Science.gov

Sample records for active brazing alloy

  1. Elevated temperature creep properties for selected active metal braze alloys

    SciTech Connect

    Stephens, J.J.

    1997-02-01

    Active metal braze alloys reduce the number of processes required for the joining of metal to ceramic components by eliminating the need for metallization and/or Ni plating of the ceramic surfaces. Titanium (Ti), V, and Zr are examples of active element additions which have been used successfully in such braze alloys. Since the braze alloy is expected to accommodate thermal expansion mismatch strains between the metal and ceramic materials, a knowledge of its elevated temperature mechanical properties is important. In particular, the issue of whether or not the creep strength of an active metal braze alloy is increased or decreased relative to its non-activated counterpart is important when designing new brazing processes and alloy systems. This paper presents a survey of high temperature mechanical properties for two pairs of conventional braze alloys and their active metal counterparts: (a) the conventional 72Ag-28Cu (Cusil) alloy, and the active braze alloy 62.2Ag- 36.2Cu-1.6Ti (Cusil ABA), and (b) the 82Au-18Ni (Nioro) alloy and the active braze alloy Mu-15.5M-0.75Mo-1.75V (Nioro ABA). For the case of the Cusil/Cusil ABA pair, the active metal addition contributes to solid solution strengthening of the braze alloy, resulting in a higher creep strength as compared to the non-active alloy. In the case of the Nioro/Nioro ABA pair, the Mo and V additions cause the active braze alloy to have a two-phase microstructure, which results in a reduced creep strength than the conventional braze alloy. The Garofalo sinh equation has been used to quantitatively describe the stress and temperature dependence of the deformation behavior. It will be observed that the effective stress exponent in the Garofalo sinh equation is a function of the instantaneous value of the stress argument.

  2. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  3. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  4. Laser Brazing of High Temperature Braze Alloy

    NASA Technical Reports Server (NTRS)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  5. Active brazing alloy paste as a totally metal thick film conductor material

    NASA Astrophysics Data System (ADS)

    Zhu, Mingguang; Chung, D. D. L.

    1994-06-01

    A silver-based active (titanium-containing) brazing alloy, namely 63Ag-34.25Cu-1.75Ti-1.OSn, was found to serve as a totally metal (no glass) thick film conductor which exhibited lower electrical resistivity, much greater film/substrate adhesion, much lower porosity, similar solderability, and lower scratch resistance compared to the conventional silver-glass thick film. The brazing alloy film was formed by screen printing a paste containing the alloy particles and then firing at 880°C in vacuum.

  6. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys.

    PubMed

    Lichter, Samantha G; Escudié, Mathilde C; Stacey, Alastair D; Ganesan, Kumaravelu; Fox, Kate; Ahnood, Arman; Apollo, Nicholas V; Kua, Dunstan C; Lee, Aaron Z; McGowan, Ceara; Saunders, Alexia L; Burns, Owen; Nayagam, David A X; Williams, Richard A; Garrett, David J; Meffin, Hamish; Prawer, Steven

    2015-01-01

    As the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining.

  7. Active braze process

    SciTech Connect

    Levine, I.L.; Pike, R.A.

    1990-11-02

    Active metal bonding using Cusil (silver-copper) braze alloys is a well established method used at GE Neutron Devices (GEND) for bonding metal to metal, metal to ceramics, and ceramics to ceramics. However, there are many instances in which using a silver alloy for bonding is undesirable (e.g., in vacuum tube envelopes, or where sequential braze steps at different temperatures are required to complete an assembly). The Material and Processes Laboratory at GEND has discovered a new method of active brazing with non-silver alloys which has proved especially successful in ceramic-to-ceramic joints. This method has the added advantage of eliminating several steps which are required in conventional bonding techniques. 2 figs., 10 tabs.

  8. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and Inconel 600 Alloy with Two Ag-Cu-Ti Active Braze Alloys

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Wu, Shyi-Kaan; Yang, Sheng-Hao

    2017-02-01

    Infrared brazing of Ti50Ni50 SMA and Inconel 600 alloy using Cusil-ABA and Ticusil filler metals has been investigated. The joints were dominated by Ag-Cu eutectic with proeutectic Cu in the Cusil-ABA brazed joint and with proeutectic Ag in the Ticusil one. A continuous curved belt composed of a Ni3Ti layer and a (Cu x Ni1- x )2Ti layer formed in the brazed Ti50Ni50/Ticusil/Inconel 600 joint. On the Ti50Ni50 SMA side, an intermetallic layer of (Cu x Ni1- x )2Ti formed in all joints, with x values around 0.81 and 0.47. Layers of (Cu x Ni1- x )2Ti, Ni3Ti, and mixed Ni3Ti and Ni2Cr intermetallics were observed next to the Inconel 600 substrate in the brazed Ti50Ni50/Cusil-ABA/Inconel 600 joint. The maximum shear strengths of the joints using the Cusil-ABA filler metal and the Ticusil filler metal were 324 and 300 MPa, respectively. In the Cusil-ABA brazed joint, cracks with cleavage-dominated fracture propagated along the (Cu x Ni1- x )2Ti interfacial layer next to the Ti50Ni50 SMA substrate. In the Ticusil brazed joint, ductile dimple fracture occurred in the Ag-rich matrix near the Inconel 600 alloy substrate. The absence of a detrimental Ti-Fe-(Cu) layer on the Inconel 600 substrate side can effectively improve the shear strength of the joint.

  9. Silver-hafnium braze alloy

    DOEpatents

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  10. High-temperature nickel-brazing alloy

    NASA Technical Reports Server (NTRS)

    Powell, A. H.; Thompson, S. R.

    1970-01-01

    Gold-nickel brazing alloy, with 5 percent indium added to depress the melting point, is used for brazing of nickel-clad silver electrical conductors which operate at temperatures to 1200 deg F. Alloy has low resistivity, requires no flux, and is less corrosive than other gold-nickel, gold-copper alloys.

  11. Large Area Active Brazing of Multi-tile Ceramic-Metal Structures

    DTIC Science & Technology

    2012-05-01

    metal brazing . The active brazing alloys wet most materials (including ceramics and corrosion- resistant metals such as titanium alloys and stainless...bonding in ceramic-metal systems is active metal brazing . The active brazing alloys wet most materials (including ceramics and corrosion-resistant...an idea from the ‘50s by putting an “active” component, such as titanium, directly into a brazing alloy , typically a silver-copper eutectic, to

  12. Braze alloys for high temperature service

    NASA Technical Reports Server (NTRS)

    Lindberg, R. A.; Mckisson, R. L.; Erwin, G., Jr.

    1973-01-01

    Two groups of refractory metal compositions have been developed that are very useful as high temperature brazing alloys for sealing between ceramic and metal parts. Each group consists of various compositions of three selected refractory metals which, when combined, have characteristics required of good braze alloys.

  13. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  14. Issues of low activation brazing of SiC f/SiC composites by using alloys without free silicon

    NASA Astrophysics Data System (ADS)

    Riccardi, B.; Nannetti, C. A.; Petrisor, T.; Woltersdorf, J.; Pippel, E.; Libera, S.; Pilloni, L.

    2004-08-01

    The paper presents a novel low activation brazing technique for SiC f/SiC composites. The brazing alloy does not contain free silicon and is based on the use of a Si-44Cr at.% eutectic and the intermetallic CrSi 2 (melting temperatures 1390 and 1490 °C, respectively). These are advantageous because the melting point is low enough to avoid degradation of the advanced fibres and of the interphases in the composite, and the Si-Cr intermetallics are chemically compatible with silicon carbide. Both the eutectic and the intermetallic were prepared before brazing operations by melting a Si-Cr mixture. The joining was performed under vacuum (about 10 -4 Pa). Systematic investigations of the microstructure and of the nanochemistry (TEM, EELS, ELNES) of the Si-Cr joints reveal that direct chemical Si-Si, Cr-C and Si-Cr bonds across the interface are responsible for the adhesion: the interfaces were proved to be nearly atomically sharp and adhesive. Altogether, this brazing procedure enables joints with sufficient strength and with a microstructure comparable with that of the starting powders to be obtained.

  15. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  16. Microstructure and Mechanical Performance of Cu-Sn-Ti-Based Active Braze Alloy Containing In Situ Formed Nano-Sized TiC Particles

    NASA Astrophysics Data System (ADS)

    Leinenbach, Christian; Transchel, Robert; Gorgievski, Klea; Kuster, Friedrich; Elsener, Hans Rudolf; Wegener, Konrad

    2015-05-01

    A Cu-Sn-Ti-based active brazing filler alloy was in situ reinforced with nanosized TiC particles by adding different amounts of a cellulose nitride-based binder. The TiC particles emanate from a reaction of the Ti within the filler alloy with the carbon from the binder that does not decompose completely during heating. The correlation between the microstructure and mechanical performance was studied. In addition, the effect of different binder amounts on the shear strength and cutting performance of brazed diamond grains was studied in shear tests and single grain cutting tests. The results clearly show that the mechanical performance of the brazed diamond grains can be improved by the formation of TiC particles. This is attributed to particle strengthening of the filler alloy matrix as well as to the decreasing grain size and more homogeneous distribution of the (Cu,Sn)3Ti5 phase with increasing amount of binder.

  17. Theory and modeling of active brazing.

    SciTech Connect

    van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.

    2013-09-01

    Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.

  18. Effect of composition of titanium in silver-copper-titanium braze alloy on dissimilar laser brazing of binder-less cubic boron nitride and tungsten carbide

    NASA Astrophysics Data System (ADS)

    Sechi, Yoshihisa; Nagatsuka, Kimiaki; Nakata, Kazuhiro

    2014-08-01

    Laser brazing with Ti as an active element in silver-copper alloy braze metal has been carried out for binder-less cubic boron nitride and tungsten carbide, using silver-copper- titanium braze alloys with titanium content that varied between 0.28 mass% and 1.68 mass%. Observations of the interface using electron probe microanalysis and scanning acoustic microscopy show that efficient interface adhesion between binder-less cubic boron nitride and the silver-copper-titanium braze alloy was achieved for the braze with a titanium content of 0. 28 mass%.

  19. Formation of interfacial microstructure in brazing of Si{sub 3}N{sub 4} with Ti-activated Ag-Cu filler alloys

    SciTech Connect

    Paulasto, M.; Kivilahti, J.K.

    1995-04-15

    Advanced ceramics like silicon nitride are increasingly used as structural components in demanding applications such as turbine engines and heat exchangers. Owing to the difficulties in fabrication of complicated geometries from brittle ceramics, like Si{sub 3}N{sub 4}, adequate joining techniques have to be provided. Brazing with active filler metals, most of which are based on the Ag-Cu-Ti system, is increasingly used for joining of Si{sub 3}N{sub 4} to other ceramics and metals. The present work concentrates on the formation of the interfacial microstructures in the brazing of silicon nitride with AgCuTi alloys using both thermodynamic analysis and brazing experiments. This article is part of a larger program, in which the role of titanium in active brazing of ceramics has been studied. The interfacial reactions were investigated by brazing Si{sub 3}N{sub 4} with two commercial filler alloys and with different binary AgCu filler alloys produced in the laboratory. Phases formed during joining were characterized with the SEM/EPMA and SIMS techniques. The thermodynamic information is obtained from the descriptions of the ternary Ti-Si-N and Ti-Cu-Ag systems assessed in previous studies and from the literature concerning the Ag-Si and Cu-Si systems.

  20. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  1. Oxide film on 5052 aluminium alloy: Its structure and removal mechanism by activated CsF-AlF3 flux in brazing

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Wang, Dongpo; Cheng, Fangjie; Wang, Ying

    2015-05-01

    The oxide-film structure on the 5052 Al alloy and the film-removal mechanism by activated CsF-AlF3 flux in brazing were studied. Characterisation of the oxide film shows that thermally activated Mg, segregated from the alloy's interior, was significantly enriched and oxidised during medium-temperature brazing. Thus, the outer oxide surface consisted of the amorphous MgO-like phase, and the interior of the oxide film comprised mainly the amorphous MgO-like phase and dispersely distributed and less-ordered MgAl2O4. The MgO-like phase was the main obstacle to oxide removal in brazing. The activated ZnCl2-containing CsF-AlF3 flux effectively removed the oxide film, and the 5052 Al alloy was successfully brazed by the Zn-Al filler metal and activated flux. When Zn2+ in the molten flux permeated the oxide film through cracks, its chemical reaction with the Al substrate loosened the oxide film, which was eventually pushed out as the filler metal spread over the alloy surface.

  2. Microstructure and Performance of Kovar/Alumina Joints Made with Silver-Copper Base Active Metal Braze Alloys

    SciTech Connect

    STEPHENS, JOHN J.; VIANCO,PAUL T.; HLAVA,PAUL F.; WALKER,CHARLES A.

    1999-12-15

    Poor hermeticity performance was observed for Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3} ceramic-ceramic joints having a Kovar{trademark} alloy interlayer. The active Ag-Cu-Ti filler metal was used to braze the substrates together. The Ti active element was scavenged from the filler metal by the formation of a (Fe, Ni, Co){sub x}Ti phase (x= 2-3) that prevented development of a continuous Ti{sub x}O{sub y} layer at the filler metal/Al{sub 2}O{sub 3} interface. Altering the process parameters did not circumvent the scavenging of Ti. Molybdenum barrier layers 1000, 2500, or 5000 {angstrom} thick on the Kovar{trademark} surfaces successfully allowed Ti{sub x}O{sub y} formation at the filler metal/Al{sub 2}O{sub 3} interface and hermetic joints. The problems with the Ag-Cu-Ti filler metal for Kovar{trademark}/Al{sub 2}O{sub 3} braze joints led to the evaluation of a Ag-Cu-Zr filler metal. The Zr (active element) in Ag-Cu-Zr filler metal was not susceptible to the scavenging problem.

  3. Dissimilar joint characteristics of SiC and WC-Co alloy by laser brazing

    NASA Astrophysics Data System (ADS)

    Nagatsuka, K.; Sechi, Y.; Nakata, K.

    2012-08-01

    SiC and WC-Co alloys were joined by laser brazing with an active braze metal. The braze metal based on eutectic Ag-Cu alloy with additional Ti as an active element ranging from 0 to 2.8 mass% was sandwiched by the SiC block and WC-Co alloy plate. The brazing was carried out by selective laser beam irradiation on the WC-Co alloy plate. The content of Ti in the braze metal was required to exceed 0.6 mass% in order to form a brazed joint with a measurable shear strength. The shear strength increased with increasing Ti content up to 2.3 mass%Ti and decreased with a higher content.

  4. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  5. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  6. The Effect of Braze Interlayer Thickness on the Mechanical Strength of Alumina Brazed with Ag-CuO Braze Alloys

    SciTech Connect

    Erskine, Kevin M.; Meier, Alan; Joshi, Vineet V.; Pilgrim, Steven M.

    2014-12-01

    The effect of braze interlayer thickness on the strength of alumina brazed with silver-copper oxide reactive air braze (RAB) alloys was evaluated using a four point bend test configuration. The brazed samples had an average fracture strength of 180 MPa or approximately 60 percent of the average monolithic alumina strength. The joint strength values obtained exceeded the yield strength and ultimate tensile strength of the silver interlayer indicating strong ceramic to metal adhesion and the development of a triaxial stress state in the braze interlayer. The average fracture strength was relatively constant (190 ± 60 MPa) in the thickness range of 0.030 mm to 0.230 mm for all test conditions. The braze fracture strength then decreased down to 100 ± 30 MPa as the braze thickness increased from 0.230 mm to 0.430 mm indicating a loss of triaxial constraint with increasing interlayer thickness. In addition, four different fracture modes were observed.

  7. A viscoplastic theory for braze alloys

    SciTech Connect

    Neilsen, M.K.; Burchett, S.N.; Stone, C.M.; Stephens, J.J.

    1996-04-01

    A new viscoplastic theory for CusilABA and other braze alloys has been developed. Like previous viscoplastic theories,this new theory uses a hyperbolic sine function of effective stress in its kinetic equation for the inelastic strain rate. This new theory has an internal state variable which accounts for isotropic hardening and recovery and a second-order, internal state tensor which accounts for kinematic hardening and recovery. Unlike previous theories, the new theory uses evolution equations for the state variables which describe competing mechanisms of power law hardening and static recovery. The evolution equations used in previous theories describe competing mechanisms of linear hardening, dynamic and static recovery. The new viscoplastic theory was implemented in several finite element codes and used in several metal-to-ceramic brazing simulations. Two approaches for obtaining material parameters for the new viscoplastic theory were developed.

  8. Infrared repair brazing of 403 stainless steel with a nickel-based braze alloy

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Wu, S. K.; Hung, C. M.

    2002-06-01

    Martensitic stainless steel (403SS) is extensively used for intermediate and low-pressure steam turbine blades in fossil-fuel power plants. The purpose of this investigation is to study the repair of shallow cracks on the surface of 403SS steam turbine blades by infrared repair brazing using rapid thermal cycles. A nickel-based braze alloy (NICROBRAZ LM) is used as filler metal. The braze alloy after brazing is primarily comprised of borides and an FeNi3 matrix with different amounts of alloying elements, especially B and Si. As the brazing temperature increases, more Fe atoms are dissolved into the molten braze. Some boron atoms diffuse into the 403SS substrate primarily via grain boundary diffusion and form B-Cr-Fe intermetallic precipitates along the grain boundaries. The LM filler metal demonstrates better performance than 403SS in both microhardness and wear tests. It is also noted that specimens brazed in a vacuum have less porosity than those brazed in an Ar atmosphere. The shear strength of the joint is around 300 MPa except for specimens brazed in short time periods, e.g., 5 seconds in Ar flow and 30 seconds in vacuum. The fractographs mainly consist of brittle fractures and no ductile dimple fractures observed in the scanning electron microscope (SEM) examination.

  9. Microstructural and Mechanical Evaluation of a Cu-Based Active Braze Alloy to Join Silicon Nitride Ceramics

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, Rajiv; Varela, F. M.; Martinez-Fernandez, J.

    2010-01-01

    Self-joining of St. Gobain Si3N4 (NT-154) using a ductile Cu-Al-Si-Ti active braze (Cu-ABA) was demonstrated. A reaction zone approx.2.5-3.5 microns thick) developed at the interface after 30 min brazing at 1317 K. The interface was enriched in Ti and Si. The room temperature compressive shear strengths of Si3N4/Si3N4 and Inconel/Inconel joints (the latter created to access baseline data for use with the proposed Si3N4/Inconel joints) were 140+/-49MPa and 207+/-12MPa, respectively. High-temperature shear tests were performed at 1023K and 1073 K, and the strength of the Si3N4/Si3N4 and Inconel/Inconel joints were determined. The joints were metallurgically well-bonded for temperatures above 2/3 of the braze solidus. Scanning and transmission electron microscopy studies revealed a fine grain microstructure in the reaction layer, and large grains in the inner part of the joint with interfaces being crack-free. The observed formation of Ti5Si3 and AlN at the joint interface during brazing is discussed.

  10. Thin-film diffusion brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Mikus, E. B.

    1972-01-01

    A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.

  11. Design of a braze alloy for fast epitaxial brazing of superalloys

    NASA Astrophysics Data System (ADS)

    Piegert, S.; Laux, B.; Rösier, J.

    2012-07-01

    For the repair of directionally solidified turbine components made of nickel-based superalloys, a new high-temperature brazing method has been developed. Utilising heterogeneous nucleation on the crack surface, the microstructure of the base material can be reproduced, i.e. single crystallinity can be maintained. In contrast to commonly used eutectic braze alloys, such as nickel-boron or nickel-silicon systems, the process is not diffusion controlled but works with a consolute binary base system. The currently applied epitaxial brazing methods rely on isothermal solidification diffusing the melting point depressants into the base material until their concentration is reduced so that the liquid braze solidifies. Contrary, the identified Ni-Mn consolute system enables a temperature driven epitaxial solidification resulting in substantially reduced process duration. The development of the braze alloys was assisted using the CALPHAD software Thermo-Calc. The solidification behaviour was estimated by kinetic calculations with realistic boundary conditions. Finally, the complete system, including braze alloy as well as substrate material, was modelled by means of DICTRA. Subsequently, the thermodynamic properties of the braze alloys were experimentally analysed by DSC measurements. For brazing experiments 300 μm wide parallel gaps were used. Complete epitaxial solidification, i.e. the absence of high-angle grain boundaries, could be achieved within brazing times being up to two orders of magnitude shorter compared to diffusion brazing processes. Theoretically and experimentally evaluated process windows reveal similar shapes. However, a distinct shift has to be stated which can be ascribed to the limited accuracy of the underlying thermodynamic databases.

  12. Thermal fatigue and oxidation data for alloy/braze combinations

    NASA Technical Reports Server (NTRS)

    Hill, V. L.; Humphreys, V. E.

    1977-01-01

    Thermal fatigue and oxidation data were obtained for 62 brazed specimens of 3 iron-, 3 nickel-, and 1 cobalt-base alloy. Fluidized bed thermal cycling was conducted over the range 740/25 C employing 10 cm long single-edge wedge specimens. Immersion time was always 4 minutes in each bed. Types of test specimens employed in the program include those with brazed overlays on the specimen radius, those butt brazed at midspan and those with a brazed foil overlay on the specimen radius. Of the 18 braze overlay specimens, 5 generated fatigue cracks by 7000 cycles. Thermal cracking of butt brazed specimens occurred exclusively through the butt braze. Of the 23 butt brazed specimens, 7 survived 11,000 thermal cycles without cracking. Only 2 of the 21 foil overlaid specimens exhibiting cracking in 7,000 cycles. Blistering of the foil did occur for 2 alloys by 500 cycles. Oxidation of the alloy/braze combination was limited at the test maximum test temperature of 740 C.

  13. Plasma Spray for Difficult-To-Braze Alloys

    NASA Technical Reports Server (NTRS)

    Brennan, A.

    1982-01-01

    Nickel plating on surfaces makes brazing easier for some alloys. Sometimes nickel plating may not be feasible because of manufacturing sequence, size of hardware, or lack of suitable source for nickel plating. Alternative surface preparation in such cases is to grit-blast surface lightly and then plasma-spray 1 1/2 to 2 mils of fine nickel powder or braze-alloy material directly on surface. Powder is sprayed from plasma gun, using argon as carrier gas to prevent oxidation of nickel or braze alloy.

  14. Silver-palladium braze alloy recovered from masking materials

    NASA Technical Reports Server (NTRS)

    Cierniak, R.; Colman, G.; De Carlo, F.

    1966-01-01

    Method for recovering powdered silver-palladium braze alloy from an acrylic spray binder and rubber masking adhesive used in spray brazing is devised. The process involves agitation and dissolution of masking materials and recovery of suspended precious metal particles on a filter.

  15. Properties of vacuum brazed Si3N4/steel joint using active brazing filler metal

    NASA Astrophysics Data System (ADS)

    Bao, Fanghan; Ren, Jialie; Zhou, Yunhong; Yan, Ping

    The influence of active element Ti in Ag-Cu-Ti filler metal on wettability and joint strength is studied. Filler metal with 3 percent Ti achieves good results in direct brazing of silicon nitride to steel. For improving joint strength different interlayers are synthetically investigated. Experiments showed that an interlayer of low yield strength material can reduce the residual stress in the joint and increase joint strength more effectively than that of an interlayer of low coefficient of expansion material. Active element Ti in the brazing alloy diffused into Si3N4, and chemical reactions occurred in ceramic-metal interface producing certain chemical compounds consist of N and Ti.

  16. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  17. Braze Process Optimization Involving Conventional Metal/Ceramic Brazing with 50Au-50Cu Alloy

    SciTech Connect

    MALIZIA JR.,LOUIS A.; MEREDITH,KEITH W.; APPEL,DANIEL B.; MONROE,SAUNDRA L.; BURCHETT,STEVEN N.; STEPHENS JR.,JOHN J.

    1999-12-15

    Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. Experience with brazing of hermetic vacuum components has identified the following parameters as influencing the outcome of hydrogen furnace brazed Kovar{trademark} to metallized alumina braze joints: (a) Mo-Mn metallization thickness, sinter fire temperature and porosity (b) Nil plate purity, thickness, and sinter firing conditions (c) peak process temperature, time above liquidus and (d) braze alloy washer thickness. ASTM F19 tensile buttons are being used to investigate the above parameters. The F19 geometry permits determination of both joint hermeticity and tensile strength. This presentation will focus on important lessons learned from the tensile button study: (A) the position of the Kovar{trademark} interlayer can influence the joint tensile strength achieved--namely, off-center interlayers can lead to residual stress development in the ceramic and degrade tensile strength values. Finite element analysis has been used to demonstrate the expected magnitude in strength degradation as a function of misalignment. (B) Time above liquidus (TAL) and peak temperature can influence the strength and alloying level of the resulting braze joint. Excessive TAL or peak temperatures can lead to overbraze conditions where all of the Ni plate is dissolved. (C) Metallize sinter fire processes can influence the morphology and strength obtained from the braze joints.

  18. Reducing inadvertent alloying of metal/ceramic brazes

    SciTech Connect

    Stephens, J.J.; Hlava, P.F.

    1992-12-31

    Inadvertent alloying of Cu braze metal can compromise metal/ceramic seals. Electron microprobe analyses have quantified alloying of Cu brazes in metal/ceramic feedthroughs. Pin material and processing parameters above 1084C both affect alloying levels. Using either Kovar or Ni-plated 316L stainless steel pins limits alloying compared to Palco pins. Minimizing the time during which the braze is molten also avoids excessive alloying. The original thickness of the Ni plating on the Mo-Mn metallization of the ceramic also influences the alloying content of these brazes. Metal/ceramic brazes made with long brazing cycles, Mo-Mn metallization, and Kovar components grow a layer of Mo{sub 6}(Fe{sub 3.5}CO{sub 3.5}){sub 7} on the metallization. Layer thicknesses observed do not appear to compromise joint integrity. Ni additions of approximately 10 and 20 wt.% to Cu apparently increases the stress required for stress relaxation during cooldown. to maintain creep rates required for stress relaxation during cooldown. Relative to unalloyed Cu, this strengthening effect tends to increase as temperature is decreased.

  19. Low vapor pressure braze alloys for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1976-01-01

    The evaluation of cesium diode electrode materials called for braze fillers with very low vapor pressures and a wide range of melting points. Binary alloys of low vapor pressure refractory metals were chosen to fill this need. These alloys of Th, Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W have reported melting point minima or eutectics from 1,510 K to above 3,000 K. Preliminary data are compiled on the use of several of these braze alloys. Melting points and surface wetting on a Ta base are given. Results of brazing Ir, LaB6, Nb, Re, W, and Zr-22 wt % ZrO2 materials into Ta and Nb-1% Zr bases are presented. Current braze usage is summarized.

  20. Dissimilar laser brazing of h-BN and WC-Co alloy in Ar atmosphere without evacuation process

    NASA Astrophysics Data System (ADS)

    Sechi, Y.; Nagatsuka, K.; Nakata, K.

    2012-08-01

    Laser brazing with Ti as an active element in Ag-Cu alloy braze metal has been successfully applied to dissimilar joining of h-BN and WC-Co alloy in Ar (99.999% purity) gas flow atmosphere without any evacuation process. Good wettability of the braze metal with h-BN and WC-Co alloy were confirmed by the observation and structural analysis of the interface by electron probe micro-analysis and scanning acoustic microscopy. The oxidation of titanium was not observed and this showed that the laser brazing with titanium as an active element in braze metal could be performed even in an Ar gas flow atmosphere without an evacuation process using a high-vacuum furnace.

  1. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    NASA Astrophysics Data System (ADS)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  2. Al2O3/SUS304 Brazing via AgCuTi-W Composite as Active Filler

    NASA Astrophysics Data System (ADS)

    Su, Cherng-Yuh; Zhuang, Xie-Zongyang; Pan, Cheng-Tang

    2014-03-01

    Alumina ceramic (α-Al2O3) was brazed to stainless steel (SUS304) using an Ag-Cu-Ti + W composite filler and a traditional active brazing filler alloy (CuSil-ABA). Then, the effects of the presence of W particles and of the brazing parameters on the microstructures and mechanical properties of the brazed joints were investigated. The maximum tensile strength of the joints obtained using Ag-Cu-Ti + W composite filler was 13.2 MPa, which is similar to that obtained using CuSil-ABA filler (13.5 MPa). When the joint was brazed at 930 °C for 30 min, the tensile strengths decreased for both kinds of fillers, although the strength was slightly higher for the Ag-Cu-Ti + W composite filler than for the Ag-Cu-Ti filler. The interfacial microstructure results show that the Ti reacts with W to form a Ti-W-O compound in the brazing alloy. When there are more W particles in the brazing alloy, the thickness of the Ti X O Y reaction layer near the alumina ceramic decreases. Moreover, W particles added to the brazing alloy can reduce the coefficient of thermal expansion of the brazing alloy, which results in lower residual stress between the Al2O3 and SUS304 in the brazing joints and thus yields higher tensile strengths as compared to those obtained using the CuSil-ABA brazing alloy.

  3. Braze alloy holds bonding strength over wide temperature range

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Copper-based quaternary alloys of the solid solution type is used for vacuum furnace brazing of large stainless steel components at a maximum temperature of 1975 deg F. The alloy has high bonding strength and good ductility over a temperature range extending from the cryogenic region to approximately 800 deg F.

  4. Wettability of brazing alloys on molybdenum and TZM (Mo-Ti-Zr alloy)

    SciTech Connect

    McDonald, M.M.; Keller, D.L.; Heiple, C.R.; Hofmann, W.E.

    1988-01-01

    Vacuum brazing studies have been performed on molybdenum and TZM (0.5Ti-0.08Zr-Mo). Wettability tests have been conducted for nineteen braze metal filler alloys on molybdenum and thirty-two braze metal filler alloys on TZM over a wide range of temperatures. A wetting index, which is a function of contact angle and braze alloy contact area, was determined for each filler alloy at each brazing temperature. The nature and extent of interaction between the brazing alloys and the base metals was analyzed by conventional metallography, scanning-electron microscopy, and electron microprobe analysis. A comparison is made between the behavior of filler alloys on molybdenum and TZM -- filler alloys consistently exhibited less wettability on TZM than on molybdenum. The lower wettability of TZM is believed to be due to a small amount of titanium in the surface oxide on TZM. Cracking was observed in the base metal under some of the high temperature braze deposits. The cracking is shown to arise from liquid metal embrittlement from nickel in the high temperature braze alloys. 7 refs., 11 figs., 2 tabs.

  5. Microstructural and Mechanical Characterization of Actively Brazed Alumina Specimens

    SciTech Connect

    Hosking, F.M.; Cadden, C.H.; Stephens, J.J.; Glass, S.J.; Yang, N.Y.C.; Vianco, P.V.; Walker, C.A.

    1999-08-26

    Alumina (94 and 99.8% grade compositions) was brazed directly to itself with gold-based active brazing alloys (ABA's) containing vanadium additions of 1,2 and 3 weight percent. The effects of brazing conditions on the joint properties were investigated. Wetting behavior, interfacial reactions, microstructure, hermeticity and tensile strength were determined. Wetting was fair to good for the ABA and base material combinations. Microanalysis identified a discontinuous Al-V-O spinel reaction product at the alumina-braze interface. Tensile strength results for 94% alumina were uniformly good and generally not sensitive to the vanadium concentration, with tensile values of 85-105 MPa. There was more variability in the 99.8% alumina strength results, with values ranging from 25-95 MPa. The highest vanadium concentration (3 wt. %) yielded the highest joint strength for the brazed 99.8% alumina. Failures in the 99.8% alumina samples occurred at the braze-alumina interface, while the 94% alumina specimens exhibited fracture of the ceramic substrate.

  6. Low-melting-point titanium-base brazing alloys. Part 2: Characteristics of brazing Ti-21Ni-14Cu on Ti-6Al-4V substrate

    SciTech Connect

    Chang, E.; Chen, C.H.

    1997-12-01

    Filler metal of a low-melting-point (917 C) Ti-21Ni-14Cu was brazed onto the substrate of Ti-6Al-4V alloy at 960 C for 2, 4, and 8 h to investigate the microstructural evolution and electrochemical characteristics of the brazed metal as a function of the period of brazing time. Optical microscopy, scanning and transmission electron microscopy, and x-ray diffractometry were used to characterize the microstructure and phase of the brazed metal; also, the potentiostat was used for corrosion study. Experimental results indicate that diffusion of copper and nickel from the filler metal into the equiaxed {alpha} plus intergranular {beta} structure of Ti-6Al-4V substrate causes the lamellar Widmanstaetten structure to form. The intermetallic Ti{sub 2}Ni phase existing in the prior filler metal diminishes, while the Ti{sub 2}Cu phase can be identified for the metal brazed at 960 C for 2 h, but the latter phase decreases with time. Advantage might be taken from the evidence of faster diffusion of nickel than copper along the {beta} phase to the substrate. In deaerated Hank`s solution, corrosion potential, corrosion current density, and critical potential for active-to-passive transition decrease while the passivation range broadens with the period of brazing time. However, all the brazed metals, immersed for different periods in oxygen-saturated Hank`s solution, show similar corrosion behavior, irrespective of the brazing time.

  7. On the metallurgy of active brazing of silicon nitride

    SciTech Connect

    Paulasto, M.; Kivilahti, J.K.; Loo, F.J.J. van

    1996-10-01

    Activation mechanism and interfacial reactions in brazing of Si{sub 3}N{sub 4} with different AgCuTi filler alloys has been investigated thermodynamically and experimentally. During brazing the AgCuTi filler alloy is divided into two liquids L1 and L2, where the (Cu,Ti)-rich liquid L2 gathers at the Si{sub 3}N{sub 4} interface and reacts with it. The concentration of Ti in L2 is high, but due to the strong attractive interaction between Cu and Ti, the activity of Ti in L2 is considerably low. In reaction between Si{sub 3}N{sub 4} and Cu-containing brazes at Ti-Cu-Si-N compound is typically formed at the interface. In absence of Cu, in joints brazed with AgTi based filler alloys, extremely Ti-rich solution reacts with Si{sub 3}N{sub 4} and as reaction products TiN and Ti{sub 5}Si{sub 3}[N] are formed.

  8. Development of Al sbnd Ge base rheocast brazing alloys

    NASA Astrophysics Data System (ADS)

    Saint-Antonin, F.; Suéry, M.; Meneses, P.; Le Marois, G.; Moret, F.

    1996-10-01

    This study concerns the development of an aluminium—germanium rheocast brazing alloy able to join replaceable sacrificial protections onto permanently cooled substrates in the ITER divertor. The rheocast alloy must be solid at the in-service temperature (up to 350°C) and semi-solid, with a viscosity close to that of grease, in a wide range of temperature above: this last property will allow the in-situ replacement of the sacrificial components even on vertical surfaces. This paper describes the fabrication route of the rheocast and reports the mechanical characterisation both up to 400°C and in the semi-solid region. Moreover, the brazing process has been optimized to obtain sound joints. The surface, mechanical resistance and thermal stability of the Al sbnd Ge/Cu joint are presented. Successive brazing tests have been performed to show the feasibility to sacrificial parts removal and replacement.

  9. Graphite-to-304SS Braze Joining by Active Metal-Brazing Technique: Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Ray, Ajoy K.; Kar, Abhijit; Kori, S. A.; Pathak, L. C.; Sonnad, A. N.

    2013-01-01

    In the present investigation, an attempt has been made to improve the mechanical strength of graphite-stainless steel-brazed joint. Due to high capillary action, the liquid filler alloy usually tends to percolate into the pores of graphite causing severe stress in the graphite near the joint interface resulting in poor joint strength of 10-15 MPa. In the present investigation, a thin coating of SiC was applied on graphite before the joining process to avoid the penetration of liquid filler alloy into the pores of the graphite. Active filler alloy Ag-Cu-Ti was used to braze the substrates. The brazing was carried out at 850, 900, 950, and 1000 °C. The characterization of the interfaces of the brazed joints was carried out using scanning electron microscopy attached with energy dispersive spectroscopy and x-ray diffraction analysis. From the correlation between the microstructural and mechanical properties, shear strength of approximately 35 MPa for graphite-304SS-brazed joint produced at 900 °C was demonstrated. After the shear tests, the fracture surfaces were analyzed by SEM-EDS.

  10. Joining C/C composite to copper using active Cu-3.5Si braze

    NASA Astrophysics Data System (ADS)

    Shen, Yuanxun; Li, Zhenglin; Hao, Chuanyong; Zhang, Jinsong

    2012-02-01

    A simple technique was developed to join C/C composite to Cu using active Cu-3.5Si braze for nuclear thermal applications. The brazing alloy exhibited good wettability on C/C substrate due to the reaction layer formed at the interface. A strong interfacial bond of the brazing alloy on C/C with the formation of TiC + SiC + Ti 5Si 3 reaction layer was obtained. The produced CC/Cu/CuCrZr joint exhibited shear strength as high as 79 MPa and excellent thermal resistance during the thermal shock tests.

  11. Elemental composition of brazing alloys in metallic orthodontic brackets.

    PubMed

    Zinelis, Spiros; Annousaki, Olga; Eliades, Theodore; Makou, Margarita

    2004-06-01

    The aim of this study was to assess the elemental composition of the brazing alloy of representative orthodontic brackets. The brackets examined were Gemini (3M, Unitec, Monrovia, Calif), MicroLoc (GAC, Bohemia, NY), OptiMESHxrt (Ormco, Glendora, Calif), and Ultratrim (Dentarum, Ispringen, Germany). Four metallic brackets for each brand were embedded in epoxy resin and after metallographic grinding and polishing were cleaned in a water ultrasonic bath. Scanning electron microscopy and energy-dispersive x-ray microanalysis (EDS) were used to assess the quantitative composition of the brazing alloy. Four EDS spectra were collected for each brazing alloy, and the mean value and standard deviation for the concentration of each element were calculated. The elemental composition of the brazing alloys was determined as follows (percent weight): Gemini: Ni = 83.98 +/- 1.02, Si = 6.46 +/- 0.37, Fe = 5.90 +/- 0.93, Cr = 3.52 +/- 0.34; MicroLoc: Ag = 42.82 +/- 0.18, Au = 32.14 +/- 0.65, Cu = 24.53 +/- 0.26, Mg = 1.12 +/- 0.33; OptiMESHxrt: Au = 67.79 +/- 0.97, Fe = 15.69 +/- 0.29, Ni = 13.01 +/- 0.93, Cr = 4.01 +/- 0.35; Ultratrim: Ag = 87.97 +/- 0.33, Cu = 10.51 +/- 0.45, Mg = 1.29 +/- 0.63, Zn = 1.13 +/- 0.24. The findings of this study showed that different brazing materials were used for the different brands, and thus different performances are expected during intraoral exposure; potential effects on the biological properties also are discussed.

  12. Low vapor pressure braze alloys for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1976-01-01

    Preliminary results in the use of some low-vapor-pressure braze alloys are reported; these are binary alloys of refractory metals (Th, Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, W) with vapor pressures below 0.1 nanotorr at 1500 K or 10 microtorr at 2000 K. The melting point minima or eutectics of the alloys range from 1510 K to above 3000 K. Melting points and surface wetting on a Ta base are given. Results are presented on brazing of Ir, LaB6, Nb, Re, W, and ZrO2 (with 22 wt % Zr) into a Ta base or a Nb-1% Zr base. The results are applicable in electrode screening programs for thermionic cesium diodes.

  13. Joining a Ni-based creep-resistant (ODS) alloy by brazing

    NASA Astrophysics Data System (ADS)

    Bucklow, I. A.

    Joints are produced in a fine-grained Ni oxide-dispersion-strengthened (ODS) alloy by means of brazing alloys with and without boron, and the resulting joints are studied mechanographically. The brazing alloys employed are either sputtered coatings or foils, and brazing is conducted in a vacuum for approximately two hours. The resulting joints are examined during the process by mass spectrometry and afterwards by means of metallographic observation following etching in glyceregia. Premature and uncontrolled recrystallization of the parent metal is noted in the samples brazed with alloys obtaining boron. The 2-micron braze coating used minimize second-phase formation and dispersoid agglomerations, and the 25-micron brazing foils lead to high porosity and dispersoid aggregation due to excessive melting. Recrystallization of the parent metal near brazing zones is concluded to be undesirable although is does not necessarily influence the quality of the joint.

  14. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  15. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  16. Brazing.

    SciTech Connect

    Cadden, Charles H.

    2005-04-01

    The use of a lower-melting-point molten metal to join metallic components is perhaps the earliest example of processing which employs metallurgical bonding principles, having roots as far back as 4200 BC (Peaslee 2003). More than 6000 years later, brazing occupies a prominent position in our suite of joining processes where it offers cost and/or performance advantages in the fabrication of many structures. More precisely, brazing can be described as the use of a molten filler metal to wet the closely fitting faying surfaces of a joint, leading to formation of metallurgical bonds between the filler metal and substrates. Historically, brazing processes employ filler metals whose solidus temperature exceeds 723 K, as opposed to soldering processes which use lower-melting-point temperature filler materials. In the past several decades, technological advances have facilitated a broadening of applications for brazing while simultaneously contradicting some of the traditional perceptions of the process. However, many of those tenets remain appropriate for the majority of brazing processes and products. Accordingly, this article provides a brief description of traditional brazing and some important factors to be considered when designing and producing brazed structures. An additional section describes the technical advances in the field.

  17. The development of nontoxic Ag-based brazing alloys

    SciTech Connect

    Timmins, P.F. )

    1994-09-01

    An experimental investigation wad conducted to produce nontoxic, Cd-free brazing alloys that possessed similar melting ranges and mechanical properties to those alloys within the Ag-Cu-Zn-Cd system. The investigation consisted of phase equilibria, Zn equivalence, thermal analysis, extrusion, wire drawing and mechanical testing of alloys based in the Ag-Cu-Zn system. Thermal analysis of these new alloys yielded liquidus temperatures in the range 680 to 775 C (1256--1427 F) and solidus temperatures in the range 625 to 675 C (1157--1247 F). These values compared favorably to the Ag-Cu-Zn-Cd alloys, which have liquidus and solidus temperatures in the ranges of 640 to 710 C (1184--1310 F) and 610 to 620 C (1130--1148 F), respectively, for Ag contents in the 20 to 50 wt-% range. Tensile tests revealed the ultimate tensile strengths of the as-cast Ag-Cu-Zn-Sn alloys to be higher than the toxic Cd-containing alloys of higher Ag content and higher than the ternary Ag-Cu-Zn alloys. For example, the alloy at 35Ag-34Cu-30Zn-1Sn exhibited an as-cast tensile strength of 47.6 kg/mm[sup 2] (67.7 ksi) compared to the alloy at 50Ag-15Cu-16Zn-19Cd with an as-cast tensile strength of 45.7 kg/mm[sup 2] (65 ksi).

  18. Fluxless Brazing and Heat Treatment of a Plate-Fin Sandwich Actively Cooled Panel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1978-01-01

    The processes and techniques used to fabricate plate-fin sandwich actively cooled panels are presented. The materials were 6061 aluminum alloy and brazing sheet having clad brazing alloy. The panels consisted of small scale specimens, fatigue specimens, and a large 0.61 m by 1.22 m test panel. All panels were fluxless brazed in retorts in heated platen presses while exerting external pressure to assure intimate contact of details. Distortion and damage normally associated with that heat treatment were minimized by heat treating without fixtures and solution quenching in an organic polymer solution. The test panel is the largest fluxless brazed and heat treated panel of its configuration known to exist.

  19. Microstructure and Interfacial Reactions During Active Metal Brazing of Stainless Steel to Titanium

    NASA Astrophysics Data System (ADS)

    Laik, A.; Shirzadi, A. A.; Tewari, R.; Kumar, Anish; Jayakumar, T.; Dey, G. K.

    2013-05-01

    Microstructural evolution and interfacial reactions during active metal vacuum brazing of Ti (grade-2) and stainless steel (SS 304L) using a Ag-based alloy containing Cu, Ti, and Al was investigated. A Ni-depleted solid solution layer and a discontinuous layer of (Ni,Fe)2TiAl intermetallic compound formed on the SS surface and adjacent to the SS-braze alloy interface, respectively. Three parallel contiguous layers of intermetallic compounds, CuTi, AgTi, and (Ag,Cu)Ti2, formed at the Ti-braze alloy interface. The diffusion path for the reaction at this interface was established. Transmission electron microscopy revealed formation of nanocrystals of Ag-Cu alloy of size ranging between 20 and 30 nm in the unreacted braze alloy layer. The interdiffusion zone of β-Ti(Ag,Cu) solid solution, formed on the Ti side of the joint, showed eutectoid decomposition to lamellar colonies of α-Ti and internally twinned (Cu,Ag)Ti2 intermetallic phase, with an orientation relationship between the two. Bend tests indicated that the failure in the joints occurred by formation and propagation of the crack mostly along the Ti-braze alloy interface, through the (Ag,Cu)Ti2 phase layer.

  20. Copper-phosphorus alloys offer advantages in brazing copper

    SciTech Connect

    Rupert, W.D.

    1996-05-01

    Copper-phosphorus brazing alloys are used extensively for joining copper, especially refrigeration and air-conditioning copper tubing and electrical conductors. What is the effect of phosphorus when alloyed with copper? The following are some of the major effects: (1) It lowers the melt temperature of copper (a temperature depressant). (2) It increases the fluidity of the copper when in the liquid state. (3) It acts as a deoxidant or a fluxing agent with copper. (4) It lowers the ductility of copper (embrittles). There is a misconception that silver improves the ductility of the copper-phosphorus alloys. In reality, silver added to copper acts in a similar manner as phosphorus. The addition of silver to copper lowers the melt temperature (temperature depressant) and decreases the ductility. Fortunately, the rate and amount at which silver lowers copper ductility is significantly less than that of phosphorus. Therefore, taking advantage of the temperature depressant property of silver, a Ag-Cu-P alloy can be selected at approximately the same melt temperature as a Cu-P alloy, but at a lower phosphorus content. The lowering of the phosphorus content actually makes the alloy more ductile, not the silver addition. A major advantage of the copper-phosphorus alloys is the self-fluxing characteristic when joining copper to copper. They may also be used with the addition of a paste flux on brass, bronze, and specialized applications on silver, tungsten and molybdenum. Whether it is selection of the proper BCuP alloy or troubleshooting an existing problem, the suggested approach is a review of the desired phosphorus content in the liquid metal and how it is being altered during application. In torch brazing, a slight change in the oxygen-fuel ratio can affect the joint quality or leak tightness.

  1. Competitive Wetting in Active Brazes

    DOE PAGES

    Chandross, Michael Evan

    2014-05-01

    We found that the wetting and spreading of molten filler materials (pure Al, pure Ag, and AgAl alloys) on a Kovar ™ (001) substrate was studied with molecular dynamics simulations. A suite of different simulations was used to understand the effects on spreading rates due to alloying as well as reactions with the substrate. Moreover, the important conclusion is that the presence of Al in the alloy enhances the spreading of Ag, while the Ag inhibits the spreading of Al.

  2. Graphite to Inconel brazing using active filler metal

    SciTech Connect

    King, J.F.; Baity, F.W.; Walls, J.C.; Hoffman, D.J.

    1989-01-01

    Ion cyclotron resonant frequency (ICRF) antennas are designed to supply large amounts of auxiliary heating power to fusion-grade plasmas in the Toroidal Fusion Test Reactor (TFTR) and Tore Supra fusion energy experiments. A single Faraday shield structure protects a pair of resonant double loops which are designed to launch up to 2 MW of power per loop. The shield consists of two tiers of actively cooled Inconel alloy tubes with the front tier being covered with semicircular graphite tiles. Successful operation of the antenna requires the making of high integrity bonds between the Inconel tubes and graphite tiles by brazing. This paper discusses this process.

  3. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    NASA Astrophysics Data System (ADS)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  4. Reversible brazing process

    DOEpatents

    Pierce, Jim D.; Stephens, John J.; Walker, Charles A.

    1999-01-01

    A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

  5. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    DTIC Science & Technology

    2013-02-01

    aeration solution for 8 hours. A concentrated Nitric acid (HNO3) dip for 15 seconds removed corrosion products prior to post-exposure SEM imaging [25...32 to -37°C under a liquid nitrogen chill at 11.2 V for one minute [10]. The electropolishing solution was a mixture of 1/3 concentrated Nitric acid ...DATES COVERED (From - To) 03/27/06-12/31/12 4. TITLE AND SUBTITLE Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function

  6. Braze joints of dispersion strengthened copper

    NASA Astrophysics Data System (ADS)

    Chen, Shaofeng; Bao, Tingshan; Chin, Bryan A.

    1996-10-01

    Prior attempts to join alumina dispersion strengthened alloys (GlidCop) to itself, stainless steel (SS) and other materials have been less than successful. Typically these joints show low strength and poor ductility due to the segregation of alumina particles at the braze interface. This paper presents the results of a study undertaken to develop low activation brazing alloys, fluxes and processes for vacuum, argon and air environments to join alumina dispersion strengthened copper alloys to 304 SS. Vacuum and argon experiments were conducted using a Gleeble resistance heated system. Air brazing experiments were conducted in a resistance heated furnace with active fluxes. A reactive braze alloy composition has been developed which eliminates the segregation of Al 2O 3 particles at the braze interface and produces joints with excellent strength and ductility. Wetting and mechanical properties of the braze alloys were measured. Tensile properties, microstructure, microhardness and measurements of the compositional segregation across the braze joint are discussed.

  7. Interfacial reaction between cubic boron nitride and Ti during active brazing

    NASA Astrophysics Data System (ADS)

    Ding, W. F.; Xu, J. H.; Fu, Y. C.; Xiao, B.; Su, H. H.; Xu, H. J.

    2006-06-01

    Thermodynamic and reaction process analyses were performed to understand the joining characteristic during high temperature brazing between cubic boron nitride (CBN) grit and a silver-base filler alloy containing Ti as an active element. Experimental information on the microstructure of the brazed joint, the composition of the interface, and the shape of the compounds formed on the surface of the grit was obtained by scanning electron microscopy, energy-dispersive x-ray, and x-ray diffraction. The results indicate that Ti in the molten filler alloy facilitated good wetting between the solid CBN crystals and braze filler alloy. The transition layer formed by the interaction of TiN and TiB2 was one of the key factors in joining the CBN and steel substrate.

  8. Compatibility of Au-Cu-Ni braze alloy with NH3

    NASA Technical Reports Server (NTRS)

    Diaz, V., Jr.

    1978-01-01

    Tests show that Gold-Copper-Nickel alloy is compatible with ammonia systems. Joining tubes by brazing has advantages such as reducing chances of excessive grain growth in base metal, saving weight, and cleanliness.

  9. Development of a Brazing Alloy for the Mechanically Alloyed High Temperature Sheet Material INCOLOY Alloy MA 956.

    DTIC Science & Technology

    1981-09-01

    well established that joining these alloys by conventional fusion welding techniques has presented problems, especially in achieving good quality high...temperature joint properties, mainly because of agglomeration of the dispersoid in the weld bead. Brazing, diffusion bonding and transient liquid...produced mechanically alloyed iron based sheet material, INQ)LOY alloy MA956, has excellent high temperature strength and corrosion resistance and has

  10. Brazing diamond grits onto a steel substrate using copper alloys as the filler metals

    NASA Astrophysics Data System (ADS)

    Chen, S.-M.; Lin, S.-T.

    1996-12-01

    Surface-set diamond tools were fabricated by an active metal brazing process, using bronze (Cu-8.9Sn) powder and 316L stainless steel powder mixed to various ratios as the braze filler metals. The diamond grits were brazed onto a steel substrate at 1050 °C for 30 min in a dry hydrogen atmosphere. After brazing practice, an intermediate layer rich in chromium formed between the braze filler metal and diamond. A braze filler metal composed of 70 wt % bronze powder and 30 wt % stainless steel powder was found to be optimum in that the diamond grits were strongly impregnated in the filler metal by both mechanical and chemical types of holding. The diamond tools thus fabricated performed better than conventional nickel-plated diamond tools. In service, the braze filler metal wore at almost the same rate as the diamond grits, and no pullout of diamond grits or peeling of the filler metal layer took place.

  11. Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer

    SciTech Connect

    Elthalabawy, Waled M.; Khan, Tahir I.

    2010-07-15

    The differences in physical and metallurgical properties of stainless steels and magnesium alloys make them difficult to join using conventional fusion welding processes. Therefore, the diffusion brazing of 316L steel to magnesium alloy (AZ31) was performed using a double stage bonding process. To join these dissimilar alloys, the solid-state diffusion bonding of 316L steel to a Ni interlayer was carried out at 900 deg. C followed by diffusion brazing to AZ31 at 510 deg. C. Metallographic and compositional analyses show that a metallurgical bond was achieved with a shear strength of 54 MPa. However, during the diffusion brazing stage B{sub 2} intermetallic compounds form within the joint and these intermetallics are pushed ahead of the solid/liquid interface during isothermal solidification of the joint. These intermetallics had a detrimental effect on joint strengths when the joint was held at the diffusion brazing temperature for longer than 20 min.

  12. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    NASA Technical Reports Server (NTRS)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  13. Development of brazing foils to join monocrystalline tungsten alloys with ODS-EUROFER steel

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Fedotov, V. T.; Sevrjukov, O. N.; Kalashnikov, A. N.; Suchkov, A. N.; Moeslang, A.; Rohde, M.

    2007-08-01

    Results on rapidly solidified filler metals for brazing W with W and monocrystalline W with EUROFER steel (FS) are presented. Rapidly quenched powder-type filler metals based on Ti bal-V-Cr-Be were developed to braze polycrystalline W with monocrystalline W. In addition, Fe bal-Ta-Ge-Si-B-Pd alloys were developed to braze monocrystalline W with FS for helium gas cooled divertors and plasma-facing components. The W to FS brazed joints were fabricated under vacuum at 1150 °C, using a Ta spacer of 0.1 mm in thickness to account for the different thermal expansions. The monocrystalline tungsten as well as the related brazed joints withstood 30 cycles between 750 °C/20 min and air cooling/3-5 min.

  14. Development of the activated diffusion brazing process for fabrication of finned shell to strut turbine blades

    NASA Technical Reports Server (NTRS)

    Wilbers, L. G.; Berry, T. F.; Kutchera, R. E.; Edmonson, R. E.

    1971-01-01

    The activated diffusion brazing process was developed for attaching TD-NiCr and U700 finned airfoil shells to matching Rene 80 struts obstructing the finned cooling passageways. Creep forming the finned shells to struts in combination with precise preplacement of brazing alloy resulted in consistently sound joints, free of cooling passageway clogging. Extensive tensile and stress rupture testing of several joint orientation at several temperatures provided a critical assessment of joint integrity of both material combinations. Trial blades of each material combination were fabricated followed by destructive metallographic examination which verified high joint integrity.

  15. Microstructural Development and Mechanical Properties for Reactive Air Brazing of ZTA to Ni Alloys using Ag-CuO Braze Alloys

    SciTech Connect

    Prevost, Erica; DeMarco, A.Joseph; MacMichael, Beth; Joshi, Vineet V.; Meier, Alan; Hoffman, John W.; Walker, William J.

    2014-12-01

    Reactive air brazing (RAB) is a potential joining technique to join metal alloys to ceramics for a variety of applications. In the current study, nickel (Ni) alloys were heat treated to form an oxide layer prior to RAB joining to zirconia toughened alumina (ZTA). The Ni alloys evaluated were Nicrofer 6025 HT, Inconel 600, Inconel 693, Haynes 214 and Inconel 601. The ZTA studied had compositions of 0 to 15 wt% zirconia and 0 to 14 wt% glass. Four point-bend tests were performed to evaluate the joint strength of ZTA/ZTA and ZTA/nickel alloys brazed with Ag-2wt% CuO braze alloys. It was determined that the joint strength is not a function of the ZTA composition, but that the strength is a strong function of the chemistry and microstructure of the oxide layer formed on the nickel alloy. It was determined that an increase in the aluminum content of the Ni alloy resulted in an increase of the thickness of alumina in the oxide layer and was directly proportional to the bond strength with the exception of Inconel 601 which exhibited relatively high joint strengths even though it had a relatively low aluminum content.

  16. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    NASA Astrophysics Data System (ADS)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  17. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance.

    PubMed

    Longtin, Rémi; Ramon Sanchez-Valencia, Juan; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm(-1). The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  18. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    PubMed Central

    Longtin, Rémi; Ramon Sanchez-Valencia, Juan; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-01-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag–Cu–Ti alloy and at 880 °C with a Cu–Sn–Ti–Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm−1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected. PMID:27877755

  19. Basic principles of creating a new generation of high- temperature brazing filler alloys

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  20. BRAZE BONDING OF COLUMBIUM

    DOEpatents

    Heestand, R.L.; Picklesimer, M.L.

    1962-07-31

    A method of brazing niobium parts together is described. The surfaces of the parts to be brazed together are placed in abutting relationship with a brazing alloy disposed adjacent. The alloy consists essentially of, by weight, 12 to 25% niobium, 0.5 to 5% molybdenum, and the balance zirconium, The alloy is heated to at least its melting point to braze the parts together. The brazed joint is then cooled. The heating, melting and cooling take place in an inert atmosphere. (AEC)

  1. Changes in the interface structure and strength of diffusion brazed joints of Al-Si alloy castings

    SciTech Connect

    Osawa, T.

    1995-06-01

    The diffusion brazing process, which utilizes diffusion between the base metal and the filler metal, has been tried for joining Al-Si alloy castings. If a ternary eutectic Al-Cu-Si alloy system with a lower melting point than the Al-Si system base metal is produced at the braze interface by the diffusion reaction between the base metal and the cooper filler metal, it may be possible to join an Al-Si system alloy casting by the diffusion brazing process, using a ternary eutectic Al-Si-Cu alloy as a filler metal. In this experiment both copper and brass materials were used as preforms. It was clarified that the diffusion brazing process with a copper or brass preform could be used for all hypoeutectic, eutectic and hypereutectic alloys of Al-Si system castings, and that the minimum temperature where the braze interface, showed a liquid phase structure was 530 C for the copper preform and 510 C for the brass preform. The shear strength of the diffusion brazed joint was dependent on the chemical compositions of the base metal, the type of material for the preform, and brazing temperature and time. The maximum strength of the diffusion brazed joint under optimum conditions was 130 to 150 MPa for the base metal of both Al-7Si and Al-12Si alloy castings and 100 to 130 MPa for the base metal of Al-20Si alloy casting.

  2. Tensile Creep Properties of the 50Au-50Cu Braze Alloy

    SciTech Connect

    Stephens, J.J.

    1999-05-28

    The 50Au-50CU (wt.%) alloy is a solid-solution strengthened braze alloy used extensively in conventional, hermetic metal/ceramic brazing applications where low vapor pressure is a requirement. Typical metal/ceramic base materials would be KovarTM alloy and metallized and Ni-plated 94% alumina ceramic. The elevated temperature mechanical properties are important for permitting FEA evaluation of residual stresses in metal/ceramic brazes given specific geometries and braze cooldown profiles. For material with an atomic composition of 76.084 at.% CL 23.916 Au (i.e., on the Cu-rich side of Cu3Au) that was annealed for 2 hr. at 750°C and water quenched a Garofalo sinh equation was found to adequately characterize the minimum strain rate data over the temperature mnge 450-850°C. At lower temperatures (250 arid 350°C), a conventional power law equation was found to characterize the data. For samples held long periods of time at 375°C (96 hrs.) and slowly cooled to room temperature, a slight strengthening reaction was observed: with the stress necessary to reach the same strain rate increasing by about 15% above the baseline annealed and quenched data. X-ray diffiction indicates that the 96 hr at 375°C + slow cool condition does indeed order. The microhardness of the ordered samples indicates a value of 94.5 VHN, compared to 93.7 VHN for the baseline annealed and quenched (disordered FCC) samples. From a brazing perspective, the relative sluggishness of this ordering reaction does not appear to pose a problem for braze joints cooled at reasonable rates following brazing.

  3. Tensile creep properties of the 50Au-50Cu braze alloys

    SciTech Connect

    Stephens, J.J.

    1999-07-01

    The 50Au-50Cu (wt.%) alloy is a solid-solution strengthened braze alloy used extensively in conventional, hermetic metal/ceramic brazing applications where low vapor pressure is a requirement. Typical metal/ceramic base materials would be Kovar{trademark} alloy and metallized and Ni-plated 94% alumina ceramic. The elevated temperature mechanical properties are important for permitting FEA evaluation of residual stresses in metal/ceramic brazes given specific geometries and braze cooldown profiles. For material with an atomic composition of 76.084 at.%Cu, 23.916 Au (i.e., on the Cu-rich side of Cu{sub 3}Au) that was annealed for 2 hr. at 750 C and water quenched, a Garofalo sinh equation was found to adequately characterize the minimum strain rate data over the temperature range 450--850 C. At lower temperatures (250 and 350 C), a conventional power law equation was found to characterize the data. For samples held long periods of time at 375 C (96 hrs.) and slowly cooled to room temperature, a slight strengthening reaction was observed: with the stress necessary to reach the same strain rate increasing by about 15% above the baseline annealed and quenched data. X-ray diffraction indicates that the 96 hr at 375 C + slow cool condition does indeed order. The microhardness of the ordered samples indicates a value of 94.5 VHN, compared to 93.7 VHN for the baseline annealed and quenched (disordered FCC) samples. From a brazing perspective, the relative sluggishness of this ordering reaction does not appear to pose a problem for braze joints cooled at reasonable rates following brazing.

  4. Chemical elements diffusion in the stainless steel components brazed with Cu-Ag alloy

    NASA Astrophysics Data System (ADS)

    Voiculescu, I.; Geanta, V.; Vasile, I. M.; Binchiciu, E. F.; Winestoock, R.

    2016-06-01

    The paper presents the study of diffusion of chemical elements through a brazing joint, between two thin components (0.5mm) made of stainless steel 304. An experimental brazing filler material has been used for brazing stainless steel component and then the diffusion phenomenon has been studied, in terms of chemical element displacement from the brazed separation interface. The filler material is in the form of a metal rod coated with ceramic slurry mixture of minerals, containing precursors and metallic powders, which can contribute to the formation of deposit brazed. In determining the distance of diffusion of chemical elements, on both sides of the fusion line, were performed measurements of the chemical composition using electron microscopy SEM and EDX spectrometry. Metallographic analysis of cross sections was performed with the aim of highlight the microstructural characteristics of brazed joints, for estimate the wetting capacity, adherence of filler metal and highlight any imperfections. Analyzes performed showed the penetration of alloying elements from the solder (Ag, Cu, Zn and Sn) towards the base material (stainless steel), over distances up to 60 microns.

  5. Laser brazing of inconel 718 alloy with a silver based filler metal

    NASA Astrophysics Data System (ADS)

    Khorram, A.; Ghoreishi, M.; Torkamany, M. J.; Bali, M. M.

    2014-03-01

    In the presented study laser brazing of an inconel 718 alloy with silver based filler metal using 400 W pulsed Nd:YAG laser is investigated. Laser brazing was performed with varying laser frequency, pulse width, process speed and gap distance. The effect of preheating on wetting and spreading also was studied. Brazing geometrical images were observed using an optical microscope. The composition analysis and microstructure of the filler metal and brazed joints were examined using X-ray diffraction analyzer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Micro-hardness and tensile test were performed for investigation of mechanical properties. The experimental observations show that filler metal consist of α-Ag solid solution, ά-Cu solid solution surround by the α-Ag solid solution and eutectic structure. Phases of the brazed joint are similar to the filler metal. The results indicate that the filler metal has adequate wetting and spreading on inconel 718 and the wetting angle depends on the heat input significantly. Interdiffusion occurs in laser brazing and the average thickness of reaction layer is approximately 2.5 μm. Whenever the gap is big, it is needed to use longer pulse width in order to have a better melting flow. Preheating has significant influence on wetting and spreading of the filler metal.

  6. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  7. Brazing process using'al-Si filler alloy reliably bonds aluminum parts

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Johnson, W. R.

    1966-01-01

    Brazing process employs an aluminum-silicon filler alloy for diffusion bonding of aluminum parts in a vacuum or inert gas atmosphere. This process is carried out at temperatures substantially below those required in conventional process and produces bonds of greater strength and reliability.

  8. Microstructure-fracture toughness relationship of vanadium alloy/stainless steel brazed joints

    NASA Astrophysics Data System (ADS)

    Gan, Y. X.; Aglan, H. A.; Steward, R. V.; Chin, B. A.; Grossbeck, M. L.

    2001-11-01

    In this work, brazing V-5Ti-5Cr to 304 stainless steel (SS 304) using Au-18Ni alloy as filler material was conducted under high vacuum condition. Sessile drop technique was used to determine the wettability of filler alloy to the stainless steel and the vanadium alloy substrates upon which the relationship between the contact angles with time was obtained. Tensile tests were performed on unnotched and notched specimens to demonstrate the overloading behavior and the fracture toughness of the base materials and the brazed joint. Fracture surface was examined for both the V-5Ti-5Cr and the joint to identify the failure mechanisms under static loadings. It was found that the Au-18Ni filler material exhibited good wettability with the SS 304 and V-5Ti-5Cr. The ultimate tensile strength of the brazed joint reached 245 MPa. The strain to failure was about 1.3%. Young's modulus was about 351 GPa. The fracture toughness ( KIc) of this joint was 19.1 MPa √ m. The fracture surface of the joint showed well brazed area with good wettability and proper amount of residual filler material which came from the solidification of residual liquid filler alloy of Au-Ni. The failure of the joint occurred along the interface of the vanadium/filler under static load.

  9. ``Long-life`` aluminium brazing alloys for automotive radiators -- a ten-year retrospective

    SciTech Connect

    Scott, A.C.; Woods, R.A.

    1998-12-31

    A class of corrosion-resistant brazing sheet materials, generally referred to as ``long-life alloys,`` has been in widespread use in brazed aluminum automobile radiators for over ten years. K319 tube material was initially introduced in 1986 to address the problem of road-salt-induced, outside-in corrosion of tubes in vacuum-brazed aluminum radiators, The development history, metallurgy, and field performance of long-life radiator brazing sheet are reviewed. This material utilizes the familiar sacrificial layer concept to improve corrosion resistance; however, it is unusual in that the layer is not introduced by conventional cladding means during sheet manufacture, but rather develops in situ by metallurgical transformations which occur during the brazing cycle. The sacrificial layer, about 25 mV anodic to the core alloy, increases by an order of magnitude the time-to-perforation of radiator tube sheet tested in cyclic acidified salt spray (SWAAT), which mimics the corrosion morphology observed in the field. Radiators examined after ten years of field service show excellent corrosion resistance, as predicted by SWAAT.

  10. Microstructure and Mechanical Properties of Joints in Sintered SiC Fiber-Bonded Ceramics Brazed with Ag-Cu-Ti Alloy

    SciTech Connect

    Singh, Mrityunjay; Matsunaga, Tadashi; Lin, Hua-Tay; Asthana, Rajiv; Ishikawa, Toshihiro

    2012-01-01

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohex{reg_sign}) has been carried out using a Ti-containing Ag-Cu active braze alloy (Cusil-ABA{reg_sign}). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti-Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 C and 750 C, respectively. The fracture at the higher temperature occurred at the interface between the reaction-formed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to {mu}-FEA simulation results.

  11. Microstructure and mechanical properties of joints in sintered SiC fiber-bonded ceramics brazed with Ag Cu Ti alloy

    SciTech Connect

    Singh, Mrityunjay; Asthana, Rajiv; Ishikawa, Toshihiro; Matsunaga, Tadashi; Lin, Hua-Tay

    2012-01-01

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohexs) has been carried out using a Ti-containing Ag Cu active braze alloy (Cusil-ABAs). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 1C and 750 1C, respectively. The fracture at the higher temperature occurred at the interface between the reactionformed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to m-FEA simulation results.

  12. Interfacial segregation of Ti in the brazing of diamond grits onto a steel substrate using a Cu-Sn-Ti brazing alloy

    NASA Astrophysics Data System (ADS)

    Li, Wen-Chung; Lin, Shun-Tian; Liang, Cheng

    2002-07-01

    Diamond grits were brazed onto a steel substrate using a prealloyed Cu-10Sn-15Ti (wt pct) brazing alloy at 925 °C and 1050 °C. Due to the relatively high concentration of Ti in the brazing alloy, the braze matrix exhibited a composite structure, composed of β-(Cu,Sn), a Cu-based solid solution, and various intermetallic compounds with different morphologies. The reaction of Ti with diamond yielded a continuous TiC layer on the surfaces of the diamond grits. On top of the TiC growth front, an intermetallic compound, composed of Sn and Ti, nucleated and grew into a randomly interwoven fine lacey structure. An interfacial structure developed as the interwoven fine lacey phase was semicoherently bonded to the TiC layer, with the Cu-based braze matrix filling its interstices. The thickness of such a composite layer was increased linearly with the square root of isothermal holding time at 925 °C, complying with the law of a diffusion-controlled process. However, at 1050 °C, the segregation behavior of Ti and Sn to the interfaces between the TiC layer and the braze matrix diminished, due to the increased solubility of Ti in the Cu-based liquid phase. The enhanced dissolution of Ti in the Cu-based liquid phase at 1050 °C also caused the precipitation of rod-like CuTi with an average diameter of about 0.2 µm during cooling. SnTi3 was the predominant intermetallic compound and existed in three different forms in the braze matrix. It existed as interconnected grains of large size which either floated to the surface of the braze matrix or grew into faceted grains. It also exhibited a nail-like structure with a mean diameter of about 1 µm for the rod section and a lamellar structure arising from a eutectic reaction during cooling.

  13. Interfacial structure of Si3N4 brazed with an Ag-Cu-Ti alloy

    NASA Astrophysics Data System (ADS)

    Suematsu, H.; Petrovic, J. J.; Mitchell, T. E.; Yano, T.

    Single crystal Si3N4 was brazed using a Ag-Cu eutectic alloy containing 2 percent Ti at 950 C for 30 min and the interface was observed by high resolution electron microscopy. A layer of reaction products is formed between the Si3N4 and the brazed metal. TiN and Ti2N are formed near the interface; however, only TiN is found at the interface in contact with the Si3N4. A crystallographic orientation relationship was found between the TiN and Si3N4 in which the N atoms are shared between the two structures with little distortion.

  14. Mechanical properties of Inconel 718 and Nickel 201 alloys after thermal histories simulating brazing and high temperature service

    NASA Technical Reports Server (NTRS)

    James, W. F.

    1985-01-01

    An experimental investigation was made to evaluate two nickel base alloys (Nickel-201 and Inconel-718) in three heat treated conditions. These conditions were: (1) annealed; (2) after thermal exposure simulating a braze cycle; and (3) after a thermal exposure simulating a braze cycle plus one operational lifetime of high temperature service. For the Nickel-201, two different braze cycle temperatures were evaluated. A braze cycle utilizing a lower braze temperature resulted in less grain growth for Nickel-201 than the standard braze cycle used for joining Nickel-201 to Inconel-718. It was determined, however, that Nickel-201, was marginal for temperatures investigated due to large grain growth. After the thermal exposures described above, the mechanical properties of Nickel-201 were degraded, whereas similar exposure on Inconel-718 actually strengthened the material compared with the annealed condition. The investigation included tensile tests at both room temperature and elevated temperatures, stress-rupture tests, and metallographic examination.

  15. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    NASA Astrophysics Data System (ADS)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  16. Alumina barrier for vacuum brazing

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1980-01-01

    Heating platens of vacuum-brazing press will not stick to workpiece if aluminum oxide "paper" is interposed. Paper does not disintegrate in press, will not contaminate braze alloy, and helps form smoothly contoured, regular fillet at brazed edges.

  17. Development of rapidly quenched brazing foils to join tungsten alloys with ferritic steel

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Fedotov, V. T.; Sevrjukov, O. N.; Moeslang, A.; Rohde, M.

    2004-08-01

    Results on rapidly solidified filler metals for tungsten brazing are presented. A rapidly quenched foil-type filler metal based on Ni bal-15Cr-4Mo-4Fe-(0.5-1.0)V-7.5Si-1.5B was developed to braze tungsten to ferritic/martensitic Crl3Mo2NbVB steel (FS) for helium gas cooled divertors and plasma facing components. Polycrystalline W-2CeO 2 and monocrystalline pure tungsten were brazed to the steel under vacuum at 1150 °C, using a 0.5 mm thick foil spacer made of a 50Fe-50Ni alloy. As a result of thermocycling tests (100 cycles between 700 °C/20 min and air-water cooling/3-5 min) on brazed joints, tungsten powder metallurgically processed W-2CeO 2 failed due to residual stresses, whereas the brazed joint with zone-melted monocrystalline tungsten withstood the thermocycling tests.

  18. Interface Characteristics and Mechanical Properties of the Vacuum-Brazed Joint of Titanium-Steel Having a Silver-Based Brazing Alloy

    NASA Astrophysics Data System (ADS)

    Elrefaey, A.; Tillmann, W.

    2007-12-01

    The lap joint of a commercially pure titanium plate (CP Ti) to a low-carbon steel plate was produced with a vacuum-brazed furnace using a silver-based filler alloy at different temperatures and lap widths in order to investigate the effects of such brazing parameters on the joint strength and structure. It was found that the shear strength of brazed joints depends strongly on the lap width. Furthermore, we have discovered that the shear strength of the joints increases as the lap width decreases. The maximum shear strength of the joints, 54 MPa, was obtained when they were brazed at 850 °C for 15 minutes. Our observations indicate that intermetallic compound layers of CuTi and Cu2Ti were formed at the interface of the brazed area. An increase in the brazing temperature led to increased growth of these layers. Shear tests show that the fracture path occurred mainly at the CuTi layer, because this layer is hard and brittle.

  19. BRAZING OF POROUS ALUMINA TO MONOLITHIC ALUMINA WITH Ag-CuO and Ag-V2O5 ALLOYS

    SciTech Connect

    Lamb, M. C.; Camardello, Sam J.; Meier, Alan; Weil, K. Scott; Hardy, John S.

    2005-01-31

    The feasibility of joining porous alumina (Al{sub 2}O{sub 3}) bodies to monolithic Al{sub 2}O{sub 3} using Ag-CuO and Ag-V{sub 2}O{sub 5} alloys via reactive air brazing (RAB) was examined for a nanoporous filter application. Brazing for these systems is complicated by the conflicting requirements of satisfactory wetting to fill the braze gap, while minimizing the infiltration of the porous body. By varying the firing time, temperature, and initial powder size, porous bodies with a range of pore microstructures were fabricated. The wettability was evaluated via sessile drop testing on monolithic substrates and porous body infiltration. Porous Al{sub 2}O{sub 3}/monolithic Al{sub 2}O{sub 3} brazed samples were fabricated, and the microstructures were evaluated. Both systems exhibited satisfactory wetting for brazing, but two unique types of brazing behavior were observed. In the Ag-CuO system, the braze alloy infiltrated a short distance into the porous body. For these systems, the microstructures indicated satisfactory filling of the brazed gap and a sound joint regardless of the processing conditions. The Ag-V{sub 2}O{sub 5} alloys brazed joints exhibited a strong dependence on the amount of V{sub 2}O{sub 5} available. For Ag-V{sub 2}O{sub 5} alloys with large V{sub 2}O{sub 5} additions, the braze alloy aggressively infiltrated the porous body and significantly depleted the Ag from the braze region resulting in poor bonding and large gaps within the joint. With small additions of V{sub 2}O{sub 5}, the Ag infiltrated the porous body until the V{sub 2}O{sub 5} was exhausted and the Ag remaining at the braze interlayer bonded with the Al{sub 2}O{sub 3}. Based on these results, the Ag-CuO alloys have the best potential for brazing porous Al{sub 2}O{sub 3} to monolithic Al{sub 2}O{sub 3}.

  20. Microstructural evolution at the bonding interface during the early-stage infrared active brazing of alumina

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Wu, S. K.; O, J. M.; Wang, J. Y.

    2000-10-01

    Infrared brazing of Al2O3 and alloy 42 using a silver-base active braze alloy was investigated at 900 °C for 0 to 300 seconds, with a heating rate of 3000 °C/min. Experimental results show that Ti3(Cu, Al)3O intermetallic with various amounts of Al is observed in the reaction layer and plays an important role in the early stage of reactive wetting. A two-layer structure is observed at the reaction interface brazed at 900 °C for 5 seconds. The reaction layer close to the alumina contains large amounts of Al, so the mass balance of the system is maintained. The growth of the reaction layer is not rate controlled by diffusion within the first 120 seconds. After 120 seconds, the rate controlling mechanism of the reaction layer becomes the diffusion control, satisfying the parabolic law. Dynamic wetting angle measurements using a traditional vacuum furnace at the heating rate of 10 °C/min demonstrate that the wetting angle rapidly decreases within the first 150 seconds, especially 0 to 80 seconds, and eventually stabilizes after 600 seconds.

  1. PRELIMINARY EVALUATION OF FOUR COLUMBIUM BASE ALLOYS FOR COATING CAPABILITIES AND MECHANICAL PROPERTIES AT ELEVATED TEMPERATURES. ADDENDUM I. STRUCTURAL BRAZING AND ALUMINIDE COATING,

    DTIC Science & Technology

    PROTECTIVE TREATMENTS, BRAZING, NIOBIUM ALLOYS, SOLDERED JOINTS, OXIDATION, HIGH TEMPERATURE, SCIENTIFIC RESEARCH, REFRACTORY COATINGS , ALUMINUM COMPOUNDS, TIN COMPOUNDS, SILICIDES , BRITTLENESS, TUNGSTEN.

  2. Wetting and Mechanical Performance of Zirconia Brazed with Silver/Copper Oxide and Silver/Vanadium Oxide Alloys

    SciTech Connect

    Sinnamon, Kathleen E.; Meier, Alan; Joshi, Vineet V.

    2014-12-01

    The wetting behavior and mechanical strength of silver/copper oxide and silver/vanadium oxide braze alloys were investigated for both magnesia-stabilized and yttria-stabilized (Mg-PSZ and Y-TZP) transformation toughened zirconia substrates. The temperatures investigated were 1000 to 1100°C, with oxide additions of 1 to 10 weight percent V2O5 or CuO, and hold times of 0.9 to 3.6 ks. Increasing either the isothermal hold temperature or time had a distinctly negative effect on the joint strength. The maximum strengths for both braze alloys were obtained for 5 wt. % oxide additions at 1050°C with a hold time of 0.9 ks. The Mg-PSZ/Ag-CuO system exhibited a average fracture strength of 255 MPa (45% of the reported monolithic strength), and the Y-TZP/Ag-CuO system had an average fracture strength of 540 MPa (30% of the reported monolithic strength). The fracture strengths were lower for the Ag-V2O5 braze alloys, with fracture strengths of approximately 180 MPa (30% of the monolithic strength) for Mg-PSZ versus approximately 160 MPa (10% of the monolithic strength) for Y-TZP. No interfacial products were observed in low magnification SEM analysis for the brazing alloys containing V2O5 additions, while there were interfacial products present for brazes prepared with CuO additions in the braze alloy.

  3. Effect of mechanical milling on Ni-TiH{sub 2} powder alloy filler metal for brazing TiAl intermetallic alloy: The microstructure and joint's properties

    SciTech Connect

    He Peng Liu Duo; Shang Erjing; Wang Ming

    2009-01-15

    A TiH{sub 2}-50 wt.% Ni powder alloy was mechanically milled in an argon gas atmosphere using milling times up to 480 min. A TiAl intermetallic alloy was joined by vacuum furnace brazing using the TiH{sub 2}-50 wt.% Ni powder alloy as the filler metal. The effect of mechanical milling on the microstructure and shear strength of the brazed joints was investigated. The results showed that the grains of TiH{sub 2}-50 wt.% Ni powder alloy were refined and the fusion temperature decreased after milling. A sound brazing seam was obtained when the sample was brazed at 1140 deg. C for 15 min using filler metal powder milled for 120 min. The interfacial zones of the specimens brazed with the milled filler powder were thinner and the shear strength of the joint was increased compared to specimens brazed with non-milled filler powder. A sample brazed at 1180 deg. C for 15 min using TiH{sub 2}-50 wt.% Ni powder alloy milled for 120 min exhibited the highest shear strength at both room and elevated temperatures.

  4. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  5. Control of Interfacial Reactivity Between ZrB2 and Ni-Based Brazing Alloys

    NASA Astrophysics Data System (ADS)

    Valenza, F.; Muolo, M. L.; Passerone, A.; Cacciamani, G.; Artini, C.

    2012-05-01

    Transition metals diborides (Ti,Zr,Hf)B2 play a key role in applications where stability at extremely high temperatures and damage tolerance are required; however, much research has still to be done to optimize the joining of these materials to themselves or to other high-temperature materials. In this study, the reactivity at the solid-liquid interface between ZrB2 ceramics and Ni-based brazing alloys has been addressed; it is shown how the reactivity and the dissolution of the solid phase can be controlled and even suppressed by adjusting the brazing alloy composition on the basis of thermodynamic calculations. Wetting experiments on ZrB2 ceramics by Ni, Ni-B 17 at.%, and Ni-B 50 at.% were performed at 1500 and 1200 °C by the sessile drop technique. The obtained interfaces were characterized by optical microscopy and SEM-EDS, and interpreted by means of the ad hoc-calculated B-Ni-Zr ternary diagram. A correlation among microstructures, substrate dissolution, shape of the drops, spreading kinetics, and the phase diagram was found. The effect on the interfacial reactivity of Si3Ni4 used as a sintering aid and issues related to Si diffusion into the brazing alloy are discussed as well.

  6. Investigation of welding and brazing of molybdenum and TZM alloy tubes

    NASA Technical Reports Server (NTRS)

    Lundblad, Wayne E.

    1991-01-01

    This effort involved investigating the welding and brazing techniques of molybdenum tubes to be used as cartridges in the crystal growth cartridge. Information is given in the form of charts and photomicrographs. It was found that the recrystallization temperature of molybdenum can be increased by alloying it with 0.5 percent titanium and 0.1 percent zirconium. Recrystallization temperatures for this alloy, known as TZM, become significant around 2500 F. A series of microhardness tests were run on samples of virgin and heat soaked TZM. The test results are given in tabular form. It was concluded that powder metallurgy TZM may be an acceptable cartridge material.

  7. Fatigue FEM analysis in the case of brazed aluminium alloy 3L59 used in aeronautical industry

    NASA Astrophysics Data System (ADS)

    Dimitrescu, A.; Amza, Gh; Niţoi, D. F.; Amza, C. Gh; Apostolescu, Z.

    2016-08-01

    The use, on a larger scale, of brazed aluminum alloys in the aerospace industry led to the need for a detailed study of the assemblies behavior. These are built from 6061 aluminum aloy (3L59) brazed with aluminum aloy A103. Therefore, a finit element simulation (FEM) of durability is necessary, that consists in the observation of gradual deterioration until failure. These studies are required and are previous to the stage of the producing the assembly and test it by traditional methods.

  8. Brazeability of aluminum in vacuum-nitrogen partial-pressure atmosphere brazing

    SciTech Connect

    Hattori, T.; Sakai, S.; Sakamoto, A.; Fujiwara, C. )

    1994-10-01

    In vacuum brazing, Al-10% Si-1.5% Mg filler metal is used. The filler metal is melted and magnesium in the filler metal evaporates actively. The magnesium gas is the effective getter of contaminants such as H[sub 2]O and O[sub 2], which form an oxide film on the surface of aluminum alloys, lowering brazeability. Volatile elements also evaporate and material properties change in high-vacuum brazing. The vapor pressure of zinc in the Al-Zn alloy is high because zinc is a volatile element, but Al-Zn alloy does not melt at the brazing temperature, which is approximately 873 K and zinc does not evaporate actively compared with magnesium. However, evaporation of volatile elements and change in material properties can be minimized in vacuum-nitrogen partial-pressure atmosphere brazing, and Al-Zn alloy may be used as a sacrificial alloy in products made with aluminum alloys. In this study, brazeability in vacuum-nitrogen partial-pressure atmosphere was investigated using T-joints with horizontal Al-Mn or Al-Zn alloy sheet and vertical A4004 clad A3003 alloy brazing sheet. Specimens were brazed over a wide range of brazing pressures and N[sub 2] carrier gas flow rates. The brazing temperature and brazing time were 873 K (600 C) and 5 minutes, respectively. Gas contaminants in brazing atmospheres were measured using a quadruple mass spectrometer.

  9. Multiphase wide gap braze alloys for the repair of nickel-base superalloy turbine components: Development and characterization

    NASA Astrophysics Data System (ADS)

    Nelson, Scott David

    Gas turbine components made of nickel-base superalloys experience cracking after service in extreme environments. As these cracks can be wide, brazing or fusion welding is typically used to repair them. Properly designed and applied, brazing filler metal will help extend the useful life of damaged turbine components. During repair of defective OEM parts, brazing is also considered, provided that proper filler metals with enhanced ductility and improved resistance to low-cycle fatigue are available. This research strives to develop the brazing technique and alloys to achieve a repair with acceptable mechanical properties. Additionally, the effects of silicon and boron, as fast diffusing and melting point suppressing elements on the braze microstructure and mechanical properties were examined in detail to help guide future alloy development. Three commercially available "low-temperature" brazing powders were mixed with an additive superalloy powder to prepare a series of filler metals for wide gap brazing used to repair OEM gas turbine components. BNi-2 (Ni-7Cr-4.2Si-3B-3Fe), BNi-5 (Ni-19Cr-10Si) and BNi-9 (Ni-15Cr-3.5B) were mixed with MARM247 (Ni-10W-10Co-8.25Cr-5.5Al-3Ta-1Ti-0.7Mo-0.5Fe-0.015B) at ratios of 40, 50, and 60 wt. pct. creating a total of nine experimental filler alloys. The brazes were applied to a 0.06 inch gap in a Rene 108(TM) substrate for mechanical and microstructural analysis. The wettability and flow of each of the experimental alloys were analyzed to determine the required brazing temperature through isothermal spreadability experiments. Bend testing was performed on brazed joints to determine their mechanical properties and maximum angular deflection. The metallurgical driving factors, such as solidification behavior and compositional effects, were analyzed to correlate the resulting microstructural constituents to the mechanical properties developed through experimentation. It was found that because of the solid solubility of silicon into

  10. Elevated Temperature Creep Properties of Conventional 50Au-50Cu and 47Au 50Cu-3Ni Braze Alloys

    SciTech Connect

    STEPHENS JR.,JOHN J.; SCHMALE,DAVID T.

    2000-12-18

    The elevated temperature creep properties of the 50Au-50Cu wt% and 47Au-50Cu-3Ni braze alloys have been evaluated over the temperature range 250-850 C. At elevated temperatures, i.e., 450-850 C, both alloys were tested in the annealed condition (2 hrs. 750 C/water quenched). The minimum strain rate properties over this temperature range are well fit by the Garofalo sinh equation. At lower temperatures (250 and 350 C), power law equations were found to characterize the data for both alloys. For samples held long periods of time at 375 C (96 hrs.) and slowly cooled to room temperature, an ordering reaction was observed. For the case of the 50Au-50Cu braze alloy, the stress necessary to reach the same, strain rate increased by about 15% above the baseline data. The limited data for ordered 47Au-50Cu-3Ni alloy reflected a,smaller strength increase. However, the sluggishness of this ordering reaction in both alloys does not appear to pose a problem for braze joints cooled at reasonable rates following brazing.

  11. Disk Laser Weld Brazing of AW5083 Aluminum Alloy with Titanium Grade 2

    NASA Astrophysics Data System (ADS)

    Sahul, Miroslav; Sahul, Martin; Vyskoč, Maroš; Čaplovič, Ľubomír; Pašák, Matej

    2017-03-01

    Disk laser weld brazing of dissimilar metals was carried out. Aluminum alloy 5083 and commercially pure titanium Grade 2 with the thickness of 2.0 mm were used as experimental materials. Butt weld brazed joints were produced under different welding parameters. The 5087 aluminum alloy filler wire with a diameter of 1.2 mm was used for joining dissimilar metals. The elimination of weld metal cracking was attained by offsetting the laser beam. When the offset was 0 mm, the intermixing of both metals was too high, thus producing higher amount of intermetallic compounds (IMCs). Higher amount of IMCs resulted in poorer mechanical properties of produced joints. Grain refinement in the fusion zone occurred especially due to the high cooling rates during laser beam joining. Reactions at the interface varied in the dependence of its location. Continuous thin IMC layer was observed directly at the titanium-weld metal interface. Microhardness of an IMC island in the weld metal reached up to 452.2 HV0.1. The XRD analysis confirmed the presence of tetragonal Al3Ti intermetallic compound. The highest tensile strength was recorded in the case when the laser beam offset of 300 μm from the joint centerline toward aluminum alloy was utilized.

  12. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-Carbon Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G. N.; Asthana, R.

    2006-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSiI. The joint microstructures were examined using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading. A tube-on-plate tensile test was used to evaluate joint strength of Ti-tube/ C-C composite joints. The load-carrying ability was greatest for the Cu-ABA braze joint structures. This system appeared to have the best braze spreading which resulted in a larger braze/C-C composite bonded area compared to the other two braze materials. Also, joint loadcarrying ability was found to be higher for joint structures where the fiber tows in the outer ply of the C-C composite were aligned perpendicular to the tube axis when compared to the case where fiber tows were aligned parallel to the tube axis.

  13. Wetting Behavior in Ultrasonic Vibration-Assisted Brazing of Aluminum to Graphite Using Sn-Ag-Ti Active Solder

    NASA Astrophysics Data System (ADS)

    Yu, Wei-Yuan; Liu, Sen-Hui; Liu, Xin-Ya; Shao, Jia-Lin; Liu, Min-Pen

    2015-03-01

    In this study, Sn-Ag-Ti ternary alloy has been used as the active solder to braze pure aluminum and graphite in atmospheric conditions using ultrasonic vibration as an aid. The authors studied the formation, composition and decomposition temperature of the surface oxides of the active solder under atmospheric conditions. In addition, the wettability of Sn-5Ag-8Ti active solder on the surface of pure aluminum and graphite has also been studied. The results showed that the major components presented in the surface oxides formed on the Sn-5Ag-8Ti active solder under ambient conditions are TiO, TiO2, Ti2O3, Ti3O5 and SnO2. Apart from AgO and Ag2O2, which can be decomposed at the brazing temperature (773 K), other oxides will not be decomposed. The oxide layer comprises composite oxides and it forms a compact layer with a certain thickness to enclose the melted solder, which will prevent the liquid solder from wetting the base metals at the brazing temperature. After ultrasonic vibration, the oxide layer was destroyed and the liquid solder was able to wet and spread out around the base materials. Furthermore, better wettability of the active solder was observed on the surface of graphite and pure aluminum at the brazing temperature of 773-823 K using ultrasonic waves. The ultrasonic wave acts as the dominant driving factor which promotes the wetting and spreading of the liquid solder on the surface of graphite and aluminum to achieve a stable and reliable brazed joint.

  14. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  15. Some properties of low-vapor-pressure braze alloys for thermionic converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1978-01-01

    Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.

  16. Atomic structure and thermophysical properties of molten silver-copper oxide air braze alloys

    NASA Astrophysics Data System (ADS)

    Hardy, John Steven

    The Ag-CuOx materials system is the basis for a family of filler alloys used in a recently developed ceramic-metal joining technique referred to as air brazing, which is a brazing process that can be carried out in ambient air rather than under the vacuum or inert to reducing gas conditions required for conventional brazing methods. This research was conducted to elucidate the atomic coordination and selected thermophysical properties of these materials as a function of temperature when they are in the salient liquid state in air, since this is when the critical steps of wetting and spreading occur in the joining process. A series of alloys was selected spanning the entire length of the phase diagram including the pure end members, Ag and CuOx; alloys that form the two constituent single phase liquids; and alloys for which the two liquid phases coexist in the miscibility gap of the phase diagram. The oxygen content of the liquid alloys in air was measured using thermogravimetry. The oxidative weight gain of 99.999% pure metallic precursors was measured while simultaneously accounting for the concurrent silver volatility using a method that was developed in the course of the study. The surface tension and mass density were measured using the maximum bubble pressure method. The number density was calculated based on the information gained from the oxygen content and mass density measurements. For compositions that were amenable to laser heating, containerless high energy x-ray scattering measurements of the liquid atomic coordination were performed using a synchrotron beamline, an aerodynamic levitator, and laser heating. For the remaining compositions x-ray scattering measurements were performed in a beamline-compatible furnace. The two liquid phases that form in this materials system have distinct atomic coordinations characterized by an average of nearly two-fold coordinated ionic metal-oxygen pairs in the CuOx-rich liquid and nearly eight-fold coordinated atomic

  17. Thermodynamic considerations in the use of nickel-beryllium alloy to braze Zircaloy-4

    NASA Astrophysics Data System (ADS)

    White, S. J.; Corcoran, E. C.; Thompson, W. T.; Lewis, B. J.; Palleck, S.; Goodyear, H.; Harmsen, J. G.; Dimayuga, F.

    2015-10-01

    To better control beryllium exposure during the manufacture of CANDU® fuel bundles, a nickel-beryllium brazing alloy to affix appendages to Zircaloy-4 is being considered. A Ni-2wt%Be shows promise in substantially reducing beryllium volatility while minimally perturbing existing fabrication processes. Thermodynamic models of the condensed phases of the binary Zr-Be, Ni-Be and Ni-Zr alloy systems provide a basis for the construction of a provisional ternary phase diagram that in particular identifies the domain of the liquid phase. The modeling also permits the computation of the partial pressures of Be and related matters associated with the control of surface oxide on Zircaloy-4.

  18. Rapidly solidified surface melts of Ni-B-Si-Cr brazing alloy

    NASA Astrophysics Data System (ADS)

    Tucker, T. R.; Ayers, J. D.

    1981-10-01

    Sintered powder layers of a Ni-based brazing alloy were consolidated by scanned electron beam radiation to produce a continuous fused coating. The surface of this coating was then remelted by laser and electron beams under differing conditions, resulting in a variety of resolidification structures. Alloy BNi2 was chosen for these studies because it exhibits substantial hardening on grain refinement and because it can be prepared in the glassy state relatively easily. Surface microhardness for BNi2 reaches a maximum of about 1200 DPH at a cooling rate approaching 105 K/s. For higher quench rates, hardness decreases and ductility increases. As the cooling rate approaches 107 k/s, overlapping beam scans produce an extended amorphous surface. A solidification rate higher than that needed to produce an amorphous structure in a single melt pass is necessary to avoid surface cracking or crystallization when overlapping melt passes are employed.

  19. Development of a new CuNiTiB brazing alloy for joining Si3N4 to Si3N4

    NASA Astrophysics Data System (ADS)

    Xiong, Huaping; Wan, Chuangeng; Zhou, Zhenfeng

    1998-10-01

    Joining Si3N4 to Si3N4 was carried out initially with a Cu34Ni27Ti39 brazing alloy prepared by double melting under a vacuum condition. However, the strength of the joints was not as high as expected. The causes were studied. Based on the results of the analysis, a CuNiTiB brazing filler metal was designed. The Si3N4/Si3N4 joints were then brazed with this new brazing alloy in the paste form, and joints with a three-point bend strength of 338.8 MPa at room temperature were obtained. The interfacial reactions of the joint are also discussed. With the rapidly solidified foils of the brazing alloy, the bend strength of the Si3N4/Si3N4 joints under the same brazing conditions is raised to 402 MPa at room temperature. The Si3N4/Si3N4 joints brazed with this newly developed brazing alloy exhibit a rather high and steady bend strength (about 406 MPa) at 723 K.

  20. REACTIVE AIR BRAZING OF LSCoF AND ALUMINA WITH Ag-V2O5 ALLOYS FOR SOFC APPLICATIONS

    SciTech Connect

    Zink, Nathan M.; Meier, Alan; Weil, K. Scott; Hardy, John S.

    2005-05-31

    The feasibility of brazing LSCoF ceramic substrates with silver-vanadium pentoxide (Ag-V{sub 2}O{sub 5}) alloys for use in solid oxide fuel cell (SOFC) applications was studied. Preliminary testing was also performed on the Ag-V{sub 2}O{sub 5}/alumina (Al{sub 2}O{sub 3}) system in order to determine the feasibility of brazing LSCoF to Fecralloy{trademark} with an Ag-V{sub 2}O{sub 5} alloy since an Al{sub 2}O{sub 3} layer is formed on the Fecralloy surface prior to brazing. Sessile drop tests were performed using liquid Ag with 1 to 20 weight percent (wt%) V{sub 2}O{sub 5} additions at either 1000 or 1100 C. Similar to previous results for Ag-CuO alloys, additions of V{sub 2}O{sub 5} resulted in a decrease in the apparent contact angle and a transition from non-wetting to wetting behavior for both substrate materials. Mechanical test samples were fabricated by brazing using Ag with 1, 2 and 5 wt% V{sub 2}O{sub 5} additions. For the Ag-V{sub 2}O{sub 5}/LSCoF samples, the joint fracture strengths ranged from 10 to 30% of the monolithic LSCoF fracture strength ({sigma}{sub joint} = 26 {+-} 9 MPa versus {sigma}{sub LSCoF} = 151 {+-} 24 MPa). An SEM/EDS microstructural analysis of the brazed cross-sections indicated the formation of a vanadium rich reaction product at the braze/LSCoF interface. It is hypothesized that the reaction product provided improved chemical bonding at the interface that resulted in the modest joint strengths. In the the Ag-V{sub 2}O{sub 5}/Al{sub 2}O{sub 3} system, although the contact angles were less than 90{sup o}, all of the brazed Al{sub 2}O{sub 3} samples failed to bond during brazing or fractured during sample preparation. These poor adhesion results indicate potential problems with the Fecralloy{trademark}/Ag-V{sub 2}O{sub 5}/LSCoF system.

  1. Brazing of the Tore Supra actively cooled Phase III Limiter

    SciTech Connect

    Nygren, R.E.; Walker, C.A.; Lutz, T.J.; Hosking, F.M.; McGrath, R.T.

    1993-12-31

    The head of the water-cooled Tore Supra Phase 3 Limiter is a bank of 14 round OFHC copper tubes, curved to fit the plasma radius, onto which several hundred pyrolytic graphite (PG) tiles and a lesser number of carbon fiber composite tiles are brazed. The small allowable tolerances for fitting the tiles to the tubes and mating of compound curvatures made the brazing and fabrication extremely challenging. The paper describes the fabrication process with emphasis on the procedure for brazing. In the fixturing for vacuum furnace brazing, the tiles were each independently clamped to the tube with an elaborate set of window frame clamps. Braze quality was evaluated with transient heating tests. Some rebrazing was necessary.

  2. Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy

    NASA Astrophysics Data System (ADS)

    Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.

    2015-02-01

    Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.

  3. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    NASA Astrophysics Data System (ADS)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  4. Vacuum brazing ceramics to metals

    SciTech Connect

    Mizuhara, H.

    1987-02-01

    Attention is given to the use in ceramic/metal joint brazing alloy of silver-copper composition that incorporates 2 percent Ti. This alloy allows one-step brazing, and wets superalloys and stainless steels without prior Ni plating of the substrate. Another alloy consisting of Ag-Cu-In-Ti has been developed which alloys at lower temperatures and allows step-brazing when used with Ag-Cu-Ti alloy. If the thermal expansion difference between metal and ceramic is large, brazing with a graded seal may be used; this minimizes joint stresses upon cooling to room temperature.

  5. Joining of alumina by vacuum brazing

    NASA Astrophysics Data System (ADS)

    Heikinheimo, Liisa; Siren, Mika; Kauppinen, Pentti

    1993-08-01

    The active brazing method for diffusion bonding of ceramics to metals is addressed. This method is very flexible compared to the traditional Mo-manganese coating with subsequent brazing that includes four process steps: in active brazing the process is done in one step. The joint properties are favorable, the residual stress build up is limited if the braze is correctly selected and the thermal cycle is controlled, and the resulting strength and leak tightness are good. In experimental work the joinability of alumina to titanium and Ni superalloys was studied by wetting experiments, nondestructive test and shear strength measurements. The spreading of the braze is affected not only by the surface conditions of mating materials but also by the type of the brazing alloy. The Ag-Cu base alloys give better wetting, strength and leak tightness properties than the Ag base alloys. A shear test method was developed for the mechanical testing of metal-ceramic joints. However, the sample geometry affects the measured values, namely a smaller specimen size provides better results. The correlation between the C-SAM results, which describe the ratio between the true bonded area and unbonded area, and measured shear strength values is presented. The dependence between the measured strength and the area of the joint defects becomes obvious and should be studied in more detail.

  6. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    NASA Astrophysics Data System (ADS)

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-02-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  7. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    NASA Astrophysics Data System (ADS)

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-03-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  8. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    SciTech Connect

    Ganjeh, E.; Sarkhosh, H.; Bajgholi, M.E.; Khorsand, H.; Ghaffari, M.

    2012-09-15

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni and Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for brazing Ti

  9. Active Metal Brazing and Characterization of Brazed Joints in C-C and C-SiC Composites to Copper-Clad-Molybdenum System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.

  10. Active Metal Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G.; Asthana, R.

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint which led to good wetting, spreading, and metallurgical bond formation via interdiffusion.

  11. Brazing Dissimilar Metals

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Davis, William M.; Wisner, Daniel L.

    1996-01-01

    Brazing effective technique for joining ordinary structural metals to brittle, low-thermal-expansion refractory metals. Specifically, brazing process established for joining copper or nickel flanges to ends of vacuum-plasma-sprayed tungsten tubes and for joining stainless-steel flanges to ends of tubes made of alloy of molybdenum with 40 percent of rhenium.

  12. Brazing technique

    DOEpatents

    Harast, Donald G.

    1986-01-01

    A method of brazing comprises sand blasting the surfaces of the components to be brazed with particles of a brazing material to clean the surfaces and to embed brazing material in the surfaces, applying the brazing material to the surfaces, and heating the brazing material to form a brazement between the components.

  13. Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do not exceed 750 degree C

    SciTech Connect

    Hammond, J.P.; David, S.A.; Woodhouse, J.J.

    1986-11-11

    A process is described for brazing high melting point iron-containing metals to ceramics at temperatures not greater than 750/sup 0/ C. comprising, in a vacuum: (a) cleaning a surface to be brazed of a ceramic to remove surface oxygen therefrom; (b) coating the cleaned surface of ceramic with a thin layer of an active substrate that is from 0.3 to 1 micron thick; (c) cleaning a surface to be brazed of a high-melting point iron-containing metal to remove any surface carbon therefrom; (d) coating the surface to be brazed of the metal with a thin noncarbon containing metal coating to prevent any carbon contained in the metal from reacting with a brazing alloy; (e) forming an assembly of the ceramic surface and the metal surface in sandwich fashion with a brazing alloy placed therebetween. The brazing alloy has a melting point of less than 750/sup 0/ C., wetting the metal surface and forming a trimetal intermetallic with the active substrate upon brazing; (f) heating the assembly to the melting point of the brazing alloy for a period suitable to permit flow and wetting by the brazing alloy; and (g) cooling the assembly to form a brazed joint between the ceramic surface and the metal surface.

  14. Brazing of dispersion-strengthened aluminum

    SciTech Connect

    Bjoerneklett, B.; Grong, O.; Anisdahl, L.; Hellum, E.; Sande, V.

    1996-03-01

    In recent years, the use of rapid solidification powder metallurgy has made it possible to develop a new family of aluminum alloys exhibiting unique properties. One of these materials, dispersion-strengthened (DS) aluminum, is currently being produced for commercial purposes at Raufoss Technology AS, Norway. Dispersion-strengthened aluminum derives its high strength from nanoscale AlN particles embedded in an aluminum matrix. DS Al is expected to be well suited as construction material for high-temperature applications where weight reductions are of particular concern. The present investigation has focused on the wetting behavior of DS aluminum under conditions applicable to brazing. The results from the Sessile drop experiments show that a eutectic Al-Si brazing alloy will completely wet the base metal both under high-vacuum conditions and in controlled argon atmospheres, provided that the partial pressure of oxygen is sufficiently low. The main problem appears to be the stability of the matrix grain structure. In general, the process of grain erosion and coarsening can be controlled by restricting the supply of the brazing alloy so that only a small metal volume is exposed to erosion. In addition, there is a great potential for reducing the thermodynamic driving force of the erosion reaction by proper adjustments of the brazing alloy composition and/or the brazing temperature. Sill, grain boundary liquidation may be a problem which, in turn, may require additions of surface active elements to the filler metal to control the wetting behavior.

  15. Aluminum core structures brazed without use of flux

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Aluminum alloy face sheets are brazed to aluminum alloy honeycomb cores without using corrosive flux by means of one or three methods. The completed brazed structure has the high-strength characteristics of heat treated aluminum alloys.

  16. Interfacial structure of Si{sub 3}N{sub 4} brazed with a Ag-Cu-Ti alloy

    SciTech Connect

    Suematsu, H.; Petrovic, J.J.; Mitchell, T.E.; Yano, T.

    1992-12-01

    Single crystal Si{sub 3}N{sub 4} was brazed using a Ag-Cu eutectic alloy containing 2% Ti at 950{degrees}C for 30min and the interface was observed by high resolution electron microscopy. A layer of reaction products is formed between the Si{sub 3}N{sub 4} and the brazed metal. TiN and Ti{sub 2}N are formed near the interface; however, only TiN is found at the interface in contact with the Si{sub 3}N{sub 4}. A crystallographic orientation relationship was found between the TiN and Si{sub 3}N{sub 4} in which the N atoms are shared between the two structures with little distortion.

  17. Phase Evolution in the Pd-Ag-CuO Air Braze Filler Metal Alloy System

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2006-08-01

    Palladium was added as a ternary component to a series of copper oxide-silver alloys in an effort to increase the use temperature of these materials for potential ceramic air brazing applications. Phase equilibria in the ternary Pd-Ag-CuO system were investigated via differential scanning calorimetry (DSC) and a series of quenching experiments. Presented here are the latest findings on this system and a construction of the corresponding ternary phase diagram for low-to-moderate additions of palladium. The analysis included samples with higher palladium additions than were studied in the past, as well as an analysis of the composition-temperature trends in the Ag-CuO miscibility gap with palladium addition. It was found that the addition of palladium increases the solidus and liquidus and caused three phase zones to appear as expected by the phase rule. Furthermore, the palladium additions cause the miscibility gap boundary extending from the former binary eutectic to shift to lower silver-to-copper ratios.

  18. Ultrasonic C-scan evaluation of Ti-alloy/Al brazed joint

    NASA Astrophysics Data System (ADS)

    Murthy, G. V. S.; Sridhar, G.

    2013-01-01

    An indigenously developed brazed joint of Al/Ti was characterized by ultrasonic C-scan method. The study revealed certain debond locations in the brazed joint. These debond locations would have resulted due to the failure of filler material's joining ability. In spite of certain amount of load applied on the braze base metals, the above debonding happened. The debond locations further confirm that the pressure was not sufficient and therefore the debonds are present at exactly the same location where there were gaps in the fixture. Further analysis revealed that these debonds were present at the interface between the braze material and Al-plate. It is concluded that ultrasonic C-scan can be effectively used to evaluate the bond characteristics in a brazed joint between dissimilar metals.

  19. Coating system to permit direct brazing of ceramics

    DOEpatents

    Cadden, Charles H.; Hosking, F. Michael

    2003-01-01

    This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al.sub.2 O.sub.3.2SiO.sub.2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite). After all of the coatings have been applied, the ceramic can be fired at a high temperature in a non-oxidizing environment to promote diffusion, and to enhance bonding of the coatings to the substrate. After firing, the metallized ceramic component can be brazed to other components using a conventional non-active braze alloy. Alternatively, the firing and brazing steps can be combined into a single step. This process can replace the need to perform a "moly-manganese" metallization step.

  20. Active Brazing of C/C Composite to Copper by AgCuTi Filler Metal

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiang; Xia, Lihong; Zhang, Fuqin; He, Lianlong

    2016-05-01

    Brazing between the carbon-fiber-reinforced carbon composite (C/C composite) and copper has gained increasing interest because of its important application in thermal management systems in nuclear fusion reactors and in the aerospace industry. In order to examine the "interfacial shape effect" on the mechanical properties of the joint, straight and conical interfacial configurations were designed and machined on the surface of C/C composites before joining to copper using an Ag-68.8Cu-4.5Ti (wt pct) alloy. The microstructure and interfacial microchemistry of C/C composite/AgCuTi/Cu brazed joints were comprehensively investigated by using high-resolution transmission electron microscopy. The results indicate that the joint region of both straight and conical joints can be described as a bilayer. Reaction products of Cu3Ti3O and γ-TiO were formed near the copper side in a conical interface joint, while no reaction products were found in the straight case. The effect of Ag on the interfacial reaction was discussed, and the formation mechanism of the joints during brazing was proposed. On the basis of the detailed microstructure presented, the mechanical performance of the brazed joints was discussed in terms of reaction and morphology across the joint.

  1. Weld-brazing of titanium

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1974-01-01

    A joining process, designated weld-brazing, which combines resistance spotwelding and brazing has been developed at the NASA Langley Research Center. Resistance spot-welding is employed to position and align the parts and to establish a suitable faying surface gap for brazing; it contributes to the integrity of the joint. Brazing enhances the properties of the joint and reduces the stress concentrations normally associated with spotwelds. Ti-6Al-4V titanium alloy joints have been fabricated using 3003 aluminum braze both in a vacuum furnace and in a retort containing an inert gas environment.

  2. Reduced-Temperature Transient-Liquid-Phase Bonding of AluminaUsing a Ag-Cu-Based Brazing Alloy

    SciTech Connect

    Hong, Sung Moo; Glaeser, Andreas M.

    2005-12-19

    The mechanical properties and microstructural evolution ofmetal-ceramic bonds produced using a transient liquid phase (TLP) aredescribed. Alumina (Al2O3) was joined at 500 degrees C, 600 degrees C,and 700 degrees C using a multilayer In/Cusil-ABA (R) (commercialcopper-silver eutectic brazing alloy)/In interlayer. The introduction ofthin In cladding layers allows the system to bond at much lowertemperatures than those typically used for brazing with Cusil-ABA (R),thereby protecting temperature-sensitive components. After chemicalhomogenization, the interlayers retain an operating temperature rangesimilar to that of the brazed joints. TLP bonds made at 500 degrees C,600 degrees C, and 700 degrees C with holding times ranging from as lowas 1.5 h to 24 h had average fracture strengths above 220 MPa. Theeffects of bonding temperature and time on fracture strength aredescribed. Preliminary analysis of the interlayers shows that the Ag-Inor Cu-In intermetallic phases do not form. Considerations unique tosystems with two-phase core layers are discussed. Experiments usingsingle-crystal sapphire indicate rapid formation of a reaction layer at700 degrees C, suggesting the possibility of making strong bonds usinglower temperatures and/or shorter processing times.

  3. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography.

    PubMed

    Tahiliani, Kumudni; Pandya, Santosh P; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized.

  4. Studies and research on the microstructure of brazed aluminum alloys in the repair process

    NASA Astrophysics Data System (ADS)

    Dimitescu, A.; Amza, Gh; Niţoi, D. F.; Amza, C. Gh; Apostolescu, Z.

    2016-08-01

    In aeronautical industry, in recent years, brazing joints got a growing spread. Therefore, it is necessary a detailed study on the microstructure of the assembly base and filler material brazed in conditions of reconditioning operation [1]. The methods of destructive examination are not associated with any particular type of test piece but lay down the general principles of the types of testing described. It is emphasized that a satisfactory examination method can only be developed and used after taking into account all the relevant factors regarding the equipment to be used and the characteristics of the test pieces being examined. [1, 2]. Brazing joints are most often systematically designed to be resistant to shearing, and the size of the joint influences the shear strength more than the tensile strength. Studies and researches on the microstructure may be necessary to determine the effects of brazing process or of any subsequent heat treatment on the characteristics of the joint.

  5. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  6. Some possible filler alloys with low vapor pressures for refractory-metal brazing

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1973-01-01

    A compilation of eutectics and melting-point minima for binary combinations of metals having vapor pressures below 10 to the minus 10th power torr at 1500 degrees K and .00005 torr at 2000 degree K is presented. These compositions and others near them on their phase diagrams are potential special brazing fillers for refractory metals. Some possible problems and advantages for fusion bonds of such mixtures are indicated. Evaluations of brazing fillers containing refractory metals are reported.

  7. Laser beam brazing of car body and aircraft components

    SciTech Connect

    Haferkamp, H.; Kreutzburg, K.

    1994-12-31

    At present, when brazing car body components for the automotive industry, manual flame brazing is mostly used. The advantage of brazing as compared to welding, is the lower hardness of the braze metal, making postmachining easier. But manual flame brazing also shows several main disadvantages, such as pores within the seam and a high thermal influence on the workpiece. Therefore, investigations on laser beam brazing concerning the reduction of the technological and economical disadvantages of the flame brazing process were carried out. Laser beam brazing of aluminum alloys is also a main topic of this presentation. The fundamental research in brazing mild steel was done on lap joints. The investigations about brazing mild steel and aluminum alloys have demonstrated that it is possible to braze these metals using laser beam radiation. Laser beam brazing of 3-dimensional mild steel components requires a special program for the brazing sequence, and new specifications in design and fabrication. But comparing seams made by laser beam brazing to manual flame brazing show that there are advantages to using the automated laser process. Laser beam brazing of aluminum alloys makes it possible to join metals with poor brazeability, although brazing conditions lead to a slight melting of the gap sides.

  8. 46 CFR 56.30-30 - Brazed joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Brazed joints. 56.30-30 Section 56.30-30 Shipping COAST... Selection and Limitations of Piping Joints § 56.30-30 Brazed joints. (a) General (refer also to subpart 56.75). Brazed socket-type joints shall be made with suitable brazing alloys. The minimum socket...

  9. 46 CFR 56.30-30 - Brazed joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Brazed joints. 56.30-30 Section 56.30-30 Shipping COAST... Selection and Limitations of Piping Joints § 56.30-30 Brazed joints. (a) General (refer also to subpart 56.75). Brazed socket-type joints shall be made with suitable brazing alloys. The minimum socket...

  10. 46 CFR 56.30-30 - Brazed joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Brazed joints. 56.30-30 Section 56.30-30 Shipping COAST... Selection and Limitations of Piping Joints § 56.30-30 Brazed joints. (a) General (refer also to subpart 56.75). Brazed socket-type joints shall be made with suitable brazing alloys. The minimum socket...

  11. 46 CFR 56.30-30 - Brazed joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Brazed joints. 56.30-30 Section 56.30-30 Shipping COAST... Selection and Limitations of Piping Joints § 56.30-30 Brazed joints. (a) General (refer also to subpart 56.75). Brazed socket-type joints shall be made with suitable brazing alloys. The minimum socket...

  12. 46 CFR 56.30-30 - Brazed joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Brazed joints. 56.30-30 Section 56.30-30 Shipping COAST... Selection and Limitations of Piping Joints § 56.30-30 Brazed joints. (a) General (refer also to subpart 56.75). Brazed socket-type joints shall be made with suitable brazing alloys. The minimum socket...

  13. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  14. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  15. Development and Evaluation of Wide Clearance Braze Joints in Gamma Prime Alloys.

    DTIC Science & Technology

    1982-03-01

    containinq coating and often leaves undesirable soot in the cracks. To avoid such an out- come, the damaged component must be first stripped of its...cuiarly wide clearance- brazed j )i nt rh utx: m~a Conrsec aently, welding! is co:r-..ii m’’i. :jl’i asseribi’: and repair of gjas turb- ink -nin o j iP :ld t

  16. Furnace brazing type 304 stainless steel to vanadium alloy (V?5Cr?5Ti)

    NASA Astrophysics Data System (ADS)

    Steward, R. V.; Grossbeck, M. L.; Chin, B. A.; Aglan, H. A.; Gan, Y.

    2000-12-01

    In this investigation, pure copper was joined to type 304 stainless steel and V-5Cr-5Ti by brazing in a high vacuum furnace. Microstructural changes in the brazed region and surrounding substrates were examined as a function of holding time at temperatures of 20°C, 40°C and 60°C above the melting point of copper. Reaction layers, which were extremely brittle, formed between the Cu and V-5Cr-5Ti substrates. The formation of intermetallic phases at the filler metal/substrate interfaces was evaluated. Additionally, precipitates (FeCu 2 and FeCu 18) formed in the Cu rich filler region. For temperatures ⩾60°C above the melting point of Cu, extensive transverse cracking was observed. Hardness tests substantiated the hypothesis that the Cu/V-5Cr-5Ti reaction layer was extremely brittle, since micro-cracks propagated from the tips of the diamond-shaped indentations. Results of mechanical properties tests of the brazed material are also presented.

  17. Reaction layers and mechanisms for a Ti-activated braze on sapphire

    NASA Astrophysics Data System (ADS)

    Stephens, J. J.; Hosking, F. M.; Headley, T. J.; Hlava, P. F.; Yost, F. G.

    2003-12-01

    A study was conducted to understand the wetting phenomena observed in brazing of a Ti-containing active filler metal on sapphire substrates. The goal of the study was to understand the interfacial reactions that permit wetting of commercial Ag-Cu-Ti active filler metal to pure alumina, despite the lower thermodynamic stability of TiO2 relative to Al2O3. Based upon transmission electron microscope, electron microprobe, and Auger analyses, it is proposed that two coupled reactions and diffusion of reactants take place. The oxides TiO, Ti2O, and Cu3Ti3O were observed at the braze/ceramic interface. It is suggested that the complex oxide Cu3Ti3O grows at its interface with TiO, and the oxide TiO is produced by reaction of Ti and sapphire and is subsequently consumed at its interface with Cu3Ti3O. It is also suggested that Ti2O forms from Ti and TiO while cooling from the brazing cycle.

  18. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  19. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  20. METHOD OF BRAZING BERYLLIUM

    DOEpatents

    Hanks, G.S.; Keil, R.W.

    1963-05-21

    A process is described for brazing beryllium metal parts by coating the beryllium with silver (65- 75 wt%)-aluminum alloy using a lithium fluoride (50 wt%)-lithium chloride flux, and heating the coated joint to a temperature of about 700 un. Concent 85% C for about 10 minutes. (AEC)

  1. Low-melting-point titanium-base brazing alloys—part 2: Characteristics of brazing Ti-21Ni-14Cu on Ti-6Al-4v substrate

    NASA Astrophysics Data System (ADS)

    Chang, E.; Chen, C.-H.

    1997-12-01

    Filler metal of a low-melting-point (917 °C) Ti-21Ni-14Cu was brazed onto the substrate of Ti-6Al-4V alloy at 960 °C for 2,4, and 8 h to investigate the microstructural evolution and electrochemical characteristics of the brazed metal as a function of the period of brazing time. Optical microscopy, scanning and transmission electron microscopy, and x-ray diffractometry were used to characterize the microstructure and phase of the brazed metal; also, the potentiostat was used for corrosion study. Experimental results indicate that diffusion of copper and nickel from the filler metal into the equiaxed a plus intergranular β structure of Ti-6Al-4V substrate causes the lamellar Widmanstätten structure to form. The intermetallic Ti2Ni phase existing in the prior filler metal diminishes, while the Ti2Cu phase can be identified for the metal brazed at 960 °C for 2 h, but the latter phase decreases with time. Advantage might be taken from the evidence of faster diffusion of nickel than copper along the β phase to the substrate. In deaerated Hank’s solution, corrosion potential, corrosion current density, and critical potential for active-to-passive transition decrease while the passivation range broadens with the period of brazing time. However, all the brazed metals, immersed for different periods in oxygen-saturated Hank’s solution, show similar corrosion behavior, irrespective of the brazing time.

  2. INVESTIGATION OF A NOVEL AIR BRAZING COMPOSITION FOR HIGH-TEMPERATURE, OXIDATION-RESISTANT CERAMIC JOINING

    SciTech Connect

    Weil, K. Scott; Hardy, John S.; Darsell, Jens T.

    2004-01-30

    One of the challenges in developing a useful ceramic joining technique is in producing a joint that offers good strength under high temperature and highly oxidizing operating conditions. Unfortunately many of the commercially available active metal ceramic brazing alloys exhibit oxidation behaviors which are unacceptable for use in a high temperature application. We have developed a new approach to ceramic brazing, referred to as air brazing, that employs an oxide wetting agent dissolved in a molten noble metal solvent, in this case CuO in Ag, such that acceptable wetting behavior occurs on a number of ceramic substrates. In an effort to explore how to increase the operating temperature of this type of braze, we have investigated the effect of ternary palladium additions on the wetting characteristics of our standard Ag-CuO air braze composition

  3. Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag-Cu eutectic alloy filler and Ag interlayer

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Park, J. J.; Lee, J. G.; Rhee, C. K.

    2013-08-01

    The electrochemical corrosion properties of Ti-STS dissimilar joints brazed by a 72Ag-28Cu alloy filler and an Ag interlayer were studied in a 3.5% NaCl solution using potentiodynamic polarization and ac impedance spectroscopy. For a joint with a layered structure of Ti(base)/TiAg/Ag solid solution/Ag-Cu eutectic/STS(base), galvanic corrosion mostly occurred in the TiAg phase with a severe material loss, indicating that the TiAg layer acted as an anode in the galvanic couple in the layered joint. The Ag-rich solid solution layer was also corroded to a certain extent, but the corrosion in this layer was dominated by the selective pitting corrosion of the eutectic Cu-rich phase. With an increase in the brazing temperature, the Cu-rich phases disappeared owing to the enhanced isothermal solidification effect, leading to an improvement of the corrosion resistance.

  4. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  5. Influence of laser power on microstructure and mechanical properties of laser welded-brazed Mg to Ni coated Ti alloys

    NASA Astrophysics Data System (ADS)

    Tan, Caiwang; Lu, Qingshuang; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai; Wang, Yang

    2017-03-01

    AZ31B Magnesium (Mg) and Ti-6Al-4V titanium (Ti) alloys with Ni coating were joined by laser welding-brazing process using AZ92 Mg based filler. The influence of laser power on microstructure and mechanical properties were investigated. Ni coating was found to significantly promote good wetting-spreading ability of molten filler on the Ti sheet. Acceptable joints without obvious defects were obtained within a relatively wide processing window. In the process metallurgical bonding was achieved by the formation of Ti3Al phase at direct irradiation zone and Al-Ni phase followed by a layer of Mg-Al-Ni ternary compound adjacent to the fusion zone at the intermediate zone. The thickness of reaction layers increased slowly with the increasing laser power. The tensile-shear test indicated that joints produced at the laser power of 1300 W reached 2387 N fracture load, representing 88.5% joint efficiency with respect to the Mg base metal. The corresponding failure occurred in the fusion zone of the Mg base metal, while joints fractured at the interface at lower/higher laser power due to the crack or excessive intermetallic compound (IMC) formation along the interface.

  6. Dissimilar Laser Welding/Brazing of 5754 Aluminum Alloy to DP 980 Steel: Mechanical Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Yulong; Zhang, Hua; Guo, Wei; Weckman, David; Zhou, Norman

    2015-11-01

    A diode laser welding/brazing technique was used for lap joining of 5754 aluminum alloy to DP 980 steel with Al-Si filler metal. The correlation between joint interfacial microstructure, wettability of filler metal, and mechanical properties was systematically investigated. At low laser power (1.4 kW), a layer of intermetallic compounds, composed of θ-Fe(Al,Si)3 and τ 5 -Al7.2Fe1.8Si, was observed at the interface between fusion zone and steel. Because of the poor wettability of filler metal on the steel substrate, the joint strength was very low and the joint failed at the FZ/steel interface. When medium laser power (2.0 kW) was applied, the wettability of filler metal was enhanced, which improved the joint strength and led to FZ failure. With further increase of laser power to 2.6 kW, apart from θ and τ 5, a new hard and brittle η-Fe2(Al,Si)5 IMC with microcracks was generated at the FZ/steel interface. The formation of η significantly degraded the joint strength. The failure mode changed back to interfacial failure.

  7. Tensile fracture characterization of braze joined copper-to-CFC coupon assemblies

    NASA Astrophysics Data System (ADS)

    Trester, P. W.; Valentine, P. G.; Johnson, W. R.; Chin, E.; Reis, E. E.; Colleraine, A. P.

    1996-10-01

    A vacuum brazing process was used to join a broad spectrum of carbon-fiber reinforced carbon matrix composite (CFC) materials, machined into cylindrical coupons, between coupons of oxygen-free copper, the braze alloy was a copper-base alloy which contained only low activation elements (Al, Si, and Ti) relative to a titanium baseline specification. This demonstration was of particular importance for plasma facing components (PFCs) under design for use in the Tokamak Physics Experiment (TPX); the braze investigation was conducted by General Atomics for the Princeton Plasma Physics Laboratory. A tensile test of each brazed assembly was conducted. The results from the braze processing, testing, and fracture characterization studies of this reporting support the use of CFC's of varied fiber architecture and matrix processing in PFC designs for TPX. Further, the copper braze alloy investigated is now considered to be a viable candidate for a low-activation bond design. The prediction of plasma disruption-induced loads on the PFCs in TPX requires that joint strength between CFC tiles and their copper substrate be considered in design analysis and CFC selection.

  8. Weld-brazing of titanium. [resistance spot welding combined with brazing

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1973-01-01

    A joining process, designated weld-brazing, which combines resistance spot-welding and brazing has been developed at the NASA Langley Research Center. Resistance spot-welding is employed to position and aline the parts and to establish a suitable faying surface gap for brazing and contributes to the integrity of the joint. Brazing enhances the properties of the joint and reduces the stress concentrations normally associated with spotwelds. Ti-6Al-4V titanium alloy joints have been fabricated using 3003 aluminum braze both in a vaccum furnace and in a retort containing an inert gas environment.

  9. Fluxless Brazing of Large Structural Panels

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1982-01-01

    Fluxless brazing is used in fabricating aluminum structural panels that withstand high internal pressure. Aluminum sheet of structural thickness with 4045 aluminum/silicon-braze-alloy cladding is brazed to corrugated "fin stock" having channels 0.001 inch (0.03mm) high by same width. Process is carried out in an inert (argon) atmosphere in a retort furnace. Filler bars are used in some channels to prevent fin stock from collapsing as pressure is applied.

  10. Brazing of beryllium for structural applications

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.

    1972-01-01

    Progress made in fabricating a beryllium compression tube structure and a stiffened beryllium panel. The compression tube was 7.6cm in diameter and 30.5cm long with titanium end fittings. The panel was 203cm long and stiffened with longitudinal stringers. Both units were assembled by brazing with BAg-18 braze alloy. The detail parts were fabricated by hot forming 0.305cm beryllium sheet and the brazing parameters established.

  11. Braze/Rebraze process for CRES steel

    NASA Technical Reports Server (NTRS)

    Silverman, C. E.

    1976-01-01

    Using induction brazing process with 8.5-Au/16.5-Cu/2.0-Ni braze alloy, joints in 21-6-9 CRES steel tubing can be reworked up to seven times, thus significantly reducing cost of fabrication, repair, and part replacement.

  12. Improved brazing technique

    DOEpatents

    Harast, D.G.

    1984-01-27

    A method of brazing comprises sand blasting the surfaces of the components to be brazed with particles of a brazing material to clean the surfaces and to embed brazing material in the surfaces, applying the brazing material to the surfaces, and heating the brazing material to form a brazement between the components.

  13. Low-melting-point titanium-base brazing alloys. Part 1: Characteristics of two-, three-, and four-component filler metals

    SciTech Connect

    Chang, E.; Chen, C.H.

    1997-12-01

    The melting point, microstructure, phase, and electrochemical behavior of Ti-21Ni-15Cu alloy, together with two-, three-, and four-component low-melting-point titanium-base brazing alloys, are presented in this paper. Five filler metals were selected for the study, in which melting points were measured by differential thermal analysis, phases identified by x-ray diffractometry, and corrosion behaviors tested by potentiodynamic polarization. The experimental results show that the three-component Ti-15Cu-15Ni and the newly developed Ti-21Ni-14Cu alloys exhibit the combination of lower melting point and superior corrosion resistance compared to the two- and four-component titanium alloys, 316L stainless steel, and a Co-Cr-Mo alloy in Hank`s solution at 37 C. On a short time basis, the presence of Ti{sub 2}Ni and Ti{sub 2}Cu intermetallics in the Ti-15Cu-15Ni and Ti-21Ni-14Cu alloys should not be preferentially dissolved in galvanic corrosion with respect to the dissimilar Ti-6Al-4V alloy.

  14. Performance of brazed graphite, carbon-fiber composite, and TZM materials for actively cooled structures; Qualification tests

    SciTech Connect

    Smid, I. ); Croessmann, C.D.; Watson, R.D. ); Linke, J. ); Cardella, A.; Bolt, H,. ); Reheis, N.; Kny, E. )

    1991-07-01

    The divertor of a near-term fusion device has to withstand high heat fluxes, heat shocks, and erosion caused by the plasma. Furthermore, it has to be maintainable through remote techniques. Above all, a good heat removal capability across the interface (low-Z armor/heat sink) plus overall integrity after many operational cycles are needed. To meet all these requirements, an active metal brazing technique is applied to bond graphite and carbon-fiber composite materials to a heat sink consisting of a Mo-41Re coolant tube through a TZM body. Plain brazed graphite and TZM tiles are tested for their fusion-relevant properties. The interfaces appear undamaged after thermal cycling when the melting point of the braze joint is not exceeded and when the graphite armor is {gt}4 mm thick. High heat flux tests are performed on three actively cooled divertor targets. The braze joints show no sign of failure after exposure to thermal loads {approximately}25% higher than the design value surface heat flux of 10 MW/m{sup 2}.

  15. Intelligent control of vacuum aluminum brazing

    SciTech Connect

    Zhong, G.; Pai, D.M.; Badgley, S.

    1995-06-01

    Vacuum brazing is a versatile modern day metal joining method. It usually includes vacuum producing, heating and residual gas analyzing systems. When used to join aluminum parts, the quality of the brazed joint is highly dependent on the residual gases in the vacuum, especially the residual oxygen and water vapor in the vacuum chamber which affect the formation of oxides. These vacuum environment brazing contaminants are reduced during the out-gassing processes of degassing and desorption during heating under vacuum. Exceeding the boundary limits of these contaminants causes unacceptable flow of braze filler in the joints during the brazing process. Identification of the quality control boundary for vacuum brazing of aluminum alloy makes computer control of vacuum brazing quality for aluminum alloys possible. The present study utilizes a residual gas analyzer (RGA) to monitor the partial pressures of residual gases during brazing. These data are transported to computer through the RS-232 interface port on the RGA, and used in real time to monitor the brazing quality by an algorithm based on the quality control boundary. If the quality is bad, the computer will send a ``hold`` signal to the heating system via another Rs-232 port until the environment is reestablished within the acceptable boundary.

  16. Mechanical design of ceramic beam tube braze joints for NOvA kicker magnets

    SciTech Connect

    Ader, C.R.; Reilly, R.E.; Wilson, J.H.; /Fermilab

    2010-05-01

    The NO?A Experiment will construct a detector optimized for electron neutrino detection in the existing NuMI neutrino beam. The NuMI beam line is capable of operating at 400 kW of primary beam power and the upgrade will allow up to 700 kW. Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil alloy brazing material are stacked in the furnace and then brazed. The most challenging aspect of fabricating kicker magnets in recent years have been making hermetic vacuum seals on the braze joints between the ceramic and flange. Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. The ceramic-filler metal interface is normally the weak layer when failure does not occur within the ceramic. Differences between active brazing filler metal and the moly-manganese process will be discussed along with the applicable results of these techniques used for Fermilab production kicker tubes.

  17. Some properties of low-vapor-pressure braze alloys for thermionic converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1978-01-01

    Property measurements were made for arc-melted, rod-shaped specimens. Density and dc electrical resistivity at 296 K were measured for various binary eutectic alloys. Thermal conductivity was inferred from the electrical conductivity using the Wiedemann, Franz, Lorenz relation. Linear thermal expansion from 293 K to two-thirds melting point, under a helium atmosphere, was measured for Zr, 21.7-wt percent Ru; Zr, 13-wt percent W; Zr, 22.3-wt percent Nb; Nb, 66.9-wt percent Ru; and Zr, 25.7-wt percent Ta.

  18. Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (<950 C) precluded melting of the clad layer and restricted the redistribution of alloying elements but led to metallurgically sound composite joints. The Knoop microhardness (HK) distribution across the joint interfaces revealed sharp gradients at the Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.

  19. Microstructures of beta-titanium orthodontic wires joined by infrared brazing.

    PubMed

    Iijima, Masahiro; Brantley, William A; Kawashima, Isao; Baba, Naoki; Alapati, Satish B; Yuasa, Toshihiro; Ohno, Hiroki; Mizoguchi, Itaru

    2006-10-01

    The microstructures and interdiffusion in brazed beta-titanium orthodontic wires were investigated by scanning electron microscopy and electron probe microanalysis, respectively. Beta-titanium wire (Ti-11Mo-6Zr-4Sn) with cross-section dimensions of 0.032 in. x 0.032 in., titanium-based braze alloy (Ti-30Ni-20Cu), and silver-based braze alloy (Ag-22Cu-17Zn-5Sn) were selected for the study. Brazing was performed using infrared radiation (RS-1) under an argon atmosphere. Specimens were etched with two solutions (2.5% HF + 2.5% HNO(3) + 95% H(2)O; 25% HN(4)OH + 30% H(2)O(2) + 45%H(2)O). It was found that the silver-based braze alloy has a eutectic structure. In the diffusion layer between the beta-titanium wire and this silver-based braze alloy, Cu and Ti were enriched on the wire side, and Sn and Ti were enriched on the braze alloy side. The titanium-based braze alloy has a dendritic structure. Beta-titanium wire specimens brazed with the titanium-based braze alloy had a thicker intermediate area compared to the silver alloy; Ti in the diffusion layer had an irregular concentration gradient, and the braze alloy side had higher Ti concentration. The original microstructure of the beta-titanium wire was not altered with the use of either braze alloy. Infrared brazing of beta-titanium orthodontic wire is acceptable for clinical use, since the wire microstructure did not deteriorate with either the titanium-based or silver-based braze alloy. The differing microstructures of the joint regions for the two braze alloys suggest that the joint strengths may also differ.

  20. The Apparent Contact Angle and Wetted Area of Active Alloys on Silicon Carbide as a Function of the Temperature and the Surface Roughness: A Multivariate Approach

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Pfeiffer, Jan; Wojarski, Lukas

    2015-08-01

    Despite the broad field of applications for active filler alloys for brazing ceramics, as well as intense research work on the wetting and spreading behavior of these alloys on ceramic surfaces within the last decades, the manufactured joints still exhibit significant variations in their properties due to the high sensitivity of the alloys to changing brazing conditions. This increases the need for investigations of the wetting and spreading behavior of filler alloys with regard to the dominating influences combined with their interdependencies, instead of solely focusing on single parameter investigations. In this regard, measurements of the wetting angle and area were conducted at solidified AgCuTi and CuSnTi alloys on SiC substrates. Based on these measurements, a regression model was generated, illustrating the influence of the brazing temperature, the roughness of the faying surfaces, the furnace atmosphere, and their interdependencies on the wetting and spreading behavior of the filler alloys. It was revealed that the behavior of the melts was significantly influenced by the varied brazing parameters, as well as by their interdependencies. This result was also predicted by the developed model and showed a high accuracy.

  1. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  2. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  3. Characterization of exothermic brazing components Skylab experiment M552

    NASA Technical Reports Server (NTRS)

    Pattee, H. E.; Monroe, R. E.

    1973-01-01

    Information developed to characterize flight and ground based samples from the Exothermic Brazing Experiment is detailed. Included is information developed from metallographic observation, chemical analysis, and measurements of component dimensions. Comparisons of the flight and ground based specimens showed that good quality brazes were obtained. Effects of the zero gravity processing were noted on liquid metal flow and braze alloy-base metal reactions. Unusual metallurgical structures exhibited in the nickel brazes made in Skylab were the result of composition variations apparently related to the time-temperature cycle characteristic of this braze.

  4. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  5. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    DOEpatents

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  6. Development of the weld-braze joining process

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1973-01-01

    A joining process, designated weld-brazing, was developed which combines resistance spot welding and brazing. Resistance spot welding is used to position and aline the parts, as well as to establish a suitable faying-surface gap for brazing. Fabrication is then completed at elevated temperature by capillary flow of the braze alloy into the joint. The process was used successfully to fabricate Ti-6Al-4V alloy joints by using 3003 aluminum braze alloy and should be applicable to other metal-braze systems. Test results obtained on single-overlap and hat-stiffened panel specimens show that weld-brazed joints were superior in tensile shear, stress rupture, fatigue, and buckling compared with joints fabricated by conventional means. Another attractive feature of the process is that the brazed joint is hermetically sealed by the braze material, which may eliminate many of the sealing problems encountered with riveted or spot welded structures. The relative ease of fabrication associated with the weld-brazing process may make it cost effective over conventional joining techniques.

  7. Brazing C-C composites to metals

    SciTech Connect

    Liu, J.Y.; Banerjee, P.; Chin, B.A.

    1994-12-31

    Carbon-carbon composites are attractive for use at high temperature because of their high strength, modulus, chemical stability and resistance to activation by radiation. In these applications, the C-C composite must be joined to itself and to metals. The research described in this paper has led to the invention of a new brazing filler metal from the Cu-Mu-Ti system and the development of a brazing process for joining CC composites to metals. The newly invented brazing filler metal compositions, with controllable melting points ranging from 800{emdash}920{degrees}C has excellent wettability on both C-C composites and metals (stainless steel, Nb, Mo, W, and Zr). Sound joints of C-C composite/metal were produced using the brazing filler metal and the specially developed brazing processes. Finite element analyses were used to predict the residual stress distribution in the brazed joints. Theoretical predictions were confirmed by interlayer experiments. The brazed joints were studied using optical and scanning electron microscopy (SEM) to examine the microstructure and fractured brazed joints. The results showed 100% bonding was obtained using the developed braze metal and brazing procedure.

  8. Assessing braze quality in the actively cooled Tore Supra Phase III outboard pump limiter

    SciTech Connect

    Nygren, R.E.; Lutz, T.L.; Miller, J.D.; McGrath, R.; Dale, G.

    1994-12-31

    The quality of brazing of pyrolytic graphite armor brazed to copper tubes in Tore Supra`s Phase III Outboard Pump Limiter was assessed through pre-service qualification testing of individual copper/tile assemblies. The evaluation used non-destructive, hot water transient heating tests performed in the high-temperature, high-pressure flow loop at Sandia`s Plasma Materials Test Facility. Surface temperatures of tiles were monitored with an infrared camera as water at 120{degrees}C at about 2.07 MPa (300 psi) passed through a tube assembly initially at 30{degrees}C. For tiles with braze voids or cracks, the surface temperatures tagged behind those of adjacent well-bonded tiles. Temperature tags were correlated with flaw sizes observed during repairs based upon a detailed 2-D heat transfer analyses. {open_quotes}Bad{close_quotes} tiles, i.e., temperature tags of 10-20{degrees}C depending upon tile`s size, were easy to detect and, when removed, revealed braze voids of roughly 50% of the joint area. Eleven of the 14 tubes were rebrazed after bad tiles were detected and removed. Three tubes were rebrazed twice.

  9. Diffusion brazing of nickel aluminides

    SciTech Connect

    Orel, S.V.; Parous, L.C.; Gale, W.F.

    1995-09-01

    NiAl is a promising candidate material for high-temperature applications. However, NiAl suffers from poor low-temperature ductility and toughness. Hence, suitable technologies are required for NiAl to Ni-based alloy joining. In view of the poor low-temperature ductility and strong alumina-forming tendency of NiAl, diffusion brazing seems to be the most suitable technology for joining NiAl to itself and to Ni-based alloys. This paper examines the diffusion brazing of NiAl to Ni using Ni-Si-B interlayers and draws comparisons with previous work by authors on NiAl/Ni-Si-B/NiAl and Ni/Ni-Si-B/Ni diffusion brazing. The progression of micro-structural development in the NiAl/Ni-Si-B/Ni joints is compared with that expected from standard models of the diffusion brazing process in which dissolution of the substrate material, isothermal solidification and solid-state homogenization occur sequentially.

  10. Effect of Ni-P alloy coating on microstructures and properties of vacuum brazed joints of SiCp/Al composites

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Gao, Zeng; Cheng, Dongfeng; Xu, Dongxia; Niu, Jitai

    2017-03-01

    Compared without electroless Ni-P alloy coating on the SiCp/Al composites, the paper describes the effect of Ni-P deposited layer on the microstructure evolution, shear strength, airtightness and fracture behavior of vacuum brazed joints. Void free and compact reaction layers along the 6063Al/Ni-P deposited layer/filler metal interfaces indicated that the joints exhibit high airtightness with He-leakage less than 2.0 × 10‑8 Pa ṡm3/s. Energy Dispersive X-ray Spectroscopy (EDS) analysis showed that the reaction layers mainly included brittle Al-Ni and Al-Cu-Ni intermetallics, where fracture occurred in priority and the shear strength was less than 90 MPa. However, without Ni-P alloy coating, sound joints with high shear strength of 100.1 MPa but low airtightness with He-leakage higher than 1.45 × 10‑7Pa ṡm3/s were also obtained at 590∘C for soaking time of 30 min. In this case, a few holes that occurred along the filler metal/SiC particle interface significantly decreased the compactness of the joints. Therefore, according to the requirements in practical applications, suitable choice was provided in this research.

  11. Brazing of photocathode RF gun structures in Hydrogen atmosphere: Process qualification, effect of brazing on RF properties and vacuum compatibility

    NASA Astrophysics Data System (ADS)

    Kak, Ajay; Kulshreshtha, P.; Lal, Shankar; Kaul, Rakesh; Ganesh, P.; Pant, K. K.; Abhinandan, Lala

    2012-11-01

    In this paper, we report on the development of a brazing process for an ultra-high vacuum (UHV) compatible photocathode RF gun structure developed at our Centre. The choice of brazing alloy and its form, brazing clearance between parts to be joined and the brazing cycle adopted have been qualified through metallographic examination of identical joints on an OFE copper prototype that was cut open after brazing. The quality of brazed joint not only affects the UHV compatibility of the gun, but also influences the RF parameters finally achieved. A 2-D electromagnetic code, SUPERFISH, was used to predict the variation in RF parameters before and after brazing considering actual brazing clearances provided between the parts to be joined. Results obtained from low power RF measurements on the brazed gun structure confirm the integrity of the brazed joints and show good agreement with those predicted by electromagnetic simulations. The brazed gun structure has been leak-tested and pumped down to a vacuum level limited by the vacuum compatibility of the flange-fittings employed in the setup.

  12. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-30

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA, and on zirconia and stainless steel joining couples prepared using this braze filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation resistance of the brazed joint.

  13. The Effect of Composition on the Wetting Behavior and Joint Strength of the Ag-CuO Reactive Air Braze

    SciTech Connect

    Weil, K. Scott; Coyle, Christopher A.; Kim, Jin Yong Y.; Hardy, John S.

    2003-05-15

    One of the challenges in manufacturing solid-state electrochemical devices is in joining the ceramic and metallic components such that the resulting joint is rugged, hermetic, and stable under continuous high temperature operation in an oxidizing atmosphere. A well proven method of joining dissimilar materials is by brazing. Unfortunately many of the commercially available ceramic-to-metal braze alloys exhibit oxidation behavior which is unacceptable for potential use in a high temperature electrochemical device. An alternative braze alloy composition designed for oxidation resistance has been developed to join ferritic stainless steel to a variety of electrochemically active ceramic membranes including YSZ, nickel oxide, and mixed conducting perovskite oxides. The results of this study to date will be discussed.

  14. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and 316L Stainless Steel with Two Sliver-Based Fillers

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Chen, Chia-Pin; Wu, Shyi-Kaan

    2015-06-01

    Dissimilar infrared brazing Ti50Ni50 and AISI 316L stainless steel using two silver-based fillers, Cusil-ABA and Ticusil, was evaluated. The shear strength of the Ticusil brazed joint is higher than that of the Cusil-ABA brazed one due to the formation of better fillet. The maximum shear strength of 237 MPa is obtained for the Ticusil joint brazed at 1223 K (950 °C) for 60 seconds. The presence of interfacial Ti-Fe-(Cu) layer is detrimental to the shear strength of all joints.

  15. One-step brazing process for CFC monoblock joints and mechanical testing

    NASA Astrophysics Data System (ADS)

    Casalegno, V.; Salvo, M.; Murdaca, S.; Ferraris, M.

    2009-09-01

    A new method of joining CFC to copper (CFC/Cu) and CFC/Cu to CuCrZr alloy (CFC/Cu/CuCrZr) was previously developed for the flat-type configuration. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC, Cu and CuCrZr) can be performed in a single heat treatment using the same non-active brazing alloy. The composite surface was previously modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The feasibility of this process also for monoblock geometry is described in this work. The thermal fatigue resistance of the joined samples (quenching from 450 °C to RT; 50 cycles) was tested and the joints were characterized by apparent shear tests before and after thermal fatigue. The apparent shear strength of the CFC/Cu/CuCrZr joined samples was unaffected after these thermal fatigue tests.

  16. A study on brazing of Glidcop® to OFE Cu for application in Photon Absorbers of Indus-2

    NASA Astrophysics Data System (ADS)

    Yadav, D. P.; Kaul, R.; Ram Sankar, P.; Kak, A.; Ganesh, P.; Shiroman, R.; Singh, R.; Singh, A. P.; Tiwari, P.; Abhinandan, L.; Kukreja, L. M.; Shukla, S. K.

    2012-11-01

    The paper describes an experimental study aimed at standardizing brazing procedure for joining Glidcop to OFE Cu for its application in upgraded photon absorbers of 2.5 GeV synchrotron radiation source, Indus-2. Two different brazing routes, involving brazing with silver base (BVAg-8) and gold base (50Au/50Cu) alloys, were studied to join Glidcop to OFE Cu. Brazing with both alloys yielded helium leak tight and bakeable joints with acceptable shear strengths.

  17. Vacuum brazing beryllium to Monel

    SciTech Connect

    Glenn, T.G.; Grotsky, V.K.; Keller, D.L.

    1982-10-01

    The tensile strength of beryllium to Monel vacuum furnace brazed joints was studied. The filler used was the 72% Ag-28%Cu(BAg-8) alloy. The strength of these joints, which require the use of a titanium hydride powder or physical vapor deposited titanium wetting agent on the beryllium, was found to approach the yield strength of the base metals. Strength was found to be reduced by the interaction of increased titanium hydride quantity and brazing time. Metallographic and scanning electron microscope (SEM) studies correlated these effects with microstructure. The formation of the brittle copper-beryllium delta phase was found to require conditions of high brazing temperature and the presence of a reservoir of the copper-containing filler such as found in fillet areas. Two other filler metals: pure silver, and a 60% Ag-30% Cu-10%Sn (BAg-17) alloy were shown to be acceptable alternatives to the BAg-8 alloy in cases where the filler metal can be preplaced between the base metal surfaces.

  18. Effect of Composite Substrates on the Mechanical Behavior of Brazed Joints in Metal-Composite System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Morscher, Gregory N.; Shpargel, Tarah; Asthana, Rajiv

    2006-01-01

    Advanced composite components are being considered for a wide variety of demanding applications in aerospace, space exploration, and ground based systems. A number of these applications require robust integration technologies to join dissimilar materials (metalcomposites) into complex structural components. In this study, three types of composites (C-C, C-SiC, and SiC-SiC) were vacuum brazed to commercially pure Ti using the active metal braze alloy Cusil-ABA (63Ag-35.3Cu-1.75Ti). Composite substrates with as fabricated and polished surfaces were used for brazing. The microstructure and composition of the joint, examined using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), showed sound metallurgical bonding in all systems. The butt strap tensile (BST) test was performed on bonded specimens at room and elevated temperatures. Effect of substrate composition, interlaminar properties, and surface roughness on the mechanical properties and failure behavior of joints will be discussed.

  19. Effects of Different Braze Materials and Composite Substrates on Composite/Ti Joints

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay; Asthana, Rajiv; Shpargel, Tarah

    2007-01-01

    An ever increasing number of applications require robust joining technologies of dissimilar materials. In this study, three types of ceramic composites (C-C, C-SiC, and SiC-SiC) were vacuum brazed to commercially pure Ti using the Cusil-ABA (63 Ag - 35.5 Cu - 1.75 Ti) active metal braze alloy. The study also compared composite specimens as-fabricated and after surface grinding/polishing. A butt-strap tensile shear strength test was used to evaluate the joined structures at room temperature, 270 and 500 C. The elevated temperatures represent possible use temperatures for some heat rejection type applications. Joint strength will be discussed in light of braze wetting and spreading properties, composite properties, and test temperature.

  20. A comparison of the corrosion behaviour and surface characteristics of vacuum-brazed and heat-treated Ti6Al4V alloy.

    PubMed

    Lee, T M; Chang, E; Yang, C Y

    1998-08-01

    The corrosion characteristics of the brazed Ti6Al4V specimens were analysed and compared with respect to the conventionally heat-treated specimens by an electrochemical corrosion test. The object of this research was to explore the potentiality of the brazed titanium for biomaterials. The characteristics of the 1300 degrees C heat-treated and the 970 degrees C brazed specimens, with passivation and sterilization treatment, were evaluated by measurement of corrosion potential, Ecorr, corrosion current densities, Icorr, polarization resistance of the reacted surface films, Rp, in a potentiodynamic test. The experimental results show that the corrosion rates of the heat-treated and the brazed samples are similar at Ecorr, and the value of Ecorr for the brazed sample is noble to the heat-treated samples. The passive current density of the brazed specimen is either lower or higher than the heat-treated specimen, depending on the polarization potential. By Auger electron spectroscopic and high-resolution X-ray photoelectron spectroscopic analysis on specimens from the potentiostatic test, the elements of copper and nickel in the brazing filler were not detected while less alumina was found in the reacted film of the brazed specimens when compared with the heat-treated specimens. The implication of the results is discussed.

  1. Mechanical properties of high-temperature brazed titanium materials

    SciTech Connect

    Lugscheider, E.; Broich, U.; Koetzing, B.

    1994-12-31

    Titanium and its alloys are of main interest for several fields of application. Because of rising demands on permanent structural parts and increasing complexity of components, it is important to obtain an adequate joining technique, which on the one hand does not restrict the mechanical properties of the parent metal too much and on the other hand is inexpensive and flexible. These requirements can be fulfilled best by application of high-temperature brazing technology, employing titanium base filler metals. Among existing joining techniques, the vacuum brazing process conducted in a vacuum furnace and the induction brazing process are of practical relevance. The mechanical properties of high-temperature brazed titanium materials are strongly dependent on process parameters, such as brazing time and brazing temperature and even more crucially on brazing gap size. Under optimized brazing conditions, the tensile strength of high-temperature brazed TiAl6V4-joints, for example, reach about 950 MPa, where the Pd-containing alloy is slightly superior to TiCu20Ni20 filler metal. Most of the tensile specimens break in the base metal at some distance to the brazing zone, indicating that the tensile strength of the joint is comparable to that of the bulk material. The thermal stability of the brazed titanium joints has been investigated by doing tensile tests at elevated temperatures. These experiments have shown that the tensile strength of TiAl6VA- joints for example are going to be reduced by 30% when exposing the brazed samples to 300{degrees}C. However, the tensile specimen broke in the bulk material, indicating that the tensile strength of bulk TiAl6V4 is also reduced at elevated temperatures.

  2. Infrared Brazing Fe3Al Using Ag-Based Filler Metals

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Li, Yao; Wu, Shyi-Kaan; Wu, Ling-Mei

    2010-11-01

    The microstructural evolution and bonding shear strength of infrared brazed Fe3Al using Ag and BAg-8 (72Ag-28Cu in wt pct) braze alloys have been studied. The Ag-rich phase alloyed with Al dominates the entire Ag brazed joints, and the shear strength is independent of the brazing time. The BAg-8 brazed joint contains Ag-Cu eutectic for all brazing conditions, and its shear strength increases slightly with increasing brazing time. The highest shear strength of 181 MPa is acquired from the joint infrared brazed at 1073 K (800 °C) for 600 seconds. A thin layer of Fe3Al is identified at the interface between the brazed zone and the substrate for both braze alloys. An Al depletion zone in the Fe3Al substrate next to the interfacial Fe3Al is identified as the α-Fe phase. The dissolution of Al from the Fe3Al substrate into the molten braze causes the formation of α-Fe in the Fe3Al substrate.

  3. Diffusion brazing nickel-plated stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  4. Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do no exceed 750 degree C.

    DOEpatents

    Hammond, Joseph P.; David, Stan A.; Woodhouse, John J.

    1986-01-01

    This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750.degree. C., and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750.degree. C. to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal compatible with the coefficient of thermal expansion of the ceramic, such as titanium.

  5. Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do not exceed 750/sup 0/C

    DOEpatents

    Hammond, J.P.; David, S.A.; Woodhouse, J.J.

    1984-12-04

    This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750/sup 0/C, and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750/sup 0/C to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal expansion compatible with the coefficient of thermal expansion of the ceramic, such as titanium.

  6. Radioisotope tracer studies in the NASA Skylab ethothermic brazing experiment M-552

    NASA Technical Reports Server (NTRS)

    Braski, D. N.; Adair, H. L.; Kobisk, E. H.

    1974-01-01

    The first use of radioisotope tracer for mapping flow patterns during brazing of metal components in a space environment (near-zero gravity) proved successful. A nickel ferrule was brazed to a nickel tube with Lithobraze BT (71.8% Ag, 28% Cu, 0.2% Li) which contained a trace amount of radioactive Ag-110. Mapping of the flow of the braze alloy in the annulus formed between the tube and the concentric ferrule was determined by counting the radiation intensity as a function of position in the braze joint. Significant information concerning the thermal history of the braze was determined.

  7. A new low-melting-point aluminum braze

    SciTech Connect

    Jacobson, D.M.; Humpston, G.; Sangha, S.P.S.

    1996-08-01

    Most high-strength aluminum engineering alloys cannot be joined by brazing because they either degrade or melt at the temperature at which commercially available aluminum brazes are used. Previous efforts to develop aluminum brazing filler metal alloys with a significantly reduced melting point have tended to be frustrated by poor mechanical properties of the alloys, corrosion of the joints or the high cost, toxicity or volatility of the constituent materials. This paper describes the development and assessment of a new brazing alloy with a composition of 73Al-20Cu-2Ni-55I (wt-%), which has been designed to overcome these limitations. A joining process has been devised for fluxless brazing of aluminum engineering alloys using the new filler metal for use in both inert gas and vacuum furnaces. The production of ductile foil preforms and roll-clad base metals is described together with preliminary results of mechanical property assessments and corrosion resistance trials. These results are highly encouraging and point to promising new applications for aluminum brazing technology.

  8. Brazing of Stainless Steels to Yttria Stabilized Zirconia (YSZ) Using Silver -Base Brazes

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Shpargel, Tarah P.; Asthana, Rajiv

    2005-01-01

    Three silver-base brazes containing either noble metal palladium (Palcusil-10 and Palcusil-15) or active metal titanium (Ticusil) were evaluated for high-temperature oxidation resistance, and their effectiveness in joining yttria stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel. Thermogravimetric analysis (TGA), and optical- and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) were used to evaluate the braze oxidation behavior and the structure and chemistry of the YSZ/braze/steel joints. The effect of the braze type and processing conditions on the interfacial microstructure and composition of the joint regions is discussed with reference to the chemical changes that occur at the interface. It was found that chemical interdiffusion of the constituents of YSZ, steel and the brazes led to compositional changes and/or interface reconstruction, and metallurgically sound joints.

  9. Mechanical characterization and modeling of brazed EUROFER-tungsten-joints

    NASA Astrophysics Data System (ADS)

    Chehtov, T.; Aktaa, J.; Kraft, O.

    2007-08-01

    Within the scope of the European fusion power plant study for development of a He-cooled divertor, a tungsten-steel joint has been considered. A preferable joining technique is high temperature brazing. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. The components of the joint are exposed to mechanical and cyclic thermal loads which give rise to development of high stresses and could lead to failure. Brazed joints of tungsten alloy and ferritic-martensitic steel using different brazing filler materials were studied both experimentally and theoretically. Finite element computations have been performed to calculate the stress distribution and to investigate their evolution within the course of the operational thermal load. Sample joint specimen have been brazed, investigated with respect to their microstructure, and mechanically characterized by performing bend and notched bar impact testing at different temperatures. Some plastic deformation and relatively low impact energies were measured.

  10. Brazing SiC/SiC Composites to Metals

    NASA Technical Reports Server (NTRS)

    Steffier, Wayne S.

    2004-01-01

    Experiments have shown that active brazing alloys (ABAs) can be used to join SiC/SiC composite materials to metals, with bond strengths sufficient for some structural applications. The SiC/SiC composite coupons used in the experiments were made from polymerbased SiC fiber preforms that were chemical-vapor-infiltrated with SiC to form SiC matrices. Some of the metal coupons used in the experiments were made from 304 stainless steel; others were made from oxygen-free, high-conductivity copper. Three ABAs were chosen for the experiments: two were chosen randomly from among a number of ABAs that were on hand at the time; the third ABA was chosen because its titanium content (1.25 percent) is less than those of the other two ABAs (1.75 and 4.5 percent, respectively) and it was desired to evaluate the effect of reducing the titanium content, as described below. The characteristics of ABAs that are considered to be beneficial for the purpose of joining SiC/SiC to metal include wettability, reactivity, and adhesion to SiC-based ceramics. Prior to further development, it was verified that the three chosen ABAs have these characteristics. For each ABA, suitable vacuum brazing process conditions were established empirically by producing a series of (SiC/SiC)/ABA wetting samples. These samples were then sectioned and subjected to scanning electron microscopy (SEM) and energy-dispersive x-ray spectrometry (EDS) for analysis of their microstructures and compositions. Specimens for destructive mechanical tests were fabricated by brazing of lap joints between SiC/SiC coupons 1/8-in. (.3.2- mm) thick and, variously, stainless steel or copper tabs. The results of destructive mechanical tests and the SEM/EDS analysis were used to guide the development of a viable method of brazing the affected materials.

  11. Brazing of titanium-vapor-coated silicon nitride

    SciTech Connect

    Santella, M.L. )

    1988-09-01

    A technique for brazing Si{sub 3}N{sub 4} with metallic alloys was evaluated. The process involved vapor coating the ceramic with a 1.0-{mu}-thick layer of titanium before the brazing operation. The coating improved wetting of the Si{sub 3}N{sub 4} surfaces to the extent that strong bonding between the solidified braze filler metal and the ceramic occurred. Braze joints of Si{sub 3}N{sub 4} were made with Ag-Cu, Au-Ni, and Au-Ni-Pd alloys at temperatures of 790{degree}, 970{degree}, and 1,130{degree}C. Silicon nitride specimens were also brazed with a Ag-Cu alloy to the molybdenum alloy TZM, titanium, and A286 steel at 790{degree}C. Residual stresses resulting from mismatch of thermal expansion coefficients between the Si{sub 3}N{sub 4} and the metals caused all of the ceramic-to-metal joints to spontaneously crack in the Si{sub 3}N{sub 4} upon cooling from the brazing temperature.

  12. Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg.

    PubMed

    Ma, Zhipeng; Zhao, Weiwei; Yan, Jiuchun; Li, Dacheng

    2011-09-01

    Ultrasonic-assisted brazing of Al4Cu1Mg and Ti6Al4V using Zn-based filler metal (without and with Si) has been investigated. Before brazing, the Ti6Al4V samples were pre-treated by hot-dip aluminizing and ultrasonic dipping in a molten filler metal bath in order to control the formation of intermetallic compounds between the Ti6Al4V samples and the filler metal. The results show that the TiAl(3) phase was formed in the interface between the Ti6Al4V substrate and the aluminized coating. For the Zn-based filler metal without Si, the Ti6Al4V interfacial area of the brazed joint did not change under the effect of the ultrasonic wave, and only consisted of the TiAl(3) phase. For the Zn-based filler metal with Si, the TiAl(3) phase disappeared and a Ti(7)Al(5)Si(12) phase was formed at the interfacial area of the brazed joints under the effect of the ultrasonic wave. Due to the TiAl(3) phase completely changing to a Ti(7)Al(5)Si(12) phase, the morphology of the intermetallic compounds changed from a block-like shape into a lamellar-like structure. The highest shear strength of 138MPa was obtained from the brazed joint free of the block-like TiAl(3) phase.

  13. A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities

    NASA Astrophysics Data System (ADS)

    Kumar, Abhay; Ganesh, P.; Kaul, R.; Bhatnagar, V. K.; Yedle, K.; Ram Sankar, P.; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Singh, M. K.; Rai, S. K.; Bose, A.; Veerbhadraiah, T.; Ramteke, S.; Sridhar, R.; Mundra, G.; Joshi, S. C.; Kukreja, L. M.

    2015-02-01

    The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate <1.1 × 10-10 mbar l/s) for service in ultra-high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.

  14. Development of Brazing Technology for Use in High- Temperature Gas Separation Equipment

    SciTech Connect

    Weil, K.S.; Hardy, J.S.; Kim, J.Y.

    2003-04-23

    The development of high-temperature electrochemical devices such as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors is part of a rapidly expanding segment of the solid state technology market. These devices employ an ionic conducting ceramic as the active membrane that establishes the electrochemical potential of the device, either under voltage (i.e. to carry out gas separation) or under chemical gradient (to develop an electrical potential and thereby generate electrical power). Because the device operates under an ionic gradient that develops across the electrolyte, hermiticity across this layer is paramount. That is, not only must this thin ceramic membrane be dense with no interconnected porosity, but it must be connected to the rest of the device, typically constructed from a heat resistant alloy, with a high-temperature, gas-tight seal. A significant engineering challenge in fabricating these devices is how to effectively join the thin electrochemically active membrane to the metallic body of the device such that the resulting seal is hermetic, rugged, and stable during continuous high temperature operation. Active metal brazing is the typical method of joining ceramic and metal engineering components. It employs a braze alloy that contains one or more reactive elements, often titanium, which will chemically reduce the ceramic faying surface and greatly improve its wetting behavior and adherence with the braze. However, recent studies of these brazes for potential use in fabricating high-temperature electrochemical devices revealed problems with interfacial oxidation and subsequent joint failure [1,2]. Specifically, it was found that the introduction of the ceramic electrolyte and/or heat resistant metal substrate dramatically affects the inherent oxidation behavior of the braze, often in a deleterious manner. These conclusions pointed to the need for an oxidation resistant, high-temperature ceramic

  15. Effects induced by the brazing thermal cycle on the structural properties of materials in steel brazed joints

    NASA Astrophysics Data System (ADS)

    Brossa, M.; Guerreschi, U.

    1988-07-01

    Specimens of AISI 316 austenitic steel, 9Cr-1Mo modified martensitic steel, and 2.25Cr-1Mo ferritic steel have been brazed in a furnace under vacuum conditions. Several thermal cycles were followed in order to investigate their influence on the final characteristics of the joints and the materials. Various kinds of high-melting Ni-based brazing alloys having properties similar to the base materials were used. The growth of the austenitic grain size was measured in order to assess its dependence on the brazing cycle of the different alloys. Metallurgical analyses were carried out and, in a few cases, repeated after the specimens underwent a second thermal cycle or destructive tests. No precipitation of carbides was observed in the base materials after the brazing cycles, confirming that the cooling rate is above the critical range.

  16. Interfacial Microstructure Evolution and Shear Strength of Titanium Sandwich Structures Fabricated by Brazing

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Fan, Minyu; Li, Jinlong; Tao, Jie

    2016-03-01

    The corrugated sandwich structure, consisting of a CP Ti (commercially pure titanium) core between two Ti-6Al-4V face sheets, was brazed using pasty Ti-37.5Zr-15Cu-10Ni as filler alloy, at the temperature of 870°C for 5, 10, 20, and 30 min. The effect of brazing time on the microstructure and elemental distribution of the brazed joints was examined by means of SEM, EDS, and XRD analyses. It was found that various intermetallic phases were formed in the brazed joints, following a brazing time of 5 min, and their contents were decreased by the increment of brazing time, while prolonged brazing time resulted in a fine, acicular Widmanstätten microstructure throughout the entire joint. In addition, shear testing was performed in the brazed corrugated specimens in order to indirectly assess the quality of the joints. The debonding between CP Ti and Ti-6Al-4V was observed in the specimen brazed for 5 min and the fracture of the CP Ti corrugated core occurred after 30 min of brazing time. Additionally, when brazed for 10 min or 20 min, brittle intermetallic compounds in the joints and the grain growth of the base metal were controllable. Therefore, the sandwich structures failed without debonding in the joints or fracture within the base metal, demonstrating a good combination of strength and ductility.

  17. Fabrication and Characterization of Brazed Joints for SiC-Metallic Systems Utilizing Refractory Metals

    NASA Technical Reports Server (NTRS)

    Coddington, Bryan; Asthana, Rajiv; Halbig, Michael C.; Singh, M.

    2011-01-01

    Metal to ceramic joining plays a key role for the integration of ceramics into many nuclear, ground and aero based technologies. In order to facilitate these technologies, the active metal brazing of silicon carbide (CVD beta-SiC, 1.1 mm thick, and hot-pressed alpha-SiC, 3 mm thick) to the refractory metals molybdenum and tungsten using active braze alloys was studied. The joint microstructure, composition, and microhardness were evaluated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Knoop hardness testing. The braze alloys, Cusil-ABA, Ticusil and Copper-ABA, all formed sound joints with excellent wetting and chemical bonding with the SiC substrate. Despite the close thermal expansion match between the metal substrates and SiC, hairline cracks formed in alpha-SiC while beta-SiC showed no signs of residual stress cracking. The use of ductile interlayers to reduce the effect from residual stresses was investigated and joints formed with copper as an interlayer produced crack free systems utilizing both CVD and hot-pressed SiC.

  18. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-01

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA®, and on zirconia/stainless steel couples joined using this filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation behavior of the brazed joint.

  19. A review of oxide, silicon nitride, and silicon carbide brazing

    SciTech Connect

    Santella, M.L.; Moorhead, A.J.

    1987-01-01

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed.

  20. Bonding Mechanisms and Shear Properties of Alumina Ceramic/Stainless Steel Brazed Joint

    NASA Astrophysics Data System (ADS)

    Liu, G. W.; Qiao, G. J.; Wang, H. J.; Wang, J. P.; Lu, T. J.

    2011-12-01

    Al2O3 ceramic/stainless steel joints were fabricated by activated molybdenum-manganese (Mo-Mn) sintering metallization plus vacuum brazing using Ag-28 wt.% Cu alloy. The bonding mechanisms including metallization and interfacial bonding were analyzed and discussed by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Tests were also carried out to examine the influence of brazing on joint shear strength. The metallization mechanisms of glassy phase migration and chemical reaction were confirmed experimentally, while Ni coating was found to play a key role in the joining of metallized ceramic to metal via the Ag-Cu filler layer. As a result of the joining, the average shear strength of the joints exceeds 95 MPa, with the maximum reaching 110 MPa.

  1. The use of Ni-Cr-Si-Be filler metals for brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Fedotov, V.; Suchkov, A.; Penyaz, M.; Fedotov, I.; Tarasov, B.

    2016-04-01

    Nanocrystalline ribbon filler metal-alloys of system Ni-Cr-Si-Be are produced by the rapidly quenching of the melt method. By these filler metals carried out hight temperature vacuum brazing of austenitic steels (12Kh18N10T and Kh18N8G2) and austenitic-ferritic class EI-811 (12Kh21N5T). The basic laws of structure-phase state foundation of brazed joints are determined, features of the interaction of the molten filler metal to the brazed materials are identified, the optimal temperature and time parameters of the brazing process are determined.

  2. METHOD OF BRAZING

    DOEpatents

    Patriarca, P.; Slaughter, G.M.

    1962-11-27

    A method of joining metal surfaces is given. Surfaces having nickel or iron as the base metal are joined together with a brazing composition consisting of 80% nickel, 10% phosphorus, and 10% chromium. (AEC)

  3. Failure Assessment of Stainless Steel and Titanium Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury A.

    2012-01-01

    Following successful application of Coulomb-Mohr and interaction equations for evaluation of safety margins in Albemet 162 brazed joints, two additional base metal/filler metal systems were investigated. Specimens consisting of stainless steel brazed with silver-base filler metal and titanium brazed with 1100 Al alloy were tested to failure under combined action of tensile, shear, bending and torsion loads. Finite Element Analysis (FEA), hand calculations and digital image comparison (DIC) techniques were used to estimate failure stresses and construct Failure Assessment Diagrams (FAD). This study confirms that interaction equation R(sub sigma) + R(sub tau) = 1, where R(sub sigma) and R(sub t u) are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in stainless steel and titanium brazed joints.

  4. Amorphous Ti-Zr; Base Metglas brazing filler metals

    SciTech Connect

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T. )

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low ({approximately}300{degrees} C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having (Ti(Zr)) (Cu(Ni)), intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers.

  5. Effect of environment on the quality of aluminum joints brazed in partial nitrogen atmospheres

    SciTech Connect

    Pai, D.M.; Zhong, G.; Shafiq, P.; Badgley, S.

    1995-06-01

    The vacuum brazing of aluminum is an established process for producing parts such as radiators and heater cores used in automobiles. The process forms connecting fillets between component parts by the melting and flow of aluminum-silicon alloy cladding. The operating procedures developed for vacuum brazing are largely empirical, and rely on process and materials control. Past studies have examined the effects of factors such as moisture, heating rate, the wetting and flow characteristics of filler alloy and the role of the magnesium promoter in the vacuum brazing process. While vacuum brazing has traditionally been done under high vacuum conditions, it is economically desirable to have less stringent vacuum requirements. This study focuses on the effect of environment on the quality of aluminum joints brazed in an atmosphere where a high vacuum has been produced and then backfilled partially with nitrogen. Microscopic examination of the braze quality together with an analysis of the vacuum furnace atmosphere reveals a possible correlation between gaseous impurity levels in the brazing environment and the quality of the brazed joint. This paper reports the results of this study and provides data on limits of environmental impurities that can be tolerated by the process. This data can eventually be used for intelligent computer control, and thereby optimization, of the vacuum brazing process.

  6. Mechanical properties and dual atmosphere tolerance of Ag-Al based braze

    SciTech Connect

    Kim, Jin Yong; Choi, Jung-Pyung; Weil, K. Scott

    2008-03-14

    Reactive air brazing (RAB) based on the silver-copper oxide system was recently developed for use in sealing high-temperature electrochemical devices such as solid oxide fuel cells. One of the concerns regarding the viability of this joining technique is the long-term stability of silver-based alloys under a high-temperature, dual oxidizing/reducing gas environment. One possible solution to improve the dual atmosphere tolerance of the silver-based system is the addition of elements which can preferentially react with oxygen over hydrogen and minimize the pore formation caused by the reaction of oxygen with hydrogen in the silver matrix. In this paper, the effects of aluminum addition into silver-based air braze filler materials on microstructure, mechanical properties, and high temperature dual atmosphere tolerance were investigated using foils and pastes of aluminum-added braze filler materials. Joints brazed with binary Ag-Al braze foils containing more than 2 at% of Al retained a metallic form of aluminum in the metallic braze filler matrix after brazing at 1000°C in air. The flexural strength of joints prepared with binary Ag-Al braze foils decreased with increase in Al content due to the formation of interfacial aluminum oxide. The existence of metallic aluminum in the braze filler matrix, however, enhanced the high temperature dual atmosphere tolerance of the silver-based braze filler, showing smaller size of porosity after dual reducing/oxidizing atmosphere tests at 800°C for 1000 hrs. The Binary and ternary braze pastes based on the Ag-Al(-Cu) system were also tried as a sealant. Alumina joints brazed with these pastes showed increase in flexural strength with Cu content. However, a braze filler containing 5 at% Al and 8 at% Cu possessed nearly no metallic aluminum in the braze filler matrix after brazing, while the as-brazed sample prepared using a binary braze filler with 5 at% Al kept some metallic Al in the braze matrix. Thus, the addition of copper

  7. Graphite-metal brazing for thermal applications

    SciTech Connect

    Hosking, F.M.; Koski, J.A.

    1991-01-01

    Various plasma facing components are being designed and fabricated to support Magnetic Fusion Energy experiments. They typically consist of graphite tiles mechanically or metallurgically attached to metallic cooling substrates. This paper will discuss the active brazing of isotropic and pyrolytic graphite to oxygen free, high conductivity (OFHC) Cu and an alumina-dispersion strengthened Cu with a Ag-Cu-Ti active filler metal. The Ti constituent promotes direct wetting of graphite with the formation of a thin TiC reaction layer. Joint design and materials selection are critical factors since graphite and Cu have large thermal expansion differences that affect residual stresses after brazing and subsequent component thermal performance. Low thermal expansion Mo and compliant Cu interlayers were introduced to lower the residual stresses and extend the thermal life of prototype graphite-Cu braze joints. Although the interlayers showed evidence of reducing the incidence of graphite cracking and spalling under thermal loading when brazed to the dispersion-stengthened Cu, the best graphite braze joints were produced with the more ductile OFHC Cu substrates and no interlayer. These latter joints survived simulated tokamak surface high heat fluxes of 30 MW{center dot}m{sup {minus}2} or greater, while comparable dispersion strengthened Cu samples failed at 10 MW{center dot}m{sup {minus}2}. 23 refs., 14 figs., 2 tabs.

  8. Graphite-metal brazing for thermal applications

    NASA Astrophysics Data System (ADS)

    Hosking, F. M.; Koski, J. A.

    Various plasma facing components are being designed and fabricated to support Magnetic Fusion Energy experiments. They typically consist of graphite tiles mechanically or metallurgically attached to metallic cooling substrates. This paper will discuss the active brazing of isotropic and pyrolytic graphite to oxygen free, high conductivity (OFHC) Cu and an alumina-dispersion strengthened Cu with a Ag-Cu-Ti active filler metal. The Ti constituent promotes direct wetting of graphite with the formation of a thin TiC reaction layer. Joint design and materials selection are critical factors since graphite and Cu have large thermal expansion differences that affect residual stresses after brazing and subsequent component thermal performance. Low thermal expansion Mo and compliant Cu interlayers were introduced to lower the residual stresses and extend the thermal life of prototype graphite-Cu braze joints. Although the interlayers showed evidence of reducing the incidence of graphite cracking and spalling under thermal loading when brazed to the dispersion stengthened Cu, the best graphite braze joints were produced with the more ductile OFHC Cu substrates and no interlayer. These latter joints survived simulated tokamak surface high heat fluxes of 30 MW x m(exp -2) or greater, while comparable dispersion strengthened Cu samples failed at 10 MW x m(exp -2)

  9. Furnace brazing under partial vacuum

    NASA Technical Reports Server (NTRS)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  10. Brazing microstructure of Ti-6Al-6V-2Sn with Ti-Zr-Cu-Ni filler metal

    SciTech Connect

    Hsieh, K.C.; Kao, P.W.; Shu, M.F.

    1994-12-31

    Titanium and its alloys have been widely used in the aerospace industry since they have high specific strength and high corrosion resistance. The brazing of titanium is beneficial to join many contact areas simultaneously without severe distortion. The purpose of this study is to investigate the brazing microstructures under different brazing conditions with several Ti-Zr-Cu-Ni filler alloys. In our previous studies, the brazing microstructure of Ti-6Al-4V with Ti-Cu-Ni filler metal have been reported. Since Ti-6Al-6V-2Sn alloy has lower b-transus, the Ti-Cu-Ni filler alloy cannot successfully apply the brazing work. Several Ti-Zr-Cu-Ni alloys were prepared in powder form and pre-alloy form to perform the brazing of Ti-6Al-6V-2Sn at 870{degrees}C. The brazing microstructures are examined under optical metallograph, scanning electron microscopy (SEM), and X-ray analysis. The contents of this report include (1) DTA and phase analysis of Ti-Zr-Cu-Ni filler metals, (2) the brazing microstructure, and (3) the shear test result.

  11. Flight/ground sample comparison relating to flight experiment M552, exothermic brazing

    NASA Technical Reports Server (NTRS)

    Heine, R. W.; Adams, C. M.; Siewert, T. A.

    1973-01-01

    Comparisons were made between Skylab and ground-based specimens of nickel and stainless steel which were vacuum brazed using silver-copper-lithium alloy with various joint configurations. It was established that the absence of gravity greatly extends the scope of brazing since capillary flow can proceed without gravity interference. There was also evidence of enhanced transport, primarily in that liquid silver copper alloy dissolves nickel to a much greater extent in the zero gravity environment.

  12. Vacuum brazing of carbon nanotube strands

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    Carbon nanotubes (CNTs) discovered at 1991 have attracted great interest for applications in Nano-Electro-Mechanical-Systems (NEMS). However, the search for methods to join CNTs with metallic parts has been a worldwide challenge. Many efforts have been devoted to manipulating individual CNTs and joining them to each other. Joining processes so far attempted are premature and fall short of efficiency for joint quality evaluation. Thus, it has been found necessary to work on macro CNTs strands which are easy to handle via macro joining techniques. In this study, vacuum brazing technology has been developed for joining macro CNTs strands with Ni using a Ti-Ag-Cu alloy. The brazing mechanism has been confirmed as due to TiC formation at the CNTs/Ti-Ag-Cu interface. To evaluate this novel vacuum brazing technique for CNTs joining, the temperature effect on the brazing mechanism, microstructure and stoichiometry at joint interface needed to be understood. Firstly, the influence of temperature (from room temperature to 1000°C) on mechanical behaviour of CNTs was well examined. The ultimate tensile strength (UTS) of CNTs was measured to be a maximum at 900°C. Then, the mechanical performance of the joints was investigated from 850°C to 1000°C, and the fracture modes of the joints were identified. The UTS of joint also achieves maximum at 900°C. Below 900°C, due to little TiC formation, the bonding is weak thus leading to interfacial fracture. Above 900°C, due to much TiC formation, the bonding is strong thus resulting in CNTs fracture. Furthermore, the vacuum brazing technique was applied to join CNTs to Ni contact wires used as a lamp filament. Compared to the filament joined by Ag paste or mechanical connection, the illumination of the brazed CNTs filament was stronger. The current density of the brazed filament was superior to the Ag paste connected filament. This may represent a promising way to produce energy saving lamps.

  13. Braze system and method for reducing strain in a braze joint

    DOEpatents

    Cadden, Charles H.; Goods, Steven H.; Prantil, Vincent C.

    2004-05-11

    A system for joining a pair of structural members having widely differing coefficients of thermal expansion is disclosed. A mechanically "thick" foil is made by dispersing a refractory metal powder, such as molybdenum, niobium, tantalum, or tungsten into a quantity of a liquid, high expansion metal such as copper, silver, or gold, casting an ingot of the mixture, and then cutting sections of the ingot about 1 mm thick to provide the foil member. These foil members are shaped, and assembled between surfaces of structural members for joining, together with a layer of a braze alloy on either side of the foil member capable of wetting both the surfaces of the structural members and the foil. The assembled body is then heated to melt the braze alloy and join the assembled structure. The foil member subsequently absorbs the mechanical strain generated by the differential contraction of the cooling members that results from the difference in the coefficients of thermal expansion of the members.

  14. The causes of high power diode laser brazed seams fractures of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Adamiak, Marcin; Czupryński, Artur; Janicki, Damian; Górka, Jacek

    2016-12-01

    Presented in this article are the results of experiments carried out to determine the causes of braze cracking of dissimilar materials brazed with a ROFIN DL 020 high power diode laser with the use of additional powdered EN AW-1070A aluminium alloy to bond thin aluminium sheets with soft, low alloy DC04+ZE75/75 steel plate which was electrolytically coated with zinc on both sides. Presented are the results of metallographic, macroscopic, microscopic, diffractometric phase analyses of the weld joints. Metallurgical problems arising during processing as well as suggestions regarding technical aspects of laser brazing dissimilar materials in regards to their physical characteristics and chemical composition are explored.

  15. Brazing Refractory Metals Used In High-Temperature Nuclear Instrumentation

    SciTech Connect

    A. J. Palmer; C. J. Woolstenhulme

    2009-06-01

    As part of the U. S. Department of Energy (DOE) sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL’s Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR 1) experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed.

  16. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  17. More About Brazing Or Welding NiAl Without Filler

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Kalinowski, Joseph M.

    1996-01-01

    Two reports present additional information about two processes for joining, brazing, or welding workpieces made of nickel aluminide alloys, without use of filler metal. Joining processes involve uniform heating in vacuum-controlled furnace. Eliminates internal thermal gradients in workpieces joined and greatly reduces tendency toward cracking.

  18. Strength and structure of furnace-brazed joints between aluminum and stainless steel

    SciTech Connect

    Roulin, M.; Karadeniz, G.; Mortensen, A.; Luster, J.W.

    1999-05-01

    The structure and shear strength of brazed joints of aluminum to stainless steel are studied using a modification of the double lap joint configuration, which allows mechanical testing and joint microstructure examination on the same test piece. It is found that during furnace brazing of such joints at 600 C, using an Al-Si eutectic brazing alloy, the interfacial zone between the aluminum-rich braze and the stainless steel substrate features two intermetallic layers. The first is formed in the initial instants of the process and features an overall composition similar to that of the compound FeSiAl{sub 5}. The second appears after a 10-min hold time at the brazing temperature, and features an overall composition that parallels the FeAl{sub 3} intermetallic. Both layers are, however, more complex in structure than is suggested by these stoichiometric relations. The shear strength of the braze peaks at 21 MPa after a 10-min hold time at the brazing temperature. This peak is associated with nucleation of the second intermetallic layer, which is shown to fragilize the joint significantly. The presence of silicon in the brazing alloy would also seem to be beneficial by retarding formation of this second, more fragile Fe-Al intermetallic layer; however, more work is needed to substantiate this tentative conclusion.

  19. Ag-Al based air braze for high temperature electrochemical devices

    SciTech Connect

    Kim, Jin Yong Y.; Hardy, John S.; Weil, K. Scott

    2007-11-01

    Silver-aluminum based air brazing was attempted using an in-situ alloying and brazing process. In this process, layers of foils of aluminum and silver were laid up between alumina plates in alternating fashion to achieve three target compositions representing Ag, Ag3Al, and Ag2Al phases. Each alloy composition revealed different microstructure, mechanical properties and fracture mechanisms. Joints brazed with foils containing 9.8 at% Al formed a long continuous layer parallel to the direction of the original aluminum foil. The fracture occurred through the interface between this long alumina layer and the braze filler, resulting in low bend strength (6 ~ 12 MPa). Joints containing 26.5 at% Al in the braze filler metal experienced the series of phase transformations, leading to cracks in as-brazed specimens. The fracture initiated through these pre-existing cracks, thus the joint strength observed in these specimens was extremely low. The joints prepared using foils with 35.1 at% Al exhibited a good interface even though interfacial alumina particles formed during air brazing. Crack propagation occurred through the interface between the alumina substrate and in-situ formed interfacial alumina particles or directly through these particles and the best bend strength (46 ~ 52 MPa) among Al-added braze compositions was achieved.

  20. Brazed Diamond Micropowder Bur Fabricated by Supersonic Frequency Induction Heating for Precision Machining

    NASA Astrophysics Data System (ADS)

    Ma, Bojiang; Lou, Jianpeng; Pang, Qian

    2014-04-01

    The common brazed diamond micropowder bur fabricated in a vacuum furnace produces an even brazing alloy surface. The small brazed diamond grits show low outcropping from the brazing alloy surface, and the chip space between them is small. The bur shows a low grinding efficiency and poor heat dissipation. In this study, a brazed diamond micropowder bur was fabricated by supersonic frequency induction heating. The method afforded a fluctuant surface on the brazing alloy. The brazed diamond grits with an outcropping height distributed uniformly on the fluctuant surface. The fluctuant surface showed a certain chip space. These characteristics of the tool increased the grinding efficiency and decreased the temperature of the grinding arc area. The roughness R a of the ceramic tile surface trimmed by the tool cylinder was between 0.09 and 0.12 μm. In the first 90 min, the decrease in the weight of the ceramic tile ground by the tool cylinder was higher than that ground by the tool fabricated in a vacuum furnace. When the ceramic tile was cylindrically ground, the temperature of the grinding arc area measured using a thermocouple remained below 70 °C.

  1. Brazing of titanium by Cu-P brazing filler metals

    SciTech Connect

    Ariga, Tadashi; Matsu, Kotaro; Miyazawa, Yasuyuki

    1994-12-31

    Brazing of commercially pure titanium materials was made using the two types of the copper-phosphorus brazing filler metal foil. Two types of the brazing filler metal foils, BCuP-2 and -3 (AWS classification number), were used in this study. The chemical compositions of BCuP-2 and -3 were Cu-7.2P and Cu-6P-5Ag. Brazing was done in an argon gas atmosphere. After brazing, cutting, and polishing of the specimen, the mechanical properties of the specimen were estimated by shear strength test. And the cross-sectional microstructures at the brazed joint were observed by optical microscope and the elemental distributions at the brazed joint were analyzed by SENM and EPMA examinations. A sound brazed joint was obtained in this study. The maximum shear strength of the specimen was about 300 MPa in this study. According to observation of the cross-sectional microstructures, the reaction layer was formed at the base metal/brazed layer interface. The fracture during the shear test occurred in this reaction layer. And the phosphorus element was concentrated in this layer. Therefore, it appeared that the behavior of phosphorus element influenced the brazeability of these specimen.

  2. Manufacturing development of low activation vanadium alloys

    SciTech Connect

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  3. Field installed brazed thermocouple feedthroughs for high vacuum experiments

    NASA Astrophysics Data System (ADS)

    Anderson, P. M.; Messick, C.

    1983-12-01

    In order to reduce the occurrence of vacuum leaks and to increase the availability of the DIII vacuum vessel for experimental operation, effort was applied to developing a vacuum-tight brazed feedthrough system for sheathed thermocouples, stainless steel sheathed conductor cables and tubes for cooling fluids. This brazed technique is a replacement for elastomer O ring sealed feedthroughs that have proven vulnerable to leaks caused by thermal cycling, etc. To date, about 200 feedthroughs were used. Up to 91 were grouped on a single conflat flange mounted in a bulkhead connector configuration which facilitates installation and removal. Investigation was required to select a suitable braze alloy, flux and installation procedure. Braze alloy selection was challenging since the alloy was required to have: (1) melting temperature in excess of the 250 C (482 F) bakeout temperature; (2) no high vapor pressure elements; (3) good wetting properties when used in air with acceptable flux; and (4) good wettability to 300 series stainless steel and Inconel.

  4. Failure Assessment of Brazed Structures

    NASA Technical Reports Server (NTRS)

    Flom, Yuri

    2012-01-01

    Despite the great advances in analytical methods available to structural engineers, designers of brazed structures have great difficulties in addressing fundamental questions related to the loadcarrying capabilities of brazed assemblies. In this chapter we will review why such common engineering tools as Finite Element Analysis (FEA) as well as many well-established theories (Tresca, von Mises, Highest Principal Stress, etc) don't work well for the brazed joints. This chapter will show how the classic approach of using interaction equations and the less known Coulomb-Mohr failure criterion can be employed to estimate Margins of Safety (MS) in brazed joints.

  5. Method for controlling brazing

    DOEpatents

    Hosking, F. Michael; Hall, Aaron C.; Givler, Richard C.; Walker, Charles A.

    2006-08-01

    A method for making a braze joint across a discontinuity in a work piece using alternating current. A filler metal is pre-placed at a location sufficiently close to the discontinuity such that, when an alternating current is applied across a work piece to heat the work piece and melt the filler metal, the filler metal is drawn into the discontinuity. The alternating current is maintained for a set residence time, generally less than 10 seconds and more particularly less than 3 seconds. The alternating current is then altered, generally by reducing the current and/or voltage such that the filler metal can solidify to form a braze joint of desired quality and thickness.

  6. Recent experience in the fabrication and brazing of ceramic beam tubes for kicker magnets at FNAL

    SciTech Connect

    Ader, C.R.; Jensen, C.; Reilly, R.; Snee, D.; Wilson, J.H.; /Fermilab

    2008-06-01

    Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil (titanium/incusil) alloy brazing material are stacked in the furnace and then brazed in the furnace at 1000 C. The ceramic specified is 99.8% Alumina, Al{sub 2}O{sub 3}, a strong recrystallized high-alumina fabricated by slip casting. Recent experience at Fermilab with the fabrication and brazing of these tubes has brought to light numerous problems including tube breakage and cracking and also the difficulty of brazing the tube to produce a leak-tight joint. These problems may be due to the ceramic quality, voids in the ceramic, thinness of the wall, and micro-cracks in the ends which make it difficult to braze because it cannot fill tiny surface cracks which are caused by grain pullout during the cutting process. Solutions which are being investigated include lapping the ends of the tubes before brazing to eliminate the micro-cracks and also metallization of the tubes.

  7. Effects of high temperature brazing and thermal cycling on mechanical properties of Hastelloy X.

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.; Buckley, J. D.

    1973-01-01

    Data are presented on the effects of brazing alloy, brazing operation, thermal cycling, and combinations of these on the yield strength, elongation, ultimate tensile strength, and fatigue life of thin gage Hastelloy X. These data show that brazing with a Ni-Pd-Au alloy at 1461 K resulted in reductions of 35 percent in yield strength and elongation, 6 percent in ultimate tensile strength, and 18 percent in fatigue limit of Hastelloy X, as compared with as-received material. Subsequent exposure to 200 thermal cycles between 533 K and 1144 K after brazing caused further losses of 4 percent in yield strength, 8 percent in ultimate tensile strength, and 6 percent in fatigue limit.

  8. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    NASA Astrophysics Data System (ADS)

    Elmer, J. W.; Klingmann, J.; van Bibber, K.

    2001-05-01

    Diffusion bonding and brazing of high purity copper were investigated to develop procedures for joining precision machined copper components for the Next Linear Collider (NLC). Diffusion bonds were made over a range of temperatures from 400 °C to 1000 °C, under two different loading conditions [3.45 kPa (0.5 psi) and 3.45 MPa (500 psi)], and on two different diamond machined surface finishes. Brazes were made using pure silver, pure gold, and gold-nickel alloys, and different heating rates produced by both radiation and induction heating. Braze materials were applied by both physical vapor deposition (PVD) and conventional braze alloy shims. Results of the diffusion bonding experiments showed that bond strengths very near that of the copper base metal could be made at bonding temperatures of 700 °C or higher at 3.45 MPa bonding pressure. At lower temperatures, only partial strength diffusion bonds could be made. At low bonding pressures (3.45 kPa), full strength bonds were made at temperatures of 800 °C and higher, while no bonding (zero strength) was observed at temperatures of 700 °C and lower. Observations of the fracture surfaces of the diffusion bonded samples showed the effects of surface finish on the bonding mechanism. These observations clearly indicate that bonding began by point asperity contact, and flatter surfaces resulted in a higher percentage of bonded area under similar bonding conditions. Results of the brazing experiments indicated that pure silver worked very well for brazing under both conventional and high heating rate scenarios. Similarly, pure silver brazed well for both the PVD layers and the braze alloy shims. The gold and gold-containing brazes had problems, mainly due to the high diffusivity of gold in copper. These problems led to the necessity of overdriving the temperature to ensure melting, the presence of porosity in the joint, and very wide braze joints. Based on the overall findings of this study, a two-step joining method

  9. Wetting and Mechanical Characteristics of the Reactive Air Braze for Yttria-Stabilized Zirconia (YSZ) Joining

    SciTech Connect

    Kim, Jin Yong Y.; Weil, K. Scott; Hardy, John S.

    2005-03-01

    Reactive air brazing (RAB) technique was developed as an effective alternative for the joining of complicated ceramic parts. The most important advantage of RAB over conventional active metal brazing is that joining operation of RAB technique can be conducted without using controlled atmosphere. It has been reported by us that the reactive component (copper) in the Ag-CuO braze is reactively to modify faying surfaces of alumina, improving the wettability with the oxide and potentially increasing bond strenth between braze and ceramics. In this work, the effects of CuO content on wetting behavior of Ag-CuO braze with yttria-stabilized zirconia (YSZ) substrates and the mechanical properties of brazed YSZ have been investigated. The results of this study to date will be discussed.

  10. Brazing of Stainless Steel to Yttria-Stabilized Zirconia Using Gold-Based Brazes for Solid Oxide Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Asthana, R.

    2007-01-01

    Two gold-base active metal brazes (gold-ABA and gold-ABA-V) were evaluated for oxidation resistance to 850 C, and used to join yttria-stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel for possible use in solid oxide fuel cells. Thermogravimetric analysis and optical microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy were used to evaluate the braze oxidation behavior, and microstructure and composition of the YSZ/braze/steel joints. Both gold-ABA and gold-ABA-V exhibited nearly linear oxidation kinetics at 850 C, with gold-ABA-V showing faster oxidation than gold-ABA. Both brazes produced metallurgically sound YSZ/steel joints due to chemical interactions of Ti and V with the YSZ and steel substrates.

  11. Study of the possibility of using solar radiant energy for welding and brazing metals

    NASA Technical Reports Server (NTRS)

    Dvernyakov, V. S.; Frantsevich, I. N.; Pasichnyy, V. V.; Shiganov, N. A.; Korunov, Y. I.; Kasich-Pilipenko, I. Y.

    1974-01-01

    The solar spectrum at the surface of the earth is analyzed. A facility for creating concentrated solar radiant energy flux is described, and data on its energetic capabilities are presented. The technology of solar welding by the fusion technique and joining by high-temperature brazing is examined. The use of concentrated solar radiant energy for welding and brazing metals and alloys is shown. The results of mechanical tests and microscopic and macroscopic studies are presented.

  12. Brazing in Space: The Next Frontier

    NASA Technical Reports Server (NTRS)

    Flom, Yury

    2005-01-01

    This viewgraph presentation provides information on the challenges facing mechanically joining objects in space, as well as past, present, and future techniques for brazing. The sections of the presentation include: 1) Why do we need to join components in space; 2) Why brazing? 3) History of brazing in space; 4) Electron beam vacuum brazing; 5) Current effort at GSFC; 6) Future work.

  13. Brazing of alumina with Ti-Cu-0 dilute ceramics

    SciTech Connect

    Mohr, C.; Carim, A.H.

    1994-12-31

    The joining of ceramics using active metal braze alloys (such as Ag-Cu-Ti mixtures) produces a layered structure of interfacial reaction products, often including one or more `dilute ceramic` compounds. These phases have composition M{sub a}X{sub b} where M is one or more metallic elements, X is a light element such as carbon, oxygen, nitrogen, or boron, and a {much_gt} b. Replacing the active metal used in ceramic joints with one of these dilute ceramics would result in a joint without residual metal at the interface. The closer thermal expansion match with the substrate and the higher melting temperature of the dilute ceramic should reduce residual stresses and may improve high-temperature stability and strength. The work reported here is an initial study of the brazing of Al{sub 2}O{sub 3} using the dilute ceramics Ti{sub 4}Cu{sub 2}O and Ti{sub 3}Cu{sub 3}O. This is the first attempt to join ceramics directly with these transitional compounds as the interlayers. Recent efforts have made the ternary Ti-Cu-O phases available in bulk form and have provided information about their properties. Both solid slices and powders of the dilute ceramics were used to join alumina slabs to one another. Interlayer-substrate reactions must still occur in order to form a strong joint. This investigation concentrates on joint fabrication and on identification of reaction products and interface morphology using x-ray diffraction (XRD) and electron probe microanalysis (EPMA). The observed reaction products are discussed in light of the previously determined phase stabilities for the Ti-Cu-Al-O system.

  14. Rene 95 brazed joint metallurgical program

    NASA Technical Reports Server (NTRS)

    Gay, C.; Givens, J.; Mastrorroco, S.; Sterman, A.

    1972-01-01

    This metallurgical program was specifically conducted for the establishment of material properties required for the design of the LF460 fan. The LF460 lift fan is an advanced 18:1 high thrust to weight single stage design. It has a turbine attached to the outer flowpath of the fan blade tip which minimizes the axial depth of the fan. Advanced lightweight attachment designs are employed in this concept to achieve minimum mass polar moments of inertia which are required for good aircraft flight response control. The design features which are unique to this advanced LF460 lift fan are the 0.010 inch thin Udimet 700 alloy integral tip turbine design, minimum weight braze attachment of the turbine to the fan blade, and the high strength and elevated temperature capability of the Rene'95 alloy for the fan blade. The data presented in this report show that the LF460 fan rotor design is feasible and that the design stresses and margins of safety were more than adequate. Prior to any production application, however, additional stress rupture/shear lap joints should be run in order to establish a firm 1200 F stress rupture curve for the CM50 braze metal.

  15. Cathodic ARC surface cleaning prior to brazing

    SciTech Connect

    Dave, V. R.; Hollis, K. J.; Castro, R. G.; Smith, F. M.; Javernick, D. A.

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  16. Mechanistic understanding of aerosol emissions from a brazing operation.

    PubMed

    Zimmer, A T; Biswas, P

    2000-01-01

    Welding operations produce gaseous and aerosol by-products that can have adverse health effects. A laboratory furnace study was conducted to aid understanding of the chemical and aerosol behavior of a widely used, self-fluxing brazing alloy (89% Cu, 6% Ag, 5% P) that is also used with a supplemental fluxing compound to prevent oxidation at the molten metal surface. The results indicate that the aerosols generated by the alloy are transient (produced over a short duration of time) and are associated with mass transfer of phosphorus species from the molten metal surface to the surrounding gas. In contrast, when the alloy was used in conjunction with the supplemental fluxing compound, a relatively nontransient, submicron-size aerosol was generated that was several orders of magnitude higher in concentration. Thermodynamic equilibrium analysis suggests that fluoride (a major constituent in the fluxing compound) played a significant role in reacting with the brazing alloy metals to form gas phase metal fluoride compounds that had high vapor pressures when compared with their elemental or oxide forms. As these metal-fluoride vapors cooled, submicron-size particles were formed mainly through nucleation and condensation growth processes. In addition, the equilibrium results revealed the potential formation of severe pulmonary irritants (HF and BF3) from heating the supplemental fluxing compound. These results demonstrated the importance of fluxing compounds in the formation of brazing fumes, and suggest that fluxing compounds could be selected that serve their metallurgical intention and suppress the formation of aerosols.

  17. Brazing graphite to graphite

    DOEpatents

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  18. High temperature joint properties with palladium alloys for SUS316L and Inconel 600

    SciTech Connect

    Izui, Hiroshi; Suezawa, Yoshifumi

    1995-12-31

    Newly developed Pd-Ag-Mn system braze alloys were considered for use in brazing stainless steel SUS316L or Ni-based alloy Inconel 600 for engine applications. Palladium braze alloys were selected because of their oxidation resistance, ductility, relatively high melting points, and lower cost than gold-based braze alloys. The reactions and microstructures were studied in experimental brazed joints between these base metals and the braze alloys. Tensile tests of the joints were carried out at room temperature, 473K, 673K, 873K, and 1,073K. The maximum tensile strengths of the joints brazed with 30Pd-60Ag-10Co at room temperature were 445MPa in the SUS316L joints and 456MPa in the Inconel 600 brazed joints. The SUS316L joints brazed with the braze alloys had tensile strengths of 320MPa to 200MPa from 473K to 1,73K. The Inconel 600 joints brazed with the 30Pd-50Ag-10Mn-10Co alloy had tensile strengths of 289MPa to 162MPa from 473K to 1,073K.

  19. Microstructure, Melting and Wetting Properties of Pd-Ag-CuO Air Braze on Alumina

    SciTech Connect

    Darsell, Jens T.; Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

    2005-03-19

    A reactive air brazing (RAB) technique utilizing silver-copper oxide (Ag-CuO) alloys has previously been developed for joining ceramics components used in high temperature devices ranging from oxygen separation membranes, gas turbines and combustion engines. The application of the Ag-CuO system as a brazing material is limited by its solidus and liquidus temperatures, which are known to be in the range of 935 C and 967 C. Some joined ceramic components may be used in devices, which require further processing steps, or may be used in applications, that exceed these temperatures. It has been found that the addition of palladium to the silver copper oxide system will increase solidus and liquidus temperatures of the resulting alloy. In our work, we are studying the effects of palladium addition on the wetting properties of Ag-CuO braze system on alumina. Quality of brazing is evaluated through microstructural analysis and bending strength of brazed joints created with alumina. The presentation will include processing, and characterization of Ag-CuO brazed system with and without palladium addition on alumina.

  20. Brazing of zirconia to Ti and Ti6Al4V

    SciTech Connect

    Agathopoulos, S.; Moretto, P.; Peteves, S.D.

    1997-11-01

    The interface microstructure of tetragonal zirconia (Y{sub 2}O{sub 3}-stab.), (TZP), brazed to itself, Ti and Ti6Al4V with a commercial Ag35Cu1.65Ti filler alloy at 900{degrees}C in vacuum was investigated. TiO formed in the reaction zone in TZP/TZP joints irrespectively the brazing time. In TZP/Ti joints, a complex interface microstructure comprising Ti{sub 2}O, Cu{sub 2}Ti{sub 4}O and Cu-Ti-intermetallics was time dependent. High joint strengths of over 400 MPa were obtained for short brazing times. In TZP/Ti6Al4V joints, the evolution of the microstructure with brazing time depends on diffusion of Ti, Al and V to the interface forming Cu{sub 2}(Ti,A1,V){sub 4}O.

  1. Tensile tests and metallography of brazed AISI 316L specimens after irradiation

    NASA Astrophysics Data System (ADS)

    Groot, P.; Franconi, E.

    1994-08-01

    Stainless steel type 316L tensile specimens were vacuum brazed with three kinds of alloys: BNi-5, BNi-6, and BNi-7. The specimens were irradiated up to 0.7 dpa at 353 K in the High Flux Reactor at JRC Petten, the Netherlands. Tensile tests were performed at a constant displacement rate of 10 -3 s -1 at room temperature in the ECN hot cell facility. BNi-5 brazed specimens showed ductile behaviour. Necking and fractures were localized in the plate material. BNi-6 and BNi-7 brazed specimens failed brittle in the brazed zone. This was preceded by uniform deformation of the plate material. Tensile test results of irradiated specimens showed higher stresses due to radiation hardening and a reduction of the elongation of the plate material compared to the reference. SEM examination of the irradiated BNi-6 and BNi-7 fracture surfaces showed nonmetallic phases. These phases were not found in the reference specimens.

  2. Microstructure, Melting and Wetting Properties of Pd-Ag-CuO Air Braze on Alumina

    SciTech Connect

    Darsell, Jens T.; Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

    2004-05-01

    A new ceramic brazing technique, referred to as reactive air brazing (RAB), has recently been developed for potential applications in high temperature devices such as gas concentrators, solid oxide fuel cells, gas turbines, and combustion engines. At present, the technique utilizing a silver-copper oxide system is of great interest. The maximum operating temperature of this system, however, is limited by its eutectic temperature of ~935°C, although in practice the operating temperature should be limited to be even lower. An obvious strategy that can be employed to increase the maximum operating temperature of the braze material is to add a higher melting noble alloying element. In this paper, we report the effects of palladium addition on the thermodynamics of the Ag-CuO system and on the wetting properties of the resulting braze with respect to alumina

  3. Brazing copper to dispersion-strengthened copper

    SciTech Connect

    Ryding, D.G.; Allen, D.; Lee, R.

    1996-08-01

    The Advanced Photon Source (APS) is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail that has been possible to date. The beam is produced by using third-generation insertion devices in a 7 GeV electron/positron storage ring that is 1100 meters in circumference. The heat load from these intense high power devices is very high and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm{sup 2}. Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop{reg_sign}, a dispersion strengthened copper, is the desired material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  4. Chemical thermodynamics as a predictive tool in the reactive metal brazing of ceramics

    SciTech Connect

    Wang, G.; Lannutti, J.J.

    1995-06-01

    Thermodynamics have long been applied to the understanding of the reactive wetting phenomena in metal-ceramic joining. The authors postulate the existence of a ``solvent effect`` due to the interaction between the reactive element addition and the brazing alloy. This effect plays a significant role in reactive wetting. By taking this effect into account, more realistic reactivities of different reactive element additions into a given brazing base alloy are predicted. Irreversible thermodynamics are also used to characterize the driving forces for reactive metal-ceramic joining.

  5. Thermally stable diamond brazing

    DOEpatents

    Radtke, Robert P.

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  6. Feasibility study of fluxless brazing cemented carbides to steel

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Sievers, N.

    2017-03-01

    One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.

  7. Protective coating for salt-bath brazing

    NASA Technical Reports Server (NTRS)

    Francisco, A. C.; Gyorgak, C. A.

    1971-01-01

    Ceramic coating, consisting of graphite, enameler's clay, and algin binder, applied to materials prior to salt bath brazing facilitates brazing process and results in superior joints. Alternate coating materials and their various proportions are given.

  8. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  9. Induction brazing at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1974-01-01

    A description of the joint design, materials, equipment, qualification testing, inspection methods, and applications involved in performing induction brazing on hyperbolic propellants tubing at Kennedy Space Center. Induction brazing is a form of brazing in which the energy is transmitted to the workpiece by electrical induction; the eddy currents generated in the metal produce heat by resistance losses. Since induction heating is fast and highly localized, undesirable heat effects are minimized and the resulting braze is of high quality.

  10. The effects of high-temperature brazing and thermal cycling on the mechanical properties of Hastelloy X

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.; Buckley, J. D.

    1972-01-01

    Data are presented on the effects of brazing alloy, brazing operation, thermal cycling, and combinations of these on the yield strength, elongation, tensile strength, and fatigue life of thin gage Hastelloy X. These data show that brazing at 1461 K (2170 F) with a Ni-Pd-Au alloy and subsequent exposure to 200 service thermal cycles between 533 and 1144 K (500 and 1600 F) result in reduction of as much as 39 percent in yield strength, 33 percent in elongation, 14 percent in tensile strength, and 26 percent in fatigue limit of Hastelloy X, as compared to as-received materials. These property losses are primarily caused by the brazing operation rather than the subsequent service thermal cycles.

  11. Microstructural Evolution of Brazed CP-Ti Using the Clad Ti-20Zr-20Cu-20Ni Foil

    NASA Astrophysics Data System (ADS)

    Yeh, Tze-Yang; Shiue, Ren-Kae; Chang, Chenchung Steve

    2013-01-01

    Microstructural evolution of the clad Ti-20Zr-20Cu-20Ni foil brazed CP-Ti alloy has been investigated. For the specimen furnace brazed below 1143 K (870 °C), the joint is dominated by coarse eutectic and fine eutectoid structures. Increasing the brazing temperature above 1163 K (890 °C) results in disappearance of coarse eutectic structure, and the joint is mainly comprised of a fine eutectoid of (Ti,Zr)2Ni, Ti2Cu, Ti2Ni, and α-Ti.

  12. Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze

    SciTech Connect

    Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

    2004-10-01

    Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

  13. New hermetic sealing material for vacuum brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Hildebrandt, S.; Wiehl, G.; Silze, F.

    2016-03-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28.

  14. Brazed graphite/refractory metal composites for first-wall protection elements

    NASA Astrophysics Data System (ADS)

    Šmid, I.; Croessmann, C. D.; Salmonson, J. C.; Whitley, J. B.; Kny, E.; Reheis, N.; Kneringer, G.; Nickel, H.

    1991-03-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2. The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000°C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/3Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 50 × 50 mm2 with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with an average heat flux of 10 MW/m 2 for 0.5 s pulses. The maximum surface temperature was 1100°C. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model.

  15. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  16. Trends in wetting behavior for Ag–CuO braze alloys on Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) at elevated temperatures in air

    SciTech Connect

    Joshi, Vineet V.; Meier, Alan; Darsell, Jens; Weil, K. Scott; Bowden, Mark

    2013-06-21

    Ba0.5Sr0.5Co0.80.2O(3-δ)(BSCF) is a potential oxygen separation membrane material for advanced coal based power plants. For this application, BSCF must be joined to a metal. In the current study, Ag-CuO, a reactive air brazing (RAB) alloy was evaluated for brazing BSCF. In-situ contact angle tests were performed on BSCF using Ag-CuO binary mixtures at 950 and 1000°C and the interfacial microstructures were evaluated. Wetting contact angles (θ< 90°) were obtained at short times at 950°C and the contact angles remained constant at 1000°C for 1, 2 and 8 mol% CuO contents. Microstructural analysis revealed the dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundary. The formation of a thick interfacial reaction product layer and ridging at the sessile drop triple point indicate that the reaction kinetics are very rapid and that it will require careful process control to obtain the desired thin but continuous interfacial product layer.

  17. A technique for brazing graphite/graphite and stainless steel/high-carbon steel joints

    SciTech Connect

    Ohmura, H.; Kawashiri, K. . Dept. of Metals and Inorganic Materials); Yoshida, T. . Vehicle Machine Engineering Dept.); Yoshimoto, O. . Quality Control Dept.)

    1994-10-01

    A new brazing technique for joining graphite to itself or to metals such as Mo, W, or Cu, with conventional brazing filler metals has been developed. Essentially, it is impossible to braze graphite with Cu filler metal because no wetting occurs. However, when a graphite base material is combined with an Fe base metal in Cu brazing, the Fe base metal dissolves in molten Cu. Simultaneously, the dissolved Fe grows as part of a columnar Fe-9 [approximately] 6Cu-1.6C alloy phase at the graphite interface at a constant brazing temperature, that is, the dissolution and deposit of base metal takes place. By placing an Fe foil insert between both graphite base materials, therefore, the columnar phase is formed at both graphite faces and grows toward the Fe foil during heating. As a result, both graphite base materials are united by the columnar phase through the Fe foil. In the same way, a graphite/Mo or /W joint can be produced. Moreover, when using BAu-1, which has a lower melting point than that of BCu-1, it is also possible to braze graphite to Cu. The shear strength of a graphite/graphite joint with a 0.12-mm thick Fe foil at room temperature was about 32 MPa. Further, the bending strength of the graphite/graphite and /Cu joints at 873 K (1,112 F), as measured using the four-point bending test, was 35 and 11 MPa, respectively. In addition, the technique can be applied to the brazing of AISI 304 stainless steel to high-C steel with BCu-1 where, normally, Cr[sub 23]C[sub 6] and Cr[sub 7]C[sub 3] layers are formed at the high-C steel braze interface; these carbide layers result in the loss of mechanical properties of the joint.

  18. Study on the Microstructure and Wettability of an Al-Cu-Si Braze Containing Small Amounts of Rare Earth Erbium

    NASA Astrophysics Data System (ADS)

    Shi, Yaowu; Yu, Yang; Li, Yapeng; Xia, Zhidong; Lei, Yongping; Li, Xiaoyan; Guo, Fu

    2009-04-01

    The effect of adding small amounts of rare earth Er on the microstructure of an Al-Cu-Si braze alloy has been investigated. Several Al-20Cu-7Si braze alloys containing various contents of Er were prepared, and their melting temperature, microstructure, hardness, and wettability in contact with 3003 aluminum alloy substrates were determined. The results indicate that the constituents of the microstructure of Al-20Cu-7Si-Er braze alloys are similar to those in the Al-20Cu-7Si alloy, and comprise of solid solutions of aluminum, silicon, and the intermetallic compound CuAl2. When the Er content increases, the size of the Al phase decreases, and the needle-like Si phase is thickened, and transformed to a blocky shape. Moreover, small amounts of Er can improve the wettability and hardness of the Al-20Cu-7Si braze alloy; however, the melting temperature of the Al-20Cu-7Si alloy does not change.

  19. Development of corrosion resistant aluminum heat exchanger, Part 1: Development of new aluminum alloy sheets for sacrificial anode

    SciTech Connect

    Hagiwara, M.; Baba, Y.; Tanabe, Z.; Miura, T.; Hasegawa, Y.; Iijima, K.

    1986-01-01

    The sacrificial anodic effect of Al-Zn alloy reduced markedly in aluminium heat exchanger as car air conditioner manufactured by vacuum brazing conventionally used, as zinc elements preferentially evaporate in vacuum-heating. It was found that Al-Sn alloy had superior electrochemical characteristics than Al-Zn alloy (AA7072) as the sacrificial anodic material used in vacuum brazing. According to many experimental results, the new brazing sheet-fin with Al-Mn-Sn alloy core metal has been developed. This fin has favorable formability and prominent sacrificial anodic effect. Therefore, this fin is excellent material for car air conditioner manufactured by vacuum brazing.

  20. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  1. Detached Melt Nucleation during Diffusion Brazing of a Technical Ni-based Superalloy: A Phase-Field Study

    NASA Astrophysics Data System (ADS)

    Böttger, B.; Apel, M.; Laux, B.; Piegert, S.

    2015-06-01

    Advanced solidification processes like welding, soldering, and brazing are often characterized by their specific solidification conditions. But they also may include different types of melting processes which themselves are strongly influenced by the initial microstructures and compositions of the applied materials and therefore are decisive for the final quality and mechanical properties of the joint. Such melting processes are often not well- understood because - compared to other fields of solidification science - relatively little research has been done on melting by now. Also, regarding microstructure simulation, melting has been strongly neglected in the past, although this process is substantially different from solidification due to the reversed diffusivities of the involved phases. In this paper we present phase-field simulations showing melting, solidification and precipitation of intermetallic phases during diffusion brazing of directionally solidified and heat-treated high-alloyed Ni- based gas turbine blade material using different boron containing braze alloys. Contrary to the common belief, melting of the base material is not always planar and can be further accompanied by detached nucleation and growth of a second liquid phase inside the base material leading to polycrystalline morphologies of the joint after solidification. These findings are consistent with results from brazed laboratory samples, which were characterized by EDX and optical microscopy, and can be explained in terms of specific alloy thermodynamics and inter-diffusion kinetics. Consequences of the gained new understanding for brazing of high- alloyed materials are discussed.

  2. Development of brazing process for W-EUROFER joints using Cu-based fillers

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  3. Charpy impact test results for low-activation ferritic alloys

    SciTech Connect

    Cannon, N.S.; Hu, W.L.; Gelles, D.S.

    1987-05-01

    The objective of this work is to evaluate the shift of the ductile to brittle transition temperature (DBTT) and the reduction of the upper shelf energy (USE) due to neutron irradiation of low activation ferritic alloys. Six low activation ferritic alloys have been tested following irradiation at 365/sup 0/C to 10 dpa and compared with control specimens in order to assess the effect of irradiation on Charpy impact properties.

  4. Diffusion barriers in modified air brazes

    DOEpatents

    Weil, Kenneth Scott; Hardy, John S.; Kim, Jin Yong; Choi, Jung-Pyung

    2010-04-06

    A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.

  5. Diffusion barriers in modified air brazes

    DOEpatents

    Weil, Kenneth Scott; Hardy, John S; Kim, Jin Yong; Choi, Jung-Pyung

    2013-04-23

    A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.

  6. Simulation model of Al-Ti dissimilar laser welding-brazing and its experimental verification

    NASA Astrophysics Data System (ADS)

    Behúlová, M.; Babalová, E.; Nagy, M.

    2017-02-01

    Formation of dissimilar weld joints of light metals and alloys including Al-Ti joints is interesting mainly due to demands on the weight reduction and corrosion resistance of components and structures in automotive, aircraft, aeronautic and other industries. Joining of Al-Ti alloys represents quite difficult problem. Generally, the fusion welding of these materials can lead to the development of different metastable phases and formation of brittle intermetallic compounds. The paper deals with numerical simulation of the laser welding-brazing process of titanium Grade 2 and EN AW 5083 aluminum alloy sheets using the 5087 aluminum filler wire. Simulation model for welding-brazing of testing samples with the dimensions of 50 × 100 × 2 mm was developed in order to perform numerical experiments applying variable welding parameters and to design proper combination of these parameters for formation of sound Al-Ti welded-brazed joints. Thermal properties of welded materials in the dependence on temperature were computed using JMatPro software. The conical model of the heat source was exploited for description of the heat input to the weld due to the moving laser beam source. The sample cooling by convection and radiation to the surrounding air and shielding argon gas was taken into account. Developed simulation model was verified by comparison of obtained results of numerical simulation with the temperatures measured during real experiments of laser welding-brazing by the TruDisk 4002 disk laser.

  7. Design data for brazed Rene 41 honeycomb sandwich

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Arnquist, J.; Koetje, E. L.; Esposito, J. J.; Lindsay, V. E. J.; Swegle, A. R.

    1981-01-01

    Strength data, creep data and residual strength data after cyclic thermal exposure were obtained at temperatures from 78 K to 1144 K (-320 F to 1600 F). The influences of face thickness, core depth, core gage, cell size and thermal/stress exposure conditions on the mechanical design properties were investigated. A braze alloy and process was developed that is adequate to fully develop the strength of the honeycomb core while simultaneously solution treating and aging the Rene 41 fact sheets. New test procedures and test specimen configurations were developed to avoid excessive thermal stresses during cyclic thermal exposure.

  8. Joining of alumina ceramics and nickel alloy

    SciTech Connect

    Ariga, Tadashi; Nitta, Yuji; Miyazawa, Yasuyuki

    1994-12-31

    Joining of alumina ceramics to nickel alloy was made using the various types of Ag-Cu-Ti brazing filler metal. Ti-containing brazing filler metal was produced by physical vapor deposition (PVD) method on the joining area of the alumina ceramics. The joinability of the brazing filler metal was estimated by its mechanical properties. And the composition and structure of the ceramic-metal bond zone in the alumina ceramics-nickel alloy joints were analyzed by SEM, EPMA and X-ray diffraction examinations. Some of brazing filler metal achieved the highest shear strength 100 MPa at room temperature. The elemental distributions of the interface between alumina ceramics and Ag-Cu-Ti brazing filler metal was shown to form the reaction layer consisting titanium oxide.

  9. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  10. Thermal resilient multiple jaw braze fixture

    DOEpatents

    Ney, Robert; Perrone, Alex J.

    1995-07-11

    A braze fixture has side walls forming a cavity with an opening to receive a stack of parts to be brazed. Sidewalls of the housing have a plurality of bearing receiving openings into which bearing rods or jaws are inserted to align the stacked elements of the workpiece. The housing can also have view ports to allow a visual check of the alignment. Straps or wires around the fixture are selected to have thermal characteristics similar to the thermal characteristics of the workpiece undergoing brazing. The straps or wires make physical contact with the bearing rods thereby causing bearing rods to maintain the workpiece in proper alignment throughout the entire brazing cycle.

  11. Brazing Inconel 625 Using the Copper Foil

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Wang, Cheng-Yen; Shiue, Ren-Kae

    2013-12-01

    Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μm in thickness is enough for the joint filling. However, the application of Cu foil 100 μm in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μm. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.

  12. Brazed Joints Design and Allowables: Discuss Margins of Safety in Critical Brazed Structures

    NASA Technical Reports Server (NTRS)

    FLom, Yury

    2009-01-01

    This slide presentation tutorial discusses margins of safety in critical brazed structures. It reviews: (1) the present situation (2) definition of strength (3) margins of safety (4) design allowables (5) mechanical testing (6) failure criteria (7) design flowchart (8) braze gap (9) residual stresses and (10) delayed failures. This presentation addresses the strength of the brazed joints, the methods of mechanical testing, and our ability to evaluate the margins of safety of the brazed joints as it applies to the design of critical and expensive brazed assemblies.

  13. Corrosion considerations in the brazing repair of cobalt-based partial dentures.

    PubMed

    Luthy, H; Marinello, C P; Reclaru, L; Scharer, P

    1996-05-01

    Cobalt-based alloys (Co-Cr-Mo) are usually used in dentistry as frameworks for removable partial dentures. In their basic form these structures function successfully. However, modifications or repairs of the frameworks may reduce their resistance to corrosion and, as a consequence, may provoke biologic reactions in the soft tissues. These reactions may be the result of different types of alloys that contact each other and, in the presence of saliva (based on potential differences), produce a galvanic cell. In this study, a clinical situation after repair of a removable partial denture was examined. The metallographic study of the prosthesis revealed a brazed zone where a gold braze was joining the Co-Cr-Mo framework with a Co-Cr-Ni type alloy (without Mo). The latter revealed signs of corrosion. Various electrochemical parameters (Ecorr, Ecouple, icorr, icouple) of these alloys were analyzed in the laboratory. The Co-Cr-Ni alloy had the lowest nobility and underwent galvanic corrosion in a galvanic couple with gold braze.

  14. Protecting brazing furnaces from air leaks

    NASA Technical Reports Server (NTRS)

    Armenoff, C. T.; Mckown, R. D.

    1980-01-01

    Inexpensive inert-atmosphere shielding protects vacuum brazing-furnace components that are likely to spring leak. Pipefittings, gages, and valves are encased in transparent plastic shroud inflated with argon. If leak develops, harmless argon will enter vacuum chamber, making it possible to finish ongoing brazing or heat treatment before shutting down for repair.

  15. Method for brazing together planar and nonplanar metal members

    DOEpatents

    Hammersand, Fred G.; Witkowski, Anthony J.

    1985-01-01

    The invention relates to a method and apparatus for brazing two metal members together, at least one of which is nonplanar, in a brazing furnace using a substantially pure brazing material. The method comprises the steps of utilizing a brazing fixture to hold the two metal members in tangential relation to one another along a portion of each member so that a cavity is formed adjacent to the contacting portions. A braze material is then positioned within the cavity. The braze fixture, the metal members, and the braze material are then placed in a brazing furnace. A heat shield is then placed over the braze fixture, the metal members, and the braze material to shield the braze material from direct furnace radiation. The furnace temperature is linearly increased at a rate of about 180.degree. C. per hour until a temperature of 350.degree. C. is achieved. Heat is transferred by conduction from the metal members to the braze material to cause the braze material to melt. Some material from the metal members slowly diffuses into the braze material forming a braze joint. The furnace is rapidly cooled to room temperature using nitrogen gas. The brazed assemblies made according to this method are superior to assemblies formed by heliarc welding.

  16. A Compendium of Brazed Microstructures For Fission Power Systems Applications

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.

    2012-01-01

    NASA has been supporting design studies and technology development for fission-based power systems that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. This investigation is part of the development of several braze joints crucial for the heat exchanger transfer path from a hot-side heat exchanger to a Stirling engine heat acceptor. Dissimilar metal joints are required to impart both mechanical strength and thermal path integrity for a heater head of interest. Preliminary design work for the heat exchanger involved joints between low carbon stainless steel to Inconel 718, where the 316L stainless steel would contain flowing liquid metal NaK while Inconel 718, a stronger alloy, would be used as structural reinforcement. This paper addressed the long-term microstructural stability of various braze alloys used to join 316L stainless steel heater head to the high conductivity oxygen-free copper acceptor to ensure the endurance of the critical metallic components of this sophisticated heat exchanger. The bonding of the 316L stainless steel heater head material to a copper heat acceptor is required to increase the heat-transfer surface area in contact with flowing He, which is the Stirling engine working fluid.

  17. Brazing stainless steel using a new MBF-series of Ni-Cr-B-Si amorphous brazing foils

    SciTech Connect

    Rabinkin, A.; Wenski, E.; Ribaudo, A.

    1998-02-01

    A group of new high chromium containing amorphous brazing filler metals in foil form has been developed for applications in highly corrosive and/or high temperature environments. These new alloys contain 10--16 wt-% chromium, 1.2--1.6 wt-% boron, i.e., minimal amount needed for amorphability, 7.0--7.5 wt-% silicon 0--5 wt-% molybdenum, and nickel as the balance. Their T{sub S} is within 975--1,030 C (1,787--1,886 F) and T{sub L} is within 1,090--1,140 C (1,994--2,084 F) ranges. The alloys exhibit low erosion of base metal and show no significant detrimental effects on base metal strength because boron concentration is kept to a minimum. It was found that optimal combination of strength, ductility and fatigue resistance of joints is obtained when brazing is combined with high temperature annealing in one extended cycle. The joints after such treatment are practically free of the brittle central eutectic line and the base metals adjoining braze area have only limited and localized segregation of chromium borides. The joint itself is uniform and has a strong and ductile microstructure with only one nickel-chromium-based solid solution phase. The fracture of brazements occurs predominantly in the base metal with the joint ultimate strength higher than the yield strength of the virgin 316L base metal. The brazements have a high corrosion resistance in sea water and water solutions of ammonia and phosphoric acid.

  18. X-ray study of Pd40Cu30Ni10P20 bulk metallic glass brazing filler for Ti-6Al-7Nb alloy

    SciTech Connect

    Miura, E.; Ice, Gene E; Specht, Eliot D; Pang, Judy; Kato, H.; Hisatsune, K.; Inoue, I.

    2007-01-01

    Crystalline precipitates in a bulk-metallic-glass (BMG) braze were investigated with an intense x-ray microbeam. The precipitates were found in the Pd{sub 40}Cu{sub 30}P{sub 20}Ni{sub 10} BMG braze matrix after joining crystalline Ti-6Al-7Nb. However, the role (if any) played by the precipitates in improving the mechanical bond of the BMG/crystalline joint is unknown. X-ray microdiffraction and microfluorescence measurements from small sample volumes were made with an {approx} 0.5 x 0.5 {micro}m2 beam. Spatially-resolved Laue diffraction and x-ray fluorescence measurements were made on several second-phase crystals within the BMG matrix. Although precipitate crystals with the observed compositions were anticipated to be predominantly hexagonal, one of the crystals was found to be cubic or tetragonal. The instrumentation includes capabilities for 3D depth-resolved measurements of crystal structure and for fluorescence analysis of elemental composition. Depth profiling gave information about the grain distribution and morphology in the BMG matrix.

  19. X-ray Study of Pd[subscript 40]Cu[subscript 30]Ni[subscript 10]P[subscript 20] Bulk Metallic Glass Brazing Filler For Ti-6Al-7Nb Alloy

    SciTech Connect

    Miura, E.; Ice, G.E.; Specht, E.D.; Pang, J.W.L.; Kato, H.; Hisatsune, K.; Inoue, A.

    2007-10-02

    Crystalline precipitates in a bulk-metallic-glass (BMG) braze were investigated with an intense x-ray microbeam. The precipitates were found in the Pd{sub 40}Cu{sub 30}P{sub 20}Ni{sub 10} BMG braze matrix after joining crystalline Ti-6Al-7Nb. However, the role (if any) played by the precipitates in improving the mechanical bond of the BMG/crystalline joint is unknown. X-ray microdiffraction and microfluorescence measurements from small sample volumes were made with an {approx} 0.5 x 0.5 {micro}m2 beam. Spatially-resolved Laue diffraction and x-ray fluorescence measurements were made on several second-phase crystals within the BMG matrix. Although precipitate crystals with the observed compositions were anticipated to be predominantly hexagonal, one of the crystals was found to be cubic or tetragonal. The instrumentation includes capabilities for 3D depth-resolved measurements of crystal structure and for fluorescence analysis of elemental composition. Depth profiling gave information about the grain distribution and morphology in the BMG matrix.

  20. An Impact of Zirconium Doping of Zn-Al Braze on the Aluminum-Stainless Steel Joints Integrity During Aging

    NASA Astrophysics Data System (ADS)

    Yang, Jinlong; Xue, Songbai; Sekulic, Dusan P.

    2016-11-01

    This work offers an analysis of the microstructure and the growth rate of an intermetallic compound within the aged AA 6061 aluminum alloy-304 stainless steel joint brazed with Zn-15Al and Zn-15Al-0.2Zr filler metals. The effect of zirconium addition on mechanical integrity of the brazed joint was studied. The experimental results confirm that the thickness of the Fe-Al intermetallic layer formed at the brazed seam/stainless steel interface increases with the increase of the aging time. Furthermore, it is established that the growth rate of the intermetallic layer for the Zn-15Al-0.2Zr brazed joint was lower than that for Zn-15Al. The results also indicate that the shear strength of both Zn-15Al and Zn-15Al-0.2Zr brazed joints decreases monotonously during aging. The value of the strength after aging lasting for 800 h for Zn-15Al and Zn-15Al-0.2Zr has decreased by 20 and 17%, respectively. The fracture of joints occurred at the interface between the brazed seam and the Fe4Al13 intermetallic layer. The morphology of the surfaces exhibits a cleavage fracture.

  1. An Impact of Zirconium Doping of Zn-Al Braze on the Aluminum-Stainless Steel Joints Integrity During Aging

    NASA Astrophysics Data System (ADS)

    Yang, Jinlong; Xue, Songbai; Sekulic, Dusan P.

    2017-01-01

    This work offers an analysis of the microstructure and the growth rate of an intermetallic compound within the aged AA 6061 aluminum alloy-304 stainless steel joint brazed with Zn-15Al and Zn-15Al-0.2Zr filler metals. The effect of zirconium addition on mechanical integrity of the brazed joint was studied. The experimental results confirm that the thickness of the Fe-Al intermetallic layer formed at the brazed seam/stainless steel interface increases with the increase of the aging time. Furthermore, it is established that the growth rate of the intermetallic layer for the Zn-15Al-0.2Zr brazed joint was lower than that for Zn-15Al. The results also indicate that the shear strength of both Zn-15Al and Zn-15Al-0.2Zr brazed joints decreases monotonously during aging. The value of the strength after aging lasting for 800 h for Zn-15Al and Zn-15Al-0.2Zr has decreased by 20 and 17%, respectively. The fracture of joints occurred at the interface between the brazed seam and the Fe4Al13 intermetallic layer. The morphology of the surfaces exhibits a cleavage fracture.

  2. The Effect of TiO2 on the Wetting Behavior of Silver-copper Oxide Braze Filler Metals

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.; Darsell, Jens T.

    2006-03-01

    A series of silver-copper oxide ceramic brazing alloys was compositionally modified by doping with small amounts of titania. Subsequent contact angle measurements indicate that concentrations as low as 0.5 mol% TiO2 can significantly enhance wettability over a wide range of binary Ag-CuOx compositions.

  3. Dual atmosphere tolerance of Ag-CuO based air braze

    SciTech Connect

    Kim, Jin Yong Y.; Hardy, John S.; Weil, K. Scott

    2007-11-01

    Recently, a new braze filler metal based on the silver-copper oxide system was developed for use in sealing high-temperature, solid-state electrochemical devices such as solid oxide fuel cells. One of the concerns regarding the viability of this joining technique is the long-term stability of silver-based alloys under a high-temperature, dual oxidizing/reducing gas environment. This paper reports on an initial series of exposure experiments that were conducted to characterize the effects of (1) filler metal composition, (2) brazing temperature, and (3) exposure time on the microstructural stability of Ag-CuO brazed Al2O3/Al2O3 joints under a prototypic operating environment for an intermediate temperature solid oxide fuel cell stack. In general joints exposed simultaneously to air on one side and hydrogen on the other for short periods of time at 800°C (100 hrs) showed no signs of degradation with respect to hermeticity or joint microstructure. Samples exposed for longer periods of time (1000 hrs) displayed some internal porosity, which extends approximately halfway across the joint and is not interconnected. Little effect of the filler metal’s composition on its tolerance to dual atmosphere exposure was observed. However brazing temperature was found to have a measurable effect. Higher brazing temperature leads to a more extensive formation of an interfacial reaction phase, copper aluminate, which tends to tie up some of the free CuO in the filler metal and minimize the formation of porosity in the air brazed joints during long-term, dual-atmosphere exposure. The effect is due to the greater chemical stability of the copper aluminate relative to copper oxide.

  4. Failure Assessment Diagram for Titanium Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Jones, Justin S.; Powell, Mollie M.; Puckett, David F.

    2011-01-01

    The interaction equation was used to predict failure in Ti-4V-6Al joints brazed with Al 1100 filler metal. The joints used in this study were geometrically similar to the joints in the brazed beryllium metering structure considered for the ATLAS telescope. This study confirmed that the interaction equation R(sub sigma) + R(sub Tau) = 1, where R(sub sigma) and R(sub Tau)are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in ATLAS brazed joints as well as for construction of the Failure Assessment Diagram (FAD).

  5. Direct metal brazing to cermet feedthroughs

    DOEpatents

    Not Available

    1982-07-29

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  6. Direct metal brazing to cermet feedthroughs

    DOEpatents

    Hopper, Jr., Albert C.

    1984-12-18

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  7. High temperature grain growth and oxidation of Fe-29Ni-17Co (Kovar (tm)) alloy leads

    NASA Astrophysics Data System (ADS)

    Stephens, J. J.; Greulich, F. A.; Beavis, L. C.

    One important application for the Fe-29Ni-17Co (Kovar(trademark)) alloy in wire form is in brazed feed through assemblies which are integral parts of vacuum electronic devices. Since Cu metal brazes are performed at process temperatures of about 1100 C, there is opportunity for significant grain growth to occur during the brazing operation. Additional high temperature exposure includes decarburization of the Fe-29Ni-17Co alloy wire in wet hydrogen for 30 min. at 1000 C prior to the Cu brazing operation. Two approaches were used to characterize grain growth in two lots of Fe-29Ni-17Co alloy: (1) a once-through processing study to study the effect of one-time-only device thermal processing on the resulting grain size, and (2) an isothermal grain growth study involving various times at 800-1100 C. The results of the once-through processing study indicate that acceptable grain sizes are obtained from both cold worked and mill-annealed wire lots following Cu brazing. The isothermal grain growth study indicates that the linear intercept distance for Fe-29Ni-17Co can be described with a power law function of time, and that thermal exposure must be controlled at temperatures in excess of 900 C in order to avoid excessive grain growth. A second study characterized the oxidation kinetics of Fe-29Ni-17Co alloy wire in air at temperatures ranging from 550-700 C. This study indicates the parabolic growth law applies for this material, and between 550 and 700 C, oxidation in this alloy occurs at an activation energy of 27.9 kcal/mole. Other oxidation studies at higher temperatures (greater than 750 C) indicate an activation energy of 52.2 kcal/mole for oxidation of Fe-29Ni-17Co alloy at temperatures greater than 790 C. Quantitative point analyses of the oxide scale formed at 600 C suggest that a significant fraction of the scale is close to the stoichiometry of the Fe2O3-type oxide.

  8. Thermal resilient multiple jaw braze fixture

    DOEpatents

    Ney, R.; Perrone, A.J.

    1995-07-11

    A braze fixture has side walls forming a cavity with an opening to receive a stack of parts to be brazed. Sidewalls of the housing have a plurality of bearing receiving openings into which bearing rods or jaws are inserted to align the stacked elements of the workpiece. The housing can also have view ports to allow a visual check of the alignment. Straps or wires around the fixture are selected to have thermal characteristics similar to the thermal characteristics of the workpiece undergoing brazing. The straps or wires make physical contact with the bearing rods thereby causing bearing rods to maintain the workpiece in proper alignment throughout the entire brazing cycle. 9 figs.

  9. Brazing of zirconia to metal for development of oxygen and pH sensors for high-temperature, high-pressure aqueous environments

    SciTech Connect

    Kelkar, G.P.; Biswas, R.; Bertuch, A.

    1997-11-01

    Zirconia electrodes are routinely used as oxygen sensors at temperatures of 600{degrees}C and are now extensively used as pH sensors in high-temperature high-pressure aqueous systems (300{degrees}C and 3000 psi). Brazing of zirconia tubes to metal is one approach to making such sensors. A variety of metal supports (304L SS, Ni, Cu), three braze alloys in the Ag-Cu-Ti system and their combinations were investigated in bonding with the zirconia tubes. The important issues were the weakening of the zirconia matrix during brazing, bonding with the metal, and corrosion of the braze under operating conditions of 300{degrees}C and 3000 psi in aqueous environments. The results obtained are discussed along with guidelines for further investigations.

  10. Activity and diffusion of metals in binary aluminum alloys

    SciTech Connect

    Jao, C. S.

    1980-12-01

    To determine the activity of zinc in Zn-Al alloys, the electromotive force (emf) of the cell: Zn/ZnCl/sub 2/-KC1 (eut)/Zn,Al was measured at temperatures between 569.5 K (296.5C) and 649.5 K (376.5C). The applicability of a two-suffix Margules equation was demonstrated, in good agreement with theoretical expectations. The diffusion coefficient of Zn in Al determined from a planar diffusion model for the experimental data was about 3 x 10/sup -10/ cm/sup 2//sec to 2 x 10/sup -9/ cm/sup 2//sec in the range of temperature studied. This is higher than that found in the literature. The most plausible reason appears to be the high alumina concentration in the working electrode because of partial oxidation. Oxidation of the alloying metals was the primary cause of poor alloying between calcium/or zinc and aluminum, thereby frustrating similar measurements at a Ca-Al/or Zn-Al alloy. The literature on the activity of calcium and zinc is aluminum is reviewed.

  11. Investigation of the effect of contaminations and cleaning processes on the surface properties of brazing surfaces

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.

    2017-03-01

    The quality of brazed joints is determined by different factors such as the atmosphere and the parameters during brazing as well as the condition of the brazing surfaces. Residues of lubricants used during machining of the components and the subsequent cleaning processes can contaminate the faying surfaces and can hence influence the flow ability of the molten filler metals. Besides their influence on the filler metal flow, the residues can result in the formation of carbonic phases in the joint leading to a possible reduction of the corrosion resistance and the mechanical properties. The first step of the current study with the aim of avoiding these defects is to identify the influence of critical contaminations and cleaning methods on the quality of the brazed joints. In a first step, contaminations on AISI304 and Inconel alloy 625 due to different cooling lubricants and the effect of several cleaning methods, in particular plasma cleaning, have been investigated. Information about the surface energy of contaminated and cleaned surfaces was gained by measuring contact angle of testing fluids. Additionally, the lubricants and the resulting contamination products have been analyzed considering the influence of a heat treatment.

  12. Ceramic-Metal Brazing, from Fundamentals to Applications: A Review of Sandia National Laboratories Brazing Capabilities, Needs, and Opportunities

    NASA Astrophysics Data System (ADS)

    Hosking, F. M.; Stephens, J. J.; Glass, S. J.; Johannes, J. E.; Kotula, P.

    2002-05-01

    The purpose of the report is to summarize discussions from a Ceramic/Metal Brazing: From Fundamentals to Applications Workshop that was held at Sandia National Laboratories in Albuquerque, NM on April 4, 2001. Brazing experts and users who bridge common areas of research, design, and manufacturing participated in the exercise. External perspectives on the general state of the science and technology for ceramics and metal brazing were given. Other discussions highlighted and critiqued Sandia's brazing research and engineering programs, including the latest advances in braze modeling and materials characterization. The workshop concluded with a facilitated dialogue that identified critical brazing research needs and opportunities.

  13. Refractory metals welded or brazed with tungsten inert gas equipment

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere.

  14. High-strength braze joints between copper and steel

    NASA Technical Reports Server (NTRS)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  15. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  16. Development of High-Temperature Air Braze Filler Metals for Use in Two-Step Joining and Sealing Processes

    SciTech Connect

    Hardy, John S.; Weil, K. Scott

    2006-11-02

    Reactive air brazing (RAB) creates metallic braze joints between oxide surfaces. RAB can be performed in air and can undergo subsequent operation at temperatures up to 900ºC in oxidizing environments. This makes RAB an attractive joining method for creating seals in solid oxide fuel cells (SOFCs) which operate at temperatures between 700 and 850ºC and comprise cathode materials which are intolerant of reducing environments. Many planar SOFC designs require a two-step sealing process. Thus the seal formed during the first step must not melt or soften at the firing temperature of the second step, otherwise its integrity could be compromised. The goal of this study is to investigate the effects of adding Pd to a Ag-CuO RAB to produce a braze composition with a melting temperature high enough that it might be used in the first step of a two-step sealing process with unmodified Ag-CuO RAB used in the second step, thereby making possible a two step reactive air brazing process. Yttria-stabilized zirconia (YSZ) is the substrate of choice in this study in order to simulate the initial sealing step in planar SOFCs which often involves sealing a yttrium-stabilized zirconia (YSZ) electrolyte to a metallic support frame. RAB compositions containing a 15 mol% Pd : 85 mol% Ag alloy with 8 mol% Cu added were found to provide the best combination of wettability, mechanical strength, and melting characteristics for brazing YSZ.

  17. High temperature grain growth and oxidation of Fe-29Ni-17Co (Kovar{trademark}) alloy leads

    SciTech Connect

    Stephens, J.J.; Greulich, F.A.; Beavis, L.C.

    1993-12-31

    One important application for the Fe-29Ni-17Co (Kovar{trademark}) alloy in wire form is in brazed feed through assemblies which are integral parts of vacuum electronic devices. Since Cu metal brazes are performed at process temperatures of about 1100{degrees}C, there is opportunity for significant grain growth to occur during the brazing operation. Additional high temperature exposure includes decarburization of the Fe-29Ni-17Co alloy wire in wet hydrogen for 30 min. at 1000{degrees}C prior to the Cu brazing operation. Two approaches have been used to characterize grain growth in two lots of Fe-29Ni-17Co alloy: (1) a once-through processing study to study the effect of one-time-only device thermal processing on the resulting grain size, and (2) an isothermal grain growth study involving various times at 800--1100{degrees}C. The results of the once-through processing study indicate that acceptable grain sizes are obtained from both cold worked and mill-annealed wire lots following Cu brazing. The isothermal grain growth study indicates that the linear intercept distance for Fe-29Ni-17Co can be described with a power law function of time, and that thermal exposure must be controlled at temperatures in excess of 900{degrees}C in order to avoid excessive grain growth. A second study has characterized the oxidation kinetics of Fe-29Ni-17Co alloy wire in air at temperatures ranging from 550--700{degrees}C. This study indicates the parabolic growth law applies for this material, and between 550 and 700{degrees}C, oxidation in this alloy occurs at an activation energy of 27.9 kcal/mole. Other oxidation studies at higher temperatures ({ge}750{degrees}C) indicate an activation energy of 52.2 kcal/mole for oxidation of Fe-29Ni-17Co alloy at temperatures greater than 790{degrees}C. Quantitative point analyses of the oxide scale formed at 600{degrees}C suggest that a significant fraction of the scale is close to the stoichiometry of the Fe{sub 2}O{sub 3}-type oxide.

  18. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties.

  19. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    DOEpatents

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  20. Investigation of Pd-Modified Ag-CuO Air Braze Filler Metals

    SciTech Connect

    Darsell, Jens T.; Hardy, John S.; Kim, Jin Yong; Weil, K. Scott

    2006-01-10

    Palladium was added as a ternary component to a series of silver - copper oxide alloys in an effort to increase the use temperature of these materials for potential ceramic air brazing applications. Large portions of the silver component of the Ag-CuO system were substituted by palladium forming the following alloys: (100-y)[(100-z)Pd - (z)Ag] - (y)CuOx where y = 0 - 34 mol% CuOx, z = 50 - 100 mol% silver, and x = 0, 0.5, and 1, denoting copper metal, Cu2O, or CuO. From differential scanning calorimetry, it was determined that the addition of palladium causes an increase in the solidus and liquidus temperatures of the resulting Pd-Ag-CuO brazes. In general, the liquidus was found to increase by approximately 220°C for the (100-y)(25Pd - 75Ag) - (z)CuOx filler metal compositions relative to comparable Ag-CuOx alloys. Likewise, the solidus was found to increase for these alloys, respectively by 185°C and 60°C, respectively for CuOx contents of y = 0 - 1mol% and 4 - 10 mol%. For the (100-y)(50Pd - 50Ag) - (y)CuOx alloys, the solidus increased between 280 - 390°C over a copper oxide compositional range of x = 0 to 8 mol%. It was determined from sessile drop experiments that palladium causes an increase in the wetting angle for all of the samples tested. Alloy compositions of (100-y)(25Pd - 75Ag) - (y)CuOx displayed increased wetting angles of 5-20° relative to comparable binary compositions. (100-y)(50Pd - 50Ag) - (y)CuOx alloys exhibited an increase in contact angle of 10-60° and compositions containing less than 10 mol% CuOx were not able to wet the substrate. Scanning electron microscopy indicates that the microstructure of the braze consists of Ag-Pd solid solution with CuOx precipitates. In general, a reaction layer consisting of CuAlO2 forms adjacent to the alumina substrate. However, the formation of this layer is apparently hindered by the addition of large amounts of palladium, causing poor wetting behavior, as denoted by substantial porosity found along

  1. Surface development of an aluminum brazing sheet during heating studied by XPEEM and XPS

    NASA Astrophysics Data System (ADS)

    Rullik, L.; Bertram, F.; Niu, Y. R.; Evertsson, J.; Stenqvist, T.; Zakharov, A. A.; Mikkelsen, A.; Lundgren, E.

    2016-10-01

    X-ray photoelectron emission microscopy (XPEEM) was used in combination with other microscopic and spectroscopic techniques to follow the surface development of an aluminum brazing sheet during heating. The studied aluminum alloy sheet is a composite material designed for vacuum brazing. Its surface is covered with a native aluminum oxide film. Changes in the chemical state of the alloying elements and the composition of the surface layer were detected during heating to the melting temperature. It was found that Mg segregates to the surface upon heating, and the measurements indicate the formation of magnesium aluminate. During the heating the aluminum oxide as well as the silicon is observed to disappear from the surface. Our measurements is in agreement with previous studies observing a break-up of the oxide and the outflow of the braze cladding onto the surface, a process assisted by the Mg segregation and reaction with surface oxygen. This study also demonstrates how XPEEM can be utilized to study complex industrial materials.

  2. Fabrication and evaluation of superplastically formed/weld-brazed corrugated compression panels with beaded webs

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Davis, R. C.; Shinn, J. M., Jr.; Bales, T. T.; Wiant, H. R.

    1985-01-01

    A study was made to investigate the feasibility of superplastically forming corrugated panels with beaded webs and to demonstrate the structural integrity of these panels by testing. The test panels in the study consist of superplastically formed titanium alloy Ti-6Al-4V half-hat elements that are joined by weld-brazing to titanium alloy Ti-6Al-4V caps to form either single-corrugation compression panels or multiple-corrugation compression panels. Stretching and subsequent thinning of the titanium sheet during superplastic forming is reduced by approximately 35 percent with a shallow half-hat die concept instead of a deep die concept and results in a more uniform thickness across the beaded webs. The complete panels are tested in end compression at room temperature and the results compared with analysis. The heavily loaded panels failed at loads approaching the yield strength of the titanium material. At maximum load, the caps wrinkled locally accompanied with separation of the weld-braze joint in the wrinkle. None of the panels tested, however, failed catastrophically in the weld-braze joint. Experimental test results are in good agreement with structural analysis of the panels.

  3. Brazing of bulk graphite/solid tritium breeder materials to metal substrates

    NASA Astrophysics Data System (ADS)

    Suiter, David J.; Bowers, David A.; Morgan, Grover D.; Trachsel, Clarence A.; Wille, Gerald W.

    1984-05-01

    The preliminary study involved evaluation of a brazed joint concept for obtaining improved heat transfer conditions between a coolant-containing metal structure and a solid tritium breeder or bulk graphite. A titanium-based braze alloy was used to successfully bond: a) POCO AXF-5Q bulk graphite to metal substrates (OFHC Cu, 316 SS, and Inconel 625), and b) solid tritium breeders (Li 2O, γ-LiAlO 2, Li 4SiO 4, Li 2TiO 3, and Li 2ZrO 3) to a 316 SS sample by employing an intermediate compliant metal layer to accommodate differences in linear thermal expansion of the materials.

  4. WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES

    SciTech Connect

    LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.

    2014-10-13

    Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contact angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.

  5. Thermal fatigue characterization of CFC divertor modules using a one step brazing process

    NASA Astrophysics Data System (ADS)

    Pintsuk, G.; Casalegno, V.; Ferraris, M.; Koppitz, T.; Salvo, M.

    2012-07-01

    From the European side, three directional carbon fiber composites (CFCs) are foreseen to be used as plasma facing material for the strike point region of the initial ITER divertor installed for the non-tritium operational phase. For such divertor components two designs, the flat tile and the monoblock concept, are feasible, comprising a joint of the CFC with a Cu/Cu-alloy heat sink. This paper deals with the qualification of a reliable and cheap joining technology for such components, i.e. the simultaneous joining of the CuCrZr heat sink to a compliant Cu layer for the accommodation of thermal stresses and of the Cu layer and the CFC using a non-active Cu-Ge brazing material. For this purpose flat tile and monoblock mock-ups were manufactured, microstructurally analyzed, and subsequently exposed to cyclic high heat flux tests in the electron beam facility JUDITH. Applying hundreds of cycles at up to 20 MW/m2 the tested mock-ups underwent partial damaging, which was characterized in post-mortem microstructural investigations to analyze occurring degradation mechanisms, e.g. partial delamination at the CFC/Cu-interface.

  6. Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity

    NASA Astrophysics Data System (ADS)

    Passerone, A.; Muolo, M. L.; Valenza, F.

    2016-08-01

    A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.

  7. Investigation of the effect of rapidly solidified braze ribbons on the microstructure of brazed joints

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.; Rochala, P.; Mayer, J.; Aretz, A.; Iskandar, R.; Schwedt, A.

    2017-03-01

    Shrinkage and warpage due to melting and solidification are crucial for the geometric precision of related components. In order to assure a high geometric precision, the formation of the microstructure in the joint during brazing must be taken into consideration. An extensive interaction can occur between liquid melt and base material, resulting in the formation of distinctive phases. This interaction depends on the parameters of the brazing process. However, the consequences of the interaction between phase formation and process parameters in terms of geometric precision cannot be estimated yet. Insufficient quality of the joint can be a result. In this study, investigations focus on the process of solidification in terms of time dependent diffusion behavior of elements. Therefore, microcrystalline and amorphous braze ribbons based on Ti are produced by rapid solidification and are used for joining. The microstructure of the braze ribbons as well as the melting behavior and phase formation during brazing are considered to be of particular importance for the mechanical properties of the brazed components.

  8. Thermal and Fluid Flow Brazing Simulations

    SciTech Connect

    HOSKING, FLOYD MICHAEL; GIANOULAKIS,STEVEN E.; GIVLER,RICHARD C.; SCHUNK,P. RANDALL

    1999-12-15

    The thermal response of fixtured parts in a batch-type brazing furnace can require numerous, time-consuming development runs before an acceptable furnace schedule or joint design is established. Powerful computational simulation tools are being developed to minimize the required number of verification experiments, improve furnace throughput, and increase product yields. Typical furnace simulations are based on thermal, fluid flow, and structural codes that incorporate the fundamental physics of the brazing process. The use of massively parallel computing to predict furnace and joint-level responses is presented. Measured and computed data are compared. Temperature values are within 1-270 of the expected peak brazing temperature for different loading conditions. Sensitivity studies reveal that the thermal response is more sensitive to the thermal boundary conditions of the heating enclosure than variability y in the materials data. Braze flow simulations predict fillet geometry and free surface joint defects. Dynamic wetting conditions, interfacial reactions, and solidification structure add a high degree of uncertainty to the flow results.

  9. Welding/brazing for Space Station repair

    NASA Technical Reports Server (NTRS)

    Dickinson, David W.; Babel, H. W.; Conaway, H. R.; Hooper, W. H.

    1990-01-01

    Viewgraphs on welding/brazing for space station repair are presented. Topics covered include: fabrication and repair candidates; debris penetration of module panel; welded repair patch; mechanical assembly of utility fluid line; space station utility systems; Soviet aerospace fabrication - an overview; and processes under consideration.

  10. Nickel-chromium-silicon brazing filler metal

    DOEpatents

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  11. Brazed bipolar plates for PEM fuel cells

    DOEpatents

    Neutzler, Jay Kevin

    1998-01-01

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprising corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant.

  12. Brazed bipolar plates for PEM fuel cells

    DOEpatents

    Neutzler, J.K.

    1998-07-07

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprises corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant. 6 figs.

  13. Nanoparticle-Assisted Diffusion Brazing of Metal Microchannel Arrays: Nanoparticle Synthesis, Deposition, and Characterization

    NASA Astrophysics Data System (ADS)

    Eluri, Ravindranadh T.

    Microchannel process technology (MPT) offers several advantages to the field of nanomanufacturing: 1) improved process control over very short time intervals owing to shorter diffusional distances; and 2) reduced reactor size due to high surface area to volume ratios and enhanced heat and mass transfer. The objective of this thesis was to consider how nanomaterials, produced in part using MPT, could be used to solve problems associated with the fabrication of MPT devices. Specifically, many MPT devices are produced using transient liquid-phase brazing involving an electroplated interlayer consisting of a brazing alloy designed for melting temperature suppression. Unfortunately, these alloys can form brittle secondary phases which significantly reduce bond strength. In contrast, prior efforts have shown that it is possible to leverage the size-dependent properties of nanomaterials to suppress brazing temperatures. In this prior work, thin films of off-the-shelf elemental nanoparticles were used as interlayers yielding joints with improved mechanical properties. In the present investigation, efforts have been made to characterize the synthesis and deposition of various elemental nanoparticle suspensions for use in the transient liquid-phase brazing of aluminum and stainless steel. Advances were used to demonstrate the nanoparticle-assisted diffusion brazing of a microchannel array. In the first section, a silver nanoparticle (AgNP) interlayer was produced for the diffusion brazing of heat exchanger aluminum. Efforts are made to examine the effect of braze filler particle size (˜5 nm and ˜50 nm) and processing parameters (heating rate: 5ºC/min and 25ºC/min; brazing temperature: 550ºC and 570ºC) on thin coupons of diffusion-brazed 3003 Al. A tensile strength of 69.7 MPa was achieved for a sample brazed at 570°C for 30 min under 1 MPa with an interlayer thickness of approximately 7 microm. Further suppression of the brazing temperature to 500ºC was achieved by

  14. Development of a Nitride Dispersion Strengthened (NDS) Metallic Alloy for High-Temperature Recuperators

    DTIC Science & Technology

    1985-06-01

    that deep aluminum diffusion will not occur; instead, a nickel- aluminide coating will form only on the brazing alloy and will not effect the strength...needed, perhaps in the brazing alloy, since high silicon is reported to cause adverse interaction with diffusion aluminide coatings . Test results to...summary of results in Table 2-29 and in Figure 2-21, which shows representative metallographic cross sec- tions.) The aluminide - coated Incoloy 800H

  15. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, Randy B.

    1992-01-01

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

  16. Investigation of Pd-Modified Ag-CuO Air Braze Filler Metals

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong; Hardy, John S.; Darsell, Jens T.

    2006-01-01

    This paper reports on the effects of palladium on the liquidus/solidus temperatures and wetting behavior of a series of Ag-CuOx air braze filler metals. Currently, the maximum operating temperature of the Ag-CuOx system is limited by its eutectic temperature of ~935°C. One strategy to increase the maximum operational temperature of this family of filler metals is to add a higher melting noble alloying element. In the current study, we examined the effects of palladium additions on the melting characteristics of the Ag-CuO materials and the wetting properties of the resulting air braze filler metals with respect to alumina. It was found that while the addition of Pd causes the anticipated increase in the melting temperature, it does so at a sacrifice in wetting properties. The extent of both effects and therefore the opportunity to trade-off the two properties in order to develop an optimized higher temperature air braze depends on concentrations of both the palladium and copper oxide.

  17. Development and Brazing Ability of Cu-Si-Ti Filler Metals for Joining Si3N4

    NASA Astrophysics Data System (ADS)

    Naka, Masaaki; Takase, Hideki; Scuster, J. C.

    Cu-5Si-xTi filler alloys for joining Si3N4 were developed, and the joining ability of the alloys was investigated by measuring contact angles on Si3N4 in vacuum and strength of Si3N4 joint brazed with the filler alloys. The addition of Ti content of 3 at% or more decreased the contact angle on Si3N4. The alloys containing Ti content of 5at% showed the lowest contact angle and good wettability. Si3N4 was brazed to Si3N4 with the filler alloys containing Ti content of 3 at% or more, and the strength of the Si3N4 joint increased with the Ti content in the filler alloys. The increase in the amount of TiN and Ti5Si3 which was formed by the reaction of Ti in the filler with Si3N4 raised the strength of the Si3N4 joint.

  18. From Coin to Medal: A Metallurgical Study of the Brazing Drop on a 19th Century Scudo

    NASA Astrophysics Data System (ADS)

    Breda, M.; Canovaro, C.; Pérez, A. F. Miranda; Calliari, I.

    2012-11-01

    In the past, it was customary to use out-of-circulation coins as pendants by brazing a peg or ring on the edge of the coin in order to transform it into a devotional or decorative object; this practice was very common for specimens of the Papal States, especially for silver coins. This metallurgical investigation of a 19th century Scudo aimed to relate the internal structure of the coin to the minting technology with a special focus on the brazing drop, in order to provide information on the solidification microstructure arising from a strongly nonequilibrium process such as brazing. The results show that the Ag content in the coin ranges from 92% in the bulk up to 97% on the surface, due to enrichment, while analysis of the brazing revealed that it consists of an Ag-Cu-Zn-Pb alloy, for which the melting temperature has been estimated. Considering the distribution of minor elements, Zn segregates in the secondary (Cu-rich) β-dendrites and inside the whole eutectic structure, while Pb is only present in the Ag-based phases and seems to reduce the solubility of Zn inside the primary (Ag-rich) α-dendrites.

  19. Evaluation of brazed silicon nitride joints: Microstructure and mechanical properties

    SciTech Connect

    Peteves, S.D.; Nicholas, M.G.

    1996-06-01

    Sintered Si{sub 3}N{sub 4} has been bonded to itself and to AISI 316 steel by the active-metal brazing route. A commercial Ag-35Cu-1.6Ti filler has been used with joining taking place during a 30 min hold at 850 C under vacuum. Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} joints have been produced with strength distribution (average bend strength = 773.5 MPa, Weibull modulus = 11.2) similar to that of the monolithic ceramic. Direct brazing of the Si{sub 3}N{sub 4} to AISI 316 steel was unsuccessful. However, reliably strong (bend strength of 250--400 MPa) ceramic/steel joints with 20 x 20 mm{sup 2} cross sections were fabricated by using Cu, Mo, or Nb interlayers. The most potent interlayer used in this work was Mo, whose coefficient of thermal expansion matches best that of the ceramic.

  20. Applying Taguchi Methods To Brazing Of Rocket-Nozzle Tubes

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Bellows, William J.; Deily, David C.; Brennan, Alex; Somerville, John G.

    1995-01-01

    Report describes experimental study in which Taguchi Methods applied with view toward improving brazing of coolant tubes in nozzle of main engine of space shuttle. Dr. Taguchi's parameter design technique used to define proposed modifications of brazing process reducing manufacturing time and cost by reducing number of furnace brazing cycles and number of tube-gap inspections needed to achieve desired small gaps between tubes.

  1. Evaluation of Brazed Joints Using Failure Assessment Diagram

    NASA Technical Reports Server (NTRS)

    Flom, Yury

    2012-01-01

    Fitness-for service approach was used to perform structural analysis of the brazed joints consisting of several base metal / filler metal combinations. Failure Assessment Diagrams (FADs) based on tensile and shear stress ratios were constructed and experimentally validated. It was shown that such FADs can provide a conservative estimate of safe combinations of stresses in the brazed joints. Based on this approach, Margins of Safety (MS) of the brazed joints subjected to multi-axial loading conditions can be evaluated..

  2. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Gleason, Brian; Beringer, Woody; Stephen, Ryan

    2010-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from 4 suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used nickel and active braze allows to prepare the carbon fibers for joining with aluminum. This approach was repeatable and scalable with improved strength and thermal conductance when compared with epoxy bonding.

  3. Ultrasonic scanning system for inspection of brazed tube joints

    NASA Technical Reports Server (NTRS)

    Haynes, J. L.; Maurer, N. A.

    1972-01-01

    An ultrasonic scanning system used to inspect and evaluate in-place brazed tube joints is considered. The system was designed, developed, and built especially for nondestructive testing and was selected because of its known response to brazing defects not associated with material density changes. The scan system is capable of scanning brazed joints in union, tee, elbow and cross configuration of 3/16-inch through 5/8-inch diameters. It is capable of detecting brazed defects as small as 0.008 by 0.010-inch, which exceeds the 0.015-inch diameter defect resolution required by specification.

  4. Spot brazing of aluminum to copper with a cover plate

    NASA Astrophysics Data System (ADS)

    Hayashi, Junya; Miyazawa, Yasuyuki

    2014-08-01

    It is difficult to join dissimilar metals when an intermetallic compound is formed at the joining interface. Spot brazing can be accomplished in a short time by resistance heating. Therefore, it is said that the formation of a intermetallic compound can be prevented. In this study, aluminum and copper were joined by spot brazing with a cover plate. The cover plate was used to supply heat to base metals and prevent heat dissipation from the base metals. The ability to braze Al and Cu was investigated by observation and analysis. Pure aluminum (A1050) plate and oxygen-free copper (C1020) plate were used as base metals. Cu-Ni-Sn-P brazing filler was used as the brazing filler metal. SPCC was employed as cover plate. Brazing was done with a micro spot welder under an argon gas atmosphere. Brazing ability was estimated by tensile shear strength and cross sectional microstructure observation. Al and Cu can be joined by spot brazing with Cu-Ni-Sn-P brazing filler and cover plate.

  5. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, Albert J.; Dykes, Norman L.

    1984-01-01

    The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.

  6. A model for coupled growth of reaction layers in reactive brazing of ZrO{sub 2}-toughened Al{sub 2}O{sub 3}

    SciTech Connect

    Torvund, T.; Grong, O.; Akselsen, O.M.; Ulvensoeen, J.H.

    1996-11-01

    In the present investigation, process modeling techniques have been applied to describe coupled reaction layer growth in reactive brazing of ZrO{sub 2}-toughened Al{sub 2}O{sub 3} with Ag-Ti filler metals. The model takes into account both the successive evolution of the titanium oxide layer at the ceramic/braze metal interface at elevated temperatures and the subsequent decomposition of the reaction products during cooling. The results are presented in the form of novel process diagrams which illustrate in a quantitative manner the microstructural connections throughout the various stages of the process. The diagrams can, in turn, be used to calculate the individual reaction layer thicknesses at room temperature and relate these directly to the content of reacting element in the braze alloy.

  7. Thermally activated retainer means utilizing shape memory alloy

    NASA Technical Reports Server (NTRS)

    Grimaldi, Margaret E. (Inventor); Hartz, Leslie S. (Inventor)

    1993-01-01

    A retainer member suitable for retaining a gap filler placed in gaps between adjacent tile members is presented. One edge of the retainer member may be attached to the gap filler and another edge may be provided with a plurality of tab members which in an intermediate position do not interfere with placement or removal of the gap filler between tile members. The retainer member may be fabricated from a shape memory alloy which when heated to a specified memory temperature will thermally activate the tab members to predetermined memory positions engaging the tile members to retain the gap filler in the gap. This invention has particular application to the thermal tiles on space vehicles such as the Space Shuttle Orbiter.

  8. Microstructure and Strength Characteristics of Alloy 617 Welds

    SciTech Connect

    T.C. Totemeier; H. Tian; D.E. Clark; J.A. Simpson

    2005-06-01

    Three types of high-temperature joints were created from alloy 617 base metal: fusion welds, braze joints, and diffusion bonds. The microstructures of all joint types and tensile properties of fusion welds and braze joints were characterized. Sound fusion welds were created by the GTAW process with alloy 617 filler wire. Cross-weld tensile strengths were equal to the parent metal at temperatures of 25, 800, and 1000°C; ductilities of the joints were only slightly lower than that of the parent metal. Failure occurred in the weld fusion zone at room temperature and in the parent metal at elevated temperatures. Incomplete wetting occurred in joints produced by vacuum brazing using AWS BNi-1 braze alloy, believed to be due to tenacious Al and Ti oxide formation. Incompletely bonded butt joints showed relatively poor tensile properties. A second set of braze joints has been created with faying surfaces electroplated with pure Ni prior to brazing; characterization of these joints is in progress. Conditions resulting in good diffusion bonds characterized by grain growth across the bondline and no porosity were determined: vacuum bonding at 1150°C for 3 hours with an initial uniaxial stress of 20 MPa (constant ram displacement). A 15 µm thick pure Ni interlayer was needed to achieve grain growth across the bondline. Tensile testing of diffusion bonds is in progress

  9. Research activities of biomedical magnesium alloys in China

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Gu, Xuenan

    2011-04-01

    The potential application of Mg alloys as bioabsorable/biodegradable implants have attracted much recent attention in China. Advances in the design and biocompatibility evaluation of bio-Mg alloys in China are reviewed in this paper. Bio-Mg alloys have been developed by alloying with the trace elements existing in human body, such as Mg-Ca, Mg-Zn and Mg-Si based systems. Additionally, novel structured Mg alloys such as porous, composited, nanocrystalline and bulk metallic glass alloys were tried. To control the biocorrosion rate of bio-Mg implant to match the self-healing/regeneration rate of the surrounding tissue in vivo, surface modification layers were coated with physical and chemical methods.

  10. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  11. The story of laser brazing technology

    NASA Astrophysics Data System (ADS)

    Hoffmann, Peter; Dierken, Roland

    2012-03-01

    This article gives an overview on the development of laser brazing technology as a new joining technique for car body production. The story starts with fundamental research work at German institutes in 1993, continues with the first implementations in automobile production in 1998, gives examples of applications since then and ends with an outlook. Laser brazing adapted design of joints and boundary conditions for a safe processing are discussed. Besides a better understanding for the sensitivity of the process against joint irregularities and misalignment, the key to successful launch was an advanced system technology. Different working heads equipped with wire feeding device, seam tracking system or tactile sensors for an automated teaching are presented in this paper. Novel laser heads providing a two beam technology will allow improved penetration depth of the filler wire and a more ecological processing by means of energy consumption.

  12. Brazing of copper to stainless steel with a low-silver-content brazing filler metal

    NASA Astrophysics Data System (ADS)

    Fukikoshi, Tatsuya; Watanabe, Yūki; Miyazawa, Yasuyuki; Kanasaki, Fumio

    2014-08-01

    The brazing of copper to stainless steel (SUS304 JIS) was performed using a low- silver-content brazing filler metal, Ag-50Cu, under an Ar gas atmosphere with a conventional furnace, owing to the potential economic benefits of using low-silver-content filler metals. The brazeability of the low-silver-content brazing filler metal to copper and SUS304 was investigated. A good joint was obtained, and a drastic dissolution reaction occurred at the copper side. Molten BAg8 penetrated along the crystal grain boundary of the copper base metal when BAg8 was used as the filler metal. This was caused by the dissolution of Ni from the stainless steel into the molten filler metal. Ag-50Cu, which was investigated in this work, can be used instead of BAg8 filler metal.

  13. The Effect of Palladium Additions on the Solidus/Liquidus Temperatures and Wetting Properties of Ag-CuO Based Air Brazes

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2007-05-16

    As a means of increasing the use temperature of ceramic-ceramic and ceramic-metal air brazes, palladium was investigated as possible ternary addition to the currently employed silver - copper oxide system. The silver component was directly substituted with palladium to form the following series of alloys: (100-y)[(100-z)Pd - (z)Ag] - (y)CuOx where y = 0 - 34 mol% CuOx, z = 50 - 100 mol% silver, and x = 0, 0.5, and 1, denoting copper metal, Cu2O, or CuO. From differential scanning calorimetry, it was determined that the addition of palladium causes an increase in the solidus and liquidus temperatures of the resulting Pd-Ag-CuO brazes. In general, the liquidus was found to increase by approximately 220°C for the (100-y)(25Pd - 75Ag) - (z)CuOx filler metal compositions relative to comparable Ag-CuOx alloys. Likewise, the solidus was found to increase for these alloys, respectively by 185°C and 60°C, respectively for CuOx contents of y = 0 - 1mol% and 4 - 10 mol%. For the (100-y)(50Pd - 50Ag) - (y)CuOx alloys, the solidus increased between 280 - 390°C over a copper oxide compositional range of x = 0 to 8 mol%. It was determined from sessile drop experiments conducted on alumina substrates that in all cases the palladium causes an increase in the wetting angle relative to the corresponding binary braze. Alloy compositions of (100-y)(25Pd - 75Ag) - (y)CuOx displayed increased wetting angles of 5-20° relative to comparable binary compositions. (100-y)(50Pd - 50Ag) - (y)CuOx alloys exhibited an increase in contact angle of 10-60° and compositions containing less than 10 mol% CuOx were not able to wet the substrate. Scanning electron microscopy indicated that the microstructure of the braze consists of discrete CuOx precipitates in an alloyed silver-palladium matrix. In both the binary and ternary filler metal formulations, a reaction layer consisting of CuAlO2 was observed along the interface with the alumina substrate. This reaction product appears to be beneficial

  14. The effect of palladium additions on the solidus/liquidus temperatures and wetting properties of Ag-CuO based air brazes

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2007-01-01

    A new ceramic brazing technique referred to as reactive air brazing (RAB) has recently been developed for potential applications in high temperature devices such as gas concentrators, solid oxide fuel cells, gas turbines, and combustion engines. At present, the technique utilizing a silver-copper oxide system is of great interest. The maximum operating temperature of this system is limited by its eutectic temperature of ~945°C, although in practice the operating temperature will need to be lower. An obvious strategy that can be employed to increase the maximum operating temperature of the braze material is to add a higher melting noble alloying element. In this paper, we report the effects of palladium addition on the melting characteristics of the Ag-CuO system and on the wetting properties of the resulting braze with respect to alumina. It was found that the addition of Pd will cause an increase in the melting temperature of the Ag-CuO braze but possibly at a sacrifice of wetting properties depending on composition.

  15. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability.

    PubMed

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-02

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  16. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    NASA Astrophysics Data System (ADS)

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  17. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    PubMed Central

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-01-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance. PMID:28150732

  18. The Effects of Joining Methods on the Resistivity of W-Cu Alloy and Cu Joint

    NASA Astrophysics Data System (ADS)

    Chen, Chunhuan; Liu, Xiaojing; Wang, Zhenbo

    In this paper, three joining methods are employed to join W-Cu alloy and Cu to investigate the effect of joining methods on the resistivity of the joint. The results show that W-Cu alloy is well bonding to the Cu substrate when joining by diffusion vacuum bonding and brazing in vacuum methods. Welding defects is apt to occur when joining by brazing in air. The lowest resistivity of the joint welded is obtained by vacuum diffusion bonding, which approximates to the W-Cu alloy while that for the joint brazed in air is the highest. Vacuum diffusion bonding method is the best choice when the demand of conductivity is vital while the mechanical reliability is not critical. Otherwise, brazing in vacuum is the prior option.

  19. Tensile properties of thin Au-Ni brazes between strong base materials

    SciTech Connect

    Tolle, M.C.; Kassner, M.E.

    1991-12-01

    It has long been known that when relatively strong base materials are joined by thin, soft, interlayer metals such as with brazing or various solid state joining processes, the ultimate tensile strength (UTS) of the bond may be several factors higher than the UTS of the bulk, or unconstrained, interlayer metals. However, earlier work reported by the authors confirmed that delayed or ``creep`` failure of the bond may occur at stresses much less than the UTS. It was found that for thin silver interlayers, prepared by brazing and physical vapor deposition (PVD), joining elastically deforming base materials (i.e. no measurable plastic deformation occurs in the base metal at the applied stresses), the ambient (and near-ambient) temperature time to failure is controlled by the creep rate of the silver interlayer which is determined by the effective stress within the interlayer. The plastic deformation within the interlayer causes cavity nucleation which continues until the concentration of nuclei is sufficiently high to lead to instability and eventual failure. The delayed failure may be accelerated by base material creep resulting from the effective stress in the base material. Plastic deformation in the base metal causes corresponding deformation in the interlayer, and cavities nucleate as with elastic base metal case. The delayed failure phenomenon was confirmed by the authors only for silver interlayers; other compositions were not tested. In this study, maraging steel was joined with an Au-Ni braze alloy with 57.5 at. % Au and 42.5 at. % Ni. The microstructure is expected to be a refined two-phase (spinodal) alloy with higher strength than the PVD silver of our previous investigation.

  20. Tensile properties of thin Au-Ni brazes between strong base materials

    SciTech Connect

    Tolle, M.C.; Kassner, M.E. )

    1991-12-01

    It has long been known that when relatively strong base materials are joined by thin, soft, interlayer metals such as with brazing or various solid state joining processes, the ultimate tensile strength (UTS) of the bond may be several factors higher than the UTS of the bulk, or unconstrained, interlayer metals. However, earlier work reported by the authors confirmed that delayed or creep'' failure of the bond may occur at stresses much less than the UTS. It was found that for thin silver interlayers, prepared by brazing and physical vapor deposition (PVD), joining elastically deforming base materials (i.e. no measurable plastic deformation occurs in the base metal at the applied stresses), the ambient (and near-ambient) temperature time to failure is controlled by the creep rate of the silver interlayer which is determined by the effective stress within the interlayer. The plastic deformation within the interlayer causes cavity nucleation which continues until the concentration of nuclei is sufficiently high to lead to instability and eventual failure. The delayed failure may be accelerated by base material creep resulting from the effective stress in the base material. Plastic deformation in the base metal causes corresponding deformation in the interlayer, and cavities nucleate as with elastic base metal case. The delayed failure phenomenon was confirmed by the authors only for silver interlayers; other compositions were not tested. In this study, maraging steel was joined with an Au-Ni braze alloy with 57.5 at. % Au and 42.5 at. % Ni. The microstructure is expected to be a refined two-phase (spinodal) alloy with higher strength than the PVD silver of our previous investigation.

  1. Activity Trends of Binary Silver Alloy Nanocatalysts for Oxygen Reduction Reaction in Alkaline Media.

    PubMed

    Wu, Xiaoqiang; Chen, Fuyi; Zhang, Nan; Lei, Yimin; Jin, Yachao; Qaseem, Adnan; Johnston, Roy L

    2017-02-02

    The electrocatalytic activity of Pt-based alloys exhibits a strong dependence on their electronic structures, but a relationship between electronic structure and oxygen reduction reaction (ORR) activity in Ag-based alloys is still not clear. Here, a vapor deposition based approach is reported for the preparation of Ag75 M25 (M = Cu, Co, Fe, and In) and Agx Cu100-x (x = 0, 25, 45, 50, 55, 75, 90, and 100) nanocatalysts and their electronic structures are determined by valence band spectra. The relationship of the d-band center and ORR activity exhibits volcano-shape behaviors, where the maximum catalytic activity is obtained for Ag75 Cu25 alloys. The ORR enhancement of Ag75 Cu25 alloys originates from the 0.12 eV upshift in d-band center relative to pure Ag, which is different from the downshift in the d-band center in Pt-based alloys. The activity trend for these Ag75 M25 alloys is in the order of Ag75 Cu25 > Ag75 Fe25 > Ag75 Co25 . These results provide an insight to understand the activity and stability enhancement of Ag75 Cu25 and Ag50 Cu50 catalysts by alloying.

  2. Microstructural characterization of titanium to 304 stainless steel brazed joints

    SciTech Connect

    Camargo, P.R.C.; Liu, S. . Center for Welding and Joining Research); Trevisan, R.E. . Dept. of Fabrication Engineering)

    1993-12-01

    The formation of intermetallic compounds in brazed joints between titanium and 304 stainless steel is of major concern, since they considerably degrade the joint properties. This research examined the vacuum brazing of commercially pure titanium to 304 stainless steel using two different silver-copper brazing filler metals. Pure copper and silver were used to prepare the brazing filler metals in these experiments. Special attention was given to the characterization of the different phases formed at the brazed joint and the effect of the intermetallic compounds on the mechanical properties of the brazed joints. Light and electron microscopy, electron probe microanalysis, microhardness, and shear testing were used to support the investigation. From the mechanical properties point of view, brazed joints using an eutectic composition filler metal (Ag-28 wt-% Cu) proved to be superior compared to the joints prepared with a filler metal of composition Ag-46 wt-% Cu. To maximize the shear strength of the joint, the brazing time must be optimized such that interfacial reactions, titanium-iron intermetallics formation are minimized.

  3. Evaluation of Margins of Safety in Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Len; Powell, Mollie M.; Soffa, Matthew A.; Rommel, Monica L.

    2009-01-01

    One of the essential steps in assuring reliable performance of high cost critical brazed structures is the assessment of the Margin of Safety (MS) of the brazed joints. In many cases the experimental determination of the failure loads by destructive testing of the brazed assembly is not practical and cost prohibitive. In such cases the evaluation of the MS is performed analytically by comparing the maximum design loads with the allowable ones and incorporating various safety or knock down factors imposed by the customer. Unfortunately, an industry standard methodology for the design and analysis of brazed joints has not been developed. This paper provides an example of an approach that was used to analyze an AlBeMet 162 (38%Be-62%Al) structure brazed with the AWS BAlSi-4 (Al-12%Si) filler metal. A practical and conservative interaction equation combining shear and tensile allowables was developed and validated to evaluate an acceptable (safe) combination of tensile and shear stresses acting in the brazed joint. These allowables are obtained from testing of standard tensile and lap shear brazed specimens. The proposed equation enables the assessment of the load carrying capability of complex brazed joints subjected to multi-axial loading.

  4. Evaluation of methods for nondestructive testing of brazed joints

    NASA Technical Reports Server (NTRS)

    Kanno, A.

    1968-01-01

    Evaluation of nondestructive methods of testing brazed joints reveals that ultrasonic testing is effective in the detection of nonbonds in diffusion bonded samples. Radiography provides excellent resolutions of void or inclusion defects, and the neutron radiographic technique shows particular advantage for brazing materials containing cadmium.

  5. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Liqin; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    Vacuum brazing is a viable process to achieve strong permanent and hermetic joints in space. As in any joining process, brazed Joints have various imperfections and defects. It is important to understand the impact that flaws have on the load carrying capacity and performance of the brazed joints. This study focuses on the behavior of lap shear joints due to their engineering importance in brazed aerospace structures. In Part 1 an average shear strength capabilitY and failure modes of the single lap joints are explored. Specimens comprised of 0.090 inch thick 347 stainless steel sheet brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the measured loads and average shear stresses at failure with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap lengths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. In Part 2, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify if behavior of ductile ]appoints containing flaws is similar to the joints with the reduced braze area. Finally, in Part 3, the results obtained in Part 1 and 2 will be applied to the brazed assembly to evaluate a load carrying capability of the structural lap joint containing defects.

  6. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  7. Tube dimpling tool assures accurate dip-brazed joints

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.

    1968-01-01

    Portable, hand-held dimpling tool assures accurate brazed joints between tubes of different diameters. Prior to brazing, the tool performs precise dimpling and nipple forming and also provides control and accurate measuring of the height of nipples and depth of dimples so formed.

  8. Brazing method produces solid-solution bond between refractory metals

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Brazing two refractory metals by diffusion bonding minimizes distortion and avoids excessive grain growth in the metals. This method requires the selection of an interface metal that forms intermediate low-melting eutectics or solid solutions with the metals to be brazed.

  9. Thermal response of ceramic components during electron beam brazing

    SciTech Connect

    Voth, T.E.; Gianoulakis, S.E.; Halbleib, J.A.

    1996-03-01

    Ceramics are being used increasingly in applications where high temperatures are encountered such as automobile and gas turbine engines. However, the use of ceramics is limited by a lack of methods capable of producing strong, high temperature joints. This is because most ceramic-ceramic joining techniques, such as brazing, require that the entire assembly be exposed to high temperatures in order to assure that the braze material melts. Alternatively, localized heating using high energy electron beams may be used to selectively heat the braze material. In this work, high energy electron beam brazing of a ceramic part is modeled numerically. The part considered consists of a ceramic cylinder and disk between which is sandwiched an annular washer of braze material. An electron beam impinges on the disk, melting the braze metal. The resulting coupled electron and thermal transport equations are solved using Monte Carlo and finite element techniques. Results indicate that increased electron beam current decreases time to melt as well as required cooling time. Vacuum furnace brazing was also simulated and predicted results indicate increased processing times relative to electron beam brazing.

  10. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  11. Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints

    SciTech Connect

    Miao, Yugang; Han, Duanfeng Xu, Xiangfang; Wu, Bintao

    2014-07-01

    The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg{sub 17}Al{sub 12}, Mg{sub 2}Al{sub 3}, FeAl and Fe{sub 4}Al{sub 13}. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe{sub 4}Al{sub 13} was a result of the complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe{sub 4}Al{sub 13} was associated with the interfacial reaction.

  12. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, A.J.; Dykes, N.L.

    1982-08-10

    A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.

  13. Preparation and electrocatalytic activity of nanocrystalline Ni-Mo-Co alloy electrode for hydrogen evolution.

    PubMed

    Xu, Lijian; Du, Jingjing; Chen, Baizhen

    2013-03-01

    Ni-Mo-Co alloy electrodes were prepared by electrodeposition technique with citric acid as a complexing agent. The influence of the main technical parameters such as the concentration of CoSO4 7H2O, the current density and the bath temperature on the component content in the Ni-Mo-Co alloy electrode were investigated by electron dispersive spectrometer (EDS), the microstructure and surface morphology of Ni-Mo-Co alloy electrodes were characterized by employing X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the electrocatalytic activity of Ni-Mo-Co alloy electrode for hydrogen evolution was investigated by the method of the cathode polarization curves. The results showed that the excellent Ni-Mo-Co alloy electrode with 41.39 wt% Ni, 53.82 wt% Mo and 4.79 wt% Co was obtained when the concentration of CoSO4 x 7H2O was 8 g/L, the current density was 12 A/dm2 and the bath temperature was 25 degrees C. The mircostructure of the Ni-Mo-Co alloy was nanocrystalline and the average grain size was about 25 nm by calculating using Scherrer Equation. The electrocatalytic activity of Ni-Mo-Co alloy electrode for hydrogen evolution was better than that of Ni-Mo alloy electrode.

  14. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  15. Activities of oxygen in liquid Cu-Sb and Cu-Ge alloys

    NASA Astrophysics Data System (ADS)

    Otsuka, Shinya; Matsumura, Yoshihiro; Kozuka, Zensaku

    1982-03-01

    In order to determine the activity coefficients of oxygen, γΩ in liquid Cu-Sb and Cu-Ge alloys at 1373 K as a function of alloy composition, the modified coulometric titrations, described previously, have been performed by using the galvanic cell: O in liquid Cu-Sb or Cu-Ge alloys/ZrO2 (+CaO)/Air, Pt. A pronounced point of inflection in the In γΩ vs alloy composition curve has been observed both for Cu-Sb and Cu-Ge alloys, as predicted by Jacob and Alcock’s quasichemical equation. The measured data itself, however, are significantly different from those predicted by their equation. The validity of Wagner’s solution model with one or two energy parameters has been also tested.

  16. Brazing Si{sub 3}N{sub 4} ceramic to AISI 5140 steel under pressure

    SciTech Connect

    Liu, W.Y.; Yao, S.W.; Qu, J.X.

    1996-04-01

    Pressures (0 to 40 MPa) were applied to the joints of Si{sub 3}N{sub 4} ceramic to 5,140 steel during vacuum brazing with Ag-Cu-Ti active filler metal. Pressurization started at various temperatures (873, 973, and 1,073 K) and ended at room temperature during cooling. Results show that there is an optimum starting temperature to pressurize, at which the maximum room temperature shear strength of the joint is obtained.

  17. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    PubMed

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  18. Macroblock manufacturing by 'hip assisted brazing' method

    NASA Astrophysics Data System (ADS)

    Chaumat, G.; Le Gallo, P.; Le Marois, G.; Moret, F.; Deschamp, P.

    1996-10-01

    The aim of this work was to demonstrate the potential of an original technology which allows the manufacturing of large size so-called carbon fibre composite 'macroblock' tube-in-tile components associated with a reliability for a future industrial production. This process includes the combinations of two techniques: (a) a hot isostatic pressing cycle to allow intimate contact of a copper tube with a CFC block during all the process; (b) a brazing operation during the HIP cycle to perform a good joint between both substrates. Finally, two prototypes have been realized and a non destructive evaluation of the quality of the joint has been carried out.

  19. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, R.B.

    1992-01-14

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.

  20. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mgalloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.

  1. Interfacial reaction between alumina and Cu-Ti filler metal during reactive metal brazing

    SciTech Connect

    Bang, K.S. . Welding Research Center); Liu, S. . Center for Welding and Joining Research)

    1994-03-01

    If a chemical reaction at the interface can influence significantly the properties of a brazed joint using reactive filler metals, it is very important to understand which reaction occurs and how the reaction products grow at the interface. In this research, the interfacial reaction and the kinetics of reaction products growth in alumina brazing utilizing Cu-Ti filler metals were investigated. Cu-Ti filler metals reduced Al[sub 2]O[sub 3] to form TiO at the interface. Thermodynamically, reduction of Al[sub 2]O[sub 3] is possible through the dissolution of the aluminum by the filler metal. At 1,300 K, for example, interfacial reaction can proceed until the activity of aluminum reaches about 0.02 in Cu-20 at.-% Ti filler metal. With time, the TiO layer grew toward the center of the brazing filler metal following a parabolic rate law, at the cost of another complex oxide, presumably Ti[sub 3]Cu[sub 3]O, which formed next to the TiO. The activation energy of TiO growth was 208 kJ/mol (50 kcal/mol), which corresponds to the activation energy of oxygen diffusion in the TiO. Therefore, it appears likely that the growth of TiO is controlled by oxygen diffusion.

  2. Brazing of Carbon Carbon Composites to Cu-clad Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.; Shpargel, T> P.

    2007-01-01

    Advanced carbon carbon composites were joined to copper-clad molybdenum (Cu/Mo) using four active metal brazes containing Ti (Cu ABA, Cusin-1 ABA, Ticuni, and Ticusil) for potential use in thermal management applications. The brazed joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Knoop microhardness measurements across the joint region. Metallurgically sound C-C/Cu/Mo joints, devoid of interfacial cracks formed in all cases. The joint interfaces were preferentially enriched in Ti, with Cu ABA joints exhibiting the largest interfacial Ti concentrations. The microhardness measurements revealed hardness gradients across the joint region, with a peak hardness of 300-350 KHN in Cusin-1 ABA and Ticusil joints and 200-250 KHN in Cu ABA and Ticuni joints, respectively.

  3. /SiC Composite to Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Hernandez, X.; Jiménez, C.; Mergia, K.; Yialouris, P.; Messoloras, S.; Liedtke, V.; Wilhelmi, C.; Barcena, J.

    2014-08-01

    In view of aerospace applications, an innovative structure for joining a Ti alloy to carbon fiber reinforced silicon carbide has been developed. This is based on the perforation of the CMC material, and this procedure results in six-fold increase of the shear strength of the joint compared to the unprocessed CMC. The joint is manufactured using the active brazing technique and TiCuAg as filler metal. Sound joints without defects are produced and excellent wetting of both the composite ceramic and the metal is observed. The mechanical shear tests show that failure occurs always within the ceramic material and not at the joint. At the CMC/filler, Ti from the filler metal interacts with the SiC matrix to form carbides and silicides. In the middle of the filler region depletion of Ti and formation of Ag and Cu rich regions are observed. At the filler/Ti alloy interface, a layered structure of the filler and Ti alloy metallic elements is formed. For the perforation to have a significant effect on the improvement of the shear strength of the joint appropriate geometry is required.

  4. Coaxial Control of Aluminum and Steel Laser Brazing Processes

    NASA Astrophysics Data System (ADS)

    Frank, Sascha; Ungers, Michael; Rolser, Raphael

    Laser brazing has become firmly established as a joining process in the automotive industry. While this process offers many advantages, brazed seams also have to meet particularly high quality requirements. The challenge of creating a suitable online quality control system is magnified by the increasing use of aluminum in automotive engineering. This paper introduces recent works on the development of a system for controlling both aluminum and steel brazing processes. It also discusses some of the challenges connected to this task and discloses some of the results derived from the corresponding process analysis.

  5. Potential and limitations of microanalysis SEM techniques to characterize borides in brazed Ni-based superalloys

    SciTech Connect

    Ruiz-Vargas, J.; Siredey-Schwaller, N.; Noyrez, P.; Mathieu, S.; Bocher, P.; and others

    2014-08-15

    Brazed Ni-based superalloys containing complex phases of different Boron contents remain difficult to characterize at the micrometer scale. Indeed Boron is a light element difficult to measure precisely. The state-of-the-art microanalysis systems have been tested on a single crystal MC2 based metal brazed with BNi-2 alloy to identify boride precipitates. Effort has been made to evaluate the accuracy in Boron quantitation. Energy-dispersive and wavelength-dispersive X-ray spectroscopy attached to a Scanning Electron Microscope have first been used to determine the elemental composition of Boron-free phases, and then applied to various types of borides. Results have been compared to the ones obtained using a dedicated electron probe microanalysis, considered here as the reference technique. The most accurate method to quantify Boron using EDS is definitely by composition difference. A precision of 5 at.% could be achieved with optimized data acquisition and post-processing schemes. Attempts that aimed at directly quantifying Boron with various standards using EDS or coupled EDS/WDS gave less accurate results. Ultimately, Electron Backscatter Diffraction combined with localized EDS analysis has proved invaluable in conclusively identifying micrometer sized boride precipitates; thus further improving the characterization of brazed Ni-based superalloys. - Highlights: • We attempt to accurately identify Boron-rich phases in Ni-based superalloys. • EDS, WDS, EBSD systems are tested for accurate identification of these borides. • Results are compared with those obtained by electron probe microanalysis. • Boron was measured with EDS by composition difference with a precision of 5 at. %. • Additional EBSD in phase identification mode conclusively identifies the borides.

  6. Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying.

    PubMed

    Cheng, Daojian; Qiu, Xiangguo; Yu, Haiyan

    2014-10-14

    Despite remarkable efforts have been put into the field of Pt-shelled catalysts containing an atomically thin Pt surface layer for the oxygen reduction reaction (ORR) in the last decade, further development of new Pt-shelled catalysts is still necessary. Here, a new set of Pt-shelled catalysts by subsurface alloying with early transition metals such as Mn and Fe is predicted to be a good candidate for the ORR by using density functional theory (DFT) calculations. Trends in oxygen reduction activity of Pt-alloy catalysts are determined with calculations of oxygen binding by using the slab and cluster models. It is found that the subsurface alloys by the incorporation of submonolayer M (M = Mn and Fe) into Pt(111) in the slab model result in the enhancement of ORR activity, compared with the well-known Pt(111)-skin-M, pure Pt, and Pt3M alloy catalysts. For the cluster model, the Pt12Mn and Pt12Fe clusters are also found to be the optimal catalysts for the ORR. It is expected that this work can open up new opportunities for enhancing the ORR activity of Pt-alloy catalysts by subsurface alloying.

  7. Soldering and brazing safety guide: A handbook on space practice for those involved in soldering and brazing

    NASA Astrophysics Data System (ADS)

    This manual provides those involved in welding and brazing with effective safety procedures for use in performance of their jobs. Hazards exist in four types of general soldering and brazing processes: (1) cleaning; (2) application of flux; (3) application of heat and filler metal; and (4) residue cleaning. Most hazards during those operations can be avoided by using care, proper ventilation, protective clothing and equipment. Specific process hazards for various methods of brazing and soldering are treated. Methods to check ventilation are presented as well as a check of personal hygiene and good maintenance practices are stressed. Several emergency first aid treatments are described.

  8. Biocompatibility of alloys used in orthodontics evaluated by cell culture tests.

    PubMed

    Locci, P; Marinucci, L; Lilli, C; Belcastro, S; Staffolani, N; Bellocchio, S; Damiani, F; Becchetti, E

    2000-09-15

    The cytotoxicity of the most common alloys used in orthodontic appliances was determined by cell culture testing. Human gingival fibroblasts were cultured on 304 and 316 stainless steel, on brazing alloy composed of palladium (Pd), copper (Cu), and silver (Ag), and on plastic substrate (control). Studies were carried out with SEM and radiolabeled precursor incorporation. Cells were cultured in MEM without serum but with the addition of (3)H-thymidine to evaluate cell proliferation and (3)H-glucosamine to evaluate glycosaminoglycan (GAG) synthesis and secretion in the culture medium. Moreover, gingival fibroblasts were cultured in the presence of some metal ions generally released by orthodontic appliances to evaluate the cytotoxic effects of single ions. Morphologic observations with SEM and radiolabeled incorporation studies showed that 304 and 316 stainless steel were more biocompatible than the brazing alloy. Among the metal ions tested, Ag and Pd, constituents of the brazing alloy, showed the highest cytotoxicity.

  9. Control of vacuum induction brazing system for sealing of instrumentation feed-through

    SciTech Connect

    Sung Ho Ahn; Jintae Hong; Chang Young Joung; Ka Hae Kim; Sung Ho Heo

    2015-07-01

    The integrity of instrumentation cables is an important performance parameter in addition to the sealing performance in the brazing process. An accurate brazing control was developed for the brazing of the instrumentation feed-through in the vacuum induction brazing system in this paper. The experimental results show that the accurate brazing temperature control performance is achieved by the developed control scheme. Consequently, the sealing performances of the instrumentation feed-through and the integrities of the instrumentation cables were satisfied after brazing. (authors)

  10. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  11. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  12. Ceramic-to-metal stator vane assembly with braze

    DOEpatents

    Chase, Donna J.; Fang, Ho T.; Irwin, Craig W.; Schienle, James L.

    1995-01-01

    A stator vane assembly for a gas turbine engine that includes a plurality of circumferentially spaced ceramic vanes, each of which has an inner and outer ceramic shroud, and a ceramic post extending from one of the shrouds, and a metallic platform having a plurality of circumferentially spaced recesses. The posts are inserted into a metallic sleeve and then brazed. The brazed sleeves are then mounted in the recesses. A method for assembling these components to form the stator assembly is also described.

  13. Reactive Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Shpargel, Tarah; Singh, M.; Morscher, Gregory; Asthana, Rajiv

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading.

  14. Improved Assembly for Gas Shielding During Welding or Brazing

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  15. Effect of alloying on the self-diffusion activation energy in γ-iron

    NASA Astrophysics Data System (ADS)

    Vasilyev, A. A.; Sokolov, S. F.; Kolbasnikov, N. G.; Sokolov, D. F.

    2011-11-01

    The experimental data on the self-diffusion coefficient of austenite with different chemical compositions obtained by the radioactive isotope method have been analyzed quantitatively. The self-diffusion activation energy in pure γ-iron is shown to be ˜312 kJ/mol. Alloying of austenite with such elements as Mn, Mo, Nb, Ti, and Si (to a lower degree) increases the self-diffusion activation energy, and alloying with C, V, or Cr (for the element content ≥3 at %) decreases it. The empirical formula is derived for calculation of the self-diffusion activation energy in austenite solid solutions with complex composition.

  16. Interfacial Reaction and Wettability of 72Ag-28Cu Braze on CP-Ti Substrate Using Infrared Heating

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Wu, S. K.; Chen, F. Y.; Yang, T. E.

    2012-06-01

    Reactive wetting by infrared heating of a BAg-8 braze on a CP-Ti substrate is achieved at 1073 K (800 °C) for 300 seconds. Increasing the test temperature from 1073 K to 1123 K (800 °C to 850 °C) results in great improvement of the wettability on the CP-Ti substrate due to the lower melt viscosity at higher test temperature and the alloying effect of Cu into the CP-Ti substrate to form the interfacial eutectoid layer.

  17. Electron Beam Welder Used to Braze Sapphire to Platinum

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Vannuyen, Thomas

    1998-01-01

    A new use for electron beam brazing was recently developed by NASA Lewis Research Center's Manufacturing Engineering Division. This work was done to fabricate a fiberoptic probe (developed by Sentec Corporation) that could measure high temperatures less than 600 deg C of vibrating machinery, such as in jet engine combustion research. Under normal circumstances, a sapphire fiber would be attached to platinum by a ceramic epoxy. However, no epoxies can adhere ceramic fibers to platinum under such high temperatures and vibration. Also, since sapphire and platinum have different thermal properties, the epoxy bond is subjected to creep over time. Therefore, a new method had to be developed that would permanently and reliably attach a sapphire fiber to platinum. Brazing a sapphire fiber to a platinum shell. The fiber-optic probe assembly consists of a 0.015-in.-diameter sapphire fiber attached to a 0.25-in.-long, 0.059-in.-diameter platinum shell. Because of the small size of this assembly, electron beam brazing was chosen instead of conventional vacuum brazing. The advantage of the electron beam is that it can generate a localized heat source in a vacuum. Gold reactive braze was used to join the sapphire fiber and the platinum. Consequently, the sapphire fiber was not affected by the total heat needed to braze the components together.

  18. Preliminary Process Design of ITER ELM Coil Bracket Brazing

    NASA Astrophysics Data System (ADS)

    LI, Xiangbin; SHI, Yi

    2015-03-01

    With the technical requirement of the International Thermonuclear Experimental Reactor (ITER) project, the manufacture and assembly technology of the mid Edge Localized Modes (ELM) coil was developed by the Institute of Plasma Physics, Chinese Academy of Science (ASIPP). As the gap between the bracket and the Stainless Steel jacketed and Mineral Insulated Conductor (SSMIC) can be larger than 0.5 mm instead of 0.01 mm to 0.1 mm as in normal industrial cases, the process of mid ELM coil bracket brazing to the SSMICT becomes quiet challenging, from a technical viewpoint. This paper described the preliminary design of ELM coil bracket brazing to the SSMIC process, the optimal bracket brazing curve and the thermal simulation of the bracket furnace brazing method developed by ANSYS. BAg-6 foil (Bag50Cu34Zn16) plus BAg-1a paste (Bag45CuZnCd) solders were chosen as the brazing filler. By testing an SSMICT prototype, it is shown that the average gap between the bracket and the SSMIC could be controlled to 0.2-0.3 mm, and that there were few voids in the brazing surface. The results also verified that the preliminary design had a favorable heat conducting performance in the bracket.

  19. Sawing performance comparison of brazed and sintered diamond wires

    NASA Astrophysics Data System (ADS)

    Huang, Guoqin; Xu, Xipeng

    2013-03-01

    Great attention has been paid on fabricating diamond wire by using the brazing diamond because of its strong chemical bonding strength and controllability of grits distribution. Although several serving performances of brazed diamond wire have been reported, seldom do these studies refer to its process characteristics. Sawing performances of a brazed diamond wire are investigated and compared with those of a sintered diamond wire on a wire saw machine. The surface topographies of beads selected from the two wires are micro observed before sawing. The sawing tests are carried out in constant feed rate feeding(CFF) and constant normal force feeding(CNFF). In CFF test, sawing force, power, and the cut depths of positions on contact curve are measured. Then, coupled with the observations of beads topographies, sawing force and its ratio, relations of power against material removal rate, and contact curve linearity are compared and discussed. In CNFF test, the sawing rates of the two wires are investigated. The results indicate that the brazed wire performs with lower sawing force(less 16% of tangential force and 28% of normal force), more energy efficiency(nearly one-fifth of sawing power is saved), at a higher sawing rate (the rate is doubled) and with better contact curve linearity as compared with the sintered wire. This proposed research experimentally evaluates the sawing performances of brazed diamond wire from the aspect of process parameters, which can provide a basis for popularizing the brazed diamond wire.

  20. Environmental simulation evaluation of SSiC brazed optical mirrors

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Ma, Zhen; Chen, Jian; Chen, Zhongming; Liu, Xuejian; Huang, Zhengren

    2014-09-01

    Sintered silicon carbide (SSiC) is becoming one of the most important materials for the optical mirrors due to its excellent specific stiffness (E/ρ) and demission stability (λ/α). However, it is difficult to fabricate the monolithic structure SSiC optical mirror with demission of larger than Φ1.5m because of process limitation. Joining of SSiC segments (brazing) provide a good solution to prepare large size mirror optics. However, compared with the uniform properties of the monolithic structure SSiC optical mirror, the brazed mirror is composed of two materials (SSiC segments and brazing material), so the performance of optical grinding and reliability of brazed optical mirrors become the focus. In this paper, the Φ300mm and Φ600mm brazed optical mirrors was used to evaluate the reliability of different conditions. Three kinds of environmental simulation tests, including thermal stability, thermal circle and random vibration were carried out. The evaluation results show that the temperature and vibration has no obvious effects on the surface figure (RMS) of the brazed optical mirrors.

  1. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  2. Method For Brazing And Thermal Processing

    DOEpatents

    Milewski, John O.; Dave, Vivek R.; Christensen, Dane; Carpenter, II, Robert W.

    2005-07-12

    The present invention includes a method for brazing of two objects or heat treatment of one object. First, object or objects to be treated are selected and initial conditions establishing a relative geometry and material characteristics are determined. Then, a first design of an optical system for directing heat energy onto the object or objects is determined. The initial conditions and first design of the optical system are then input into a optical ray-tracing computer program. The program is then run to produce a representative output of the heat energy input distribution to the object or objects. The geometry of the object or objects, material characteristics, and optical system design are then adjusted until an desired heat input is determined.

  3. Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2010-02-15

    We report the facile synthesis of carbon supported PtAu alloy nanoparticles with high electrocatalytic activity as the anode catalyst for direct formic acid fuel cells (DFAFCs). PtAu alloy nanopaticles are synthesized by co-reducing HAuCl4 and H2PtCl6 with NaBH4 in the presence of sodium citrate and then the nanoparticles are deposited on Vulcan XC-72R carbon support (PtAu/C). The obtained catalysts are characterized with X-ray diffraction (XRD) and transmission electron microscope (TEM), which reveal PtAu alloy formation with an average diameter of 4.6 nm. PtAu/C exhibits 8 times higher catalytic activity toward formic acid oxidation than Pt/C. The enhanced activity of PtAu/C catalyst is attributed to noncontinuous Pt sites formed in the presence of the neighbored Au sites, which promotes direct oxidation of formic acid by avoiding poison CO.

  4. Unique activity of Pd monomers: hydrogen evolution at AuPd(111) surface alloys.

    PubMed

    Pluntke, Y; Kibler, L A; Kolb, D M

    2008-07-07

    Well-defined Au/Pd(111) alloy films have been prepared on a Ru(0001) substrate by electrochemical metal deposition and subsequent heating up to 700 degrees C. The electrochemical behaviour of the 20 monolayers thick epitaxially-grown films is in excellent agreement with both equilibrium surface composition and distribution for Au/Pd alloys on Mo(110) as previously reported (D. W. Goodman et al., J. Phys. Chem., 2005, B109, 18535). The electrocatalytic activity of the AuPd(111) surface alloys was studied for the hydrogen evolution in 0.1 M H(2)SO(4) as a function of surface composition. Maximum activities were found for Pd fractions of 0.2 +/- 0.1, where the population of Pd atoms surrounded by Au has its maximum. These Pd monomers are found to be about 20 times more active than Pd atoms in the Pd overlayer.

  5. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction.

    PubMed

    Hwang, Seung Jun; Kim, Soo-Kil; Lee, June-Gunn; Lee, Seung-Cheol; Jang, Jong Hyun; Kim, Pil; Lim, Tae-Hoon; Sung, Yung-Eun; Yoo, Sung Jong

    2012-12-05

    The design of electrocatalysts for polymer electrolyte membrane fuel cells must satsify two equally important fundamental principles: optimization of electrocatalytic activity and long-term stability in acid media (pH <1) at high potential (0.8 V). We report here a solution-based approach to the preparation of Pt-based alloy with early transition metals and realistic parameters for the stability and activity of Pt(3)M (M = Y, Zr, Ti, Ni, and Co) nanocatalysts for oxygen reduction reaction (ORR). The enhanced stability and activity of Pt-based alloy nanocatalysts in ORR and the relationship between electronic structure modification and stability were studied by experiment and DFT calculations. Stability correlates with the d-band fillings and the heat of alloy formation of Pt(3)M alloys, which in turn depends on the degree of the electronic perturbation due to alloying. This concept provides realistic parameters for rational catalyst design in Pt-based alloy systems.

  6. Biologically activated noble metal alloys at the nanoscale: for lithium ion battery anodes.

    PubMed

    Lee, Yun Jung; Lee, Youjin; Oh, Dahyun; Chen, Tiffany; Ceder, Gerbrand; Belcher, Angela M

    2010-07-14

    We report the synthesis and electrochemical activity of gold and silver noble metals and their alloy nanowires using multiple virus clones as anode materials for lithium ion batteries. Using two clones, one for specificity (p8#9 virus) and one versatility (E4 virus), noble metal nanowires of high-aspect ratio with diameters below 50 nm were successfully synthesized with control over particle sizes, morphologies, and compositions. The biologically derived noble metal alloy nanowires showed electrochemical activities toward lithium even when the electrodes were prepared from bulk powder forms. The improvement in capacity retention was accomplished by alloy formation and surface stabilization. Although the cost of noble metals renders them a less ideal choice for lithium ion batteries, these noble metal/alloy nanowires serve as great model systems to study electrochemically induced transformation at the nanoscale. Given the demonstration of the electrochemical activity of noble metal alloy nanowires with various compositions, the M13 biological toolkit extended its utility for the study on the basic electrochemical property of materials.

  7. Technical Consultation of the International Space Station (ISS) Internal Active Thermal Control System (IATCS) Cooling Water Chemistry

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Rotter, Hank A.; Easton, Myriam; Lince, Jeffrey; Park, Woonsup; Stewart, Thomas; Speckman, Donna; Dexter, Stephen; Kelly, Robert

    2005-01-01

    The Internal Active Thermal Control System (IATCS) coolant exhibited unexpected chemical changes during the first year of on-orbit operation following the launch and activation in February 2001. The coolant pH dropped from 9.3 to below the minimum specification limit of 9.0, and re-equilibrated between 8.3 and 8.5. This drop in coolant pH was shown to be the result of permeation of CO2 from the cabin into the coolant via Teflon flexible hoses which created carbonic acid in the fluid. This unexpected diffusion was the result of having a cabin CO2 partial pressure higher than the ground partial pressure (average 4.0 mmHg vs. less than 0.2 mmHg). This drop in pH was followed by a concurrent increasing coolant nickel concentration. No other metal ions were observed in the coolant and based on previous tests, the source of nickel ion was thought to be the boron nickel (BNi) braze intermetallics used in the construction of HXs and cold plates. Specifically, BNi2 braze alloy was used for the IATCS IFHX and BNi3 braze alloy was used for the IATCS Airlock Servicing and Performance Checkout Unit (SPCU) HX and cold plates. Given the failure criticality of the HXs, a Corrosion Team was established by the IATCS CWG to determine the impact of the nickel corrosion on hardware performance life.

  8. Air Brazing: A New Method of Ceramic-Ceramic and Ceramic-Metal Joining

    SciTech Connect

    Weil, K. Scott; Darsell, Jens T.; Kim, Jin Yong

    2011-10-01

    A new method of ceramic-ceramic and ceramic-metal joining has emerged over the past several years. Referred to as air brazing, the technique was originally designed and developed for use in fabricating high-temperature solid-state electrochemical devices such as planar SOFCs and oxygen and hydrogen concentrators. The primary advantage of air brazing is that a predominantly metallic joint can be formed directly in air without need of an inert cover gas or the use of surface reactive fluxes. The resulting bond is hermetic, offers excellent room temperature strength, and is inherently resistant to oxidation at high temperature. The key to developing a successful filler metal composition for air brazing is to identify a metal oxide wetting agent that is mutually soluble in a molten noble metal solvent. One particular oxide-metal combination that appears readily suited for this purpose is CuOx-Ag, a system originally of interest in the development of silver clad cuprate-based superconductors. Studies of the equilibrium phases studies in this system indicate that there are two invariant points in the pseudobinary CuOx-Ag phase diagram around which new braze compositions can be developed: 1) a monotectic reaction at 969±1°C, where CuO and a Ag-rich liquid L1 coexist with a second CuOx-rich liquid phase L2 at a composition of xAg/(xAg + xCu) = 0.10±0.03 Ag and 2) a eutectic reaction at 942±1°C, where CuO and Ag coexist with L1 at a composition of xAg/(xAg + xCu) = 0.99±0.005. Specifically, near-eutectic Ag-CuO filler metal compositions have shown good promise in joining electrochemically active ceramics such as yttria-stabilized zirconia, lanthanum strontium manganite, and barium strontium cobalt ferrite, as well as alumina and magnesia. More recently it has been found that various ternary additions can further improve the wetting characteristics of these filler metals, increase their potential operating temperatures, and/or increase the resulting strength of the

  9. Retort braze bonding of borsic/aluminum composite sheet to titanium

    NASA Technical Reports Server (NTRS)

    Webb, B. A.; Dolowy, J. F., Jr.

    1975-01-01

    Braze bonding studies between Borsic/aluminum composite and titanium sheet were conducted to establish acceptable brazing techniques and to assess potential joint efficiencies. Excellent braze joints were produced which exhibited joint strengths exceeding 117 MPa (17,000 psi) and which retained up to 2/3 of this strength at 589 K (600 F). Noticeable composite strength degradation resulting from the required high temperature braze cycle was found to be a problem.

  10. Characterisation of Ga-coated and Ga-brazed aluminium

    SciTech Connect

    Ferchaud, E.; Christien, F.; Barnier, V.; Paillard, P.

    2012-05-15

    This work is devoted to the brazing of aluminium using liquid gallium. Gallium was deposited on aluminium samples at {approx} 50 Degree-Sign C using a liquid gallium 'polishing' technique. Brazing was undertaken for 30 min at 500 Degree-Sign C in air. EDS (Energy Dispersive X-ray Spectroscopy) and AES (Auger Electron Spectroscopy) characterisation of Ga-coated samples has shown that the Ga surface layer thickness is of ten (or a few tens of) nanometres. Furthermore, aluminium oxide layer (Al{sub 2}O{sub 3}) was shown to be 'descaled' during Ga deposition, which ensures good conditions for further brazing. Cross-section examination of Ga-coated samples shows that liquid gallium penetrates into the aluminium grain boundaries during deposition. The thickness of the grain boundary gallium film was measured using an original EDS technique and is found to be of a few tens of nanometres. The depth of gallium grain boundary penetration is about 300 {mu}m at the deposition temperature. The fracture stress of the brazed joints was measured from tensile tests and was determined to be 33 MPa. Cross-section examination of brazed joints shows that gallium has fully dissolved into the bulk and that the joint is really autogenous. - Highlights: Black-Right-Pointing-Pointer Aluminium can be brazed using liquid gallium deposited by a 'polishing' technique. Black-Right-Pointing-Pointer The aluminium oxide layer is 'descaled' during liquid Ga 'polishing' deposition. Black-Right-Pointing-Pointer EDS can be used for determination of surface and grain boundary Ga film thickness. Black-Right-Pointing-Pointer The surface and grain boundary Ga film thickness is of a few tens of nm. Black-Right-Pointing-Pointer Surface and grain boundary gallium dissolves in the bulk during brazing.

  11. Inert-gas welding and brazing enclosure fabricated from sheet plastic

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Custom-fabricated plastic bag maintains an inert-gas atmosphere for welding and brazing certain metals. The bag fits over part of the workpieces and the welding and brazing tools. It is also used for metal brazing and fusion plating which require an inert-gas atmosphere.

  12. High temperature tolerance of the silver-copper oxide braze in reducing and oxidizing atmospheres

    SciTech Connect

    Kim, Jin Yong Y.; Hardy, John S.; Weil, K. Scott

    2006-06-01

    Silver-copper oxide based reactive air brazing (RAB) technique was developed as an alternative technique for joining complex-shaped ceramic parts. To examine the feasibility of this braze for various high temperature applications, brazed alumina joints were exposed to oxidizing and reducing atmospheres at high temperature. Brazed joints, which were exposed to 800ºC in air for 100 h, maintained good bend strength similar to the as-brazed samples. Microstructural analysis also revealed no significant change after exposing the joints to the oxidizing atmosphere at high temperature. This result indicate the excellent high-temperature tolerance of the Ag-CuO based braze in oxidizing atmosphere. On the other hand, heat treatment of the brazed alumina joints in hydrogen at 800°C for 100 h resulted in significant decrease in bend strength. SEM analysis on fracture surfaces showed that the main fracture mechanism of the samples exposed to the reducing atmosphere was the debonding between the braze and the alumina substrate. This result indicates that the bond strength of the braze/alumina interface is sensitive to the atmosphere where the brazed joint is exposed. CuO in the braze was also reduced to Cu and diffused into the Ag matrix. This reduction of CuO created the pores at the interface as well as in the braze matrix where CuO was originally located, especially at a high CuO content.

  13. Silver-Copper Oxide Based Reactive Air Braze (RAB) for Joining Yttria-Stabilized Zirconia

    SciTech Connect

    Kim, Jin Yong Y.; Hardy, John S.; Weil, K. Scott

    2005-03-01

    We are investigating a new method of ceramic-to-metal joining, referred to as reactive air brazing (RAB), as a potential method of sealing ceramic components in high-temperature electrochemical devices. Sessile drop wetting experiments and joint strength testing were conducted using yttria stabilized zirconia (YSZ) substrates and CuO-Ag based air brazes. Results from our studies indicate that the wettability of the braze improves substantially with increasing CuO content, over a compositional range of 1 - 8 mol% CuO, which is accompanied by an increase in the bend strength of the corresponding brazed YSZ joint. The addition of a small amount of TiO2 (0.5 mol%) to the CuO-Ag braze further improves wettability due to the formation of a titanium zirconate reaction product along the braze/substrate interface. However, with one notable exception, the bend strength of these ternary braze joints remained nearly identical to those measured in comparable binary braze joints. SEM analysis conducted on the corresponding fracture surfaces indicated that in the binary braze joints the failure occurs primarily at the braze/YSZ interface. Similarly in the case of the the ternary, TiO2-doped brazes joint failure occurs predominantly along the interface between the braze filler metal and the underlying titanium zirconate reaction layer.

  14. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  15. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4BA welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.51 Specification 4BA welded or brazed steel...) Cylindrical type cylinders must be of circumferentially welded or brazed construction. (b) Steel. The...

  16. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4BA welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.51 Specification 4BA welded or brazed steel...) Cylindrical type cylinders must be of circumferentially welded or brazed construction. (b) Steel. The...

  17. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4BA welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.51 Specification 4BA welded or brazed steel...) Cylindrical type cylinders must be of circumferentially welded or brazed construction. (b) Steel. The...

  18. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  19. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  20. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4BA welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.51 Specification 4BA welded or brazed steel...) Cylindrical type cylinders must be of circumferentially welded or brazed construction. (b) Steel. The...

  1. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  2. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  3. Direct use geothermal applications for brazed plate heat exchangers

    SciTech Connect

    Rafferty, K.

    1993-02-01

    Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) in order to determine the effect of H{sub 2}S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H{sub 2}S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10{degree} or greater. Size limitations restrict applications to 100 gpm and/or 200 ft{sup 2} heat transfer surface area.

  4. Direct use geothermal applications for brazed plate heat exchangers

    SciTech Connect

    Rafferty, K.

    1993-02-01

    Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) in order to determine the effect of H[sub 2]S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H[sub 2]S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10[degree] or greater. Size limitations restrict applications to 100 gpm and/or 200 ft[sup 2] heat transfer surface area.

  5. Direct use geothermal applications for brazed plate heat exchangers

    SciTech Connect

    Rafferty, K.

    1992-12-31

    Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) to determine the effect of H{sub 2}S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H{sub 2}S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10{degrees} or greater. Size limitations restrict applications to 100 gpm and/or 200 ft{sup 2} heat transfer surface area.

  6. Mechanical properties of high-temperature brazed titanium materials

    SciTech Connect

    Lugscheider, E.; Broich, U.

    1995-05-01

    The mechanical properties of commercial titanium CPTi and Ti-Al6-V4 joints, brazed with Ti-based filler metals in the system Ti(Zr)-Cu-Ni-(Pd) are evaluated by tensile test at various temperatures, as well as by fatigue test at room temperature. The influence of the microstructure in the brazing zone on the mechanical properties of the joints was assessed by conducting metallographic analysis. A vacuum furnace and an induction heating furnace were used for the production of the metallographic and tensile samples. The results from the mechanical and metallographic investigations revealed a strong dependence of the tensile strength of the titanium joints on the microstructure of the brazing zone. The presence of the brittle intermetallic Ti-Cu and Ti-Ni phases in the brazing zone leads to the weakening of the joint. However, for the formation of these intermetallic phases can be avoided by using adequate brazing process parameters and by optimizing the joint clearance. In that case, it is possible to fabricate titanium joints with Ti-based filler metals that have excellent mechanical properties comparable to those of the base metal.

  7. Fabrication of large aperture SiC brazing mirror

    NASA Astrophysics Data System (ADS)

    Li, Ang; Wang, Peipei; Dong, Huiwen; Wang, Peng

    2016-10-01

    The SiC brazing mirror is the mirror whose blank is made by assembling together smaller SiC pieces with brazing technique. Using such kinds of joining techniques, people can manufacture large and complex SiC assemblies. The key technologies of fabricating and testing SiC brazing flat mirror especially for large aperture were studied. The SiC brazing flat mirror was ground by smart ultrasonic-milling machine, and then it was lapped by the lapping smart robot and measured by Coordinate Measuring Machine (CMM). After the PV of the surface below 4um, we did classic coarse polishing to the surface and studied the shape of the polishing tool which directly effects removal amount distribution. Finally, it was figured by the polishing smart robot and measured by Fizeau interferometer. We also studied the influence of machining path and removal functions of smart robots on the manufacturing results and discussed the use of abrasive in this process. At last, an example for fabricating and measuring a similar SiC brazing flat mirror with the aperture of 600 mm made by Shanghai Institute of Ceramics was given. The mirror blank consists of 6 SiC sectors and the surface was finally processed to a result of the Peak-to-Valley (PV) 150nm and Root Mean Square (RMS) 12nm.

  8. Direct use geothermal applications for brazed plate heat exchangers

    SciTech Connect

    Rafferty, K.

    1992-01-01

    Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) to determine the effect of H[sub 2]S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H[sub 2]S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10[degrees] or greater. Size limitations restrict applications to 100 gpm and/or 200 ft[sup 2] heat transfer surface area.

  9. Solid-Solution Alloying of Immiscible Ru and Cu with Enhanced CO Oxidation Activity.

    PubMed

    Huang, Bo; Kobayashi, Hirokazu; Yamamoto, Tomokazu; Matsumura, Syo; Nishida, Yoshihide; Sato, Katsutoshi; Nagaoka, Katsutoshi; Kawaguchi, Shogo; Kubota, Yoshiki; Kitagawa, Hiroshi

    2017-03-24

    We report on novel solid-solution alloy nanoparticles (NPs) of Ru and Cu that are completely immiscible even above melting point in bulk phase. Powder X-ray diffraction, scanning transmission electron microscopy, and energy-dispersive X-ray measurements demonstrated that Ru and Cu atoms were homogeneously distributed in the alloy NPs. Ru0.5Cu0.5 NPs demonstrated higher CO oxidation activity than fcc-Ru NPs, which are known as one of the best monometallic CO oxidation catalysts.

  10. ATR-A1 irradiation experiment on vanadium alloys and low activation steels

    SciTech Connect

    Tasi, H.; Strain, R.V.; Gomes, I.; Hins, A.G.; Smith, D.L.

    1996-04-01

    To study the mechanical properties of vanadium alloys under neutron irradiation at low temperatures, an experiment was designed and constructed for irradiation in the Advanced Test Reactor (ATR). The experiment contained Charpy, tensile, compact tension, TEM, and creep specimens of vanadium alloys. It also contained limited low-activation ferritic steel specimens as part of the collaborative agreement with Monbusho of Japan. The design irradiation temperatures for the vanadium alloy specimens in the experiment are {approx}200 and 300{degrees}C, achieved with passive gap-gap sizing and fill gas blending. To mitigate vanadium-to-chromium transmutation from the thermal neutron flux, the test specimens are contained inside gadolinium flux filters. All specimens are lithium-bonded. The irradiation started in Cycle 108A (December 3, 1995) and is expected to have a duration of three ATR cycles and a peak influence of 4.4 dpa.

  11. Microstructure in brazed joints of Al{sub 2}O{sub 3}/SiC composites

    SciTech Connect

    Zurbuchen, M.A.; Carim, A.H.

    1997-11-01

    Commercial Al{sub 2}O{sub 3} / SiC whisker composites were brazed using commercial Ag-Cu-Ti alloys and the resulting joint microstructures were characterized by electron microprobe and transmission electron microscopy. A model of the system has been developed from the data gathered to date. A continuous reaction layer of (Ti,Cu,Al){sub 6}O forms adjacent to the braze alloy. Small islands of reaction product were observed within this phase and adjacent to the ceramic. These islands were found to be composed of a layer of Ti{sub 3}SiC{sub 2}, with TiC beneath. Ti had reacted preferentially with SiC to form a TiC cap extending outward along the interface. Titanium oxides were found at the Al{sub 2}O{sub 3} surface in contact with Ti{sub 3}SiC{sub 2}, TiC, and the overlying (Ti,Cu,Al){sub 6}O.

  12. Copper/nickel eutectic brazing of titanium

    NASA Technical Reports Server (NTRS)

    Kutchera, R. E.

    1971-01-01

    Technique joins titanium or one of its alloys to materials, such as iron, nickel or cobalt base material, or to refractory metals. To ensure formation of a satisfactory bond, the temperature, time, environment and pressure must be controlled.

  13. Polyhedral Palladium–Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction

    PubMed Central

    Fu, Geng-Tao; Liu, Chang; Zhang, Qi; Chen, Yu; Tang, Ya-Wen

    2015-01-01

    Polyhedral noble–metal nanocrystals have received much attention and wide applications as electrical and optical devices as well as catalysts. In this work, a straightforward and effective hydrothermal route for the controllable synthesis of the high-quality Pd–Ag alloy polyhedrons with uniform size is presented. The morphology, composition and structure of the Pd–Ag alloy polyhedrons are fully characterized by the various physical techniques, demonstrating the Pd–Ag alloy polyhedrons are highly alloying. The formation/growth mechanisms of the Pd–Ag alloy polyhedrons are explored and discussed based on the experimental observations and discussions. As a preliminary electrochemical application, the Pd–Ag alloy polyhedrons are applied in the formic acid oxidation reaction, which shows higher electrocatalytic activity and stability than commercially available Pd black due to the “synergistic effects” between Pd and Ag atoms. PMID:26329555

  14. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  15. Development of the copper-tin diffusion-brazing process

    SciTech Connect

    Sangha, S.P.S.; Jacobson, D.M.; Peacock, A.T.

    1998-10-01

    The copper-tin diffusion-brazing process has been studied with the objective of applying it to the joining of plasma-facing beryllium tiles to copper-based heat sinks in a nuclear-fusion reactor. The process is silver-free -- an essential requirement for this application -- and can be carried out at temperatures below 700 C (1,292 F). This approach produces thin joints of essentially pure copper of high thermal conductance with the requisite strength. Satisfactory conditions for achieving robust joints under the constraints demanded by the nuclear-fusion application have been established. The roles of the process parameters -- thickness of the filler metal tin, the compressive loading applied to the components during the brazing cycle and the brazing temperature -- have been assessed.

  16. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    SciTech Connect

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E.

    1997-04-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved.

  17. Evaluation of Dynamic Stress-Strain Relations of Ti-Alloys and Al-Alloys Based on the Thermally Activated Process Concept

    NASA Astrophysics Data System (ADS)

    Ogawa, Kinya

    Since titanium and aluminum alloys are the most promising structural materials for the high velocity vehicles, the impact tensile strength of the materials is presently investigated. Three kinds of aging treatments on the beta-titanium alloy and two on the 6061 aluminum alloy were performed, and the tensile deformation behaviors were identified in the wide range of the temperature and the strain rate. The stress-strain relations of the titanium alloy significantly depend on the temperature and the strain rate investigated. Thermally activated process concept was applied to explain the experimental results, and the stress-strain relations at high strain rates were well understood with taking account of adiabatic heating effect. In the case of the aluminum alloy, the temperature and the strain rate effects are significant only in the low temperature range. Both for the alloys investigated, the stress-strain curves depend on the microstructures, while the temperature and the strain rate effects are almost independent of the different aging treatments.

  18. Computational simulations and experimental validation of a furnace brazing process

    SciTech Connect

    Hosking, F.M.; Gianoulakis, S.E.; Malizia, L.A.

    1998-12-31

    Modeling of a furnace brazing process is described. The computational tools predict the thermal response of loaded hardware in a hydrogen brazing furnace to programmed furnace profiles. Experiments were conducted to validate the model and resolve computational uncertainties. Critical boundary conditions that affect materials and processing response to the furnace environment were determined. {open_quotes}Global{close_quotes} and local issues (i.e., at the furnace/hardware and joint levels, respectively) are discussed. The ability to accurately simulate and control furnace conditions is examined.

  19. Influences of Nozzle Material on Laser Droplet Brazing Joints with Cu89Sn11 Preforms

    NASA Astrophysics Data System (ADS)

    Stein, Stefan; Heberle, Johannes; Gürtler, Franz Josef; Cvecek, Kristian; Roth, Stephan; Schmidt, Michael

    This paper presents latest results on the influences of nozzle material and geometry on the electromechanical contacting of sensitive piezoceramic actuator modules. Two nozzle types have been investigated,a standard WC/Co nozzle which is used for soldering applications and a novelceramic nozzle. Applications for active piezoceramic components integrated in structural parts are e.g. active damping, energy harvesting, or monitoring of vibrations and material failure. Anup to now unsolved problem is the electrical contacting of such components without damaging the conductor or the metallization of the ceramic substrate. Since piezoelectric components are to be integrated into structures made of casted aluminum, requirements are high mechanical strength and temperature resistance. Within this paper a method forcontacting piezoceramic modules is presented. A spherical braze preform of tin bronze Cu89Sn11 with a diameter of 600 μm is located in a ceramic nozzle and is subsequently melted by a laser pulse. The liquid solder is ejected from the nozzlevia nitrogen overpressure and wets the surface of the metallization pad and the Cu-wire, resulting in a brazing joint after solidification. The process is called laser droplet brazing (LDB). To asses the thermal evolution during one cycle WC/Co and ZTA have been simulated numerically for two different geometries enabling a proposition weather the geometry or the material properties have a significant influence on the thermal load during one cycle. To evaluate the influence of the nozzle on the joint the positioning accuracy, joint height and detachment times have been evaluated. Results obtained with the ZTA nozzle show comparable positioning accuracies to a WC/Co nozzle with a lower standard deviation of solder detachment time.

  20. Development of a Cu-Sn based brazing system with a low brazing and a high remelting temperature

    NASA Astrophysics Data System (ADS)

    Schmieding, M.; Holländer, U.; Möhwald, K.

    2017-03-01

    Objective of the project presented is the development of a joining process for hot working steel components at low brazing temperatures leading to a bond with a much higher remelting temperature. This basically is achieved by the use of a Cu-Sn melt spinning foil combined with a pure Cu foil. During brazing, the Sn content of the foil is decreased by diffusion of Sn into the additional Cu resulting in a homogenious joint with a increased remelting temperature of the filler metal. Within this project specimens were brazed and diffusion annealed in a vacuum furnace at 850 °C varying the processing times (0 – 10 h). The samples prepared were studied metallographically and diffusion profiles of Sn were recorded using EDX line scans. The results are discussed in view of further investigations and envisaged applications.

  1. Overview of the multifaceted activities towards development and deployment of nuclear-grade FeCrAl Alloys

    SciTech Connect

    Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A; Terrani, Kurt A

    2016-01-01

    A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanical characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.

  2. The activation energy for Mg acceptor in the Ga-rich InGaN alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Chen, Li-Ying; Wang, Sha-Sha; Wang, Jun

    2017-02-01

    The activation energy for Mg acceptor in InxGa1-xN alloys is investigated. It is found that there are three factors to influence the activation energy for Mg acceptor. One is the stronger dependence of the VBM of InxGa1-xN depending on In content than that of the Mg acceptor energy level. The other is the concentration of Mg acceptors. Another is the extending of the valence band-tail states into the band gap. In addition, a model based on modifying the effective mass model is developed. It is found that the model can describe the activation energy for Mg acceptor in the Ga-rich InxGa1-xN alloys well after considering the influence of the valence band-tail states.

  3. Electrochemical impedance spectroscopy study of high-palladium dental alloys. Part II: behavior at active and passive potentials.

    PubMed

    Sun, D; Monaghan, P; Brantley, W A; Johnston, W M

    2002-05-01

    Electrochemical impedance spectroscopic (EIS) analyses were performed on three high-palladium alloys and a gold-palladium alloy at active and passive potentials in five electrolytes that simulated body fluid and oral environmental conditions. All four alloys were previously found to have excellent corrosion resistance in these in vitro environments. Before performing the EIS analyses, alloy specimens were subjected to a clinically relevant heat treatment that simulated the firing cycles for a dental porcelain. It was found that the EIS spectra varied with test potential and electrolyte. Diffusional effects, related to the dealloying and subsequent surface enrichment in palladium of the high-palladium alloys, along with species adsorption and passivation, were revealed at both active and passive potentials, although these effects were more evident at the passive potentials.

  4. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    SciTech Connect

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; DeMuth, James; Reyes, Susana; Fratoni, Massimiliano

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in the higher

  5. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    DOE PAGES

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; ...

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys inmore » the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in

  6. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide

    NASA Astrophysics Data System (ADS)

    He, Weiwei; Han, Xiangna; Jia, Huimin; Cai, Junhui; Zhou, Yunlong; Zheng, Zhi

    2017-01-01

    Tuning the enzyme-like activity and studying the interaction between biologically relevant species and nano-enzymes may facilitate the applications of nanostructures in mimicking natural enzymes. In this work, AuPt alloy nanoparticles (NPs) with varying compositions were prepared through a facile method by co-reduction of Au3+ and Pt2+ in aqueous solutions. The composition could be tuned easily by adjusting the molar ratios of added Pt2+ to Au3+. It was found that both peroxidase-like and oxidase-like activity of AuPt alloy NPs were highly dependent on the alloy compositions, which thus suggesting an effective way to tailor their catalytic properties. By investigating the inhibitory effects of HS‑ on the enzyme-like activity of AuPt alloy NPs and natural enzyme, we have developed a method for colorimetric detection of HS‑ and evaluation of the inhibiting effects of inhibitors on natural and artificial enzymes. In addition, the responsive ability of this method was influenced largely by the composition: AuPt alloy NPs show much lower limit of detection for HS‑ than Pt NPs while Pt NPs show wider linear range than AuPt alloy NPs. This study suggests the facile way not only for synthesis of alloy nanostructures, but also for tuning their catalytic activities and for use in bioanalysis.

  7. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide

    PubMed Central

    He, Weiwei; Han, Xiangna; Jia, Huimin; Cai, Junhui; Zhou, Yunlong; Zheng, Zhi

    2017-01-01

    Tuning the enzyme-like activity and studying the interaction between biologically relevant species and nano-enzymes may facilitate the applications of nanostructures in mimicking natural enzymes. In this work, AuPt alloy nanoparticles (NPs) with varying compositions were prepared through a facile method by co-reduction of Au3+ and Pt2+ in aqueous solutions. The composition could be tuned easily by adjusting the molar ratios of added Pt2+ to Au3+. It was found that both peroxidase-like and oxidase-like activity of AuPt alloy NPs were highly dependent on the alloy compositions, which thus suggesting an effective way to tailor their catalytic properties. By investigating the inhibitory effects of HS− on the enzyme-like activity of AuPt alloy NPs and natural enzyme, we have developed a method for colorimetric detection of HS− and evaluation of the inhibiting effects of inhibitors on natural and artificial enzymes. In addition, the responsive ability of this method was influenced largely by the composition: AuPt alloy NPs show much lower limit of detection for HS− than Pt NPs while Pt NPs show wider linear range than AuPt alloy NPs. This study suggests the facile way not only for synthesis of alloy nanostructures, but also for tuning their catalytic activities and for use in bioanalysis. PMID:28051159

  8. Structural Performance of Inconel 625 Superalloy Brazed Joints

    NASA Astrophysics Data System (ADS)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2016-12-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S-N curve, providing a design curve for any joint configuration in fatigue solicitation.

  9. Coating method enables low-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Seaman, F. D.

    1965-01-01

    Gold coated stainless steel tubes containing insulated electrical conductors are brazed at a low temperature to a copper coated stainless steel sealing block with a gold-copper eutectic. This produces an effective seal without using flux or damaging the electrical conductors.

  10. Structural Performance of Inconel 625 Superalloy Brazed Joints

    NASA Astrophysics Data System (ADS)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2017-02-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.

  11. Low-energy gamma ray inspection of brazed aluminum joints

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1967-01-01

    Americium 241 serves as a suitable radioisotope /gamma ray source/ and exposure probe for radiographic inspection of brazed aluminum joints in areas of limited accessibility. The powdered isotope is contained in a sealed capsule mounted at the end of a spring-loaded pushrod in the probe assembly.

  12. Characterization of the corrosion resistance of several alloys to dilute biologically active solutions

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1990-01-01

    Sulfate reducing bacteria and acid producing bacteria/fungi detected in hygiene waters increased the corrosion rate in aluminum alloy. Biologically active media enhanced the formation of pits on metal coupons. Direct observation of gas evolved at the corrosion sample, coupled with scanning electron microscopy (SEM) and energy dispersive x-ray analysis of the corrosion products indicates that the corrosion rate is increased because the presence of bacteria favor the reduction of hydrogen as the cathodic reaction through the reaction of oxygen and water. SEM verifies the presence of microbes in a biofilm on the surface of corroding samples. The bacterial consortia are associated with anodic sites on the metal surface, aggressive pitting occurs adjacent to biofilms. Many pits are associated with triple points and inclusions in the aluminum alloy microstructure. Similar bacterial colonization was found on the stainless steel samples. Fourier transform Infrared Spectroscopy confirmed the presence of carbonyl groups in pitted areas of samples exposed to biologically active waters.

  13. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  14. Pd-modified Reactive Air Braze for Increased Melting Temperature

    SciTech Connect

    Hardy, John S.; Weil, K. Scott; Kim, Jin Yong Y.; Darsell, Jens T.

    2005-03-01

    Complex high temperature devices such as planar solid oxide fuel cell (pSOFC) stacks often require a two-step sealing process. For example, in pSOFC stacks the oxide ceramic fuel cell plates might be sealed into metallic support frames in one step. Then the frames with the fuel plates sealed to them would be joined together in a separate sealing step to form the fuel cell stack. In this case, the initial seal should have a sufficiently high solidus temperature that it will not begin to remelt at the sealing temperature of the material used for the subsequent sealing step. Previous experience has indicated that, when heated at a rate of 10°C/min, Ag-CuO reactive air braze (RAB) compositions have solidus and liquidus temperatures in the approximate range of 925 to 955°C. Therefore, compositionally modifying the original Ag-CuO braze with Pd-additions such that the solidus temperature of the new braze is between 1025 and 1050°C would provide two RAB compositions with a difference in melting points large enough to allow reactive air brazing of both sets of seals in the fuel cell stack. This study determines the appropriate ratio of Pd to Ag in RAB required to achieve a solidus in the desired range and discusses the wettability of the resulting Pd-Ag-CuO brazes on YSZ substrates. The interfacial microstructures and flexural strengths of Pd-Ag-CuO joints in YSZ will also be presented.

  15. Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility.

    PubMed

    Cheng, Mengqi; Qiao, Yuqin; Wang, Qi; Qin, Hui; Zhang, Xianlong; Liu, Xuanyong

    2016-12-01

    Biodegradable magnesium-based alloys have shown great potential for medical applications due to their superior biological performances and mechanical properties. However, on one hand, some side effects including inferior biocompatibility, a local high-alkaline environment and gas cavities caused by a rapid corrosion rate, hinder their clinical application. On the other hand, it is also necessary to endow Mg alloys with antibacterial properties, which are crucial for clinic orthopedic applications. In this study, Zr and N ions are simultaneously implanted into AZ91 Mg alloys by plasma immersion ion implantation (PIII). A modified layer with a thickness of approximately 80nm is formed on the surface of AZ91 Mg alloys, and the hydrophobicity and roughness of these AZ91 Mg alloys obviously increase after Zr and N implantation. The in vitro evaluations including corrosion resistance tests, antimicrobial tests and cytocompatibility and alkaline phosphatase (ALP) activity tests, revealed that the dual ions implantation of Zr and N not only enhanced the corrosion resistance of the AZ91 Mg alloy but also provided better antimicrobial properties in vitro. Furthermore, the formation of biocompatible metal nitrides and metal oxides layer in the near surface of the Zr-N-implanted AZ91 Mg alloy provided a favorable implantation surface for cell adhesion and growth, which in return further promoted the bone formation in vivo. These promising results suggest that the Zr-N-implanted AZ91 Mg alloy shows potential for future application in the orthopedic field.

  16. Improved Wetting of Mixed Ionic/Electronic Conductors Used in Electrochemical Devices with Ternary Reactive Air Braze Filler Metals

    SciTech Connect

    Hardy, John S; Kim, Jin Yong Y; Thomsen, Ed C; Weil, K Scott

    2007-01-19

    This paper reports on the wetting behavior, reactivity, and long-term electrical conductance of a series of ternary filler metals being considered for brazing lanthanum strontium cobalt ferrite (LSCF) based oxygen separation membranes. Mixed ionic/electronic conducting perovskite oxides such as LSCF and various doped barium cerates are currently being considered for use in high-temperature electrochemical devices such as oxygen and hydrogen concentrators and solid oxide fuel cells. However to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. Furthermore, if the proposed joining technique were to yield a hermetic ceramic-to-metal junction that was also electrically conductive, it would additionally benefit the device by allowing current to be drawn from or carried to the electrochemically active mixed conducting oxide component without requiring an separate current collector. A newly developed brazing technique known as air brazing is one such method of joining. In its present form, air brazing uses a silver-copper oxide based filler metal that can be melted directly in air to form a compliant joint that is electrically conductive. Recently, it has been shown that the addition of titania can enhance the wetting behavior of Ag-CuO filler metals on alumina. Here the effect of this wetting agent on the surface wettability, long-term electrical resistance at 750°C, and reactivity with La0.6Sr0.4Co0.2Fe0.8O3- (LSCF-6428 or LSCF) substrates is discussed.

  17. Investigation of the Deformation Activation Volume of an Ultrafinegrained Ti50Ni50 Alloy

    NASA Astrophysics Data System (ADS)

    Gunderov, D. V.; Churakova, A. A.; Lukianov, A. V.; Prokofiev, E. A.; Prokoshkin, S. D.; Kreizberg, A. Yu.; Raab, G. I.; Sabirov, I. N.

    2015-10-01

    The mechanical properties, strain rate sensitivity (m) and deformation activation volume (ΔV) are investigated at the experimental temperatures from 20 to 400°C in a Ti50Ni50 alloy in a coarse-grained (CG) state with the austenite grain size D = 200 μm and in an ultrafine-grained (UFG) state with D = 700 μm following an ECAP treatment. It is observed that this treatment improves the yield strength of the alloy compared to its CG-state. The strain rate sensitivity, m, is found to be by a factor of 1.5-2 higher than that of CG-specimens; it increases with the temperature in both states of the material. As the temperature of the material in tension increases up to Т = 150-250°C, parameter ΔV increases to its maximum and with a further growth of the experimental temperature to 400°C, parameter ΔV decreases. The deformation activation volume of the alloy in the UFG-state is by a factor of 2-4 larger than that in the CG-state for the same experimental temperatures.

  18. Charpy impact properties of low activation alloys for fusion applications after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dafferner, B.; Röhrig, H. D.

    1996-10-01

    The MANITU irradiation and fracture-toughness testing program although initially foreseen to clarify the early dose-saturation of ΔDBTT for commercial ferritic steels has been extended to include the medium temperature (≥ 250°C) irradiation hardening behaviour of promising low-activation alloys. The results after a first 0.8 dpa irradiation clearly show a much better behaviour of the new alloys in any respect (e.g. DBTT after irradiation always below +50°C for subsize specimens, for the ORNL steel even below -20°C). The complexity of temperature dependency is probably caused by the transition range in dose accumulation, and should therefore not be 'over-interpreted'.

  19. Evaluation of Superplastic Forming and Weld-brazing for Fabrication of Titanium Compression Panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Bales, T. T.; Davis, R. C.

    1985-01-01

    The two titanium processing procedures, superplastic forming and weld brazing, are successfully combined to fabricate titanium skin stiffened structural panels. Stiffeners with complex shapes are superplastically formed using simple tooling. These stiffeners are formed to the desired configuration and required no additional sizing or shaping following removal from the mold. The weld brazing process by which the stiffeners are attached to the skins utilize spot welds to maintain alignment and no additional tooling is required for brazing. The superplastic formed/weld brazed panels having complex shaped stiffeners develop up to 60 percent higher buckling strengths than panels with conventional shaped stiffeners. The superplastic forming/weld brazing process is successfully scaled up to fabricate full size panels having multiple stiffeners. The superplastic forming/weld brazing process is also successfully refined to show its potential for fabricating multiple stiffener compression panels employing unique stiffener configurations for improved structural efficiency.

  20. Preliminary study on pressure brazing and diffusion welding of Nb-1Zr to Inconel 718

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1990-01-01

    Future space power systems may include Nb-1Zr/Inconel 718 dissimilar metal joints for operation at 1000 K for 60,000 h. The serviceability of pressure-brazed and diffusion-welded joints was investigated. Ni-based metallic glass foil filler metals were used for brazing. Ni and Fe foils were used as diffusion welding inter-layers. Joint soundness was determined by metallographic examination in the as-brazed and as-welded condition, after aging at 1000 K, and after thermal cycling. Brazed joints thermally cycled in the as-brazed condition and diffusion-welded joints were unsatisfactory because of cracking problems. Brazed joints may meet the service requirements if the joints are aged at 1000 K prior to thermal cycling.

  1. Overwhelming reaction enhanced by ultrasonics during brazing of alumina to copper in air by Zn-14Al hypereutectic filler.

    PubMed

    Ji, Hongjun; Chen, Hao; Li, Mingyu

    2017-03-01

    The ultrasonic-assisted brazing of α-alumina to copper was achieved in air without flux using Zn-14wt%Al hypereutectic filler at 753K within tens of seconds. The effects of ultrasonic time on the microstructures and mechanical properties of joints were investigated. In the joint interlayer, large amounts of intermetallic phases consisted of binary CuZn5 embedded by many ternary Al4.2Cu3.2Zn0.7 particles were formed. At the ceramic interface, newly formed crystalline Al2O3 aggregated. At the Cu interface, acoustic corrosion on the copper resulted in depriving the surface oxides and forming many pits on its surface, which provided saturated Cu in the melted filler alloys during the brazing. The ultrasonic vibrations had distinct effects on the metallurgical reactions of the joints, resulting in intermetallic-phase-filled composite joints with shear strength of 66MPa. The overgrowth of intermetallic compounds, the newly formed crystalline alumina, and the acoustic pits was probably ascribed to the ultrasonic effects.

  2. Microstructure and Mechanical Properties of AlN/Cu Brazed Joints

    NASA Astrophysics Data System (ADS)

    Su, Cherng-Yuh; Pan, C. T.; Lo, Min-Sheng

    2014-09-01

    In this study, the AlN/Cu bonding was explored using the brazing technique. During AlN/Cu brazing, the temperature was set at 800, 850, and 900 °C for 10, 20, 30, and 60 min, respectively. We studied the bonding mechanism, microstructure formation, and the mechanical characteristics of the bond. The reaction layer developed at the interface of AlN/Cu is observed to be TiN. The activation energy of TiN is about 149.91 kJ/mol. The reaction layer thickness is linearly dependent on the temperature and duration at 800 and 850 °C for 60 min and 900 °C for 30 min. However, the growth of the reactive layers decreases gradually at 900 °C when the duration changed from 30 to 60 min. The strength of the specimens with thickness ranging between 1 and 1.5 μm is 40-51 MPa.

  3. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  4. Infrared Brazing Ti50Ni50 and Invar Using Ag-Based Filler Foils

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Chang, Y. H.; Wu, S. K.

    2013-10-01

    Infrared brazing Ti50Ni50 and Invar using BAg-8 and Cusil-ABA foils was investigated. The Ag-Cu eutectic matrix dominates both brazed joints. The maximum shear strengths of the brazed joints using BAg-8 and Cusil-ABA fillers are 158 and 249 MPa. Failure of interfacial Fe2Ti/Ni3Ti reaction layers is responsible for the BAg-8 joint. In contrast, the Cusil-ABA brazed joint is fractured along the interfacial Fe2Ti intermetallic compound. Both fractographs are characterized with cleavage dominated fracture.

  5. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles.

    PubMed

    Koike, Mitsuru; Li, Dalin; Nakagawa, Yoshinao; Tomishige, Keiichi

    2012-12-01

    Doing fine with Ni-Fe: The calcination and reduction of a hydrotalcite precursor containing Ni and Fe ions gives uniform Ni-Fe alloy nanoparticles mixed with Mg(Ni, Fe, Al)O particles. The uniformity of the Ni-Fe alloy nanoparticles is connected to the catalyst's high activity and resistance to coke formation in toluene and phenol steam reforming reactions.

  6. Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Chun, Y. B.; Kang, S. H.; Noh, S.; Kim, T. K.; Lee, D. W.; Cho, S.; Jeong, Y. H.

    2014-12-01

    As part of an alloy development program for Korean reduced-activation ferritic-martensitic (RAFM) steel, a total of 37 program alloys were designed and their mechanical properties were evaluated with special attention being paid to the effects of alloying elements and heat treatments. A reduction of the normalizing temperature from 1050 °C to 980 °C was found to have a positive effect on the impact resistance, resulting in a decrease in ductile-brittle transition-temperature (DBTT) of the program alloys by an average of 30 °C. The yield strength and creep rupture time are affected strongly by the tempering time at 760 °C but at the expense of ductility. Regarding the effects of the alloying elements, the addition of trace amounts of Zr enhances both the creep and impact resistance: the lowest DBTT was observed for the alloys containing 0.005 wt.% Zr, whereas the addition of 0.01 wt.% Zr extends the creep rupture-time under an accelerated condition. The enhanced impact resistance owing to the normalizing at lower temperature is attributed to a more refined grain structure, which provides more barriers to the propagation of cleavage cracks. Solution softening by Zr addition is suggested as a possible mechanism for enhanced resistance to both impact and creep of the program alloys.

  7. Effects of service environments on aluminum-brazed titanium (ABTi)

    NASA Technical Reports Server (NTRS)

    Cotton, W. L.

    1978-01-01

    Aluminum brazed titanium (ABTi) structures were evaluated during prolonged exposure to extreme environments: elevated temperature exposure to airline service fluids, hydraulic fluid, and seawater, followed by laboratory corrosion tests. Solid-face and perforated face honeycomb sandwich panel specimens, stressed panel assemblies, and faying surface brazed joints were tested. The corrosion resistance of ABTi is satisfactory for commercial airline service. Unprotected ABTi proved inherently resistant to attack by all of the extreme service aircraft environments except: seawater at 700 K (800 F) and above, dripping phosphate ester hydraulic fluid at 505 K (450 F), and a marine environment at ambient temperature. The natural oxides and deposits present on titanium surfaces in airline service provide protection against hot salt corrosion pitting. Coatings are required to protect titanium dripping phosphate ester fluid at elevated temperatures and to protect exposed acoustic honeycomb parts against corrosion in a marine environment.

  8. Separation and Sealing of a Sample Container Using Brazing

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Rivellini, Tommaso P.; Wincentsen, James E.; Gershman, Robert

    2007-01-01

    A special double-wall container and a process for utilizing the container are being developed to enable (1) acquisition of a sample of material in a dirty environment that may include a biological and/or chemical hazard; (2) sealing a lid onto the inner part of the container to hermetically enclose the sample; (3) separating the resulting hermetic container from the dirty environment; and (4) bringing that hermetic container, without any biological or chemical contamination of its outer surface, into a clean environment. The process is denoted S(exp 3)B (separation, seaming, and sealing using brazing) because sealing of the sample into the hermetic container, separating the container from the dirty environment, and bringing the container with a clean outer surface into the clean environment are all accomplished simultaneously with a brazing operation.

  9. Corrosion Testing of Brazed Space Station IATCS Materials

    NASA Technical Reports Server (NTRS)

    Pohlman, Matthew J.; Varisik, Jerry; Steele, John W.; Golden, Johnny L.; Boyce, William E.; Pedley, Michael D.

    2004-01-01

    Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.

  10. Diffusion Brazing of Al6061/15 Vol. Pct Al2O3p Using a Cu-Sn Interlayer

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian O.; Khan, Tahir I.; Oliver, Gossett D.

    2013-06-01

    Diffusion brazing of Al-6061 alloy containing 15 vol. pct Al2O3 particles was attempted using Cu-Sn interlayer. Joint formation was attributed to the solid-state interdiffusion of Cu and Sn followed by eutectic formation and subsequent isothermal solidification. Examination of the joint region using scanning electron microprobe analyzer (EPMA), wavelength dispersive spectroscopy (WDS) and X-ray diffraction (XRD) showed the formation of intermetallic phases such as Al7Cu3Mg3, Mg2Cu6Al5, Cu3Sn, and Mg2Sn. The results indicated an increase in joint strength with increasing bonding time giving the highest joint shear strength of 94 MPa at a bonding duration of 3 hours.

  11. Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung Hwan; Jung, Jae Pil

    2016-08-01

    The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.

  12. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  13. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    NASA Astrophysics Data System (ADS)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  14. Dispersed metal-toughened ceramics and ceramic brazing

    SciTech Connect

    Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.

    1983-01-01

    An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurement of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.

  15. Status of ATR-A1 irradiation experiment on vanadium alloys and low-activation steels

    SciTech Connect

    Tsai, H.; Strain, R.V.; Gomes, I.; Chung, H.; Smith, D.L.

    1997-04-01

    The ATR-A1 irradiation experiment in the Advanced Test Reactor (ATR) was a collaborative U.S./Japan effort to study at low temperatures the effects of neutron damage on vanadium alloys. The experiment also contained a limited quantity of low-activation ferritic steel specimens from Japan as part of the collaboration agreement. The irradiation was completed on May 5, 1996, as planned, after achieving an estimated neutron damage of 4.7 dpa in vanadium. The capsule has since been kept in the ATR water canal for the required radioactivity cool-down. Planning is underway for disassembly of the capsule and test specimen retrieval.

  16. Cast iron-base alloy for cylinder/regenerator housing

    NASA Technical Reports Server (NTRS)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  17. Influence of Zn Coating on Interfacial Reactions and Mechanical Properties During Laser Welding-Brazing of Mg to Steel

    NASA Astrophysics Data System (ADS)

    Li, Liqun; Tan, Caiwang; Chen, Yanbin; Guo, Wei; Hu, Xinbin

    2012-12-01

    To investigate the influence of Zn coating on the joining of magnesium alloy AZ31 to Zn-coated steel, dissimilar metal joining both with and without Zn coating was performed by the laser welding-brazing (LWB) process. Welding characteristics including joint appearance, identification of interfacial reaction layers, and mechanical properties were comparatively studied. The results indicated that the presence of Zn coating promoted the wetting of liquid filler wire on the steel substrate. Heterogeneous interfacial reaction layers formed along the interface between the Mg alloy and Zn-coated steel, whereas no distinct reaction layer and increased concentration of Al were identified at the interface between the Mg alloy and noncoated steel. The maximum tensile-shear strength of Mg/steel lap joint with Zn coating reached 180 N/mm, which was slightly higher than that achieved without Zn coating (160 N/mm). Failure of joint in both cases occurred at the interface; however, the fracture mode was found to differ. For Zn-coated steel, the crack propagated along the Mg-Zn reaction layer and Fe-Al phase, with little Mg-Zn reaction phases remaining on the steel side. As for noncoated steel, some remnants of the seam adhered to the steel substrate.

  18. Interfacial metallurgy study of brazed joints between tungsten and fusion related materials for divertor design

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Galloway, Alexander; Wood, James; Robbie, Mikael Brian Olsson; Easton, David; Zhu, Wenzhong

    2014-11-01

    In the developing DEMO divertor, the design of joints between tungsten to other fusion related materials is a significant challenge as a result of the dissimilar physical metallurgy of the materials to be joined. This paper focuses on the design and fabrication of dissimilar brazed joints between tungsten and fusion relevant materials such as EUROFER 97, oxygen-free high thermal conductivity (OFHC) Cu and SS316L using a gold based brazing foil. The main objectives are to develop acceptable brazing procedures for dissimilar joining of tungsten to other fusion compliant materials and to advance the metallurgical understanding within the interfacial region of the brazed joint. Four different butt-type brazed joints were created and characterised, each of which were joined with the aid of a thin brazing foil (Au80Cu19Fe1, in wt.%). Microstructural characterisation and elemental mapping in the transition region of the joint was undertaken and, thereafter, the results were analysed as was the interfacial diffusion characteristics of each material combination produced. Nano-indentation tests are performed at the joint regions and correlated with element composition information in order to understand the effects of diffused elements on mechanical properties. The experimental procedures of specimen fabrication and material characterisation methods are presented. The results of elemental transitions after brazing are reported. Elastic modulus and nano-hardness of each brazed joints are reported.

  19. High heat flux performance of brazed tungsten macro-brush test mock-up for divertors

    NASA Astrophysics Data System (ADS)

    Patil, Yashashri; Khirwadkar, S. S.; Krishnan, D.; Patel, A.; Tripathi, S.; Singh, K. P.; Belsare, S. M.

    2013-06-01

    Plasma facing components (PFCs) of divertor will be exposed to steady state and transient heat loads up to 20 MW/m2, during operation of ITER-like plasma fusion device. The critical task in fusion research is to design, fabricate and test of PFCs. To withstand high heat loads, PFCs are designed and fabricated in flat tile, mono-block type geometries using tungsten as plasma facing material and CuCrZr alloy is used as a heat sink. These fabricated mock-ups are tested under thermal cyclic heat loads using intense electron beam in pulsed mode. Tungsten macro-brush type of mock-up has been developed by vacuum furnace brazing route. Mock-up was tested to the absorbed heat flux in the range of 0.5-9 MW/m2. Simulation of high heat flux (HHF) test under steady state and cyclic heat loads has been done using ANSYS12 finite element analysis (FEA) software. HHF tests have been successfully performed on the tungsten mock-up.

  20. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  1. Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Lian, Youyun; Liu, Xiang

    2014-03-01

    In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequently, the reliability of the joints should be verified by a great number of high-heat-flux (HHF) tests to simulate the real load conditions. W/Cu brazed joint technology with sliver free filler metal CuMnNi has been developed at Southwestern Institute of Physics (SWIP). Screening and thermal fatigue tests of one small-scale flat tile W/CuCrZr mockup were performed on a 60 kW electron-beam Material testing scenario (EMS-60) constructed recently at SWIP. The module successfully survived screening test with the absorbed power density (Pabs) of 2 MW/m2 to 10 MW/m2 and the following 1000 cycles at Pabs of 7.2 MW/m2 without hot spots and overheating zones during the whole test campaign. Metallurgy and SEM observations did not find any cracks at both sides and the interface, indicating a good bonding of W and CuCrZr alloy. In addition, finite element simulations by ANSYS 12.0 under experimental load conditions were performed and compared with experimental results.

  2. A novel active fire protection approach for structural steel members using NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Sadiq, H.; Wong, M. B.; Al-Mahaidi, R.; Zhao, X. L.

    2013-02-01

    A novel active fire protection approach, based on integrating a shape memory alloy, NiTi, with a steel structure, was proposed to satisfy the fire resistance requirements in structural design. To demonstrate the principles of this approach, a simple structure in the form of a simply supported steel beam was used. The internal action of the beam due to a transverse applied load was reduced by utilizing the shape memory effect in the NiTi alloy at rising temperatures. As a result, the net internal action from the load design was kept below the deteriorated load capacity of the beam during the fire scenario for period of time that was longer than that of the original beam without the NiTi alloy. By integrating the NiTi alloy into the beam system, the structure remained stable even though the steel temperature exceeded the critical temperature which may have caused the original beam structure to collapse. Prior to testing the composite NiTi-steel beam under simulated fire conditions, the NiTi alloy specimens were characterized at high temperatures. At 300 °C, the stiffness of the specimens increased by three times and its strength by four times over that at room temperature. The results obtained from the high-temperature characterization highlighted the great potential of the alloy being used in fire engineering applications.

  3. Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.

    2016-12-01

    The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.

  4. Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.

    2017-02-01

    The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.

  5. Reduction of liquid metal embrittlement in copper-brazed stainless steel joints

    NASA Astrophysics Data System (ADS)

    Uhlig, T.; Fedorov, V.; Elßner, M.; Wagner, G.; Weis, S.

    2017-03-01

    Due to its very good formability and the low raw material cost, pure copper in form of foils is commonly used to braze plate heat exchangers made of stainless steel. The difference in the electrochemical potentials of brazing filler and base material leads to corrosion effects in contact with electrolytes. This may lead to leakages, which decrease the reliability of the heat exchanger during service in potable water. The dissolution of the emerging corrosion products of brazing filler and base material induces the migration of heavy metal ions, such as Cu2+ and Ni2+, into the potable water. The so-called liquid metal embrittlement, which takes place during the brazing process, may intensify the corrosion. The brazing filler infiltrates the stainless steel along the grain boundaries and causes an embrittlement. This paper deals with the determination of the grain boundary erosion dependent on the degree of deformation and heat treatment of the stainless steel AISI 316L.

  6. Brazeability of powder aluminum brazing filler metals with non-corrosive flux

    SciTech Connect

    Takemoto, T.; Matsunawa, A.; Ujie, T.

    1994-12-31

    Various brazed aluminum products, mainly heat exchangers, have been widely used especially in automobiles and electric power industries. They have been produced by using brazing sheet; however, recently the demand to braze the complicated shape is increasing, leading to the necessity for setting brazing filler metal at braze parts instead of using brazing sheet. Therefore, the present work aimed to investigated the brazeability of aluminum powder filler metal in nitrogen gas atmosphere using KAIF{sub 4}-K{sub 3}AIF{sub 6} system noncorrosive brazing flux. By considering the applicability of filler metal, brazing pastes were made of powder filler metal, flux and organic binder. AI-Si powder brazing filler metals were made by automization. T-type specimen was made by A3003 base metal with thickness of 2 mm. in the present experiment, fillet formabiltity, the percentage of the length of formed fillet against the length of vertical member wall at each side, was adopted to evaluate brazeability. The shape of the atomized powder depended on atomize atmosphere and atomizing gas. Sound fillet formation was achieved on the full length of both sides of the vertical member under the condition of appropriate surface treatment and sufficient flux content. Decrease in flux content gave partial fillet formation at the opposite side of the paste set side. Further decrease brought the partial fillet formation at the paste set side also. The paste made of air-atomized powder required more flux content to achieve 100% fillet formation at the opposite side. On the other hand, argon-atomized powders formed fillet in full length using paste with less flux content. powders sorted to remove fine particles and powders with low oxygen content were found to be suitable for brazing filler metal powders, because they required less flux content to obtain 100% fillet formation under the same amount of paste.

  7. Studies on separation and purification of fission (99)Mo from neutron activated uranium aluminum alloy.

    PubMed

    Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L

    2014-07-01

    A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards.

  8. Development of high catalytic activity disordered hydrogen-storage alloys for electrochemical application in nickel-metal hydride batterie

    NASA Astrophysics Data System (ADS)

    Ovshinsky, S. R.; Fetcenko, M. A.

    2001-04-01

    Multi-element, multiphase disordered metal hydride alloys have enabled the widespread commercialization of nickel-metal hydride (NiMH) batteries by allowing high capacity and good kinetics while overcoming the crucial barrier of unstable oxidation/corrosion behavior to obtain long cycle life. Alloy-formula optimization and advanced materials processing have been used to promote a high concentration of active hydrogen-storage sites vital for raising NiMH specific energy. New commercial applications demand fundamentally higher specific power and discharge-rate kinetics. Disorder at the metal/electrolyte interface has enabled a surface oxide with less than 70 Å metallic nickel alloy inclusions suspended within the oxide, which provide exceptional catalytic activity to the metal hydride electrode surface.

  9. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope.

    PubMed

    Le, Viet Ha; Hernando, Leon-Rodriguez; Lee, Cheong; Choi, Hyunchul; Jin, Zhen; Nguyen, Kim Tien; Go, Gwangjun; Ko, Seong-Young; Park, Jong-Oh; Park, Sukho

    2015-03-01

    Recently, capsule endoscopes have been used for diagnosis in digestive organs. However, because a capsule endoscope does not have a locomotive function, its use has been limited to small tubular digestive organs, such as small intestine and esophagus. To address this problem, researchers have begun studying an active locomotive intestine capsule endoscope as a medical instrument for the whole gastrointestinal tract. We have developed a capsule endoscope with a small permanent magnet that is actuated by an electromagnetic actuation system, allowing active and flexible movement in the patient's gut environment. In addition, researchers have noted the need for a biopsy function in capsule endoscope for the definitive diagnosis of digestive diseases. Therefore, this paper proposes a novel robotic biopsy device for active locomotive intestine capsule endoscope. The proposed biopsy device has a sharp blade connected with a shape memory alloy actuator. The biopsy device measuring 12 mm in diameter and 3 mm in length was integrated into our capsule endoscope prototype, where the device's sharp blade was activated and exposed by the shape memory alloy actuator. Then the electromagnetic actuation system generated a specific motion of the capsule endoscope to extract the tissue sample from the intestines. The final biopsy sample tissue had a volume of about 6 mm(3), which is a sufficient amount for a histological analysis. Consequently, we proposed the working principle of the biopsy device and conducted an in-vitro biopsy test to verify the feasibility of the biopsy device integrated into the capsule endoscope prototype using the electro-magnetic actuation system.

  10. Evolution of Microstructure in Brazed Joints of Austenitic-Martensitic Stainless Steel with Pure Silver Obtained with Ag-27Cu-5Sn Brazing Filler Material

    NASA Astrophysics Data System (ADS)

    Gangadharan, S.; Sivakumar, D.; Venkateswaran, T.; Kulkarni, Kaustubh

    2016-12-01

    Brazing of an austenitic-martensitic stainless steel (AMSS) with pure silver was carried out at 1053 K, 1073 K, and 1093 K (780 °C, 800 °C, and 820 °C) with Ag-27Cu-5Sn (wt pct) as brazing filler material (BFM). Wettability of the liquid BFM over base AMSS surface was found to be poor. Application of nickel coating to the steel was observed to enhance the wettability and to enable the formation of a good bond between BFM and the steel. The mechanism responsible for enhanced metallurgical bonding of the BFM with AMSS in the presence of nickel coating was explained based on diffusional interactions and uphill diffusion of iron, chromium and nickel observed in the brazed microstructure. Good diffusion-assisted zone was observed to form on silver side at all three temperatures. Four phases were encountered within the joint including silver solid solution, copper solid solution, Cu3Sn intermetallic and Ni-Fe solid solution. The Cu3Sn intermetallic was present in small amounts in the joints brazed at 1053 K and 1073 K (780 °C and 800 °C). The joint formed at 1093 K (820 °C) exhibited the absence of Cu3Sn, fewer defects and larger diffusion-assisted zone. Hardness of base AMSS was found to reduce during brazing due to austenite reversion and post-brazing sub-zero treatment for 2.5 hours was found suitable to recover the hardness.

  11. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach

    SciTech Connect

    Valodkar, Mayur; Modi, Shefaly; Pal, Angshuman; Thakore, Sonal

    2011-03-15

    Research highlights: {yields} Synthesis of novel nanosized copper-silver alloys of different compositions. {yields} Completely green approach for synthesis of water soluble bimetallic nanoparticle. {yields} Interesting anti-bacterial activity of as synthesized metal and alloy nanoparticle. -- Abstract: Metallic and bimetallic nanoparticles of copper and silver in various proportions were prepared by microwave assisted chemical reduction in aqueous medium using the biopolymer, starch as a stabilizing agent. Ascorbic acid was used as the reducing agent. The silver and copper nanoparticles exhibited surface plasmon absorption resonance maxima (SPR) at 416 and 584 nm, respectively; while SPR for the Cu-Ag alloys appeared in between depending on the alloy composition. The SPR maxima for bimetallic nanoparticles changes linearly with increasing copper content in the alloy. Transmission electron micrograph (TEM) showed monodispersed particles in the range of 20 {+-} 5 nm size. Both silver and copper nanoparticles exhibited emission band at 485 and 645 nm, respectively. The starch-stabilized nanoparticles exhibited interesting antibacterial activity with both gram positive and gram negative bacteria at micromolar concentrations.

  12. Development of optimum process parameters and a study of the effects of surface roughness on brazing of copper

    NASA Astrophysics Data System (ADS)

    Zaharinie, Tuan; Huda, Zainul; Izuan, Mohd Faaliq; Hamdi, Mohammed

    2015-03-01

    Brazing experiments on commercially-pure copper plates, using brazing filler metal (MBF-2005), are conducted at temperatures in the range of 650-750 °C for time-durations in the range of 5-15 min. Shear tests for braze-joints involved use of a universal testing machine. Based on the shear-test results, a new brazing cycle has been developed that corresponds to the greatest shear strength of the braze-joint. The brazing cycle has been performed under a controlled dry-argon atmosphere in a tube furnace. Microscopic observations were made by use of both optical and electron microscopes; whereas surface roughness measurements were made by using a TR100 Surface Roughness Tester. It is found that successful brazing and good wetting can be achieved by the least voids by using an average surface roughness (Ra value) for the base material.

  13. Surface alloying of Mg alloys after surface nanocrystallization.

    PubMed

    Zhang, Ming-Xing; Shi, Yi-Nong; Sun, Haiqing; Kelly, Patrick M

    2008-05-01

    Surface nanocrystallization using a surface mechanical attrition treatment effectively activates the surface of magnesium alloys due to the increase in grain boundary diffusion channels. As a result, the temperature of subsequent surface alloying treatment of pure Mg and AZ91 alloy can be reduced from 430 degrees C to 380 degrees C. Thus, it is possible to combine the surface alloying process with the solution treatment for this type of alloy. After surface alloying, the hardness of the alloyed layer is 3 to 4 times higher than that of the substrate and this may significantly improve the wear resistance of magnesium alloys.

  14. Service evaluation of aluminum-brazed titanium (ABTi). [aircraft structures

    NASA Technical Reports Server (NTRS)

    Elrod, S. D.

    1981-01-01

    Long term creep-rupture, flight service and jet engine exhaust tests on aluminum-brazed titanium (ABTi), originally initiated under the DOT/SST follow-on program, were completed. These tests included exposure to natural airline service environments for up to 6 years. The results showed that ABTi has adequate corrosion resistance for long time commercial airplane structural applications. Special precautions are required for those sandwich structures designed for sound attenuation that utilize perforated skins. ABTi was also shown to have usable creep-rupture strength and to be metallurgically stable at temperatures up to 425 C (800 F).

  15. Standard operating procedure: Gas atmosphere MELCO brazing furnace

    SciTech Connect

    Waller, C.R.

    1988-08-01

    A hydrogen and argon gas atmosphere furnace facility using electric furnaces is located at the Clinton P. Anderson Meson Physics Facility (LAMPF). This furnace system was acquired to handle smaller jobs with a more rapid response time than was possible with the larger furnaces. Accelerator- and experimental-related components best assembled by atmosphere brazing techniques are routinely processed by this facility in addition to special heat treatment and bakeout heats. The detailed operation sequence and description of the MELCO furnace system are covered by this report. This document is to augment LA-10231-SOP, which describes the operation of the large furnace systems. 6 figs.

  16. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    SciTech Connect

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendous challenge is alloying Pt NPs with the transition metals (TM).[13-16]

  17. Status of ATR-A1 irradiation experiment on vanadium alloys and low-activation steels

    SciTech Connect

    Tsai, H.; Strain, R.V.; Gomes, I.; Smith, D.L.; Matsui, H.

    1996-10-01

    The ATR-A1 irradiation experiment was a collaborative U.S./Japan effort to study at low temperature the effects of neutron damage on vanadium alloys. The experiment also contained a limited quantity of low-activation ferritic steel specimens from Japan as part of the collaboration agreement. The irradiation started in the Advanced Test Reactor (ATR) on November 30, 1995, and ended as planned on May 5, 1996. Total exposure was 132.9 effective full power days (EFPDs) and estimated neutron damage in the vanadium was 4.7 dpa. The vehicle has been discharged from the ATR core and is scheduled to be disassembled in the next reporting period.

  18. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    DOE PAGES

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; ...

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendousmore » challenge is alloying Pt NPs with the transition metals (TM).[13-16]« less

  19. Anodic oxidation of a Co–Ni–Cr–Mo alloy and its inhibitory effect on platelet activation.

    PubMed

    Nagai, Akiko; Suzuki, Yuta; Tsutsumi, Yusuke; Nozaki, Kosuke; Wada, Norio; Katayama, Keiichi; Hanawa, Takao; Yamashit, Kimihiro

    2014-05-01

    In this study, surface treatment of a Co–Ni–Cr–Mo alloy (MP35N) was attempted to attain biocompatibility using an anodic oxidation technique. To determine the optimal condition of the anodic oxidation treatment for stent applications, anodic polarization of the alloy was first conducted. After anodic oxidation, the surface topology and wettability were examined, and the composition and chemical states of the surface oxide were characterized. For biocompatibility, stent surfaces must have both cell adhesion and antithrombogenic properties. Therefore, the anodically oxidized surface was assessed with an endothelial cell attachment test and an in vitro platelet adhesion test. The results indicated that the topography, wettability, and composition of the surface oxide film on the alloy were changed by anodic oxidation at a voltage near the passive and transpassive region. The surface roughness and wettability increased after anodic oxidation. The major content of the oxide layer after anodic oxidation was Cr containing a small amount of Mo, and Ni and Co were almost eliminated from the layer. Platelet activation of the alloy decreased significantly after anodic oxidation at an optimal potential, whereas the cytocompatibility remained constant. Therefore, the anodic oxidation is an effective process for treating this alloy for stent applications.

  20. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag.

    PubMed

    Chartier, D; Muzeau, B; Stefan, L; Sanchez-Canet, J; Monguillon, C

    2017-03-15

    Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.