide (VIP), or neuropeptide Y. PV cells were the most active interneuron subtype during the Up state, yet the other subtypes also received substantial synaptic conductances and often generated spikes. In all cell types except PV cells, the beginning of the Up state was dominated by synaptic inhibition, which decreased thereafter; excitation was more persistent, suggesting that inhibition is not the dominant force in terminating Up states. Compared with barrel cortex, SOM and VIP cells were much less active in entorhinal cortex during Up states. Our results provide a measure of functional connectivity of various neuron types in barrel cortex and suggest differential roles for interneuron types in the generation and control of persistent network activity.

  8. Active influence in dynamical models of structural balance in social networks

    NASA Astrophysics Data System (ADS)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  9. Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics.

    PubMed

    Chen, Jingyuan E; Chang, Catie; Greicius, Michael D; Glover, Gary H

    2015-05-01

    Recently, fMRI researchers have begun to realize that the brain's intrinsic network patterns may undergo substantial changes during a single resting state (RS) scan. However, despite the growing interest in brain dynamics, metrics that can quantify the variability of network patterns are still quite limited. Here, we first introduce various quantification metrics based on the extension of co-activation pattern (CAP) analysis, a recently proposed point-process analysis that tracks state alternations at each individual time frame and relies on very few assumptions; then apply these proposed metrics to quantify changes of brain dynamics during a sustained 2-back working memory (WM) task compared to rest. We focus on the functional connectivity of two prominent RS networks, the default-mode network (DMN) and executive control network (ECN). We first demonstrate less variability of global Pearson correlations with respect to the two chosen networks using a sliding-window approach during WM task compared to rest; then we show that the macroscopic decrease in variations in correlations during a WM task is also well characterized by the combined effect of a reduced number of dominant CAPs, increased spatial consistency across CAPs, and increased fractional contributions of a few dominant CAPs. These CAP metrics may provide alternative and more straightforward quantitative means of characterizing brain network dynamics than time-windowed correlation analyses.

  10. Tritherapy (Spinalon)-Elicited Spinal Locomotor Network Activation: Phase I-IIa Clinical Trial in Spinal Cord-Injured Patients

    DTIC Science & Technology

    2013-10-01

    PROTOCOL SPIN-01 Tri- therapy (SPINALON)-elicited spinal locomotor network activation: Phase I-Ila clinicaltrials in spinalcord-injured patients Clinical...STUDY) described in the Protocol SPIN-01 (PROTOCOL) being entitled: "Tri- therapy (SPINALON)-elicited spinal locomotor network activation: Phase I...Report SC100155 SPIN-01 Tri- therapy (SPINALON)-elicited spinal locomotor network activation: Phase I-IIa clinical trials in spinal cord-injured

  11. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.

    PubMed

    Picton, Laurence D; Nascimento, Filipe; Broadhead, Matthew J; Sillar, Keith T; Miles, Gareth B

    2017-01-25

    Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more "natural" locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance.

  12. Functional Modularity of Background Activities in Normal and Epileptic Brain Networks

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Valencia, M.; Navarro, V.; Latora, V.; Martinerie, J.

    2010-03-01

    We analyze the connectivity structure of weighted brain networks extracted from spontaneous magnetoencephalographic signals of healthy subjects and epileptic patients (suffering from absence seizures) recorded at rest. We find that, for the activities in the 5-14 Hz range, healthy brains exhibit a sparse connectivity, whereas the brain networks of patients display a rich connectivity with a clear modular structure. Our results suggest that modularity plays a key role in the functional organization of brain areas during normal and pathological neural activities at rest.

  13. Update on the activities of the GGOS Bureau of Networks and Observations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.; Pavlis, Erricos C.; Ma, Chopo; Noll, Carey; Thaller, Daniela; Richter, Bernd; Gross, Richard; Neilan, Ruth; Mueller, Juergen; Barzaghi, Ricardo; Bergstrand, Sten; Saunier, Jerome; Tamisiea, Mark

    2016-01-01

    The recently reorganized GGOS Bureau of Networks and Observations has many elements that are associated with building and sustaining the infrastructure that supports the Global Geodetic Observing System (GGOS) through the development and maintenance of the International Terrestrial and Celestial Reference Frames, improved gravity field models and their incorporation into the reference frame, the production of precision orbits for missions of interest to GGOS, and many other applications. The affiliated Service Networks (IVS, ILRS, IGS, IDS, and now the IGFS and the PSMSL) continue to grow geographically and to improve core and co-location site performance with newer technologies. Efforts are underway to expand GGOS participation and outreach. Several groups are undertaking initiatives and seeking partnerships to update existing sites and expand the networks in geographic areas void of coverage. New satellites are being launched by the Space Agencies in disciplines relevant to GGOS. Working groups now constitute an integral part of the Bureau, providing key service to GGOS. Their activities include: projecting future network capability and examining trade-off options for station deployment and technology upgrades, developing metadata collection and online availability strategies; improving coordination and information exchange with the missions for better ground-based network response and space-segment adequacy for the realization of GGOS goals; and standardizing site-tie measurement, archiving, and analysis procedures. This poster will present the progress in the Bureau's activities and its efforts to expand the networks and make them more effective in supporting GGOS.

  14. Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation.

    PubMed

    Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro

    2016-10-24

    The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals' social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.

  15. Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation

    NASA Astrophysics Data System (ADS)

    Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro

    2016-10-01

    The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals’ social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.

  16. Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation

    PubMed Central

    Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro

    2016-01-01

    The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals’ social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks. PMID:27774998

  17. Spontaneous recurrent network activity in organotypic rat hippocampal slices.

    PubMed

    Mohajerani, Majid H; Cherubini, Enrico

    2005-07-01

    Organotypic hippocampal slices were prepared from postnatal day 4 rats and maintained in culture for >6 weeks. Cultured slices exhibited from 12 days in vitro spontaneous events which closely resembled giant depolarizing potentials (GDPs) recorded in neonatal hippocampal slices. GDP-like events occurred over the entire hippocampus with a delay of 30-60 ms between two adjacent regions as demonstrated by pair recordings from CA3-CA3, CA3-CA1 and interneurone-CA3 pyramidal cells. As in acute slices, spontaneous recurrent events were generated by the interplay of GABA and glutamate acting on AMPA receptors as they were reversibly blocked by bicuculline and 6,7-dinitroquinoxaline-2,3-dione but not by dl-2-amino-5-phosphonopentaoic acid. The equilibrium potentials for GABA measured in whole cell and gramicidin-perforated patch from interconnected interneurones-CA3 pyramidal cells were -70 and -56 mV, respectively. The resting membrane potential estimated from the reversal of N-methyl-D-aspartate-induced single-channel currents in cell-attach experiments was -75 mV. In spite of its depolarizing action, in the majority of cases GABA was still inhibitory as it blocked the firing of principal cells. The increased level of glutamatergic connectivity certainly contributed to network synchronization and to the development of interictal discharges after prolonged exposure to bicuculline. In spite of its inhibitory action, in a minority of cells GABA was still depolarizing and excitatory as it was able to bring principal cells to fire, suggesting that a certain degree of immaturity is still present in cultured slices. This was in line with the transient bicuculline-induced block of GDPs and with the isoguvacine-induced increase of GDP frequency.

  18. Evaluation of Rhizobium tropici-derived Biopolymer for Erosion Control of Protective Berms. Field Study: Iowa Army Ammunition Plant

    DTIC Science & Technology

    2016-06-01

    biopolymer outperformed the commercial petroleum-based polymers in all applications . ERDC TR-16-5 5 Figure 1-2. Comparison of the production of...manufacturer estimates of application times, the treatment was successful. Biologically produced polymers have a number of unique benefits when compared...biopolymer with grass seed. The control area received plain water and seed. Evaluated biopolymer application methods include single surface application

  19. Clay nanotube-biopolymer composite scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Naumenko, Ekaterina A.; Guryanov, Ivan D.; Yendluri, Raghuvara; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2016-03-01

    Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even distribution of nanotubes within the scaffolds. We used enhanced dark-field microscopy to visualise the distribution of halloysite nanotubes in the implantation area. In vitro cell adhesion and proliferation on the nanocomposites occur without changes in viability and cytoskeleton formation. In vivo biocompatibility and biodegradability evaluation in rats has confirmed that the scaffolds promote the formation of novel blood vessels around the implantation sites. The scaffolds show excellent resorption within six weeks after implantation in rats. Neo-vascularization observed in newly formed connective tissue placed near the scaffold allows for the complete restoration of blood flow. These phenomena indicate that the halloysite-doped scaffolds are biocompatible as demonstrated both in vitro and in vivo. The chitosan-gelatine-agarose doped clay nanotube nanocomposite scaffolds fabricated in this work are promising candidates for tissue engineering applications.Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even distribution of nanotubes within the scaffolds. We used enhanced dark-field microscopy to visualise the distribution of halloysite nanotubes in the implantation area. In vitro cell adhesion and proliferation on the nanocomposites occur

  20. Reciprocal Reinforcement Between Wearable Activity Trackers and Social Network Services in Influencing Physical Activity Behaviors

    PubMed Central

    2016-01-01

    Background Wearable activity trackers (WATs) are emerging consumer electronic devices designed to support physical activities (PAs), which are based on successful behavior change techniques focusing on goal-setting and frequent behavioral feedbacks. Despite their utility, data from both recent academic and market research have indicated high attrition rates of WAT users. Concurrently, evidence shows that social support (SS), delivered/obtained via social network services or sites (SNS), could increase adherence and engagement of PA intervention programs. To date, relatively few studies have looked at how WATs and SS may interact and affect PAs. Objective The purpose of this study was to explore how these two Internet and mobile technologies, WATs and SNS, could work together to foster sustainable PA behavior changes and habits among middle-aged adults (40-60 years old) in Taiwan. Methods We used purposive sampling of Executive MBA Students from National Taiwan University of Science and Technology to participate in our qualitative research. In-depth interviews and focus groups were conducted with a total of 15 participants, including 9 WAT users and 6 nonusers. Analysis of the collected materials was done inductively using the thematic approach with no preset categories. Two authors from different professional backgrounds independently annotated and coded the transcripts, and then discussed and debated until consensus was reached on the final themes. Results The thematic analysis revealed six themes: (1) WATs provided more awareness than motivation in PA with goal-setting and progress monitoring, (2) SS, delivered/obtained via SNS, increased users’ adherence and engagement with WATs and vice versa, (3) a broad spectrum of configurations would be needed to deliver WATs with appropriately integrated SS functions, (4) WAT design, style, and appearance mattered even more than those of smartphones, as they are body-worn devices, (5) the user interfaces of WATs left a

  1. Optimal Recognition Method of Human Activities Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Oniga, Stefan; József, Sütő

    2015-12-01

    The aim of this research is an exhaustive analysis of the various factors that may influence the recognition rate of the human activity using wearable sensors data. We made a total of 1674 simulations on a publically released human activity database by a group of researcher from the University of California at Berkeley. In a previous research, we analyzed the influence of the number of sensors and their placement. In the present research we have examined the influence of the number of sensor nodes, the type of sensor node, preprocessing algorithms, type of classifier and its parameters. The final purpose is to find the optimal setup for best recognition rates with lowest hardware and software costs.

  2. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    NASA Astrophysics Data System (ADS)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  3. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    PubMed Central

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed. PMID:24790975

  4. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    PubMed

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  5. Development of biopolymer nanocomposite for silver nanoparticles and Ciprofloxacin controlled release.

    PubMed

    Islan, German A; Mukherjee, Arup; Castro, Guillermo R

    2015-01-01

    Screening of biopolymeric gel beads containing Silver NanoParticles (Ag-NPs) stabilized in Guar Gum Alkyl Amine (GGAA) and Ciprofloxacin (Cip) was carried out in order to obtain a novel nanocomposite with controlled release profile of both antimicrobians. The selected matrix composed of Alginate/High Methoxyl Pectin (HMP)/GGAA (4:4:1) was able to co-incorporate Ag-NPs and Cip with encapsulation efficiency higher than 70%. SEM images revealed good cohesivity and compatibility between the biopolymers and the cargos. Beads provided protection against Ag-NPs degradation at acidic pHs and HMP would played a key role providing hydrophobic regions. While Cip release profile showed a pH independent diffusional process, Ag-NPs release was restricted to matrix erodability. Calcium quelating agents and/or alginate degrading enzymes could modulate the release profile. The bactericidal activity of beads was tested in liquid medium, showing cooperative effects between the antimicrobials against Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus and Staphylococcus aureus. TEM images confirmed interaction of Ag-NPs with bacterial surfaces followed by membrane damage. Results suggested the nanocomposite matrix as a promising system for oral treatment of intestinal infectious diseases caused by multidrug resistant and unknown microorganisms, since both Cip and Ag-NPs would be able to reach intestine in the active form.

  6. Differential activation of the default mode network in jet lagged individuals.

    PubMed

    Coutinho, Joana Fernandes; Gonçalves, Oscar Filipe; Maia, Liliana; Fernandes Vasconcelos, Cristiana; Perrone-McGovern, Kristin; Simon-Dack, Stephanie; Hernandez, Kristina; Oliveira-Silva, Patricia; Mesquita, Ana Raquel; Sampaio, Adriana

    2015-02-01

    Long-term exposure to transmeridian flights has been shown to impact cognitive functioning. Nevertheless, the immediate effects of jet lag in the activation of specific brain networks have not been investigated. We analyzed the impact of short-term jet lag on the activation of the default mode network (DMN). A group of individuals who were on a transmeridian flight and a control group went through a functional magnetic resonance imaging acquisition. Statistical analysis was performed to test for differences in the DMN activation between groups. Participants from the jet lag group presented decreased activation in the anterior nodes of the DMN, specifically in bilateral medial prefrontal and anterior cingulate cortex. No areas of increased activation were observed for the jet lag group. These results may be suggestive of a negative impact of jet lag on important cognitive functions such as introspection, emotional regulation and decision making in a few days after individuals arrive at their destination.

  7. Network activity-independent coordinated gene expression program for synapse assembly.

    PubMed

    Valor, Luis M; Charlesworth, Paul; Humphreys, Lawrence; Anderson, Chris N G; Grant, Seth G N

    2007-03-13

    Global biological datasets generated by genomics, transcriptomics, and proteomics provide new approaches to understanding the relationship between the genome and the synapse. Combined transcriptome analysis and multielectrode recordings of neuronal network activity were used in mouse embryonic primary neuronal cultures to examine synapse formation and activity-dependent gene regulation. Evidence for a coordinated gene expression program for assembly of synapses was observed in the expression of 642 genes encoding postsynaptic and plasticity proteins. This synaptogenesis gene expression program preceded protein expression of synapse markers and onset of spiking activity. Continued expression was followed by maturation of morphology and electrical neuronal networks, which was then followed by the expression of activity-dependent genes. Thus, two distinct sequentially active gene expression programs underlie the genomic programs of synapse function.

  8. Integrative Proteomics and Phosphoproteomics Profiling Reveals Dynamic Signaling Networks and Bioenergetics Pathways Underlying T Cell Activation.

    PubMed

    Tan, Haiyan; Yang, Kai; Li, Yuxin; Shaw, Timothy I; Wang, Yanyan; Blanco, Daniel Bastardo; Wang, Xusheng; Cho, Ji-Hoon; Wang, Hong; Rankin, Sherri; Guy, Cliff; Peng, Junmin; Chi, Hongbo

    2017-03-21

    The molecular circuits by which antigens activate quiescent T cells remain poorly understood. We combined temporal profiling of the whole proteome and phosphoproteome via multiplexed isobaric labeling proteomics technology, computational pipelines for integrating multi-omics datasets, and functional perturbation to systemically reconstruct regulatory networks underlying T cell activation. T cell receptors activated the T cell proteome and phosphoproteome with discrete kinetics, marked by early dynamics of phosphorylation and delayed ribosome biogenesis and mitochondrial activation. Systems biology analyses identified multiple functional modules, active kinases, transcription factors and connectivity between them, and mitochondrial pathways including mitoribosomes and complex IV. Genetic perturbation revealed physiological roles for mitochondrial enzyme COX10-mediated oxidative phosphorylation in T cell quiescence exit. Our multi-layer proteomics profiling, integrative network analysis, and functional studies define landscapes of the T cell proteome and phosphoproteome and reveal signaling and bioenergetics pathways that mediate lymphocyte exit from quiescence.

  9. Growth hormone biases amygdala network activation after fear learning

    PubMed Central

    Gisabella, B; Farah, S; Peng, X; Burgos-Robles, A; Lim, S H; Goosens, K A

    2016-01-01

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the ‘over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation. PMID:27898076

  10. A decaying factor accounts for contained activity in neuronal networks with no need of hierarchical or modular organization

    NASA Astrophysics Data System (ADS)

    Amancio, Diego R.; Oliveira, Osvaldo N., Jr.; Costa, Luciano da F.

    2012-11-01

    The mechanisms responsible for containing activity in systems represented by networks are crucial in various phenomena, for example, in diseases such as epilepsy that affect the neuronal networks and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided into modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory, through which containment of activity is achieved by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, namely, random, Barabási-Albert and geographical networks. The generality of this finding was confirmed by showing that modularity is no longer needed if the dynamics based on the integrate-and-fire dynamics incorporated the decay factor. Taken together, these results provide a proof of principle that persistent, restrained network activation might occur in the absence of any particular topological structure. This may be the reason why neuronal activity does not spread out to the entire neuronal network, even when no special topological organization exists. .

  11. Cingulate seizure-like activity reveals neuronal avalanche regulated by network excitability and thalamic inputs

    PubMed Central

    2014-01-01

    Background Cortical neurons display network-level dynamics with unique spatiotemporal patterns that construct the backbone of processing information signals and contribute to higher functions. Recent years have seen a wealth of research on the characteristics of neuronal networks that are sufficient conditions to activate or cease network functions. Local field potentials (LFPs) exhibit a scale-free and unique event size distribution (i.e., a neuronal avalanche) that has been proven in the cortex across species, including mice, rats, and humans, and may be used as an index of cortical excitability. In the present study, we induced seizure activity in the anterior cingulate cortex (ACC) with medial thalamic inputs and evaluated the impact of cortical excitability and thalamic inputs on network-level dynamics. We measured LFPs from multi-electrode recordings in mouse cortical slices and isoflurane-anesthetized rats. Results The ACC activity exhibited a neuronal avalanche with regard to avalanche size distribution, and the slope of the power-law distribution of the neuronal avalanche reflected network excitability in vitro and in vivo. We found that the slope of the neuronal avalanche in seizure-like activity significantly correlated with cortical excitability induced by γ-aminobutyric acid system manipulation. The thalamic inputs desynchronized cingulate seizures and affected the level of cortical excitability, the modulation of which could be determined by the slope of the avalanche size. Conclusions We propose that the neuronal avalanche may be a tool for analyzing cortical activity through LFPs to determine alterations in network dynamics. PMID:24387299

  12. Coordinated motor activity in simulated spinal networks emerges from simple biologically plausible rules of connectivity.

    PubMed

    Dale, Nicholas

    2003-01-01

    The spinal motor circuits of the Xenopus embryo have been simulated in a 400-neuron network. To explore the consequences of differing patterns of synaptic connectivity within the network for the generation of the motor rhythm, a system of biologically plausible rules was devised to control synapse formation by three parameters. Each neuron had an intrinsic probability of synapse formation (P(soma), specified by a space constant lambda) that was a monotonically decreasing function of its soma location in the rostro-caudal axis of the simulated network. The neurons had rostral and caudal going axons of specified length (L(axon)) associated with a probability of synapse formation (P(axon)). The final probability of synapse formation was the product of P(soma) and P(axon). Realistic coordinated activity only occurred when L(axon) and the probabilities of interconnection were sufficiently high. Increasing the values of the three network parameters reduced the burst duration, cycle period, and rostro-caudal delay and increased the rel